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FOREWORD

The book acquaints the reader with complex numbers and
functions of a complex argument (including Zhukovsky's function
as applied to the construction of a wing section). The material
is presented in a geometric form. Complex numbers are considered
as directed line segments and functions as mappings. To prepare
the reader to such an understanding of complex numbers,
we begin with a geometric interpretation of real numbers and
operations on them. The book is based on a lecture delivered
by the author to high-school students. To read the book, the reader
need not be acquainted with complex numbers.

The author



1. To represent real numbers geometrically use is made of
a number axis, i. e. a straight line on which are indicated
a point A - the origin of coordinates - representing the number 0,
and another point B representing the number + 1 (Fig. 1).

The direction from A to B is taken as the positive direction
of the number axis and the segment AB as a unit length.
Any segment AC represents a real number x whose absolute
value is equal to the length of that segment. When C does not
coincide with A (i. e. when the number x is not equal to zero),
then x is positive if the direction from A to C coincides with
the positive direction of the axis and negative if that direction
is opposite to the positive direction of the axis.
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Fig. 1.

2. Let us consider arbitrary intervals of the number axis
as directed segments, i. e. vectors on a straight line. We shall
differentiate the beginning and the end of each vector taking
the direction from the beginning to the end as the direction
of the vector. Vectors will be designated by two letters: the first
letter denoting the beginning and the second the end of the vector.
Every vector, irrespective of where its beginning is located (not
necessarily at A), will represent a certain- real number whose
absolute value is equal to the length of the vector. This number
is positive when the direction of the vector coincides with the
positive direction of the axis and negative when this direction
is opposite to the positive direction of the axis. Thus, for
instance, vector AB (A is the beginning and B is the end)
represents the number + 1, while vector BA (B is the beginning
and A is the end) represents the number - 1.

3. The direction of the vector can be defined by indicating
the angle between that vector and the positive direction of the
axis. If the direction of the vector coincides with the positive
direction of the axis, the angle can be considered to be of 0°.
If it is opposite to the positive direction of the axis, then
the angle can be taken to equal 180° (or - 180°). Let x be
some real number; if x"# 0, then the angle between the vector
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representing that number and the positive direction of the number
axis is called the argument of the number x. It is evident that
the argument of a positive number is equal to 0°, and the
argument of a negative number, to 180° (or to -180°). The argu­
ment of the number x is denoted as Arg x (Arg being the first
three letters of the Latin word argumentum, which can be translated
here as a sign, an indication). The number 0 is represented not
by a vector but by a point. Although in further discussion we
shall consider a point to be a special case of a vector, a vector
of zero length, we shall not be able to define in that case
either its direction or an angle it makes with the number axis;
therefore we shall not assign any argument to the number O.

4. Let us turn to the geometric interpretation of operations
on real numbers. We shall begin with addition and multiplication
from which we can e~sily pass to the inverse operations,

C, +C 2

~

A 82 8, C
~
~ c2

c,

Fig. 2.

subtraction and division. Let CI and C2 be two real numbers
and ABt and AB2 , the vectors representing them. We need
the rules which will make it possible, knowing vectors AB I and
AB2 to construct the vector representing the sum CI + C2 or the
product CIC2. We shall begin with addition. So, what should be
done with the vector AB I representing the first summand to
obtain the vector AC representing the sum?

It is easy to verify that to do this it is sufficient, in all
cases, to mark off a vector B I C, equal in length and direction
to vector AB 2, from the end of vector AB I; vector AC will be
the required one (Fig. 2).

5. Now let us pass to multiplication. If one of the factors
is equal to zero then the product is also zero; in that case,
the vector representing the product reduces to a point. Now let
us suppose that neither of the factors is equal to zero. Then
the absolute value * of the product CIC2 will be equal to I Ct 1·1 c21,

* The absolute value of a certain number c is written Ic I. For
instance, I5 I= 5, 1- 3 I= 3, I0 I= o.
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that is to the product of the absolute values of Cl and C2.

Therefore the length of vector AD representing the product will
be equal to the product of the lengths of vectors AB 1 and AB 2

representing the factors. The sign of the product C1C2 will coincide
with that of Cl when C2 > 0 and will be opposite to it when C2 < o.
In other words, the direction of AD coincides with the direction
of AB t when Arg C2 = 0 (this means that C2 > 0), and is opposite
to the direction of AB 1 when Arg ('2 = 1800 (and this means that
C2 < 0). Now it is easy to answer the question of what should

y

E

Fig. 3.

Fig. 4.

B,
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be done with the vector AB representing the multiplicand C1

to obtain from it the vector AD representing the product CIC2

(Cl #-0 and C2 # 0). To do this we must multiply the length
of the vector AB 1 by Ic21 (retaining the direction) and then rotate
the altered vector through an angle equal to the argument C2

(i. e. through 00 if c2 > 0 and through 1800 if C2 < 0); the resulting
vector will represent the product. This rule is illustrated by
Fig. 3 (c1 = 1.5 and C2 = -2).

6. Each vector on a straight line we associated with the
number represented by that vector. Now we shall consider various
vectors in a plane and each of them we shall associate with
the number represented by the vector considered. The numbers
we shall arrive at in this way, complex numbers, are of a different,
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more general character than real numbers. The latter will tum
out to be a special case of complex numbers, in the same way
as integers are a special case of rational numbers and rational
numbers, in their turn, are a special case of real numbers.

We begin with drawing two mutually perpendicular straight
lines, two number axes Ax and Ay with a common origin A,
in a plane, and take a line segment AB as a unit length (Fig. 4).
Then any vector lying on the axis Ax or parallel to it can be
considered, as before, to be a geometric image (representation)
of a real number. Thus, vectors AB and A'B', the length of each
of which is equal to unity, and the direction coincides with
the positive direction of Ax, represent the number 1, while
the vector CD of length 2 and of the opposite direction represents
the number - 2. Vectors not lying on Ax and not parallel to that
axis, such as AE and FG, do not represent any real numbers.
As regards such vectors, we shall say that they represent imaginary
numbers. And it should be noted that vectors equal in length,
parallel to each other and of the same sense represent the same
number, while vectors differing either in length or in direction
represent different imaginary numbers. Here we forestall the events
a little, since not yet knowing what imaginary numbers are we
speak of their images; but in real life as well it sometimes
happens that the acquaintance with the portrait forestalls meeting
the original.

Somewhat earlier we have shown that operations on real
numbers can be replaced by operations on vectors representing
these numbers. In the same fashion we shall replace operations
on imaginary numbers by operations on vectors representing them.
We shall not think or any new rules but shall retain in
a geometric form those found for addition and multiplication
of real numbers, the only difference being that the latter were
represented by vectors on the straight line Ax (or by vectors
parallel to that line) while imaginary numbers are represented by
vectors in a plane which do not lie on Ax and are not parallel
to Ax.

7. Before going on with our discussion we must note that
complex numbers (the word "complex" means -"compound" here)
may be both real (already known to us) and imaginary (as yet
known only by their "portraits"). For comparison we shall recall
that both rational and irrational numbers considered together are
also called by a single name, real numbers~

Let us proceed to addition of complex numbers. We have
agreed to retain the rule formulated for the addition of real
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numbers. Let AB 1 and AB 2 be two vectors representing some
complex numbers Cl and C2; to construct the vector representing
their sum Cl + C2 we mark ofT, from the end of the vector AB 1,

a vector B1C equal in length and of the same direction as the
vector AB 2 ; the vector AC connecting the beginning of AB 1 with
the end of B1C will be the required one (Fig. 5).

y

A

c

----<~--------~x

Fig. 5.

The only novelty here is that now we apply this rule to addition
of complex numbers (represented by any vectors in a plane) while
previously we used this rule only when we dealt with real
numbers (represented by vectors on a straight line).

If we want to follow the same rule to construct the sum
C2 + Cl (the summands have changed places), we have to mark
ofT, from the end of the vector AB 2 representing C2, a vector
of equal length and of the same direction as the vector AB 1

(representing Cl). We shall evidently arrive at the same point C
(in Fig. 5 AB 1CB2 is a parallelogram) and, hence, the sum C2 + Cl

is represented by the same vector AC as the sum Cl + C2.

In other words, the rule of addition implies the validity of the
commutative law:

C2 + Cl = Cl + C2·

The validity of the associative law can also be easily proved:

(C 1 + C2) + C3 = C1 + (C 2 + C3)·

All the necessary constructions are shown in Fig. 6. It is evident
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that adding (Cl + C2) (AC). with C3 (CD) we obtain the same
vector AD as we received while adding Cl (AB t) with (C2 + C3) (BtD).

8. Before turning to the discussion of multiplication, let us
apply the concepts of absolute value and argument to complex
numbers.

Suppose vector AB represents a complex number c. The abso-

y

o

A

Fig. 6.

lute value of c is the length of the vector AB, and its argument
c is the angle between the positive direction of the Ax axis and
the vector AB. This angle can be reckoned counterclockwise,
then it is positive, or clockwise, and in that case it is negative;
besides, we can arbitrarily add to it any integer which is
a multiple of 360°.

The designations of the absolute value and the argument
of the number c are the same as those of real numbers: Ic I
and Arg c. The only difference as compared to the case of real
numbers is that the argument of an imaginary number is
different from 0° and from ±1800

, whereas the argument of a real
number (different from zero) may be either 0° (when the number
is positive) or ± 1800 (when it "is negative).

