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PREFACE

This is a text for a first course in complex variable theory designed
to follow a course in real variables such as may be found in Advanced
Real Calculus.* It is designed for upper class mathematics majors
and beginning graduate students. Notes on which this book is based
have also been successfully used for graduate engineering students.
The level of rigor is on a par with that found in ARC, that is, an exact
¢, 8-treatment. Keeping in mind the class of readers to whom the
book is addressed, we have made the exposition detailed and uniform
throughout the whole text. The only important theorem that we do
not prove is the Jordan separation theorem, which, however, is
extensively discussed. It is the opinion of the author that a logically
satisfying proof of this theorem would take us too far afield. The
interested reader can quickly see that for our practical purposes it is
not necessary.

The organization of the book is patterned after that of ARC.
The first chapter treats complex numbers and convergence of complex
sequences. The analogy to real numbers and real sequences is
emphagized. Many proofs are reduced to an application of real
variable theory. Chapter 2 is devoted to topological preliminaries
and includes a discussion of continuous curves and functions of bounded
variation. In Chapter 3 we start function theory proper with a
definition of function, continuity, and differentiability as applied to
complex functions. The elementary functions are introduced by their
(real) series expansions and then extended to the complex domain.
Thus we have a repertoire of concrete functions for later applications.
Careful attention is paid to multi-valued functions, including a dis-
cussion of “Riemann axes” (the analog of Riemann surfaces for real
functions), which helps to clarify the use and significance of multi-
valued complex functions. Analytic functions and the Cauchy-
Riemann equations are introduced; the distinction between analyticity
and differentiability is clearly discussed. The chapter concludes with
a brief interpretation of analytic functions as mappings. Chapter 4 is

* K. 8. Miller, Ad: d Real Calculus, Harper & Brothers, 1957. Throughout this
book we shall use the abbreviation 4ARC for Ad d Real Calculus
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viii Preface

a detailed study of the integral. Starting with complex-valued fune-
tions of a real variable, the development parallels the real case. The
great divergence from this parallel development lies in the Cauchy
integral theorem and the Cauchy integral formula. In Chapter 5 we
return to sequences and series of complex numbers and functions,
including the usual theorems which are the analogs for real sequences
and series. Special attention is focused on sequences of analytic
functions. Thus the first five chapters are in one to one correspondence
with the first five chapters of ARC and introduce the reader to the
basic fundamentals concerning functions of a complex variable. Care
is exercised in pointing out the ‘“‘natural” extensions from the real to
the complex so that complex variable theory appears as a logical
continuation rather than as a bizarre offshoot of real variable theory.
Correspondingly the important properties of analytic functions that
have no real counterpart are carefully delineated.

In the remaining four chapters we depart from the parallel develop-
ment of real variable theory. Chapter 6 is a rather detailed discussion
of the calculus of residues with special emphasis on integration around
branch points. For example, the loop and double loop integrals which
reappear in Chapter 9 are discussed. Chapter 7 is a “catch-all”’ chapter
of important theorems such as Rouché’s theorem, Liouville’s theorem,
and the maximum modulus theorem; even so, the chapter exhibits a
reasonable cohesiveness. While most of the results could have been
presented at earlier points in the book, it seemed best to collect them
all in one place rather than interrupt the main thread of development
in each previous chapter. Chapter 8 is a brief but mathematically
exact introduction to conformal mapping and includes a discussion of
the elliptic integral. In Chapter 9 we indulge ourselves with a dis-
cussion of the method of Laplace integrals. This is an interesting
application of complex variable theory to differential equations.
Furthermore, it can be given without going into a detailed study of
existence, uniqueness, properties of solutions, and singular points of
linear differential equations. Of course, the subject matter of linear
differential equations in the complex domain is in itself material for a
complete textbook.

It is a pleasure to acknowledge the help of my former students
Mr. L. E. Blumenson of New York University and Mr. H. R. Gluck of
Princeton University, who read the entire manuscript and offered
many valuable suggestions for the improvement of the text. I am
also indebted to my father, Mr. W. A. Miller, for the preparation of
the many excellent diagrams.

K. S. M,
June, 1959
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CHAPTER I

Numbers and Convergence

1.1 Introduction

The reader will recall that the study of functions of real variables
was prefaced by a study of real numbers, limits, and certain topological
considerations. Thus it was not possible to plunge immediately into
a rigorous treatment of the theory of differentiation without first
having an appreciation of the meaning of “number.” It will therefore
come as no surprise that if we are to study the theory of functions of a
complex variable we had best begin with a preliminary examination of
complex numbers, limits of sequences of complex numbers, and certain
topological questions.

Fortunately, our treatment will be briefer than that necessary for
real variables. The reason for this is that we have already laid a
broad foundation in our study of real variables. Essentially what we
do is to reduce the complex case to the real case and apply the great
wealth of material developed in advanced calculus. For example, the
reader has an intuitive notion of a complex number, a + b where
i = v —1and a and b are real. We shall show that to study the con-
vergence of a sequence of complex numbers such as {a, + tb,} we need
only study the convergence of the two real sequences {a,} and {ba}.
Thus, for example, a Cauchy convergence theorem for sequences of
complex numbers can be given short shrift, compared to the long and
delicate arguments needed for the real case.*

We do not wish to mislead the reader. While the technique of
considering a complex number as two real numbers enables us to prove
many theorems, this method of approach should not be carried to
extremes. The essential beauty and utility of the theory of analytic

* See K. 8. Miller, Advanced Real Calculus, Harper & Brothers, 1957, p. 10.
Throughout this book we shall use the abbreviation A RC for Ad: d Real Caleul
|




2 Advanced Complex Calculus

functions rests on the treatment of the complex variable as an entity
and not as a pair of real variables.

1.2 Complex Numbers

We recall the definition of a real number. By a complex number we
shall mean an ordered pair of real numbers (a,b). Thus in the symbol
(a,b) the quantities a and b are real numbers. By an ordered pair we
mean that (a,b) and (b,a) are distinct unless @ = b. Two complex
numbers (a,b) and (c,d) are equal if and only ifa = c and b = d.

The sum of two complex numbers is defined by the equation

(@,b) + (cd) = (@ + ¢, b + d) (1.1)
and the product by the equation
(a,b)-(c,d) = (ac — bd, ad + bc). (1.2)

Clearly if (a,b) and (c,d) are ordered pairs of real numbers, so are the
right-hand sides of Equations 1.1 and 1.2.

Assuming the associativity and commutativity of addition and
multiplication of real numbers, as we did in ARC, we can easily show
that complex numbers also enjoy the same properties, viz.:

(a,b) + [(ed) + (e,f)] = [(a,d) + (c.d)] + (e,f) (Assoc. of add.) (1.3)

(a,b) + (cd) = (c.d) + (a,b) (Comm. of add.) (1.4)
(a,d)-[(c,d)-(e.f)] = [(a,b)-(c,d)]-(e,f) (Assoc. of mult.) (1.8)
(a,b)-(cd) = (¢, d)-(ab) (Comm. of mult.) (1.6)

One can also show that multiplication is distributive with respect to
addition, namely:
(@,b)-[(c.d) + (e,f)] = (a,b)-(c.d) + (a,)-(e,f). (1.7)

The proofs of Equations 1.3—1.7 are elementary exercises in high school
algebra and will be left to the reader.

The zero complex number is (0,0). From Equations 1.1 and 1.4 it is
evident that

((l,b) + (0!0) = (0’0) + (a‘ab) = (asb)'
The negative of a complex number (a,b) is (—a, —b) since

(a,b) + (—a,—b) = (0,0).

It is customary to write (—a,—b) as —(a,b). Clearly the negative is
unique.
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" Given any complex numbers (a,b) and (¢,d) with (c,d) # (0,0) we
can always find & complex number (u,») such that

(a,0) = (c,d) (u,0). (1.8)

In other words, division by any complex number (except zero) is always
possible. For if
ac + bd _bc—ad
2+dz ‘T axar
then Equation 1.8 is satisfied. The reader may convince himself that
(u,v) is unique.

In brief, we have shown that the complex numbers form a field.*

U =

1.3 The Imaginary Unit
From the relations of the previous section we see that
(a,0) + (6,0) = (a + b,0)
(@,0)-(b,0) = (ab,0)

%g_; = (%,0), b # 0.

Thus we may identify the complex number (a,0) with the real number a
since it obeys all the arithmetic laws. (Precisely speaking, we say that
the subfield (a,0) of all complex numbers is isomorphic to the real
numbers.)t

Now any complex number (a,b) may be written in the form

(2,b) = (a,0)-(1,0) + (b,0)-(0,1)
= a + b(0,1).
For convenience and custom we shall use the symbol i for the complex

number (0,1). Thus
(ab) = a + bi.

From Equation 1.2 we see that
(0,1)-(0,1) = (—1,0),

so that 2 = —1. Thus we sometimes write 4 = v/ —1. This is just
another symbol for the complex number (0,1). Of course, the reader
has already observed that our abstract formulation of complex numbers
was motivated by a formal manipulation of the symbol a + bV —1

* See K. S. Miller, Elements of Modern Abstract Algebra, Harper & Brothers, 1958,

p- 57 and chap. 3, for a detailed discussion of abstract fields.
t See Miller, op. cit., pp. 22, 60.
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where a and b are real numbers. We sometimes call complex numbers
of the form (0,b) imaginary or purely imaginary numbers.

While real numbers may be arranged geometrically on a straight
line according to magnitude with some arbitrary point taken as the
origin, we need a plane in order to represent a complex number. This
is customarily done by labeling the axis of abscissas the real axis
(Re) and the axis of ordinates the imaginary axis (Im). Thus the
complex number a + b is represented on the cartesian plane as the
point with coordinates (a,b). We call such a plane the complex plane.

For completeness, we now mention a few terms with which the reader
probably is already familiar. The conjugate of a complex number

(a,b)

> Re

Figure I.1

a + tb is defined as a — ¢b. We shall indicate conjugates by a bar.
Thus

a + 1b = a — 1b.

The modulus of a complex number a + tb is written |a + ib| and is
defined as

la + ] = +Va® + b2
Clearly |a + 4b| is always nonnegative. We see that “‘modulus” is

the natural extension of the notion of ‘“‘absolute value” of a real
number. For if b = 0, the above equation becomes

o] = +va?,
which is the definition of the absolute value of a real number, namely,
la| = aifa 2 0and [a] = —aifa < 0. Geometrically, the modulus

is the distance from the origin to the point (a,b) in the complex plane
(see Fig. 1.1).



Numbers and Convergence 5

1.4 Properties of Complex Numbers

We now shall discontinue our abstract notation (a,b) of a complex
number (which was necessary to formulate clearly our system of
complex numbers) and hereafter use the notation a + 6. Of course,
it frequently will be convenient to use a single symbol such as « to
denote a complex number, for example, &« = a + b.

For real numbers we recall the relations |ab| = |a||b| and
|@ + 8] < |a] + |b]. Let us show that these relations are still true if
a and b are complex numbers and |- - -| is interpreted as “modulus.”

Theorem |. If « and B are any complex numbers, then
|oB| = || -[B]-
Proof: Let « = a + ib, B = ¢ + id. Then
leB] = |(@ + ib)(c + id)| = |(ac — bd) + i(bc + ad)]|
= V(ac — bd)2 + (bc + ad)?
by definition of modulus. But
(ac — bd)? + (be + ad)? = a%? + b%d? + b2 + a?d?
= c%(a? + b2) + d%(a? + b?)
= (e + d¥)(a® + b7)

jof| = +VaT + B ¥ & = |a-[8].

Immediate corollaries are |x|2 = |«?| = ad and |&| = |a.

As was remarked in the introduction, we can prove theorems in-
volving complex numbers by reducing them to theorems about real
numbers. We used this device in Theorem 1 and shall use it also to
prove Theorem 2 known as the triangle inequality.

and

Theorem 2. If « and B are complex numbers, then
e + Bl < [a| + |B]- (1.9)
Proof: First we note that
(lal + |82 = |o|* + |B]* + 2e]-|A]-
As before, let « = a + b, 8 = ¢ + id. Then
la|-|8] = V(a® + B9)(® + d%) = V{ac + bd)® + (ad — bo)?
2 V(ac + bd)? = |ac + bd|.
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But
le + B|2 = (@ + ¢)2 + (b + d) = (a® + b2) + (c2 + d?) + 2(ac + bd)
= |e|2 + |B|2 + 2(ac + bd).
Thus
(|le| + |B])2 = |« + B|2 2= 2|ac + bd| — 2(ac + bd) = O
or
(lef + |B))? 2 | + B,

from which our theorem follows.

Corollary. |a — B] = ||| — |Bl]-

Proof: Write « = B + (« — B). Then from Theorem 2

ot < |B] + | ~ B

e — Bl 2 |of — |Bl-
Interchanging the roles of o and 8 yields the corollary.
Other trivial consequences are |a + ib| = |a|, |& + ib| 2 |b].

or

1.5 Sequences of Compiex Numbers

Suppose that we are given a rule which associates with every positive
integer n a complex number oy. Then we call

€, 02yt ¢ vy Upy* *° (1.10)

—or more compactly {«,}—a sequence of complex numbers. We shall
say that the sequence converges to the limit « if: Given any ¢ > 0
there exists an N such that for alln > N

log — o] < e (1.11)

This is, of course, the same as the definition of convergence of sequences
of real numbers. We shall use the notation
limay, = «

H—» 00

or
{an} —> «

as well as Equation 1.11 to imply that the sequence {«,} converges to a.

If a sequence has a limit, this limit is unique. Suppose {n} con-
verged to « and B with « ## B. Then given ¢ = e — B > 0,
choose an N so large that

|a,,_a]<§ and  Jaw — B <

[ Y
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for all n > N. This is possible since by hypothesis {«s} converges to
both « and 8. Then by the triangle inequality

2e = Ju— B = |« — an+ an— Bl S & — o] + [en -
< +

= €,

ol m

ol m

which is absurd.

The fundamental theorem on the convergence of sequences of com-
plex numbers which relates them to the convergence of real sequences
follows.

Theorem 3. Let {«s} be a sequence of complex numbers where
on = @n + tby. Then a necessary and sufficient condition that
{en} converge to o = a + b is that {a,} converge to a and {b,} converge
to b.

Proof: Necessity. Let € > 0 be assigned. Then there exists an
N such that

lon — a] < € (1.12)
foralln > N. But Equation 1.12 is equivalent to
[(@n + tbs) — (@ + b)| = |(@n — @) + (b — b)] < €
for all» > N. Since

€ > |(@n — a) + i(bs — b)| 2 |an — af
and

€ > |(@n — a) + i(bn — b)| Z |bn — B|

for all n > N, we conclude that {a,} — a and {bs} — b.
Sufficiency: Let ¢ > 0 be assigned. Choose an N so large that

€ €
|a—a,.|<§ and |b—b,.|<§

foralln > N. Then forn > N,
Ian - al = I(an + tba) — (@ + ‘ib)l = I(an - a) + t(bp — b)l
S |a = ax| + |b — bl <§+7§=s.
A fundamental theorem in the theory of real sequences was the

Cauchy convergence theorem. We state and prove it for complex
sequences in Theorem 4.
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Theorem 4. Let {ax} be a sequence of complex numbers. A
necessary and sufficient condition that the sequence converge is:
Given an € > 0 there exists an N such that for all » > N and all
positive integers p,

len — anip| < e

Proof: Necessity. Suppose {s} converges to «. Choose an N so

large that

|oz,,—ot|<f

2

for all n > N. Now if p is a positive integer, » + p > N and hence
€
I(Z,p;.p - a| < §'
But by the triangle inequality,
Ia,. - a,.+p| = |o¢,, —-_—a 4+ a— a”+p| =< |a,. - al + |a - Cn+p

< =+

= €.

[ ST
ol

Sufficiency: Let ¢ > 0 be assigned. Suppose there exists an N such
that

|en — ontp| < €
for all » > N and all p > 0. Let ay = a, + ib,. Then the above
inequality implies
[(@n + 1ba) — (@n+p + Baip)| = [(@n = Gnip) + 1(bn — bats)| < ¢,
which in turn implies
|@n — @nsp| < € and |bn — ba+p| < e

But by the Cauchy convergence theorem for real sequences,
|an — @n4p| < eforalln > N and p > 0implies {a.} converges, say to
a. Similarly {b,} converges, say to b. By Theorem 3 this implies
{an} converges to a + b.

A sequence {o,} of complex numbers is said to be bounded if there
exists a real number M, independent of n, such that
ol = M

for all n, » = 1,2,8,--.. A bounded sequence need not converge.
For example, {(— 1)} is a bounded sequence which does not converge.
However, the converse of this proposition s true.
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Theorem 5. Let {s} be a convergent sequence of complex numbers.
Then {«n} is bounded.
Proof: Let {a,} converge to «. Then for any «,

len] = |(@n — @) + @] £ |an — af + |a].
If we let ¢ = 1, then there exists an N such that
|a,, — a' <1
foralln > N. Thus
[a,,[ <1+ [a[
for alln > N. Choose

M = max (lall, |a2|,~ .oy I(xNI, 1+ |a])
Then
M ; Ianl
for all n.

The next three theorems on the sum, product, and quotient of
sequences of complex numbers are identical with Theorems 4, 5, and 6
of Chapter 1 of ARC for real sequences. We include their proofs here
for completeness. As the reader goes through these proofs he should
convince himself that every step is justified in terms of the rules laid
down for the manipulation of complex numbers. He should be

especially careful to interpret |- - - | as “modulus” rather than “absolute
value.”

Theorem 6. Let {as} and {8} be two convergent sequences of com-
plex numbers with limits « and B respectively. Then the sequence
{en + Bn} converges and its limit is & + B.

Proof: Let € > 0 be assigned. Choose an N such that

lan—a|<§ and |B,.—B[<§

for allz > N. Then by the triangle inequality
[(@n + Bn) = (« + B)| = [(an — @) + (Bx — B)|

€

€
§|an—¢|+lﬁn"ﬁ|<§+§=€-‘

Theorem 7. Let {xs} — a and {B,} — B. Then the sequence {anfs}
converges to of.
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Proof: Let ¢ > 0 be assigned. By Theorem 5 there exists an 4
such that 4 > |ay| for all n. Let K = max (|8|, 4). Now choose an
N so large that

€

€
|an—a|<:2-1—{ and |B,,—B|<ﬁ

for all = > N. Then by the triangle inequality,
|¢¥nﬁn - aﬁl = |anﬁn - omﬂ + anﬂ - a,3| = |a”(ﬁ,, - B) =+ :3(“71 - a)l

€

€
gla"llﬂn—ﬁl"'lﬁllan—al<KR+KTK=5
foralln > N.

Theorem 8. Let {a,} converge to o # 0. Then the sequence
{1/en} converges to 1/e.

Proof: Note that if some oy is zero, 1/o; is not defined. Thus the
sequence {1/ay} is not well defined. However, we know that when
investigating the convergence or divergence of a sequence we can
neglect any finite number of terms without affecting the convergence
or divergence. Thus we shall first show the existence of an N such that
an # Oforn > N. Then if we consider the sequence

AN+1; EN+2,* * °,

it will also have the limit «, and the sequence

1 1

b
AN+l ON+2

e

also will be well defined. We proceed with this portion of the proof.
Since a # 0 and {«x} converges to a, we may choose an N so large that

|on — a| < '%I
foralln > N. Now from the corollary to Theorem 2,

|a,.|g|a|—-|a——an|>1%l—>0.

Thus a, # 0 for n > N, and the sequence of reciprocals {1/a,} is well
defined for n > N.
Now
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Thus if an € > 0 is assigned, we can choose a P > N such that

2
len — @] < __I“I <

forallm > P. Then forn > P,

|| 2

EXERCISES
1.1. If ¢ and B are complex numbers, prove that

atB=a+§

of = ap.

1.2. Let z be a complex number. By Re[z] we mean the real part of
z and by Im [z] we mean the imaginary part of z. Thusifz = z + iy,
Re(z] = z and Im[2] = y. Prove that if « and B are any complex
numbers then

and

Re[ax + B] = Re[a] + Re[B]

Im (o + ] = Im [o] + Im 8]
and

Re[ef] = Re[e] Re[f] — Im [«] Im [B]
Im [8] = Re[o] Im [B] + Im [o] Re [B].

1.3. If « is a complex number, prove that
lof 2 |Rele]l,  |e| 2 [Im[q]]

and

l¢| = |[Rela]] + |[Im [«]].
1.4. If « and B are complex numbers with 8 # a # 0, prove the identity
1 1. B B g g+t

e—B sttt temtEne—p

1.5. If o; and B; are complex numbers, prove that

i oy ‘ < i lwlzi |B4]2.

=1 i=1 =1

(This is the Cauchy-Schwarz inequality.)
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1.6.

1.7.
1.8.

1.9.

1.10.
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If o; and B; are complex numbers, prove that

n 1/2 n 12 n 1/2
[Sta+t] s [ttt + [ S 1802 ™
i=1 i=1 i=1
(This is the triangle or Minkowsk: inequality.)

If « is a complex number with the property that |«| < e for all ¢ > 0,
prove that ¢ = 0.

If the sequence of complex numbers {«,} converges to «, prove that
{len|} converges to |«|.

Let {a,} be a sequence of positive real numbers. Let {8,} be a sequence
of complex numbers with the property that |8s| < «y. If {a} con-
verges to zero, prove that the sequence {8,} converges.

If the sequence {«y} converges to «, prove that the sequence {8,},

where
n
S a
k=1
also converges to a.
Let {ay} > o and {B,}—>pB. If

=°‘1ﬁn+°‘25n—1+"'+‘1n31’ =12 ...
n I ’ )

S|

Bn=

Yn+1

prove that the sequence {y,.+1} converges to «f.



CHAPTER 2

Topological Preliminaries

2.1 Introduction

In this chapter we shall consider some elementary properties of point
sets in the plane. Of course, we considered some of these properties
when we studied functions of two real variables (cf. Chapter 6 of ARC).
The results obtained there will be quickly summarized in Section 2.2.
The wording will reflect the complex plane approach. For example,
the cumbersome statement

Vi — 20)2 + (y — Y0)? < « (2.1)

needed to describe a spherical neighborhood about the point (ze,y0)
in the zy-plane in real variable theory may be replaced by the succinct
statement

|z — 20| < € (2.2)

in the complex plane. Thus this last inequality represents all points
interior to a circle of radius ¢ with center at zg. If we identify z with
z + 1y and zo = zo + Yo, Equations 2.1 and 2.2 become identical.

It is possible to discuss many properties of functions of two real
variables without probing too deeply into the structure of the domain
of definition. For example, in Chapter 6 of ARC we frequently con-
sidered a function f(z,y) defined and continuous on an open region %
of the xy-plane. Then around any point (zo,y0) in A we could draw
a closed rectangular neighborhood R of (%o,y0) such that f(z,y) was
defined and continuous on ®. We then proceeded to prove various
properties about f in ®. Thus we avoided any discussion of the
boundary of A. However, we cannot side-step this issue indefinitely.
At some stage we must explicitly define what we mean by a curve or
boundary in the plane. For example, if we pushed our study of real

variables to Peano-Jordan content or the study of line integrals we
13
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would be squarely faced with this issue. Because the character of
complex variables is essentially two-dimensional, we must come to
grips with some phases of the problem even in the most elementary
portions of the theory.

2.2 Point Sets

We mention again that we shall use the words point and complex
number interchangeably. Geometric language is convenient, but all
our proofs will be arithmetic.

Let zo be any point in the complex plane. The set of points 2z
satisfying the inequality

|z — 20| < € (2.3)

for any ¢ > 0 will be called a neighborhood of 29, or more explicitly, an
e-neighborhood of zo. Clearly any point has an infinity of neighbor-
hoods, one for every ¢ > 0. The neighborhood we have specified is
a spherical neighborhood, that is, it consists of all points interior to a
circle of radius ¢ with center at zo. Most proofs in complex variable
theory use spherical neighborhoods, although it is, of course, possible
to use rectangular neighborhoods as we sometimes did in the theory of
functions of two real variables (see Chapter 6 of ARC).

We recall a few definitions. Let E be a point set. We say zpisa
limit point of E if every neighborhood of zo contains points of £ distinct
from zo. A point set F is said to be closed if it contains all its limit
points or else has none. A point set G is said to be open if every point
of G has a neighborhood entirely contained in @. We introduce the
term perfect to describe a closed set F such that every point of F is a
limit point of F. This rules out certain degenerate closed sets. For
example, if {,} is a sequence of complex numbers converging to «, then
the point set consisting of the numbers «, a3, a3,- - - is closed but not
perfect. :

The complement of a set E is defined as all points not in E. An
intimate relation between closed and open sets is expressed in the
following theorem.

Theorem |. The complement of a closed set is open and the comple-
ment of an open set is closed.

Proof: Let F be a closed set and G its complement. Suppose G
is not open. Then there exists a point 2o in G such that every neigh-
borhood of 2o contains points of F. By definition, zg is a limit point of
F. But F, being closed, contains all its limit points. Thus 2o is in
F—a contradiction.
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Let G be an open set and F its complement. Suppose F is not closed.
Then there must exist a limit point 2o of F which is not in F. Thus
2o must be in G. But G is open. Therefore there exists a neighbor-
hood of zy entirely contained in G. If this is so, 29 cannot be a limit
point of F, since every neighborhood of a limit point contains points of
F distinct from the limit point—a contradiction.

One of the basic theorems of point set topology in real variables
was the Heine-Borel covering theorem. We state it below for con-
venient reference, the proof being identical with that given in Chapter 6
of ARC. We recall that a point set £ is said to be bounded if there
exists a rectangle R of finite dimensions such that every point of E is
interior to R.

Theorem 2: (Heine-Borel). Let E be a closed bounded point set.
Let {C.} be a finite or infinite collection of circles such that every point
of E is interior to at least one C,. Then there exists a finite subset of
the {C.} such that every point of E is interior to at least one member of
this finite subset.

2.3 Continuous Curves

Section 2.2 covered essentially all the topological notions that were
absolutely necessary to the study of the elementary theory of real
variables, for example, as given in ARC. As we have noted in the
introduction, a more penetrating analysis would have been necessary
if certain aspects of real variable theory were to have been more deeply
probed. In the present section we shall consider such topics as
continuous curves and rectifiability.

Let

x=¢@E), y=)

be two real-valued continuous functions of the real variable ¢ defined on
the t-interval [«,8]. We shall call such a pair of functions a continuous
curve, C. The totality of points z = x + iy obtained by allowing ¢
to range over the closed interval [«,8] will be called the points of the
curve. If no two distinct values of ¢ yield the same point on the curve,
we shall call the curve a simple curve. Thus a simple curve is a con-
tinuous curve with the property that

d(t2) = $(t1)  and  P(t2) = P(t1)

cannot be simultaneously true for ¢ # ts. If ¢la) + t(e) =
#(B) + i(B), we shall call the continuous curve C a closed curve. A
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closed curve will be called a simple closed curve if the only values of ¢
which yield the same point on the curve aret = c andt = 8. We see
that the definition of simple curve rules out curves which have
multiple points, such as, for example, the lemniscate or four-leaved
rose.

One would imagine at first that “continuous curve” would be co-
extensive with our intuitive notion of “smooth curve.” Such is not
the case. Peano showed that there are continuous curves that pass
through every point of a square!* Thus we see once more that
geometric ideas must be replaced by precise arithmetical definitions if
we are to build a logical theory.

In Chapter 4 of ARC when we introduced the Riemann integral of a
function f(z), the interval over which f(z) was defined was finite; that
is, its length was a finite number. We shortly shall consider curvilinear
or contour integrals, that is, integrals of functions defined along con-
tinuous curves. It will turn out, as seems intuitively reasonable, that
we shall have to require that our curve have finite length. Thus we
now shall consider the problem of giving a precise meaning to the term
length of a continuous curve.

Let z; = 21 + 4y1 and 22 = x3 + iyz be two points in the complex
plane. Then by the line segment joining z; and z; we mean the set of
points

z =[x + t(x2 — 21)] + [y + t(y2 — Y1)}, 0=t=s L

Thus a line segment can be described by a continuous curve. By the
length of the segment [21,22] we shall mean |z; — z3|. A finite number
of segments [21,2;], [22,25],- - -, [2n,2,] is called a polygon, G, if z; = 241,
t=12,-..,n — 1. If G has no multiple points, we call it a simple
polygon. If z1 = 2z, we call G a closed polygon, and if G is closed with no
multiple points, we say G is a simple closed polygon. These definitions
parallel those of continuous curve, simple curve, closed curve, and
simple closed curve given earlier in this section. However, the length
of a polygon is well defined ; namely, it is the sum of the lengths of the
segments comprising the polygon.
Now let

[ == 00)
0‘{y=¢(t) astsp

be a continuous curve. Let = be a partition of [«,8],
a=$0<t1<'--<t”=ﬁ

* See, for example, P. Dienes, The Taylor Series, Oxford, Clarendon Press, 1931,
p. 175,
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and let z; = (%) + 4(t;), j = 0,1,---, n. The line segments [2o,21],
[z1,22],« « -, [20-1,24] form a polygon @, which we shall call a polygon
inscribed in C. Let MG) denote the length of the polygon. If
Lu.b. A(@) exists where the l.u.b. is extended over all partitions of
[e,B], then we say C is rectifiable and call L,

L = Lub. X(@),

the length of C.

We shall now show that as the norm* 4 of the partition approaches
zero, the lengths of the inscribed polygons approach the length of the
curve.

Theorem 3. Let C be a rectifiable curve,

NEET I
{7 et

Let = be a partition of [«,8] and 4 its norm. Then

lIA

B.

L = lim X@,),

40

where L is the length of C' and A(G,) is the length of the polygon G,
inscribed in C corresponding to the partition .

Proof: Let € > 0 be assigned. Since L = Lu.b. A(G@), there exists
a partition  of [«,8] of norm & such that

L-XG.) <5
Let n be the number of subdivisions in #. Now ¢(t) and y(t) are

continuous and hence uniformly continuous on [«,8]. Thus we may
choose a 8’ > 0 so small that

€

VI$(E) — $@) + [$t) — $l(w)]* < o

whenever |t — u| < §'.

Let =’ be any partition of norm less than or equal to &, and let p
be a refinement of = and #’ consisting of the points of subdivision
belonging to both = and #’. Then, of course, AG,) = AXG.),
AG,) 2 XN@G,). If XG,) > XG,), it will be because certain points of
‘m lie between two consecutive points of »'. The excess of A(G,) over

* By the norm of the partition we mean the maximum of the positive numbers
t;—ti_1. See p. 48 of ARC.
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A(@,) corresponding to such points will be less than n(2¢/4n) = ¢/2.
Thus

m

A@) — AGx) <

2
Since A(G,) = A(G,), we also have
MG2) = A6 < 5
But
€
L - XG,) < 3

by construction. These last two inequalities imply

L — MG < e

We shall call a simple rectifiable curve a Jordan arc and a simple
rectifiable closed curve a Jordan curve.

In the elementary calculus it was shown that the length of a curve
could be expressed as

8
[ vEor+wora.
We give a precise statement and proof of this formula.

Theorem 4. Let C be a rectifiable curve,
z = ¢(t)

C: a
{ y = ¥(t)

and let ¢(t) and ¥(¢) have continuous first derivatives on [«,8]. Then
the length L of C is given by

A

¢

IA

B’

L= fﬁ VIg' )2 + [ (#)]2 de.

Proof: Since ¢'(t) and ¢’ () are continuous by hypothesis, the sum of
their squares is also continuous on [«,8]. We leave it to the reader to
show that the square root is continuous. Thus the above integral is
well defined. Let = be a partition of [«,8]. Then the length of the
inscribed polygon G, corresponding to = is given by

ANG.) = zn: Viw — 2-1)? + (5 ~ ya-1)?,

=1
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where, of course, xs = ¢(#) and y; = §(t;), s+ = 1,2,---,n. By the
Law of the Mean, there exist points & and %, -1 < & < &,
ey << b such that

d(ts) — dltim1) = ¢'(§0)(E — ti—1)

and

Pte) — Plti-1) = ' (pe)(ts — ti-1).

Hence

AG) =§; VIFEE + [ (e — t).

The reader may easily verify that the function f(u,v) =
V¢’ (u)]2 + [’ (v)]? is jointly continuous in the square « < u,v < B.
Now let ¢ > 0 be assigned. Choose a 8 > 0 so small that

[fw0) — f(u'0)| < B =)

whenever |u — u’| < 8 and |[v —%’| < §, and also so small that

B n
j VIFOE + 02 dt — > VIFEE + WER ¢ — t)| < %
a =1
(2.4)
whenever 4 — -1 < 3 and ¢; is any point in [t_1,t;]]. Let = have
norm less than or equal to 8. Then, since
|é¢ —t] <& and [ne — 8] < 8§,
we have

<= (2.5)

|Me = 3 s - o] < 5

Equations 2.4 and 2.5 imply

XG,) — f VIFOT ¥ WOF d

Theorem 3 completes the proof.

< €.

2.4 Functions of Bounded Variation

Since curves may be described by pairs of real functions of a real
variable, we need only consider real variable theory in order to analyze
them. A convenient criterion is to require that the functions be of
bounded variation. Thisin itselfis auseful way to classify real functions.
We shall define the term bounded variation and deduce some theorems
based on this definition. Other properties of functions of bounded
variation will be found in the exercises at the end of this chapter.
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Let f(x) be a function of the real variable z defined on [@,b]. Letw,

a =29 <%y <+ +-<&Tp=b,

be a partition of [a,b] and consider the sum

i @) — flae)]-

If the totality of sums {S,} for all partitions of [a,b] forms a bounded
set, then we shall say f(x) is of bounded variation on [a,b]. We call

V(f) = Lub. S,

the variation of f(z) on [a,b].

A function of bounded variation is of necessity bounded ; however,
a function of bounded variation need not be continuous. This does not
imply that every continuous function is of bounded variation, as we
can show by the following example.

Let f(z) be defined on the closed interval [0,1] as

f(x)=xin£, z#0

fx) =0, z = 0.

It is easy to see that f(z) is continuous on [0,1]. Using the elementary
properties of the trigonometric functions (see Section 3.4), we shall
show that f() is not of bounded variation on [0,1].

Let

Sy = 3 |f(a) ~ S,

where
0=x9g<x1 <---<Zp = L.

We shall show that for any preassigned positive number M there exists
an integer p and a partition of [0,1] such that S, > M. This will then
imply that f(z) is not of bounded variation on [0,1].

For any positive integer n > 2 choose the partition

xo=0

1
X = y k=1,2---,n~1

w
§+('n—k—l)‘rr

x"=l.
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Then
n 1
Sn = > |f(@x) = flar-1)| = -
k=1 =+ (n - 2)m
2
n=l 1 1 . 2|
+ + + |sinl — —
=2 T k- 24+ (n— k) i
2 2
n—1 1 l n—1
N ey i mamy rus Y z(n—k+1)1r
AN
"’B 23

Now let N be an integer which exceeds 4M and let p = 2¥ + 1.
Then if 8, is the sum corresponding to the partition of the above form

forn = p,
S,,>—Z ()—§>§£—4>M
T B

However, while not every continuous function is of bounded varia-

tion, we can show that if it has a bounded derivative it s of bounded
variation.

Theorem 5. Let f(x) be differentiable on [a,b] and let |f'(x)] £ M
for all z in [a,b]. Then f(z) is of bounded variation on [a,b].
Proof: Let = be any partition of [a,b] and let

8 = LZ |f (@) — f@e-1)]-
t=1
By the Law of the Mean there exist points £ such that

f@r) — fl@e-1) = f'(E)ae — 2x-1), k-1 < €r < Tk
Then

If(xx) — flxe-1)| = |f'(€x)| - |2x — 2—1] £ M2 — Ze—1)
and
S=Mb - a)

for any partition of [a,b]. Thus f(z) is of bounded variation on [a,b].

Corollary. If f'(x) is continuous on [a,b], then f(x) is of bounded
variation on [a,b].
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Proof: If f'(x) is continuous on [a,b], it is bounded on {a,b] and hence
Theorem 5 applies.

Note that it was necessary to include the boundedness of f'(x) in the
statement of Theorem 5. That is, the mere existence of f'(z) on
[a,b] does not imply its boundedness, as can be seen by the following
example.

Let f(x) be defined on [0,1] as

J(x) = z2sin $> z#0
f(x) =0, z=0.
Clearly f(z) is continuous on [0,1]. Ifz # 0,

, .1 2 1
f(x) = 2xsm§ — Zcos—

and ifx = 0,
£(0) = M=ﬁmhsin%=o.
h—0
h>0 >0

Thus f'(x) exists for all z on [0,1]. However, f'(z) is not bounded.
For suppose that there existed an M such that M = |f'(z)| for all =
in[0,1]. Let N be an odd integer greater than M. Then

f(ﬁ%/—;) = —2N+/7mcos N2 = —2NV#(—1)¥ = 2NV=w > M,

which is a contradiction. (This function is not of bounded variation.)

We do not wish to mislead the reader with the above counterexample.
Theorem 5 expresses a sufficient condition on f(x) that it be of bounded
variation; for, as we have noted, a function may be of bounded
variation without even being continuous, let alone differentiable.
Thus while differentiability in itself is neither necessary nor sufficient
to insure bounded variation, the existence of a bounded derivative s
sufficient.

The key result of this section is the following theorem.

Theorem 6. Let C,

z = ¢(t)
O{y—tﬁ(t) =Stsp

be a continuous curve. A necessary and sufficient condition that C be
rectifiable is that ¢(t) and () be of bounded variation on [«,8].
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Proof: Necessity. Let C be rectifiable of length L. Let = be any
partition of [e,8]. Then from

(@ — 24-1)2 + (ys — yi-1)2 2 (21 — 24-1)2
follows

n n

Lz 3 [(@— a1 + (3 — ye)?V2 2 D |$(t) — $(ts-n)]-

i=1 i=1

Thus ¢(¢) is of bounded variation with variation V(¢) < L. Similarly
V) < L.
Sufficiency : Let ¢(¢) and y(t) be of bounded variation on [«,8] with
variations V(¢) and V(y) respectively. Then from the inequality
(@ — 2-1)? + (5 — 96-1)21Y2 £ |20 — @] + |96 — Yo

follows

i [(@e — 2e-1)% + (95 — ye—2)?J1/2

i=1

IIA

i Iz't - x¢—1[ + 2”: ]y« - y¢-1|
i=1 i=1

Vi$) + V()
and C is rectifiable of length L < V(¢) + V().

IA

2.5 Jordan’s Theorem

Let C be the unit circle |2| = 1in the complex plane. Then it seems
self-evident that the circle divides the plane into two regions—the
interior of the circle and the exterior of the circle, which have the circum-
ference of C' as their common boundary. Interior points are values
of z satisfying the relation |z < 1; exterior points are those values of
z satisfying the inequality |2| > 1; and the boundary points of C are
the set of points |z| = 1. However, after learning about such a patholo-
gical curve as the Peano curve we would hesitate to surmise without a
formal proof that every Jordan curve I" has this property of dividing
the plane into two distinct regions with I' as a common boundary.
Fortunately such a formal proof can be given. However, before giving
a precise statement of the ‘‘separation theorem” we would like to recall
a few more definitions of point set topology and introduce some new
ones.

A point o belonging to a set E is called an interior point if « has a
neighborhood entirely contained in E. Thus if £ is an open set, every
point of £ is an interior point. Conversely, a point y not belonging to
E is called an exterior point if y has a neighborhood containing no points
of E. If Bis a point in the plane with the property that every neigh-
borhood of 8 contains both points ¢n E and points not in E, then we
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say B is a boundary point of E. TFor example, if E is the set of points
satisfying the inequality |2/ < 1, then the interior points, exterior
peints, and boundary points are exactly those described in the first
paragraph of this section. An immediate consequence of these defini-
tions is the following theorem.

Theorem 7. Let K be a point set. The set B of all boundary points
of E forms a closed set.

Proof: If B has no limit points, the theorem is trivial. Suppose,
then, that it has limit points. Let « be any such limit point. Then
every neighborhood %, of « contains points of B. Let 8 be a point of
Bin N,. Then there exists a neighborhood N, of B entirely contained in
RN.. Since Ng contains points in £ and not in E, N, also has this property.
Hence « is a boundary point of B. Thus B is closed.

Note that the boundary as defined above need not coincide with our
intuitive notion of boundary. For example, if E is the whole plane,
every point is an interior point. There are no exterior points or
boundary points. If E consists of all complex numbers a + ib where
a is rational and b irrational, then every point of £ is a boundary point.
In fact, every point of the plane is a boundary point. If E is the real
axis, then every point not on the real axis is an exterior point and every
point on the real axis is a boundary point.

Two points « and 8in an open set G are said to be connected if there is
a continuous curve lying entirely in G which connects « to B.
Equivalently, we can say « and 8 are connected if there exists a finite
sequence of overlapping circles, entirely contained in G, with the
property that « is in the first circle and B is in the last. The proof of
the equivalence is as follows: (i) Let C be the continuous curve.
Around every point of C draw a circle entirely contained in E. This
is possible since G is open. Now apply the Heine-Borel theorem to
obtain a finite sequence. (A continuous curve is a closed bounded
set.) (ii) Conversely, if we have a finite sequence of overlapping circles,
we can draw a polygon entirely contained in these circles which con-
nects « to B. Such a polygonal path is a continuous curve. If every
pair of points in an open set @ is connected we say G is connected.

The Jordan separation theorem may now be stated.

Theorem 8: (Jordan’s Theorem). A simple closed curve C divides
the plane into two connected open sets having C for their common
boundary. One of these conn~cted open sets is bounded, the other
unbounded. Any continuous curve which connects a point of the
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unbounded region to a point of the bounded region contains at least
one point of C.

A complete proof of this theorem may be found in such books as
those of Newman or Dienes.* However, the proof is very involved
and would take us too far afield since many topological preliminaries
are needed. We therefore shall content ourselves with the statement
of the theorem. In all practical situations it is obvious that the theorem
is satisfied since in most applications the most complicated type of
region considered is a circle or trivial variation thereof.

Finally, we would like to introduce some additional terminology and
discuss some consequences of the Jordan curve theorem. It is
customary to call the unbounded connected open set the exterior of C
and the bounded connected open set the imterior of C. This is in
harmony with our geometric intuition. If every simple closed curve
which lies in an open set @ has the property that its interior also lies
in G, then we call G simply connected. For example, if @ is the set of
points z defined by the inequalities 1 < [z| < 2, then G is connected
but not simply connected. The interior of a Jordan curve is simply
connected.

Let C,
z = ¢(t) N
C: <t<B,
{720y esiss
be a continuous curve. Suppose that C”,
C’:{x=f(7) as7r=20b,
Y =g(7)

is also a continuous curve which bears the following relation to C:
There exists a monotonically increasing function = = =(f) continuous
on [a,B] such that
fe) = #6)
9(7(t)) = ¥(t)

IIA

B (2.6)
and
(a) = a, 7(B) = b. (2.7)

Then we say C and C' are equivalent. Clearly they have the same
points.

If r =7(t)is a monotonically decreasing function, continuous on
[«,8] with the property that Equations 2.6 are verified, but that

7(B) = a, 7(x) = b

* M. H. A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge
University Press, pp. 115 ff.; Dienes, op. cit., pp. 177 ff.
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replaces Equations 2.7, then we say C and (' are inversely equivalent.
Again they have the same points.
Consider now a circle C of radius R with center at o + iy,

0<ts 2m (2.8)

- x =x9 + Rcos!
'{y=yo+Rsint

(See Section 3.4 for a definition of the trigonometric functions.) Then
we shall call C a positively sensed circle. By this we mean that as ¢
increages from 0 to 2, the corresponding points z = z + iy on C
move in a counterclockwise direction around the circle. If C’is a circle
inversely equivalent to C, then we shall call C’ a negatively sensed circle.
While the idea of “clockwise” and ‘“‘counterclockwise” as applied to
circles is clear, this concept is not necessarily so obvious when applied
to general simple closed curves. Nevertheless, by using Theorem 8
it is not too difficult to give precise meanings to the terms positively
and negatively sensed even in these cases. In all applications there
will be no ambiguity.

EXERCISES

2.1. Let {G,} be a collection of sets. Let G be the set with the property
that z is a point in G if and only if z is in some G,. Then we call G the
union of the sets G,. Show that the union of any collection of open
sets is again open. Show that the union of any collection of closed sets
is not necessarily closed.

2.2. Let E be a point set. A point « is called a point of closure of E if every
neighborhood of « contains points of E. If E is the set of all points of
closure of E, prove that Z is a closed set.

2.3. A point set E is said to be compact if every infinite set of points in &
has at least one limit point in E. Prove that a necessary and sufficient
condition that E be compact is that it be closed and bounded.

2.4. The set of all limit points of E is called the derived set E' of E. Prove
that £ = E + E’. That is, show that every point in the closure of
E is either in E or E’ and that every point in E or in the derived set
isin K.

2.5. If f(x) is monotonic on [a,b], show that it is of bounded variation on
[a,b].

2.6. If f(x) is of bounded variation on [a,c] and on [¢,b], prove that f(x) is of
bounded variation on [a,b]. Conversely, if f(z) is of bounded variation
on [a,b] and ¢ is an interior point of the interval, prove that

Vab = Vac + Vcb:

where Vgp, Vae, Veb represent the variation of f(z) on the intervals
ia,b], [a,c], and [c,b] respectively.
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If f(x) and g(z) are of bounded variation on [a,b], prove that f(x) + g(z),
Sf(z)g(x), and 1/f(x) (provided |f(x)| is bounded away from zero) are
of bounded variation on [a,b].

If f(z) is of bounded variation on [a,b], show that there exist two
positive monotonically increasing functions g(x) and h(x) such that

f(@) = g(z) — h(=).

Prove that a function of bounded variation is Riemann integrable.

Let % be a connected open set. Prove that every pair of points in
2 can be joined by a rectifiable curve lying entirely in 9.

Let E be the set of all complex numbers @ + b where a and b are both
rational. Prove that the complement of E is connected. Further-
more, show that any two points in the complement of £ can be joined
by a polygon of not more than three sides.

Show that if two simple curves have the same points they are either
equivalent or inversely equivalent.
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Functions of a Complex Variable

3.1 Introduction

In this chapter we shall discuss certain elementary properties of
functions of a complex variable. By a complex variable we mean a
number of the form z = z + iy where z and y are real independent
variables. Limits, continuity, uniform continuity, and boundedness of
functions will be defined and various theorems proved. They will be
analogous to the corresponding definitions and theorems for the real case.
The elementary functions such as the trigonometric and exponential func-
tions will be defined and their extension to the complex domain will be
examined. These functions together with the rational functions will
give us a repertoire of functions that will be useful in later applications.
We shall then be able to discuss such functions as the logarithm of a
complex variable and the (complex) power of a complex variable.
After a brief discussion of multi-valued real functions we shall present
an interesting discussion of multi-valued complex functions by the use
of Riemann surfaces. We shall then be in a position to give precise
and crisp proofs of theorems on differentiability and analyticity.
The concept of analyticity is perhaps the most important single idea
in the elementary theory of functions of a complex variable. Among
other things, we shall derive the Cauchy-Riemann equations. The
material presented in this chapter will lay a solid foundation for the
detailed and, we believe, fascinating theory of integration that will be
unfolded in Chapters 4 and 6.

