Infinity in Mathematics: Is Cantor
Necessary?

Dedicated to the memory of my friend
and colleague Jean van Heijenoort

Infinity is up on trial . . .
(Bob Dylan, Visions of Johanna)

Introduction

Since the rise of abstract mathematics in Greek times, mathematicians
have had to grapple with the problems of infinity in many guises. When
mathematics became an integral part of physical science it could be used
to formulate precise answers to age-old questions: Is space infinite? Did
time have a beginning? Will it have an end? Modern cosmological theo-
ries now marshal considerable physical evidence to support the finitude of
space and time. But whether or not (or how) infinity is manifested in the
physical universe, mathematics requires at its base the use of various in-
finite arithmetical and geometrical structures. Without these no coherent
system of mathematics is possible, and since mathematics is essential for
the formulation of physical theories, there is also no science without these
uses of the infinite at the base.

Beginning in the 1870s, Georg Cantor came to realize that one must
distinguish different orders or sizes of infinity of the underlying sets of ob-
jects in these basic mathematical structures. As he continued to work out

“Infinity in mathematics: Is Cantor necessary?” first appeared in G. Toraldo di
Francia (ed.), L'’infinito nella scienza (Infinity in Science), Istituto della Enciclopedia
italiana, Rome (1987), 151-209 (Feferman 1987a). It is reprinted here with the kind
permission of the publisher, and appears in this volume in two parts. The present
chapter constitutes the first (approximately) two thirds of the original article; the last
third, which is more technical, appears as chapter 12. Some minor corrections and
additions to bring it up-to-date have been made.
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the implications of his ideas, he was led to the introduction of a series
of transfinite cardinal numbers for measuring these sizes. Many mathe-
maticians of Cantor’s time were disturbed by his work, partly due to the
novelty of his concepts and partly due to the uncertain grounds on which
his computations and arguments with the scale of cardinals rested. But
some reacted in direct opposition to Cantor's work, for his reintroduction
of the “actual infinite” into mathematics (ironically, after that seemed to
have been finally eliminated from analysis by the previous foundational
work of the nineteenth century). One of Cantor’s most vigorous and severe
critics was his former teacher Leopold Kronecker, who would admit only
“potentially infinite” sets to mathematics and, indeed, only those reducible
to the natural number sequence 0, 1, 2,3, . . ..

Worries about the Cantorian approach were compounded when, around
the turn of the century, paradozes appeared in the theory of sets by taking
its ideas to what appeared to be their logical conclusion. The most famous
and simplest of these contradictions was due to Bertrand Russell, but ear-
lier ones had already been discovered for Cantor’s transfinite numbers by
Cesare Burali-Forti! and even by Cantor himself. While these paradoxes
did not worry Cantor, the vague distinctions between the transfinite and
the “absolute” infinite that he made in order to avoid them could not at
first be made precise. But the contradiction plagued Russell and he at-
tempted many solutions to escape them; that is, he sought precise system-
atic grounds for accepting substantial portions of Cantor’s theory while
excluding the paradoxes. The means at which Russell finally arrived is
called the theory of types, and though it proved to be very cumbersome as
a framework for set theory, it did restore a measure of confidence in Can-
tor’s work. Independently, Ernst Zermelo introduced an aziomatic theory
of sets, which featured a simple device for limiting the size of sets so as to
avoid the paradoxes while providing a very flexible and ready means for the
precise development of a considerable portion of Cantor’s theory of higher
infinities. Extensions of Zermelo’s axiom system, which are described be-
low, allow one to develop Cantorian theory in full while avoiding all known
paradoxical constructions.

Parallel to the work by logicians providing an axiomatic foundation for
higher set theory, Cantor’s ideas were put to use more and more in mathe-
matics, so that these days they are largely taken for granted and permeate
the whole of its fabric. But there are still a number of thinkers on the
subject who, in continuation of Kronecker’s attack, object to the panoply
of transfinite set theory in mathematics. The reasons for doing so are no
longer the paradoxes, which have apparently been blocked in an effective
way by means of the axiomatic theories devised by Zermelo and his succes-