Figure 7 shows vectors AB, AB t , AB2 and AB3 representing
complex numbers c. Ct- ('2 and ('3' It is easy for the reader
to verify the validity of the following assertions:

Ic I = leI I = 1, Ic2 I = 0, -I c3 I = 2;

Arg c = 0°, Arg Cl = 90(', Arg ('2 = 45°, Arg C3 = -60° (or 300°).
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9. Having introduced the concepts of the absolute value and
the argument of a complex number, .it is a right time to state
the rule of multiplication of complex numbers. It is precisely
the same as the corresponding rule for multiplication of real
numbers: to multiply a complex number Ct by a complex number
C2 (Ct:F 0 and C2 #= 0), it is necessary to multiply by Ic21

y

s,

c,

A

Fig. 7.

the length of the vector representing Ct (without changing
the direction) and then rotate the altered vector about the point A
through an angle equal to the argument of C2; the resulting
vector will represent the product CtC2. For example, the product
CtC2 is represented by vector AD (Fig. 8), and the product C2C3

by vector AE (Fig. 9).
One more rule of multiplication must be added: in the case

when even one of the factors is equal to zero the product
is also zero.

If we need to apply the multiplication rule to the product
C2Ct (the factors have changed places), we must multiply the length
of the vector representing C2 by IC1 I and rotate the altered vector
about point A through an angle equal to the argument of Ct.

The result proves to be the same as in the case of the multiplica-
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Fig. 8.
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Fig. 9.

tion of C 1 by c2: in both cases the length of the resulting
vector is ICl II c21, and the angle between Ax and this vector
is equal to Arg Cl + Arg C2.

Thus we have

that is the commutative law is valid for the multiplication of
complex numbers.
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The associative law is valid as well:

(CI C2) C3 = Cl (C2 C3)·

Indeed, each of the products being considered is represented by
one and the same vector; its length is 1C1 1. 1C2 I • 1C3 I, and the
angle between the Ax axis and that vector is equal to Arg Cl +
+ Arg C2 + Arg C3.

Let us now prove the validity of the distributive law:

(Cl + C2) C3 = CI C3 + C2 C3·

In Fig. 10 vector AB represents the sum of Cl + C2; if we retain
the directions of AB 1 and AB 2 and multiply all the lengths

ArgcJ

L y

,,-
"L,

,. ,,- I
8 ,. ,,- /

I
/

I

__- --dr,
8, -xA

Fig. 10.

of the sides of the triangle AB I B by IC3 I, we obtain the triangle
AKILI which is similar to the triangle ABIB. It is formed by
the vectors AK h K 1L}, ALI obtained from the vectors ch C2

and (c1 + C2) when all the lengths are increased 1c31 times
(the directions remain the same). Let us now turn the triangle
AK1L 1 about point A through the angle Arg C3; we shall receive
the triangle AKL. According to the multiplication rule, the vector
AK represents in it CtC3, the vector KL represents C2C3 and AL
represents (c1 + C2) C3. In accordance with the summation rule,
we obtain from the same triangle

Ct C3 + C2 C3 = (Cl + C2) C3,

and that is what we have to prove.
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10. The operations of subtraction and division are defined as
the inverse processes of addition and multiplication. In fact, we
speak of the complex number d as the difference between the
numbers Cl and C2 and write d = Cl - C2 if Cl = C2 + d, i. e. if Cl

is the sum of C2 and d. Depicting this relation between C2, d
and Cl in Fig. 11, we see that the vector representing the difference

y

A

s,

Fig. 11.
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A

Fig. 12.

Cl - C2 is ~btained if point B2 (the end of the vector representing
the subtrahend) is connected with point B1 (the end of the vector
representing the minuend) and then the former point is taken as
the beginning of the vector and the latter as its end.

Analogously we call the complex number r the quotient of

the numbers Cl and C2 (C2 '# 0) and write r = Cl : C2 or r = ~
C2

if Cl = C2', i. e. if Cl is the product of C2 by r (Fig. 12).
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It follows that 1r I, the length of the vector representing r, is

\ ~: I" and Arg r is equal to the angle B2AB1 reckoned in the

direction from AB2 to AB 1 (in Fig. 12 this direction is clockwise
and therefore the angle must be assumed to be negative).

Let us consider particular cases. If C1 and C2 are represented
by parallel vectors having the same direction, then the angle
B2AB1 is equal to 0°, and, hence, Arg r = 0°, i. e. r is a real
positive number. Now if Cl and C2 are represented by parallel but
oppositely directed vectors, then the angle B2AB1 is equal to 180°
and the number r is real negative.

Summing up what was said above, we can say that addition
and multiplication of complex numbers obey the same laws,
commutative, associative and distributive, as in the case of real
numbers, and subtraction and division, again as in the case of
real numbers, are determined as operations inverse of addition
and multiplication. Therefore, all the rules and formulas derived
in algebra for real numbers must be valid for complex numbers
as well, on the strength of the definition of the cited rules and
operations. For instance,

(C1 + C2)(C1 - C2) = cI - c~, (C1 + C2)2 = cI + 2C1C2 + c~,

C1 C3 C1 C4 + C2 C3
~ + - = (C2 '# 0 and C4 '# 0) and so on.
C2 C4 C2 C4

11. While studying mathematics, the reader repeatedly comes
across an expansion (or generalization.) of the concept of a number:
in arithmetic when fractions are introduced, and in algebra when
negative numbers, and, later, irrational numbers are investigated.
Each new expansion of the concept of a number makes it possible
to solve problems which before that seemed insoluble or even
meaningless. Thus the introduction of fractions makes possible
the division of two numbers in all cases when the divisor is
different from zero, for instance the division of 4 by 3 or 2 by 5;
the introduction of negative numbers makes the operation of
subtraction possible in all cases, for example it allows 5 to be
subtracted from ' 2; the introduction of irrational numbers helps
in the cases when it is necessary to express by a number
the length of a line segment incommensurable with unity, for
instance, the length of the diagonal of a square whose side is
equal to unity. However, having only real numbers at our disposal
we cannot extract a square root from a negative number. Let
us prove that the introduction of complex numbers makes this

16



problem solvable. The square root of the complex number c
(we shall designate the root as ~) is naturally a complex number
a whose square (i. e. the product of a by itself) is equal to c.
In other words, a =~ means that aa = c. Let c be a negative
number, say, C = - 1; to find v=t, we have to solve the equa­
tion a2 = -1. To multiply a by a means, first, to multiply
the length of the vector representing a by Ia I, i. e. by the same
length, retaining the direction, and then rotate the resulting vector
about point A through' an angle equal to Arg a. Evidently, the
length of the vector obtained will then be equal to I a 12• But
the vector we have found must represent the number - 1; hence,
its length is equal to unity. Thus it follows that Ia j2 = 1 and

Fig. 13.

hence Ia I = 1 (the length of a vector is always nonnegative],
Further, the angle between the vector representing a2 and the Ax
axis is equal to Arg a + Arg a = 2 Arg a; on the other hand,
a2 = - 1, and so this angle must be equal to either +180° or
-180°. Therefore, 2 Arg a = ±180°, whence either Arg a = 90° or
Arg a = _90°. We have consequently obtained two different vectors
AC and AC' representing two different values of v=t (Fig. 13):
The imaginary number represented by the vector AC is denoted
by the letter i and is called an imaginary unit; we have til = 1,
Arg i = 90°. It readily follows that the imaginary number repre-
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sented by the vector AC' can be obtained from i by multiplying
i by - 1. Indeed, in accordance with the multiplication rule,
the length of AC must be multiplied by J-11 = 1 (this does not
change the vector AC) and then rotate it about the point A through
the angle Arg (- 1) = 1800

; the resulting vector will be A C'.
The imaginary number corresponding to that vector is i (-1) or
- 1 . i, in short, - i. Thus we have v=t = ± i.

12. Consider an arbitrary vector AD lying on the Ay axis
(or parallel to it) (Fig. 14). Assume that its length is I. If the
direction of the vector coincides with the positive direction of
the Ay axis (upwards from Ax), then the imaginary number c
that the vector represents can be obtained from i by multiplying
it by a positive number I, hence c = Ii.

y

0

C

}l
A

x

1:
0'

Fig. 14.

If the direction of AD is opposite to the positrve direction
of Ay the number c is obtained from i by means of multiplica­
tion by a negative number -I (or from - i multiplying it by Q;
hence, in this case c = -lie .

Thus we have learned that any vector (of nonzero length)
lying on the Ay axis (or parallel to it) represents an imaginary
number of the form ± Ii with a plus or a minus sign depending
on whether or not the direction of the vector coincides with
the positive direction of Ay. The Ay axis is, therefore, called
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an imaginary axis. The Ax axis whose all vectors represent real
numbers is called a real axis.

Let us consider an arbitrary vector A'E' not lying on either
of the axes and not parallel to them. By means of a construction
shown in Fig. 15 we can express the number c represented by
this vector as a sum of two other numbers: one number repre­
sented by the vector A'B' parallel to Ax (or lying on Ax) and
the other number represented by vector B'E' parallel to .Ay.
But A'B' represents a certain real number a while B'E' is an
imaginary number of the form bi, therefore c = a + bi.

And so we have expressed the imaginary number a by means
of real numbers a and b and the number i. Since the vector A'E'
is not parallel to either of the axes, a i= 0 and b i= O. It is easy

y

A

A'

Fig. 15.

r

to realize that the numbers represented by vectors parallel to one
of the axes can be written in an analogous form, namely, if
the vector is parallel to the real axis it represents a number
of the form a + 0 . i and if it is parallel to the imaginary axis
then it represents a number of the form 0 + bi.

Thus every complex number c can be expressed as c = a + bi,
where a and b are real numbers and i is the imaginary unit.

t3. Let us sum up what we have learned. We began with
representation of real numbers by vectors.. lying on the same
straight line, expressed the operation rules: in geometric form,
reducing these operations to the operations on vectors, and then
began considering various vectors in a plane as vectors representing
numbers of a more general kind, i. e. complex numbers which
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only in a special case (when vectors lie on the Ax axis or are
parallel to it) reduce to real numbers. While extending to vectors
in a plane the operations applied to vectors on a straight line,
we introduced addition and multiplication (and then the inverse
operations such as subtraction and division) and made sure that
they obey the same laws as the operations on real numbers.
The only fact we know about complex numbers is that they are
all represented by vectors, and that any two vectors equal
in length, parallel to each other and having the same direction
represent one and the same complex number, while vectors
differing either in length or direction represent different numbers.
Now we know that complex numbers allow the square root to be
extracted from - 1 and we have introduced the number i as one
of the two values of v=t (the value of the root whose argument
is +90°). Finally, proceeding from the rules of operations on
complex numbers we have shown that every complex number c
can be expressed as c = a + bi, where a and b are real numbers.