3.2 Functions

Let € be any set of points z in the complex plane. Suppose that a
rule has been given that associates with every point z in € at least one
point w. We indicate this by writing

w = f(2)
28
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and calling f a function of the complex variable z. The domain of f
is € and the range of f is the set of values assumed by w. For example,
if € is the unit circle |2| < 1, and w = f(z) = 322 + 1 + 4, then the
range B of f is the set of points [w — (1 + )| < 3. That is, Bis a
circle of radius 3 with center at 1 + ¢ (see Fig. 3.1). We sometimes
say f is a mapping of the region € onto the region B.

Im
4

—

w-plane

8
2-plane

1

P~

Figure 3.1

1+i

Suppose then that f(z) is defined and single-valued on some open set
9. Let zp be a point in %. If there exists a complex number A4 such
that for every ¢ > 0 there exists a § > 0 such that

[fz) — 4] < € ; (3.1)
whenever
0 < |z~ 2 <3, (3.2)

then we say f(2) has A for a limit as z approaches zo. We sometimes
write
lim f(z) = 4 (3.3)
224
to indicate this fact. That is, Equation 3.3 is nothing more than a
shorthand notation for the precise definition of limit embodied in
Equations 3.1 and 3.2.
Note that our complex limit is essentially that of functions of two
real variables, since Equation 3.2 may be written

0 < |(x + 1Y) — (o + yo)|] = V(& — 20)2 + (¥ — y0)? < 8.

Thus we actually have two degrees of freedom, and the statement
“z approaches zo” implies the joint approach of x and y to zo and yo
respectively.
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For example, the function
22
f(z) = W, z2#0

does not have a limit as z approaches zero. Forifweletz = Re[z]= 0,
then

s = 0 - -,
and if we let y = Im [z] = 0,
fz) = ' |2 = +1L
Thus
lim f(z)
z—0

does not exist,

The fundamental theorems on limits are given in Theorem 1 below.
Their proofs will be omitted since they are identical with the corre-
sponding proofs in the real case.

Theorem |. Let f(z) and g(z) be defined and single-valued on some
open region U of the complex plane. Let f(z) and g(z) have « and B
respectively as limits as z approaches zo (some point in %). Then

(i) m[f(z) + g(2)] =« + B

(i) Lm f(z)g(z) = of

TR, 1 1 .
(iii) zllgz ol provided « # 0.

3.3 Continuity

Let w = f(z) be defined and single-valued on an open region % of the
complex plane. Let 2o be a point in %. Clearly f(zo) is defined. If
for every € > 0, there exists a 8 > 0 such that

|f(=) — f(z0)] < €

whenever lz - zo| < 8, then we say f(z) is continuous at zo. Again we
emphasize that continuity of a function of a single complex variable is
essentially the same as the joint continuity of functions of two real
variables.

For example, f(z) = 22, where z is defined in the unit circle
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€:{|z| < 1}, is continuous at every point of €. For let z¢ be any point
in@. Then

|22 — 28| = |(z — 2zo)(z + 20)| = (J2] + |z0])|z — 20| < 2|2 — 2).

Thus if € > 0 is assigned, choose 8 = Y5e. The function f(z) = |z
is also continuous for any z since

Iz = lzoll = |2 — =l

by the corollary to Theorem 2 of Chapter 1, and we need only let § = «.

The sums, products, and quotients of continuous functions are also
continuous; and the function of a function rule holds. We formally
state these results.

Theorem 2. Let f(z) and g(z) be defined and single-valued in an open
region % and be continuous at some point zo in A. Then f(z) + g(2),
f(z)g(z), and 1/f(z) (provided f(z¢) # 0) are continuous at z = zo. If
h({) is defined in a neighborhood of (o = f(z0) and continuous at
{ = f(z0), then 2(f(2)) is continuous at z = zo.

The proof of this theorem parallels the corresponding proofs for real
variables and will be omitted here. (See also Theorem 1 of this chapter.)

If f(2) is defined and single-valued on an open set %A and continuous
at every point of %, then we shall say that f(z) is continuous on A. It
is sometimes necessary, or at least convenient, to define continuity on
a closed set. Suppose then that f(z) is defined on a set E. Let 2o
be a point of E. We have seen that continuity at zo is meaningful
only if z¢ is & limit point. (Note that every point of an open set % is a
limit point of %). Now it may be that even though z is a limit point
of E belonging to E, it may fail to have a neighborhood entirely
contained in . (For example, zo may be a boundary point of E.) We
therefore adopt the following convention: If for any ¢ > 0 there exists
a 8 > 0 such that

[f(2) — f(zo)| < €

for all z in E with the property that [z — 20| < 3, then we say f(z) is
continuous at zo. (This definition parallels the definition of continuity
for real variables at the end points of a closed interval.) Thus we can
extend the definition given in the first sentence of this paragraph to
any set B such that every point of B is a limit point—for example, to
perfect sets.

For real variables we showed that a function continuous on a closed
interval was uniformly continuous. We can prove a similar theorem



32 Advanced Complex Calculus

for complex functions. Of course, we must replace the ‘closed
interval” by some appropriate two-dimensional closed set. For
example, a closed rectangle or, more generally, a bounded perfect set
will suffice.

Our definition of uniform continuity is the expected one. Let
J(2) be defined and single-valued on a set B such that every point of B
is a limit point, and let f(z) be continuous at every point of B. If,
given an € > 0, there exists a 8 > 0 such that

|f(z1) — f(z2)] < €

whenever |z; — 23| < 8§, then we shall say f(z) is uniformly continuous
on B. Of course the important point to note is that § is independent
of the points z;, z2.

Theorem 3. Let f(z) be continuous on a bounded perfect set E.
Then f(z) is uniformly continuous on E.

Proof: Let ¢ > 0 be assigned. Then for every point 2’ in E there
exists & 8 > 0, 8 = 3(2’) such that

f) - 1)l < 5

whenever |z — 2’| < 8(2’). Now consider a circle of radius 148(z")
with center at z’, for all 2’ in E. We have therefore covered every
point of E by a spherical neighborhood of positive radius. By the
Heine-Borel theorem (Theorem 2 of Chapter 2) there exists a finite
subset of the 8(2'), say 81, 82,- - -,8y, such that every point of E is
interior to at least one of these 8;-neighborhoods. Let

S = %min [81, 82)‘ "t SN]'

We assert that this is the uniform & for the given e. That is, we shall
show that
If(€) = f(n)| < €

for any two points {,7 in ¥ such that |{ — 5| < 8.

Let ¢ be any point in E. By the above construction there exists a
8¢ such that ( is interior to the neighborhood which has 58 as its
radius. Let z; be the center of this circle. Then

1
I{ - z,',| < § Sk < sk' (3.4)
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Now if 7 is any point such that

|77—§|<8§ sks

(ST

then
In—zl =l -0+ & -2 < [n—¢ + [z
1 1 3.5
<§8k+§8k=8k. ( )

From Equation 3.4
I7Q) - sl < 5

and from Equation 3.5
HOEFCAIRES
These last two inequalities imply V
[f() — FO)] < €

whenever [{ — 7| < 8.

There are other properties of continuous functions that we could
mention. For example, a function f(z) defined and single-valued on a
region B is said to be bounded if there exists a real number M such that

lf@| = M

for all zin 8. We can thus prove the following theorem.

Theorem 4. Let f(z) be continuous on a bounded perfect set E.
Then f(z) is bounded on E.

Proof: Suppose f(z) is not bounded. Then there exists a point
21 in E such that

[f(z1)] > o.
Also there exists a point z; in E such that

[f(z2)] > |f(z1)] + 1.

For if this were not the case, we could use |f(z1)| + 1 as our bound.
Similarly, we construct an infinite sequence of distinct points, 2z,
22, -+, in K with the property that

|fEes)] > |f@)] + 1, k=12, ..

By the Bolzano-Weierstrass theorem,* the set of points {Re [z4]}
has a limit point, say zo. Let {Zn}, k = 1,2,-- -, where zn, = Re [2a,),

* See ARC, p. 21.
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be a sequence of z’s converging to zo. Then {ys}, k = 1, 2,-- ., where
yn, = Im[z,] is a bounded sequence. Again by the Bolzano-

Weierstrass theorem the sequence {Im [2,,]} has a limit point, say yo.
Let

{?/u,,a}, o = 19 2” .
be a subsequence of {y,,} which converges to yo. Then the sequence
{{}, where
Ca = xn"a + i?/nka
converges to o + iyo. Since & is closed, 20 = o + tyo is'in E.

Now f(2) is continuous at zp by hypothesis. Let ¢ = ¥;. Then
there exists a § > 0 such that

feo) - f@)] < 5

whenever |20 — z| < 8. Since 2o is a limit point, there exists an
infinite number of the {, points such that |20 — L] < 8. Let {; and
{; be any two such distinet points. Then

&) — Sl <3 )~ fleo)] < g

But
1< [p—gq|

A

&) — If &l = /&) — f&)l
|f(&p) = f(z0) + f(20) — f(&)]

@) = fleo] + Ifle0) = G <3 + 3= 3

IIA

which is absurd.

3.4 The Elementary Functions
A polynomial is a function of z of the form

f(2) = agz® + az* ! + ... +ay,

where n is a nonnegative integer and the a; are complex constants.
If ap # 0, we say f(z) is a polynomial of degree n. Thus a non-zero
constant is a polynomial of degree zero. We do not assign a degree to
the polynomial which is identically zero.* From Theorem 2 we see
that f(z) is continuous. A rational function of z is the ratio of two
polynomials. For example,

@z" + a1z + -+ Qg

g(Z) = bozm 4+ bzml ... 4 bm’

* Some authors say such a polynomial has degree ‘“‘minus infinity.”
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where not all the b; are zero, is a rational function; and g(z) is con-
tinuous for all z which do not make the denominator vanish.

The reader is also familiar with other elementary functions, for
example, the trigonometric functions, the exponential, and the logarithm
for real argument. We wish to extend their definitions to the complex
plane. However, let us first give a precise meaning to sin z, cos z,
e%, and log x when z is real. One way of doing this is to consider the
following infinite series:

E(z) = ioz—'; (3.6)

S(z) = 2 (= 1y % (3.7)
o 2n

Ca) = 3 (-1 (—;‘-,;)—, (3.8)

It is easily seen that they all converge for all values of z. Thus they
represent power series which converge uniformly and absolutely in
every finite closed interval, which can be integrated and differentiated
any number of times, and the resulting series will still be a uniformly
and absolutely convergent power series in any interval.

We shall sketch a line of argument to show that the functions defined
by Equations 3.6, 3.7, and 3.8 are actually the familiar e7, sin 2, and
cos z functions, respectively. One easily verifies that

E@©) = 1, 8(0) = 0, Cco) =1

E'(x) = E(z), S'(z) = C(x), C'x) = —S(x)
and that 8(x) is an odd function while C(z) is an even function. Since
all series converge absolutely we may multiply the series together,

rearrange terms, and still have a convergent series. Doing this, we
can establish the formulas

Sz + y) = S@)C(y) + C=)S(y) (3.9)
Oz + y) = C(2)C(y) — S()S(y) (3.10)
and letting x = — y in Equation 3.10, we have the corollary
82(z) + C2z) = 1. (3.11)
From this last identity we infer
[S(x)] = 1, [C)| = 1. (3.12)



36 Advanced Complex Caiculus
Similar to Equations 3.9 and 3.10 we can establish the addition formula

E@@ + y) = E(x)E(y)

for E(x). We then define e* as E(x).

Since C(0) = 1 and by a direct calculation C(2) < 0, there must be
a point in the closed interval [0,2] at which C(x) vanishes. Let x = p
be the smallest value (if there is more than one) for which C(x) vanishes.
From Equation 3.11 we see that S(p) = +1. We assert that
S(p) = +1. For, by the Law of the Mean,

S(p) — 8(0) = C()(p — 0),
where 0 < ¢ < p. Since C(§) > 0 and S(0) = 0,
S(p) = Cé)p > 0

and hence S(p) = +1. From Equations 3.9 and 3.10 it is easy to see
that S(x) and C(x) are periodic of period 4p. For

S(x + p) = S(=)C(p) + 8(p)C(x) = C(x)
C@x + p) = C)C(p) — S@)S(p) = —8(x)
and
S(x + 2p) = S(x + p)C(p) + Cx + p)S(p) = Clx + p) = —8(x)
Cx + 2p) = Clx + p)C(p) — S + p)S(p) = -8z +p) = -Cl2),
while finally
S(xz + 4p) = S(z + 2p)C(2p) + C(x + 2p)S(2p)
= [-8@)[-8(p)] + [-C@)I—8(0)] = S(x)
C(x + 4p) = C(z + 2p)C(2p) — S(x + 2p)S(2p) = C(x).
It is easy to see that
It) =Ct) +i8¢), O0sts<4p
is a simple closed curve. By Theorem 4 of Chapter 2, its length is

L= f ¥ VIOOE + SOF & = f Y /SRR + O dt
1} 0

4p
= | dt = 4.

0

But Equation 3.11 implies I" is a unit circle. Thus 4p = 27 and
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p = m/2. If we consider the triangle of Fig. 3.2, it is easily seen that
our analytical definition of the trigonometric functions given by
Equations 3.7 and 3.8 coincides with our geometric definition.

Im

A

T(t,)

o Clta) —>=Re

Figure 3.2

3.5 Extension to the Complex Plane

If « = a + b is any nonzero complex number, then we may write

- o8)

Since a/|a| and b/|a| are real numbers both less than one in absolute

value and
@)+ (@) -

it is possible to find a real 8 such that

i:coso, —b——=sin0.
lo] [
Then we may write
a=|ef(cos§ + isinf), O0<06<2m

Of course, this is nothing more than the polar form of a complex number.
The number 6 is called the argument of «,

0 =arge

and, of course, || is the modulus of c.
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Another elementary result is de Moivre’s theorem, which states that
if .

I

o = r(cos § + i sin 0), r=|a, 6
B = s(cos ¢ + isin ), s = |B|, ¢

are any two complex numbers, then

arg «

arg B

af = rsfcos (0 + ¢) + isin (0 + ¢)].

We shall not bore the reader with a proof.

However, the results of the previous paragraphs enable us to define
the trigonometric functions and the exponential function for complex
argument. Thus if y is real, we define et as

et = cosy + tsiny. (3.13)
By de Moivre’s theorem we can prove the addition formula

etvein = ety+n),
For if efv is written as in Equation 3.13 and

efn = cos n + 4 s8in 7,
then

efvetn = (cosy + isiny)(cosn + ¢siny) = cos(y + 1) + ¢8in(y + )
= efltn,

If z = « + 1y is a complex number, we define e as

e? = e%e = e%(cos y + isiny).
Thus
le?| =er and  arge? =y + 2nm,

where n is an integer. It is easy to see that eziez2 = entz for any
two complex numbers z; and z..

From Equation 3.13 we are invited to define sin z and cos z for
complex z as

. etz — g-t2
sin 2 —_—

2¢
e‘z + e-fz
—-)_.

&

COSs 2

If, in particular, z is purely imaginary, say z = 1y,

eV — eV . .
———— =14sinhy

sin 1y = 5
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and

which is the customary definition of the hyperbolic functions. In
particular,
e¥ = coshy + sinh y.

We also define (e2)¢ as e%. Thus, for example,
(e'v)t = e = coshy — sinh y.
From the definition of etv (Equation 3.13) we see that

e‘(ﬂ+2nﬂ)

cos (y + 2nw) + i 8in (y + 2n7)
=cosy + tsiny = el

where 7 is any integer, positive, negative, or zero. Thus e is a periodic
function in 4y of complex period 27i. Of course, so is ez.

Since y = e* (x real) is a strictly monotonically increasing positive
valued function, its inverse is well defined. We write this as

x = logy, y > 0.

Now if z is a complex number unequal to zero, we define log z as a
number w which has the property that e# = z, and write

w = log z.

But z = |z|ef¢+2nm) where 6 = argz and = is an integer, positive,
negative, or zero. Thus,

w = log |z| + 1(8 + 2nw)

and log z is a multi-valued function.* We customarily define the
principal value of log z as log |z| + 10 where —= < @ < 7 and log ||
is real. Sometimes we use Log z to emphasize this principal value.
Thus
logz = Log z + 2nmi
and
Logz = log |z| + 18, -7 <O L 7, log |z| real.

* If z is real and positive, then according to our formula its logarithm is
log x + 2nmi, n=0,+1, +2... )

Thus considered in the complex domain, the logarithm of a real positive number is a
multi-valued complex function. We adopt the convention that the logarithm of a
real positive number is always to be taken as a real number. Then in (}) we always let
n = 0. A similar remark applies to the general case. Thus log |z| where z is any complex
number unequal to zero is always assumed to be real. In this case-we sometimes call
log (2| the arithmetical logarithm of |z|.
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The logarithm enables us to give a definition of z= (2 # 0) where «
is an arbitrary complex number. Namely, we define it as

ze = ea log z — ea[log Iz|+i(9+2nﬂ)]_

p— eu(Iﬂg z)eaZnni.

When « is not an integer, 2* is multi-valued. For example if « = 15,

z¢ = + eo(log2)

since el@nnt) = egnni — (_1)n, If a = ¢, 2f = ef 108 z¢~2n7 and the real
multiplicative factor e—2»" may be made arbitrarily large by choosing
n large and negative.

3.6 Multi-valued Real Functions

Let us consider for a moment real multi-valued functions of the
real variable x. Typical examples are ¥y = vz and y = arcsin .
Since we are concerned only with real values, we must insist that z = 0
for y = Vz and that —1 < 2 < 1 for y = arcsin x.

We recall that one of the ground rules of real analysis is inevitably
to assume that all functions are single-valued. Thus in any analysis
involving vz we stated beforehand whether we would be considering
+Vzor —v/z. Rarely did we consider the multi-valued function vz
where either the plus or the minus sign could be taken. For con-
venience of terminology let us call + v/ and — v/ the branches of the
function vz. Thus v/ has two branches while arcsin « has an infinite
number of branches. This definition will be in harmony with the
terminology to be introduced later in connection with complex
functions.

In real variable theory it is not too difficult to sidestep the use of
multi-valued functions (for example, by considering + 4/ in the case
y = Vz or by considering the principal value Arcsin z in the case
y = arcsin ). However, the same situation does not prevail in the
complex case. There is an essential characteristic of multi-valued
functions in the complex domain which cannot and should not be
ignored. In fact, many beautiful theories, for example, the theory of
linear differential equations in the complex domain, depend precisely
on these multi-valued properties.

It is the purpose of this section to explain a point of view which
enables us to consider multi-valued functions as single-valued ones.
We shall first describe the technique for the real variable case. While
it is perhaps pedantic to do so, since multi-valuedness may be analyzed
by other, simpler methods, it nevertheless illuminates the procedures
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which may be applied in the complex case where such a treatment is
mandatory.

We shall examine first the function y = v/z. Suppose we are given
a positive value of z, say z1. Then we must decide whether to define
y1a8 +Vx 0or — V7. Letus agree to define it as + 1/}, as illustrated
in Fig. 3.3. Choose another positive value of z, say 3. Again we must

b

] { X2 Xy X
|
|
|
Yz
Figure 3.3

define y» as either + /x5 or —~V/z;. Let us define it as —v/z;. Now
here is an embarrassing situation. If z, is close to z3, then y1 will not
be close to y2 (unless we are at the origin). Thus, among other things
yis not continuous. But while our choice of — v/ for ¥ is admissible,
it violates our intuition. Certainly, if we define ¥, as +4/z; and z,
is close to z,, it seems plausible that we should define ys as + /3.

Let us see if we can place the above preliminary discussion on a
more precise footing. To do this, let us imagine that the zy-plane is
cut along the z-axis from 0 to 0. Let us label the upper half of the cut
z* and the lower half z**. This is illustrated in Fig. 3.4. Actually
#* and z** coincide as do the three points labeled 0. For purposes of
visualization and illustration we draw them as distinct. We shall call
each of the lines * and z** a ray. If z is a value on the z*-ray, let
us define y as + 4/, and if z is a number on the x**-ray, let us define y
as —Vz, as suggested by Fig. 3.4. Furthermore, let us adopt the
convention that we cannot cross over the cut. Since the only place
where z* and z** coincide is at the origin, the only way we can get
from the z*-ray to the z**-ray is to pass through zero. We shall call
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the combination of z* and z** the Riemann axis associated with v/z.
We see then that if xy # 0 is a numerical value of x on the x*-axis it is
not “near” zo when considered on the x**-axis. That is, points which
are physically close or identical are not necessarily close or identical
when considered on the Riemann axis. If we are given a value of x

y
A

x*
x**

Yy

Figure 3.4

on the Riemann axis, there is a unique value of y associated with it.
Thus the function V/z is single-valued and continuous on the Riemann
axis. Also we note that the branches ++/z and —V/z are single-
valued (and continuous) on the rays z* and z** respectively.

A more convenient way to represent the Riemann axis of vz is
shown in Fig. 38.5. Of course, z* and x** coincide and the three

+VX x*
o ( x**
43
Figure 3.5

heavily indicated points all coincide with the origin. Again we
emphasize that the rays z* and x** are connected only at the origin.
Thus the Riemann axis is connected; but it is not possible to transfer
from z* to x** without first going through the origin. Similarly, the
Riemann axis of arcsin z is illustrated in Fig. 3.6. In this case we have
an infinite number of rays labeled &+, n = 0,1, 2,-.., with z(©®
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corresponding to the principal value Arcsin z of arcsin z.  Of course, all
these rays coincide with the z-axis. The numbers in parentheses
indicate the values of arcsin z at these points. Thus we see that
arcsin z is single-valued (and continuous) on its Riemann axis.

4)
@< o
D e
(%I) ( X
- =1 H) ('}) x(0
- ?)( ) (- 3') xt=n
kR x(‘z)
(- Qi!) Q x(—3)

Figure 3.6

The above analyses indicate that, in general, if we are given a multi-
valued function of a real variable, we can reduce it to a single-valued
function on its Riemann axis. Thus all branches of the function are
represented, and each branch is single-valued on its ray. The con-
struction of Riemann axes is not the easiest task. In fact, in many
cases it is extremely difficult. For example, let

rT=yt - 2y2 + 1

define y as a function of . The Riemann axis for y is sketched in
Fig. 3.7. Here we have four rays, and even in this relatively trivial

+VT+ /X
< +VI-/%
° . D]
Gl -Vis
Figure 3.7

example it takes & little time to ascertain the appropriate values on
the rays and the correct connections of the various branches.

As an application of this little theory, the reader could develop a
theory of integration of multi-valued functions with segments of Rie-
- mann axes playing the role of the intervals of the classical theory. For
example, in the terminology introduced above,

f:. Vzdz = J;o(—\/;?)dZ+J;l(+\/E)dx= 2f0’\/;dx=§,
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3.7 Riemann Surfaces

The discussion in the previous section leads us to consider the
analogous construction for multi-valued functions of a complex variable.
Let us examine f(z) = Vz = z1/2 where z is complex. We saw in
Section 3.5 that there were two complex numbers whose square was z.
If we write

z = |z|eto

then these numbers are

wy = \/He"’z and wy = \/Elei(0+2w)/2 = —wi.

As before, we shall call w; and ws the branches of f(z). Suppose that
at some point on the complex plane, say, for convenierlce, a point on the
positive real axis, we define f(z) = + Vz = +vx (see Fig. 3.8).

Im
zl
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) Zoxeio e
Figure 3.8

Now consider a circle of radius |z| = « with center at the origin.
If 2’ is any point on the circumference we can define V/2" as V/[z[et’/2 =
vz e'/2 where §' = argz’, or we may define it as V/[z]et®"+2m/2 =
—Vxze®/2, Qur analysis of the previous section suggests Ve,
Now as we continue around the circle, maintaining this definition of
V/z at every point, the argument 6’ increases from 0 to 2=. When we
arrive back at our initial point, vz = +Vzel?n/2 = —+/z and the
function does not return to its initial value.

To overcome this difficulty let us consider the following construction.
Imagine that we have two identical planes, one on top of the other.
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Slit both planes along the positive real axis, and connect the upper
edge of the top plane to the lower edge of the bottom plane and the
lower edge of the top plane to the upper edge of the bottom plane.
We have attempted to draw a three-dimensional sketch of this con-
struction in Fig. 3.9. The planes are to be thought of as coincident just
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Figure 3.9

like the rays of a Riemann axis. We draw them displaced for purposes
of visualization.

The two-sheeted surface of Fig. 3.9 is called the Riemann surface*
of the function vz.  We have labeled the upper plane by +/[z[et/2,
0 <6< 2r, and the lower plane by +/[z]et@+2m/2 = —V[z]etor2.
Thus on its Riemann surface, V'z is single-valued. Note that the two
sheets of the Riemann surface are connected, and if we make fwo
complete circulations around the origin we arrive back at the same
point on the Riemann surface. One circulation yields the same point in
the complex plane, but not the same point on the Riemann surface.
The point z = 0, where the two branches coalesce, is called a branch
point of V2.

* For a more detailed discussion of Riemann surfaces see P. Dienes, The Taylor Series,
Oxford, Clarendon Press, 1931, pp. 123-135.
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The angle of the branch cut is immaterial. We have slit the plane
along the real axis, but any line, for example, a line making an
angle of 125° with the positive direction of the real axis would also be
satisfactory. In fact, any simple continuous curve which starts at the
origin and recedes indefinitely would be admissible.

The function {/z where n is a positive integer has an n-sheeted
Riemann surface. The function log z has a Riemann surface with an
infinite number of sheets. However, if we keep circulating about zero

Im Im
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Figure 3.10

in a positive sense, the argument of log z will advance 27 every circula-
tion. Thus while we arrive at the same point on the plane after
every complete circulation, we arrive at different points on the Riemann
surface. The only way we can arrive at the same point on the Riemann
surface is to make an equal number of complete circulations in the
negative sense. In the case of ¥/z, n complete circulations bring us
back to the same point on its Riemann surface.

This semi-intuitive mental picture of a Riemann surface which we
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have deduced above will be very helpful in our future work. It will
clearly indicate the distinction between multi-valued and single-
valued functions. That is, single-valued functions have a Riemann
surface consisting of only one sheet, for example, functions such as
2%, 1/z. In these cases the complex plane itself is the Riemann surface.
A function such as z1/3 has a three-sheeted Riemann surface, while the
functions 21+, arccos z have infinite-sheeted Riemann surfaces.

We also wish to emphasize again the distinction between curves
closed on the Riemann surface and closed in the plane. In the case of
V'z, a circle about the origin is closed in the plane but not on the
Riemann surface of vz (see Fig. 3.10a). Two complete circulations
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(see Fig. 3.10b) represent a curve not only closed in the plane but closed
on the Riemann surface of v/z. The curve of Fig. 3.10b considered as
drawn on the Riemann surface of ¥z is not closed. However, the loop
of Fig. 3.10c is closed in the plane and on the Riemann surface of
V/z (but not on the Riemann surface of 1/z).

One final comment. If we consider again the function fz) = vz
and slit the complex plane along the positive direction of the real axis,
then f(z), or more precisely a branch of vz, is single-valued on this
slit plane. Of course, we must specify which branch. For example, let

Vz = *\/Ele“’/z, 00 < 2.

Then the values of v/z are uniquely specified on the slit plane. How-
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ever, the function is not continuous on the positive real axis (see Fig.
3.11) since

lim V71 = V7 lim ef/2 = /7

6,0 6,0
while
lim Vzz = Vr lim e/2 = — /7.

Gg—2m Og—>2m

Im
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If we had slit the plane along, say, the ray 6§ = B (see Fig. 3.12), then
we could have defined a branch of vz as

Vi VEewr, B6<B+ 2

and the function f(z) would be single-valued on this slit plane and
discontinuous on the cut § = 8.

3.8 Differentiability
Let
w = f(2)

be defined and single-valued on an open region % of the complex plane.
Let z¢ be a point in %, and consider the difference quotient

f(zo + h) — f(20)
3 )

(3.14)

where & # 0 is a complex number. At present, the only other restric-
tion we place on & is that it be so small that the totality of points 2
satisfying the inequality |20 — 2| < |k| remain in %. If there exists
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a complex number A such that: given any ¢ > 0 there exists a & > 0
such that

f(zo+h}2"'f(zo)_A <e (3.15)

whenever 0 < |h| < §, then we say f(z) has a derivative at z = Zp or
is differentiable at zo, and call 4 its derivative. We shall use any of the
usual notations for 4, namely,

dw

A = f'(z) = diz /@ = d%f(zo) = w'(zp) = (E)H'

2=,

We also write Equation 3.15 in the perhaps more familiar form

tim L0+ B) — /(z0) '2 —SG0) _ friay, (3.16)
ot

Sometimes we use 4z in place of & for a more colorful notation.

If f(z) is defined and single-valued on an open region A and has a
derivative at every point of %, then we shall say f(z) is differentiable
on . This is not the same thing as saying that f(z) is differentiable
at every point of %. For in this latter case different neighborhoods
could be taken for different points. As an illustration, consider the
function f(z) = 2%2in the unit circle 6:{|z| < 1}. Let f(z) = |2|3/2¢3t6/2
with 0 < § < 27 in a neighborhood of z = 0. Then at z = 0,
f2R)=0. Ifz=120% 0is any other point in €, then we can find an
open neighborhood %o of z¢ excluding z = 0 and define a (single-
valued) branch of f(z) in %o. Thus f(z) has a derivative at z = z,.
However, f(z) is not differentiable on G, since if f(2) is defined as
|2]%/2%3t/2, 0 < 6 < 27 in G, then the derivative will not exist for z
real and positive. Similarly the statement .. f(2) is defined and
single-valued on an open set 9 and continuous at every point of %...”
(see p. 31) is not coextensive with saying “f(z) is continuous at every
point of 9.”

It means much more for a function of a complex variable to have a
derivative than for a function of a real variable. This is due to the
inherent two-dimensional character of a complex variable. We have
already pointed out this phenomenon in connection with our discussion
of limits. Thus if A = h; + 4hg, the statement “h — 0” is equivalent
to the joint approach to zero of k1 and hs. Also, because of this, most
of the functions that one would write down are not differentiable,
While a complex constant « and the functions z, 22, ez are differentiable
such simple functions as z and |z| are not differentiable. The proof of
the differentiability of a, 2, 22 is trivial and will be left as an exercise
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for the reader. The proof of the differentiability of ez and sin z will be
deferred until after the proofs of Theorems 7 and 8 of this chapter.
Let us show that Z is not differentiable. We must thus investigate
the ratio
z+h)—2z h

h h
as h approaches zero. If we write b = k1 + thy and let by = 0, then
Rfh = —1,and if by = 0, h/h = +1. Thus

lim 5

h—>0 h
h#0

does not exist. Similarly, we shall show that |z| is not differentiable.
Suppose z # 0. Then we must consider the limit of

R

R h

(3.17)

as h approaches zero. If we multiply numerator and denominator by
|z + k| + |z|, the above expression becomes

2xh, + 2yhy + A2 + A3

R =
Mz + k| + [2[]
and in this form it is easy to see that
20 h V2 + 2
hy=0
while
2+ R - |2 L
lim 7 = Vs y2'
hy=0
If z = 0, then
_VHiR
- k1 + the
and
lim R = —q, lim R = +1.
h—0 h—0
hy=0 ho=0
hy>0 2 >0

Since Equation 3.16 implies that the limit must be the same no matter
how % approaches zero, the conjugate of z and the modulus of z are not
differentiable.

The elementary properties of the derivative that hold for real
variables are also true in the complex case. Westate them in Theorem 5.
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Theorem 5. Let f(z) and g(z) be defined and single-valued in some
open region ¥ of the complex plane. Let f(z) and g(z) be differen-
tiable at some point zo in A. Then at z = 2o the functions f(2) + g(z)

[ (2)g(2), j%z) (provided f(zo) # 0) are differentiable and:
() 32 U/Ge0) + 9(e0)] = = fleo) + 2 gtao)

() 75 L/ Goloeo)] = f(e0) 2 gteo) + glea) 2 2o

A1) S
(i) %[ﬂzo)] = T PRy PO

Differentiability is a more restrictive property than continuity
(just as in the real case). Infact, we have from Equation 3.15 that

If(z0 + k) — f(z0)] < [R](|4] + ), (3.18)
which implies that f(z) is continuous at z = zg. If we introduce the

notation
dw = f(z0 + k) — f(z0),

then we can also deduce from Equation 3.15 that
dw = f'(zo)h + nh, (3.19)

where 7, a function of z, and k, 7 = %(z2q,k), is an infinitesimal as %
approaches zero. Thus, given any ¢ > 0, we can find a § > 0 such
that if 0 < |A| < 8, then [7(20,)| < e. From Equation 3.19 one can
define the differential dw as the principal part. That is,

dw = f'(zo)h

by definition. [We can make 7(zo,k) a continuous function of A by
defining 7(20,0) as zero.]

The important function-of-a-function rule may now be conveniently
proved with the aid of the representation of Equation 3.19.

Theorem 6. Let f(z) be defined and single-valued on an open region
A of the complex z-plane. Let f(z) be differentiable at a point zg in
A Let g(w) be defined and single-valued on an open region containing
f(z0) and be differentiable at w = Sf(z0). Then at z = z,,

ZIE) = 2 g £ 10,



52 Advanced Complex Calculus
Proof: Since g'(w) exists at wo = f(20),
gwo + dw) — glwo) = g'(wo)dw + edw

by Equation 3.19 where ¢ is an infinitesimal as 4w approaches zero.
Let Aw = f(zo + 4z) — f(z0). Now for 4z # 0,

g(wo + dw) — g(wo) _ dw
A4z

But lim %— exists and equals f’(20) by hypothesis, while lim ¢ = 0,
4z—0 420

gince lim Aw = 0 by the continuity of f(z) at zo. We conclude there-
4z—0

fore that

lim g(wo + Aw) — g(wo)
4z—>0 AZ

exists and equals ¢'(f(z0))f'(20)-

3.9 The Cauchy-Riemann Conditions

From an inspection of the examples f(z) = Z and f(z) = |z| of the
previous section one concludes that it is not necessarily an easy task
to determine whether a given function of z does or does not have a
derivative. We shall derive a convenient criterion to settle this
question. These conditions are known as the Cauchy-Riemann
equations; they are conditions on the real and imaginary parts of a
complex function. If w = f(z), where z = z + iy, then we may write
w = u + 1 where % and v are functions of z and y, viz., u = u(z,y),
v = v(z,y). We may thus write

w(z) = u(x,y) + 1 v(2.Y),

where » and v are real functions of the fwo real variables z and y.
Again this emphasizes our earlier remarks that in some respects the
theory of functions of a single complex variable may be treated by
considering real functions of fwo real variables.

We state the Cauchy-Riemann theorem in two parts.

Theorem 7: (Cauchy- Riemann): Necessity. Let w = f(z) = w(z,y)
+ iv(z,y) be defined and single-valued on an open region %A of the
complex plane. Letzo = zo + %Yo be a pointin A. Then a necessary
condition that f(z) have a derivative at 2o is that:

(i) u(x,y) and v(z,y) be continuous at (o,yo).
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... Ou du v ov
(i) 2 W 5 exist at (2o,y0).
(iii) o > and » ou

or ay o = ""@ at (xO:yO)-

Proof: In other words, the theorem states that if f(z) has a derivative
at 2o, then the conclusions (i)—(iii) must be true. The equations
expressed in (iii) are called the Cauchy- Riemann equations.

Since f(z) has a derivative at zg, the limit

lim L0 + 42) — f(z0)

dz—0 4z

must exist. This implies that both the limits
Ry = 1im [0+ 4) = f0)

lim = (3.20)
Ay=0
and
R, = lim {E0* 42) = fz0) (3.21)
dz=0 4z
250

must exist and have the same value, f'(zg). Thus from Equation 3.20

f'(zo) = R1 = lim wzo + 42.90) — u(Zo.yo)

20 dx
(3.22)
.. v(wo + dxyo) — v(zo,y0)
e 3’:_1,10 Ax ’
and from Equation 3.21
F'z0) = By = lim u(Zo,yo0 + 4,1/) — u(Zo,Y0)
Ay—0 @Ay
(3.23)

+i lim “#odo + 4y) — v(Zoyo)
Ay—0 iAy
The four limits on the right exist, which simply means that ou/ox,

ov/ox, duloy and dv/dy exist at (zo,y0). Furthermore, since Equations
3.22 and 3.23 are equal, we have

oo Lo o)
ox ox — i \oy %y

Equating real and imaginary parts we get the Cauchy-Riemann
equations.
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We have thus proved (ii) and (iii). It remains to prove (i). Since
f(2) has a derivative at z = zo, it is continuous at zo. Hence for
|4z| sufficiently small,

‘ |f(z0 + 42) — f(z0)]

can be made less than any preassigned ¢ > 0. But

|4z| = vV dx? + dy?”
and
|f(z0 + 42) — f(z0)|
= Vulzo + 42,50 + Ay) — u(o,y0)]? + [v(xo + 42,y0 + 4y) — v(%0,¥0)]*.
Since |4z| small implies and is implied by |4z| and |dy| small, and
|f(z0 + 42) — f(20)| smallimplies and is implied by |u(zo + 42,0 + 4y)

—u(zo,yo)| and |v(xo + Az,y0 + 4Ay) — v(%o,yo)| small, we infer that
u(x,y) and v(z,y) are both jointly continuous at (%e,y0)-

The converse of Theorem 7 is the following Theorem.

Theorem 8: (Cauchy-Riemann): Sufficiency. Let w = f(2) = u(z.y)
+ iv(z,y) be defined and single-valued on an open region A of the
complex plane. Letzq = o + iyo be a point of A. Then a sufficient
condition that f(z) have a derivative at 2o is that:

(i) u(z,y) and v(z,y) be qontinuous at (zo,y0)-

... 0w ou v ov . . . .

(i) % 7y 5% oy exist and be continuous in a neighborhood % of (xo,y0).
o O O v ou
(i) = o and %= oy at (xo.y0)

Proof: Note that (ii) of Theorem 8 requires the existence and
continuity of the first partials in a neighborhood of (x0,y0). This is
stronger than (ii) of Theorem 7. Of course, (i) and (iii) of Theorems
7 and 8 are identical. The existence and continuity of the partials
makes (i) redundant, but we have put it down for the sake of symmetry.
Actually, somewhat weaker conditions than those of (ii) would suffice
for the proof of the theorem.

Consider
dw = f(zo + 42) — f(20) = du + i dv
ou 0
= -a—an: + —a—;;Ay + e1dx + E?Ay (3.24)

K. o
+ c(a—x Az + E-yAy + mdz + quy)-
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We have chosen 4z = 4z + idy so small that all points z of the circle
|20 — 2| =< |42| are in . The representation of 4u and 4v in terms
of the first partials then follows from Theorem 6 of Chapter 6 of ARC.
The quantities €1, ez, 71, 72 are infinitesimals as 4z and A4y approach
zero. The partial derivatives appearing in Equation 3.24 are, of course,
evaluated at (zo,y0).

Now assuming the Cauchy-Riemann equations are valid (we have
already used (i) and (ii) in deducing Equation 3.24), we are going to
show that the derivative of f(z) exists at zo. Replacing ou/dy by
— dv/ox and dv/dy by du/ox in Equation 3.24 leads to

dw = % (4z + idy) + i-g; (dz + idy) + Ax(er + inm1) + dy(es + i72)

and
dw  ou . . dx . dy
-5—5;+$3;+ (€1+m1)A—__z+iAy+ (ez+1n2)4——x+i‘1y'
But
Adz z Adz?
Az + idy| — dx® + dy?

which is bounded. Similarly |dy/(dx + idy)| is bounded. Thus
since e1, €2, 71, 72 are infinitesimals as 4z and dy (and hence 4z)
approach zero,

. Adw

im 7

exists (and equals du/dx + i0v/ox). Thus dw/dz exists.

Returning for a moment to the two functions f(z) = z and f(z) = |2,
we see that for f(z) =2, w==z »= —y, and for f(z) = |2,
% = Va? + y2, v = 0; clearly the Cauchy-Riemann equations are not
satisfied in either case.

To bring into prominence the importance of the Cauchy-Riemann
equations we combine Theorems 7 and 8 in the following proposition.

Theorem 9. Let w = f(z) = w(z,y9) + & v(z,y) be defined and single-
valued in an open region % of the complex z-plane. Let zg = To + o
be a point in A. Let ou/dx, du/dy, ov/ox, 9v/dy exist and be continuous
in a neighborhood of (20,y0). Then a necessary and sufficient condition
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that f(z) have a derivative at z = 2o is that the Cauchy-Riemann
equations

ou _ v
x oy
n_
o oy

be satisfied at (2o,%0).

Let us use Theorem 9 to show that certain “expected” functions
are differentiable and actually compute their derivatives. As a first
example, consider '

w = e

Since ez = e%(cos y + 1 sin y), we have in the notation of Theorems 7,
8, 9 that

u(x,y) = e* cos Y, v(z,y) = e*siny.

We easily see that

au—e:'cos =
ox y=

oy

and
@ = ezsiny = _%
ox oy

and that these partials are continuous for all z and y. Hence e is
differentiable at any point z of the complex plane and

d—w—-a—ﬁ+'a—v—¢co + tefsiny = e + i8iny) = e
7 = T i = €08y Yy = e*(cosy + 1 8ny) = e

One can also easily show that
c%e“ = aes?, (3.25)

where « is any complex constant.
Consider w = sinz. Since

sin 1 ez 1 1z
2 = = — = e”
24 2

we have from Theorem 5 and Equation 3.25 that

dsinz 1 1
e L Zefz 4 ~eiz —
7 3¢ +2e cos 2
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for any z. One could also write
8inz = sin (x + iy) = sinz coshy + ¢ ¢os xsinh y
and hence
u(x,y) = sin z cosh y, v(x,y) = cos  sinh y.

The Cauchy-Riemann equations are satisfied since

ou o
— =coszxcoshy = —,

ox oy
ov . . ou
ol — sinxsinh y = %
and
. ou . ov .. .
%smz=a—x+1,%=cosxcoshy—tsmxsmhy
= cos (z + ty)
= cos 2.

The function w = log z is also single-valued and differentiable for
z # 0if we specify the branch. Let us write

log 2 = log |2| + i(® + 2new),
where ng is an integer fixed for the discussion. Thus we have picked a
branch (which is not necessarily the principal value). In this case,
1
w = log|e] = 3 log (2 + ),

v=0 + 2n¢r = arctang + 2ngm.

(Note that from the trigonometry of real functions
arctan { = Arctan ¢ + nw

where Arctan ¢ is the principal value, —14m < Arctan ¢ < 14m.) From
the Cauchy-Riemann equations,

ou x _@
o zE+y: Oy
o -y ou

and log z is differentiable. Its derivative is

-d—lo z-au+i =— = — = -
&z B " m o TPt yt &z

as anticipated.
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Theorem 6 now allows us to compute the derivative of z= where
 is any complex number. By definition

zo = ea log z,
and specifying a branch of z= makes the function single-valued. Thus

(i?f = ealog z a_d_logz = za[a—l- = oaz="l,
dz dz 2

In general, any derivative formula such as (iix f(x) = F(x) which is

valid when z is real will also be true if z is replaced by the complex
variable z.

3.10 Analyticity

Let f(z) be defined and single-valued in an open region % of the
complex plane. Let zo be a point in % such that for every z in a neigh-
borhood of zp (including ze) f(2) has a derivative. Then we say f(2)
is analytic at z = zo. Analyticity at a point is therefore equivalent to
differentiability on a neighborhood of the point. Thus, for example,
, 2, 22, €7, sin 2, cos 2z are analytic at every point of the complex plane.
On the other hand, z and |2| are not analytic. The function z= where «
is unrestricted is analytic in any open region of the slit plane not con-
taining the origin. That is, each branch of 2= is analytic. On its
Riemann surface, z¢ is analytic at every point, except possibly for the
origin. The function 23/2 is differentiable at z = 0 but is not analytic
atz = 0.

The sum, product, and quotient (provided the denominator is
unequal to zero) of analytic functions are analytic. Also, with the
usual statements about the domain and range, an analytic function of
an analytic function is analytic. These results follow from Theorems 5
and 6. If f(z) is analytic at every point of a region B, we say f(z) is
analytic on B, or holomorphic in B. If f(z) is analytic throughout the
whole complex plane, we say f(z) is an infegral function or an entire
function. The exponential, sine, cosine, and polynomials are entire
functions.

We have often mentioned ‘‘single-valued’’ in our precise statement of
various theorems. Now in future theorems we shall often use the term
single-valued analytic functions. This phraseology is not entirely
redundant. Consider, for example, the function f(z) = V/z defined in
the ring R:{1 < |z| < 2}. The region is connected but not simply
connected (see Fig. 3.13). Now around every point 2o in & we can
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draw a circle C:{|z — 29| = 8} which lies entirely in ®. Any such
circle can be considered to lie on only one sheet of the Riemann surface
of vz, and clearly f(z) is analytic at zo. Thus f(z) is analytic in ®,
but it is not single-valued. We refer to such functions as multi-valued
analytic functions or multiform functions. Therefore one sometimes
calls single-valued analytic functions by the name uniform functions.
We recall that a function continuous on a bounded perfect set was
uniformly continuous (see Theorem 3 of Chapter 3). That is, there was

Im

)

1 > Re

Figure 3.13

a certain “uniformity” of approach of f(z) to f(zo) as z approached zo.
In the next theorem we shall show that a similar state of affairs exists
for the derivative. That is, there is a certain “uniformity”’ of approach
of the difference quotient to its derivative. This result will be crucial
in our proof of the fundamental Cauchy integral theorem of the next
chapter.

Theorem 10. Let f(z) be single-valued and analytic on an open set
%A and let £ be a bounded perfect set interior to %. Then, given an
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€ > 0, there exists in E a finite number of points {3, {3, - -, {» With
the property that for every z in E there exists a {; such that

@) — f(&e) = f'(Ce)z — L&) + nelz — k),

where nx = 7({x,2) is in modulus less than e.
Proof: Since f(z) is differentiable at every point zo of £, we may
write

f(®) = f(zo) = f'(z0)(z — 20) + 71(20,2)(z — Z0),

where 7 is an infinitesimal as z approaches zo (see Equation 3.19).

Now let ¢ > 0 be assigned. Choose a neighborhood [zo — 2| < &
of 2o so small that |9(20,2)] <.c. By the Heine-Borel theorem a finite
number of these neighborhoods suffices to cover every point of E.
Let {1, ls,---, Ly be the centers of this finite collection. Then if
z is any point in E it must be in a closed neighborhood associated with
some {y. Thus

f@) = f() = &)z — &) + n(le2)(z — L),

where |9({x,2)| < e

We have developed many theorems for the complex calculus which
are natural extensions of those for the real differential calculus. An
important theorem in the real calculus was the Law of the Mean.
Unfortunately no such theorem exists for analytic functions. For
example, if

f(z) = 1 — eniz

then f(0) = 0 = f(1), yet clearly no value of z (real or complex) makes
f'(2) = —2mie?vizvanish. However, there is a useful result that we can
develop without using such a theorem. We state it as a formal result.

Theorem 1. Let f(z) be single-valued and analytic on a connected
open set A. Then if f'(z) = 0, the function must be a constant.
Proof: If we write f(z) = u(z,y) + 1 v(x,y), then by the Cauchy-
Riemann equations
d _w L w_w  ou
d—zf(z)—ja;‘l"@-a;:—g—y—t@'

Since f'(z) = 0, this implies
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But by the Law of the Mean for real variables, du/éz = 0 = ou/dy
implies that w is a constant, say &, and applied to dv/dx = 0 = ov[oy
it implies that v is a constant, say ks. Thus f(z) = k1 + tks, that is,
Jf(z) is a (complex) constant.

Another useful result from real variable theory that also holds in the
complex domain is I’ Hospital’s rule.