! Actually, Burali-Forti’s paradox was only implicitly contained in his work. Inciden-
tally, Russell’s paradox was found independently by Zermelo in 1902. While the work
was not published, Zermelo claimed this earlier discovery in his 1908 paper; that has
subsequently been confirmed by a variety of evidence in Rang and Thomas (1981).
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sors. Rather, the objections to the Cantorian ideas reside in fundamentally
differing views as to the nature of mathematics and the objects (numbers,
points, sets, functions, . . .) with which it deals. In particular, these oppos-
ing points of view reject the assumption of the actual infinite (at least in
its nondenumerable forms). Following this up, alternative schemes for the
foundations of mathematics have been pursued with the aim to demonstrate
that everyday mathematics can be accounted for in a direct and straight-
forward way on philosophically acceptable non-Cantorian grounds. While
genuine progress has been made along these lines, the successes obtained are
not widely known and the alternative approaches have attracted relatively
few adherents among working mathematicians. The general impression is
that non-Cantorian mathematics is too restrictive for the needs of math-
ematical practice, regardless of the merits of the guiding non-Cantorian
philosophies.

Some logicians would now go farther to bolster this impression by giving
it a theoretical underpinning; their aim is to demonstrate that Cantor’s
higher infinities are in fact necessary for mathematics, even for its most
finitary parts. The results that have been obtained in this direction do,
at first sight, appear to justify such a reading. Nevertheless, it is argued
below [now in chapter 12] that the necessary use of higher set theory in
the mathematics of the finite has yet to be established. Furthermore, a case
can be made that higher set theory is dispensable in scientifically applicable
mathematics, that is, in that part of everyday mathematics which finds its
applications in the other sciences. Put in other terms: the actual infinite is
not required for the mathematics of the physical world. The reasons for this
depend on other recent developments in mathematical logic, the description
of which is the final aim of this essay [now chapter 12; cf. also chapter 14].

In order to explain the objections to Cantor’s ideas in mathematics
that lead one to search for viable alternatives, one must first provide some
understanding of their nature and use. This will be done here more or less
historically though necessarily in outline; we start with a rather innocent
looking problem about the existence of certain special kinds of numbers.?

From Transcendental Numbers to Transfinite Numbers

There are two basic number systems (having ancient origins), the set N
of natural numbers 0,1,2,3,... used for counting, and the set R of real
numbers use for measuring. The latter represent positions of points on a
two-way infinite straight line, relative to any initial point 0 (the “origin”)
and any unit of measurement 1. R is pictured as follows:

2This is not where Cantor himself started, though he came to it soon enough. For
a good detailed introduction to the history of the development of Cantor’s ideas, see
Grattan-Guinness (1980), chapters 5, 6 (by J. W. Dauben and R. Bunn, resp.). For a
deeper pursuit I would recommend most highly the books of Moore (1982) and Hallett
(1984). [Cf. also Lavine (1994).]
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N can thus be identified with a subset of R. Other subsets of use are
Z=1{.,-3,-2,-1,0,1,2,3,...} (the set of all integers) and Q = {n/m :
n,m € Z and m # 0}, the set of rational numbers, consisting of all quotients
or ratios of integers with nonzero denominators. We here write “z € §” for
the relation of membership of an object x to a set S, and “{z : P(z)}” for
the set of all objects z satisfying a determinate property P(z). If x does
not belong to S we write “z ¢ S.” Finite sets S can be denoted directly
by a listing of their elements as S = {ag,a1,a3,...,a,}. This notation is
extended to certain infinite sets such as N = {0,1,2,... ,n,...} and Z (as
above), when we have a complete survey of their elements.

If S; and Sy are sets, then S; is a subset of Sy, in symbols Sy C Sy, if
for every x € S7 we have x € S9;52 — S1 = {z: 2 € Sy and z ¢ S1} then
denotes the difference of these two sets. Sz ~— S; might be empty, when
S1 = S,; the empty set is denoted by 0.

The set Q is densely dispersed throughout R and cannot be distin-
guished from R by a simple picture as above. A basic realization from
Greek geometry was the existence of irrational magnitudes, that is, ele-
ments of R — Q. For, Pythagoras’ law giving the hypotenuse ¢ of a right
triangle in terms of its legs a, b by ¢? = a%+ b2, or equivalently ¢ = v/a? + b2,
leads directly to quantities such as v/2 = V12 4+ 12 and v/5 = V12 + 22,
which are easily proved to be irrational. Other kinds of irrational numbers
also arise naturally in geometry, for example, /2 in the classical problem
of the duplication of the cube (that is, construction of a cube with double
the volume of a given one), and m(= 3.14159...), the ratio of the circum-
ference of a circle to its diameter. However, the proofs of the irrationality
of numbers like 7 only came much later.