Thus we see that c consists of two summands a and bi;
one of them, a, is represented by a vector of the real axis and
can be regarded as a product of the real number a by the real
unity; the other number, bi, is represented by a vector of the
imaginary axis and can be regarded as a product of the real
number b by the number i. Such a structure of any complex
number explains why all these numbers were termed complex
(or compound) numbers.

Note that a is called the real part and b the imaginary part
of the number c. For example, for the number c == 3 - 2i the
real part is equal to 3 and the imaginary part to - 2.

14. If we represent complex numbers by vectors originating
at the same point A, then unequal complex numbers will be
associated with vectors that do not coincide with one another"­
and, conversely, noncoinciding vectors will be associated with
different complex numbers. Take c = a + bi; then the end of the
vector AE representing the number c will have an abscissa a
and an ordinate b (Fig. 16).

Thus it follows that if the beginning of the vector representing
the number c = a + bi coincides with the origin of coordinates A,
then the numbers a and b will be the coordinates of the end
of that vector. Making use of this statement, we can represent
complex numbers geometrically not only by vectors but also by
points. In fact, every complex number a + bi can be represented
by a single point E with coordinates a and b, and, conversely,
every point E' with coordinates a' and b' can be considered

20
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Fig. 17.

as the point representing the complex number a' + ib'. Shown
in Fig. 17 are the points e; E2, E3, E4 and e, representing
(successively) the following numbers: -1, i, - i, 1 + i, 1 - i.

In what follows, for the sake of brevity, both the number z
itself and the point E representing it will be called "point z".
For instance, the expression "point 1 + i" will represent the
number 1 + i itself and the point E4 representing it (Fig. 17).
It will be clear from the context which 'of the two meanings
is meant. Incidentally, it is better not to give much thought
to this problem and consider both meanings to be equivalent.
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15. Take z as an arbitrary point. If you add z to some
number a you obtain a new point z' = z + a. It is evident that
to pass from point z to point z', you must make a translation
by the vector a, i.e, to displace point z in the direction of vector a
by the distance equal to the length of that vector (Fig. 18).
By choosing a requisite a you can obtain any displacement
of point z. For instance, if you wish to displace point z in the

y

Z'

x
A

Fig. 18.

Yl
z Z'=Z+'

-2L

A x

Z"=z-2L

Fig. 19.

positive direction of the Ax axis by a unit, you take a = 1; point
z' = z + 1 will be the required one. Now if you wish to displace
z in the negative direction of the Ay axis by two units, you
must take a= -2i; the required point will be z"=z+(-2i}=
= z - 2i (Fig. 19).

Thus, the operation of addition z' = z + a means geometrically
the displacement of point z by the vector a.

16. Let us analyse multiplication of z by some number c # o.
22



To multiply z byc, the length of the vector AE (i. e. the number
Iz I) must be multiplied by the number Ic I, and the obtained
vector AE 1 must be rotated through an angle equal to Arg c
(Fig. 20). The first of these operations does not alter the direc­
tion of the vector AE, it can only change its length, namely,
if 1 c I < 1, this length will decrease, if 1 c I > 1 it will increase,

y

A Argz

Fig. 20.

E,

and, finally, if c = 1, it will remain as it was. We shall call this
operation the stretching of the vector AE I c 1 times. The word
"stretching" should be understood here as a conventional term;
a real stretching will occur only when 1c 1 > 1, when the length
of vector AE will increase in the process of multiplication 1c 1

times. However, we shall use this term even when 1c 1= 1
(the length of the vector AE does not change), and when Ic I < 1
(the length of the vector AE decreases in multiplication).

If c is a positive real number, then Arg c = O.
In this case a rotation through the angle Arg c does not alter

vector AE1 found by means of stretching; hence the point E 1

represents the product zc. We may say that multiplication
of z by the positive real number c means, in terms of geometry,
stretching vector AE (representing z) c times. By varying c, it is
possible to obtain various stretchings of the vector AE. Thus,
to make a two-fold stretching, z must be multiplied by 2;
to stretch it 2/3 times z should be multiplied by 2/3.

If the factor c is not a positive real number, then Arg c is
not equal to zero. In that case the multiplication of z by c
does not reduce to the stretching of vector AE alone but also

23



requires that the stretched vector be turned aboutpoint A through
the angle Arg c. Consequently, in the general case the multiplica­
tion z- c means the stretching (Ic I times) followed by the rota­
tion (through the angle Arg c], In a special case, when the absolute
value of c is equal to unity, the multiplication by c reduces
to the only action of rotation of vector AE through the angle

y

E

E'

A
--~-...--~---~x

Fig. 21.

Arg c about point A. By choosing the proper values of c, we can
rotate AE through any angle. Thus, for instance, if we want
to rotate AE by 90° in a positive direction (counterclockwise)
we must multiply z by i; indeed, I. I= 1 and Arg i = 900

•

To rotate AE by 45° in a negative direction (clockwise) z must
be multiplied by the complex number c whose modulus is equal
to unity and the argument, to -45°. It is easy to find this
number by using Fig. 21 which contains point C representing

the number c. The coordinates of point C are evident: x = ~,

y = - V:' therefore c = v: -i V:. Thus, multiplying z by

112 112 J

C = 2 - i 2 is equivalent to turning the vector AE (represent-

ing z) through the angle of 45° about point A in the negative
direction. .

17. As we have seen, formulas z' == z + a or z' := cz transform
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point z into point z', Let us now consider not one but an
infinite set of points z forming a geometric figure P (a triangle,
for example, see Fig. 22). If the formula z' = z + a is applied
to each point z, then every previous point gives a new point z'
translated by the vector a. All these translated points form a new
figure P'. It can evidently be obtained if the whole figure P

y

r

---o-=:-~--------~X
A

Fig. 22.

is translated, as a single whole, by the vector a. Thus, using
formula z' = z + a, we can transform not only a single point,
but a whole figure as well (a set of points). This transformation
reduces to translation of the figure by the vector a. The new
figure proves to be congruent to the original one.

18. We can also apply formula z' = cz to each point z
of the figure P. If c is a positive real number, then every point
z of the figure P is transformed into a new point z' lying on the
same ray, issuing from A, as the point z, the ratio Iz' 1/1 z I
(the ratio of the distances of the points z' and z from A) being
equal to c. In geometry such a transformation is called the
homothetic transformation or transformation of similitude and the
points z' and z are called similar points, point A being the centre
of similitude and the number c, the ratio of similitude.

As a result of a homothetic transformation the set of all
points of figure P passes into a certain new set of points
forming the figure P' (Fig. 23). This figure is said to be similar
to the given figure P. It is easy to see that in the case when P
is a polygon (a triangle, for example) a similar figure P' is also
a polygon similar to the polygon P. To prove this fact, it is
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sufficient to consider the homothetic transformation of the points
lying on one of the sides BC of the polygon P (Fig. 23).

If B is transformed into B' and C into C' then, connecting B'
and C' by a segment of a straight line, we find that the triangles
ABC and AB'C' are similar (the angle A is common and the sides
forming it are proportional: AB'/AB = AC'/AC = c). It follows

y

IZ'IjZj=c

A

Fig. 23.

that the side B'C' is parallel to BC and B'C'/BC = c. Let K be
a point lying on BC; then the ray AK intersects B'C' in a certain
point K', the triangles AKC and AK'C' are again similar and,
consequently, AK'/AK = AC'/AC = c. Accordingly, the point K'
is similar to the point K (with respect to the. centre A, the ratio
of the homothetic transformation being equal to c). Hence we
conclude that all the points lying on the side BC pass, under
the transformation of similitude, into points lying on the side
B'C'; under this transformation, every point on B'C' will be similar
to one of the points lying on BC. Thus, the entire segment B'C'
will be similar to the segment BC. Repeating the reasoning for
all the sides of the polygon P, we find that they are all trans­
formed into the sides of a new polygon P', the respective sides
being pairwise parallel, and the ratio of their lengths will be
equal to one and the same number c:

B'C'/BC == C'D'/CD = D'B'/DB = c.

This proves the similarity of homothetic figures P and P'.
Thus, by using the formula z' = cz (c being real positive),
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we can transform not only one point, but also a whole figure P.
This is a homothetic transformation with centre in A and the ratio
equal to c. In the case when P is a polygon, the transformed
figure P' is also a polygon similar to P.

19. Let us now consider the case when the number c in the
formula z' = cz is not' positive. First assume that Ic I = 1. In this

y

c'

B'
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Fig. 24.

case the operation of multiplication reduces to rotating the vector
Az about point A through an angle equal to the argument z.
If this operation is applied to each point z of the figure P,
then, as a result, the whole figure P will rotate through the angle
Arg c about point A. Consequently, we see that by using formula
z' = CZ, where IC I = 1, we can transform any figure Pinto
a figure P' obtained from P by means of rotation about the
point A through the angle Arg c. Let us take, for instance, C = i;
since Arg i = 90°, the transformation z' = iz reduces to the rota­
tion of the figure about the point A by 90°. Figure 24 shows
the transformation of the triangle in the given case.