Theorem 12. Let f(z) and ¢(z) be single-valued and analytic in an
open region . Let zo be a point in % at which f(z9) = 0, g(zo) = 0 and
9'(z0) # 0. Then

tim ) _ L0
ez 9(2)  9'(20)

Proof: By definition,

gl(zo) = lim g(zo + h}z - g(zo) # 0.
-0
Thus for |h| sufficiently small, %[g(zo + h) — g(z0)] # 0. Since

g(z0) = O and kb # 0, this implies g(zo + &) 5 0.
From Equation 3.19 we may write

f(zo + h) =f(20) + f’(zo)h + 1’1<Zo,h)h,
g(zo + k) = g(zo) + gl(ZO)h + '7]2(203h)h9
where 71 and 7, are infinitesimals as % approaches zero. Thus

Cf@) . St k) . flzo) + feo)h + mih
I g~ e T h ~ I ) ¥ oo+ sk
= lim L:-(—zm,

h—0 g (20) + N2

since f(z0) = 0 = g(z9). But g’(z¢) # 0 and 71 and 7 are infinitesimals
as h approaches zero. An application of Theorem 1 completes the
demonstration.

3.11 Mappings

Before turning to an intensive study of integration in the next
chapter let us devote a section or two to the geometric interpretation of
analytic functions. We mentioned in Section 3.2 that the equation
w = f(2) could be considered as a mapping of one region into another.
Thus if we choose a point zo = 29 + 4y, in the complex z-plane, then
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wo = f(20) = f(xo + t¥o) = u(Zo,Y0) + ¥ ¥(%o,y0) determines a point
wo = uo + o [where uo = u(Zo,¥0), vo = v(To,y0)] in the complex
w-plane. We shall call wo the image of zo under the mapping (or
transformation) f. A simple illustration is given in Fig. 3.1 for the
function w = f(z) = 322 + 1 + 4, where z is restricted to the unit
circle. Thus while a function of a real variable, say y = f(z), can be
geometrically represented on a single plane (abscissa and ordinate), a
complex function such as w = f(z) needs four real variables (z, y, u, v)
and hence requires a four-dimensional space. More conveniently, we
use two planes. Returning to Fig. 3.1 again, we see that if we label a
point 2o in the z-plane, then the mapping w = 322 + 1 + 4 transforms
it into a point wo in the w-plane. For example, the origin goes into the
point 1 + i. Now an interesting problem is to determine the image of
a given subset of points in the domain of the function f. Of particular
importance is the delineation of the image of a curve in the z-plane.
Let us consider a few simple illustrations.
Suppose we consider the mapping

w = f(z) = 2%,
where the domain of f is the whole complex z-plane. Then if we write
z=2a + 1y,
w= (x + )2 =a2 — y% + 1 2xy
and in our usual notation w = u(z,y) + ¢ v(x,y), we have
' u = x2 — y?, v = 2wy.

Thus if (21,541) are the coordinates of a point in the z-plane, (2% — 37,
2x1y1) are the coordinates of its image in the w-plane. Now consider a
straight line parallel to the z-axis,* say

y=a (a real).

Then the image of this line will be the locus of points (u,v) in the
w-plane, where ’

u = x2 — a2, v = 2azx.
If we eliminate the parameter x, we find that
da%u = v? — 4as, (3.26)
which defines a parabola symmetrical about the u-axis with vertex

* Tt will be convenient to call the real axis of the z-plane the z-axis, the imaginary
axis of the z-plane the y-axis, the real axis of the w-plane the u-axis, the imaginary axis
of the w-plane the v-axis.
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u = —a? and with the origin as focus (see Fig. 3.14b). Thus lines
parallel to the z-axis are mapped into confocal parabolas with vertices
on the negative u-axis.
Similarly, if we consider a line parallel to the y-axis, then the image
of
z =20 Impy

is the set of points

u = b2 — y2, v = 2by,

l

which becomes |
J \

4b2y = 4bt — 92 v

on eliminating the parameter ° : > x
y. This curve is plotted as |

the dashed curve in Fig. 3.14b.
Its vertex is at « = b2 and its
focus is again at the origin. Impv
Thus the coordinate lines (that

is, lines parallel to the z- and ~
y-axes) are mapped into a \
family of confocal parabolas. N
One could, of course, consider Wo
the image of other curves in
the z-plane; for example, the
circle |z — 1| = 1 is mapped

into a cardioid whose equation -02‘ G
e

 J
c

is P = 2(1 + cos ®) where
% = Pcos®, v = Psin 6.
As a second example, con-
sider
w = f(Z) = €%, 7

where the domain of f is the
whole z-plane. In terms of (b)
real and imaginary parts,

. Figure 3.14
u = e* cos y, v = e*siny,

and, for example, the line x = b in the z-plane is mapped into the set of
points (u,v), where

u = eb cos y, v = ebsiny.
If we eliminate y,

u2 + v2 = %,
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Thus the line £ = b is mapped into a circle in the w-plane of radius
¢® with center at the origin (see Fig. 3.15b). Similarly, the image of
the line y = a is the set of points (e% cos a, €7 sin a), which yields the
locus

v = (tan a)u.

This is a ray with slope tan a (see Fig. 3.15b).

Before temporarily leaving
this geometric approach, we
would like to point out one

I more fact. The curves of

! Fig. 3.14b intersect at the
zgll y:0 points (b2 — a2, + 2ab), and if
i we compute the slopes to both

. _»-Re parabolas at these points we

i find them perpendicular—just
as the lines y = a and z = b

(a) are at their point of inter-
section zo. A similar remark

lmﬁ\v applies to Fig. 3.15b where
the orthogonality is obvious

Im“y

. by inspection. We shall show

-~ ~ in Chapter 8 that this is not a

/ \ coincidence. In fact, if two

/ a \ curves C; and C; intersect at

\ _ Re thepoint zo in the z-plane and

make an angle § with each

/ other, then the images of Ci

\ / and O, under the analytic

~ 7 mapping w = f(z) (with

f'(z0) # 0) intersect at the

b) point wo = f(z0) in the w-

plane with the same angle.

Figure 3.15 This leads to the following

definition: If f(z) is single-

valued and analytic in some open region % and f'(z) # 0, then we shall

call f(z) a conformal mapping or a conformal transformation. In Chapter 8
we shall delve more deeply into the study of conformal mappings.

3.12 Lapiace’s Equation

Let us digress for a moment and consider a problem which seems
remote from our previous discussions. However, an intimate con-
nection between them will be shown before the end of this section.
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We refer to a problem in partial differential equations. It is shown
in applied mathematics* that the steady-state temperature ¢ in a
thin two-dimensional plate insulated on its faces satisfies the partial
differential equation

% o

Pl Erhe 0, (3.27)
where of course ¢ is a function of z and y. Suppose the plate is a
rectangle such-as illustrated in
Fig. 3.16. Suppose further
that the temperature on the
boundaries of the plate have (a,b)

been specified as > 7/ )
P(0y) = 0 /
Play) = 0
bad) = 0 (3.28)
- YP(z,0) =T (a constant). // —x
o

These are called, appropriately °

enough, boundary conditions.
The problem is then to find a Figure 3.16

function ¥(z,y) which satisfies

Equation 3.27 and the boundary conditions of Equations 3.28. It
can be shownt that in this case

sinnlxsinhn—‘”(y - b)
Hay) = _4T e a a
(oy) = ~— >

mei85.- n sinh 270
a

is the desired function.

Equation 3.27 is called Laplace’s equation and is frequently written
as V3 = 0. A solution of Laplace’s equation is called a harmonic
Junction. One can show that the potential functions of gravitational,
electrostatic, and magnetostatic theory also satisfy Laplace’s equation.
An important problem in the theory of partial differential equations is
to solve Laplace’s equation in regions bounded by various closed
curves and subject to a variety of boundary conditions.

How can complex variable theory help us solve such problems?
Let w = f(z) = u + i v be a single-valued analytic function defined

* See, for example, K. S. Miller, Partial Differential Equations in Engineering

Problems, Prentice-Hall, Inc., 1953, chap. 1.
t Ibid., chap. 3.
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in an open region %. Let us suppose that u and v satisfy the additional
requirements* that » and v have continuous second partials in .
Then since w is analytic it satisfies the Cauchy-Riemann equations,

ouw v ou o

= % wm-m (3.29)

Differentiating, we obtain

%u 0% 0%u v

@ wey W e

Since 0%2v/0xdy and 9%v/oydx are continuous, they are equal (see, for
example, Theorem 4 of Chapter 6 of ARC). Thus

T )

w0

and, similarly, differentiating the first of Equations 3.29 with respect
to y and the second with respect to x leads to

02 2%

v LI .
w o

Thus we see that the real and imaginary parts of an analytic function
are harmonic functions. In particular, we often call the pair v
conjugate harmonic functions.

It is not surprising, in view of the above manipulations, that there
exists a close relationship between analytic functions and Laplace’s
equation. One important property is the following. Suppose
w=f(z) =u + tv is a conformal transformation and that the
independent variables z and y of Laplace’s equation are subject to the
transformation

u = u(x,y)
v = v(z,Y).

Then it is an easy exercise in the calculus (using the Cauchy-Riemann
equations and the fact that » and v» also satisfy Laplace’s equation)

to show that
0 3
6:v¢2’ + _ = |f )|2( 6:;)

Since f'(2) # 0if f(2) is conformal, we see that any solution of V2 =
with z and y as the independent variables is also a solution of

* Actually this is a consequence of the analyticity of f(z), as will be shown in Section
4.5.
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V& = 0 with » and v as the independent variables. Thus, under a
conformal transformation, solutions of Laplace’s equation remain
solutions of Laplace’s equation. These remarks underlie the reason
for the great practical importance of studying the theory of conformal

. transformations.
. EXERCISES

3.1. Let the domain of f be the strip bounded by the parallel lines y = a,
¥ = b in the complex z-plane where @ > 0 and b < 0. If f(z) = efe,
determine the range of f.

3.2. Let f(z) be continuous on a bounded perfect set E. In Theorem 4 we
saw that f(z) was bounded on E. Let M be the least upper bound of
|f(z)] on E. Show that there exists a point { in E such that
£ = M.

3.3. Using the definition E(z) of Equation 3.6 for the exponential e, show
that it is a strictly monotonically increasing function of the real variable

.z, '

34. Let )

PE) = anz® + ap-12%1 + .-+ ag2®, ap # 0 # a,,
where 0 < s < n, be a polynomial of degree n. Show that for all z
on a circle of radius R > 0 with center at the origin that
2 Rojaa] < |P(2)| < 2Bnaq|
for all R sufficiently large and '
3 Bolad] < |P@)| < 2Rvla|
for all R sufficiently small.
3.5. Establish the following formulas for complex hyperbolic trigonometry :
(i) cosh2z — s_inh?'z =1
* (ii) sinh (z 4+ {) = sinh z cosh { + cosh z sinh {
(iii) cosh (2 + {) = cosh z cosh { + sinh z sinh {.

8.6. If w = cosz, show that
' z = arccos w = —ilog (w + Vu? — 1).

One then defines arcsin w by the equation
arcsin w = g — arccos w.
3.7.

Let a be any positive number. Show that f(z) = tan z is bounded in
the half plane Im [z] > a. :
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3.8.

3.9.

3.10.

3.11.

3.12.

Advanced Complex Calculus

Let
z=y—3y+3

define y as a real function of . Determine the Riemann axis for y
and the explicit values of the branches on their respective rays.
Discuss the Riemann surface of w = V(z — a)(z — B) for « # B.
What can you say if « = B?

Let f(z) be analytic in and on the unit circle. Show that there exists
an € > 0 such that f(z) is analytic in and on a circle of radius 1 + ¢
with center at the origin.

Under the mapping w = sin z, determine the image in the w-plane
of lines parallel to the real and imaginary axes of the z-plane.
Consider the linear fractional or bilinear transformation

w = f(z) =

where «, B, y, 8 are complex numbers with «8 — Sy # 0. Show
that f always transforms circles into circles or straight lines.




CHAPTER4

Contour Integrals

4.1 Introduction

The results clustered around the concept of ¢nfegral play a dis-
tinguished role. Many of the theorems we shall derive are analogous
to theorems we proved for integrals of functions of real variables. In
fact, we shall take pains to point out these analogies because, despite
the many similarities, there are certain striking divergences (witness
the Cauchy integral formula of Section 4.5) which has no immediate
parallel in the real domain. Perhaps by emphasizing the similarities
at the beginning of the chapter we shall make the complex integral
appear as a natural extension, rather than as a bizarre offshoot, of the
ordinary Riemann integral.

The simplest extension of the real integral is to complex-valued
functions of a real variable. Let f(x) = fi(x) + ifz(x) be such a
function where x takes on real values on the closed (real) interval
{a,b), and fi(x) and fa(x) are real-valued functions. We shall say
f(x) is continuous if fi(x) and fa(xr) are continuous. We shall say
J(z) is differentiable if fi(x) and fo(z) are differentiable and define the
derivative f'(x) of f(x) by the equation

J'(@) = fi@) + i f3(2).

Similarly, if fi(z) and fa(x) are integrable on [a,b] we shall say f(x) is
integrable on [a,b] and define its integral by the equation

b b b
f f(x)de = ffl(x)dx + iffz(x) dx. (4.1)

Using this definition we can show that f(x) enjoys most of the properties
assumed by real integrals (see, for example, Chapter 4 of ARC).
69
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For instance, it is easy to show that
b b
[weriz=y [ reras (4.2)
a . a
where y is a complex constant. For, let y = ¢ + ic2. Then

[werae = [ e+ icaifie) + ifun s
- " (erfi@) — cafal@)] + ileafa(®) + orfel@)]} de

b
- [[teus@) - eata@Nde + i [ eaito) + erfater) da
by Equation 4.1. On the other hand,

')'J;bf(x) dx = (c1 + icz) U:fl(-'t) dx + iffz(ﬂ dx]

c1 fbfl(x) dx — ¢a jbfz(x)dx

+ifea [ 'fi@) de + o f ’ fale) da).

" The linearity of the real integral then establishes Equation 4.2. A
similar simple argument will show that

b b b <
f [f(2) + g(@)] dr = j @) de + f o(@) de,

where g(x) is also a complex-valued integrable function defined on
[a,b].
If f () is integrable on [a,b], then so is |f(z)|. For,

If@)] = Vi) + fi=),

and it is easy to see that the right-hand side of this expression is a
(real) integrable function of . A slightly more difficult result is

[1@a] = [ 1@ e

To prove this proposition we recall that if « is any complex number,
then

Re[a] £ |of.
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Thus if 6 is a real number,
b b
Ro [0 [ @) da] = [ Refetf@nde 5 [" |1t

with eféf(x) playing the role of . Now f: Sf(x) dz is itself a complex
number, say,

fbf(x)dx = reld

If we let 6 = —¢, then

Re [e"ff(x)dx] —r=

b
[[re )

a
which under the tacit assumption b > a establishes Equation 4.3.

4.2 Contour Integrals

We now wish to extend our theory of integration to complex-
valued functions of the complex variable z defined along curves in the
complex z-plane. Let C,

= a()
¢ { y = y(t)

be a simple curve (and hence, according to the terminology of Chapter 2,
also a continuous curve), which we may represent as

IIA

1

IA

B,

o

2 =2 + ty. (4.4)

That is, the complex numbers z defined by Equation 4.4 are the points
of the curve.

Now let f(z) be a single-valued function of z defined along C. Let
= be a partition of [a,f],

a=to<t1<---<t"=ﬂ.

Then to every # there will correspond a unique point, say zx, of the
curve:

zx = 2(tk) = 2(te) + T y(le) = 2 + Y&
In each subinterval [t;—1,t;] choose an arbitrary point £,

be—1 S 6 < &
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and let z; = 2(f;). Thus = now becomes a marked partition, n'. Con-
sider the approximating sum,

o= > flz)dz
k=1
where 42y = 2z — zz—1. Let 4 = max[Azk] be the norm of the
. k
zi-partition and v = max (¢ — #—1) be the norm of #». Since C is
k

continuous, 4 approaches zero as v approaches zero.
We now give a formal definition of the integral.

Definition: Let f(z) be a single-valued function defined along the
simple curve C. Let 7’ be a marked partition of [«,8] of norm » and
let o be an approximating sum for this partition. Then if there exists a
complex number I such that given any ¢ > 0 there exists a 8 > 0.such
that

lo —I| < €
whenever v < & and for all markings of the partition, then we shall

say f(z) is integrable along C and write

I= fc flz)dz = 133;1 f(z}) Az

The similarity between this definition and that for the Riemann
integral (see, for example, p. 56 of ARC) is too obvious to require
further elucidation. Without laboring the point, the reader can see
that if y is any complex number, and f(2) is integrable along C, then

J; Yf(?) dz =y Lf(z) dz.

If g(2) is also integrable along C, then

[ e + gz - f reds + | geyds.
C C C

If ¢’ is a continuous curve which is inversely equivalent to C (for
example, the points of ¢’ could be { = x(—t) + iy(—t) where
—B £t £ —a), then we write symbolically C' = —C and have the
result that '

Lf(z) dz = —J;' f(z') dz.
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Also, if to is any point of [«,8] and we let C; be the curve defined for ¢
in [e,fo] and C; be the -curve defined in [£o,8], then we again write
symbolically

C=0C1+Cy
and have the result

Lf (z)dz = Llf(Z) dz + Lﬂ f(2) dz.

The proofs of these and similar results analogous to the real case
will be left for the reader. We also note that the above discussions
can be easily modified to take care of the case where C is not necessarily
simple. Integrals along curves are spoken of as contour integrals or
curvilinear tntegrals or line integrals.

Another immediate consequence of the definition of the integral
is that an integrable function is bounded.

Theorem |. Let f(z) be integrable along a continuous curve C.
Then f(z) is bounded on C.

Proof We must show that there exists a real number M such that
2 |f(z)| forallzonC. Letl = fc f(z)dz. Since f(z) is integrable,

we know that there exists a 8 > 0 such that if =’ is any marked partition
of norm less than 8, then

lo = I] <1, (4.5)
where .

o= i f(zi) Az (4.6)

k=1

is the approximating sum constructed for =’.

Suppose now that f(z) is not bounded. Then there must be at_

least one interval, say ; — #;_;, on which it is not bounded. Thus we
may choose a point ¢ in [t;—1, ¢;] such that |f(2})| is arbitrarily large.
_ In particular, for the new marked partition =" of 7 employing the
markings

’ 4 ’ ” ! ’
21, 29,7 7 5 %1, Zjs Zjtl," " 5 By

we can choose zj such that |o| exceeds |I| + 1. This contradicts
Equation 4.5.

Theorem 1 can be used to prove the important inequality expressed
in the next theorem. This result will be frequently used in subsequent
sections of this chapter.
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Theorem 2. Let f(2) be integrable along the simple rectifiable
curve C. Then

S ML

fc f(z)dz

where M = |f(z)| on C and L is the length of C.
Proof: Consider any approximating sum

o = 2 f(z)dz
for fc J(z) dz. Then
lol < 31/ |4z] s M3 |4z s ML, (4.7)

since Y |4z| is the length of a polygon inscribed in C. Thus we have
our theorem, for if I Jc f(2) dz| exceeded M L, then there would exist

an approximating sum ¢* so close to fc f(z) dz that Equation 4.7 would

be violated for this o*.

From the proof of the theorem one can also easily see the truth of
the formula,

| [ rerae] s [ 1reo-lasl.
c c
4.3 Integrability of a Continuous Function
Let C,
= (1) a
C'{y=y(t) st=h

be a continuous curve. Suppose further that z(¢) and y(t) have con-
tinuous derivatives on [«,8]. Then we shall call C a differentiable
curve. By Theorem 6 and the corollary to Theorem 5 of Chapter 2,
we see that this implies the rectifiability of C. Now let f(z) be single-
valued and continuous along C. We shall prove the important result:

Theorem 3. If f(2) is single-valued and continuous along a differen-
tiable curve C, then f(z) is integrable along C.

Proof: Let n' be a marked partition of [«,8]. Then, in obvious
notation, we may consider the approximating sum

o = 2 f(z)dz = 3 f(2(t) M(te) — 2(fx-1)]-
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Now v
2te) — z(te—1) = [2(te) — 2(te-1)] + $[y(te) — Y(te-1)]
= z'(7e)Ate + 1y (75)Al
by the Law of the Mean for real variables where
‘ be-1 < Tk < by, -1 < TE <l,
‘and Aty = & — t;—;. Thus _
o = 2 f(2(t)) z'(mx) Abx + i 3, f(2(t2)) y'(+F) Ate
= 2f(=0) 2 (&%) At + 3 f(2(6)2'(7e) — 2'(8)] Ate (4.8)
+ 1 2 @)Y (D) — ¥ ()] At

Since f(2(¢)) 2'(t) is a continuous function of ¢ (complex-valued function
. of the real variable ¢), the integral

: g )
- [reenzoa
exists.
Thus, given an e > 0, there exists a partition = of [«,8] of norm &
such that

f " Fle0) 20) b — 3 f(ett)) #(6) dte| < &

- for all approximating sums of smaller norm. We may also choose
8 8o small that the inequalities

['(7x) — z'(t)| < WE =)

ly'(}) — y'(t)] < Zm;—_—;)’

are satisfied where M > |f(z(t))| on C. This is possible since z'(t)
and y'(t) are uniformly continuous on [e,8], and f(z) is continuous on
the perfect set C. Thus from Equation 4.8 we have

IA

] B
o~ f f(z(t))z'(t)dt| < sz(z(t;))z'(m iy - f f(z(t))z'(t_)dtl
+ M3 |2 (mx) — /()] At
+ M3 |y () — v’ At

<€+€+€_€
2 44 =
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We have therefore not only shown that f(z) is integrable along C,
but have the additional result that

[ r@a = [reenzea. (4.9)
] a

Equation 4.9 is sometimes taken as a starting point in defining the
contour integral fc f(z) dz. However, our approach, we believe, lends

a more physical interpretation to the integral and at the same time
parallels the well-known development for the real Riemann integral.

If C is not differentiable but can be broken up into a finite number of
curves each of which is differentiable, then we say C is piece-wise
differentiable. Clearly the results of this section can be extended to
piece-wise differentiable curves without complications.

Another useful fact that can be extracted from Equation 4.9 is the
function-of-a-function rule. Let ¢ = f(v) be a monotonic increasing
continuously differentiable function defined on the real 7-interval
[a,b] and having the property that « = ¢(a) and B8 = ¢(b). Then from
Equation 4.9,

8 b
Lf (2) dz = ff (2(¢)) Z'(¢) dt = Lf (2(¢(7))) 2'(¢(7)) ¥'(7) dr, (4.10)

by the function-of-a-function rule for Riemann integrals extended to
complex-valued functions (see, for example, Theorem 19, p. 72 of
ARC). Another interpretation of this equation is that the curve C is
independent of the parameter t. That is, the value of the integral is
the same whether the points z of the curve C are represented by
z = z(t) + ¢y(t) with ¢ as parameter, or by z = 2(t(7)) + ¢ y(t(7))
with 7 as parameter (see Section 2.5).

Let us consider a few applications to concrete curves and functions.
Let C be an arc of a circle with parametric equations,

0:{"=°‘.’” 0<t<#
y = sint

A
A

(see Fig. 4.1). Let us evaluate the integral of f(z) = z along C. From
Equation 4.9,

Jzdz=r(cost+isint)(-sint+icost)dt
c 0
= —f2sintcostdt+if(eos“t—sin”)dt (4.11)
0 0

1 .1, 1
=§(cos20-— 1) +i-2-(sm20) =§[e2(o__ 1].
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Thus if § = Y=,
zdz = 1 + :
c -T2y
If 0 = Y4m,
J zdz = —1.
c
If0 = 7 or 2m,
f zdz = 0.
c
Im
A
"i‘ z-plane
cosf +isind -6 N
! ™
l {:0 o
e ) 1+io > Re
Figure 4.1

As a second example, let us calculate J.c dz[z over the same contour.
Certainly 1/z is single-valued and continuous along C. We have

1 1 . .
~dz=| —————— (—s8int + i cost)dt
c 2 ocCO8t 4+ vsint

=iJ.th=i0.
)

If, in particular, § = 2, then C' becomes the complete circle and

f B _ omi.
c ?
An identical argument shows that
B _ omi (4.12)
c?2—a

where ¢ is any complex number and C is a circle of arbitrary radius
and center at a.



78 Advanced Complex Calculus

In the present and forgoing sections we have considered properties
of the integral defined over various types of contours. We have used,
for example, such descriptive phrases as confinuous curve, simple curve,
closed curve, rectifiable curve, differentiable curve, piece-wise differentiable
curve, Jordan arc, etc. Actually, some of our results are valid for
slightly more general types of contours than we have specified. For
example, Theorem 3 would have been true even if merely the con-
tinuity (and not the differentiability) of C had been assumed. How-
ever, in this case we would not have Equation 4.9. To avoid a
complicated terminology, let us introduce one more definition—that
of a smooth curve. We shall call a continuous curve a smooth curve
if it is simple and piece-wise differentiable. This, of course, implies
that it is rectifiable. Actually, some of the theorems we shall prove
will be valid for a more general contour than a smooth curve. In most -
cases it will be clear when the hypotheses can be so generalized, and
in what direction (say, for example, to non-simple curves). However,
for most of our purposes, smooth curves will be more than adequate.
The only other adjective we shall append is “closed.” Thus by a
closed smooth curve we shall mean a simple closed curve which is piece-
wise differentiable.

In the next section we shall need the following result.

Theorem 4. Let C be a closed smooth curve. Then

J‘Kdz=0 and fzdz:O,
c c

where K is a constant.

Proof: Let C be a smooth curve with initial point @ and terminal
point . Let = be a partition of the interval on which the parameter
describing C is defined. Let

@ = 20,21," ", 2p = b

be the corresponding points of C. Then

o= i K(zg — 29-1) = K(24 — 20) = K(b — a)

i=1

is an approximating sum for fc K dz. Since o is independent of the
partition,

f Kdz = K(b - a). (4.13)
C
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Note that the integral depends only on the end points of C and not on
the path of integration used to get from a to b. We shall exhibit
later (Theorem 7) general conditions under which the integral of a
function is independent of the path. If, in particular, C is a closed
curve, then b = a and Equation 4.13 yields the result announced in
the theorem.

To prove the second formula of Theorem 4, consider the two
approximating sums

n

o1 = > 2z — 2-1)
j=1
and

n
o3 = z zj_l(z, - Zj_.l).
i=1

If we add them,

o1+ 03 = 22 — 22 = b2 — a2 (4.14)

Since Jo z dz exists by Theorem 3,

li.m01=]im0'2=! zdz
850 850 c

where 8 is the norm of the partition . But b2 — a2 is independent
of the partition. Thus Equation 4.14 implies

2J‘zdz=b2—a2
c

or
j zdz = -l-(b2 — a?),
c 2

and again the integral is independent of the path. (This result
generalizes Equation 4.11.) IfCisclosed,b = a and the above equation

becomes
J zdz = 0,
c

4.4 The Cauchy Integral Theorem

a8 we wanted to prove.

One of the most famous and important theorems in the calculus
of the complex variable is the Cauchy-Goursat theorem, stated in
Theorem 5 below. It is also often called Cauchy’s fundamental theorem
or Cauchy’s first integral theorem or as we shall prefer to call it, the
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Cauchy integral theorem (CIT). In the next section we shall prove an
equally important theorem (Theorem 10), which we shall call the
Cauchy integral formula (CIF). It is also called Cauchy’s fundamental
formula or Cauchy’s second integral theorem.

The present section will be devoted to a proof of the CIT and to
some of the consequences which stem from it.

Theorem 5: (CIT). Let f(z) be single-valued and analytic in an
open region %A. Let C be a closed smooth curve which together with
its interior is in A. Then

fcf(z) dz = 0.

Proof: Let L be the length of C. Let & denote the interior of C
{(an open set) and let us use the symbolic notation C + & to indicate
the points interior to or on C. Since & is bounded, there exists a
square R with sides parallel to the real and imaginary axes such that
C + & is contained in R. (It is immaterial whether % is entirely
contained in % or not.) Let A be the length of a side of the square %
and let

M = V2(4x2 + AL).

We are now going to show that

(RO

for any € > 0. This, of course, proves our theorem.

Let ¢ > 0 be assigned. About every point {o in C + I we can
draw a square R, entirely contained in % with sides parallel to the real
and imaginary axes and with center at {o such that

f2) — (&) = f'(Lo)(z — o) + 7(Lo,2)(z — Co) (4.15)

where |7({o,2)] < ¢/M for all z in Ro or on the boundary By of Ro.
Now imagine that by drawing parallels to the real and imaginary axes
we subdivide ® into smaller squares. Some of the squares will be
entirely contained in C + . We shall call these regular squares.
Others will contain points belonging to both C + & and its complement.
In this case, let us agree to consider only those points belonging to C + &
and call these squares ¢rregular squares. Other squares may lie entirely
in the complement of C + & We shall ignore them. By virtue of
Theorem 10 of Chapter 3 there exists a finite subdivision of R of this
form such that if R, £ = 1,2,---,n are the regular or irregular

< €
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squares in C + g, then Equation 4.15 is satisfied for every ?Rk with
{x in the interior of Ry.
The integral around R; may be written

fle) dz = f () + F e — ) + nled)e — L)) de
B B, -
- () Lk dz + f'(Le) Lk 2dz — (L)l L dz (4.16)

+ f 7,2z — i) dz,
By

where By is the boundary of %,. Now hm 7({k,2) = 0. Thus if we

define 7(l,lx) as zero, it is clear from Equatlon 4.15 that n({,z) is a
continuous function of zin R;. Thus the last integral of Equation 4.16

is well defined. From Theorem 4 we see that fB dz = 0 = fB zdz.
k k
Thus Equation 4.16 may be written as

f(z)dz = f n(C,2)(z — &) dz. (4.17)
B, B,

If A, is the length of a side of the square Ry, then
|z — &] = V2,

since z is on Bp. Also |9({x,2)] < ¢/M by construction of the ®;.
Thus o

[n(Ce,2)z — L)| < “l/,;)"’-

The length of the contour By is less than or equal to 4Ax + Li, where
Ly is the length of that part of C which belongs to R. If Ry is a regular
square, Ly = 0. Theorem 2 then asserts that .

< ‘\/2'\" (4 + Ly). (4.18)

kaf(z) dz

Now the integral along C' may be replaced by the sum of integrals
around B; where each integral is taken in a counterclockwise sense.
This is true since all the sides of the regular or irregular squares in &
are traversed twice—once in each direction—and since f(z) is
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single-valued, their integrals cancel (see Fig. 4.2). Thus only the
integrals along C contribute to the sum. Hence

[rava| -3 NG V2
[ k=1

by Equation 4.18. But

IIA

Z (423 + XeLy)

AE < A2 and A < A

Thus

I L f(2) dz

Our first extension of the CIT will be to non-simply connected
regions. Let C; be a closed

/ smooth curve and let Cz be
7 another closed smooth curve

y which together with its in-
D terior lies in the interior of
Z4
O

RS L,,] — el = M=

k=1

Sk a

C;. Then C; + C; is the

boundary of the ring-shaped
/ 3 D region A of Fig. 4.3a. (This
region is connected but not

@) simply connected.) We de-
:) fine the integral of f(z) over

% :) D g the boundary of 4 as

[ rea
D C1+Cy
* D where C is positively sensed
and C; is negatively sensed.
k We now have the follow-

ing amplification of Theorem
Figure 4.2 5.

Theorem 6. Let f(z) be single-valued and analytic in an open region
A. Let C; be a closed smooth curve which lies in %. Let C3z be
another smooth curve which lies in the interior of C;. LetC = C; + Cs,
where C; is taken counterclockwise and Cz clockwise. Let the open
region bounded by C lie in . Then

Lf(z) dz = 0.
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bProof: Join C; to Cz by a smooth curve I" in % such that every
point of I" except the terminal points are interior to C; and exterior to
C» (see Fig. 4.3b). Then by Theorem 5,

fclf(z) dz + Jrf(z) dz + fczf(z) dz + j_rf(z) dz = 0.

But f_r f(z)Ydz = — fr f(z) dz since f(z) is single-valued. Therefore
the above equation reduces to the statement in the theorem.

Corollary. let Cs,Cs, - - -, Cy, be closed smooth curves which lie in
the interior of C; but exterior to each other. Let C = C; + (2 +

C C,

{a) (b)
Figure 4.3

-+ + Cpu, where C, is positively sensed and Cy, t = 2,3, -+, n are
negatively sensed. Let the open region bounded by C lie in %. Then

Lf(z) dz = 0.

We are now in a position to prove a very useful theorem which gives
precise conditions under which an integral is independent of its path,
that is, depends only upon the initial and terminal points. This in
turn will lead to the fundamental theorem of the integral calculus
which enables us to handle complex integrals in exactly the same
manner as real integrals.

Theorem 7. Let: f(2) be single-valued and analytic in a simply
connected open region %. Let C be a smooth curve lying in %. Let «

be the initial point of C and B the terminal point of C. Then fc f(z)dz
depends only on « and B, that is, it is independent of the path C.
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Proof: Let C’ be a smooth curve drawn from B to «, sensed as in
Fig. 4.4 and such that I' = C + (' is a simple closed curve. Then by
Theorem 5,

Lf(Z) dz = Lf(Z) dz + fc’f(z) dz =0

or Lf(z) dz = —fC’f(z) dz = f-c'f(z)dz’

which proves our theorem.

Another way of looking at this result is to imagine that C' has been
continuously deformed into the contour —C’. Note that the simple
connectedness of A was
essential, otherwise Theorem
5 would not be applicable to
every I

These results enable us
to prove the fundamental
theorem of the integral cal-
culus. We saw in Equation
4.11 that

1
Figure 4.4 fo zdz = 5 (e26 — 1),
where C was the arc of a circle. Now if we formally integrate,
1 1
= — 22 P 246 — ]
fc zdz 3 z . 5 (e )

we get the same result. Of course, we have tacitly assumed that the
integral was independent of the path (see also Theorem 4). Theorem 8
states precise conditions under which the “fundamental theorem of the
integral calculus” holds. Clearly, in these cases the evaluation of
integrals is amenable to the same techniques used in the real calculus.
By virtue of this theorem we no longer have to reduce our problem to
the level of considering the parametric representation of C.

Theorem 8. Let f(z) be single-valued and analytic in a simply
connected open region %. Let C be a smooth curve in % with initial
point « and terminal point 8. Then, if G(2) is any single-valued function
such that @'(z) = f(2),

fcfm dz = G(B) — G(a).
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Proof: Let z be any point on C and let C(z) represent the curve
from « to z. By Theorem 7,

is independent of the path. Thus we may write (see Fig. 4.5)
Fe) = [(r@a

Clearly F(«) = J:'f({) d{ = 0. We wish to show that F'(z) = f(2).
Towards this end consider the difference

z+h z
F@ + k) — Fz) = f £ L - f 7O dL.

Since the integrals are independent of path
we may choose the curve connecting 2z
to z + k to be a straight line segment and

write Figure 4.5

z+h
F@+m-Fm=f FO L. (4.19)
Now, since f(z) is continuous, im f({) = f(z). Thus we may write
{—>z

FQ) = 1@ + (D),

where 7 is an infinitesimal as { approaches z. Thus, given an ¢ > 0,
we can choose a 8§ > 0 such that |5({)| < ¢ whenever {{ — 2| < .
Using the above result in Equation 4.19 leads to

2+h z+h
F(z + h) — F(z) = f f(z)d¢ + f 7({) d¢. (4.20)
But

+h z4-h
f 7@ dL = f(z) f ar = flh
by Equation 4.13, and by Theorem 2

[T

for |h| < 8. Thus we may write Equation 4.20 as
‘F@+M—FM
h

< elhl

—f(z)|§e
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whenever 0 < |h| < 8. This proves that F(z) is differentiable and
that F'(z) = f(2). In particular, '

_ 8
F@) = f £ dt. (4.21)

If G(z) is any single-valued function with the property that
G'(z) = f(z), then by Theorem 11 of Chapter 3,

G() = F(z) + K (4.22)

where K is a constant. But G(«¢) = F(a) + K = K since F(«) = 0.
Equations 4.21 and 4.22 then imply that :

8
66 - 6 = [ s dz = [ feeras
as we wanted to prove.

Immediate applications of this theorem are

8 1
n = n+l . on+l
L andz = ——— (B antl],
where n is a positive integer,

8
fsinazdz=%[cosaa—cosaﬁ], a#0,

B 1
f cosazdz = a[sin aB — sin aal, a # 0,

L3

8
J‘ esz dz =I¢ll[e“ﬂ — eds], a # 0.

In all cases, % can be any open region in the complex z-plane and the
integration is performed along any smooth curve connecting « to B.
If « = B, then C is a closed curve and all the above integrals vanish,
as is obvious by the CIT.

If % is any simply connected region not containing the origin, then a
particular branch of 2¢ (where s is an arbitrary complex number) may
be specified. Thus 2 is single-valued in %A and

8
J; 2dz = p i l[ﬁﬁl — aftl] 8 # —1, (4.23)

" .
f d—: = log B — log «, (4.24)
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where the integration is performed along any smooth curve joining «
to 8. Again, from the above formulas or by an application of the CIT,
both integrals are zero if « = B, that is, if C is closed.

Let us now extend Theorem 8 to the case where the region % is
not simply connected. In this case, there is no guarantee that

Fo) = f "o a

is single-valued. Let us therefore choose a branch F.i(z) of F(z2)
which is single-valued in some open subset %A’ of %A. In general, this
subset %A’ will be simply connected. The analysis of Theorem 8 is
therefore applicable to F;(z) in %’. Another point of view is to
consider the Riemann surface of F(z). Then F(z) is certainly single-
valued on its Riemann surface and no complications arise.

;
O

As an example, let % be a ring around the origin, say defined by
a < |z| <b (see Fig. 4.6). This region is not simply connected.
Consider the function 1/2. It is certainly single-valued in %, yet the
function log z whose derivative is 1/z is not single-valued in %. In any
simply connected subset of %, Equation 4.24 holds. However, suppose
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C'is a closed smooth curve as in Fig. 4.6. Then it might appear that

f‘k:loga—loga=0.
Cz

But this is not correct. The important point to note is that while the
curve C is closed in the z-plane, it is not closed on the Riemann surface
of log z. Thus as we integrate around C we should write

f dz _ log e** — log a*,
c ?

where log «* is the value of log z on some sheet of the Riemann surface
and log «** is its value on the next sheet. Thus if :

log o* = log || + [0 + 2n7]i,
then . ‘
log a** = log || + [0 + 2(n + 1)),
and

f d_z = log a** — log a* = 2m.
c ?

(A special case where C was a circle was demonstrated in Equation
4.12) :
We have used the phrase “f(z) analytic and single-valued in a
simply connected open set %.” Actually, this is redundant, for if
f(z) is analytic in a simply connected open set it must be single-valued.
For suppose it were not single-valued. Then there would have to be a
branch point of f(z) in %4. But a function is not analytic at a branch
point—a contradiction of the statement that f(z) is analytic in A.
However, we shall continue to use for emphasis the phrase “analytic
and single-valued in a simply connected open set.”” This is on a par
with the frequently used statement ‘’f(x) is defined and continuous on
[a,b],” used in real variables. If f(x) is continuous, it must a fortior:
be defined. Again we use both terms for emphasis.

~ The next logical theorem after Theorem 8 would seem to be a proof
of the statement that we can make a change of variable in contour
integrals analogous to the situation in real variables. In this con-.
nection we have the following result.

Theorem 9. Let f(z) be single-valued and analytic in a simply
connected open region %. Let C be a smooth curve in % with o as its
initial point and B as its terminal point. Let z = g({) be a function of
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{ single-valued and analytic in a simply connected open region '.
Let C’ be a smooth curve in %’ with initial point o’ and terminal point
B'. Furthermore, let g({) have a single-valued inverse, { = g-1(z)
such that as z traces out the points of C from « to 8, { traces out the
points of C' from &’ to B’. Let ¢'({) be analytic.* Then

f fle)dz = f £@0) Q) dt.
(o} (04

Proof: Since g({) is continuous, so is f(g({)). Also g’({) is con-
tinuous and hence f(g({)) g'({) is continuous, and therefore integrable
by Theorem 3. Let

14
&) = L fe)r@d. (4.25)

By Theorem 7, G({) is independent of the path from o’ to { and by
Theorem 8,

@) = f(9@)) g'D).
Similarly

Flz) = f " #(2) dz

is independent of path, and by Theorem 6 of Chapter 3,

dF dFdg
T - Tar (4.26)
From Equations 4.25 and 4.26 we conclude that

dF dG
ar ~ at
and by Theorem 11 of Chapter 3,

F(g()) = () + K,
where K is a constant. But

F(g(a')) = F(e) =0
and G(a’) = 0. Thus K = 0 and
¢ &)
[ re@ns@a = [ 1.
d' a

If we let { = B, g(B’) = B and our theorem is proved.

* This part of the hypothesis is superfluous, as will be seen in Theorem 11.
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After considering so many theoretical consequences of the Cauchy
integral theorem it would perhaps not be amiss to consider a non-
trivial practical application. Thus we are going to evaluate the integral

f RR_LPW (4.27)

0 x

by use of the CIT. This integral occurs in many places in pure and
applied mathematics, for example, in the mathematical theory of
Fourier series. (There are, of course, other ways to evaluate this
integral: see, for example, Chapter 6 of ARC.)

We start by considering the integral

eiz
—dz,
Cc ?

where C, the contour illustrated in Fig. 4.7, consists of a semicircle I"
of radius R, a semicircle y of radius 7, and the straight line segments

R > Re

Figure 4.7

—R to —r and r to R. Clearly 2~1e#2 is single-valued and analytic in
and on this closed smooth curve. Hence by the Cauchy integral
theorem

etz
Ca=o. (4.28)
c ?

Furthermore, this equation is valid for any positive B (no matter how
large) and any positive r (no matter how small). In expanded form
Equation 4.28 becomes

=7 iz etz R giz etz
f _dx+f_dz+f —-dx+f—dz=0, (4.29)
RZ y 2 y X r ?
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where we have replaced z by z in the first and third integrals since on
the real axis, z = z + 10. If we replace # by —z in the first integral,
we may write, after some trivial manipulations,

=7 ofz R iz . [Rgin
J Tl | Sdw=2i| 2Ty
R T r Z s X
On y, write 2 = r ef®. Then by Equation 4.10,
e‘l 0
—dz = ;’J‘ efr(coso+6sino) g — _ife—rslnﬂtreoso de.

vy [

Since y is clockwise (see Fig. 4.7), the integration is from = to 0 rather
than from 0 to 7. Also, if we let z = R ef¢ on I'", we have

etz "
f _dz = »if e~Rsing+tRoosd dg,
r

z 0
Using these results in Equation 4.29 leads to

R gqi £ 4
Efdx = %fe—rslnoﬂreoeadg - %f e—Rsin¢+€Rcos¢d¢
0

r x 0
and
o g1 R o1 £ ]
f smxdx = Hm El_zdx = llim e—rsino+ircoso g
o T R Jr z 2,50 Jo

(4.30)
— l lim J."e—RBln&HRewé d¢.
o

2 R—wo
It remains to evaluate the two limits on the right which are actually
complex-valued functions of the real variables r and R respectively.
Now

/2

g J” e—Rsing d¢ = 2 e—Rsinéd,ﬁ.
0 0

f' e—Rsin ¢-+iRcos ¢ d¢

0

For ¢ between 0 and Y4, it is easy to see that

sin:ﬁ g ?:

and hence

J--lz e~Rsine d¢ < J"z e~2Ré/7 g = % (1 — eR).

0 0
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This expression approaches zero as R increases without limit. Thus
Equation 4.30 reduces to

© gin x 1.
fo S dz = 3 lim ), (4.31)

where

g(r) = J‘" e-rsiné+ircoso g,
0

It is an easy exercise in real variable theory to show that g(r) is con-
tinuous at r = 0. Hence

lim g(r) = g(0) = f af = 7.
-0 0
Substituting in Equation 4.31 yields the desired result, namely,

@ gin z
—_—dz =
o X K

13

: (4.32)

N

b

4.5 The Cauchy Integral Formula

Of all the formulas in the theory of functions of a complex variable
the best known and most widely used is undoubtedly the Cauchy
integral formula (CIF). It is our privilege in this section to derive this
formula and related results. Additional generalizations with both
theoretical and practical implications will be considered in subsequent
chapters.

Theorem 10: (CIF). Let f(z) be single-valued and analytic in an
open region %. Let A be an open region interior to %, bounded by
& finite number of closed smooth curves C1,Cq, ---,Cp. Let
C=0C;+Cp+---+ Cp, and let z be a point in A. Then

L[ @
760 = 5 [ L

Proof: When we say A4 is bounded by a finite number of closed
smooth curves we mean in the sense of the corollary to Theorem 6
(see also Fig. 4.8).

The function

) .. . o s
T is not analytic in %; in fact, it is not even

continuous. However, it is analytic in any region not containing z.
Let us therefore draw a negatively sensed circle I" of radius » about z,
taking care that I" and its interior liein A. Let ¥ = C + I Then
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in the region bounded by € the function ({ — 2)~1f({) is single-valued
and analytic. Hence the CIT applies,

f SO it =0,
¢l —2

or
{—z rl—z

This equation is true for any r > 0 (provided only that I' and its
interior are in 4).

J& C‘f_ SO dz. (4.33)

Figure 4.8

Since f({) is analytic we may write
F@) =@ + f'@(E - 2) + n(z.0( - 2), (4.34)

where %(z,0) is an infinitesimal as { approaches z. If we define
7(2,2) as zero, then 7(2,{) is a continuous function of { in a neighborhood
of z.  Using this result in Equa.tion 4.33, we have

fo%dc @ f == t/f (z)f al + f_r n(z,) dl. (4.35)

But j % = 2mt by Equation 4.12 and f d{ = 0 by Theorem 4.
o} - -r
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Equation 4.35 may therefore be written as

[ Lo - 2mise) - - [ awna (4.36)
et -2 r

We are now going to show that ' J; nd{l can be made arbitrarily
small. Let ¢ > 0 be assigned. Choose a & > 0 so small that

[n(z.8)] < ¢/2r whenever |z — {| < 8. Now if we choose r (the
radius of I') less than the minimum of 1 and 8, we have

€
|J‘r'q(z,§)d§‘ < 51-72177' L€
by Theorem 2. Thus Equation 4.36 implies

< €.

S(©) .
fc g dl — 2mi f(2)

Since ¢ > 0 is arbitrary, our theorem is established.

The remarkable fact about this theorem is that it specifies the value
of an analytic function at any interior point provided only that we
know the values of the function on the boundary. In other words,
if it is known that a function is single-valued and analytic in an open
region A and if we are merely given the values that f(z) assumes on some
closed smooth curve C (which together with its interior lies in %), then
the values of f(z) are uniquely specified at every interior point of C!

As a practical application of the Cauchy integral formula let us
compute the real infinite integral

© cosx
I = J;) m—zdx. (4.37)

The integral converges absolutely and hence I is a well-defined number.
However, we cannot find an elementary function f(x) such that
Sf'(x) = (cosx)/(1 + x2). Hence the fundamental theorem of the integral
calculus is not of much use.