If we do not introduce the condition Ic I = 1 in the formula
z' = cz and simply assume c to be some complex number
(nonpositive and different from zero) then we can perform the
corresponding transformation of the figure P in two stages. First
we stretch it Ic I times which results ina homothetic transforma­
tion of the figure P into figure P 1 arid then rotate P1 about
point A through the angle Arg c.
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Figure 25 shows the triangle P under the transformation

z' = ~ z (here I ~ I= ~ and Arg ~ = 90°)-

20. In formulas z' = z + a and z' = cz, z can be regarded as
an independent variable and z' as a function. These are the simplest

y

o

Fig. 25.

functions of a complex variable z. Subjecting z and some constant
complex numbers to operations of addition, subtraction, multiplica­
tion and division as well as to raising to a power (regarded
as a repeated multiplication), we shall" obtain various other func­
tions of z, for instance

z-a
z' = liz, or z' = Z2 + cz + d, or z' = --b etc.

~. z-

Such functions of a complex variable are called rational; the term
is due to the fact that the operations employed to defme
the functions (addition, subtraction, multiplication and division)
are called rational. But rational functions are not the only
functions of a complex' variable; it is possible, for instance,

to define and analyse functions of the form z' = V;, z' = ct,
z' = sin z and others. In this book, however, we shall confine
ourselves to rational functions, the simplest.

21. We have seen that functions z' == z + a or z" = cz are
associated with definite geometrical transformations of figures
in a plane. In fact, if the variable z runs through the points
of figure P then the function z' = z + a runs through the points
of figure P' obtained from P when the latter is translated by

28



the vector a and the function z" = cz runs through the points
of figure P" obtained from P by means of a homothetic
transformation with the ratio Ic I and a rotation about the point A
through the angle Arg c. Consequently, we can say that the
function z' = z + a itself performs a translation and the function
z" = cz performs a homothetic transformation and a rotation
(if c is a positive real number, then only a homothetic trans­
formation is performed and if Ic I = 1 but c # 1, then the only
action is a rotation). Now what can be said about transformations
performed by other functions of a complex variable, rational
functions in particular? That is the question we shall try to answer
in what follows. To assure the reader that this is not an idle
pas-time, we inform him already at this stage that transformations
performed by rational functions of a complex variable, while being
remarkably versatile and possessing a wealth of geometric
properties, also have some properties in common. This common
property boils down to the following: while the size and the
appearance of the figure are altered in the general case, the angles
between any lines belonging to the figure under consideration are
preserved. *

In special cases of functions z' = z + a or z' = cz the preserva­
tion of angles in the figures beine transformed directly follows
from the fact that here we mean translation, homothetic trans­
formation or rotation. It is remarkable that the same thing is
observed in transformations by means of any rational functions
of a complex variable as well as by many other more general
and more complex functions of a complex variable called analytic
functions. But the scope of the book does not allow us to consider
the latter.

22. A geometric transformation under which the angles between
any two lines of the figure being transformed are preserved is
called a conformal transformation, or, more often a conformal
mapping.

A translation, homothetic transformation and rotation con­
sidered above may serve as examples of conformal mapping.
Other examples will follow. For the time being, we shall clarify
the requirement, contained in the definition of a conformal

• Strictly speaking, some particular points here may be such that
the angles with vertices at these particular points alter, increasing two,
three, or, in general, an integral number of times. But such points are
an exception to the general rule.
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mapping, that the angles between any two lines belonging to the
figure under consideration be preserved. Let us consider the square
ABeD constructed on the axes Ax and Ay (Fig. 26). We shall
transform it into some other figure in such a way that the
abscissa x of each point remains unchanged and the ordinate y
doubles its length. Then the point K, for instance, passes into K'

y
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Fig. 26.

and L into L, When all the points of the square are transformed
in such a way then, evidently, the square ABeD is transformed
into a rectangle ABC'D' with the same base and with the altitude
twice as large. Under this transformation the side AB passes
into itself (all the points remain as they are since their ordinates
equal zero and will remain so after doubling), AD is transformed
into AD', DC into D'C' and BC into BC'. Naturally, the angles
between the sides will remain right as before, they do not change.
Now let us take the angle BAC between the side AB and
the diagonal A C of the square considered (Fig. 26); the angle is
equal to 45°. As a result of transformation, the side AB will not
change its place but the line AC will pass into AC' (why?).
Consequently, the angle BAC is transformed into another (larger)
angle BAC', that is it does not remain the same. If we take
the angle PQC, instead of the angle BAC, with the vertex
in some other point Q of the square ABCD (Fig. 27), then it
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is easy to show that this angle, too, will change under the trans­
formation being. performed.

Proceeding (rom our reasoning, we come to the conclusion
that although the angles of the rectangle ABCD do not alter
under the transformation considered (they remain right as before),
the transformation is not conformal since for any point belonging
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to ABCD there exists an angle with the vertex in this point
which changes (increases) under the transformation being considered.

23. Before proceeding to consider our next geometric figure
it is necessary to explain to the reader what we mean by an angle
between two curves QR and QP intersecting at some point Q
(Fig. 28).

Let us take, on the curve QP, an arbitrary point Ql differing
from Q and draw a secant QQ1. In just the same manner take
a point Q2 differing from Q on the curve QR and draw
a secant QQ2. The magnitude of the angle Q1QQ2 can be treated
as an approximate value of the curvilinear angle PQR. The nearer
the points Ql and Q2 to the point Q, the closer will be the
secants to the curves QP and QR near the point Q. In that case,
the angle QIQQ2 can be considered as a closer and closer
approximation of the magnitude of the angle formed by our curves
at the point Q. If Ql moves along the curve QP and Q2 along
QR, approaching Q indefinitely, then the secants QQl and QQ2
will rotate about the point Q approaching the limiting positions
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QTt and QT2• The rays QTt and QT2 adjoin our curves near
the point Q more closely than any other rays passing through
that point. They are known as tangents to the curves QP and QR
and the angle T1QT2 between them is taken as a measure
of the angle at the point Q between the curves QP and QR.
Thus, the angle between two curves intersecting at some point is
the angle between the tangents to the curves drawn at that point.

Q

Fig. 28.

This definition is also valid in the case of an angle formed
at the point Q by an arbitrary curve QP and" a straight line QR
(Fig. 29). Let QTt be a tangent to QP at the point Q. To use
the definition cited above it is necessary to replace the straight
line QR by a tangent to that line. But it is easy to see that
the tangent to the straight line QR coincides with that same line.
Indeed, to obtain a secant, we must take on QR a point Ql
differing from Q and draw a straight line through Q and Qt.
It will evidently be the same line QR. When Q 1 approaches Q,
the secant obtained remains unchanged. Therefore, the tangent,
being the extreme position of the secant" is again the line QR.
Consequently, the angle between the curve QP and the straight
line QR must be understood as the angle between the tangent
QT1 to the curve QP at the point Q and the line QR itself.
It may happen that the line QR is precisely the tangent to QP
(i. e. QR coincides with QTt ) ; then the angle between QR and QP
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vanishes. Consequently, the angle at the point Q between a curve
and a tangent to it drawn at that point is equal to zero.

24. Conformal mappings find extensive application. They can
be applied, for instance, in cartography when geographic maps
are made.

Each geographic map represents a part of the earth's surface

T,
p

R

a
Fig. 29.

in a plane (on a sheat of paper). With such a representation
the shapes of the continents, seas and oceans are more or less
deformed. No special explanation is needed to assure the reader
that it is impossible to spread and put on a plane without
extension or compression, without discontinuities or folds a sphere,
say, a part of a broken tennis ball. For the same reason, we
can never depict a part of the earth's surface in a plane, i. e.
make a map, without changing its proportions, and, consequently,
without distorting its shape (that part of the surface can be
treated as a sphere). It turns out, however, that it is possible
to make a map without changing the magnitude of the angles
between various lines on the earth's surface.

Suppose we wish to make a map of the Northern hemisphere
in which all the angles between various directions on the
earth's surface should remain full-sized. To visualize the process
of such a construction, imagine a large terrestrial globe made
of some transparent material, glass, for instance, covered with
nontransparent paint So that only the contours of the continents,
countries and seas in the Northern hemisphere as well as the net
of the meridians and parallels are left unpainted and are,
consequently, transparent. If we fix a: small but very bright
electric bulb on the South pole of the globe and put a screen
in front of the globe at right angles to its axis, then in a dark
room we shall see on the screen a contour map of the Northern
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hemisphere. It can be proved in terms of geometry that on such
a map (it is called a map in a stereoqraphic projection) all
the angles between any lines on a globe in the Southern
hemisphere are represented full-sized.

If we leave unpainted the (curvilinear) sides of some angle
PQR with vertex at an arbitrary point of the Northern hemisphere
then in the stereographic projection the angle will be represented
full-sized (Fig. 30).

Fig. 30.

25. We have shown above how to obtain a map of the Northern
hemisphere retaining the full size of all the angles. If we put
a light source (a bulb) emitting the projecting rays not on the
South but on the North Pole of the globe, we can use the same
procedure to make a map of the Southern hemisphere with all
the angles remaining full-sized. Each map obtained this way
constitutes a plane figure which, when subjected to conformal
mapping, will pass into a new figure which can also be considered
as a geographic map. Since conformal mapping preserves the angles
the new map will show the full-sized angles between the directions
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on the earth's surface. The right-hand picture in Fig. 31 represents
a map of Greenland in stereographic projection and the left-hand
picture shows the map which will be obtained from the latter
if all its points are transformed according to the formula:

z' = loge Iz I+ i Arg z.

Here the Napierian e = 2.71828... serves as the base of the
logarithms and Arg z is measured not in degrees but in radians.
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Fig. 31.

The formula is complicated and appears somewhat artificial.
We shall not consider it here in detail and prove that the
transformation performed by this formula is indeed conformal.
We shall only say that a map obtained as a result of such
a transformation was constructed by the Dutch scientist Gerhardus
Mercator about 400 years ago. It is widely used in navigation.
As compared to the map made in stereographic projection, it
has .some advantages: not only meridians but also parallels are
represented here as straight lines; moreover, straight lines are
used here to depict any ways on the earth's surface along which
the magnetic needle retains its direction (so-called loxodromes).
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26. The most important applications of conformal mapping
refer to the problems of physics and mechanics. In many problems
dealing with the electric potential at points in space surrounding
a charged capacitor, for example, or with the temperature inside
a heated body, with the velocity of particles in a fluid flux
moving in a certain channel and streamlining some obstacles

(a)

Fig. 32.

on its way, etc., it is necessary to compute the potential,
temperature, velocity, etc. We can easily overcome all the difficulties
in solving problems of this kind in the case when the bodies
considered have a very simple shape (for example, a flat plate
or a circular cylinder). But computations are necessary in many
other, more complicated cases as well. For instance, to calculate
the construction of an aircraft it is necessary to compute the
velocity of the particles of the air flow streamlining the wing
of the aircraft. * '

A cross-section of an aircraft wing (its profile) is shown
in Fig. 32a. Velocity computation is especially simple, however,
when the cross-section of the streamlined body is a circle,
i. e. when the body itself is a circular cylinder (see Fig. 32b).

It turns out that to reduce the problem of computing the
velocity of the air particles in a flow streamlining the wing
of an aircraft to a more simple problem of streamlining a circular
cylinder, it is sufficient to make a conformal mapping of the figure
hatched in Fig. 32a (the exterior of a wing section) onto the figure
hatched in Fig. 32b (the exterior of a circle). Such a mapping
is performed by means of a certain function of a complex variable.

* We realize, of course, that in flight both the air particles and
the wing of the aircraft move. It is possible, however, proceeding from
the laws of mechanics, to reduce the analysis to the case when the
wing is stationary and is streamlined by an air flow.
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Knowing this function, we can pass from the velocities in the
flow streamlining a circular cylinder to those in a flow streamlin­
ing an aircraft wing and, consequently, to completely solve the
problem on our hands.

In the same way conformal mapping makes it possible to
reduce the problems of computing the electric potential and the
temperature of bodies of an arbitrary shape (any section profile)
to the simple cases when the problem is already solved. The reverse
passage to the space surrounding the originally given electrified
(or heated) bodies is done by means of the same function of
a complex variable which performs conformal mapping.

27. All that was said above about the application of conformal
mapping to the problems of cartography, mechanics and physics
was not followed by any proofs. Were they given, our reader
would hardly understand them without special knowledge acquired
at higher educational establishments.

From now on, to the end of the book, we shall deal with
the simplest rational functions which should be used to perform
certain conformal mappings. Here are the functions we shall speak

of: (1) z' = z - a
b

(the so-called linear-fractional functions); (2) z' =
z-

= Z2; (3) z' = ~ (z + +). The latter function has been termed

after the eminent Russian scientist Zhukovsky (1847-1921) whom
v. I. Lenin referred to as "the father of Russian aviation". It is
called Zhukovsk~'~ function since Zhukovsky successfully employed
it in solving certain problems in the theory of aircraft; in partic­
ular, he showed how this function can be used to obtain some
profiles of the airplane wing which have both theoretical and
practical significance.

28. We shall begin with the linear-fractional function z' =
z-a= --b. Here a and b are complex numbers (not equal to each
z-

other). Let us show that by means of this function each arc PLQ
of the circle connecting the points a and b is transformed into
a certain straight ray P'I.: emanating from the origin, the angle
between the positive direction of the real axis and this ray being
equal to the angle between the direction baN and the tangent
to the arc of the circle at point a (Fig. 33).

Suppose point z lies on the arc PLQ- (Fig. 33, left); we shall
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widely used complex numbers and conformal mappings to calculate aircraft.



prove that its image (i. e. the point z' = z - a corresponding
z-b

to it) should lie on the ray P'l; (Fig. 33, right). To construct
vector z', we must know the length of this vector (Iz' I) and
the angle of inclination to the positive part of the real axis
(Arg z'). But z' is the quotient of the complex numbers z - a and
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z - b represented by the vectors PR and QR. Therefore, 1z' 1 =
Iz - al= Iz _ b I and Arg z' is equal to the angle SPR (vectors PS and

QR are equal) reckoned in ~he direction from PS to PRo It is
r-: r-.

evident that SPR = QRP * a d, hence, it is measured by half
the arc QMP. The angle N PT IS measured by half the same arc.

r>; /'... . /'...
Consequently, Argz' = SPR = QRP = NPT= <po Thus we see that
whatever the position of the points z on the arc PLQ, the

z - a·
corresponding points z' = --b have the same argument <po And

z-
this means that all these points lie on one and the same ray P'I.:
inclined to the positive part of the real axis through the angle <po

This conclusion is also valid in the case when PLQ is not
the arc of a circle but a rectilinear segment PQ. Then we should
assume the angle <p = 1800 and the ray P'L' to coincide with
the negative part of the real axis (Fig. 34). Indeed, if z lies
on the segment PQ, then the vectors representing z - a and z - b
are of opposite directions. Hence it follows that the quotient

r-:
* The notation ABC denotes the angle ABC.
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z' = z - a
b

is a negative real number, i. e. z' lies on the negative
z-

part of the real axis.
We have proved that the images of the points of the arc PLQ

lie on the ray P'L:. But do they fill the whole ray P'L: or are
there points on the latter which are not the images of the points

Fig. 34.

z'
o

L' R'
• x'·

Fig. 35.

of the arc PLQ, not a single one? We shall now show that
the images fill the whole ray.

Let us begin with the point P' (the origin); it is the image

of the point P since z' = z - a
b

vanishes when z = a. We shall
z-

take an arbitrary point z' on the ray P'E (Fig. 35) differing
from the point P' (i.e. z' =F 0). It is evident that z' cannot be
a positive real number since the ray P'L: does not coincide with
the positive real axis.

Considering z to be unknown, we solve the equation z' =
z - a z'b - a

= --b for z and find zz' - z'b = z - a whence z = , 1.
z - z -

Thus, for every point z' lying on P'E there exists one and only
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z-a
one value of z such that z' = --b' i. e. such that z' is the

z-
image of z.

But where is that point z? Can it be possible that it does not
lie on PLQ? Let us prove that it is impossible. First of all point
z cannot lie on a straight line which is an extension of the
segment PQ (outside of this segment), otherwise the numbers

z-az - a and z - b would have the same arguments and z' =--
z-b

would be a positive number. Now if z does not lie on the
indicated straight line outside the segment PQ, then P and Q
can be connected by an arc of a circle so that the arc passes
through z (if we assume that point z lies on the segment PQ,
then instead of the arc we should take the segment itself),

We shall designate the arc by PLtQ; since we have assumed
it to be different from PLQ the tangent to it at point P forms
with the direction baN an angle <Pt not equal to <p (see Fig. 35).

Therefore, the value of the function z' = z - b
a

at that point
z-

should be represented by a point of the ray P'L't inclined to the
positive part of the real axis at the angle <PI and, consequently,
not coinciding with P'I:. We have come to a contradiction since
in the case cited it turns out that the point z' differing from
the point P' should be located both on the ray P'I: and on the
ray PILI.

Thus, we have proved that every point: located on P'I; is

. f h . I . ( z'b - a) h . I .an Image 0 t e sing e point z z = Z' _ 1 ,t e point z ying

on PLQ. Hence it follows that if the point z' runs along the ray
P'1:, then the corresponding point z determined by the equation

z-a
z' = --b runs along the arc PLQ.

z-
Let us finally show that when z describes the arc PLQ while

moving in the same direction from point P to point Q all the
time, then point z' traces out the ray P'1: also in one and
the same direction, receding from point P' indefmitely. To prove
this it is sufficient to show that the distance P'R' = Iz' f =

Iz - a I PR sin ~ ( F· 33)· _. h .= I b t = QR = -.- see 19. increases, w en point z
Z - SIn ex ".

moves in the indicated direction, acquiring infinitely large values.
But cp + (1 + P= 180°, whence p= 180° - (CJ. + <p), sin p= sin ((1 +
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+ <p) = sin ex cos <p + cos ex sin <p and, consequently,

P'R' I' I sin ex cos <p + cos ex sin <p •= z = . =~cos <p + sIn <p cot ex.
sm ex

When point z moves along PLQ from P to Q, the angle ex decreases
from the value 180° - <p to zero, while the angle <p remains
unchanged. Therefore, cot ex increases from the value - cot <p to
+ 00, and Iz' I = cos <p + cot ex sin <p also increases (since the number
sin <p is positive) from the value cos <p - cot <p sin <p = 0 to + 00.

29. Let us now consider a circle PLM passing through a point
a but leaving outside a point b (Fig. 36a). Suppose the angle
between the tangent at the point a and the direction baN is equal

N
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Fig. 36.

to <po Let us draw an auxiliary circle through the points a and b
for which the tangent at point a forms an angle of <p + 90°
with the direction baN. This circle intersects the original circle
at a certain point E; we shall designate by c the complex number
represented by this point.

We shall now show that by means of the function z' = z - a
bz-

the circle PLM is transformed into a circle P'I:M' (Fig. 36b)
with the line segment P'E' serving as the diameter, the point P'

representing the number 0 and the point E' the number c' = c - a .
c-b
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In this case t~e tangent. t.o the circle P'LM' at point P' forms
an angle <p ~Ith the positive direction of the real axis.

So we wish to prove that for every point z on PLM there

exists a corresponding point z' = ::=~ on the circle P'I:M' for

which the points 0 and c' = ~ =- ~ are the ends of the diameter.