We shall start by considering the slightly more general integral

ekt
—d
fc 2+ 1 ¢
where C, the contour illustrated in Fig. 4.9, consists of a semicircle I’
of radius R and the straight line segment from — R to R.
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Now
2+1=(+)-19)

and

ek e 1\ f(Q)
;z+1‘;+i\z;-i)‘§—i'

where f({) = ef/({ + i) is single-valued and analytic in and on C.
Thus by the CIF,

L1 f@)
£6) = o fc La, (4.38)

z-plane

> Re

Figure 4.9

and this formula is valid for any B > 1. Since

. et e1
=

we may write Equa.tion 4.38 as

ie 2mJ.§§)z g_sz;z+1§

or
est T
fen-3
Since
R
b-be T
c r -R
we have

f:;§5+l fg=+1
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On the real axis { is real, so we may write the above equation as
© etz . R ez
J._mz2+ld’°=}a’.’fi R BT 1% wazul
Our problem is therefore reduced to a study of

eft
fr 2+1 4

for large R. For { on I"' we may write
{ = Reb, 0s6=n~w

(4.39)

and
J :2 L= iR f e“;:;:":';”’ a9
Now Ieia em(cosa+uino)| = e~Rsine < ] for 0Z0=n
e |R2e260 4+ 1| 2 |R%26| — |1] = B2 — 1.
Thus

ekt R 7R
[es|smm -y
which approaches zero as R approaches infinity. Equation 4.39 then
implies
® el g
[ TR
Taking real and imaginary parts, we have
® cosx w ® ginzx
f_m“_xz =T f__”——_z 24z = 0.
From the first integral we have
® cosx T
J; x2 + 1 dz = Ze
(since the integrand is an even function), which evaluates the integral
of Equation 4.37.

A word of caution. If we have evaluated an infinite integral, say
by the CIF, by considering the limit

[ r@rde = 1m [ fea
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then it does not necessa.ﬁly follow that the integral f :’m f(x) dz exists.
(In our particular problem it does exist.) We recall from the classical
theory of real variables that for f:o f(z) dz to exist both L ® f(z) dz

and f Zw f(x) dx must exist. Thus the definition of the doubly infinite
integral (if it exists) is :
lim f @iz = [ faa

a—>—
b+

This is nof the same as writing

tin [ feyae = [ s

For this latter limit may exist while the former may not. As an

illustration,
R R2 R2
- lim [_ - _] ~0
-R R—>o 2 2

'R xz
lim zdx = lim [—]

R—o J—R R—® 2

yet f_: x dx does not exist in the classical sense since neither J; * zde

nor J‘EQ z dz exists. To emphasize this particular method of taking a
limit we frequently write
'R o
lim f f(x)dz = P.V. f J(z) dx,
R—® J—~R . —

where P.V. stands for “principal value.” We then say that f:o f(z) dx

exists as a Cauchy principal value. Thus while f:o f() dz may not

exist in the classical sense, it may exist as a Cauchy principal value.
If it does exist in the classical sense, then a fortiori it exists as a Cauchy
principal value.*

* The term is also applied to improper integrals. Suppose f(z) has an infinite
discontinuity at a point ¢ in the interval [a,b]. Then, if the limit

i e [[ o]
€0 :

exists, we call I: fl(z) dxr a Cauchy principal value. For example, J.ll z-3 dz does not
exist in the classical sense, but since
- 1
hmu ‘ z-3dx +f z-'dx] —hmifcet41-14en=0
0 L/—1 € 02
«0 €0

exists, P.V.J'l_l z~3 dz exists and equals zero.
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In Chapter 6 we shall return to this interesting topic of evaluating
integrals.

Let us now consider a theoretical application of the CIF. We
shall show in Theorem 11 that if a function is analytic, then all of its
derivatives exist and are analytic functions. This is quite a departure
from the real variable case where the existence (and even the con-
tinuity) of the first derivative of a function did not imply even the
existence of the second derivative. This result is perhaps the most
striking difference between the theory of functions of a real variable
and the complex calculus.

Theorem |l. Let f(z) be single-valued and analytic in an open
region A. Let C be a closed smooth curve which together with its
interior lies in % and let z be any point in the interior of C. Then

! d
™) = o (cf(_oz)fﬂ
Proof : By the Cauchy integral formula we have
/@ = 5 L cf (_c)z at. (4.40)

Of course, f'(z) exists since f(z) is analytic by hypothesis. We shall
first show that f’(z) may be expressed as

IAt9)
= f L. (4.41)
which is exactly what one would obtain by formally differentiating
Equation 4.40 under the integral sign.

Since the interior & of C is an open set, we can draw a circle about z
which is entirely in &. If r is the radius of such a circle and  is any
point on C, then

& — 2| >r.
Hold r fixed for the remainder of the discussion. Now by definition
of derivative

f(z + B = 1)

f'e) =
Let 0 < |h| < Y%r and consnder
flz + k) — f(2) 1 1
0 = g Ol sl #
1 S dz.

I P (e 3 ()



Contour integrals 99

We shall show that for |A| sufficiently small,

fe+h—f@) 1 [ _f@) "‘I
B Bt Jo T — o

can be made less than any preassigned ¢ > 0. This will then imply the
validity of Equation 4.41.

Now
fe+h —fiz) 1 Sf(g) dg—-é- J(§)ag )
k 2m Jo (L — 22" 2m Jo (T — 2% — z — &)

Since f() is continuous on C, it is bounded. Let M z |f({)| on C.
Also |[{ — z| > rand |[{ — z — k| > Y4r for || < Y4r. Thus

f f(&)dg M _2ML
c@ =2 —z—R)| (r\" "
")

where L is the length of the rectifiable curve C. Let ¢ > 0 be assigned
and let

$ = min (7 ard
—-mm(§9ML€.

Then, for 0 < |A| < §,
fe+h) —flz) 1 f(&) dcl < m(zML) LML

h T 2m Jo (L - 2)2 = 27\ #3 mrd

S e

as we wanted to prove.

Of course, this result was not unexpected. We knew that f(2)
had a derivative. Our only contribution was to show that it had the
explicit representation of Equation 4.41. The deep part of the theorem
is to prove the existence of the higher derivatives.

We shall prove our formula by induction. Suppose

S (z) = n_' M_ (4.42)

B Jo T = 2t

is true for n = k. The result has been established for » = 1. Thus
we need only show it true forn = k¥ + 1. By definition,

_ o [+ h) — f0(z)
fED() = lim -
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From Equation 4.42

1tz + 1) = 196) = o [ 10| — o) %

(g —_ z)b+l
and by some simple algebraic manipulations we determine that

[®@E + h) — f®()  (k+ 1)!J‘ S d¢
h [

Zm Jo (T — 2p e

_ hik + 2)! P(L ~ zh)
i fcf Og—gmg=—z-—pm%

where P(Ah) is a polynomial in A and A, whose leading term is A%,
Since f({)P({ — z,h) is analytic in and on C, there exists an M such that
M 2 |f(Q)P( — zh)| onC. Thusif L is the length of C,

[®@z +h) — fO@E) _ k+ 1 fE)dl
e,

3t T =22

(2 ML

4 a7 kr
2

This theorem, as just proved, will be a useful tool in treating
sequences and series of functions (to be taken up in the next chapter).
However, let us complete this chapter by giving a proof of a converse
of Cauchy’s integral theorem, attributed to Morera. The proof invokes
the previous theorem.

< [h

which approaches zero as |k| approaches zero.

Theorem 12: (Morera). Let f(z) be single-valued and continuous
on an open region % of the z-plane. Let fc Jf(z) dz = 0 for every closed

smooth curve in %. Then f(2) is analytic in .
Proof: By hypothesis

Fe) = f 7 at

is independent of the path from a to 2. Thus the proof used in Theorem
8 implies F'(2) exists and equals f(z) for all z in %. (Note that in the
proof of Theorem 8 only the continuity of f(z) was used to establish this
result.) Thus F(z) is an analytic function. But by the previous
theorem, the derivative of an analytic function is also analytic. Since
F'(z) = f(z), we infer that f(z) is analytic.
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EXERCISES
In Theorem 3 we showed that if f(z) were single-valued and continuous
along a differentiable curve C, then fc f(z) dz existed. Assuming merely

that C is a continuous rectifiable curve, prove that f(z) is integrable
along C.

Show that a necessary and sufficient condition that a function f(z)
be integrable along a smooth curve C is: Given an ¢ > O there exists
a & > 0 such that if ¢ and o’ are any two approximating sums con-
structed for partitions of norm less than 8, then

|o—a'| < e

Let f(z) and g(z) be single-valued and continuous along a smooth curve

C. Prove that
|[, i e s |[[, irereae][[, 1oiz ] |

This is known as the Cauchy-Schwarz inequality.
Let f(2) and g(2) be single-valued and analytic in an open region 9.
Let C be a smooth curve in A. Prove that

fcf(Z)y’(z) dz = f(2)g(2)

- fcg(z)f'(z) dz.

(By f(2)9(z)|c we mean the difference between the value of J(2)g(z)
at the terminal point of C arrived at by traversing C, and its value at
the initial point of C.)

Prove that

© 22+ 4 — 3
[ e
Let C be a circle with center at the origin. If » is a positive or negative
integer, show that

f 28~ldz = 0.
¢

Let f(z) be single-valued and analytic in and on a circle C of radius
R > 0 with center at the origin. Then by the CIF

1 [ £
10 = o] {254

for all z interior to . Making the substitution ! = R et9, z = reld,
show that

1 27 " R2 — r2
f(z) =27,L f(Re‘)Rz-{-rz—2chos(0—¢)d0‘




Advanced Complex Calculus

This is Poisson’s formula. If f(z) = » + v, show that

wrd) = o

w(R,0)(R? — r2)

de.

2
21:_]1, RZ + 2 — 2Rr cos (8 — ¢)

Let f(z) be single-valued and analytic in an open region 2. Let o« be &

4.8.
point in %. By using the CIF show that
— a)?
1@ = fle) + (@) (= = @) + @) &5
where fp+1(2) is analytic in 9.
4.9.
Im
A
R »+iR
4.10.
A A L.

Figure 4.10

+°”+f(”)(“)(i:r;'!£'

)

+ fan1(2)(z — )1,

Let f(2) be single-valued
and analytic in a simply
connected open set 9.
Let C be a circle of
radius R with center at a
point « in A such that C
lies entirely in 9. Prove
that

o) s 22,

n=012---,

where M = max |f(z)| for
all zon C. This is called
Cauchy’s inequality.

By integrating the funec-
tion log ( — 2ie sin z) over
the contour illustrated in
Fig. 4.10, applying the
CIT and then letting R
approach infinity and r
approach zero, show that

fv log sinzde = —mlog 2.
0

4.11. Show that the integral

0
[[otesde
°

converges where z is real and Re [¢] > 0. Students of applied mathe-
matics will recognize this integral as the Gamma function, I'().



CHAPTER S

Sequences and Series

5.1 Introduction

The reader has probably already noticed that our development
of complex variable theory closely paralleled the development for the
real case. He is also aware of certain striking differences, particularly
the results associated with the CIT of the previous chapter. In the
present chapter this duality will be continued further. Since by now
the reader has gained some experience in the handling of proofs for the
complex case, we shall develop that portion of the theory of sequences
and series which is analogous to the real variable case with the minimum
of detail. We shall do this because the proofs are invariably word for
word the same as in the real case. All proofs which we dispose of in
this manner may be found, for example, in Chapter 5 of ARC. This,
of course, is no excuse for treating the whole subject in a cavalier
fashion. Every theorem will be precisely stated in the appropriate
form for the complex case, and only when the proofs are truly identical
with the real case will they be omitted. Occasionally we shall include
such a proof just to convince the reader of this fact. This method of
approach will allow us more time and space to consider certain facets
of the theory which could have been—but perhaps were not—treated
in detail in real variable theory, as well as those proofs and theorems
(mainly relating to analytic functions and the use of the CIF) which
have no immediate real counterpart.

5.2 Series of Complex Numbers

In Chapter 1 we considered sequences of complex numbers. A
sequence {os} of complex numbers was said to converge to o if given
any € > 0 there existed an N such that for all » > N,

|0’n — O'I < €.
103
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Now let us consider a sequence of complex numbers {«;} and the

13 3
sum,
¥
@

a1+a2+°"+aﬂ+"'=zan. ‘ (5.1)
n=1
Equation 5.1 is called an infinite series. In order to define precisely the
terms convergence of a series and sum of a series we proceed -as in the
real case. Let

o = a) + ag + -+ ay, n=1,2-..

be the nth partial sum of the series of Equation 5.1. Then if the
sequence {on} converges we shall say that the infinite series of Equation
5.1 converges. If {oa} converges to o, we shall say that the sum of the
series is 0. Thus the convergence of series is referred back to the
more basic question of the convergence of sequences. If the sequence
of partial sums does not converge, we shall say that the infinite series
diverges.

Conversely, if we are given a sequence such as {o,} we can convert it
to a series by writing

o1+ (02 —01) + (08 —o2) +---+ (on — op-1) +--- .

Thus we see that once we have established a property for sequences we
can readily infer the comparable theorem for series and vice versa.
For instance, the fundamental Cauchy convergence theorem, worded
in terms of series, becomes the following theorem.

Theorem |. Let
5
n=1

be a series of complex numbers. A necessary and sufficient condition
that the series converge is: Given an ¢ > 0, there exists an N such that

|¢n+1 + any2 +--- + c‘n+p| < €

foralln > N and all p > 0.
Proof: Let

be the nth partial sum. Then
Ontp — On = Cpt1 + **+ + Uptp.

The theorem now follows by Theorem 4 of Chapter 1.
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If the infinite series

@
2 o
n=]

has the property that the series of moduli

L4

2, loa|

n=1

converges, then we shall say that 3 «, converges absolutely. Again,
this is the natural extension of the term as applied to real series. We
immediately infer the following theorem.

Theorem 2. If a sequence converges absolutely, it converges.

The proof is identical with the real case. )

An important property of absolutely convergent real series was
that the terms could be rearranged at will and the new series would still
converge to the sum of the original series. The same situation prevails
in the complex case, and the proof is identical with the real case.
Precisely stated, we have the following theorem.

Theorem 3. Let

converge absolutely. Then

©
z Cp,s

where n1, ng,- - - is a rearrangement of the integers 1, 2,. - -, converges
absolutely and its sum is the same as that of 3 «s.

If
a0 L
z an and 2 ﬁn
nm=] n=1
are two series, then their product is defined as the sum
0
z Yns
n=2
where
‘}'n=°¢lﬁu—1+azﬁn—2+"'+an-lﬂl, n=2:3,'°"

The convergence of 3 «, and 3 B, does not imply the convergence of
2 y». However, we do have the following theorem.
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Theorem 4. Let

a=§an and B:Zﬁ,,

be two convergent series and let at least one of them converge
absolutely. Then their product,

n=2
where
n—1
Yn = z akﬁn-—k,
=1
converges and
@
Z yn = off
n=2

Again the proof is identical with the real case. Theorem 4 does not
insure the absolute convergence of > y,. However, we do have the
following corollary.

Corollary. Let
@ = Z ap and B= Z Ba

n=1 n=1

both converge absolutely. Then their product

where

converges absolutely.
Proof: By Theorem 4, > y, converges to 8. It remains to show
that > |yn| converges. Now

(Z @a)Z [Bal) = Z B4

where
n—1
On = z | x| [Br~z|s
E=1

and 3 8, converges, since > |aq| and 3 |B8,| both converge absolutely.
Algo, since |yn| = 3,

||Yn+1| + |‘)’n+2| + e+ I‘y»ﬂ,” S Ont1 + Snyz + -+ Snip,
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which for n sufficiently large and p > 0 can be made less than any
preassigned ¢ > 0. Hence Y |ys| converges by the Cauchy conver-
gence criterion (Theorem 1).

5.3 Sequences and Series of Functions

Let {ua(2)} be a sequence of single-valued functions of the complex
variable z, all of which are defined in some region B of the complex
plane. The sequence {un(z)} is said to converge at the point z = zo
in 9B if the sequence of numbers {u4(z0)} converges. As in the theory of
functions of a real variable, the notion of uniform convergence plays a
fundamental role. The definition is the same as for real functions.

Definition. Let {ua(z)} be a sequence of single-valued functions
defined on a set B. If there exists a function u(z), also defined on B,
such that, given any ¢ > 0, there exists an N such that for alln > N
and all zin B, '

[ua(z) — u(z)] < e,

then we shall say that {us(z)} converges uniformly to u(z) on ®.

An immediate consequence of this definition is Theorem 5. The
proof parallels the real case.

Theorem 5. A necessary and sufficient condition that the sequence
of functions {u(z)} converge uniformly to u(z) is: Given an ¢ > 0,
there exists an N such that foralln > N and allp > 0,

[un+p(z) — un(2)] < €
for all z in 8.

Two other important theorems follow.

Theorem 6. Let {ua(z)} be a sequence of single-valued functions
defined and continuous on a smooth curve C. Let {ua(z)} converge
uniformly to %(z) on C. Then u(z) is continuous on C.

Theorem 7. Let {us(z)} be a sequence of single-valued functions
defined and continuous on a smooth curve C. Let {us(z)} converge

uniformly to %(z) onC. Then {fc Un(2) dz} converges to fc u(2) dz.

The proofs of these theorems are again identical with the proofs for
the real case.
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The convergence of an infinite series of functions is defined in the
expected way. Let {un(2)} be a sequence of functions defined on a set
8. Consider the infinite series

o

> ua(2).

n=1
We say that this series converges at z = 2o (a point in 8) if the sequence
of partial sums {o,(2)}, where

n

on(2) = D wkl(2)

k=1

converges at z = zg. The definition of uniform convergence, as well
as the statements of Theorems 5, 6, and 7, can be worded in terms of
series. We leave this to the reader.

For series we also have the Weierstrass M-test.

Theorem 8. Let

n=1

be a convergent series of non-negative real numbers. Let

@

Z Un(2)

n=1
be a series of functions defined on some region B such that for all
zin B,
Iu"(z)l S M,, n=12...,
Then

]

z Un(2)

n=1

converges uniformly and absolutely on 8.

5.4 Sequences of Analytic Functions

Because of the great importance of analytic functions, we shall
devote a section to the proof of certain fundamental theorems regarding
sequences of analytic functions. A powerful tool now at our disposal
is the CIF.

It will be convenient to preface our treatment with two lemmas.
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Lemma I. Let f({) be single-valued and continuous on a closed
smooth curve C. Let 2 be any point in the interior of ¢. Then

f()
fc { - ch

is an analytic function of z on the interior of C.
Proof: Write

F(z) = L cj(_f)z d.
Then

Fz +h) - Fz) _ [ L0
) cT—2- BT -2

In the proof of Theorem 11 of Chapter 4 we showed that
lim (&) dt 1 £

A )T =z~ MC =2 ~ 2m Jo @ = a2 %

merely using the continuity of f({) on C. Thus

F'(z) = lim F(z + h’Z — F(2)
A0

exists.

An immediate corollary is
Fo(z) = ngf _f@)af

o (L — 21

Lemma 2. Let {un(2)} be a sequence of functions defined and single-
valued on an open region %. Let {u(2)} converge uniformly to u(z)
onA. LetC be a closed smooth curve which, together with its interior,
lies in A. Let z be a point in the interior of C, and let p be any fixed
positive integer. Then the sequence

{un(I)(C ~ 2)77}

converges uniformly to u({)/({ — z)? for all { on C.

Proof: Let I' be a circle of radius r with center at z such that I" and
its interior lie in the interior of C. Then |{ — 2| > 7 for {on C. Let
€ > 0 be assigned. By the Cauchy convergence theorem (Theorem 5)
there exists an N such that, foralln > N, m > 0, and tonC,

|#n+m(Z) — um(l)] < er®.
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Thus

Un+m(L) Uun({) I’“m+m(§) - u,,(C)I
T—2p  T-27| Z <

foralln > N,m > 0,and { on C.

Our first major theorem follows.

Theorem 9. Let {ua(z)} be a sequence of analytic functions defined
and single-valued on an open set . Let {un(2)} converge uniformly
to u(z) on A. Then u(z) is analytic on A.

Proof : Let z be any point in % and let C be a circle with center at
2o such that C and its interior lie in . We shall show that u(z) is
analytic in C and hence at zo.

Let z be any point in the interior of C. Then the sequence

)

converges uniformly to {u(—c)z for { on C' by Lemma 2. Since gu"i;)z
is continuous for all { on C, it follows from Theorem 6 that gu(_{)z is
continuous and hence

un({) } f %({)

—>d —d{,

28 a} > [ 7
by Theorem 7. Lemma 1 now implies that gu(t;)z d{ is analytic.
cl =
_ 1 un({)
But us(e) = 5 J‘C 728) dr by the CIF. Thus
_ 1 u({)
wz) = 5— L T—z g, (5.2)

which implies that u(z) is analytic for all z interior to C.

We shall now consider the sequence of derivatives {u,(z)} of the
sequence {us(z)} considered in Theorem 9. It is, of course, a sequence
of analytic functions. Hence {u,(z)} converges to some function,
say v(z), which is analytic in %. The important result we shall prove
in Theorem 10 is that »(z) = %/(z) and that the convergence is uniform
in C. This immediately implies the uniform convergence of the
sequence of mth derivatives, {u{™(z)} to w™(z) in C.
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Theorem 10. Let {ua(2)} be a sequence of analytic functions defined
and single-valued on an open set %. Let {ua(z)} converge uniformly
to u(z) on A. Then the sequence of derivatives {u/(z)} converges to
u'(z) on A. If C is a circle which, together with its interior, lies in A,
then the convergence of {u/(z)} to u’(z) is uniform in and on C.

Proof: Let z be any point in % and C a circle about z which together
with its interior lies in %. Then from Equation 5.2

v = L [ w0

o T
But
’ 1 u”(g)
“e = o [ g

and the sequence {ua({)({ — 2)~2} converges uniformly to {u(O)(C - 2)~2%
for all  on C by Lemma 2. Thus by Theorem 7 the sequence

{fc (Cu:( 2)2 d{}

converges to J.c w(C)¢ — 2)"2d{, or what is the same thing, {u/(z)}

converges to u'(z) for all z in C. Hence for every z in % the sequence
of derivatives {u,(z)} converges to u’(z). This establishes the first
part of the theorem. We must now show that the convergence is
uniform in any circle interior to 9.

Let C and C’ be any circles which, together with their interiors,
lie in A. Let » be the radius of C. Let C’ be a circle of radius » +
concentric with C. Since ¥ is open it is possible to find such a ¢’
with 8 > 0. Choose any such § and hold it fixed for the remainder of
the discussion. Let e > 0 be assigned. Since {ua({)} converges
uniformly to %({) by hypothesis, there exists an N such that for all
n>N

€82
r+ 8

forall {on C'. Now for » > N and z in or on C, we have [ —2] 2 8.
Since the length of C"' is 2n(r + §),

[w() — ua(l)] <

1 -
|w'(2) — wy(2)| = l% L “((Cc) - :)o;(l) d‘l
S oo f [u(Z) — ua(?)][dL]
= 2782 o
1

€82
<W82(1'+8)2‘”(r+8)=6
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for all n > N and all z in or on C. This establishes the uniformity
of the convergence of the sequence of derivatives.

As a corollary to Theorem 10 we see that {u,(z)} converges uniformly
on any closed bounded set F interior to %. For about every point
2o of F we can find a spherical neighborhood C(zo) such that there
exists an N(zo) with the property that

[w'(z) — un(2)] < €

for all n > N(zo) and.all z in C(zo). By the Heine-Borel theorem a
finite number of these circles (say those associated with the points
21, 22, - - -, 2&) with the above property cover F. Let N be the
maximum of the N(z;),j = 1,2, ---, k. Then forn > N

|u'(2) — un(2)] < €
for all zin F.

5.5 Power Series

Series of the form

8(z) = D calz — @), (5.3)
n=0
where « and the ¢, are complex numbers, are called power series.
Clearly S(z) converges at z = «. Suppose S(z) convergesat z = zo # «,
that is,

@

> cnlz0 — a)*
n=0
is a convergent series of complex numbers. We shall show that S(z)
converges uniformly and absolutely in any circle |2 — «| < r where r
is any number less than |z — «f.
Since 5 cn(z0 — «)® is a convergent series of numbers, there exists
an M independent of n such that

|en(zo — a)®| < M

foralln,n = 0,1,2,--.. Thusfor |z — «| £ r,

<M

lea(z — )| S |ca|r™ = |ealzo — @)?|

20 —

20 — &
The series

n=0 20 — O
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is & convergent geometric series, since |*/(z0 — )] < 1, and hence by
the Weierstrass M-test (Theorem 8) the power series of Equation 5.3
- converges uniformly and absolutely for all z such that |z — «| < r.

Clearly the partial sums of S(z) are analytic functions. Hence
Theorem 10 implies that term by term differentiation of Equation 5.3
is valid; namely, that

8®() = 3 nn —1)---(n — p + Lealz — a)*-?,
n=p

and that S®(z) converges uniformly and absolutely in |z — e < r.

Now it may be that there exists no value of z with the property that
8(z) converges when |z — a| > |20 — «|. In this case we say that
|20 — a| is the radius of convergence of the power series, and call
|z — | = |20 — «| the circle of convergence. Suppose, though, there
exists a value of 2, say z1 with |21 — a| > |20 — |, at which S(z)
converges. Then we see by a repetition of the above argument that
8(z) converges absolutely for all z with |z — «| < |2; — «| ; and uniformly
in and on any circle |z — | < r; where r; < |21 — «|. Continuing,
there may exist a 22 with |22 — «| > |2; — | and such that S(z)
converges at z;. Two cases arise: either the numbers |zo — of,
|21 = @|, |22 — |, - - - increase indefinitely and there is no point at
which S(2) fails to converge, or else there are points for which S(z)
does not converge. In the first case we say that the radius of con-
vergence of S(z) is infinite. In the second case, since |20 — |, |21 — af,
‘|22 — «|, - - - is bounded from above, there exists a least upper bound,
say R. Clearly R has the property that for all z with |z -« < R
the series converges and for all z with |z — | > R the series diverges.
We call R the radius of convergence of the power series. Ifz =ais
the only point at which S(z) converges, then we say that the radius of
convergence of S(z) is zero.) '

Thus we see that §(z) converges absolutely at every point in the
interior of its circle of convergence and diverges at every point exterior
to its circle of convergence. On the circle of convergence it may
converge at some points and diverge at others. If C is any circle with
center at o and positive radius less than R, then S(z) converges uni-
formly in and on C and represents an analytic function there.

5.6 Taylor’s Expansion

We have seen that a power series represents an analytic function
in its circle of convergence. 'We shall now prove the converse, namely,
every analytic function can be uniquely expressed as a power series.
This result is precisely formulated in Theorem 11.
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Theorem |1. Let f(z) be analytic and single-valued in an open region
%. Let o be any point in A. Let C be a circle with center at « which
together with its interior lies in %. Then at every point z in C the
power series

1@ + £ - @) + @ E5 L 4 po B
converges to f(z).
Proof: By the Cauchy integra.l formula
fz) = cf (€) (114 (5.4)

for all zin C. Now by a simpie algebraic manipulation (see Exercise
1.4)

1 1 _ 1 + z2—«a +
=z T-o)-G-o (-« {C-af
(5.5)
(z — a)r (z — a)ntl

T T T - o)

Since
1
o L FOE - @) ®+D L = fO) k!, k=0,1,2, -,

we have from Equations 5.4 and 5.5 that

, v (2 — a)?
f@) = f(@) + fla)z — a) + f'(e)

4+

+ foe) B2y Ry,

where

I (&) at
Bale) = "o L T— o T -2

is the remainder. If we can show that
lim |Ra(z)] = 0
N>
our theorem will be established.
If r is the radius of C, then |z — «| < r for any z in C and
=zl =|C-a)+(e—-2)| 2|l —of —|e—¢

2
Zr—je—2z[>8>0.
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Also, since f(z) is continuous in ¥, it is bounded on C. Let M 2 |£(2)]
on C. Then

2 - alﬂ+l M

|Ba)] < | L

27 A+l §
where L = 277 is the length of C. Thus

ML
o8

lRa(z)l § z2 —a n+1‘

r

Since |(z — a)/r| < 1, im |Ra(z)| = o.
If « = 0, we obtain

@)= 1) + £ Ok + fO 5 o+ f0) 2 4

which is generally called Maclaurin’s series.
It remains but to show that the expansion we have obtained is
unique. Suppose

Co + C1(z — @) + ca(z — @) + .- -

represents f(z) in a neighborhood of z = «. Then there exists a circle
I’ with center at z = « such that the power series converges uniformly
and absolutely for all zinandon I". Ifz = g,

f(@) = co.
Since the power series converges uniformly,

f'(z) = e1 + 2¢2(2 — @) + Bes(z — @)2 + -+
and

(@) = c1.
Repeated applications of this argument yield
T (a) = nley, n=2012....
Thus the expansion of f(z) in powers of (z — «) as given in Theorem 11
is unique.
5.7 The Root Test

We would like to give a “‘practical” test to determine the radius
of convergence of a power series such as

io ca(z — a)s.
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One such test can be formulated by considering the limit superior of
V/|ca] as n approaches infinity. Preliminary to proving this main
theorem we shall first define and prove certain properties of the limit
superior.

We recall that if {as} is a bounded sequence of real numbers then
the least upper bound and the greatest lower bound of {a,} always
exist while lim a, may or may not exist. For example, the sequence

N—> 0

1 1 1 1
2’—2,l§’—1‘2""',l+2_”’—(l+§;)"" (5-6)
has the Lu.b. of 2, the g.1.b. of —2, while the limit does not exist. If
we consider the even terms of Equation 5.6 we see that these terms
converge to — 1 while an examination of the odd terms of Equation 5.6
leads to the conclusion that they converge to +1. It would seem,
therefore, that the numbers + 1 and — 1 play a special role with regard
to this sequence. Can we therefore define some type of “limit”’ which
will bring these numbers into prominence? The answer is yes and is
contained in the important definitions of upper limit and lower limst.

Definition. Let {a,} be a sequence of real numbers. If there
exists a number 8 with the property that for every ¢ > 0 an infinite
number of the a, exceed B — ¢, while only a finite number exceed
B + «; then we call B the upper limit or greatest limit or limit superior of
the sequence {a,}. In symbols we write

B = lim a,
n—» oo
or
B = lim sup a,.
fn—>

Similarly, if there exists a number « with the property that for every
€ > 0 an infinite number of the a, are less than « + ¢, while only a
finite number are less than « — ¢, then we call « the lower limit or least
limit or limit inferior of the sequence {a,} and write

o = lim a,
n— o

or
a = lim inf ay.
n—

It is clear that if {a,} is the sequence of Equation 5.6 then

im an, = +1 and lim a, = —1.

n—+»wxo n—o
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We see therefore that with a given bounded sequence we can associate
more than one type of limit. Unlike the “limit,” the limit superior
and limit inferior always exist.

Theorem 12. Let {as} be a bounded sequence. Then the greatest
limit and least limit always exist and are unique.

Proof: Let A be the totality of real numbers which have the property
of being exceeded by an infinite number of the a,. -Since {a,} is
bounded, 4 is bounded from above. Leta = lLub. A. We assert that

a = lim a,.
n—> 0

Let ¢ > Obeassigned. Thena — eisanelementof 4. By hypothesis,
an infinite number of the a, exceed @ — «. Buta + ¢is not an element
of A. Hence, at most, a finite number of the a, exceed a + e.

We shall show that a is unique. Suppose a and a’ with a # a’
are both upper limits. Without loss of generality, let a’ > a and choose
an € > 0 such that

a+e=a — e

[that is, ¢ = V4(a’ — a)]. Now an infinite number of the a, exceed

a’ — ¢, and thus an infinite number exceed @ + e. But by definition

of greatest limit, only a finite number exceed @ + ¢—a contradiction.
The proof of the existence and uniqueness of lim a,, is similar.

Theorem 13. Let {as} be a bounded sequence. Then

lim a, = lim a,.
n—>w —_

n—>

Proof: Let B = lim a, and ¢ = lim a,. We shall assume 8 < « and
force a contradiction. Since g is the upper limit, only a finite number
of the a, exceed B + e forany ¢ > 0. Thus there exists an N’ such that
foralln > N’,a, < B + €. Similarly, since « is the lower limit, only
& finite number of the a, are less than « — e. Therefore there exists
an N” such that for all n > N”, a, = « — e. Hence there exists an
ay such that

Therefore
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for every ¢ > 0. But if « > B, let € = Y(« — B). Then the above
inequality implies

1
o« — B = 'é(a—ﬁ)’

which is absurd.

If the limit superior equals the limit inferior, then we have the
following important result.

Theorem 14. Let {as} be a bounded sequence of real numbers. Then
lim a, exists if and only if

n—>o

lim a, = lim a,

n—>o n—c0

and in this case all three are equal.
Proof: Suppose lim a, = lim a,. Call their common value B.
Since only a finite number of the a, exceed 8 + ¢ and only a finite

number of the a, are less than B — ¢ for any e > 0, there exists an N
such that for all n > N,

ﬁ—€§an§.ﬁ+€,
or

Ia"—pléf

foralln > N. Thus lim a, exists, by definition of limit of a sequence,

and equals 8. v
Conversely, suppose lim a, exists. Call it a. Then, given an
f—>c0

€ > 0, there exists an N such that foralln > N,

—e<Qp — @ < €.
Thus for all » > N,

Ay > A4 — €
and

an < a + e

Thus only a finite number of the a, are less than a — e and greater
than a + «. Hence a is both the upper limit and lower limit.

In the previous theorems we required that the sequence {as} in
question be bounded. If {ay} is not bounded from above, we shall say
that the limit superior is plus infinity. This simply means that there
are an infinite number of the a, which exceed any finite number we
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may care to name. Similarly, if {a,} is not bounded from below, we
shall say that the limit inferior is minus infinity.
We are now in a position to state the root fest.

Theorem 15: (The Root Test). Let

[ =S eals — ey (5.7)

n=1

L = Tim Ve,

n—> 0

be a power seriés. Let

Then R = 1/L is the radius of convergence of the power series.
Proof: Let zo # o« be any complex number such that |zo — | < R.
Then

1 S 1
IZO—GI R

Let a be a real number satisfying the inequalities

= L.

1>a> |z — «|L
Since

L =TIm V[ca] and > L,

n—- oo

|20 —
there exists only a finite number of the V/[c,| which exceed a/[zo — «f.
Hence there exists an N such that for all » > N,

Vo] S —
20 — of

or
lea(zo — @)#| < an.
Thus

0

‘,Z Ick(Zo —_ a)"{ = % ]ck(zo - a)“'l + Z ak.

a0
=0 E=0 E=N+1
But @ < 1 and hence
[
ak
E=N+1

is a convergent geometric series. Thus f(z) converges absolutely for
all z with |2 — «| = |20 — «f.
Now let zo be any complex number such that |20 — «| > B. Then
1 1

o—a “E- L
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and there exists an infinite number of the ¥/[c,| which exceed |20 — «|~1.
Thus

A 1
\/lCnl > m

or
|ca(zo — @) > 1

for an infinite number of the n. Hence lim c,(20 — «)* # 0 and the

n—>o

power series of Equation 5.7 diverges for all z with |z — «| = |20 — «f.

Two special cases, namely L = 0 and L = oo, require an additional
word or two of elucidation. (i) If L = 0, then, following through the
proof of Theorem 15, we see that f(z) converges for every zo. (ii) If
the sequence {V/[cs|} is unbounded, then L is infinite. Thus an
infinite number of the V|c,| exceed 1/|z0 — «| for any zo # « and, as
in the proof of Theorem 15, this implies that f(z) diverges for all
20 # .

For example, if

i) =1 4+ 2+ 22+ f2n ...,

then ¢, = 1 and lim V/[ca] = 1. Thus the radius of convergence of
fiz)is 1. If

23 25 z2n—1
Z ... ) 2
+ +(=1) 2n — 1)!

&) =z - g1+ 5

4.,

then ¢n = (—1)»*1/(2n + 1)! and lim V/[cs| = 0. Thus the radius of
convergence of fa(z) is infinite. (Of course, fa(z) = sinz.) If

faz)=1+2 4+ 2122 ... + nlem ...

then ¢, = n! and lim V/[ca] = 0. Thus f3(2) converges only for
z2=0.

5.8 Laurent Series

In the previous sections we considered power series, that is, series
of functions of the form

@

z ca(z — a)n.

ne=0
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Another type of series of analytic functions that plays a prominent role
in the complex calculus is a series of negative powers of (z — a), viz.,

Siz) =ca(z — )l + ca(z — )2 + .-
(5.8)

+Cpz—a)y +-.- = Z c-n(z — )",
n=1
If the series

Z c-nln

n=1
has a positive radius of convergence R, then it will converge for
|¢| < R and diverge for |{| > B. Thus the series of Equation 5.8
with z — « = 1/{ will converge for |z — «| > R-! and diverge for
|2 ~ @| < R-1. 1In particular, if R is infinite, fi(z) will converge for
all z exterior to any circle of positive radius with center at a.

Suppose now that

@

Sa(z) = z ta(z — )"
n=0
is a power series with a radius of convergence S > R-1. Then fa(2)
converges for |z — a| < 8 and diverges for [z — «| > §. Thus

f2) = f1(2) + f2(2)
(5.9)
=D calz— )"+ > calz — @)t = D calz — o)

n=] n=0 n=—co

converges for all z such that
R1l<|z-¢« <8.

The right-hand side of equation 5.9 is called a Lavrent series.
The series fi(z) of negative powers is called the principal part of the
development. A Taylor series is a special case of a Laurent series
where ¢, = 0,n = —1, -2 ...,

The fundamental theorem regarding Laurent series is expressed
in Theorem 16.

Theorem 16. Let C; and C; be concentric circles with centers at
« and positive radii 71 and r; respectively with r, > r5. Let f(z) be
single-valued and analytic in the region rs < |z — a| < ;. Then
f(z) admits of a Laurent series development

- )

f(z) = Z ca(z — a)® + Z ca(z — a)n,

n=—1 n=0
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which converges for all z in the open region % between C; and C2, and

1 f() dt

=5 |, T -0,1,2 -
ST }
6_n=2—7”: Ca(—l_———a)—T;I, n—-l,2,3,---
Proof: By the CIF
1 1
10 =g [ fa- o[ Ba e

Im
4

Y = Re
n

Figure 5.1

for all z in A (see Fig. 5.1). Now we may express by means of

1
{—2

Equation 5.5, and interchanging the roles of { and 2, we have

11 + - G —ap (£ — ayrt1
-0 z-a (z2-aF (z — )t = (z — a)*ti(z — )
(5.11)
Replace ! by Equation 5.5 in the first integral of Equation 5.10 and

{— =z
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. _1_ 7 by Equation 5.11 in the second integral of Equation 5.10 to

obtain

f2) =co+ c1(z — a) + c2(z — @)2 + -+ + cu(z — )" + Ry(2)
+ ez —a)l + co(z — @) 2+ + c_alz — @)™ + B_n(2),

where

(2 — a1 £ d
Bale) = =55 fcl T =" =)

and

{ — o)*tIf ()

1 (
Bo) = ome — s fc, 21

di.

If we can show that
im |Ria(z)| = O,

our theorem will be established. The proof that
lim [Ra(z)| = 0
fi—

is identical with that given in Theorem 11. It therefore remains but
to prove that lim |R_,(2)| = 0.
N>

Let M 2 |f(z)| on Cs. Since |@ — {| = rz and 72 < |z — a] <
for any z in U,

lz—C=]z—a)+ (=0 2|z - o - |«—{

=lz—a —r;=8>0.
Thus
1 Mg+t ML n+1
| B-a(@)] = 2n|z — a|ptl 3 = 278

T
zZ -«

where L = 2nr; is the length of C,. Since |ry/(z — e)| < 1,
lim |R_4(z)| = 0 and Theorem 16 is established.
n—»c0

If I' is any circle with center at o and radius r with ro < r < 7y,
then we easily see that the coefficients c., of Theorem 16 may be ex-
pressed by the single formula

1 J(§) dg - ‘
c,,=§§ r(c——a—)"ﬁ’ n—O, i’l, i2,"'. (5.12)
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We now wish to show that the expansion we have obtained is
unique. Suppose, then, that

@) = il boalz — )™ + ,20”"“ — aym

is a representation for f(z) which converges for r; < |2 — a| £ .
Then if m is any integer, positive, negative, or zero,

fe)z — a)m = 2 bou(z — a)vm + 2 ba(z — a)rtm  (5.13)

and this series converges uniformly in %. As before, let I" be a circle
with center at « and radius 7, 72 < r < r1. Then, since the series of
Equation 5.13 converges uniformly on I', we may integrate term by
term along I to obtain

| e N

n=0

But, for all integers p with p # —1,

f f(2)(z — «)rdz =0.
r
Thus

d .
J f@)z — )™ dz = b_gm+y) J; ° = 2mi bogmin)
r

2 -«
or

b_im+1 = ﬁ fr f@)(z—amdz, m=0, %1, +2,---.

Letting » = —(m + 1) reduces the above equation to Equation 5.12.

Expansions of the Laurent type will be useful in evaluating definite
integrals by the method of residues. We shall give a detailed exposition
of this fascinating theory in the next chapter.

5.9 Classification of Singularities

We have often used the “number” infinity when discussing various
limiting processes, particularly those relating to sequences and series.
It is convenient at this stage to adjoin to our complex number system
a symbol co. This is somewhat analogous to our adjunction of the
symbol ¢ to the real numbers, thus obtaining the complex number
system. By definition we lay down the following arithmetic rules
which we require the symbol oo to obey:
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o O .
(i) == 0, « any finite complex number
oy O
(ii) §g= ®@®=0a=oo o any non-zero complex number
i) ~ = o0, + 00 = 0 + & = o0, a any complex number # oo
p y p

We shall call the symbol oo a complex number. When we adjoin co
to the complex plane we call it the extended complex plane and use the
term “point at infinity’’ to describe z = co. Note that no distinction
is made between +co and —co. The points of the extended complex
plane may be mapped on a sphere (called the Riemann sphere) in a
natural fashion. Consider a sphere of radius R placed on the z-plane
with its south pole at the origin. Any line emanating from the north
pole will intersect the z-plane and the Riemann sphere each in one, and
only one, second point. This is our one to one correspondence. The
south pole is mapped into the origin; the point at infinity is mapped
onto the north pole. The equator is mapped onto the circle |z = R in
the z-plane. The advantage of using the Riemann sphere rather than
the z-plane is that in the former the point at infinity is in no way
distinguished from any other point.

A neighborhood of o is defined as the exterior of any circle. The
statement lim f(z) = co means that given any real number M, no

Z—>a

matter how large, we can find a § > 0 such that [f(B)| > M for all
B such that 0 < |« — B| < 8. We shall say that f(z) is analytic at
z = oo if f(1/{) is analytic at { = 0. In general, the behavior of a
function f(z) in the neighborhood of oo is the same as the behavior of
the function f(1/{) in the neighborhood of { = 0. Let f(z) be analytic
in the exterior € of some circle with center at the origin. Then
J(2) has a representation

flz) = i Con2™® + i Ca2h
n=1

n=0

valid in €. We shall call this development the Laurent expansion of
f(z) about the point z = 0. Ifc, = 0,72 = 1,2, .-, then

Jz) =co+caz7l +cg2z 2 + ...

and we shall say f(z) is analytic at infinity. Thus

f(%) =co+ c1l + c_al® +---
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is analytic at { = 0. The point z = oo is a branch point of w = V2,
since if we circulate about a large circle with center at the origin we
pass from one branch of vz to the other. The point z = oo is nof a
branch point for w = V(z — e)(z — B), (« # B), since if we circulate
about a large circle with center at the origin, w returns to its initial
value.

The main purpose of this section is to discuss functions which are
analytic in some region % except, perhaps, at one point in %A. For

example, z is analytic in any circle with « as an interior point,

-
except at a.

Let C be a circle of positive radius B with center at z = «. Let
[(z) be single-valued and analytic in C except at 2 = «. Then we shall
say z = « is an isolated singularity of the function f(z). We shall
examine the character of isolated singularities in the next few para-
graphs.

Suppose first that f(z) is bounded in the open set %:{0 < |z — «| < R}.
That is, there exists a number M such that

lf@| = o
forallzin A. Since f(z) is analytic in % it has a Laurent expansion

fz) = i c-n(z — @)™ + i calz — a)n
n=1

n=0

valid for any z in U, where

L[ _f@dt

and I' is any circle with center at « which lies in %. In particular, if
n is positive,

o = 3 frmx; — L.

Let r > 0 be the radius of I.  Then since |f(z)] £ M on % by hypo-
thesis,

le-a] = EI;T-Mr"‘lL = Mrn,

where L = 2nr is the length of I Since » = 1 and 7 can be taken
arbitrarily small,
cqu =0, n=12 ...
Thus
f(z) =co + C1(z —a) + ca(z — @) + - -
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forzinA. Let usdefinef(z) atz = @asco. Then f(z)is analytic in the
circle [z — «| < R. 1In this case we call z = « a removable singularity
of the function f(z). For by defining (or possibly redefining) f(a) as
¢o we obtain a function analytic in the interior of C. For example,
the function 21 sin z has a removable singularity at the origin.

Now let us suppose that the Laurent expansion of f(z) in %« actually
contains negative powers. If the expansion contains only a finite
number of negative powers, we shall call z = a a pole of f(z). In
particular, if f(z) admits of the representation

= c_p c_p+1 .. —

1) = G e e T 2 e
where c_, # 0, we say f(z) has a pole of order p at z = «. If p = 1,
we say f(z) has a simple pole at 2 = «. On the other hand, if the
expansion contains an infinite number of non-zero terms with negative
exponents, we shall call « an essential singularity of f(z). For example,

has an essential singularity at z = 0.
If f(z) has a Laurent expansion in the exterior of some circle, then
we shall say, when positive powers are actually present, that f(z) has an
isolated singularity at z = co. If only a finite number of terms with
positive powers appear, we shall say z = oo is a pole of f(z). If

fR) =2 + cp12Pl + o+ 1z + D comz®
n=0
and ¢, # 0, then we say f(z) has a pole of order p at z = c0. If the
expansion contains an infinite number of non-zero terms with positive
exponents, then we shall call z = 00 an essential singularity of f(z).
The series of positive terms of the Laurent development of f(z) in the
neighborhood of oo is called the principal part of the expansion.

EXERCISES
51. If
z 2 = @ and z In =8,
n=( n=0
prove that

i(z.+§,.‘)=a+3.

n=0
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53.
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Let z, = x4 + iy,, n = 1,2,..., be complex numbers.

L)
2
n=1

converges if, and only if,

o0 0
Z Tp and Z Yn
n=1 na=]
converge. Furthermore, if >z, = o, show that
>zn = Re[o], >yn = Im[o].
Conversely, if >z, = o1 and >y, = o2, show that

Zz,, = a1 + 1o3.

Show that

Prove that lim «, = 0 is a necessary condition that the series

n—-

L
2, o

n=1
converge.
54. Let {«s} be a sequence of complex numbers with Re[as] = O,
n=1,23,.-.-. If both
a0 o
z o, and Z ol
n=1 n=]

converge, prove that
0

2, leal?

n=1
converges.

5.5. Let {ay} be a bounded sequence of real numbers. Show that

5.6.

lim Lub. a, = Iim a,

n—-o man n—o0
and

lim glb.ay = E ay.

n—o Mm=n
Consider the series

N—>e0

>

nw=l

of complex numbers. If there exists an N such that foralln > N,

Intll > g,
L2
show that the series diverges. If
fm |22 <1
n—+o | On ’

show that the series converges.
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5.8.

5.9.

5.10.

5.11.
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If {&s} is & sequence of complex numbers, show that

. @
lim n+1

71— 00

< lim Vo]

fn—- o

and

Cn+1
Cn

fm e < Im |22t
n—-o

n—>wo

If f(z) is single-valued and analytic in a neighborhood of a point z =«
and has the Taylor series expansion

f(2) = cp(z — &)? + cpir(z — )P¥L 4. ..,
where ¢y # 0, then we say f(z) has a zero of order p ot z = «. If
f(2) has a zero of order p at z = «, show that 1/f(z) has a pole of order
patz =a.
Let f(2) have a pole of order p at the point 2 = «. Show that for any
M > 0, no matter how large, there exists a § > 0 such that |f(z)| > M
whenever |z — o < 8.
Show that the function

m
c8C 52

I

has a Laurent expansion in powers of (z — 4i) which is valid in a
neighborhood of z = 3. Determine the region of convergence of the
expansion.

Let f(z) have an essential singularity at z = «. If 8 is any complex
number, then for any ¢ > 0 and any & > O show that there exists a
{ such that |f({) — B| < eand |{ — o] < 8.

=z2+2iz-5



CHAPTER 6

The Calculus of Residues

6.1 Introduction

The main purpose of this chapter is to show how various definite
integrals may be evaluated by using the techniques of complex variable
theory. We shall therefore consider some appropriate theorems which
are easy consequences of our earlier work. Then we shall discuss
large classes of definite (real) integrals which may be evaluated
by using these results. We shall also consider integrals other than
real integrals, namely the so-called loop and double loop integrals
which occur in various branches of mathematics (see, for example,
Chapter 9).

6.2 Theorems on Residues

Let f(z) be single-valued and analytic in a simply connected open
region %, except perhaps at some point z = o in A where it has an
isolated singularity (see Fig. 6.1). Let

s

flz) = Z c-nlz — @) + > calz — o) (6.1)

n=1 n=0

be the Laurent expansion of f(z), which is valid in an annular region
A around «. Then the quantity c_; is calléd the residue of f(z) at a.
Thus

m=%LNW,

where C is a positively sensed circle in 4 with center at o.
We therefore have a method which is frequently convenient for

evaluating integrals around closed smooth curves. For example, let
130
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C be a closed smooth curve about the origin and let us evaluate the
integral
f 24 ginh z dz.
c

Now the function 2~4 sinh z has an isolated singularity at z = 0 and

1 . 1 28 28

z—48mhz=z—4(z+§+§+)

l+l+ o+
= 31z :

> Re

Figure 6.1

Thus ¢-; = 1/3! and
1 1
— —4 gj = e
o .fo z—4sinh z dz 3
or

f z-4sinh zdz = » 7.
. 3

We shall show in the next section how this technique can be used to
evaluate definite real integrals.

If f(2) is single-valued and analytic in the neighborhood of infinity
with the Laurent expansion

f(z) = i cnz™® + i Ca2™,

n=]1 nm=0
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then —c_, is the residue of f(z) at 2 = co. Thus
= o [ @4
01 = —35 c 2) az,

where C is a positively sensed circle.
The theorem that will be fundamental in our subsequent investi-
gations is Theorem 1.

Theorem |. Let f(z) be single-valued and analytic, except for
isolated singularities in an open region A. Let C be a closed smooth

Figure 6.2

curve which together with its interior lies in % and on which f(z) is
analytic. Let o be the sum of the residues at the singular points of
f(z) which lie inside C. Then

o~ L f@) dz = o.

Proof: Since C is rectifiable, the region interior to C is bounded and
hence there can be at most a finite number of points at which f(z)
has singularities. Let these points be 2j,zs, --.,2x (see Fig. 6.2).
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Let Ci, k = 1,2, ..., N be circles with centers at z; which lie interior
to C and exterior to each other. Then by the CIT,

fc Jf(2)dz + J'zc, f(zydz =0

or

fR)dz = — % f(2) dz.
J )

. E=1
But if g, is the residue of f(z) at z = 2, then

Cy

(since C; is a negatively sensed circle). Thus

J. f(z)dz = 2mi(o1 + 02 + - - + on) = 270,
c

Im Im Im
| A A

A
Ca
be i p+i i
)
o > Re o > Re Y.} = Re
¢-i -1 Cs ¢-i

Figure 6.3

There are more general theorems than this (see Chapter 7), but we shall
have no occasion to use them in this chapter.

As an application of Theorem 1, let us evaluate the integral

2+ (2 +1)
f - dz
over the various contours illustrated in Fig. 6.3. The curves Cy, C3, Cs
are all supposed to be closed smooth curves.

The function
z+ (2 +14)

fe&) = 22 +1



134 Advanced Complex Calculus

has isolated singularities (simple poles) at z = +i. Thus our first
task is to compute the residues of f(2) at 2 = +4 and z = —4i. To
compute the residue o; at z = ¢ we write

foy <A@ _zr@+i) 1

22 + 1 Z+t z-1

z+(+)

and expand - in a Taylor series about 2 = . We obtain

2+ (2 +14)
z+1
and hence

_ —-i)+-;—(z—i)+zi(z—i)2+---

f2) = +;+4( —i) 4.

Therefore
=1-—1i.
Similarly the residue o—¢ at z = —1 is
o—f = 8.
Thus

f()dz = 2mi(os + o—) = 2m

G

J()dz = 2mi(o¢) = 2n(1 + 1)
Cy

J(z)dz = 2mi(0—) = —2m.
Cs

A single-valued function which is analytic except for poles is called
a meromorphic function. Thus every rational function is a mero-
morphic function. If f(z) is meromorphic in some region of the complex
z-plane and has a pole of order p at some point z = « in this region, then

$(2) = (z — a)?f(2)

has a removable singularity at 2 = «. If ¢(2) is appropriately defined,
then it will be analytic in a neighborhood of z = «. Thus it has a
Taylor series expansion

a)?

$(2) = ¢(a) + ¢'(a)(z — @) + ¢"(a) (z_;_'_

valid in a neighborhood of z = «. The residue o, of f(z) at z = « is
therefore

4 e

$* V()
T

(6.2)

Oy =
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As an application of this simple result, let us find the residues of the
function f(z) considered earlier, viz.,

_z+ (2 + 1)
f@) = —z51
at z =t and 2 = —14. Since f(z) has a simple pole at z = 3,
, z+ (241
#e) = (2 — fe) = 2L
and Equation 6.2 becomes (with p = 1)
Il U ) B
R ’
Similarly for z = —1,
. 2+ (2+1
8 = (= + i)fe) = 2L ELY)

and
o= 2FCEO_
-t — 1
Certainly this is a more convenient method than the expansions used
earlier, although this is not always the case. One can also often use
I’'Hospital’s rule (see Theorem 12 of Chapter 3). For instance, if
z =1,

%[(z i)z + 2 +1)]
o1 = lin} = ]im
Ei[zz + 1]

2z + 2

%2 =1 -3,

The brief preliminaries of this section are adequate preparation for
an intensive study of the calculus of residues.

6.3 Integrals Involving Rational Functions
A. Without more ado let us evaluate the real definite integral

1=[—2 &
=_L i+ 22+ 1

by residues. We start by considering the complex integral

22 d
fcz4+zz+l *
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over some contour C to be described below. The integrand is a mero-
morphic function with simple poles at «, 8, @, f, as indicated in Fig. 6.4.

Thus

1, .v3 1 .V3
Tt B=ptig
Im Let C be the contour illustrated
r in Fig. 6.5 consisting of a semi-
circle I' in the upper half plane
B e and the straight line segment
[-R,R]. Our general philos-
ophy is as follows. If R > 1,
then the poles of f(z),

(6.3)

»Re
22
f(z)_z4+22+ l’

which occurat 2z = cand z = 8
will be interior to the contour.
No matter how large R be-
Figure 6.4 comes, the contour will never
enclose any other singular

points of f(z). Thus for any R > 1,

w|
L]

f f(z)dz = 2mio (6.4)
c

Im

A

r

c
"R ) R > Re

Figure 6.5

by Theorem 1, where o is the sum of the residues of f(z) at z = « and
z = B. Now if we can show that

lim f(z)dz = 0,
r

R—w
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we shall have

R
2mo = lim f f(z)dz = lim f(z) dz,
R—wo JC R—»w J—R

which evaluates 1.
To carry out the above line of attack we first compute the residues
of f(z) at z = « and z = B. They are

. a a
on = lim (2 - Of(x) = 5= = 5

3 B = B
05 = 11-?;(2 - Bfz) = P71 2 23

Thus
+ - f) = — (6.5)
= aa TN m—— — D eem—— .
7 %= %v3 2%4/3
and we have evaluated the integral of Equation 6.4.
Now
R
f F(2) dz = f Fe)dz + J' (2) d, (6.6)
c -R r

and we wish to show that

lim | f(z)dz = 0.
R—ow JT
For any 2
R e e N A L
which for 2z sufficiently large in modulus will be positive. Thus

s [ el

|z|4 - ]z2| -1

f f(2)dz
r
Let z = Ref. Then for R sufficiently large

mR3

T Rz
U,f(")d’ s w1 R - T

which approaches zero as R increases without limit.
Equations 6.4 and 6.5 then imply that

R
2mio = lim f(z) dz,
R

R J—
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where we have replaced z by  in the integrand since, along the real
axis, z = z. Recalling the value of ¢ in Equation 6.5,

1 @© x2
3 = P.V. —_—dz,
2m(2i\/§) PV j_,, x4+ 22+ 1

and we have evaluated I,

@ z2 T
= PSS — = e— .7
I J;x4+xz+1dx 2,\/3 (6)

B. Let us see if we can generalize the result of the previous example.
Consider therefore the integral
® P)

— dz,
-o Q)

where P(x) and Q(x) are relatively prime* polynomials in  of degrees
» and q respectively. Let ¢ > p + 1 and suppose that Q(z) has no
real zeros (for if it did, 7 would not be a proper integral). Consider,

a8 in the earlier example,
[ 2
c QR

where C is the contour illustrated in Fig. 6.5. Since P(2)/Q(z) is a
meromorphic function, its only singularities are poles. Let us suppose
that R, the radius of I', exceeds in magnitude the moduli of the complex
numbers at which P/Q has poles. Then if o is the sum of the residues
of P/Qin C,

I =

P@), i
fc W dz = 2w (6.8)
by Theorem 1. Now we may write
PO, (* P@,, [ PG
a0 [ am® [ a3 (6.6)
Let 2 = Reto. Then
PR) | _|. (" P(Rew) " | P(R e%)|
[ g =i [ o reeas| = & o) -

But from Exercise 3.4 of Chapter 3,

| P(R e¥)| < 2R?|a,|
and

1
QR e)| > 5 Refp,|

* That is, they have no common factors in z.
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for R sufficiently large, where a, is the coefficient of 2? in P(z) and b,
is the coefficient of 2¢ in @(z). Thus

P‘z’ RMI 40 = dmla||b;2| Ro+1-e,
5 Relbd|

dz

Since ¢ > p + 1, the above expression approaches zero as R increases
without limit. Thus by virtue of Equations 6.8 and 6.9

P(z) _ P(x)
2mio = lim | Q@) % Pvf L7 B

Since the condition ¢ > p + 1 implies the convergence of the real
integral

@ P(x)

- Q@)

we can delete the ‘“‘principal value’” symbol P.V. before the integral.
Our results may be summarized by the following theorem.

Theorem 2. Let P(x) and Q(x) be relatively prime polynomials
where the degree of Q exceeds the degree of P by at least two. Let
@(z) have no real zeros. Let o be the sum of the residues of P(z)/Q(z)
at the zeros of Q(z) which lie in the upper half plane. Then

P(x) .
f_w Q(x) dz = 2mio. (6.10)

C. As a non-trivial application of this theorem let us evaluate the

integral
1= [T 22 &
- [

where n > m 2 0. By Theorem 2,

=" 2 -le ; 6.11
=§ -ml+x2” ——(ma) mao, (- )

where o is the sum of the residues of 2m/(1 + 228) in the upper half
plane. The poles of 22m/(1 + 22#) occur at the roots of 1 + z2* = 0,
All the roots are simple and those in the upper half plane may be
expressed as

"
or = 01,0~ L (6.12)
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Thus by I’Hospital’s rule

n—1 n—1
z—w 1
- 2m R A —— 2m—2n+1
a—zw,, hml+z2"_2n w§ .
k=0 2wy k=0

wi(2m+l)
where p = ¢ \ 2 /, and hence

1 2k+1
o= —— P .
2n kZo

But this is a finite geometric series. Thus

_ lp—pl 1 2
7T T%%m 1-pt T T2mI-p?
since p2* = —1. If we write o in the form
1

0= —
n(p - p7)
and recall the definition of p, we have

1
o=
2ne sin £(2m—-+1)
2n
Equation 6.11 then yields
©  x2m 7 w(2m + 1) S
J;) mﬁdx—%cscT’ n>'m.__0. (6.13)

D. As another example we consider the integral

® dx
> e

whose integrand satisfies the conditions of Theorem 2. In this case
the poles of the integrand are no longer simple. The only root of
(22 + 1)» = 0 in the upper half plane is z = 4, and it is a root of multi-
plicity ». Thus if we set

. 1
$R) = (z — i) Er O
the residue o at z = ¢ is given by Equation 6.2 as

_ $016)

T m =1y
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Now we may write ¢(z) as

-

E-ne+op - CHI™

Hence
$AD(z) = (=1 Infn + 1(n + 2)---(n + 1 — Az + i)~

and

' (2n — 2)!
o= T3 m - Di(n — 1)
By Theorem 2
© _dz . w (2m—2)
I= f_m @+ 1p 2mio = 23 [(n — I)IJF (6.14)

Students of applied mathematics will recognize the right side of
Equation 6.14 as the Beta function, B(%,n — 1). Thus

J: (a:’;‘:l)" = B(é’” - %) (6.15)

E. We turn now to integrals whose integrands involve trigonometric
as well as rational functions. One such example was given in Chapter
4 to illustrate the CIF. There we showed that

® coB X [
T+ 2% " % (6.16)

A little reflection shows that the CIF is simply a special case of our
residue theorem, corresponding to the case where the contour encloses
just one singularity.

F. To evaluate the integral of Equation 6.16 we started by con-
sidering the complex integral

etz
|55

Let us now consider more general integrals of the form

> P(z) ® P) ® P(x)

el dy = cos wxdx + ¢ —smwxdx > 0,
o Q@) e @@ ) “
where P(x) and @(x) are relatively prime polynomials of degrees p and ¢
respectively. Let ¢ > p and suppose that @(x) has no real zeros. We

begin by considering the integral

P@) i
.f ¢ @(2) elot da
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along the contour C of Fig. 6.5. Thus

P@) .. _ [* P@ .. Po) .,
e R fno()"’“ ~ Qe O (6I7)

We shall show that the second integral on the right approaches
zero a8 R increases without limit. Letz = Re#. Then

P@) . P(R €%) . riv 0
L 0 )e‘ dz = Rf AR etwRe® glo g (6.18)

By Exercise 3.4 of Chapter 3
1
| P(R e9)| < 2R?|ay], |Q(R efe)| > -2-R¢|bq|

for R sufficiently large. We also recall from Section 4.4 that

f' efoR ei? dol =
0

"
f efwR(cos 6+48in6) 0 I
0

T /2
f e—wReing de = 2 r’z e—wRsino d0 é 2 J.' e—zwm/' da
0 0 0

=L — e—wR _.‘”_
wR(l ¢ )<wR

for R sufficiently large. Equation 6.18 then becomes
P
r Q)

Since ¢ > p, the above expression approaches zero as R approaches
infinity. Thus from Equation 6.17 and Theorem 1

A

e dz| < 4w 'm|a,||b; | RP.

tmio = [ £ gtur g, = P '[ P('”) ve dz,
c Q@)
where o is the sum of the residues of —— Plz) efvz in the upper half plane.

Q)
This leads to the following theorem.

Theorem 3. Let P(z) and @(z) be relatively prime polynomials
where the degree of @ exceeds the degree of P. Let @(z) have no real

zeros. Let o be the sum of the residues of Pz )e‘wz at the roots of

Q(z)
@(2) = 0 which lie in the upper half plane. Then
* P etor dy = 2mio, w > 0.

-w Q)
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As an immediate consequence we may write, by taking real and
imaginary parts of the above expression,

® P)

. 0@ cos wr dr = Re [2mic] = — 27 Im [o] (6.19)

and

P(x)
Q()

One can sometimes relax the restriction that Q(x) have no real zeros
if at such a point P(x)@Q () sin wz or P(z)Q—l(x) cos wz has a re-

movable singularity (see the evaluation of f sm_a: dz in Section 4 of

Chapter 4).

If @ < 0 we choose a semicircle in the lower half of the complex
plane and let o be the sum of the residues of P(z)@-1(z)etz which lie
in the lower half plane,

G. As a non-trivial application of Theorem 3 let us evaluate the

integral
® cosx
1= | e

* elz ,
J‘_D m dx = 27"/0,

sin wx dr = Im [27i0] = 27 Re [0]. (6.20)

From Theorem 3

where o is the sum of residues of ef?/(1 + z2#) in the upper half plane.
The roots of 1 + 22* = 0 are all simple and those in the upper half
plane are

i
= (2k+1
wr =™ p_o01,...,n - 1. (6.21)
Thus, as in C,
zZ—-w l n-l
o= Z e hm —— = Z e“rey =1,
i=o 1+ 2 7 (=0
m
= T3 Z eteor gBn HFHY
n
¥=0
Since

2k + l)‘rr+isin(2k+ l)ﬂ
2n 2n

by Equation 6.21, we may write

wg = CO8

n—1

o= — L Z e81n & [cos (cos Ag) + % sin (cos Ax)]-[cos Ax + 4 sin Ag],
M ;=0
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where
2k + 1
o= —5—m (6.22)
The imaginary part of o is
n—1
Im[o] = ~%n 2 e—sin & [gin (cos Ag) cos Ax + cos (cos Ag) sin Ag]
£=0
n—1
= —— —8in A gj .
o ’ZO e sin (Ax + cos Ag)
By Equation 6.19
©  cosx LI
Jlm T 2o dx = - ‘go e~sin & gin (Ax + cos Ag), (6.23)

where A; is given by Equation 6.22.
H. Consider now

27
1= L Y
o @& + cos 8

an integral involving only trigonometric functions. This does not seem
to be of the form previously studied, namely, integrals involving
rational functions. However, if we make the change of variable

z = e,

. dz
I= -2 fc m, (6.24)

where C is the unit circle with center at the origin. Now Equation
6.24 represents the integral of a rational function. An immediate
application of the residue theorem, Theorem 1, gives

I = —2i[2mic] = 4no,

where o is the sum of the residues of (22 + 2az + 1)1in C.
The poles of this function are simple and occur at

2= —a + Va2 — 1.

Since @ > 1, the root —a — Va?2—1 is always exterior to the unit
circle while the root « = —a + v/a? — 1 is always interior to the unit
circle. Thus, if o, is the residue of (22 + 2az + 1)-lat z = «,

I = 4no,.
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Now

n zZ—-a 1
g, = lim
,_,,,zz+2az+l 2¢/a? — 1

and

2m do 2m
— L4 l- -
L oot Var—1 a > (6.25)

I. In general, then, consider
27
1= f(sin 8, cos 8) d@,
)

where f is a rational function of its arguments. Then under the sub-
stitution
etd. — e—to eld + e—to

sm0=T, cos 6 = 3

b

the integral becomes
2% ef0 _ g—10 otlo + et
I= J; f ( T 3 )d0.

Now, under the transformation z = e,

(1 (2 -1 22 4+
I= —"J.c;f( 2z = 22 )dz,

where C is the unit circle with center at the origin. Since a rational
function of a rational function is a rational funection, the integrand of
the integral is a rational function of z. Thus the techniques developed
earlier in this section are applicable.

d. Consider the integral

® logz
1= [T

It is easy to see that the integral converges, even though it is improper
at x = 0. We start with the complex integral

log 2

C 1 <+ zz

where C is the indented contour of Fig. 6.6. If = > 0, then
log z = log z, while, if x < 0, logz = log |«| + mi. Thus

log z R logx log 2
c—l+zzdz_J: T R e LN

dz,

(6.26)

-7 log |#| + m log z
+f_n-———---l+w2 do+ | 722 e
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in C is at z = ¢, the residue is

. log 2
Since the only pole of T2

. m .
-1 (z—i)logz_logi_l(’glzl'*'éz -
eERTE Y T i+ T =71
Hence by Theorem 1
[\ log 2 _ (% logx log 2
will) = [ rrmt = [ Temdt [ Ten®
(6.27)
R (logx + i) log z
+f,—1+x2 dx+fyl+zzdz,

where we have replaced # by —x in the third integral on the right of
Equation 6.26.

> Re

Figure 6.6

We shall show that the integral along I" tends to zero as R increases
without limit and that the integral along y tends to zero as r approaches
zero. Let z = Re®. Then for R sufficiently large

logz (log B + 16)
Tr 2% f T+ Reemo L edl
Rlog R
§R2_1+R2_1J:0d0,

which approaches zero as R increases without limit. Similarly if
z = r e, then for r sufficiently small

log 2
y 1 + 22

(log r + 40) .
o 1 + et

rllog r|

dzl =

ir ef® d9|




The Calculus of Residues 147

which approaches zero as r approaches zero. Thus from Equation 6.27

in? logx
—'}z‘w[f dx+mjl+x*]

© dz 1
o 1+t 27

we deduce from the above formula that

Since

® log x
fo Tl =0 (6.28)
K. The general philosophy of evaluation of integrals of the form
® P(z)
1 » da
0 ) (8%

will now be expounded. Let us assume that P(x) and Q(z) are relatively
prime polynomials of degrees p and g respectively, with ¢ > p + 1;
that @(z) has no real zeros; and that P(z)/Q(x) is an even function.
Then if C is the contour of Fig. 6.6 and o the sum of the residues of
P(2)@1(z) (log z)* in the upper half plane,
P(z) J’ P(z)
log z)n dz = log z)» dx
« O )( g 2)" dz @) (log z)* d
P(x)
r Q@)

2mioc =

P(z)
y Q)
P(z)
r Q)
Now let z = Re®. Then for R sufficiently large,

|P(R &%) )
U s ) (log 2)® dz Rﬂmﬂogli+0] a8

4|a,|[b; | BP+1-2 3 ¢,(log R,
k=0

+ (log |z| + m)n dx + (log z)» dz (6.29)

+ (log 2)» dz.

IIA

IIA

where the c; are real positive constants. Thus we need only show that
lim Rr+l-¢(log R} = 0

R o

for k finite. But if ¢ > p» + 1, the above statement is obvious by
repeated applications of I’'Hospital’s rule. Thus

LT

approaches zero as R increases without limit.
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Let z = re®. Then for r sufficiently small

P(z) . | P(r e%9)| "
f o Gog 2 dz | s 7 r Qe 5| log i+ o1 do. (6.30)

Now the constant term by of the polynomial @(z) cannot be zero (for if
it were, zero would be a root of @(z) = 0, which violates our hypothesis).
Thus by Exercise 3.4 of Chapter 3,

(- )] >  [bo

for r sufficiently small. Suppose
P(2) = apz? + ap-12P71 + - - + a2, 0=s8=0p
Then for r sufficiently small
| P(r e9)] < 2|as|re.

Equation 6.30 then implies that for r sufficiently small

| J- 0 (log 2" dz

which approaches zero as r approaches zero.
Equation 6.29 therefore may be written as

< 4a,||bg t|r*+? z c;(log )%,
k=0

2mic = lim U.R Qg ;(logx) dx + J.R 0 )(logx + m)» dx]

R—»O

where we have replaced z by —z in the second integral and used th;a
fact that P(x)/Q(x) is an even function, that is, P(—=z)/Q(—z) =
P(z)/Q(x). Thus we see that

© P(z) »

can be expressed as a linear combination of integrals of the form

P(z)
f 0= )(logx)"dz
withk <n. Ifn =1,

J, @ esete = mlo -3 [ Gm ]
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L. As a non-trivial example of the above analysis, let us evaluate
the integral

® (log z)?
= 0 1 + xz"
We see that, if C is the contour of Fig. 6.6,
. [ (ogz)® % (log x)? w)z " (log |#| + )2
2mio = 1+ zz’.d = , 1+ zon Tz dx + J‘_Rw—dx. (6.31)

Replacing 2 by -z,

J’" log |z| + m)z J‘R (logxz + m)zdx _ [® (log x)2 de

1 + a2» 1 4 x2n ’ 1 + x2n
log z R dx
2. — 2 —_—
+mJ.1+z2" i y 1 4 x%»

Since
©  dx o7 1
o L4+ a2 20 o«
sin —
2n

from Equation 6.13, we may write Equation 6.31 as

© @ 3
2J‘ (1083’) _ dz + 2mi J. de=21ria+lcscl-
[}]

o 1+ 1 4 x2n 2n 2n
Thus
® (log z)2 . 3
) 1( 5 xl”dx = Re [mia] + - oso o (6.32)
and
© Jogax .
L B 4z = Tm io]. (6.33)

We are faced with the task of computing 0. The poles of
(log z)2/(1 + 22») in the upper half plane occur at the points wg,
egmm’

wg = k=01...,n -1,

and the residues are given by

n—1 — wk
o= EZO (log wi)? hm —-——1 T o

Since |wx| =

m m
log wy = log |wy| + -2—':(2k + 1) = -2—’—':(210 +1)
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and

where

Let

Then

and
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o= 1_3 Z (2k + 1)2p2k+1,

p= 81‘12”
n—=1 2n+1
P— P
v = 2k+1 — LT .,
I:ZO P 1 — p?
dv n—1
z (2k + 1)p2k+1
k=0

4 dv S 2,241
pd_p( dp) 2, Ck +

k=0

(6.34)

(6.35)

(6.36)

We may compute the above derivative from the closed form of Equation

6.36. Using the fact that p2* = —1 enables us to write
n2p
7= B3
(L= p?)[(4n2 + 4n + 2)(1 — p2) + 8p%] + 4pH2n(1 — p2) + 2(1 + p¥)]
(- e
(6.37)
If we let
. m k4
= sin 5, C = cos E (6.38)
then
p=0C + 18, p+ pt=2C,
pl=0C -8, p— p 1l =248,
and Equation 6.37 can be reduced to the form
_ w2 {~2n8C + i[(2n2 — 1)82 — 202]}
~ 8ad B |
Hence
w2
Im[o] = m[(%2 - 1)82 — 207] (6.39)
and
Cn?
Re[o] = ‘H:Fa' (6.40)
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Now from Equation 6.32,

w3

. 1
Re [nio] + w38

I —
= - m[mr] +m

w3 @314 02
8 ~ 8n3 S8
Recalling the definitions of C' and S from Equation 6.38, we may write
Equation 6.32 as

3
- -SnLBSs[(znz — 1)82 — 207] +

1+ cos? —
® (log z)2 dae 3 2n 6.41
o 1+ a8 ~ 8nl — (6.41)
sin3 —
2n
Also, from Equations 6.33 and 6.40
. Cn?
Im [50’] = Re [0’] = —W)
or
™
CO8 —
“® logz w2 2n
[ e = - (6.42)
sin2 —
2n

6.4 Further Applications

In all the examples of the previous section as well as in the two
examples [ 2~1 efzdz and [ cos z (1 + 22)~1 dz of Chapter 4, the contours
over which we integrated were essentially semicircular in form (see
Figs. 6.5 and 6.6). While this path of integration is perhaps the most
useful and common in many problems, it is not always the best nor the
most convenient in every problem. In this section we shall consider
additional applications of the residue theorem where rectangular or
triangular contours are more applicable than semicircular ones. Also,
in the next section we shall consider some more bizarre paths of inte-
gration when dealing with branch points.

A. As a first example we shall show that

f e”sechxdz=rrsec%”» —-1l<d<l {6.43)
-

The poles of e’ sech z are at the roots of cosh z = 0. Now
coshz = cosiz = 0
implies

iz=(2n+1)g, n=20,+1,...,
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Thus the poles of e sech z are all simple and purely imaginary, and are
given by

z=i(2n+l)7§r, ’n=0’i]_,....

Let C be the contour illustrated in Fig. 6.7. The only pole of our
function inside this contour is at z = Yni. The residue at this point is

1 .
(z - = m)e“
. 2
o = lim ——————

= —j /2
s Yy cosh 2z

Y ¥ {
. -

r ) R > Re

Figure 6.7

and by the residue theorem,
j erz sech 2 dz = 2mio = 27 eMi/2,
c

‘Starting at the point — R and integrating around the four straight
lines of C, we may also write that

R 7
f ez gech z dz = f e gech x do + iJ‘ eMB+y) gech (R + ty) dy
c -R 0

-—R
+ f eNa+ah) gech (z + mi) dz (6.44)
R

0
+d f AR+ gech (— R + iy) dy.

Since

cosh (x + mt) = —coshua,
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we may write Equation 6.44 as
R

R
29 e;i/2 = f e gech x do + et f e gech r dx
—R -R

+ if eMR+) gech (R + 1y) dy (6.45)
0

0
+ OJ. eM—R+)) gech (R — iy) dy.

We shall show that the last two integrals approach zero as R
increases without limit. Since

. eR:y 1 e—(Rity) eR — R ]
= > —eR
| cosh (R + iy)]| 3 z 5 >3e
for R sufficiently large and
|ea(n+m| = e'R, |eA(—R+ty) | = e R,
the last two integrals of Equation 6.45 become
AR
i f' eME+HY) gech (R + 1y) dy‘ < 37; = 37w e~(1-MR
0
and
0 3me—iR
ij eM—R+iy) gech (R — iy)dy| < R = 37 e~ (1HAR,

Since —1 < A < 1, both the above expressions tend to zero as R
increases without limit.
Returning to Equation 6.45, we may now write

R
2w 42 = lim [(1 + ei) e gech z dx)
R —R
or
© Qmrerni/2
‘f e¥ gech x dx = %—7
—w + e

A little arithmetic yields Equation 6.43.
B. As another example we shall show that

f e cos 2z dwr = Ve (6.46)
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by integrating e~?* around the contour of Fig. 6.8 where A is a positive
number, fixed for the discussion. Starting at the point — R, we have

R A —R
f e dz = f e dx + 4 J e~ R+ gy 4 f e~@+in? dy
c -R 0 R

0
+1 f e~ R+ gy (6.47)
A

Since e—7 is analytic in and on C, the CIT tells us that

f e dz = 0.
c

Thus we may write Equation 6.47 as

R A R
0= f e dx + 'if e~ (BR+tn)? dy — e"af e—3" o203 gy
-R 0 -R
(6.48)

0
+ 4 f e~ (~R+1) dy,

A

where we have replaced z by — 2 in the third integral on the right.

r- ) > R >=Re

Figure 6.8

We shall now show that the second and fourth integrals of Equation
6.48 approach zero as R increases without limit. Since A is fixed,

J:: v’ dy is a finite number, say M. Thus

A
i f e—(R+tv)’dy| =

0

A
f e R e 2Ry gy | < Me B,  (6.49)
0

which approaches zero as R increases without limit. Similarly the
fourth integral on the right of Equation 6.48 tends to zero as R increases
without limit.
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Equation 6.48 then implies that

‘ Jm e dx = e J.Q e~%"(cos 2Ax + 1% sin 2Ax) dz.

Equating real and imaginary p;l.rts and recalling that

vee [ e ¥
yields

f ® esin2\zdz = 0 c
as wel—lwa.s Equation 6.46.

C. Finally we shall evaluate
_the Fresnel integrals g

@
f cos 22 dx ) > R 3 Re
0

and

f ® sin 22 dx Figure 6.9
0

by integrating e~2* around the triangular contour of Fig. 6.9. Starting
at the origin, we have

R R
f e dz = f e dx + iJ- e (R+)® gy,
c 0 0

(6.50)

0 _

+ f eara2 V2 (1 Lo,

VZR 2
Ve . o 1 . 3 .
where we have let z = -5 (1 + ¢)x on the 45° line. Since e is
analytic in and on C, there are no residues and Equation 6.50 becomes

B_z '\/§ . 0 iz? . R_R_“s
0= 0e:td:p;-;-—2-(l+z) s e dy + ¢ oe( ) dy. (6.51)
2R

Since R2 — y2 2 R(R — y) for R = y 2 0, it is easy to see that the

third integral in the above equation tends to zero as R increases with-
out limit. Equation 6.51 then becomes

fwe-z’dx = i-§(l + i)Jme—‘z"dx.
0 2 0
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Since J e dx = Yp/m,
0

Va =21 + i)f (cos 2 — 1 sin x2) dz.
0
Equating real and imaginary parts leads to

© ® -
cos x2 dx = sin z2 dx = -\—/ﬁ (6.52)
0 0 4
6.5 Integration Around Branch Points

In this section we shall consider certain contour integrals whose
integrands contain branch points. Actually the integrals of Section

Im

A

o

Figure 6.10

6.3 involving log « had branch points, but because of the type of contour
involved only a single sheet of the Riemann surface of log z had to be
considered.

A. Suppose we wish to evaluate the integral

f dr, —1<A<o0.
o 1+

A
f ¥ e
cl +2

Then, as usual, we consider
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over some appropriate contour and apply the residue theorem. Since
z* has a branch point at z = 0, let us exclude this point from C and
consider the contour of Fig. 6.10, where I" is a circle of radius R and y
a circle of radius r. At an appropriate stage in our analysis we shall
let R approach infinity and r approach zero. Actually L; and L,
coincide with the real axis, but we have drawn them distinct for clarity
in visualizing C. Often we draw C as in Fig. 6.11 to represent exactly
the same contour as Fig. 6.10.

Now while L; and L2 coincide in the z-plane, they do not coincide
on the Riemann surface of z2. That is, they lie on different sheets.
We make definite the multi-valued function z* by requiring that 22 = z*
forx > OonL;. Thenz* = (ze27)» = A e2rirforz > Oon Le. Another

Im
A
c
r
L4

N R
Q/ —3>= Re

Figure 6.11

way of visualizing C is to imagine the z-plane as slit along the positive
real axis. Then L; will be on the upper half of the branch cut and
Lg on the lower half.

Since z* is now single-valued and analytic in and on C, where C is
considered to be drawn on the Riemann surface of 22,

2A .
f dz = 2mio,
c 1 + z

where o is the sum of the residues in C. The only singularity is a pole
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at the point z = —1, which forr < 1 and R > 1lies in C. Therefore
o= (—1P = e, (6.53)

We may write the contour integral as the sum of the integrals around
the curves L), I', Ly, and y. TItis

zk R A zA 7 xA 62!"4\ zl\
= d .
fcl+zdz f,1+xdx+frl+zz+le+xdx+f,l+zdz
(6.54)

The integral along I" will be shown to approach zero as R approaches
infinity and the integral along y will be shown to approach zero as r
approaches zero. If this be the case, Equations 6.53 and 6.54 imply

-] z) o xA
2mri(ert) = f dr — et f dx
0o 1+ 2 o 1+
or
© A T
. 1+xdx— —M’ -l<A<O. (6.55)
Now for z = R ete
2 2 Ra R+l
[Ta|s|[ g ras|=2r g

and this approaches zero as R becomes arbitrarily large, since A < 0.

If z = refs,
2n ra
fl+zdz J; l__rrdo

and this approaches zero as r tends to zero since A > —1.
If we make the change of variable z = £2# in Equation 6.55 and let
2m — 2n + 1
A= —————
2n

ratl
-7r

)

»n > m 2 0, then
®  f2m _1r 2m + 1
J:, l+§2"d§ 2n ( on )

which is Equation 6.13.
B. The general philosophy of evaluation of integrals of the form

P(x)
o Q@)

where P and @ are relatively prime polynomials, is not difficult to give.

x* d, (6.56)
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We shall require that @(z) have no zeros on the non-negative real axis.
Thus, in particular, if

Q) = 22 + bg-12971 + ... 4 b1z + by,
we shall have by # 0. We assume P(z) of the form
P(z) = 22 + ap_12P~! + - - . + az?,

where 0 < 8 < p and a; # 0. As the analysis proceeds we shall see
what restrictions we must impose on p, s, ¢, and A in order that the
integral of Equation 6.56 exist.

Consider then

P ,
d
Q@) ”
over the contour of Figs. 6.10 and 6.11. Then, if o is the sum of the
residues of Plz) z* in the whole 2-plane,
Q(z)
. P(z) ® P(z) P(z) 2
2nmic = Adz = 2 dx + d
™= )o@ . Q@) r o
(8.57)
7 P(x) P(z)
de2nir da A dz
BXCE , @

for R sufficiently large and r sufficiently small.
Let 2 = Re®. Then for R sufficiently large

P(z)
r Q)

and this will approach zero as R increases without limit if
p+1+2d—g< 0. Similarlyifz = r %, then for r sufficiently small

P(z)

2 dz

< 4J Rr—¢ R*R d0 = 8n Rr+ltr—q,

Pde | " 2o e d = sl [o5 e,
L

and this will approach zero as r approaches zeroifs + A + 1 > 0.
Thus under the condition

—-8+l)<A<g—-—p-—-1 (6.58)
we may write Equation 6.57 as

P(x)

» Q@) o da

27ic =

) 2 [ P@)
xdx—ez"‘"; Q(x)



160 Advanced Complex Calculus

or if A is not an integer

P(x) moe il
0 W@ TS T (6.59)
C. As an application of this formula, let us consider
@® A
We see that Equation 6.58 is satisfied (¢ = 4,p = 8 = 0). Thus
{f o A mae—Ant
Jo I+ 222 ~ " sinam (6.61)

where ¢ is the sum of the residues of z*/(1 + 22)2 in the whole plane.
If we let

_ oz i) _ oz +e)
¢1(Z) z"( T r 1)2 ¢2(Z) = Z"m&
then, according to Equation 6.2,

o = $1(5) + ¢ — ).

Now
$i(2) = 221z + 0)-2 — 2(z + 1)-9]
and
#6) = 0 - )
Similarly,
$2(2) = 22Xz —4)~2 — 2(z — i)73)
and
#i(= i) = (@mmp[ - - 1)
Thus
o i(l — X) [edrmtiz — grmis2) (6.62)
and
I rae—Ant _ T 1 -2 ernt/2 . g—Awt/2
T T sinAr  sinAw 2 [ 2

(6.63)

Am
—(l - A)sec?
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In terms of the Beta function (see Equation 6.15) we may write

@ x 1 _A+13-2

D. In certain applications (see, for example, Chapter 9) we must
consider complex integrals over certain contours other than circles or
straight lines. Two such types of curves are the loop and double loop.
By a loop we mean a contour C' which starts at infinity, encloses a
branch point, and then recedes to infinity. For example, if « is a
branch point of the function f(z), then

fc f(2) dz

over the contour of Fig. 6.12 is called a loop integral. Occasionally
we desire to simplify this integral. That is, we either evaluate it or

c

o) - Re

Figure 6.12

express it as an integral over a less complicated contour, say as an
integral around a circle or as a real Riemann integral. We illustrate
with a simple example.

Let us evaluate

f setdz, TRe[A] > —1, (6.65)
C

over the contour of Fig. 6.12 where « = 0. We may draw C' more
practically as in Fig. 6.13. The line segments L; and L, coincide
with the real axis in the z-plane, but are on different sheets of the
Riemann surface for 2*. (As before, we consider the complex plane as
slit along the positive real axis.)



162 Advanced Complex Calculus

We make the multi-valued function 2z* definite by choosing the

branch
22 = eAlogz . ealogz - xA

forz > Oon L;. Then
22 = eMIog Z+2mi) — gAgBwiA

for z > 0 on L;. Thus Equation 6.65 may be written as

r R

J‘ e 2dz = lim [‘f e dx + f 2e~2dz + esz xre—2 dx],

c R—o R k4 4
(6.66)

where r is the radius of y.

Im

A

N\ g
L/ L

Y

(N

Figure 6.13

We assert that if r approaches zero, the integral along y will vanish.
Let z = ret. Then

27
j 2e—2 dz = 4" f (r e‘O)A'l’le—f(m 6+ sin 6) do.
14 0

If welet A = A1 + ¢)z, then
10X = 10(A1 + tA3) = 10X — 6A,

and
P = e ogr — o 1087eilg 1087 — phigirg logr,

f 2e2dz
Y

Since A1 = Re[A] > —1 and the integral on the right of Equation 6.67
is finite, we infer that ' J; Ze2 dzl approaches zero as r approaches
zero. Equation 6.66 then becomes

Thus
2

< rlith f e fhag—T 08 0 gf), (6.67)
(V]

R
f 2¢~2dz = lim [(ezﬂ“ - l)f T2 dx]
c 0

R—>wo
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Since J; "z ds is a convergent integral (see Exercise 4.11), we see

that J‘Cz"e‘z dz exists and equals
f e zdz = (e2vir — l)f rle 7 da.
c 0

Note that z’¢—* is a complex-valued function of the real variable z.
Students of applied mathematics will recognize the integral on the right
side of the above expression as the Gamma function I'A + 1). Thus

f Zezdz = —(1 — e (A + 1), Re[A] > —1. (6.68)
c

E. A double loop may be described as follows. Let ¢ and 8 be two
branch points of the function F(z). Let C, be a closed smooth curve

Im
A

[

/ /
B
—— { > Re
/
Figure 6.14

encircling « in the positive sense, and ;! (read *“C, inverse’’) be the
same curve traversed in the negative sense. Similarly, define Cy and
C;'. We also require that o be exterior to C; and B exterior to C,.
Then the contour

C=05101C40C,,

which consists of C, followed by O followed by C;* followed by C;,
is called a double loop. This can be depicted picturesquely as in
Fig. 6.14. The advantage of this type of contour is that the multi-
valued function F(z) returns to its original value after traversing C.
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Let us illustrate with the integral

I= J @)z — o)z — B) da, (6.69)
(o

where «, B, n, v are arbitrary complex numbers and f(z) is single-
valued and analytic in some connected region containing « and B.
Then if we choose any point y distinct from « and 8, we may describe
the double loop C as in Fig. 6.15, or more schematically as in Fig. 6.16.
This is equivalent to the curve drawn in Fig. 6.14—less glamorous
perhaps, but more convenient for practical computation. Of course,

Im

A

°B

Figure 6.15

we require that the open region in which f(2) is single-valued contain
C., Cg and their interiors as well as L, and L,.

On Fig. 6.16 we have labeled o’ and B’ as the points where L, and
Lg touch the circles C, and C; respectively. The angles that L, and
Lg make with the positive direction of the real axis are indicated by
# and ¢ respectively. If a multi-valued function F(z) traverses a
closed contour C’, let us denote by S¢'F(z) the value of the function
after it has completed the circulation. We make the multi-valued
functions (z — «)« and (z — B)” definite by requiring that at z = y

(z —a)n = es log (z—a) = gullog ly—al+t0]
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and
(z — By = er108 (B = gvllog ly—pl+s],

Finally, for simplicity in notation, we let
F(z) = f(2)(z — a)u(z — B
Now we see that
8¢, F(z) ='euF(z),
8cilSc, F(z)] = €28, F(z) = et F(z),
Sc;[Sc,Sc,F(z)] = e Sc,Sc, Flz) = et F(z),
Scz8c;8cSc, F(2)] = e 28c; 8¢ Sc F(z) = F(2).

Im

A

La

Y

Figure 6.16

Thus, since C = C;1C;1 C,C,,
BcF(z) = F(2)

and F(z) returns to its original value after a circulation around C. The
curve C is closed on the Riemann surface of F(z), as well as in the
z-plane.
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We shall now write fc F(z) dz as a sum of integrals over the
constituent contours of Fig. 6.16. Starting at z = y, we have

f Fz)dz = J' " Fz)dz + f F(z) dz + eiu f " F2) dz
c ¥ Ca o«
;4
+ e2nin f F(z)dz
b4
+e2iu | F(z)dz + e2ilut J-v F(z)dz
Cﬁ ;4
+ e2mitutn) f F(z) dz (6.70)
;

4
+ e2at(uty) j F(z) dz + e2aiv fy F(Z) dz + e2wirJ F(Z) dz
;! o ¥

+ ety f F(z)dz + r F(z) dz.
cg! g

Joor= L= ).

with a similar result when « is replaced by B, and also

o= LI

we may write Equation 6.70 as

Since

o’
f F(z)dz = [1 — e2rin 4 e2niluty) — ez""]f F(z) dz
C b4
I d
+ [32"'“6 — e2ni(uty) 4 e2¢lv _ l]j F(Z) dz
b4

+ [1 — e2nttutn)] fc F(z)dz
) “ (6.71)

+ [e2ntn — g2nir] F(z)dz
Cs

= —(1 — e2ntu)(1 — e27¥) “;y F(z)dz + J.:' F(z) dz]

+ (1 —_ e21‘(u+v))f F(z) dz + (ezﬂu — eﬂw‘v)f F(z) dz.
Cy Cg
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We consider certain special cases of Equation 6.71. Suppose
p is an integer. Then (z — a)+ is single-valued and e2+x = 1.
Equation 6.71 then becomes

f F(z)dz = (1 — ez"")J F(2) d=.
c c

at cﬂ

Suppose f(z) has no singularities. Then we may take the radii of
C, and Cj to be equal to 1|8 — «| and let o', B’, and y coincide. Thus

fF(z) dz = (1 — ez"‘(“ﬂ))f F(z)dz + (e2mtu — e2niv) f F(2) dz.
c Ca Cp

Suppose Re [u] > —1 and Re{v] > —1. Then the contours C, and
Cp can be shrunk to points and

L F(z)dz = —(1 — e2niu)(1 — ezﬂ‘")[f F(z)dz + f: F(z) dz].

If f(2) has no singularities along the line connecting « to 8, we may take -

v collinear with « and 8. Thus
]
f F(z)dz = —(1 —e2miu)(1 — e27tr) I F(z) dz, (6.72)
c a
where the integral is along the straight line segment joining « to B.
The reader can deduce other special cases. One of some practical

importance occurs when f(z) = 1, Re[u] > —1, Re[»] > —1, « = 0,
B = 1. Then Equation 6.72 becomes

f 2z — 1pdz = — (1 — e2niu)(1 — e2xtv) fl z(z — 1) dz.
c 0
Since (z — 1) = (—1)(1 — 2)» = em(1 — 2),
f (2 — 1y dz = —e(1 — elntu)(1 — e27d) f ' 24(1 — 2z) dz.
c )

Students of applied mathematics will recognize the integral on the right
as the Beta function B(x + 1,v + 1). Thus

f 2z —~ 1p dz = —e"(1 — e2viu)(1 — e2*9)B(u + 1,v + 1),
c
or more conventionally,

f Y1 — 2z ldes = —(1 — e2mu)(1 — e27é) B(u,v),
c

(6.73)
Re[x] > 0, Re[v] > 0.
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EXERCISES
Evaluate the following real integrals:

°__de 2=
(@) f_wxz—x+2_\/7
i x2 V2
® Jo 2x4+5x2+2dz— 12
hd dx T
(c) J;) Z?z—-}-—az)—Z=E3’ a>0

© dzx T
@) fo @ + a®)(z® + b%) 2ab(a + b)

© z2 T
(e) fo @ az)ad‘” = 1648 a>0

a>0,b>0

@® z8 3nv2
f) fo @ ® " 16

Ifa, b, w are real and positive and = is a positive integer, show that

®  CO8 wxT _mw + 1)e»
@) f T+ram® =" ¢

CO8 wXx e N a
® .L (*% + a?)(x® + b2) dz = 2ab(a® — ?) (ae—wb — be—wa)

sin wx .
(© j Fr iz 5% = —mesin2e
sin wa: ™

© xsin wx T
(C) ,‘:) (zz +__a2)2 dx = E e—wt

1 — cos wx
0 7 g e = 0

Establish the following trigonometric integrals. In all cases a and b
are real and n is a positive integer.