It is, evidently, sufficient to prove that from each point z' =

= z - a
b

(provided that z lies on PLM) the segment P'E' can be
z-

seen at right angles, i. e. the angle E'R'P' is the rightangle *.
But the angle E'R' P' is formed by the vectors E'R' and P'R'

representing the numbers z' - c' and z'; it is equal to the angle
S'P'R' (the vectors P'S' and E'R' being equal), reckoned in the
direction from P'S' to P'R'. The latter angle is equal to

Arg-,_z_" and therefore the angle P'R'E' we are interested
IZ - C

in also coincides with the argument of the number

.-o, z'
1. e. we have PRE = Arg -,--,.

z - c

Let us transform the expression _,_z_, substituting
z - c

c-a
for z' and --b- for c'. We receive r:">

c-

z' z-a (z-a c-a)
z' - c' = z - b: z - b - c - b =

z'

z' - c"

z-a
z-b

z - a (z - c) (a - b) z - a b - a z"
= z-b: (z-b)(c-b)= z-c: b-c =V·

We assume here z - a " d b - a b"z_c=z an b-c= .
It is evident that z" is also a linear-fractional function of z.

The only difference between this function z" = z - a and the
z-c

• Because the points of the plane from which the given segment
is seen at a right angle lie on the circle constructed on that segment
as the diameter.
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original function z' = z - a
b

is that point b is replaced by point c.
z-

All that was proved in Sec. 28 is applicable to the new function,
that is, if point z is located on the arc of a circle connecting
a and c then point z" must be located on a straight ray beginning
at the origin. In that case, if a tangent to the arc of the circle
at .point a forms a certain angle cx with the direction caU
(see Fig. 36a), then the corresponding straight ray also forms
an angle cx with the positive direction of the real axis; in other
words, the argument z" is equal to cx.

Since point z is on the arc of the circle PLE passing through
points a and c and the angle between the tangent PTt to that
circle and the direction caU is equal to p+ <p (see Fig. 36a~

z-a
then cx = ~ + cp and the argument of the number z" = -­

z-c
must be also equal to p+ cp for all the positions of z on the
arc PLE.

On the other hand, point b is located on the arc PVE of the
circle connecting points a and c. The tangent PT2 to that arc
at point a forms an angle (p + cp) - 90° with the direction caU
(the absolute value of this angle is equal to 90° - (P+ cp) but
it can be seen from Fig. 36a that in our case it is reckoned
in the negative direction and, hence, should be taken with the
negative sign). Therefore, the value of the linear-fractional function
z-a b-a
-- corresponding to z = b, that is the number b" = -b--
z-c -c

must be represented by a point of the ray issuing from the origin
at the angle (P + <p) - 90° to the positive direction of the real
axis, i. e. Arg b" = (P+ <p) - 90°.

Recall that we wished to determine the angle
~ z'

P'R'E' = Arg -,--,.
z - c

z z"
We have found that -,--, =. -b" and also that

z - c

Argz" = p+ <p, Argb" = (P+ cp) - 90°;

z"
whence it follows that Arg if = 90° (Fig. 37) and

~ , z"
P'R'E' = Arg_Z

_ = Arg - = 9W
z' - c' b" .

Thus, the segment P'E' is seen at the right angle from every
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point z' = z - a
b

. This means that point z' is located on the circle
z-

P'L'M' for which the segment P'E serves as the diameter·.
The next thing we have to show is that a tangent to that circle

at point P' forms an angle cp with the positive direction

zIt

----6------...----r---+----~x'

Fig. 37.

of the real axis. To do this, it is sufficient to prove that
the angle between the diameter P'E' and this direction of
the axis is equal to <p + 90°. The latter angle coincides with

Arg c' = Arg ~ =- ~. But point c is located on the arc PEQ

of the circle connecting the points a and b. Since the tangent to
this arc at point a forms an angle of 90° + <p with the direction

baN, the point c' = c - a
b

must lie on the ray which also forms
c-

* When we proved the case, we took point z on the arc PLE;
then the corresponding point z' turned out to be on the semi-circle
P'L'E'. But if we take point z on the arc EMP (see Fig. 36a~

the proof will not be different, we only have to note in that case
that the direction of the tangent to this arc at point a is directly
opposite to PT 1. This means that Arg z" will be equal, not to p+ <p

-<: z'
but to P+ <P - 1800

• Therefore, for the angle P'R'E' = Arg-- we
z' - c'

shall obtain the value (13 + <p - 180°) - (P + <P - 90°) = - 90°. This
corresponds to the location of point z' on the semi-circle E'M'P'.
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an angle of 90° + <p with the positive direction of the real axis,
i. e. Arg c' = 90° + <p, and that is what we had to prove.

30. Let us show, by way of example, how the hatched figure
on the left-hand side of Fig. 38 is transformed when it is

z-1
represented by the function z' = --1. This function has the

z+

L

Fig. 38.

form z - a
b

with a = 1 and b = -1. Since the arc PLQ
z-

passes through the points 1 and - 1 and forms at the point
a = 1 an angle <p with the direction QPN, it is transformed,
in accordance with what was said in Sec. 28, into the ray P'L'
issuing from the origin and also forming ~ the angle <p with
the positive direction of the real axis. The arc PMQ connects the
same points 1 and -1 but it makes, at the point a = 1, an angle
<p - 180° with the direction QPN (in its absolute value this angle
is equal to 180° - <p; we have taken into account, however,
that it is measured clockwise, i. e. in the negative direction).

Therefore, the function z' = z - 11 transforms the arc PMQ into a
z+

ray P'M' issuing from the origin and forming an angle
<p - 180° with the positive direction of the real axis.' It is

evident that the rays P'I: and P'M' taken together constitute a

single straight line; consequently, the function z' = z - 1 trans-
• t Z + 1

forms the entire circle PLQM (consisting of the arcs PLQ and
PMQ) into the whole line M'P'I:.
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Let us draw through the points P and Q an arc of an
auxiliary circle for which a tangent at the point P forms with
QPN an angle <p + 90°. This arc intersects the circle PRS at
point E. In accordance with the reasoning of Sec. 28, the arc PEQ

is transformed by the function z' = z - 11 into a ray issuing from
z+

the point P' and inclined at an angle <p + 90° to the positive
direction of the real axis. As this takes place, the point E is
transformed into a certain point E' of that ray. In accordance
with our reasoning in Sec. 29, the circle PRES is transformed,

by means of the function z' = z - 11' into a circle P'R'E'S'
z+

constructed on the segment P'E' as on the diameter.
Thus, as a result of the transformation performed, the circle

PLQM becomes a straight line M'P'L' and the circle PRES,
contacting the latter from inside, passes into a circle P'R'E'S'
contacting the line M'P'L' at point P'. Can we consider the problem
of transforming the hatched figure by means of the function

z-1
z' '= --1 to be solved? By no means, for the problem has

z+
not yet been completely solved: for the time being we have found
what becomes with the contour of the figure and now we have to
trace the transformation of the points of the figure located
in the area between the circles PRES and PLQM.

To elucidate this part of the problem, we shall note that
we could have filled the entire hatched figure with circles
which touch PLQM at point P and are enclosed between
PRES and PLQM. They would intersect the arc PEQ at
points lying between E and Q. In Fig. 38 dashed lines show
three out of an infinite number of such circles; these three
circles intersect the arc PEQ at points E b E2 and E3• If we
consider the transfotmation of these circles by means of the function

, z - 1 d . h 1· h h 11 hz = --1 an see Into w at ines t ey pass, we s a ave an
z+

idea of the shape of the figure filled with all these lines.
That will be precisely the transformed figure.

But taking into account the statements made in Sec. 29, we
conclude that the circle PR 1E1S1 is transformed into the circle
P'R'lE'lS~ and the circle PR 2E2S2 into the circle P'R2E2S2 etc.
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We have shown at the end of Sec. 28 that as point z moves
along the arc PQ, approaching Q, the corresponding point z'
moves along the ray receding farther and farther from the
initial point P'. It follows from this that if point E2 is closer
to Q than point E h then E2 is the image. of the point E2
and lies on the ray farther from P' than E1 which is the
image of the point E1. Therefore, the diameter P'£2 of the circle
P'R2E,,;S',. which is the image of the circle PR 2E2S2 must be
larger than the diameter P'E1 of the circle P'R1E'lS'l which is the
image of the circle PRtE1S 1 as it is shown in our drawing.

If we take the circle PR3E3S3 intersecting PEQ sufficiently
close to Q, we can succeed in obtaining its image P'R3E~S3

having an infmitely large diameter. Besides, we can show that
any circle touching the line M'L' at point P' and lying in the hatched
area of the plane (Fig. 38, right) is associated with a certain
circle contacting the circles PRES and PLQM at point P
and lying in the hatched figure (see Fig. 38, left). It is evident
that all the images of the circles such as PR1E1S h PR2E2S-z ,
PR3E3S3 etc, filling in the hatched figure on the left-hand
side of Fig. 38, will, in their turn, fill the figure hatched
in the same drawing on the right. This figure is precisely
the image of the initial figure when it is mapped by means

of the function z' = z - 1
1.

Thus we see that the function
z+

z' = z - 11 maps the figure bounded by two circles (see Fig. 38,
z+

left) onto the figure bounded by a straight line and a circle
(Fig. 38, right). ;~

31. Let us now consider a transformation by means of the
function z' = Z2. In the note on p. 29 we warned the reader that
exceptions are possible to the general rule of the preservation of
angles in transformations by means of rational functions, namely,
that the angles with vertices at certain singular points can increase
or decrease several times over. In this particular case there is such
a singular point, it is the origin of coordinates A. We will
prove that all the angles with a vertex at A are doubled in
size under the transformation z' = Z2.

Let us take a ray AM issuing tram the point A and
making angle <p with the positive part of the real axis
(see Fig. 39). For every point z lying on this ray, Arg z = <po
Since the vector z' = Z2 = Z • z is obtained from the vector z
by stretching it Iz I times and rotating the angle Arg z = <p, we have
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Iz' I = Iz 1·1 z I = IZ 12, and Arg z' = Arg z + Arg z = 2<p. Therefore
point z' must lie on the ray A'M' issuing from the point A'
and forming an angle of 2<p with the positive part of the real
axis.