2 dx 2ma
(@ J:) (@ + b cos )2 = (@ = b2)3/2' a>b>0

Ve dx L4
b J'  ___
(b) o TT ORI Va T a>0
g 2
© cos 2x da 7a la| < 1

ol +a2—2acosx 1T



64.

6.5.
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(@) J 11-::;?22“_4
(e) Lzﬂa——_l_%dx=i—g(a—\/¢W), a>b>0
f) J.eﬂcoshczsﬁosx =2L(s—;nlh)n+m" a>0
Show that
o [l
(©) J:,m(lhf;)zd‘” _;
) J‘:xhlog(l+x)da:=—(—)‘-r—;;§m7, —2<A< ~1
(€) fjwlf:zezdx=sinw)m’ 0<a<l
f) :?:/%—_z li—i,\ 0<A<l, O<acx<l
If A is real but not necessarily an integer, evaluate
@ .’:)wx2+‘gi+5dx=\/§\/;+\/g
® J.:x2+§x+2dx=sinﬂ)m[2l‘_1]’ Al <1
(c) J;waL"'*‘b) =%- Al <1, a>b>0
@) waT”_de=gcse;-'(,\+1), “l<a<3
(e) fw al de=SBAe T, lo| < =

o 22+ 1+ 2z cos w 8in Az 8in w



CHAPTER7?

Some Properties of Analytic Functions

7.1 Introduction

In the preceding chapters we have inexorably held to our course of
developing certain unified portions of complex variable theory. There
are, however, many other interesting properties of analytic functions
and of functions analytic except for isolated singularities. Rather than
interrupt our main thread of discussion, we have ignored these results
or else relegated them to the exercises. In the present chapter we
should like to prove certain theorems of general interest which are just
as much a part of the complex calculus as any of the preceding material.
The results of the various sections are of necessity somewhat disjoint.
However, we believe that the reader will find each integrated group of
theorems a small masterpiece of mathematical beauty illuminating the
logic and unity of the theory of analytic functions.

7.2 A Residue Theorem
We start by considering a general residue theorem.

Theorem |. Let f(z) be single-valued and meromorphic in a con-
nected open set A. Let F(z) be single-valued and analytic in .
Let C be a closed smooth curve which, together with its interior, lies
in %. Let f(z) have no poles or zeros on C. If f(z) has poles at the
points {3, {2, - - -, & in C with multiplicities p,, ps, - - -, Py, respectively,
and zeros at the points 21, 22, ---,2; in C with multiplicities
q1, 92, - -+, s, respectively, then

J F(z){.f((z)) dz = 2m [z qiF(z) — z p;F(Cg)]. (7.1)
i=1 i=1
Proof: If f(z) has a zero at z; of multiplicity ¢¢, then in a neigh-
borhood of z = z;, f(z) has the Taylor series expansion

f(z) = a’q‘(z - z‘)q‘ + a’qﬁ’l(z - z‘)qﬁ'l + - ‘y aq‘ # O)
170
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and
F'() = quag(z — 29! + (g + Dag1(z — 20)% + -+,
Thus :
f'&)
m—z_z‘+R(z—z‘),

where R(z — %) is an analytic function in the neighborhood of z.
Thus the residue of F(2)f'(2)/f(z) at z = z is

qiF(z). (7.2)

If f(2) has a pole at {s of multiplicity pi, then in a neighborhood of
z = {4, f(z) has the Laurent series expansion

f@) = bp,(z — Lo)Pe + bpja(z — L) Pt -, b—p, # 0,
and
') = —pibpz — L) P + (=p + Dbopalz — L) P +---.
Thus
['@ _ o

f(z) z -

where S(z — {;) is an analytic function in a neighborhood of {;. Thus
the residue of F(z)f'(2)/f(z) at z = {; is

—p2eF(&). (7.3)
The theorem follows immediately from Equations 7.2 and 7.3.

+ S(Z - c():

Under the hypotheses of the above theorem consider the special
case F(z) = 1. Then

1 (f'() S <
— | =dz = - .
2""‘fc‘f(z) i .'Zl “ gxp‘
Thus if we let Z be the number of zeros of f(z) in C (counting multi-

plicities) and P the number of poles of f(z) in C (counting multiplicities),
then we have the important corollary that

2 [f@y _z_
2‘"‘5.’; 7@ dz=2 — P. (7.4)
If f(z) is analytic in and on C' (and f(z) has no zeros on C), then
(2ms)1 fc [f'(2)/f(2)] dz is simply the number of zeros of f(z) in C.
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We shall deduce still another important consequence of Theorem 1.
Suppose C is a smooth curve with initial point « and terminal point 8.
Let f(z) be single-valued and analytic along C. We may then write

f2) = |f(z)|eters s

for any z on C. In particular, the argument of f(z) at « is arg f(«)
and the argument of f(z) at 8 is arg f(B). We shall call

Velf) = arg f(B) — arg f(a)

the variation of the argument of f(z) along C. This leads to the following
theorem.

Theorem 2. Let f(2) be single-valued and meromorphic in a con-
nected open set A. Let C be a closed smooth curve which, together with
its interior, lies in A. Let f(z) have no poles or zeros on C. Let Z
be the number of zeros (counting multiplicities) of f(z) in C and P the
number of poles (counting multiplicities) of f(z) in C. Then

Z-P= % Ve(f). (7.5)

Proof: From Equation 7.4

1 f'(2) 1
Z - P = gi Cmdz = %logf(Z) C.

log f(z) = log |f(z)] + i argf(z).

Since C is closed, log |f (z)|| ¢ = 0. However, arg f(z) need not return

Now

to its original value. Thus

log f(2)], = i Ve (f),

from which the theorem follows.

If f(2) is analytic in C, then P = 0 and
2aZ = Volf).

We therefore have the following corollary.

Corollary. Let f(z) be single-valued and analytic in and on a closed
smooth curve C and not vanish on C. Let Z be the number of zeros
of f(z) in C. Then

- % Velf)- (7.6)
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As z traverses the curve C, its image w = f(z) will traverse the curve
I’ in the w-plane. If I" does not encircle the origin (or encircles it an
equal number of times in the positive and negative sense), then
arg f(z) returns to its original value when z completes C. Thus
Ve(f) = 0,and hence Z = 0. The corollary may be reworded as: the
number of zeros of f(z) in C is equal to the number of times the image
f(2) encircles the origin in the counterclockwise sense decreased by the
number of times it encircles the origin in the negative sense. This
result is of importance in applied mathematics. It forms the basis of
the Nyquist stability criterion in servomechanism theory and feedback
amplifier design.*

7.3 The Fundamental Theorem of Algebra

We recall that an integral or entire function was defined as a
single-valued function which was analytic for allz. A classical theorem
of Liouville asserts that a bounded entire function must be a constant.

Theorem 3: (Liouwille). Let f(z) be an integral function which is
bounded over the z-plane. Then f(z) is a constant.
Proof: About any point « we can develop f(z) in a power series

f(z) =co+ci(z —a) + c2(z — )2 +---

with an infinite radius of convergence. If C is any circle of radius R
with center at z = «, then by Theorem 16 of Chapter 5

1@,

Cp = —

2m Jo (2 — a)ptl

By hypothesis there exists an M such that |f(z)] < M forallz. Thus

| =

1 M
lea| = 5 ori 27 B) = (7.7)

R»
Since Equation 7.4 holds for any R, no matter how large, we infer that
ICni=0, n=1,2,"'.

Thus
f(z) = co.

Note that we have no such theorem for real functions.- Fer
example, y = sin x (x real) is single-valued and analytic for all %, is
bounded, and yet is not a constant. (Of course if we let  be complex,

* See, for example, H. M. James, N. B. Nichols, and R. S. Phillips, Theory of Servo-
mechanisms, McGraw-Hill Book Company, 1947.
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then we can choose an z such that |sin z| exceeds any preassigned real
number. Hence it is not bounded and Liouville’s theorem does not
apply.)

An immediate application of Liouville’s theorem proves the funda-
mental theorem of algebra. The reader recalls that in elementary
algebra courses it was stated, generally without proof, that every
polynomial equation had at least one root. Using the complex calculus
we can give a direct proof of this result.

Theorem 4: (Fundamental theorem of algebra). Let
P(z) = apz® + 121 + - - + ag, ag # 0,

be a polynomial of degree » > 0 where the a; are complex numbers.
Then there exists at least one complex number 8 such that P(8) = 0.
Proof: We shall suppose there exists no value of z which makes
P(z) vanish and force a contradiction.
Choose a real number R > 0 such that

|ao||2"]

| P(z)| > 2

for all z with [z| > R (see Exercise 3.4). In particular, we can choose
R so0 large that

|P(z)] > 1

for [z| > R. Since P(z) has no zeros, P—1(z) is analytic throughout the
plane and for |z| > R,

|P-1z)| < 1.

Certainly P-1(z) is bounded in and on a circle of radius R with center
at the origin (see Theorem 4 of Chapter 3). Thus P-1(z) is bounded
throughout the whole plane. By Liouville’s theorem it must be a
constant. Thus P(z) must also be a constant—a contradiction to our
assumption that P(z) was a polynomial of positive degree.

It is not difficult to show that if P(z) has one root it has n roots.
For if Bis a root of P(z) = 0, we write

P(z) = (z — B)Q(2),

where Q(z) is a polynomial of degree » — 1. Applying Liouville’s
theorem to @(z) we can prove by a simple induction that P(z) has
precisely » roots. However, we shall give a function theoretic proof
of this fact.
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Theorem 5. Let
Piz) =ap* + a1zl +---+a,, ap#£0

be a polynomial of degree n > 0 where the a; are complex numbers.
Then P(z) has precisely n zeros (counting multiplicities).

Proof: Since |P(z) can be made arbitrarily large for |z| large,
there exists a circle C' with center at the origin such that P(z) has no
zeros in the exterior of C. Since

P'(z) = nagz ! + (n — Da1z"2 + -+ + ag-y,
the Laurent expansion of P'(z)/P(z) at 2 = oo is

PR = 1
P~z Tz e
where R(z) contains only negative powers of z. Thus, if I" is a
negatively sensed circle with center at z = 0 and radius exceeding that
of C,
1 P'(z)

% ) Pl2) dz = n,
where —n is the residue of P’(z)/P(z) at infinity. Thus by Equation 7.4.
n=2,

where Z is the number of zeros of P(z) inside I.

7.4 Rational Functions
In Bection 3.4 we defined a rational function R(z). Thus

_Pe)
BE) = 36
where
P(z) = aoz? + 12?1 +--- + ay
and

Q) = box® + b1z#1 + .-+ by, bo# O

are polynomials. If ao # 0, then P(z) is a polynomial of degree p.
We may assume without loss of generality that P and @ are relatively
prime.

By Theorem 5 we may write

R()_ao(z-al)(z—az)--'(z—ap)

“= bo(z - ﬁl)(z el Bz) ‘oo (z —_ pq)’ (7.8)
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where the «; are the p roots (multiplicities included) of P(z) = 0 and
the B; are the ¢ roots (multiplicities included) of @(z) = 0. It is clear
that R(z) has p zeros and g poles. We now wish to consider the poles
and zeros of R(z) in the extended plane. In this connection we have the
following theorem.

Theorem 6. In the extended plane, a rational function has as many
zeros as poles.

Proof: We have seen that in the finite part of the plane R(z) has
p zeros and ¢ poles. It remains to examine the poles and zeros at
z2 = 0.

If ¢ > p, then z = 0 is a zero of multiplicity ¢ — p, while if
g < p, then 2z = o0 is a pole of multiplicity p — ¢. Finally, if p = ¢,
z = o0 is neither a pole nor a zero of R(z).

It is customary to define the degree, r, of a rational function R(z) as
the larger of the two integers p and q. Thus we see that if R(z) is a
rational function of degree r, then it has r zeros and r poles in the
extended plane.

If R(2) is a rational function, then

R(2) dz = 2mio,
c

where C is any closed smooth curve on which R(z) is analytic and o
is the sum of the residues of R(z) in C. Clearly we can choose C so
large that all the poles of R(z) lie interior to C. Thus R(z) is analytic
in the exterior of C, that is, in a neighborhood of infinity. But the
residue at infinity is

1
3m f_c R(z) dz.

Thus we have the following theorem.

Theorem 7. The sum of the residues of a rational function in the
extended plane is zero.

It is clear from the definition that a rational function is uniquely
specified (up to a multiplicative constant) by its poles and zeros.
We can also prove the following converse proposition.

Theorem 8. Let f(z) be single-valued and meromorphic in the
extended plane. Then f(z) is a rational function.
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Proof: Since f(z) is either analytic or has a pole at z = 0, we can
draw a circle C of sufficiently large radius such that f(z) is analytic
in the exterior of C, except perhaps at z = c0. That is, f(z) is analytic
in a neighborhood of infinity. Thus all the poles which occur in the
finite part of the plane lie interior to C. We conclude therefore that
there can be at most a finite number of such poles. For if there were
not, the Bolzano-Weierstrass theorem would imply the existence of a
limit point of these poles. Such a point could not be a point of analyti-
city nor a pole. Let us suppose that the poles occur at the points
&1, Ls, - - -, &, with multiplicities py, ps, - - -, pr, respectively.

In the neighborhood of each {; we can develop f(z) in a Laurent
series which has ¢(z) for its principal part:

Ctp, Ci(p,~1) C41
(2 = Lpe (2 — L)Pi? z -

If f(2) has a pole of multiplicity p at z = oo, then the principal part of
the Laurent expansion of f(z) at z = oo is

$i(z) =

&(z) = 1z + €922 + - + cp2P.
The function

r
$2) = f(2) - $(z) — 2 $ul2)
=1
is therefore devoid of poles in the extended complex plane and by
Liouville’s theorem must be a constant, say co. Thus

1@ = o+ () + 3 $ita),

=1

which proves the theorem.

7.5 The Maximum Modulus Theorem

If f(x) is a real continuous function defined on the closed bounded
real interval [a,b]), we know there exists a point ¢ in [a,b] at which
Jf(x) assumes its maximum value. Frequently ¢ will be an interior point.
Now we also have the result (see Theorem 4 of Chapter 3 and Exercise
3.2) that a complex function f(z) which is analytic and single-valued
on a bounded perfect set £ has a maximum modulus and actually
attains this maximum. The remarkable theorem we wish to prove is
that the maximum of |f(z)| must occur on the boundary of E.

Theorem 9: (Maximum Modulus). Let f(z) be single-valued and
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analytic in and on a closed smooth curve C. Then the maximum value
of |f(2)| is attained at a point on C.

Proof: Since C, together with its interior, forms a bounded perfect
set, |f(z)| has a maximum. Let { be any interior point of C. We
shall show the existence of a z in a neighborhood of { with the property
that |£(2)] > |£(0)]-

Since f(z) is analytic at z = {, we may write
f@) =co+clz—8) +e(e =02+ -, (7.9)

and the power series is valid in a neighborhood of {. Let I" be a circle
of radius 8 > 0 with center at z = { for which the above expression
is valid, and such that I' and its interior lie in the interior of C.

If ¢4 = 0, n > 0, then f(z) is a constant and the theorem is trivial.
Let us therefore suppose that m is the smallest positive integer with the
property that ¢, # 0. Then we may write

co = |cole’,  cm = |cm|e®,

where |cm| # 0. Furthermore, if we set z — { = Re', where
0 < R < 3, then Equation 7.9 becomes

av
f(2) = |cole®® + [cm|eSRmemi¥ + > copipRmtketbimth) (7.10)
k=1

Choose a certain radius of I" with the property that for all z along
this radius we have
1
arg (2 — ) = — (8 — ¢).

If this is done, Equation 7.10 becomes

@) = [|co| + |em|R™]ee + Z Cmix Rm+ketvim+k)
k=1
for all z along this radius. Thus

If @) 2 |eo| + lem|B™ — > |cmos| Rm+E

= o] + Rm[lem| — > |eme| BEL.
k=1

Now choose B > 0 so small that

@©

Z ]0m+k'-Rk <é‘lcm|-
k=1
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Then
@] > leo] + FR™|em| > |£()].

Another classic theorem in the elementary theory of functions of a
complex variable is Rouché’s theorem.

Theorem 10: (Rouché). Let f(z) and g(z) be two functions, single-
valued and analytic in an open set . Let C be a closed smooth curve
which, together with its interior, lies in %. Let f(z) have no zeros
on C and let |g(z)] < |f(2)] on C. Then the function f(z) + g(z) has
as many zeros in C as f(z) has.

Proof: Let

$(z;t) = f(z) +tg(z), O=st=1.

Certainly ¢(z;¢) is analytic in and on C. We assert that ¢(z;t) does not
vanish on C. Suppose it did. We would then have

fz) = —t9(z),
which implies that

l92)] 2 |tg(2)] = |f(2)|

for0 < ¢ < 1. But this contradicts the hypothesis that lg2)| < |f(2)].
By Equation 7.4

1 [f'(2) + tg'(2)
2m'fc o+ 10 dz = Z(t), (7.11)
where Z(t) is the number of zeros of ¢(z;¢) in C. We shall show that
Z(t) is a continuous function of ¢ in [0,1]. If this be so, then, since
Z(t) can assume only integral values, Z(t) must be a fixed integer.
In particular, Z(1) = Z(0), which implies that #(2;1) = f(z) + g(2)
has as many zeros in C as ¢(z;0) = f(z) + 0-g(z) = f(z).
To prove the continuity of Z(t) we write

1 d'(z;t + h)  ¢'(z;t)
2+ 1) - 20) = g | [FEH n - wen) -

or, in expanded form,

_ 2y < M [ f@we - rene)
e = 201 g ), e v

where 7) is an infinitesimal as A approaches zero.

dz| + =,

If two real functions f(z) and g(z) defined on [a,b] coincide for
some subinterval I of [a,b], we can say nothing about the relative
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values* of f(z) and g(x) in the complement of I. For analytic functions
the situation is essentially different. In this connection we have the
following fundamental theorem.

Theorem I1. Let f(z) be single-valued and analytic on an open set
%A. Let f(z) vanish on a set of points in % which has a limit point in
9. Then f(2) is identically zero in .

Proof: Let « be the limit point of the set of points at which f(2)
vanishes. We may write

f(@) =co + c1(z — @) + c2(z — @)% + -+,

and this series converges in a neighborhood of e.. Since f(z) is analytic,
it is certainly continuous; and since f(z) vanishes for values of z arbi-
trarily close to a, we infer f(«) = 0 and hence ¢ = 0.

Since f(z) is analytic, f'(z) exists at z = a. By definition of deriva-
tive, f'(«) is the limit of the quotient

fz) — f()

=c¢1 + ¢2(z — «) + c3(z — «)2 +---
z2—a

as z approaches «. But

f&) ~ f(@) _ fG2)

Z2— zZ—a

vanishes for points arbitrarily close to «. Thus by the continuity of

)
fiw = tim LB _ o

z—a z2 -«
and f'(¢) = ¢1 = 0. A similar argument shows that all the ¢, are
zero and hence f(z) = 0.
We have shown that f(z) = 0 in a neighborhood of z = «. If
B is any point in %A, then the Heine-Borel theorem and repeated applica-
tions of the above result show that f(B) =

This theorem can be used, for example, to extend certain results,
known to be true in the real domain, to the complex domain. For
example, we know that sin z and cos z are entire functions, as is

f(z) = s8in?z 4 cos?2z — 1.

Now for z real (say on a segment of the real axis), f(z) = 0 By the
previous theorem we infer f(z) = 0 for all z. Thus we have extended

* Except in certain special cases.
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the well-known identity, sin?  + cos2 2 = 1 for real z, to the complex
domain with a single stroke of the pen.

The above example is an illustration of the result known as “the
principle of the permanence of functional equations.” For suppose
fiz), i =1, 2, ..., n are n functions single-valued and analytic in
some open region A. Let P({y,{s ---,{s) be a polynomial in
n variables. Then if

P(fi,fa, -, fa) =0 (7.12)

in z in some open or perfect subset of % (or merely on a set of points
having a limit point in %), then Theorem 11 implies that Equation 7.12
holds for all z in .

The results of the previous theorems can be used to prove a certain
topological property of analytic functions. This in turn leads to a
short and elegant proof of the maximum modulus theorem (Theorem 9).

Theorem 12. Let w = f(z) be a non-constant function single-valued
and analytic in an open region . Let « be a point in %. Then there
exists an open neighborhood R, of o in the z-plane lying entirely in %,
such that the image of R, contains an open neighborhood of f(«) in
the w-plane.

Proof: The theorem is sometimes stated as “‘a non-constant analytic
function maps open sets into open sets.”

The values of z at which f(z) = f(«) cannot have o for a limit point.
For if they did we would have f(2) = f(«) by Theorem 11. But this
contradicts the hypothesis that f(z) is non-constant. Thus we choose
a circle C of radius 8, with center at z = «, which is interior to % and
also has the property that f(z) # f(e) for all 2 # « in or on €. The
interior of C will be our neighborhood %,. Then the function
9(z) = f(z) — f(«) is non-zero on C. Since g(z) is continuous and C is
perfect, g(z) is bounded away from zero on C. Thus

g.léb. I[f(2) — f(e)] = e > 0.

Now let & be any complex number such that |& — f(a)] < e. Then
since

|F ) = f(@)] > |& - f(@)], zenC,
Rouché’s theorem implies that

/() — f(@)] + [f(e) — E] = f(z) — &

has as many zeros within C as f(z) — f(«) has. Since f(z) — f(x) = 0
for z = a, we infer that f(z) — £ has at least one zero in C. Thus there
exists a { in N, (that is, |« — {| < 8) such that f({) = &.
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Theorem 12 can be used to give a quick proof of the maximum
modulus theorem. Under the hypothesis of Theorem 9, let us suppose
that |f(z)| attains its maximum at an interior point, say 8, of C. Then
the image of a neighborhood of 8, say Mg, contains a neighborhood of
f(B) in the w-plane. Thus there exists a { in N such that
£ ()] > |f(B)|—a contradiction.

If we are given a function w = f(z) defined on some region %8, then
it is frequently of interest to know under what conditions z is deter-
mined as a function of w, say z = f~1(w). This, of course, is a special
case of the implicit function theorem.

Theorem I3. Let w = f(z) be single-valued and analytic in an open
region %A. Let 2o be a point in A and let f(z) be conformal at z = z,.
Then there exists a neighborhood R(wo) of wy = f(z0) in the w-plane,
which is covered precisely once by the image of some neighborhood
N(zo) of zo which is entirely contained in 9.

Proof: We recall from Section 3.11 that f(z) was said to be conformal
at a point z = 2¢ if f'(2¢) # 0. Since f(z) is analytic at 2 = zo, we may
write

J(z) = co + ci(z — z0) + c2(z — 20)2 +---,

which is valid in a neighborhood of z.

Since f'(z) is continuous, there exists a neighborhood of z¢ for which
f'(z) # 0. Now choose a neighborhood 9(2¢) of z¢ such that the above
power series holds, such that f'(z) # 0 in R(20), and such that
f(2) # f(20) for all z # zg in N(z0). We also see that zo is a simple zero
of f(z) — coin M(20), since f'(z0) = ¢1 # 0. By Theorem 12 there exists
a neighborhood (we) of f(z0) in the w-plane contained in the image
of M(z¢). Furthermore, N(wo) has the property that if w, is any
complex number in N(wy), then there exists a z; in N(z¢) such that
f(z1) = wi

Since f(z) — wo has a simple zero at 2o, it follows from Rouché’s
theorem (see the end of the proof of Theorem 12) that f(z) — w; has
a simple zero in N(zo). Thus there exists precisely one 21 in RN(zo) with
the property that f(z;) = wi.

The above analysis shows the existence of a function z = f~1(w)
That is defined and single-valued in the neighborhood R(ws) of wy,
and has the further property that

@) = ffw) = w (7.13)

for z in the preimage of R(wo).
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We also assert that z = f-1(w) is an analytic function of w in a
neighborhood of wo. For, by definition of derivative (if it exists),

d . [ = fw) L m—z
gl ) = e T T T I e e
- 1o [zt
Now
Iim z = 2;.
Thus l
Since f'(z1) # 0 for z; in N(zo),
. [f(z1) = f(2)]Y f(z1) - f(z) 1
3[ 2 -z ] _[w_.w, Z1—Z] T fey
and Equation 7.14 becomes
dif;)f_l(wl) = ! = ! (7.15)

21@) 2 p(o)

7.6 Analytic Continuation

The power series
g2y = l+z+22 +... 428 4+...

converges in the unit circle €:{|z| < 1} and represents an analytic

function. The function A(z) =

i - is single-valued and analytic for

all z # 1 and for z in-€ is identical with g(z). Thus there seems to be
intrinsic connection between g(z) and 4(z). In fact, A(z) is called an
analytic continuation of g(z). It is the purpose of the present section to
investigate such phenomena. We shall begin by giving a precise
definition of the term “analytic continuation.”

A. Let fi(z) be single-valued and analytic in and on some closed
smooth curve Ci. Let us suppose that the parametric equations of
C, are

01:{z=¢1(t) a=t§ﬁ

y = )
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Let fa(z) be another function, single-valued and analytic in and on a
closed smooth curve C; with parametric equations

L[z = ¢a(t)
Csy: { v = yalt) ag <t £ Ba.

Let [a1,b1] be a subinterval of [«;,81] which gives rise to the smooth
curve I'y (a part of C1), and let [a3,b2] be a subinterval of [as,82] which
gives rise to the smooth curve I'; (a part of C3). Furthermore, we shall
suppose that I, and I's coincide (call I" their common value) but that
otherwise the curve C; and its interior are disjoint from C; and its
interior (see Fig. 7.1). Then
c, Ca if fi(z) = faz) for all zon I,
we shall call f2(z) an analytic
continuation of fi(z), and con-
versely f1(z) will be called an
analytic continuation of
Ja(2). Thus if we let &
denote the region consisting
of C1 and C; and their in-
Figure 7.1 teriors, we have a function,
say F(z) which is single-

valued and analytic in € (and on the boundary of €). Explicitly,

F(z) = f1(z) for z in or on Cy,
F(2) = fa(2) for z in or on CSs.

It is an immediate consequence of Theorem 11 that if an analytic
continuation exists, it is unique. For suppose f3(2) were a function,
single-valued and analytic in and on Cs, and suppose furthermore that it
equalled fi(z) for z on I Then, since fi(z) = f2(z) on I, G(z) =
f3(2) — fa(z) vanishes on I"and Theorem 11 implies that G(z) is identically
zero throughout C; and on its boundary. Thus f3(z) = f3(z) in and on
C; and f3(z) is unique.

B. We can use the theory of analytic continuation to extend analytic
functions beyond their given region of definition. Suppose, for example,
it is known that f(z) is analytic at a point z = a. Then there exists
a power series

f) =co+c1(z — @) + 2z — @)% +--- (7.18)

that represents this analytic function in a neighborhood of z = .
Let r > 0 be the radius of convergence of this power series. Thus
Equation 7.16 represents an analytic function in the circle
€:{|z — «| < r|. Now choose any point 8 in € distinct from «. Since
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f(2) is analytic at z = B, we may develop f(z) in a power series which
converges in some circle, say ®:{|z — 8| < p}. This circle certainly
has points in common with €. Now it may be that D contains points
not in € (see Fig. 7.2). Then we have an analytic continuation of
J(2) to the larger region consisting of the union *
of € and ®. We give a non-trivial example to
illustrate this situation.
Consider the power series
2 gntl — gotl

f(z) = ..Zo —B (7.17)
where @ and B are non-zero complex numbers.
For concreteness we shall assume that

lﬁl S l“l > 0. (7.18) Figure 7.2

If we call ¢, the coefficient of z# in Equation 7.17, we may write it as

el )

Im In this form it is not difficult to
A see that

1

L = lim \’V|c,.| =
f— o «
o\ fol
\ - and hence that L-1 = |¢| > 0

—>Re  js the radius of convergence of
the power series of Equation 7.17.
Thus f(z) represents a function
analytic in €:{[z| < |«[}.

Now we shall see if this
function admits an analytic con-
tinuation. Let us choose a point
y in € (see Fig. 7.3) with the prop-
erty that

ly —al > |y — Bl >0. (1.19)

Figure 7.3

Then we may write
fi2) = 3 da(z — y)m, (7.20)
n=0

* If 8, and B3 are any two point sets, then by the unton of 8; and B3 we mean the set
of points 8 contained in 8; and 8. This is usually written as 8 =-8,US,.
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which is a convergent power series in some neighborhood of y. If the
region of convergence of fi(z) reaches outside the circle |2| = |«| we
shall have an analytic continuation of f(z) outside €. Since Equation
7.17 holds at 2 = v,

_1PG) _ o),

k! k!

From Equation 7.17

n=k

This can be written in closed form. For, by the binomial theorem,

a2 06

1 _ 1 S (n % n—k
(@ — pPF+1 bt é,,(k) (&) '

and
R AN [ e
),
Hence |
filz) = i @ — B, (1.21)

0 (a —_ .y)n+1(B —_ .y)n+1

If we write d, in the form

da = (B — y)~+D [1 _ (5%5)”+1]»

it is easy to see in the light of Equation 7.19 that

J— 1
I = lim\'ﬂ?ﬂ:lﬁ—_yl

and hence the radius of convergence of fi(z) is Ly! = | — y|. Thus
fi(z) represents a function analytic in €::{]z — y| < |8 — y|}- By
our choice of values, Equations 7.18 and 7.19, we see that €, covers
territory outside of €.

The process described above yields a function analytic in the region
€ U @€; which is larger than either € or €;. We can continue the process.
If § is any point in € U €;, we can expand f(z) in a power series about
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this point. Either the new circle C, with center at § in which the
power series converges, will have its interior €; contained in € U €; or
it may extend beyond. In the latter case we shall obtain a further
analytic continuation. This state of affairs is illustrated in Fig. 7.3.

C. Suppose

J()=co+c1(z — @) + ca(z — )2 +---

is analytic at 2 = « and R is its radius of convergence. Then f(z) is
analytic for all z satisfying the inequality [z — «| < B. We assert
that f(z) must have at least one singular point on the circle
C:{|z — a| = R}. For if f(z) were analytic at every point of C, then
the radius of convergence of f(z) would exceed R (see Exercise 3.10),
which contradicts the definition of circle of convergence.

D. Let I" be a smooth curve with initial point « and terminal
point 8. Let f(z) be a function analytic at z = «. We wish to consider
the problem of analytically continuing f(z) along I' to B. Since
J(2) is analytic at «, there exists a circle C) with center at z = « such
that f(z) is analytic in C;. Now it may be that 8 is interior to C.
Then if I' is also interior to C;, we will have achieved our continuation.
Suppose this is not the case. Let z; be the first point* of I" which
belongs to C1. Choose a point ¢’ with the property that ¢t; > t' > «
and let 2’ be the corresponding point of I'" (of necessity in C;). Then
we can expand f(z) about the point 2z’ in a convergent power series.
Let C; be the circle of convergence of this power series. Then it may be
that B lies in C; and I' in the interiors of C; and C;. In this case we
have the desired result. If not, we continue the process. Two cases
arise:

(i) After a finite number (say n) of such analytic continuations we
may reach 8. That is, 8 is interior to C,, and I" is in the union of the
interiors of the circles C;,C3, ---,0,. In this case we say f(z)
can be continued analytically along I'" to 8 and we shall call 8 a regular
point of f(2) relative to I" or relative to the analytic continuation along

(ii) There may exist a point y on I distinct from « (but which may
coincide with ) with the property that f(z) can be continued analyti-
cally into every neighborhood of y but not to y itself. In this case we
call y a singular point of f(z) relative to I" or relative to the analytic
continuation along I ‘

E. Let f(z) be analytic at z = «. Then f(z) can be expanded in a
power series about z = «. Let us denote this power series by the

* By this we mean: Let ¢ be the parameter used in describing I', say a < ¢ < b.

Let t; > a be the smallest value of ¢ with the property that z; = z(¢;) = (t1) + ty(t1)
is a point of C;. Then we shall call z; the first point of I" which belongs to C;.
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symbol E(z;«), and its circle of convergence by €. We shall call
E(z;0) an analytic element. About every point B in € we can develop
f(2) in powers of z — B to obtain a new analytic element E(z;8). Each
analytic element converges in the interior €4 of some circle of positive
radius. Now it may be that the union D of the €, contains points of
the z-plane not in €. If this be the case, we have effected an analytic
continuation of f(z). If ® coincides with €, then we shall call the
boundary of € the natural boundary of f(z). For example, the unit
circle |2| = 1 is the natural boundary for

e = 3 .

n=1

If there exist points of D not in € we can use these points to construct

Figure 7.4

additional analytic elements. The totality of analytic elements
obtained in this fashion is called a monogenic analytic function.

A monogenic analytic function may be multi-valued. For example,
consider Fig. 7.4. Let f(z) be analytic at z = « and let C be its circle
of convergence. Suppose it is possible to analytically continue f(z) as
shown in the diagram. The point 8 is now in both € and Cn. How-
ever, the elements E(z;«) and E(z;x,) may not yield the same value
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at z = 8. Thus a Riemann surface is defined on which the monogenic
analytic function is single-valued. As a concrete illustration let us

consider the familiar function f(z) = V2. We shall make the multi-
valued function definite by requiring that f(z) = ++/z for

E(z;e'%)

Figure 7.5

2 =2 + 10 > 0. Then, for instance, at every point z = e# on the
unit cirele (see Fig. 7.5) we may construct an analytic element E(z;et),

E(z;eia) = elo/2 i _22("271')):(;:% e—nlo(z —_ e“)”.
n=0 :

It is easy to see, for example, that

E(z;e%) = — E(z;ef?").

EXERCISES

7.1. Inthe general residue theorem (Theorem 1) let F(z) = log z and assume
that the origin is neither a pole nor a zero of f(z). Show that

2 _ oy 0182 -Lr |-
J; log | (R e®)|df = 2 log | f(O)Re—r 2

This is Jensen’s formula.
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7.5.
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7.8.

7.9.

7.10.

7.11.

7.12.

7.13.
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f@) = D cnzm

n=0

be an integral function such that for every R > O the inequality

|f(z)] < e® is valid whenever |z| < R. Prove that |c,| < e"n™" for

alln > 0.

Let R(z) be a rational function of degree r > 0. Prove that R(z)

assumes every complex value exactly 7 times in the extended plane.

Verify by direct calculation that the sum of the residues of

2+ 3
f(z) - 2(22 + ].)

in the extended plane is zero. )

Let f(z) be an entire function that is not a polynomial. Then if m is

any positive integer and M; and M, are any positive constants,

prove that there exists a point { such that |{| > M, and

)] > Malg|m.

(i) Prove the minimum modulus theorem: Let f(z) be single-valued and
analytic in and on a closed smooth curve C. Let f(z) # 0 in the
interior of ¢. Then the minimum value of |f(z)| is assumed at a
point on C.

(ii) Prove the maximum modulus and minimum modulus theorems,
assuming the analyticity of f(z) #n C but only the continuity of
fz)on C.

Let f(z) be an integral function and let f’(z) # 0 on the unit circle.

Let = be an integer. Prove that for |n| sufficiently large the function

n[f(z + 1/n) — f(2)] has the same number of zeros as f'(z) within the

unit circle.

Using Rouché’s theorem prove that a polynomial of degree n has

precisely n roots.

Let f(z) be analytic and single-valued in and on the square

R:{—a <z <a —asy=al. If|f(z)] £ |zy| on the boundary of

R, prove that |f'(0)| < sa.

Let f(z) be single-valued and analytic in the unit circle |z| < 1.

If |f(z)] £ 1 and f(0) = O, prove that |[f(z)] < |2| and |f'(0)| < L.

Show that equality holds only if f(z) = z ef.

Let f(2) be analytic and single-valued in a strip containing the positive

real axis. If f(2) is real for all z in the real interval 0 < z < 1, show

that f(z) is real valued at every point of the positive real axis.

Let I" be a smooth curve with itial point « and terminal point 8.

Let f(2) be analytic at z = « and suppose that B is a regular point of

f(z) relative to the analytic continuation along I. Show that the

value of f(z) at B is independent of the sequence of analytic elements

used to go from « to 8 along I

Let C be a simple closed curve (not necessarily rectifiable). Construct

a function analytic in the interior of ¢ which has C for its natural

boundary.



CHAPTER 8

Conformal Mapping

8.1 Introduction

In Section 3.2 we mentioned that a function f of a complex variable
z could be considered as a mapping of the domain of f on a region of the
image plane called the range. Sections 3.11 and 3.12 were devoted to
a more detailed discussion of the properties of such transformations.
In particular, we called a mapping w = f(2) conformal at a point
z = zointhedomain of fif f'(29) # 0. The utility of conformal mapping
stems from the invariance of solutions of Laplace’s equation under such
transformations. It is our intention in this chapter to study analytic
functions from the viewpoint of mappings (or transformations) of part
of the z-plane into the w-plane.

The examples of Section 3.11 seemed to indicate that if two curves
in the z-plane intersected at a given angle, then their images, under a
conformal transformation, would also intersect at the same angle.
Our first result will be to prove this premise. While this property is
important—Ileading, for example, to the fact that orthogonal coordinate
systems are transformed into orthogonal coordinate systems—it does
not play a forward role in the theory. That is, we shall be interested
in how certain conformal maps transform certain point sets in the
z-plane and how, given two point sets, we can find a conformal map
which transforms one into the other. The fact that angles are pre-
served is of secondary importance in such problems.

After proving the preservation of angles under conformal maps we
shall give various examples. For purposes of illustration we shall
generally consider the images of circles and straight lines, and regions
bounded by combinations of such curves. Of course, the reader may
readily apply our methods to more complicated configurations. When
mapping regions it may happen that the mapping function f(z) has a
zero derivative for some point of the domain, that is, f(z) ceases to be

conformal. Nevertheless, it is still customary even in such cases to
191
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speak of the ‘“‘conformal map of the domain.” No confusion arises
from such a convention.

We have used the term transformation as a synonym for mapping
or function. In line with this point of view it is sometimes convenient
to represent a function w = f(z) by the notation (common in various
other branches of mathematics),

w = Tz (8.1)

This is to be thought of as a transformation T operating on z and
yielding w. If{ = g(w)is an analytic function of w, then if we write

;=Sw)

the function of a function rule { = g(f(z)) may be expressed in symbolic
form by the composition ST of the transformations § and T, viz.,

{ = ST=. (8.2)

This is to be thought of as T operating on z and the result transformed
according to the rule of 8. The notations of Equations 8.1 and 8.2
are sometimes convenient, and we shall use them in certain portions
of our theory.

8.2 The Fundamental Property

We mentioned in Section 3.11 that a conformal transformation
preserved angles. Let us verify this contention in a more general

Ce
z-plane w- plane
z
y C 0y Yo
(} T,
20 ‘|
%2
(a) (b)
Figure 8.1

setting. Let Cy and C3 be two smooth curves which intersect at the
point 2z = zo in the z-plane at the angle 6 (see Fig. 8.1a). Let z; # 2o
be a point on C; and z; 3 zo & point on ;. Then we may write

21 — 2o = 8161

29 — 29 = 828“’.
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Without loss of generality, we assume 8; = & (say, = 8). Then

2_2__20 = ¢#(62~61)
21 — 2
and
. 23 — 29 .
lim arg -2 = lim (6; — 6,) = 6.
850 21 — 20 350

Now let w = f(z) be a function single-valued and analytic at
2z = 20. We may write
f(2) = ao + an(z — 20)* + Gnsa(z — 2o)"*1 4+ -+,  an # 0,

where n = 1 and this power series converges in a neighborhood of
z = zo. Under this transformation let wo = f(20) and let C; be mapped
into €1, Cz into €.  Then the angle between €, and € is

. Wg — Wo
6 = !:_13 arg . —— o (8.3)
where w1 = f(z1) and w2 = f(z2).
Now
H = 8n + @pp1(z1 — 20) + - -
w -—
zz:_*;:;: = Gyp + @n41(22 — 20) + -+,
and Equation 8.3 may be written
. w2 — Wo
6 = lim arg (22 — 20" (23 — 20)*
350 w1 — wo (21 — zo)"
(z1 — 20)®
(8.4)

lim arg (u)" = n lim arg (u) = né.

250 21 — 20 350 21 — 2o,

Thus the angle 0 is magnified n times. If, in particular J'(z0) # 0,
thenn = 1,

f(2) = a0 + a1(z — z0) + as(z — z0) +---, a1 # 0
and

6 =0 (8.5)
In this case we say the mapping is conformal. Note that not only the

magnitude, but the sense of the angle as well is preserved. If f'(z0) = O,
we shall call zg a critical point of the transformation w = f(2).
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As a corollary we remark that if f(z) is conformal at z = 2, then the
inverse function z = f—1(w) exists and is single-valued and analytic at
wo (see Theorem 13 of Chapter 7).

8.3 Some Simple Examples

A. Perhaps the simplest transformation after the identily frans-
Sformation w = z is the general translation

w=2z2+a, (8.6)

where « is an arbitrary complex number. Clearly this mapping is
conformal and one to one for all z, since

dw

—=1#0.

dz >
The identity transformation corresponds to « = 0.

In this trivial example it is clear that every point z in the z-plane is
translated an amount |«| in the direction arge. Straight lines are
mapped into parallel straight lines. This is clear geometrically.
However, if we wish to be analytical, we need only write

o = a1 + tag.
Then if
y=ax +b a, b real

is a straight line in the z-plane, its image under the conformal mapping
of Equation 8.6 is
(v —a2) =a(u —a1) + b
or
v =0u + (b + az — acy). (8.7)
If C is a circle with center at z = z¢ and radius r, then its image in

the w-plane is a circle with center at w = o + 29 and with the same
radius 7. Analytically, we may write C' as

|z = 2] = 7.
Then under the transformation of Equation 8.6

|w — a — 20| =7 (8.8)
is the image of C.
B. Another trivial example of a conformal map is the rotation
w = Az, where A is a complex number of unit modulus. Let us consider
the slightly more general transformation

w = Pz, (8.9)



Conformal Mapping 195

where § is any complex number unequal to zero. Since

dw
Ti;=ﬁ¢0’

the mapping is conformal for all z.

If we write B = |B|e®, then it is clear that every point z in the
z-plane is transformed in a one to one fashion into a new point w whose
magnitude is |B| times |z| and whose argument has been increased by
the angle 8. We sometimes refer to Equation 8.9 as a rolation (by the
angle 0) and a strelching or contraction (depending on whether |B| > 1
or || < 1 respectively). If |[8| = 1 we have pure rotation as pre-
viously mentioned.

Since 8 # 0, we may write Equation 8.9 as

. 1 — 102 .
x+oy=z=ﬁng2w=£BhgT’3)(u+tv), (8.10)
where 8 = B; + 182 and |B| # 0. If we use the real and imaginary
parts of Equation 8.10, it is easy to see that a straight line

Az + By +C =0
in the z-plane goes over into the rotated straight line
(4B1 — BBz)u + (AB2 + BBy + C|ﬂ|2 = 0. (8.11)

The circle C:{|z — 29| = 7}, with center at z = z¢ and radius r,
becomes

|5 -]
ol =
7

or
[w — Bzo| = |Blr

under the transformation of Equation 8.9. That is, the image of C
is a circle with center at fzo and radius |B]|r.
C. If we write Equation 8.6 as

w="Tz
and Equation 8.9 as
w = Sz,
then the transformation L,
L=TS, (8.12)
is the most general linear transformation, since
Lz = TSz = T(Sz) = T(Bz) = Bz + «, (8.13)

where « and B are arbitrary complex numbers (8 # 0). Of course,
8T is also a linear transformation since 8Tz = 8(z + «) = Bz + fe.
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D. A less transparent example is
w = log .

We shall make this multi-valued function definite by taking the principal

w-plane

(b)
Figure 8.2

branch —n < argz < #. Sincedw/dz = 1/z, the mapping is conformal
except at z = 0. If we write z in polar form as

z = ret
then
w=1u+ = logr + 6.
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We see that if § = 0 the positive real axis is mapped into the u-axis.
A straight line
8 =c, —am< =7

in the z-plane is mapped into the straight line

v=Q
y
A
z-plane
2o 2040
0 - X
(@)
v
A
w~plane
A\a
wo > Wota»
o >u
(b)
Figure 8.3

in the w-plane. A circle with center at the origin and radius a,
r=a >0,
is mapped onto the line segment
loga + 16, —nr< 0 ==
in the w-plane.



198 Advanced Complex Calculus

These results are illustrated in Fig. 8.2. It is easy to see that the
shaded sector in the z-plane is mapped onto the shaded region of the
w-plane.

E. Consider

w=wo + (2 — 20)%, (8.14)

where A is a positive real number (but not necessarily an integer).
This function has a branch point at z = 2o (if A is not an integer) and
hence will be multi-valued. We make its value definite by requiring
that if z — 2o is real and positive, then (z — 2¢)* is real and positive.
If we write

z—2 =re¥  w— wy= Rete,
v
A
w-plane
wo-ar - w, - Wo+ar
> U
(o]
Figure 8.4
then
R=nr
and
O = A0 + 2nn7,

where # is an integer. If 6 = 0, then ® = 2n7 and horizontal lines

are mapped onto horizontal lines. The ray § = « is mapped onto the

ray @ = Ae + 2nw, and the circle » = a onto the circle R = a*. These

results appear in Fig. 8.3, where the sector in the z-plane is mapped

onto the sector of the w-plane. As a corollary, if we choose ¢ = /2,

then the sector of Fig. 8.3a is mapped onto the semicircle of Fig. 8.4.
Sometimes it will be convenient to write

w = wy + (20 — 2
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in place of Equation 8.14 (notice that we have reversed z and zg).
Then

w — wo = (2 — 2zg)errt(1+2m)

v
4
w-plane
w4
Wo
e
o > U
4
wo+a* o2
Figure 8.5

and the sector of Fig. 8.3a is mapped onto the sector of Fig. 8.5, where
we have chosen the sheet of (z — zg)e*#(1+2m) corresponding to n = 0.

8.4 The Inverse Transformation

If we write

w = —

then the transformation is conformal for all z # 0, since dw/dz = —2-2.
Every point in the plane except z = 0 is transformed in a one to one
fashion into the w-plane (with the exception of w = 0). In the
extended plane there are no exceptions. If z # 0, then its image w
has magnitude equal to 1/|z| and argument, arg w = —arg z.

Let us examine what happens to straight lines and circles under this
conformal mapping. In particular, consider first the line

y=azx + b (8.15)

One way to determine the map is to use the straightforward
arithmetic of Section 3.11. Another useful device, especially when we
are considering straight lines and circles, is to transform to polar form.
This we did in the previous section. For our present problem we shall
use the following approach.



200 Advanced Complex Calculus
Since
2+ 2 z2—Z
5 y=Im[z] = %

we may write Equation 8.15 in terms of z and zZ as

x = Re[z] = , (8.16)

z2—2zZ=ai(z + 2) + 2b
or
2(1 — ia) — 2(1 — 1a) = 2bs.
By making the transformation w = 1/zin the above equation, we obtain
w(l ~ da) — w(l + 1a) = 2ibww. (8.17)
If we write w as
w=u + v,
Equation 8.17 becomes
b(u + v?) + v + au = 0. (8.18)
If b # 0, that is, if y = ax + b does not pass through the critical
point z = 0, then Equation 8.18 represents a circle of radius
(1/2b)V'1 + a? with center at (—a/2b, —1/2b). If b = 0, then
Equation 8.18 is a straight line
v + au = 0, (8.19)

where the critical point z = 0 corresponds to the point at infinity in the
w-plane. Note that the straight line of Equation 8.19 also passes
through the origin of the w-plane.

Consider now a circle

224+yitax+by+c=0 (8.20)

in the z-plane. By using the substitutions of Equation 8.16 in Equation
8.20 and simplifying, we obtain

2+ (2 £z+ 2_£2+c_0
R A VR =
Under the transformation w = 1/z this becomes
c(u2 + v2) +au — bv + 1 = 0, (8.21)

where we have again used the fact that w = w + 0. Thus if ¢ # 0,
Equation 8.21 represents a circle. If ¢ = 0, that is, if the circle of
Equation 8.20 passes through the critical point z = 0, then Equation
8.21 represents the straight line

au —bv +1=0
in the w-plane.
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In summary then we can draw up the following table.

z-plane Image tn w-plane
Straight line through the origin — Straight line through the origin
Straight line not through origin — Circle through the origin
Circle through the origin —> Straight line not through origin
Circle not through origin — Circle not through origin

If we consider straight lines as limiting cases of circles, we may say:
the transformation w = 1/z always takes circles into circles.

The transformation w = 1/z is closely related to the geometric
construction known as the inversion of the circle. Consider a circle

y
A

Figure 8.6

of radius R with center at the origin. Let z be any point outside the
circle. Then we define a point 2’ by the following geometric construction.
From z draw tangents to the circle. The intersection of the chord
connecting the two points of ta.ngency with the secant joining 0 to 2
is defined as z’. The points z and z' are called conjugates. Clearly
points on the circle (called the circle of inversion) are se]f-con]uga.te
From the similar triangles of Fig. 8.6 we see that

ell] = Re.
Hence, in particular, if B = 1,

1
’ = —
|2'] IZI'
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and from the figure,

arg 2z’ = argz.
Thus inversion is a conformal transformation with reversal of angles.
(Recall that if w = 1/z, then |w| = 1/|z| and argw = —argz.) One
can deduce numerous properties of inversion by elementary techniques.
Some of these results will be found in the exercises.

8.5 The Bilinear Transformation

The transformation
az + B
w = )
¥z + 8

(8.22)

where «, B, y, 3 are complex numbers with the property that
4=ad - By #0, (8.23)

is called a bilinear transformation (see Exercise 3.12). We impose the
condition of Equation 8.23 in order that Equation 8.22 represent a
conformal transformation.* For

dw 4
dz ~ (yz + 9)2

and if 4 = 0, every point of the z-plane would be a critical point.
The image of z = —3/y (for y # 0)is w = co.

The term bilinear stems from the fact that if we solve Equation 8.22
for z we obtain

dw— B
e (8.24)

which is of the same form as Equation 8.22.

The transformation is one to one. For suppose two distinct
values of z, say 2o and z), gave rise to the same w. Then Equation 8.22
would imply

aZo+ﬁ=621+B
yzo + 8 yz1 + 8

or
AZo = Azl.

Thus if zo # 21, we would have to have 4 = 0. But this contradicts
our hypothesis (Equation 8.23).

* Also, if 4 = 0, then oz + B and 9z + & would be linearly dependent and hence w
would reduce to a constant, which of course implies and is implied by the fact that
dw/dz = 0 for all z.
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We shall now show how the bilinear transformation of Equation 8.22
can be obtained by the composition of translations, rotations (with
stretching or contraction), and inversions. Towards this end, define
the following transformations:

Tez=2+a
Spz = bz
(8.25)
1
Vz = ~.
2
Then, assuming for the moment that y # 0, we have
E)
Topz =2 + -
Y
(8.26)

$M¢=&G+§)=w+8

and 8,T,, is the linear transformation of Section 8.3 C. Continuing,
we operate with V on Equation 8.26,

V8, Ty, 2 = V(yz + 8) =

’

yz + 9
and then with the operator S,
8.0, V8, Tz = ——4 .
—a/y YOy a2 = Yz + )
Finally
az +
TS0V Tz = 2L

Thus the most general bilinear transformation can be obtained by
successive applications of the three simple mappings of Equations 8.25.
In particular, we can conclude from our previous discussions that
a bilinear transformation maps circles into circles, where again we are
using the tacit convention that a straight line is to be considered as a
limiting case of a circle.

In the above paragraph we assumed y # 0. If y = 0, then since
4 # 0, we must have both « and § unequal to zero. Then it is easy
to see that

Sa/dTﬂ/az = S./a(z + g) = ﬁz_-g-_é,

which is the desired bilinear transformation in the case y = 0, that is,
it is now a linear transformation.
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Suppose now that z), 22, 23, 24 are four distinct points in the z-plane.
Then the ratio
(21 — 29)(zs — 24)
(22 — 23)(za — 1)

obtained by an obvious permutation of the subscripts is called the cross
ratio of the four numbers. We shall show that the cross ratio is in-
variant under a bilinear transformation. To prove this, let w; be the
image of z;, ¢ = 1,2, 3,4. Then we see that

A(z — 29)
1414

where {; = yz; + 3. By some more simple algebra

Wy — Wy =

A(21 - Zz) A(zs - 24)

(w1 — wo)(ws — wa) _  Lids {3la
(we — ws)(wg — w1) d(zz2 — 23) (24 — 21)
{als {aln (8.27)

_ (21 — 22)(23 — 24)
(22 — 23)(za — 1)

as we wished to prove.

Equation 8.22 depends on only three parameters. Suppose we
specify that three distinct points 21, 23, 23 are to be mapped into three
other points w1, ws, ws that are distinet from each other. Then the
required bilinear transformation can be found from Equation 8.27 by
letting z play the role of z; and w the role of wj.

8.6 Elliptic Integral

All of our previous examples of conformal mappings used elementary
functions. Let us now consider the non-elementary function

* dz
w = J; '\/(l — 22)(1 — kzzg) (8.28)

as a transformation where 0 < ¥ < 1. This is an elliptic integral of the
first kind. We shall determine what region in the w-plane is the image
of the upper half of the z-plane. Since the integrand of Equation 8.28
is multi-valued, some care must be exercised.

Let us indulge ourselves with the luxury of examining in detail

1
VI = 21 - k%)

flz;k) = (8.29)
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Clearly f(z;k) has branch points at z = +1 and z = +1/k. The
Riemann surface of f(z;k) can be drawn as illustrated in Fig. 8.7.
More conveniently we can draw it as in Fig. 8.8 where the heavy lines
between —1/k and —1 and between 1 and 1/k are the branch cuts.

Im
-J‘F E T T > Re
K
Im
[ 7/ S
k k
Figure 8.7

Our first task will be to assign appropriate values to the two sheets.
We shall define f(0; k) as + 1 on the upper sheet. With this information
the value of f(z;k) at any point of the Riemann surface is uniquely
determined. In particular, we are interested in the values of f(z;k) on
the real axis.

z-plane

Figure 8.8

Since f(0;k) = + 1, the value of f(2;k) for 2 real and small must be
close to +1. Let

z = ref.
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Then we may write

Sf(z:k) = |f(z;k)|et¢/2e—1/2, (8.30)
where
¢ = arg (1 — 22) = arg (1 — r2 cos 20 — ¢ r2gin 26) (8.31
¢ = arg (1 — k222) = arg (1 — k2% cos 20 — 1 k2r2sin 26). )
y
{
8 > X
IR o (Y -
k X
(a)
y
A
LY
e = X
R 4] t i g
X X
(b)
y
A
LS
1 - ) [ >
k k
()
Figure 8.9

By the continuity of f(z;k) near z = 0 we shall require that
¢=0 yYy=0 when § = 0, 0<r<l (8.32)

Let us determine the values of f(z; k) on the upper half of the upper
plane of Fig. 8.7. Using the continuity of the arguments (see Fig. 8.9
and Equations 8.31), we see that if 8 is small and positive, then ¢ is
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small and negative when 0 < r < 1, while ¢ + = is small and positive
when 1 < r < oo. Similarly, if 6 is small and positive, ¢ is small and
negative when 0 < r < 1/k, while ¢ + = is small and positive when
1/k < r < co. Thus we may construct the following self-explanatory
table which gives the values of f(z; k) on the upper half of the top plane
along the positive real axis.

y

1
ot
1
-
(=]
[
@
-
Ll

-1

y
A
[ oNN/-e 1 | —>X
% x
(C)
Figure 8.10
TasLE 8.1
é ¥ S(z:k)
O0<r<l 0 0 |f(z; k)|
l<r<l/k - 0 t|f(z; k)|

1k <r < o0 —7 —7 —|f(z;B)]
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By an identical argument (see Fig. 8.10), again using the continuity
of the arguments, we see that if 6 is small and negative, then ¢ is small
and positive when 0 < r < 1, while ¢ — = is small and negative when
1 < r < 0. Also, if § is small and negative, ¢ is small and positive
when 0 < r < 1/k, while 4 — 7 is small and negative when 1/k < r < 0.
Thus the values of f(z;k) on the lower half of the top plane along the
positive real axis are given in Table 8.2. As we anticipated, the values

TABLE 8.2
¢ i f(zik)
0<r<l 0 0 | f(z; k)|
1<r<1/k T 0 —t|f(z; k)|
l/k <r <o w w —|f k)|

for 0 < z < 1and 1/k < z < oo are identical, being on the same sheer,
but the values of f(z;k) for 1 < r < 1/k permute since this segment
represents a branch cut.

We return now to Equation 8.28 and assume z is real and positive.

z-plane

Aot ->- Re

Figure 8.11

Let us integrate from 0 to z along the real axis where we shall assume
that the path of integration is on the upper sheet of the Riemann
surface whose values are defined by Table 8.1. Actually, we should
consider Equation 8.28 relative to the contour illustrated in Fig. 8.11
‘(assuming z > 1/k), since the integral is improper at z = 1 and z = 1/k.
However, it is easy to see that the integrals over these small semi-
circles vanish. Thus if we define

1
K(k) = J:)f(z;k) dz
1k
t K'(k) = J; f(z: k) dz (8.33)

L) = [ fleik) e,
1/k
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the numbers K, K’, and L are real and positive by virtue of Table 8.1.
Actually, the last of Equations 8.33 defining L is an infinite integral;
more precisely we should write

R
lim [(z;:k) dz,
1k

R—

but it is easy to see that this integral converges. In fact, if we make

the change of variable z = 1/{k, we have
® dz 1 ac

®) e V(1 — 22)(1 — k2%2) o V(I = 131 — k2?)

= —K(k)

or
L(k) = K(k). (8.34)
Also, if we set
F=v1—-k?
(and hence 0 < k' < 1) and make the change of variable
z = (1 — k'2g2)-v2

in the second of Equations 8.33, we infer that

I dz " 14
o = fl V- 21— k%2) fo VI -1 - &)
= i K(k')
or
K'(k) = K(k'). (8.35)

Notice the symmetry of K and k with and without the prime.
Returning now to the problem of conformal mapping, we see that

1
w(l) = J;f(z;k) dz = K

w(g) = [t = [ rende + [ rema
=K +i1K
w(c) = ff(z;k) dz = J:"’f(z;k) dz + J’;f(z;k) dz

=K+iK' - L=1iK,
since K = L by Equation 8.34. The conformal map is illustrated in
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Fig. 8.12. That part of the rectangle in the left half of the w-plane is
determined by an argument similar to the ones used in the above
analysis.

While we have the elliptic integral under consideration let us
mention another interesting fact. If a Jordan curve C is drawn in

<

z-plane/

N\

<

w-plane

. z:-1

(b)

Figure 8.12

the z-plane, then any continuous curve connecting an interior point
of C to an exterior point must contain a point of C (see Theorem 8 of
Chapter 2). One can easily verify that if any Jordan curve is drawn
on the Riemann surface of fi(z) = Vz — aor fa(z) = V(z — «)(z — B),
(¢ # B), the same situation prevails. Note that both fi(z) and fs(2)
have two sheets and two branch points. The branch points of fi(z)
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are z = a, o0, and those of f5(z) are z = «, . However, the situation
is essentially different for the function f(z;k) of Equation 8.29.
Consider Fig. 8.13. Then it is clear that C' is a continuous curve

Im

cl
£ b
yo
et i = Re
_k BRE [5) Him 1
eY Lo
| |
|
|
Y
| Im
| |
| ]
|
1 ) 1 Ji_ = Re
k k
Figure 8.13

connecting a (an interior point of C) to b (an exterior point of C)
without crossing C. Another way of looking at this result is the
following : Every Jordan curve divides the z-plane (and also the Riemann

Im
4
/\'\/— \
-1 o o > Re
X
\\§~--’/,
Figure 8.14

st'lrfa.ees of f1 and f3) into two pieces, while the closed curve C does not
divide the Riemann surface of f(z; %) into two pieces. This topological
property is expressed by saying that the plane (and the Riemann
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surfaces of f1 and f3) have genus zero while the Riemann surface of
f(z;k) has genus one. Since the extended plane can be mapped in a
one to one fashion on the Riemann sphere (see Section 5.9), it is
customary to say that the sphere has genus zero. A torus has genus
one and, for example, a button with three holes has genus three.
Similarly, as an example, the Riemann surface of

V(e — a1)(z — a2}z ~ es)(z — as)(z — @s),
(x¢ # a; for ¢ # j) has genus two.

The complicated picture of Fig. 8.13 can be drawn more simply as
in Fig. 8.14, where it is understood that the dashed portions of the curve
are on a sheet of the Riemann surface different from the solid por-
tions.

8.7 The Schwarz-Christoffel Transformation

In the previous sections of this chapter we considered problems of
analysis as distinct from synthesis. That is, we took a given region or

Im Im

A

<

(a)

(b)

Re

©)
Figure 8.15

curve and a given conformal transformation and inquired what the
image of the point set was under the given mapping. A problem of
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synthesis starts with two given regions and determines what trans-
formation maps one region onto the other. Thus, for example, we
could inquire what functions would map the various regions of Fig. 8.15
onto some canonical domain such as a half plane. At the outset it is
not clear that such functions exist.

We shall develop a method for finding transformations which map
regions of the type illustrated in Fig. 8.15b and 8.15¢ onto the half
plane. Such mappings are generally called Schwarz-Christoffel trans-
formations. Thus a Schwarz-Christoffel transformation maps a polygon
(which may have a vertex at z = co as illustrated in Fig. 8.15¢) onto &
half plane.

Using the example of the elliptic integral of Section 8.6 of this

Im

Y

Figure 8.16

chapter as our motivation, we are invited to examine the transforma-
tion.
z dz ,
w—ﬁm—:z—)“’ 6<a<b, (8.36)
where A and p are real numbers less than one. It is therefore
appropriate first to discuss the function

_ 1

A T
This function has branch points at z = @ and z = b and possibly at
z = oo (depending on the values of A and ). Thus we may represent
one sheet of its Riemann surface as in Fig. 8.16, where we have assumed
for definiteness that b > a. If we specify the value of g(z) at one point
of one sheet of the Riemann surface, all other values at every point of
every sheet are uniquely determined by continuity. Suppose then
that ¢ is any number less than a. Then @ — ¢ and b — ¢ are both
positive real numbers. Let us define

1
AR T
where we have taken ¢ on the upper half of the cut (see Fig. 8.16).

(8.37)

(8.38)
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As in the last section we write

g9(2) = |g(z)|eseuts, (8.39)
where
¢=arg(a—2), ¢=arg(d-o2).
If welet z — ¢ = r et then
¢ =argl(a —c) — (2 ~c)] =arg[(a —¢) — rcos § — 1 rsin 0]

g =arg[(b—c)— (z—c¢c)] =arg[(b —c) — rcos § — i7sin 0],
(8.40)
where a — ¢, b — ¢, and r are all positive real numbers.

Since g(z) is to be real and positive for z = ¢ on the upper cut, we
must have ¢ = ¢ = 0 for § = 0 since A and u are unrestricted. Then
the same argument as was used in the case of the elliptic integral
enables us to construct Table 8.3. This table gives us the values of
g(z) on the real axis corresponding to the upper half plane of the sheet
of the Riemann surface illustrated in Fig. 8.16. By continuity we see

TABLE 8.3
é ¥ g(2)
O<r<a-—c 0 0 lg@)|
a—c<r<b-c - 0 |g(z)] et
b—c<r<ow -7 -7 |g(z)|e@+mrat

that g(z) = |g(z)| for z real and less than ¢ on the upper cut of the sheet.
This can also be demonstrated analytically by noting that

lim¢ = 0 = lim 4,
8—m [
o<m o<m

since for @ in the second quadrant,a — ¢ — rcos 6and b — ¢ — 7 cos 8
are both positive for any r > 0.

Since A < 1 and p < 1, no difficulties arise because of the improper-
ness of the integral of Equation 8.36 at z = a, 5. Thus we have

w(a) = 'r g(z)dz = A
wb) = f ’ g(z)dz = f ’ g9(z) dz + J‘b g(z)dz = A + Bet

L) b 0
w(w) = f g(z) dz =j g(z) dz +J; g(z)dz = A + Bert 4 Cetunt,

e [4
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where 4, B, C are positive constants. If A + p > 1, the infinite real
integral

© dz
L @ —ap@ —oF (8-41)

converges absolutely and hence C is finite. If A + p < 1, the integral
diverges and C is infinite. These situations are illustrated in Fig. 8.17.

Im

Ap>l A+Be)~
A+Be 4 Certuini * R
- Re
(@
Im
Abps=l| A
p'/7/
= - At+Ber*i
22 ),
— "'A‘ :h >~ Re
(b)
> Re

(c)
Figure 8.17

If the reader has any qualms about the triangle of Fig. 8.17a being
closed, he may draw a large semicircle with center at z = ¢ in the upper
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half of the sheet illustrated in Fig. 8.16 and apply the Cauchy integral
theorem.

Suppose now we are given a triangle (see Fig. 8.18), allowing even
the case where one vertex may be at infinity (see Figs. 8.17b and
8.17¢). Then can we conformally map this into a half plane? The
answer is certainly yes. For if we write

* dz
Y= fc (@ — 2)="1(b — 2)f-1 c<ac<b (8.42)

then, as we have just seen, this transformation maps the upper half
plane of the z-plane into the triangle of Fig. 8.19b. The triangles of

Im

A

=

- Re

Figure 8.18

Figs. 8.18 and 8.19b are similar. Hence by a linear transformation
(see Section 8.3)
{=kw + ¥ (8.43)

we can make the two triangles coincide. Thus we have effected a
mapping of a half plane onto an arbitrary triangle. Equation 8.42 is a
Schwarz-Christoffel transformation.

Note that @ and b (@ # b) are arbitrary in Equation 8.42, although
their numerical values will affect those of £ and &’ in Equation 8.43.
If we consider the general case, we see that the transformation

* dz
v J:) (z — @11z — agfa--- (z — apP~ (8.44)

n
where 0 < a1 <@g <-+-< @p, Ay < 1,4 = 1,2,---,n,and2)\,> 1,

im=1
will map the half plane into the polygon of Fig. 8.20. If 3 A = 1,
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the polygon will have a vertex at z = co. Thus if we are given an
arbitrary polygon, we can immediately infer the values of the X’s of
Equation 8.44 that will map the half plane into a polygon with the same
angles. In order to get the image polygon and the original polygon
similar, all the values of the a;’s can no longer be chosen arbitrarily.
Once we have similar polygons, a linear transformation will bring them
into coincidence.

There is a famous theorem of Riemann which states, essentially,
that any simply connected domain can be conformally mapped onto a
half plane (for example, the region of Fig. 8.15a). However, the proof
does not indicate how to construct such a function, that is, it is a pure
existence proof. Thus from the practical viewpoint we have available
only such simple mappings as given, for example, by the bilinear
transformation and the polygonal Schwarz-Christoffel transformation.

EXERCISES

8.1. Let z and 2" be two points which are conjugates with respect to the
circle of inversion. Let C be a circle through z and 2. Prove that C
cuts the circle of inversion orthogonally.

Im

Y

Figure 8.21

8.2. Let C; and Cp be two circles which orthogonally cut the circle of
inversion. If C; and C; intersect at z and z’, show that z and 2z’ are
conjugates.

8.3. Show that the totality of bilinear transformations with composition
as the binary operation form a group.*

8.4. Show that
w = of 2= B
N (z = B)’

where |«| =1 and Im[B] < O is the most general bilinear trans-
formation which maps the upper half of the z-plane onto the unit
circle in the w-plane.

* See, for example, K. 8. Miller, Elements of Modern Absiract Algebra, Harper &
Brothers, 1958, p. 1.
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8.6.

8.7.

8.8.

8.9.

8.10.

Conformal Mapping 219

Find a necessary and sufficient condition on four distinct points in order
that their cross ratio be a real number.

Show that the most general bilinear transformation which maps the
upper half of the z-plane onto the upper half of the w-plane is one in
which «, B, y, & are real and 4 > 0.

Show that

™n

_ dz
w= [ o=

maps the upper half of the z-plane onto an equilateral triangle in the
w-plane.

Im

5
P

——

>~ Re

(=]

Figure 8.22

Find the Schwarz-Christoffel transformation which maps a half plane
onto the shaded region of Fig. 8.21.

Find the Schwarz-Christoffel transformation which maps a half plane
onto an isosceles triangle.

Determine the mapping which takes a half plane onto the shaded area
of Fig. 8.22,



CHAPTER Y

The Method of Laplace Integrals

9.1 Introduction

One of the most interesting applications of the eomplex calculus is
to the subject of differential equations. We shall present a certain facet
of the theory of linear differential equations in the complex domain in
this chapter. The topic of linear differential equations in the complex
domain could easily be made the subject matter for a treatise the size
of this book.* However, we shall only study a particular branch known
as the method of Laplace integrals. We recall from elementary differen-
tial equation theory that the solution of linear differential equations
with non-constant coefficients can rarely be written in terms of elemen-
tary functions. However, the method of Frobeniust indicates that,
under rather broad conditions, solutions can be determined in the form
of infinite series. Sometimes these infinite series can be converted to
integrals. We shall give an example below. The method of Laplace
integrals considers the problem of determining an integral represen-
tation directly from the differential equation itself. The techniques
we use form an excellent non-trivial application of the theory of contour
integration expounded in Chapter 6.

Our plan of attack will be as follows. In Section 9.2 we shall
introduce the notion of the adjoint operator, fundamental in our future
discussions. We shall then define a Laplace integral and give several
examples. The remainder of the chapter will be devoted to a treatment
of a certain subclass of differential equations (those with linear co-
efficients) for which very explicit results may be obtained.

Before we embark on this program let us consider an example of

* See, for example, E. L. Ince, Ordinary Differential Equations, Longmans, Green
and Company, Ltd., 1927, Part II; F. J. Murray and K. S. Miller, Exzistence Theorems,
New York University Press, 1954, chap. 6.

t See, for example, K. S. Miller, Engineering Mathematics, Rinehart and Company,
1956, p. 85.

220
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an intégra.l solution of a differential equation. Students of applied
mathematics will recognize

d2w+z Y 2w =0
i I =
as Bessel’s equation of order zero. By the method of Frobenius one
solution* is readily determined to be

RS G f £ Tl
Joz) = go g (2) (9.1)

This power series has an infinite radius of convergence. Using the
integral formula
w(2k)!

/2
L cos2k 0 do = WT_(IC!)Z’

which may be obtained from the Beta function, enables us to write
Equation 9.1 as

Jo(z) = = Z ((2]:))' 22"+1(2)uﬁ"/2 cos2k 0 dé.

Since the infinite series

converges uniformly and absolutely for all 6, we may interchange the
order of integration and summation to write

- /2 (—1)¥(z cos §)2k
GRE N P £

(9.2)
2 (n/2
=- f cos (z cos 0) d6.

0

This is the desired integral representation for Jo(z). It is known as
a Lommel integral.

9.2 The Adjoint Operator

The notion of an integrating factor plays an important role in the
theory of first order linear differential equations. In an attempt to

* Op. cit., p. 118.
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generalize this idea to nth order equations we are led to the concept of
the adjoint operator.

Consider two functions u(z) and v(z)
which are analytic and single-valued in
some simply connected open region 9A.
Let C be a smooth curve in %. Let a be
a fixed point on C and z a variable point.
We shall denote that portion of the curve
from e to z by C(z) (see Fig. 9.1). If we
integrate the expression

f v(2)u®)(2) dz
()

by parts, we obtain (see Exercise 4.4)

- f v/ (z)uk~1(2) dz.
C(2) c(

Figure 9.1

f v(2)u®)(2) dz = v(z) w®-1(z)
C(2)

Repeated integration by parts leads by a simple induction to
k=1

J. v(2)u®)(z) dz = z (— D)o (2)uk-1-N(z)
C(2) =0 C(2)
(9.3)
+ (—1)* f v®)(z)u(z) dz.
c(@
Now let ,
dn dn—1
L= po(Z) d—Z; + pl(Z) d—z”:-l' +---+ p,.(Z)- (9.4)

be a linear differential operator of the nth order where the ps(z) have,
at most, isolated singularities in % and are analytic on C. Also, let
po(z) be bounded away from zero on C. Then

fc; v(z)Lu(z) dz = z f [0(2)pn—i(2) Ju®)(2) dz

k=0
- kﬁ {Z( WieEprsoue0@| OO
=0 Ljm0
+ (=1 [ eI re o) ds)
We define
Lo = (=12 2 (po) + (=101 2 () 4+ = (pat) + P

(9.8)
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as the adjoint differential equation and call L+ the adjoint operator (or
Sformal adjoint or Lagrange adjoint of L). Equation 9.5 may then be
written as

f [v(2)Lau(z) — u(z)L*v(z)] dz = Plu(z), v(z)] (9.7)
C(2) C(2)

2

where
Plu(a), o] = 55 (— IV[o(e)pa-s(@)]ut-1-0(2)
k=0 j=0
= [e)Pns ()
+0E@pa s (2) — [oIpasD) ()
+DEBa—sOIE) — [o(2)Pa-s]W 2) ©9)

+[#(2)Pa-3(2)]"u()
+ oo

+ [0(2)po(2)Ju®D(2) — [v(2)po(2)] u»=2(z) + - - -
+ (= 1)*v(2)po(2)] ™~ Du(z).

is called the Lagrange bilinear concomitant.
It is often more eonvenient to write Equation 9.7 as

v(z)Lu(z) — u(z)Ltv(z) = gz-P[u(z), v(2)]. (9.9)

9.3 Laplace Integrals
Our objective is to express a solution of

Lw(z) = 0 (9.10)
in the form

w(z) = fc E(0pw(0) di, (9.11)

where the kernel K(z,{), the function »({), and the contour C are all to
be determined.
Suppose that a kernel K(z,{) can be found such that

L.K(z,{) = M;K(2,0), (9.12)
where M is some linear differential operator.* Then from Equation 9.11
Loots) = [ LK(s.0(0) &4
¢ (9.13)
- [ romrEn

* We use subscripts to indicate on which variable the linear differential operator
operates. For example, Equation 9.10 may be written as Law(z) = 0.
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Let M+ be the formal adjoint of M. Then

WOMK(z,) — K(z,H)MFv({) = ;%Pc[K(z,l), 2], (9.14)

where P K(z,{), v({)] is the Lagrange bilinear concomitant. Equation
9.13 then becomes :

Lao(z) = fc K@OMEo@) dl + PAK@ED,o0)| . (0.15)

In order that Equation 9.11 be a solution of Equation 9.10, the right-
hand member of Equation 9.156 must vanish. Thus »({) must be a
solution of

M}v=0
and the contour C' must be so chosen that
P[K(z), v({)] o 0.
Let us specialize our problem. Suppose that the coefficients

Pi(z) appearing in L are polynomials of degree at most m. Then we
may write

L=3Sael
= a"z‘ —
‘ rac( g0 dz'
Now consider the operator
n m de
M = Z z sl d—C‘.
r=0 g=0

Clearly
Lee# = Z Z Ape2tltest = Mcett_

r=0 s=0

Consequently the equation Law = 0 is satisfied by
w) = [ exolt)dt, (9.16)
¢

where v({) is a solution of the differential equation M} v = 0 and the
contour C is so chosen that

Pdex, )] L - o.

Equation 9.16 is known as a Laplace integral.
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There exists & reciprocal relation between v({) and w(z). We shall
show that

Lie s = Mfe =, (9.17)

If we assume this for the moment, then the equation M}v = 0 is
satisfied by

v(l) = f e~Hw(z) dz
r
for an appropriately chosen contour I. For,

Mrv(l) = J-r M} e sw(z) dz = J; w(z)L}e % dz

- f e-#Lw(z) dz + Pye%, w(z)]
r

r

and L,w(z) = 0, while I' is so chosen that the concomitant vanishes.
To prove Equation 9.17 we note that

Liu= 3 an(-1r 2 (o)

Miu = 3 an(-1p 7 @)

Therefore it suffices to show that

(=1 % e = (~=1) ai;‘; lre =%, (9.18)
But
or+e 4
azr—ac—'e"“ = (—1?‘@2‘6‘“
and

s < = (1 e

Now since e—% considered as a function of z and { is analytic, we may
interchange the order of differentiation. That is,

e e
o =
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Thus

+
(—1)r+s aZaagt % = (— 1)'% 2 e

=PW%&M

= (=1

)

am
ooowr ©
which proves Equation 9.18.

9.4 Linear Coefficients

Let us first consider the case where the coefficients of L are linear,
viz.,

Lo = (asz + bo) 7om d =+ (2 + b) d”;l? + (9.19)
+ (anz + bg) w = 0, ag # O.
Then
Mu = P(c) d; + R({)uw, (9.20)
where
P) = aol* + arl®1 +--- + a,
R(L) = bol® + bal*~t +--- + bn.
Hence
Mfv = —PQ) 2 + [RQ) — PO
and »({) is a solution of
PO 7~ QWp =0, (9.21)

where
Q) = R(&) — P'({)-

The bilinear concomitant is

cP[u W] = vMu — «M+*v

= &P 77 + BOu] + w0 PO I - an]

= P({)[uv’ + w'v] + [R({) — Q({)] wv
= PQ) d(uv)

+ P'({) wo.
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Thus
Pex, v({)] = P(Lyw(L)e=.

Let us assume for the moment that the roots of P({) = 0 are
distinct,* say aj, «3, - - -, ay. Then from Equation 9.21

% _ QO A M
D A Rl s g
and
() = ex(L — a1} -(§ — ap)s
Therefore the integral

w(z) = L ezy(L) d

satisfies L,w = 0, provided the contour C is chosen so that Pfe%, v({)]
vanishes (identically in z) with respect to the contour C' (which, of
course, is independent of z). Explicitly

aOF(c) = 0:

c

where
F(L) = ewt(l — a3)l*M. . (L — ot)l+he, (9.22)

If the real parts of two of the M's are greater than —1, say
Re(NM] > —1, Re[A] > —1,5 # k, then

w(z) = fc e#v(L) di

will be a solution where C is any smooth curve joining o; and «; and not
passing through any other « with Re [A] < —1. If some A is a
negative integer, then C' may be chosen as a circle, about the corre-
sponding «, which encloses no other root of P({) = 0. Then the function
F({) returns to its initial value after a circuit around C. Finally
consider the case where the A’s are unrestricted. Consider any two,
say A; and A, (§ # k). Let B be a point distinct from the o’s. Then
C may be taken as the double loopt with respect to «; and o which
encloses no other oy.

Except in the case where A is a negative integer, only n — 1 distinct
integrals which satisfy L;w = 0 may be formed. A set of » distinct
contour integrals which satisfy the equation cannot be obtained with-
out some restriction on z. Suppose, for instance, that Re [z + u] > 0.

* See Section 9.6 for the case of equal roots.
t See SBection 6.5E.
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Then the single loop contour* illustrated in Fig. 9.2 is suitable. It is,
of course, assumed that no other « lies on or in the contour. In general,
n integrals of this type will exist.

Im

t-plone
A

> Re

Figure 9.2

9.5 Examples of Contour Integrals as Solutions

A. Kummer’s differential equation is

dw dw
sz=zEz—2-+(c—z)‘—l-z-—aw=0.
We shall suitably restrict c and @ at a later time. Now
M = (@ - D + (L - a
and
dv
Miv= (- Ig +lc— 2+ (1 —-ap=o0.
Thus
0_1@= _(c—2)§+(l—a)=a—l+c—a—l
dt aa-19 14 -1
and
o = (L — 1ot
Hence

e = fc ege-}( — 1)e-a=tdy,
where C is chosen so that
Plez, v({)] = %L — 1) o= 0.

* See Section 6.5D.
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Now assume Re[c] > Re[a] > 0. Then the straight line from 0 to
1 is acceptable,

w(z) = L ' e#{s-1{ —~ 1)e—a-14¢,
Since 0 < { < 1, write

o) = [ este-tq1 - ppera.
Let z{ = t. Then aside from a constant factor

B(z) = 21— L ette-1(z — t)e-a-1 dt

is the confluent hypergeometric function  Fy(a,c;2),

I(c) .
La)(c — a) w(z)-

B. Consider the differential equa,tion

1Fi(a.c;2) =

200
Lw = zd

-5 — (3 +7) +(2z+10)w-—0

Then
Mo = (2 - 30 + {?) §+(10—7C)u
and

Miv=—@2-3+% 4 13- 9pw=o.

d§
Integrating M} v = 0,

and
v(l) = (§ — 1)~4¢ — 2)-5.
Thus
we) = [ e - 14g - 2say,
provided C is chosen so that
Pex, v(L)] = (£ — 1)73(f — 2)—%ex .= 0.

Since P; is single-valued, let C be a circle around { = 1 of radius 1.
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Then if we expand e% and ({ — 2)~5 in powers of { — 1 and multiply
them together, the coefficient of ({ — 1)3is

5 1
z{ — 22 — 28
e(2z +l5z+35+62).

Hence
w(z) = (2% + 1522 + 90z + 210).
Also
22 23
e = e2z 4 ze2l(g _ 2) + E e2t(§ — 2)2 + Eezt(g _ 2)3
24 2 .
-~ z — CECEEY
+35¢ (£ — 2)4 +
and
1
o1 = L 46— 2+ 10 - 2)7 - 20 — 2)°
4+ 35— 24 +---,
while
(C .e—“l).i = ... 4 823[5224 — ;23 + 522 — 20z + 35](§ - 2)4 Foeen.
Thus

w(z) = e?#(zt — 1623 + 12022 — 480z + 840)

is another solution.

C. Let
d2w dw
w—3$—(42—1)w=0.

Then the following sequence of formulas is immediate:

ng= 42

Mo = (82 - 93— (3 - Du

Miv= — (402 — 4)3—2 =(11{ - 1pw=20

v 11 — 1 3 1 5 1

Plex, v({)] = ex({ + 1)"V¥L — 1)~V4,
Thus

w(z) = J; eA(L + 1)~ — 1)-5/4dL,
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where C is chosen so that P; vanishes. That is, C is the double loop,
C = C{ 105 1C,Cy,

where Co is a circuit around { = —1 in the positive sense, C; is a
circuit around { = +1 in the positive sense, and Cy! and C; ! are the
same curves, respectively, in the negative sense.

9.6 Repeated Linear Factors
Suppose a; = «3 is a double root of P({) = 0. Then in this case

dv Al V1 As An
-1 27 _ .
v ar F+§—a1+(§—a1)2+§—as+ +§—an

Integrating,
o(l) = emen/Ge(l — il — asPe-- (L — an)n
and the bilinear concomitant Pfe#, v({)] becomes
aoeltate—r/E—e)({ — a1)2tM(l — ag)ltha. . (L — ag)tths,

For convenience in notation and with no real loss of generality, let us
assume n = 2, «; = a,v; = v, A1 = A, Then

v(l) = emte—r/G—e)({ — a). (9.23)

Thus we must obtain two distinct contours relative to «. One such
contour is described in Fig. 9.2. To obtain a second we consider the
limiting case as a; — a2, It must be such that the concomitant

e(wz)ce—v/({-a)(c — )it

vanishes. If we write

{—a= |- aes, v = |v]ess,
then
|eie—)| = le—Ao‘“"”l = g4 cos (¥—¢), (9.24)

where A = |v|/|{ — «|. Since A approaches infinity as { approaches «,

we must have 4 cos ( — ¢) > 0 in order that the exponential factor
approach zero. This implies cos (y — ¢) > 0 or

¢—%ﬂ<¢<¢+%ﬂ. (9.25)
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Thus a closed loop starting and ending at « but such that its gradient
is discontinuous at { = « and satisfies the above inequalities, is appro-
priate. For example, the contour C of Fig. 9.3 is adequate.

Im

Figure 9.3

9.7 Constant Coefficients
Let us consider the case where the coefficients are constant, viz.,

Lw = bo

dn—1
s bxd,,_'f+---+b..w=o, bo # 0. (9.26)

Then, referring to Section 9.4, the adjoint operator M} is a scalar and
v({) need only satisfy the algebraic equation

R({() = o,

R(L) = bol® + b1n1 + -« - + by.

Thus the method appears to break down.
However, returning to the basic formulation, we are searching for a
solution in the form

where

w(z) = jc ezv(l) di (9.27)

for appropriate C and v({). Therefore, if we place Equation 9.27 in
Equation 9.26, there results

Im=fmmwma+fhv%%ma+~+fmwma
C C [+

=memma=&
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Thus it suffices to choose for »({) any function such that R({)v({) is
analytic in some region and the C can be chosen as any closed smooth
curve in this region.

Let f({), where

F(@) = R(E)(),
be such an analytic function. Then

J@
v({) = ROy
Suppose 8 is a root of multiplicity r of B(§) = 0. Then we may write
= Bl B2 .
LUR e B e R e )

If C is a contour which encloses 8 but no other root of R({) = 0, then
u({) is analytic in and on C. Hence

wiz) = fcwx(c — Byl + Bl — B2+ - - + Bo(l — By + u(l)le%dL.
Now let
Ie = f By({ — Byrex di.
c
Writing

ot = e 4 zeH( — f) 4.+ 2o le — BT

—W + ey
we see by the Cauchy integral formula that

2my

hoEm

2k-1e28 By = Cypzk—le%s,

Thus
w(z) = e#(C1 + Caz +--- + CzY)

is the desired solution corresponding to the root 8 of multiplicity r.

EXERCISES

9.1. Let C be a circle of radius r with center at the origin. If z is large and
real and p is not an integer, show that

) J'c LPest & = 2 sin pr J’"m—t &,
0

where we have made the change of variable 2{ = —¢.
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9.2.

9.3.

94.

9.5.

9.6.

9.7,
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Consider the integral
w(z) = e jc AL — aaPi(l — ) -({ — el
j

over the single loop contour of Fig. 9.2 Show that wy(z) is asymptotic
to

24 e?as2~ (D) gin A l(A + 1)
for z large and real, provided J; is not an integer.
Using the results of the previous exercise, show that if Re[e;] >
Relag] >---> Refap]andIm [oy] # Im [ax], j # k; 5, k= 1,2,- - -, n,
then the » solutions wy(z), j = 1,2,---,n of Lw(z) = 0 are linearly
independent.
Show that if Re [z] < 0, Re[A] > 0, then

w(z) = J"” €1 + 1) 1dl
0
is & solution of

2w dw
zw—+()\+y.+z)z+)\w=0.

Derive the integral representation of Jo(z) directly from Bessel’s
equation of order zero.
Bessel’s equation with purely imaginary argument and order zero is

2w  dw
Z—dz—2-+7z'—zw—-0.

Show that
2 (=2 .
Io(z) = p .[o cosh (z sin 6) d6

and determine Ko(z) ( = J.we—z cosh 0 4§, Re[z] > 0) up to a
0

non-zero multiplicative constant.
Show by the method of Laplace integrals that
2z

1%

w(z) = J; ® Le—t%2 sin

is a solution of the differential equation
d3w

2= —w=0.

az8
Investigate the integral solutions of

d2w dw

where a, b, ¢, d are non-zero constants.
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Index

Absolute convergence, 105
Adjoint operator, 221
Algebra, fundamental theorem of, 173
Analytic, at infinity, 125
continuation, 183
monogenic analytic functions, 188
natural boundary, 188
regular point, 187
singular point, 187
element, 188
function, monogenie, 188
sequences of, 108
single-valued, 58
holomorphie, 58
Approximating sum, 72
ARC (Advanced Real Calculus), 1
Argument, 37

variation of, 172

Bessel function, 221, 234

Beta function, 141, 167

Bilinear, concomitant, 223
transformation, 202, 223

Boundary, natural, 188
point, 24

Bounded, set, 15
variation, 19

Branch, 40, 44

Branch point, 45, 126
double loop integral, 163
integration around, 156
loop integrals, 161

Calculus of residues, see Residues
Cauchy, convergence theorem, 8, 104
inequality, 102
integral formula, 92
integral theorem, 79, 82
principal value, 97
-Riemann conditions, 52
-Schwarz inequality, 11, 101
CIF, 80
Circle, of convergence, 113, 184
of inversion, 201
CIT, 80

237

Closed, 14
curve, 15
set, 14
smooth curve, 78
Compact set, 26
Complement, 14
Complex number, 2
argument, 37
conjugate, 4
imaginary unit, 3
modulus, 4, 37
polar form, 37
sequences, 6
triangle inequality, 5, 12
Complex plane, 4
extended, 125, 176
Complex variable, 28
Confluent hypergeometric function, 229
Conformal mapping, 64, 191
bilinear transformation, 202
elliptic integral, 204
inversion, 201
linear transformation, 195
rotation, 194
Schwarz-Christoffel transformation, 212
Connected set, 24
Constant coefficient differential operators,
232
Continuation, analytic, 183
Continuity, 30
joint, 30
uniform, 32
Continuous function, 30
bounded, 33
curve, 15
Contour integral, 71
Curve, 15
closed, 15
smooth, 78
continuous, 15
differentiable, 74
equivalent, 25
Jordan are, 18
Jordan curve, 18
length, 16
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Curve—(Continued) Functions—(Continued)
line segment, 16 monogenic, 188
Peano, 18 multi-valued, 39
piece-wise differentiable, 76 multiform, 59
points, 15 of a function, 31

positively sensed, 26
rectifiable, 17
simple, 15
closed, 16
rectifiable, 18
smooth, 78
Curvilinear integral, 73

Differentiable,
tions, 52
curve, 74
function, 48
Differential equation,
operator
Differential operator, 222
adjoint, 221
constant coefficients, 232
linear coefficients, 226
repeated linear factors, 231
Double loop integrals, 163

Cauchy-Riemann condi-

see Differential

Elementary functions, 28, 34

Elliptic integral, 204

Entire function, 58

Equivalent curves, 25
inversely, 26

Essential singularity, 127

Exponential function, 35

Extended plane, 125, 176

Fresnel integrals, 155

Functions, 29
analytic, 58
Bessel, 221, 234
Beta, 141, 167
bounded variation, 19
continuous, 30
differentiability, 48
domain, 29
elementary, 28, 34
entire, 58
exponential, 35
Gamma, 102, 163
harmonic, 66
holomorphic, 58
hyperbolic, 39
hypergeometric, 229
integral, 58
limit of a, 29
logarithmic, 39
mapping, 29
meromorphic, 134

polynomial, 34
range, 29
rational, 34, 175
trigonometric, 35
uniform, 59
Fundamental theorem of algebra, 173

Gamma function, 102, 163
Genus, 212
Greatest limit, 116

Harmonic functions, 66
Heine-Borel theorem, 15
Holomorphic, 58

Hyperbolic funection, 38
Hypergeometric function, 229

Imaginary unit, 3
Implicit function theorem, 182
Independence of path, 83
Morera’s theorem, 100
Inequalities, Cauchy, 102
Minkowski, 12
Schwarz, 11, 101
triangle, 5, 12
Infinity, 124
Integral, 69
approximating sums, 72
around branch points, 156
around rectangular contours, 151
around triangular contours, 155
Cauchy integral formula, 92
Cauchy integral theorem, 79
complex valued function of a real
variable, 69
contour, 71
curvilinear, 73
double loop, 163
elliptic, 204
formula, 92
Fresnel, 155
function, 58
independence of path, 83
involving logarithmic functions, 145
involving rational functions, 135
involving trigonometric functions, 141,
144
Laplace, 224
line, 73
loop, 161
of a continuous function, 74
principal value, 97
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Integral—(Continued)
theorem, 79
Interior point, 23
Inverse transformation, 199
Inversion, 201
conjugate points, 201
Isolated singularity, 126
at infinity, 127

Jensen’s formula, 189
Jordan, arc, 18
curve, 18
theorem, 24

Kummer's equation, 228

Lagrange, adjoint, 223
bilinear concomitant, 223
Laplace, equation, 64
integral, 224
Laurent series, 120
principal part, 121
at infinity, 127
Least limit, 116
I’Hospital’s rule, 61
Limit, greatest, 116
inferior, 116
least, 116
lower, 116
of a function, 29
of a sequence, 6
point, 14
superior, 116
upper, 116
Line integral, 73
Linear coefficient differential operators,
226
Linear differential equation, see Differential
operator
Linear transformation, 195
Liouville's theorem, 173
Logarithmic function, 39
principal value, 39
Loop integrals, 161
Lower limit, 116

Maclaurin series, 115
Mapping, 29, 61, 191

conformal, 64
Maximum modulus theorem, 177
Meromorphic, 134
Minimum modulus theorem, 190
Minkowski inequality, 12
Modulus, 4
Monogenic analytic function, 188
Morera’s theorem, 100
Multi-valued functions, branch, 40

Multi-valued functions—(Continued)

ray, 41
real, 40
Riemann axis, 42
surface, 44
Multiform function, 59

Natural boundary, 188

Neighborhood, 13
e-neighborhood, 14
of infinity, 125
spherical, 13

Norm, 17, 72

Number, complex, 2

Nyquist criterion, 173

Open set, 14

Partial sums, 104

Partition, 16, 71
marked, 72
norm, 17, 72

Peano curve, 16

Perfect set, 14

P,

239

T of functional equations, 181

Piece-wise differentiable curve, 76

Plane, complex, 4
Point, 14
Point set, 14
boundary, 24
bounded, 15, 25
closed, 14
compact, 26
complement, 14
connected, 24
derived, 26
exterior, 24
Heine-Borel theorem, 15
interior, 23
limit, 14
open, 14
perfect, 14
point of closure, 26
simply connected, 25
unbounded, 25
union, 26, 185
Poisson’s formula, 102
Pole, 127
at infinity, 127
of order p, 127
simple, 127
Polygon, 16
closed, 16
inscribed, 17
simple, 16
simple closed, 16
Polynomial, 34
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Positively sensed curve, 26
Power series, 112

root test, 115

Taylor expansion, 113
Principal part, 121

at infinity, 127
Principal value, 39, 97

Radius of convergence, 113
Rational function, 34, 175
degree, 176
Ray, 41
Rectifiable, 17
bounded variation, 22
Regular point, 187
Removable singularity, 127
Residues, 130
double loop integrals, 163

integrals around rectangular contours,

151

integrals around triangular contours,

156
integrals involving branch points, 156

integrals involving logarithmic func-

tions, 145

integrals involving rational functions,

135

integrals involving trigonometric func-

tions, 141, 144

loop integrals, 161

theorems, 132, 170
Riemann axis, 42
Riemann sphere, 125
Riemann surface, 44, 206

branch point, 45

genus, 212

sheet, 45

slit, 46

plane, 47

Root test, 115, 119
Rouché’s theorem, 179

Schwarz-Christoffel transformation, 212
Schwarz inequality, 11, 101
Sequences, 6

bounded, 8

Cauchy convergence theorem, 8

convergence, 6

limit, 6

of functions, 107, 108

product, 9

reciprocal, 10

sum, 9

Index

Series, 103
convergence, 104
absolute, 105
uniform, 107

Laurent, 120
of functions, 107
partial sums, 104
power, 112
product, 105
sum, 104
Taylor, 113
Weierstrass M-test, 108
Set, see Point set
Sheet, 45
Simple curve, 15
closed, 16
Singular point, 187
Singularities, 124
essential, 127
isolated, 126
pole, 127
removable, 127
Slit plane, 47
Smooth curve, 78
closed, 78
Spherical neighborhood, 13
Squares, irregular, 80
regular, 80

Taylor expansion, 113
Transformation, bilinear, 68, 202

composition, 192

conformal, 64

identity, 194

inverse, 199

linear, 195

fractional, 68

rotation, 194

Schwarz-Christoffel, 212
Triangle inequality, 5, 12
Trigonometric functions, 35

Uniform, continuity, 32
convergence, 107
function, 59

Union, 26, 185

Upper limit, 116

Variation, 20
of argument, 172
Weierstrass M-test, 108

Zero, of order p, 129
simple, 182
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ing, etc. “Presented in an easy humorous style which I consider the best kind of
expository writing,” Prof. A. C. Cohen, Industry Quality Control. Enlarged
revised edition. Formerly titled The Science of Chance. Preface and two new
appendices by the author. xiv 4 365pp. 534 x 8. 21007-3 Paperbound $2.00

Basic ELECTRONICS,

prepared by the U.S. Navy Training Publications Center
A thorough and comprehensive manual on the fundamentals of electronics.
Written clearly, it is equally useful for self-study or course work for those with
a knowledge of the principles of basic electricity. Partial contents: Operating
Principles of the Electron Tube; Introduction to Transistors; Power Supplies
for Electronic Equipment; Tuned Circuits; Electron-Tube Ampilifiers; Audio
Power Amplifiers; Oscillators; Transmitters; Transmission Lines; Antennas and
Propagation; Introduction to Computers; and related topics. Appendix. Index.
Hundreds of illustrations and diagrams. vi 4 471pp. 614 x 914.