If point z moves along AM, starting from the point A,
receding from it indefmitely, then the corresponding point z' will

p

Fig. 39.

move along A'M', starting from point A' and receding from
it indefmitely; in this case the distance from z' to A' will always
be equal to the square of the distance from z to A (Iz' I = I Z 1

2
) .

It follows that the function z' = Z2 transforms the ray AM
into the ray A'M' inclined to the axis A'x' at an angle twice
as large as the initial angle.

It is easy to see that the function z' = Z2 transforms the
ray AP forming with Ax an angle cp + 180° (AM and AP lie
on the same line) into the same ray A'M'. Indeed, if we
double the angle <p + 180°, we shall obtain 2<p + 360°; the ray
inclined to A'x' at this angle coincides with A'M'.

Let us see how the hatched figure on the left-hand side
of Fig. 39 will be transformed by means of the function
z' = Z2; the figure is called a half-plane. This half-plane can be
regarded as being filled with an infinite number of rays issuing
from A' and inclined to Ax at angles larger than <p but
smaller than <p + 180°. The rays AM and AP constitute the boundary
of the half-plane (one straight line); we shall not consider these
rays to be a part of the half-plane. The function z' = Z2
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transforms the rays belonging to the half-plane into various rays
issuing from A' and inclined to A'x' at angles larger than 2cp
but smaller than 2cp + 3600

•

Hence it follows that the half-plane bounded by the rays
AM and AP is transformed into a figure bounded by one ray
A'M' (Fig. 39, right). The latter figure can be characterized
as a plane with the deleted (or excluded) ray A'M'. Stating
this we wish to emphasize that this figure is constituted
by all the points of the plane except those lying on A'M'.

If we take, in a half-plane, any two rays AQ and AR inclined
to Ax at the angles CPl and CP2 (CP2 > CPI)' they will form
an angle (X = CP2 - cP I. As a result of the transformation
z' = Z2, these rays will pass Into A'Q' and A'R' inclined to A'x'
at the angles 2cp I and 2cp2. It is evident that the angle
Q'A'R' is equal to 2cp2 - 2<PI = 2(CP2 - CPI) = 2(X.

Thus we see that under the transformation z' = Z2 the
angles with the vertex at A are doubled; in other words, the
conformity of mapping is violated at point A.

32. We will show now that the angles with the vertex
at any point Zo #= 0 do not change under the transformation
Z' = Z2. Hence it follows that the origin of coordinates is the
only point at which the conformity under the given transformation
is violated.

Let L be a curve issuing from the point Z00 If we take,
on L, an arbitrary point z I different from Zo, then the direction
of the secant connecting Zo and z I will coincide with the
direction of the vector QoQ I representing the difference
z1 - Zo (Fig. 40, left). By means of the function z' = Z2 the curve
L is transformed into a certain curve' L' and the points
Zo and Z1 into new points zij = z5 and Z'I = zi, on the
curve L'. The direction of the secant connecting zij and Z'I
evidently coincides with the direction of the vector QijQ'1 repre­
senting the difference Z'1 - zij (Fig. 40, right).

We shall now compare the directions of the two secants;
to do this, it is sufficient to compare the directions of the
vectors Z'I - zij and z I - Z00 Since the angle between them, reckoned
from the vector z1 - Z0 to the vector zl - zij, coincides with the

z' - Z' I

argument of the quotient I 0 , the comparison reduces to the
Zl - Zo

z' - z'
computation of Arg I 0 • The quotient

Zl - Zo
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formed by replacing Z'1 and Zo by their expressions: z~ = zt
and Zo = z~.

We obtain

and

Z'1 - Zo ZI - z~
---=Z1+ Z0
Z1 - Zo

Z~ - Zo
Arg = Arg(z1 + zo).

Z1 - Zo

Cons.equently, the angle between the directions of the secants
to the curves L' and L, drawn through the pairs of the

L

L'

Fig. 40.

respective points z0 and Z1 (on L) and Zo = z~ and Z'1 =
= zI (on L'), is equal to Arg (z1 + zo). Now passing from secants to
tangents, we shall make point Z1 approach indefinitely point
zo along the curve L. Then the point Z'1 = zt will approach
indefinitely the point Zo = z5 along the curve L'. Therefore, the
secants will also approach indefinitely the tangents drawn at the
points Zo and Zo and the angle between the secants will approach
indefinitely the angle between the tangents. But the angle
between the secants is equal to Arg (zo + z1) and tends to
Arg(2zo} as Zl tends to Zo, the latter, in its turn, coincides with
Arg z.; Thus we have that the angle between the tangents to the
curves L' and L drawn at the appropriate points Zo = z~ and
Zo is equal to Arg Z00

If, for instance, Zo = 2, then Arg Zo = 0, whence it follows that
the direction of the tangent at the point Zo = 2 to any curve L
drawn through that point will coincide with the direction of the
tangent at the point Zo = z~ = 4 drawn to the curve L' into which
the function z' = Z2 transforms the curve L If Zo = i, then
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Arg z., = 90°; consequently, the tangent at the point Zo = i to
any curve L drawn through that point and the tangent at the
point z5 = i2 = - 1 to the image on the curve L' are mutually
perpendicular.

Returning to the general case, we can say that the
tangents rotate by the angle equal to Arg Zo when the curves
passing through the point Zo are transformed by means of the
function z' = Z2.

It is easy' to see now why the angles with the vertex at Zo

(zo i= 0) remain unchanged under this transformation. If two curves
-L l and L2 pass through the point Zo and form an angle Ct

at that point, this means that the tangents to the curves
at that point form an angle Ct. As a result of the transformation,
the point Zo will pass into the point Zo = z5 and the curves
L, and L 2 will pass into the curves L'l and L2. The directions
of the tangents, at point zo, to the new curves are obtained from
the initial directions of the tangents by rotating them through
the same angle equal to Arg z.; The angle between the new
tangents will evidently remain of the same magnitude Ct. And
this means precisely that the angle between the curves with the
vertex at any point Zo i= 0 does not change under the transformation
z' = Z2.

We wish to note that the method we used to prove the
conformity of mapping z' = Z2 is also applicable to other
functions, for instance to the linear-fractional function z' =

= : =. ~ or to Zhukovsky's function z' = ~ (z ++). But in

this case we obtain some other expressions for the angle of rotation of
the tangent. Thus, we shall have for a linear-fractional function
that the tangents to the curves passing through the point Zo

a-b
rotate through an angle equal to Arg (zo _ b)2 , and in the case

of the Zhukovsky function, through an angle equal to

Arg (1 - z~). In the former case we must additionally assume
r

that Zo i= b (at that point the expression z - a
b

is meaningless); in
z-

the latter case we must additionally assume that Zo i= 0 (for
the same reason), and, besides, that Zo i= ± 1 (at these points
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1 - ~ vanishes and, hence, Arg(1 - ~) becomes senseless). We
Zo Zo

could have verified that in the case of the Zhukovsky function
the conformity is violated at points - 1 and +1, since the angles
with vertices at these points are doubled as a result of transfor­
mation.

Fig. 41.

33. Let us see how a circle passing through the origin
A will be transformed by means of the function z' = Z2.

We shall assume that the tangent to the circle at that point
forms an angle <p with Ax (Fig. 41). The circle is evidently located
in a half-plane bounded by that tangent line. The function
z' = Z2 transforms the half-plane into a plane with the ray A'M'
deleted. To find the image of the circle, let us draw from A
arbitrary rays in the half-plane and mark otT, on each of them, a
point of intersection with the circle. For definiteness, we have
seven rays in our drawing; all the 'angles MAB h BtAB2,

B2AB3, ••• , B7AP are taken to be equal (22 1; eaCh). The
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0.1464... ,

function z' = Z2 transforms them into rays forming between
themselves the angles twice as large; each of the angles
M'A'B'h B1A'B2, B2A'B), ... , B;A'P' is equal to 45°.

Let us calculate where the points Bit B2 , B3 , ••• , B7 will
pass to. The distances of their images B1, B2, B3, ... , B;
from the point A' will be equal to the squares of the
distances AB h AB 2, AB 3 , ... , AB 7 • But it is seen from

Fig. 41 that AB7 = AB l = AB4 sin 22 1; = Dsin22 1; (D is the

diameter of the circle); further, AB 6 = AB 2 = Dsin45°, AB s =

. 1°
= AB 3 = D sin 67 2' AB 4 = D. It should also be noted that

sin? 22~= 1 - cos 45° = 2 - 112 = 2 - 1.4142... =
2 2 4 4

sin245° = 0.5000... ,
1° 1° 1°

sin? 67- = cos" 22- = 1 - sin? 22- =
222

= 0.8535.... Consequently, A'B; = A'B'l = 0.1464D2
, A'B~ =

=A'B2= 0.5000D2, A'Bs= A'B3= 0.8535D2
, A'B4, = D2

• Thus we
see that a curve which is the image of the circle under- the
transformation z' = Z2 passes through the points A', B'l, B2,
B), ... , B;.

To have a better idea of this curve, we should have taken
a larger number of rays. This curve is termed a cardioid
(heart-like from the Greek kardia meaning heart). It is easy to
realize that the hatched figure on the left-hand side of Fig. 41
(it is obtained from the half-plane by deleting the circle) is trans­
formed, by means of the function z' = Z2, into the figure hatched
on the right-hand side of the same drawing. The latter is
bounded by the cardioid and the ray A'M' forming an angle
of 2<p with the positive direction of the real axis.

It can be shown that the ray A'M' is directed along the tangent
to each of the two arcs of the cardioid emanating from the point
A. Indeed, let us draw on the left-hand side of Fig. 41 an
arbitrary ray AB and assume that B denotes the point of its
intersection with the circle; if angle 1 MAB = o, then AB =
= D sin cx. By means of the function z' = Z2 this ray is
transformed into the ray A'B' (Fig. 41, right); as a result, the
point B', the image of the point B, gets on the cardioid.