61076-4 Paperbound $2.95

Basic THEORY AND APPLICATION OF TRANSISTORS,

prepared by the U.S. Department of the Army
An introductory manual prepared for an army training program. One of the
finest available surveys of theory and application of transistor design and
operation. Minimal knowledge of physics and theory of electron tubes required.
Suitable for textbook use, course supplement, or home study. Chapters: Intro-
duction; fundamental theory of transistors; transistor amplifier fundamentals;
parameters, equivalent circuits, and characteristic curves; bias stabilization;
transistor analysis and comparison using characteristic curves and charts: audio
amplifiers; tuned amplifiers; wide-band amplifiers; oscillators; pulse and switch-
ing circuits; modulation, mixing, and demodulation; and additional semi-
conductor devices. Unabridged, corrected edition. 240 schematic drawings,
photographs, wiring diagrams, etc. 2 Appendices. Glossary. Index. 263pp.
614 x 914. 60380-6 Paperbound $1.75

GUIDE TO THE LITERATURE OF MATHEMATICS AND PHYSsICS,
N. G. Parke IIT
Over 5000 entries included under approximately 120 major subject headings of
selected most important books, monographs, periodicals, articles in English,
plus important works in German, French, Italian, Spanish, Russian (many
recently available works). Covers every branch of physics, math, related engi-
neering. Includes author, title, edition, publisher, place, date, number of
volumes, number of pages. A 40-page introduction on the basic problems of
research and study provides useful information on the organization and use of
libraries, the psychology of learning, etc. This reference work will save you
hours of time. 2nd revised edition. Indices of authors, subjects, 464pp. 534 x 8.
60447-0 Paperbound $2.75
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THE Rise oF THE NEw PHysIcs (formerly THE DECLINE OF MECHANISM),
A. d’Abro
This authoritative and comprehensive 2-volume exposition is unique in scien-
tific publishing. Written for intelligent readers not familiar with higher
mathematics, it is the only thorough explanation in non-technical language of
modern mathematical-physical theory. Combining both history and exposition,
it ranges from classical Newtonian concepts up through the electronic theories
of Dirac and Heisenberg, the statistical mechanics of Fermi, and Einstein’s
relativity theories. “A must for anyone doing serious study in the physical
sciences,” J. of Franklin Inst. g7 illustrations. ggipp. 2 volumes,
20003-5, 20004-3 Two volume set, paperbound $5.50

THE STRANGE STORY OF THE QUANTUM, AN ACCOUNT FOR THE GENERAL
READER OF THE GROWTH OF IDEAs UNDERLYING OUR PRESENT ATOMIC
KNOWLEDGE, B. Hoffmann
Presents lucidly and expertly, with barest amount of mathematics, the problems
and theories which led to modern quantum physics. Dr. Hoffmann begins with
the closing years of the 19th century, when certain trifling discrepancies were
noticed, and with illuminating analogies and examples takes you through the
brilliant concepts of Planck, Einstein, Pauli, de Broglie, Bohr, Schroedinger,
Heisenberg, Dirac, Sommerfeld, Feynman, etc. This edition includes a new, long
postscript carrying the story through 1958. “Of the books attempting an account
of the history and contents of our modern atomic physics which have come to
my attention, this is the best,” H. Margenau, Yale University, in American
Journal of Physics. 32 tables and line illustrations. Index. 275pp. 534 X 8.
20518-5 Paperbound $2.00

GREAT IDEAS AND THEORIES OF MODERN COSMOLOGY,

Jagjit Singh
The theories of Jeans, Eddington, Milne, Kant, Bondi, Gold, Newton, Einstein,
Gamow, Hoyle, Dirac, Kuiper, Hubble, Weizsicker and many others on such
cosmological questions as the origin of the universe, space and time, planet
formation, “continuous creation,” the birth, life, and death of the stars, the
origin of the galaxies, etc. By the author of the popular Great Ideas of Modern
Mathematics. A gifted popularizer of science, he makes the most difficult
abstractions crystal-clear even to the most non-mathematical reader. Index.
xii 4 276pp. 5% X 814. 20925-3 Paperbound $2.50

GREAT IDEAS OF MODERN MATHEMATICS: THEIR NATURE AND USE,

Jagjit Singh
Reader with only high school math will understand main mathematical ideas
of modern physics, astronomy, genetics, psychology, evolution, etc., better than
many who use them as tools, but comprehend little of their basic structure.
Author uses his wide knowledge of non-mathematical fields in brilliant exposi-
tion of differential equations, matrices, group theory, logic, statistics, problems
of mathematical foundations, imaginary numbers, vectors, etc. Original publica-
tions, appendices. indexes. 65 illustr. 322pp. 534 x 8. 20587-8 Paperbound $2.25

THE MATHEMATICS OF GREAT AMATEURS, Julian L. Coolidge
Great discoveries made by poets, theologians, philosophers, artists and other
non-mathematicians: Omar Khayyam, Leonardo da Vinci, Albrecht Diirer,
John Napier, Pascal, Diderot, Bolzano, etc. Surprising accounts of what can
result from a non-professional preoccupation with the oldest of sciences. 56
figures. viii 4- 211pp. 534 x 814%. 61009-8 Paperbound $2.00
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COLLEGE ALGEBRA, H. B. Fine
Standard college text that gives a systematic and deductive structure to algebra;
comprehensive, connected, with emphasis on theory. Discusses the commutative,
associative, and distributive laws of number in unusual detail, and goes on
with undetermined coefficients, quadratic equations, progressions, logarithms,
permutations, probability, power series, and much more. Still most valuable
elementary-intermediate text on the science and structure of algebra. Index.
1560 problems, all with answers.x - 631pp. 534 x 8.60211-7 Paperbound $2.75

HIGHER MATHEMATICS FOR STUDENTS OF CHEMISTRY AND PHysics,

J. W. Mellor
Not abstract, but practical, building its problems out of familiar laboratory
material, this covers differential calculus, coordinate, analytical geometry,
functions, integral calculus, infinite series, numerical equations, differential
equations, Fourier’s theorem, probability, theory of errors, calculus of varia-
tions, determinants. “If the reader is not familiar with this book, it will repay
him to examine it,” Chem. & Engineering News. 8oo problems. 189 figures.
Bibliography. xxi 4 641pp. 53 x 8. 60193-5 Paperbound $3.50

TRIGONOMETRY REFRESHER FOR TECHNICAL MEN,

A. A. Klaf
A modern question and answer text on plane and spherical trigonometry. Part I
covers plane trigonometry: angles, quadrants, trigonometrical functions, graph-
ical representation, interpolation, equations, logarithms, solution of triangles,
slide rules, etc. Part II discusses applications to navigation, surveying, elasticity,
architecture, and engineering. Small angles, periodic functions, vectors, polar
coordinates, De Moivre's theorem, fully covered. Part III is devoted to spherical
trigonometry and the solution of spherical triangles, with applications to
terrestrial and astronomical problems. Special time-savers for numerical calcula-
tion. 913 questions answered for you! 1738 problems; answers to odd numbers.
494 figures. 14 pages of functions, formulae. Index. x - 629pp. 5% x 8.

203871-9 Paperbound $3.00

CALcULUs REFRESHER FOR TECHNICAL MEN,

A. A. Klaf
Not an ordinary textbook but a unique refresher for engineers, technicians,
and students. An examination of the most important aspects of differential and
integral calculus by means of 756 key questions. Part I covers simple differential
calculus: constants, variables, functions, increments, derivatives, logarithms,
curvature, etc. Part II treats fundamental concepts of integration: inspection,
substitution, transformation, reduction, areas and volumes, mean value, succes-
sive and partial integration, double and triple integration. Stresses practical
aspects! A 5o page section gives applications to civil and nautical engineering,
electricity, stress and strain, elasticity, industrial engineering, and similar fields.
756 questions answered. 556 problems; solutions to odd numbers. 36 pages of
constants, formulae. Index. v 4 431pp. 534 x 8. 20370-0 Paperbound $2.25

INTRODUCTION TO THE THEORY OF GROUPS OF FINITE ORDER,

R. Carmichael
Examines fundamental theorems and their application. Beginning with sets,
systems, permutations, etc., it progresses in easy stages through important types
of groups: Abelian, prime power, permutation, etc. Except 1 chapter where
matrices are desirable, no higher math needed. 783 exercises, problems. Index.
Xvi 4 447pp- 534 x 8. 60300-8 Paperbound $g.00
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FIVE VOLUME “THEORY OF FUNCTIONS” SET BY KONRAD KNOPP

This five-volume set, prepared by Konrad Knopp, provides a complete and
readily followed account of theory of functions. Proofs are given concisely, yet
without sacrifice of completeness or rigor. These volumes are used as texts by
such universities as M.I.T., University of Chicago, N. Y. City College, and many
others. “Excellent introduction . . . remarkably readable, concise, clear, rigor-
ous,” Journal of the American Statistical Association.

ELEMENTS OF THE THEORY OF FUNCTIONS,

Konrad Knopp
This book provides the student with background for further volumes in this
set, or texts on a similar level. Partial contents: foundations, system of complex
numbers and the Gaussian plane of numbers, Riemann sphere of numbers,
mapping by linear functions, normal forms, the logarithm, the cyclometric
functions and binomial series. “Not only for the young student, but also for the
student who knows all about what is in it,” Mathematical Journal. Bibliography.
Index. 140pp. 5% x 8. 60154-4 Paperbound $1.50

THEORY oF FuNcTIONS, PART I,

Konrad Knopp
With volume II, this book provides coverage of basic concepts and theorems.
Partial contents: numbers and points, functions of a complex variable, integral
of a continuous function, Cauchy’s integral theorem, Cauchy’s integral for-
mulae, series with variable terms, expansion of analytic functions in power
series, analytic continuation and complete definition of analytic functions,
entire transcendental functions, Laurent expansion, types of singularities.
Bibliography. Index. vii 4 146pp. 534 x 8. 60156-0 Paperbound $1.50

THEORY OF FUNCTIONS, PART 11,

Konrad Knopp
Application and further development of general theory, special topics. Single
valued functions. Entire, Weierstrass, Meromorphic functions. Riemann sur-
faces. Algebraic functions. Analytical configuration, Riemann surface. Bibliog-
raphy. Index. x 4 150pp. 5% x 8. 60157-9 Paperbound $1.50

PROBLEM BOOK IN THE THEORY OF FUNCTIONS, VOLUME 1.

Konrad Knopp
Problems in elementary theory, for use with Knopp’s Theory of Functions, or
any other text, arranged according to increasing difficulty. Fundamental con-
cepts, sequences of numbers and infinite series, complex variable, integral
theorems, development in series, conformal mapping. 182 problems. Answers.
viii 4 126pp. 534 x 8. 60158-7 Paperbound $1.50

PROBLEM BOOK IN THE THEORY OF FUNCTIONS, VOLUME 2,

Konrad Knopp
Advanced theory of functions, to be used either with Knopp’s Theory of
Functions, or any other comparable text. Singularities, entire & meromorphic
functions, periodic, analytic, continuation, multiple-valued functions, Riemann
surfaces, conformal mapping. Includes a section of additional elementary prob-
lems. “The difficult task of selecting from the immense material of the modern
theory of functions the problems just within the reach of the beginner is here
masterfully accomplished,” Am. Math. Soc. Answers. 138pp. 534 x 8.

60159-5 Paperbound $1.50
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NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS,

H. Levy & E. A. Baggott
Comprehensive collection of methods for solving ordinary differential equations
of first and higher order. All must pass 2 requirements: easy to grasp and
practical, more rapid than school methods. Partial contents: graphical integra-
tion of differential equations, graphical methods for detailed solution. Numer-
ical solution. Simultaneous equations and equations of 2nd and higher orders.
“Should be in the hands of all in research in applied mathematics, teaching,”
Nature. 21 figures. viii + 238pp. 534 x 8. 60168-4 Paperbound $1.85

ELEMENTARY STATISTICS, WITH APPLICATIONS IN MEDICINE AND THE

BIOLOGICAL SCIENCES, F. E. Croxton
A sound introduction to statistics for anyone in the physical sciences, assum-
ing no prior acquaintance and requiring only a modest knowledge of math.
All basic formulas carefully explained and illustrated; all necessary reference
tables included. From basic terms and concepts, the study proceeds to frequency
distribution, linear, non-linear, and multiple correlation, skewness, kurtosis,
etc. A large section deals with reliability and significance of statistical methods.
Containing concrete examples from medicine and biology, this book will prove
unusually helpful to workers in those fields who increasingly must evaluate,
check, and interpret statistics. Formerly titled “Elementary Statistics with Ap-
plications in Medicine.” 101 charts. g7 tables. 14 appendices. Index. vi
376pp. 534 x 8. 60506-X Paperbound $2.25

INTRODUCTION TO SyMBoLIC LocIc,

S. Langer
No special knowledge of math required — probably the clearest book ever
written on symbolic logic, suitable for the layman, general scientist, and philos-
opher. You start with simple symbols and advance to a knowledge of the
Boole-Schroeder and Russell-Whitehead systems. Forms, logical structure, classes,
the calculus of propositions, logic of the syllogism, etc. are all covered. “One
of the clearest and simplest introductions,” Mathematics Gazette. Second en-
larged, revised edition. 368pp. 584 x 8. 60164-1 Paperbound $2.25

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS,

W. W. R. Ball
Most readable non-technical history of mathematics treats lives, discoveries of
every important figure from Egyptian, Phoenician, mathematicians to late 1gth
century. Discusses schools of Ionia, Pythagoras, Athens, Cyzicus, Alexandria,
Byzantium, systems of numeration; primitive arithmetic; Middle Ages, Renais-
sance, including Arabs, Bacon, Regiomontanus, Tartaglia, Cardan, Stevinus,
Galileo, Kepler; modern mathematics of Descartes, Pascal, Wallis, Huygens,
Newton, Leibnitz, d’Alembert, Euler, Lambert, Laplace, Legendre, Gauss,
Hermite, Weierstrass, scores more. Index. 25 figures. 546pp. 5% x 8.

20630-0 Paperbound $2.75

INTRODUCTION TO NONLINEAR DIFFERENTIAL AND INTEGRAL EQUATIONS,
Harold T. Davis
Aspects of the problem of nonlinear equations, transformations that lead to
equations solvable by classical means, results in special cases, and useful
generalizations. Thorough, but easily followed by mathematically sophisticated
reader who knows little about non-linear equations. 137 problems for student
to solve. xv - 566pp. 534 x 814. 60971-5 Paperbound $2.75



CATALOGUE OF DOVER BOOKS

AN INTRODUCTION TO THE GEOMETRY OF N DIMENSIONS,

D. H. Y. Sommerville
An introduction presupposing no prior knowledge of the field, the only book
in English devoted exclusively to higher dimensional geometry. Discusses
fundamental ideas of incidence, parallelism, perpendicularity, angles between
linear space; enumerative geometry; analytical geometry from projective and
metric points of view; polytopes; elementary ideas in analysis situs; content of
hyper-spacial figures. Bibliography. Index. 6o diagrams. 196pp. 534 x 8.

60494-2 Paperbound $1.50

ELEMENTARY CONCEPTS OF ToPoLOGY, P. Alexandroff
First English translation of the famous brief introduction to topology for the
beginner or for the mathematician not undertaking extensive study. This un-
usually useful intuitive approach deals primarily with the concepts of complex,
cycle, and homology, and is wholly consistent with current investigations.
Ranges from basic concepts of set-theoretic topology to the concept of Betti
groups. “Glowing example of harmony between intuition and thought,” David
Hilbert. Translated by A. E. Farley. Introduction by D. Hilbert. Index. 25
figures. 73pp. 534 x 8. 60747-X Paperbound $1.25

ELEMENTS OF NON-EUCLIDEAN GEOMETRY,

D. M. Y. Sommerville
Unique in proceeding step-by-step, in the manner of traditional geometry.
Enables the student with only a good knowledge of high school algebra and
geometry to grasp elementary hyperbolic, elliptic, analytic non-Euclidean geom-
etries; space curvature and its philosophical implications; theory of radical
axes; homothetic centres and systems of circles; parataxy and parallelism;
absolute measure; Gauss’ proof of the defect area theorem; geodesic representa-
tion; much more, all with exceptional clarity. 126 problems at chapter endings
provide progressive practice and familiarity. 133 figures. Index. xvi - 274pp.
534 x 8. 60460-8 Paperbound $2.00

INTRODUCTION TO THE THEORY OF NUMBERS, L. E. Dickson
Thorough, comprehensive approach with adequate coverage of classical litera-
ture, an introductory volume beginners can follow. Chapters on divisibility,
congruences, quadratic residues & reciprocity. Diophantine equations, etc. Full
treatment of binary quadratic forms without usual restriction to integral coef-
ficients, Covers infinitude of primes, least residues. Fermat’s theorem. Euler’s
phi function, Legendre’s symbol, Gauss’s lemma, automorphs, reduced forms,
recent theorems of Thue & Siegel, many more. Much material not readily
available elsewhere. 239 problems. Index. I figure. viii | 183pp. 534 x 8.
60342-3 Paperbound $1.75

MATHEMATICAL TABLES AND FORMULAS,

compiled by Robert D. Carmichael and Edwin R. Smith
Valuable collection for students, etc. Contains all tables necessary in college
algebra and trigonometry, such as five-place common logarithms, logarithmic
sines and tangents of small angles, logarithmic trigonometric functions, natural
trigonometric functions, four-place antilogarithms, tables for changing from
sexagesimal to circular and from circular to sexagesimal measure of angles, etc.
Also many tables and formulas not ordinarily accessible, including powers,
roots, and reciprocals, exponential and hyperbolic functions, ten-place loga-
rithms of prime numbers, and formulas and theorems from analytical and
elementary geometry and from calculus. Explanatory introduction. viii
269pp. 5%% x 8l4. 60111-0 Paperbound $1.50
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A SOURCE BOOK IN MATHEMATICS,

D. E. Smith
Great discoveries in math, from Renaissance to end of 1gth century, in English
translation. Read announcements by Dedekind, Gauss, Delamain, Pascal,
Fermat, Newton, Abel, Lobachevsky, Bolyai, Riemann, De Moivre, Legendre,
Laplace, others of discoveries about imaginary numbers, number congruence,
slide rule, equations, symbolism, cubic algebraic equations, non-Euclidean
forms of geometry, calculus, function theory, quaternions, etc. Succinct selec-
tions from 125 different treatises, articles, most unavailable elsewhere in English.
Each article preceded by biographical introduction. Vol. I: Fields of Number,
Algebra. Index. g2 illus. 338pp. 534 x 8. Vol. II: Fields of Geometry, Probability,
Calculus, Functions, Quaternions. 83 illus. 432pp. 534 x 8.

60552-3, 60553-1 Two volume set, paperbound $5.00

FouNDATIONS OF PHYSICS,

R. B. Lindsay & H. Margenau
Excellent bridge between semi-popular works & technical treatises. A discussion
of methods of physical description, construction of theory; valuable for physicist
with elementary calculus who is interested in ideas that give meaning to data,
tools of modern physics. Contents include symbolism; mathematical equations;
space & time foundations of mechanics; probability; physics & continua; electron
theory; special & general relativity; quantum mechanics; causality. “Thorough
and yet not overdetailed. Unreservedly recommended,” Nature (London).
Unabridged, corrected edition. List of recommended readings. g5 illustrations.
xi 4 537Pp- 534 x 8. 60377-6 Paperbound $3.50

FUNDAMENTAL FORMULAS OF PHYSICS,
ed. by D. H. Menzel
High useful, full, inexpensive reference and study text, ranging from simple
to highly sophisticated operations. Mathematics integrated into text—each
chapter stands as short textbook of field represented. Vol. 1: Statistics, Physical
Constants, Special Theory of Relativity, Hydrodynamics, Aerodynamics,
Boundary Value Problems in Math, Physics, Viscosity, Electromagnetic Theory,
etc. Vol. 2: Sound, Acoustics, Geometrical Optics, Electron Optics, High-Energy
Phenomena, Magnetism, Biophysics, much more. Index. Total of 8oopp. 534 x 8.
60595-7, 60596-5 Two volume set, paperbound $4.75

THEORETICAL PHYSICS,

A. S. Kompaneyets
One of the very few thorough studies of the subject in this price range. Provides
advanced students with a comprehensive theoretical background. Especially
strong on recent experimentation and developments in quantum theory.
Contents: Mechanics (Generalized Coordinates, Lagrange’s Equation, Collision
of Particles, etc), Electrodynamics (Vector Analysis, Maxwell’s equations,
Transmission of Signals, Theory of Relativity, etc.), Quantum Mechanics (the
Inadequacy of Classical Mechanics, the Wave Equation, Motion in a Central
Field, Quantum Theory of Radiation, Quantum Theories of Dispersion and
Scattering, etc.), and Statistical Physics (Equilibrium Distribution of Molecules
in an Ideal Gas, Boltzmann Statistics, Bose and Fermi Distribution. Thermo-
dynamic Quantities, etc.). Revised to 1961. Translated by George Yankovsky,
authorized by Kompaneyets. 137 exercises. 56 figures. 529pp. 534 x 814.

60972-3 Paperbound $3.50
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MATHEMATICAL PHYSIcs, D. H. Menzel
Thorough one-volume treatment of the mathematical techniques vital for
classical mechanics, electromagnetic theory, quantum theory, and relativity.
Written by the Harvard Professor of Astrophysics for junior, senior, and grad-
uate courses, it gives clear explanations of all those aspects of function theory,
vectors, matrices, dyadics, tensors, partial differential equations, etc., necessary
for the understanding of the various physical theories. Electron theory, rel-
ativity, and other topics seldom presented appear here in considerable detail.
Scores of definition, conversion factors, dimensional constants, etc. “More

detailed than normal for an advanced text . . . excellent set of sections on
Dyadics, Matrices, and Tensors,” Journal of the Franklin Institute. Index. 193
problems, with answers. X 4 412pp. 5% x 8. 60056-4 Paperbound $2.50

THE THEORY OF SOUND, Lord Rayleigh
Most vibrating systems likely to be encountered in practice can be tackled
successfully by the methods set forth by the great Nobel laureate, Lord
Rayleigh. Complete coverage of experimental, mathematical aspects of sound
theory. Partial contents: Harmonic motions, vibrating systems in general, lateral
vibrations of bars, curved plates or shells, applications of Laplace’s functions to
acoustical problems, fluid friction, plane vortex-sheet, vibrations of solid bodies,
etc. This is the first inexpensive edition of this great reference and study work.
Bibliography, Historical introduction by R. B. Lindsay. Total of 1040pp. g7
figures. 534 x 8. 60292-3, 60293-1 'Two volume set, paperbound $6.00

HybprobyNAMIcs, Horace Lamb
Internationally famous complete coverage of standard reference work on
dynamics of liquids & gases. Fundamental theorems, equations, methods, solu-
tions, background, for classical hydrodynamics. Chapters include Equations of
Motion, Integration of Equations in Special Gases, Irrotational Motion, Motion
of Liquid in 2 Dimensions, Motion of Solids through Liquid-Dynamical Theory,
Vortex Motion, Tidal Waves, Surface Waves, Waves of Expansion, Viscosity,
Rotating Masses of Liquids. Excellently planned, arranged; clear, lucid presenta-
tion. 6th enlarged, revised edition. Index. Over goo footnotes, mostly bibliogra-
phical. 119 figures. xv 4 738pp. 614 x 914. 60256-7 Paperbound $4.00

DYNAMICAL THEORY OF GASES, James Jeans
Divided into mathematical and physical chapters for the convenience of those
not expert in mathematics, this volume discusses the mathematical theory of
gas in a steady state, thermodynamics, Boltzmann and Maxwell, kinetic theory,
quantum theory, exponentials, etc. 4th enlarged edition, with new material on
quantum theory, quantum dynamics, etc. Indexes. 28 figures. 444pp. 614 x g14.
60136-6 Paperbound $2.75

THERMODYNAMICS, Enrico Fermi
Unabridged reproduction of 1937 edition. Elementary in treatment; remarkable
for clarity, organization. Requires no knowledge of advanced math beyond
calculus, only familiarity with fundamentals of thermometry, calorimetry.
Partial Contents: Thermodynamic systems; First & Second laws of thermo-
dynamics; Entropy; Thermodynamic potentials: phase rule, reversible electric
cell; Gaseous reactions: van’t Hoff reaction box, principle of LeChatelier;
Thermodynamics of dilute solutions: osmotic & vapor pressures, boiling &
freezing points; Entropy constant. Index. 25 problems. 24 illustrations. x 4
160pp. 534 x 8. 60361-X Paperbound $z.00
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CELESTIAL OBJECTS FOR COMMON TELESCOPES,

Rev. T. W. Webb
Classic handbook for the use and pleasure of the amateur astronomer. Of
inestimable aid in locating and identifying thousands of celestial objects. Vol I,
The Solar System: discussions of the principle and operation of the telescope,
procedures of observations and telescope-photography, spectroscopy, etc., precise
location  information of sun, moon, planets, meteors. Vol. II, The Stars:
alphabetical listing of constellations, information on double stars, clusters, stars
with unusual spectra, variables, and nebulae, etc. Nearly 4,000 objects noted.
Edited and extensively revised by Margaret W. Mayall, director of the American
Assn, of Variable Star Observers. New Index by Mrs. Mayall giving the location
of all objects mentioned in the text for Epoch 2000. New Precession Table
added. New appendices on the planetary satellites, constellation names and
abbreviations, and solar system data. Total of 46 illustrations. Total of xxxix
-4 606pp. 534 x 8. 20917-2, 20918-0 Two volume set, paperbound $5.00

PLANETARY THEORY,

E. W. Brown and C. 4. Shook
Provides a clear presentation of basic methods for calculating planetary orbits
for today’s astronomer. Begins with a careful exposition of specialized mathe-
matical topics essential for handling perturbation theory and then goes on to
indicate how most of the previous methods reduce ultimately to two general
calculation methods: obtaining expressions either for the coordinates of plane-
tary positions or for the elements which determine the perturbed paths. An
example of each is given and worked in detail. Corrected edition. Preface.
Appendix. Index. xii 4 go2pp. 534 x 814. 61133-7 Paperbound $2.25

STAR NAMES AND THEIR MEANINGS,

Richard Hinckley Allen
An unusual book documenting the various attributions of names to the
individual stars over the centuries. Here is a treasure-house of information on
a topic not normally delved into even by professional astronomers; provides a
fascinating background to the stars in folk-lore, literary references, ancient
writings, star catalogs and maps over the centuries. Constellation-by-constella-
tion analysis covers hundreds of stars and other asterisms, including the
Pleiades, Hyades, Andromedan Nebula, etc. Introduction. Indices. List of
authors and authorities. xx 4 563pp. 534 X 814. 21079-0 Paperbound $3.00

A SHORT HISTORY OF ASTRONOMY, 4. Berry
Popular standard work for over 5o years, this thorough and accurate volume
covers the science from primitive times to the end of the 1gth century. After
the Greeks and the Middle Ages, individual chapters analyze Copernicus, Brahe,
Galileo, Kepler, and Newton, and the mixed reception of their discoveries.
Post-Newtonian achievements are then discussed in unusual detail: Halley,
Bradley, Lagrange, Laplace, Herschel, Bessel, etc. 2 Indexes. 104 illustrations,
9 portraits. xxxi -} 440pp. 534 x 8. 20210-0 Paperbound $2.75

SOME THEORY OF SAMPLING, W. E. Deming
The purpose of this book is to make sampling techniques understandable to
and useable by social scientists, industrial managers, and natural scientists
who are finding statistics increasingly part of their work. Over 200 exercises,
plus dozens of actual applications. 61 tables. go figs. xix 4 6ozpp. 5%4 x 814.
61755-6 Paperbound $3.50
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PRINCIPLES OF STRATIGRAPHY,

A. W. Grabau
Classic of 20th century geology, unmatched in scope and comprehensiveness.
Nearly 600 pages cover the structure and origins of every kind of sedimentary,
hydrogenic, oceanic, pyroclastic, atmoclastic, hydroclastic, marine hydroclastic,
and bioclastic rock; metamorphism; erosion; etc. Includes also the constitution
of the atmosphere; morphology of oceans, rivers, glaciers; volcanic activities;
faults and earthquakes; and fundamental principles of paleontology (nearly 200
pages). New introduction by Prof. M. Kay, Columbia U. 1277 bibliographical
entries. 264 diagrams. Tables, maps, etc. Two volume set. Total of xxxii 4
1185pp. 534 X 8. 60686-4, 60687-2 Two volume set, paperbound $6.25

SNow CryYsTALs, W. A. Bentley and W. J. Humphreys
Over 200 pages of Bentley’s famous microphotographs of snow flakes—the pro-
duct of painstaking, methodical work at his Jericho, Vermont studio. The
pictures, which also include plates of frost, glaze and dew on vegetation, spider
webs, windowpanes; sleet; graupel or soft hail, were chosen both for their
scientific interest and their aesthetic qualities. The wonder of nature’s diversity
is exhibited in the intricate, beautiful patterns of the snow flakes. Introductory
text by W. J. Humphreys. Selected bibliography. 2,453 illustrations. 224pp.
8 x 1014. 20287-9 Paperbound $3.25

THE BIRTH AND DEVELOPMENT OF THE GEOLOGICAL SCIENCES,

F. D. Adams
Most thorough history of the earth sciences ever written. Geological thought
from earliest times to the end of the 1gth century, covering over goo early
thinkers & systems: fossils & their explanation, vulcanists vs. neptunists, figured
stones & paleontology, generation of stones, dozens of similar topics. g1 illustra-
tions, including medieval, renaissance woodcuts, etc. Index. 632 footnotes,
mostly bibliographical. 511pp. 534 x 8. 20005-1 Paperbound $2.75

ORGANIC CHEMISTRY, F. C. Whitmore
The entire subject of organic chemistry for the practicing chemist and the
advanced student. Storehouse of facts, theories, processes found elsewhere only
in specialized journals. Covers aliphatic compounds (500 pages on the prop-
erties and synthetic preparation of hydrocarbons, halides, proteins, ketones,
etc.), alicyclic compounds, aromatic compounds, heterocyclic compounds, or-
ganophosphorus and organometallic compounds. Methods of synthetic prepara-
tion analyzed critically throughout. Includes much of biochemical interest.
“The scope of this volume is astonishing,” Industrial and Engineering
Chemistry. 12,000-reference index. 2387-item bibliography. Total of x
1005PPp- 534 X 8. 60700-3, 60701-1 Two volume set, paperbound $4.50

THE PHASE RULE AND ITS APPLICATION,
Alexander Findlay
Covering chemical phenomena of 1, 2, 3, 4, and multiple component systems,
this “standard work on the subject” (Nature, London), has been completely
revised and brought up to date by A. N. Campbell and N. O. Smith. Brand
new material has been added on such matters as binary, tertiary liquid
equilibria, solid solutions in ternary systems, quinary systems of salts and
water. Completely revised to triangular coordinates in ternary systems, clarified
graphic representation, solid models, etc. gth revised edition. Author, subject
indexes. 236 figures. 505 footnotes, mostly bibliographic. xii - 494pp. 5% Xx 8.
60091-2 Paperbound $2.75
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A COURSE IN MATHEMATICAL ANALYSIS,

Edouard Goursat
Trans. by E. R. Hedrick, O. Dunkel, H. G. Bergmann. Classic study of funda-
mental material thoroughly treated. Extremely lucid exposition of wide range
of subject matter for student with one year of calculus. Vol. 1: Derivatives and
differentials, definite integrals, expansions in series, applications to geometry.
52 figures, 556pp. 60554-X Paperbound $3.00. Vol. 2, Part I: Functions of a
complex variable, conformal representations, doubly periodic functions, nat-
ural boundaries, etc. g8 figures, 26gpp. 60555-8 Paperbound $2.25. Vol. 2,
Part I1: Differential equations, Cauchy-Lipschitz method, nonlinear differential
equations, simultaneous equations, etc. $o8pp. 60556-6 Paperbound $2.50.
Vol. g, Part I: Variation of solutions, partial differential equations of the
second order. 15 figures, 339pp. 61176-0 Paperbound $3.00. Vol. 3, Part II:
Integral equations, calculus of variations. 13 figures, 38gpp. 61177-9 Paperbound
$3.00 60554-X, 60555-8, 60556-6 61176-0, 61177-9 Six volume set,

paperbound $13.75
PLANETS, STARS AND GALAXIES,

A. E. Fanning
Descriptive astronomy for beginners: the solar system; neighboring galaxies;
seasons; quasars; ﬂy-by results from Mars, Venus, Moon; radio astronomy; etc.
all simply explained. Revised up to 1966 by author and Prof. D. H. Menzel,
former Director, Harvard College Observatory. 29 photos, 16 figures. 18gpp.
5% x 8L4. 21680-2 Paperbound $1.50

GREAT IDEAs IN INFORMATION THEORY, LANGUAGE AND CYBERNETICS,

Jagjit Singh
Winner of Unesco's Kalinga Prize covers language, metalanguages, analog and
digital computers, neural systems, work of McCulloch, Pitts, von Neumann,
Turing, other important topics. No advanced mathematics needed, yet a full
discussion without compromise or distortion. 118 figures. ix - 338pPp. 534 X 814%.
21694-2 Paperbound $2.25

GEOMETRIC EXERCISES IN PAPER FOLDING,

T. Sundara Row
Regular polygons, circles and other curves can be folded or pricked on paper,
then used to demonstrate geometric propositions, work out proofs, set up well-
known problems. 89 illustrations, photographs of actually folded sheets. xii +
148pp. 534 x 814. 21594-6 Paperbound $1.00

VisUAL ILLUSIONS, THEIR CAUSES, CHARACTERISTICS AND APPLICATIONS,
M. Luckiesh
The visual process, the structure of the eye, geometric, perspective illusions,
influence of angles, illusions of depth and distance, color illusions, lighting
effects, illusions in nature, special uses in painting, decoration, architecture,
magic, camouflage. New introduction by W. H. Ittleson covers modern develop-
ments in this area. 100 illustrations. xxi - 252pp. 5% x 8.
21530-X Paperbound $1.50

ATOMS AND MOLECULES SIMPLY EXPLAINED,
B. C. Saunders and R. E. D. Clark
Introduction to chemical phenomena and their applications: cohesion, particles,
crystals, tailoring big molecules, chemist as architect, with applications in
radioactivity, color photography, synthetics, biochemistry, polymers, and many
other important areas. Non technical. g5 figures. X + 209pp. 5%4 X 814.
21282-3 Paperbound $1.50
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THE PRINCIPLES OF ELECTROCHEMISTRY,
D. A. Maclnnes
Basic equations for almost every subfield of electrochemistry from first prin-
ciples, referring at all times to the soundest and most recent theories and
results; unusually useful as text or as reference. Covers coulometers and
Faraday’s Law, electrolytic conductance, the Debye-Hueckel method for the
theoretical calculation of activity coefficients, concentration cells, standard
electrode potentials, thermodynamic ionization constants, pH, potentiometric
titrations, irreversible phenomena. Planck’s equation, and much more. 2 indices.
Appendix. 585-item bibliography. 137 figures. g4 tables. ii 4 478pp. 554 x 834.
60052-1 Paperbound $3.00

MATHEMATICS OF MODERN ENGINEERING,

E. G. Keller and R. E. Doherty
Written for the Advanced Course in Engineering of the General Electric
Corporation, deals with the engineering use of determinants, tensors, the
Heaviside operational calculus, dyadics, the calculus of variations, etc. Presents
underlying principles fully, but emphasis is on the perennial engineering
attack of set-up and solve. Indexes. Over 185 figures and tables. Hundreds of
exercises, problems, and worked-out examples. References. Total of xxxiii 4
623pp. 534 x 8. 60734-8, 60735-6 Two volume set, paperbound $3.70

AERODYNAMIC THEORY: A GENERAL REVIEW OF PROGRESS,

William F. Durand, editor-in-chief
A monumental joint effort by the world’s leading authorities prepared under
a grant of the Guggenheim Fund for the Promotion of Aeronautics. Never
equalled for breadth, depth, reliability. Contains discussions of special mathe-
matical topics not usually taught in the engineering or technical courses. Also:
an extended two-part treatise on Fluid Mechanics, discussions of aerodynamics
of perfect fluids, analyses of experiments with wind tunnels, applied airfoil
theory, the nonlifting system of the airplane, the air propeller, hydrodynamics
of boats and floats, the aerodynamics of cooling, etc. Contributing experts
include Munk, Giacomelli, Prandtl, Toussaint, Von Karman, Klemperer, among
others. Unabridged republication. 6 volumes. Total of 1,012 figures, 12 plates,
2,186pp. Bibliographies. Notes. Indices. 534 x 814. 61709-2,
61710-6,61711-4, 61712-2, 61713-0,61715-9 Six volume set, paperbound $13.50

FUNDAMENTALS OF HYDRO- AND AEROMECHANICS,

L. Prandtl and O. G. Tietjens
The well-known standard work based upon Prandtl’s lectures at Goettingen.
Wherever possible hydrodynamics theory is referred to practical considerations
in hydraulics, with the view of unifying theory and experience. Presentation
is extremely clear and though primarily physical, mathematical proofs are
rigorous and use vector analysis to a considerable extent. An Engineering
Society Monograph, 1934. 186 figures. Index. xvi 4 270pp. 534 x 8.

60374-1 Paperbound $2.25

APPLIED HYDRO- AND AEROMECHANICS,

L. Prandtl and O. G. Tietjens
Presents for the most part methods which will be valuable to engineers. Covers
flow in pipes, boundary layers, airfoil theory, entry conditions, turbulent flow
in pipes, and the boundary layer, determining drag from measurements of
pressure and velocity, etc. Unabridged, unaltered. An Engineering Society
Monograph. 1934. Index. 226 figures, 28 photographic plates illustrating flow
patterns. Xvi 4 311pp. 584 X 8. 60375-X Paperbound $2.50
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ArpLIED OPTICS AND OPTICAL DESIGN,

A. E. Conrady
With publication of vol. 2, standard work for designers in optics is now
complete for first time. Only work of its kind in English; only detailed work
for practical designer and self-taught. Requires, for bulk of work, no math
above trig. Step-by-step exposition, from fundamental concepts of geometrical,
physical optics, to systematic study, design, of almost all types of optical
systems. Vol. 1: all ordinary ray-tracing methods; primary aberrations; neces-
sary higher aberration for design of telescopes, low-power microscopes, photo-
graphic equipment. Vol. 2: (Completed from author’s notes by R. Kingslake,
Dir. Optical Design, Eastman Kodak.) Special attention to high-power micro-
scope, anastigmatic photographic objectives. “An indispensable work,” J., Opti-
cal Soc. of Amer. Index. Bibliography. 193 diagrams. 852pp. 614 x 914.

60611-2, 60612-0 Two volume set, paperbound $8.00

MECHANICS OF THE GYROSCOPE, THE DYNAMICS OF ROTATION,

R. F. Deimel, Professor of Mechanical Engineering at Stevens Institute of

Technology
Elementary general treatment of dynamics of rotation, with special application
of gyroscopic phenomena. No knowledge of vectors needed. Velocity of a moving
curve, acceleration to a point, general equations of motion, gyroscopic horizon,
free gyro, motion of discs, the damped gyro, 103 similar topics. Exercises.
v5 figures. 208pp. 534 x 8. 60066-1 Paperbound $1.75

STRENGTH OF MATERIALS,
J. P. Den Hartog
Full, clear treatment of elementary material (tension, torsion, bending, com-
pound stresses, defiection of beams, etc.), plus much advanced material on
engineering methods of great practical value: full treatment of the Mohr circle,
lucid elementary discussions of the theory of the center of shear and the
“Myosotis” method of calculating beam deflections, reinforced concrete, plastic
deformations, photoelasticity, etc. In all sections, both general principles and
concrete applications are given. Index. 186 figures (160 others in problem
section). 50 problems, all with answers. List of formulas. viii + 323pp- 5%4 x 8.
60755-0 Paperbound $2.50

HyprAULIC TRANSIENTS,

G. R. Rich
The best text in hydraulics ever printed in English . . . by former Chief Design
Engineer for T.V.A. Provides a transition from the basic differential equations
of hydraulic transient theory to the arithmetic integration computation re-
quired by practicing engineers. Sections cover Water Hammer, Turbine Speed
Regulation, Stability of Governing, Water-Hammer Pressures in Pump Dis-
charge Lines, The Differential and Restricted Orifice Surge Tanks, The
Normalized Surge Tank Charts of Calame and Gaden, Navigation Locks,
Surges in Power Canals—Tidal Harmonics, etc. Revised and enlarged. Author’s
prefaces. Index. xiv 4 4ogpp. 5% x 814. 60116-1 Paperbound $2.50

Prices subject to change without notice.

Available at your book dealer or write for free catalogue to Dept. Adsci,
Dover Publications, Inc., 180 Varick St., N.Y., N.Y. 10014. Dover publishes more
than 150 books each year on science, elementary and advanced mathematics,
biology, music, art, literary history, social sciences and other areas.
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THE ADVANCED GEOMETRY OF PLANE CURVES AND THEIR APPLICA-
TI0NS, C. Zwikker. (61078-0) $2.50

TRIGONOMETRICAL SERIES, Antoni Zygmund. (60290-7) $2.50

PROBABILITY THEORY, A. R. Arthurs. (61724-6) $1.25

SoLuTtions OF LAPLACE's EQuaTions, D. R. Bland. (61452-2) $1.25

VIBRATING STRINGS, D. R. Bland. (61451-4) $1.25

VIBRATING SysTEMS, R. F. Chisnell. (61453-0) $1.25

Linear EquaTions, P. M. Cohn. (61455-7) $1.25

SoLip GEOMETRY, P. M. Cohn. (61454-9) $1.25

PrINCIPLES OF DyNamics, M. B, Glauert. (61456-5) $1.25

SEQUENCES AND SERIES, J. A, Green. (61457-3) $1.25

SeTs AND Groups, J. A. Green, (61458-1) $1.25

DirreRENTIAL CALCULUS, P. J. Hilton. (61459-X) $1.25

PARTIAL DERIVATIVES, P. J. Hilton. (61460-3) $1.25

ELECTRICAL AND MECHANICAL OsciLLATIONS, D). S. Jones. (61461-1)
$1.25

CompPLEX NUMBERS, W. Ledermann. (61462-X) $1.25

INTEGRAL CaLcurus, W. Ledermann. (61463-8) $1.25

MurtipLE INTEGRALS, W. Ledermann. (61723-8) $1.25

NUMERICAL APPROXIMATION, B. R. Morton. (61464-6) $1.25

ELEMENTARY DIFFERENTIAL EQUATIONS AND OPERATORS, G. E. H.
Reuter. (61465-4) §1.25

FouRrIER AND LAPLACE TRANSFORMS, Peter D. Robinson. (62083-2)
$1.25

Fourier Series, I. N. Sneddon. (61466-2) $1.25

DirreReNTIAL GEOMETRY, K. L. Wardle. (61467-0) $1.25

Paperbound unless otherwise indicated. Prices subject to change
without notice. Available at your book dealer or write for free
catalogues to Dept. TF 2, Dover Publications, Inc., 180 Varick
Street, N. Y., N.Y. 10014. Please indicate field of interest. Each year
Dover publishes more than 150 classical records and books on art,
science, engineering, humor, literature, philosophy, languages, chess,
puzzles, music and other areas. Manufactured in the U.S.A.



INTRODUCTION TO ADVANCED
COMPLEX CALCULUS

KENNETH S. MILLER

The theory of functions of a complex variable receives all too often
these days a hurried and superficial development, or a treatment
only of that portion necessary to accomplish specific tasks. A con-
sequence is that students fail to understand the meaning of the
theory as a whole and its relationship to mathematics. In this work
Dr. Miller, author of the well known Advanced Real Calculus, gives
detailed treatment and uniform exposition of complex variable
theory.

The text begins with the definition of complex numbers, their rules
of operation and their properties, with stress on the analogy to real
numbers and real sequences. After some topological preliminaries,
continuous curves and functions of bounded variation are discussed.
Function theory proper begins with a consideration of limits and
continuity of functions and goes on to introduce the elementary
functions by their (real) series expansion before extending the
definition to the complex plane, Careful attention is paid to multi-
valued functions, including a discussion of “Riemann axes” (the
analog of Riemann surfaces for real functions). A detailed study
of the integral follows, with proofs of the Cauchy Integral Theorem
and Cauchy Integral Formula. The next chapter discusses sequences
and series of complex numbers and functions of the complex vari-
able z. A thorough exposition of the calculus of residues with special
emphasis on integration around branch points is then undertaken,
after which important theorems are given, such as Rouché’s, Liou-
ville’s, and the maximum modulus theorem. A brief but mathe-
matically exact introduction to conformal mapping, including a
discussion of the elliptical integral, is provided. The final chapter
offers an interesting study of the method of Laplace integrals and
its application to the solution of linear differential equations.

Designed to follow a course in real variables, the text is intended
for upper class mathematics majors and beginning graduate students,
but its material has also been used with success for graduate engi-
neering students. The level of rigor is that of an exact €, §-treatment.
The only important theorem not proven is the Jordan separation
theorem, which, however, is extensively discussed. Exercises at the
end of each chapter provide a good number of problems chosen to
deepen insight into the theory of that chapter. Well conceived
and exactingly drawn diagrams illustrate the points under study.
First published in 1960, the book has proven so valuable to students
and instructors in introductory courses that a second printing was
necessary before its present republication.

Unabridged republication, with minor corrections; originally Ad-
vanced Complex Caleulus published 1960. 74 figures. List of
references. Index. viii 4+ 240pp. 534 x 814. 62661-X Paperbound
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