From the properties of the transformation z' = Z2, known to us,
r-:

we have: M'A'B' = 2ex and A'B' = AB2 = D2 sin? ex. Let us assume
the angle ex to be variable and make it approach zero
indefinitely. Then the angle 2ex between A'B' and A'M' will
also approach zero indefinitely and the ray A' B' itself, which is
a secant for the cardioid, will rotate about the point A',

Fig. 42.

approaching indefinitely the limiting position A' M'. In the process,
the point B', which is the nearest to A' point of intersection
of the secant and the curve, will approach A' indefinitely, since
the distance A'B' = D2 sin? ex tends to zero as ex tends to zero.
It follows that A'M', which is the limiting position of the secant,
is the tangent to the arc A'B'lB2". at the point A'. It can
also be proved that A'M' is the tangent to the arc A'B;B(, ...
at the same point A'.

34. Now let us turn to Zhukovsky's function

z' = ~(z ++).
and apply it to the transformation of the figure bounded by two
circles: one circle passing through the points -1 and +1, and
the other circle contacting the first circle from within at the
point 1; the figure is hatched in Fig. 42.

Let us first make sure that the transformation

, 1( 1)z =2 z+z

can be reduced to several more simple transformations of the kind
known to us, which may be performed one after another. To this
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end let us consider the ratio

z' - 1
7+1"

Substituting in it, for z', the expression

~(z+~)2 z'

we shall find

Z' _ 1 2
1 (z + z1) - 1

__ _ Z2 + 1 - 2z = ( : ~ ~r.
z' + 1 ~ (z + ~) + 1 Z2 + 1 + 2z

Thus, from the fact that

z' =~(z+~)2 z'

it follows that

~ ~ ~ =(: ~ ~r·
The converse is also true: the second leads to the first. Indeed,
we obtain, from the second, the expression

, 1 '( z - 1 )2 ( Z- 1 )2Z - =z -- + -- ,
z+1 z+J

whence

Z'[1-(~)2J = 1 +(~)2,z+1 ,z+1

and further:

(l+:~~rz'=-----1_(_Z-1)2:
z + 1
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Thus the relations

1 ( 1) z' - 1 ( z - 1 )2
Z' =2" z + ~ and 7+1 = Z+T

are equivalent (one follows from the other).
Therefore the Zhukovsky transformation

z' = ~(z + ~)
can be represented in the form

z' - 1 (z - 1)2
7+1= Z+T .

The result must be the same. But now we can see that the
transition from z to z' can be performed in three stages: first,
perform the transition from z to an auxiliary variable z1 by the
formula

z-1
Zl = Z+T'

then pass from Zl to Z2 according to the formula

Z2 = zf,
and, finally, from Z2 to Z' by the formula

z' - 1
7+1= Z2·

(1)

(2)

(3)

We can easily make sure that if we substitute the expression
for z1 from formula (1) into formula (2) and then insert the
expression obtained for Z2 into formula (3), we shall have the
transformation required:

~ ~ ~ =(: ~ ~y.
What is the sense in replacing one transformation of

Zhukovsky by three transformations (1), (2) and (3) performed
one after another? The fact is that each of them is simpler
than Zhukovsky's transformation and is already known to us.

Thus, let us apply to the figure shown in Fig. 42 trans­
formation (1), then apply transformation (2) to what we shall
obtain and, finally, to the result of the second operation, we shall
apply transformation (3).

Recall that we found, in Sec. 30, that the figure shown
on the left-hand side of Fig. 38 (and it coincides with the figure
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in Fig. 42) is transformed by means of the function
z - 1

Zl = Z+1

(i. e. the function (1)) into the figure shown in Fig. 38, right.
The latter figure is bounded by a straight line passing through
the point 0 and forming an angle <p with the positive direction
of the real axis and a circle contacting this line at the
point o. This figure can be characterized as a half-plane with the
circle deleted.

Let us transform this figure by means of the function
Z2 = zi. It is sufficient to have a look at Fig. 41 to realize
that this problem was already solved in Sec. 33. At the end of
Sec. 33 we made a note to the point that we must obtain here
a figure depicted on the right-hand side of Fig. 41; it is bounded
by a ray and a cardioid.

Consequently, it remains to apply to the latter figure the

. z' - 1
transformation -,-1-= Z2· It follows from what was said in

z +
Sec. 28 (with the only difference that here z2 is regarded as an
independent variable and z' as a function) that when Z2

describes the ray A'M' issuing from the origin and inclined

-1 +'
Fig. 43.

to the positive part of the real axis at an angle 2<p, the
corresponding point z' describes an arc of a circle connecting
the points + 1 and -1; the tangent at the point + 1 to
this arc constitutes with the direction from point -1 to point + 1,
i. e. with the positive direction of the real axis, the angle 2<p
as well (Fig. 43).

We have thus found the image of the ray A'M' under the

z' - 1
transformation -,-1- = Z2· To find the image of the cardioid,

z +
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we could have traced how its points are transformed, for instance,
the points B'h B2, ... , B'-,. We will not, however, perform cumber­
some calculations, but will limit ourselves to depicting the trans­
formed curve in. its final form in Fig. 44.

The figure bounded by it has the shape of an aircraft wing
section. Sections of this kind were first considered by Russian

'- ......
......

.......
......

......

-1~t

Fig. 44.

Fig. 45.

scientists N. E. Zhukovsky and S. A. Chaplygin for which
reason they are called Zhukovsky-Chaplygin sections. By changing
the angle of inclination cp of the tangent line to the circle at point 1
(Fig. 42) and the radius of the smaller circle, various sections can
be obtained. In particular, if the angle cp is right, i. e. if the larger
circle is constructed on the interval from - 1 to +1 as on the
diameter, the corresponding section is symmetric with respect to the
real axis (Fig. 45). Such a section is sometimes called Zhukovsky's
vane.

Zhukovsky-Chaplygin's sections are the principal sections
employed in theoretical investigations of an aircraft wing.



EXERCISES AND PROBLEMS

1. Prove that if two complex numbers c = at + ib, and C2 = a2 + ib2
are equal, then their real parts are equal and imaginary parts are equal:
at = a2 and b t = b2•

Instruction. Proceed from the fact that equal complex numbers are
represented by parallel vectors which are of equal length and of the same
direction.

2. Using commutative, associative and distributive laws of addition
and multiplication, perform the following operations on complex numbers:

(a) (3 - 7i) + (- 2 + i) + (- 1 + 5i);

(b) (3 - 7i) (3 + 7i);

(c) (1 + i)(1 + i0);
(d) (1 + i)2:(1 - i)2;

(e) (Vi + i Vi )4
22·

Answers: (a) - i; (b) 58; (c) 1 - 0 + i (1 + 0); (d) -1; (e) -1.
3. Prove that any complex number c = a + bi #= 0 whose modulus is

equal to r and argument to ex can be represented in the form

c = r (cos ex + i sin ex)

(trigonometric form of a complex number).
Instruction. Express a and b in terms of r and ex with the aid of a

drawing on which c = a + bi is represented in vector form.
4. Prove that if

Ct = rt (cos (Xl + i sin (Xl) and C2 = r2(cos a2 + i sin a2),

then
Ct C2 = rt r2 [coste, + (X2) + i sin (ex 1 + (X2)].

Instruction. Make use of the geometric statement of the rule of
multiplication of complex numbers or multiply Cl by C2 using the rules of
addition and multiplication and then apply the formulas for the
cosine and sine of the sum.

S. Proceeding from the result of the previous problem, prove that if

c = r(cos ex + i sin ex)

(r is the absolute value of c and ex is the argument of c) then

c" = r"(cos na + i sinna)

(n is a natural number). Derive from this that

(cos ex + i sin ex)" = cos na + i sin nex

(Moivre's formula).
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6. Making use of Moivre's formula (see Problem 5), calculate:

(a) (0 +i 0)100. (b) (0 +~)217
2 2 ' 2 2

Instruction. 0 +i 0 = cos 45° +i sin 45°; 0 +~ = cos 30°+
2 2 2 2

+ i sin 30°.

Answers:

o i
(a) -1; (b) -2-+"2.

7. Proceeding from Moivre's formula (see Problem 5), derive the
formulas for cos na and sin na with n = 2, 3 and 4.

Instruction. In Moivre's formula (cos ex + i sin rx)" = cos na + i sin na the
term cos ex + i sin ex should be raised to the power n by a direct multiplica­
tion (for example (cos ex + i sin ex)2 = cos? ex + 2i sin ex cos ex - sin? ex) and
then it should.be written that the real and imaginary parts to the right and
to the left of the equality sign in Moivre's formula are equal between
themselves.

Answers: cos 2ex = cos! ex - sin 2ex; sin 2ex = 2sin ex cos rx; cos 3ex =
= cos? rx - 3 cos rx sin? rx; sin 3rx = 3 sin rx cos! ex - sin' ex; cos 4ex =cos" ex­
- 6 cos? rx sin? rx + sin" a; sin 4ex = 4 sin ex cos? ex - 4 sin? ex cos ex.

8. What will the triangle with its vertices at the points 0, 1 - i,
1 + i pass to under the transformation

z' = (~ + i ~) z'l

What is the geometrical meaning of this transformation?
Instruction. Begin with the elucidation of the geometrical meaning.

But you can also begin with calculating the vertices of the transformed
triangle.

9. What shall a semi-circle pass to as a result of the transformation

z' =~ if it is located above the real axis and rests on the interval
z + 1

with the end points - 1 and + 1 as the diameter?
Answer: Into a right .angle bounded by the upper part of the

imaginary axis and the negative part of the real axis.
10. What will the angle rx with the vertex at the origin pass to as a

result of the transformation z' = Z3?

Answer: Into the angle 3ex with the vertex at the origin.
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The book, containing a wealth of illustrative material, 
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