Other irrational numbers arise from the solution of algebraic equations;
for example, one solution of z* —7 =0is2 = V7 and of 2 =23 —1 =0'is
z = {/(1 ++/5)/2. Some equations, such as 2 + 1 = 0, have no solutions
in real numbers, although we can treat their solutions in the extension of
the real number system by the imaginary numbers such as v/—1; however,
those will not concern us here. A real number is called algebraic if it is
the solution x of a nontrivial polynomial equation p(z) = 0 with integer
coefficients; that is, p(x) = knz™ + kn_12™ 1 + ... + k1z + ko with n > 0
and k, # 0, and each k; € Z. We use “A” to denote the set of all (real)
algebraic numbers. Thus Q C A and A contains all the irrational' numbers
shown above, except possibly 7. However, it is natural to suspect that
7 € A, since there is no known polynomial equation of which it is a root.
This was in fact first conjectured by Legendre in the eighteenth century,
but a proof did not come until a century later.
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A number is called transcendental if it is in the set T = R — A. An-
other specific number which, like 7, is ubiquitous in mathematics and was
conjectured to be transcendental is the base e (= 2.71828...) of “natural”
logarithms. The first proof that there ezist any transcendental numbers
at all, that is, that T # @, was given by Liouville in 1844, His method
was to find a property P(z) which applies to all algebraic numbers z and
which says something (technical) about how well z can be approximated
by rational numbers. Liouville then cooked up a real number ¢ which does
not satisfy the property P, so £ must be transcendental. Infinitely many
other transcendental numbers can also be produced in this way, but Li-
ouville’s method did not help answer the specific questions as to whether
e and 7 are transcendental. Those results were not obtained until some-
what later, by Hermite (in 1873) and Lindemann (in 1882), respectively,
using rather special methods. In the meantime, Cantor published in 1874 a
new and extremely simple but striking argument to prove the existence of
transcendental numbers. Cantor’s result in this respect was no better than
Liouville’s, but the methodology of his proof turned out to be one of the
main starting points for his novel conception of infinity in mathematics.

First of all, Cantor defined two sets S; and S; to be equinumerous if
their elements can be placed in one-to-one correspondence with each other;
symbolically this is indicated by S; ~ Sy. A set S is finite if it is equivalent
to some initial segment of N, possibly empty, that is, S ~ {0,... ,n — 1},
where n > 0. A set S is called denumerable if S is finite or S ~ N. Every
nonempty denumerable set S can be listed as S = {ag,a1,...,0n,...},
possibly with repetitions, and conversely. From this follows directly several
basic facts:

(1) a denumerable union of denumerable sets is denumerable;
(2) the set Q is denumerable;
(3) the set A is denumerable.

In (1) we are considering sets So, S1,...,Sn,... , each of which is de-
numerable and may be assumed nonempty; these are listed as

50: {a07 a, az, An, }
Slz{bﬁ,/bl,/bg, A S

v

52: {607 C1, C2, Cn, }



Infinity in mathematics 33

The arrows have been added to show that the union S can be listed fol-
lowing the indicated arrows as

S = {a0)alvb07a2yb17601'~'}'

Now, for (2), take S, to be the set of all multiples m/n for n # 0 and
m in Z; each §, is denumerable and their union is Q, so (2) follows. To
prove (3), one shows first of all that all equations of the form k,,z™ + ...+
kiz + kg = 0 with integer coefficients and £,, # 0 can be enumerated. If
pn(x) = 0 is the n'® such equation, take S, to be the set of its solutions.
This set is finite (possibly empty), hence certainly denumerable. But the set
A of algebraic numbers is the union of these S, ’s, so it also is denumerable;
that is, (3) holds.

Now, in contrast, Cantor showed that

(4) R is non-denumerable.

In other words there is no way to list R as a simple sequence of real num-
bers, {zg,z1,22...}. Cantor’s first proof of (4) made use of special prop-
erties of R. Later he gave a simpler proof that could be generalized to
other sets; this used his famous diagonal argument. It is sufficient to show
that the set of reals z between 0 and 1 cannot be enumerated. Indeed,
given any enumeration {xo,z1, 22 ...} of a subset of R, we shall construct
a number x that is not in the enumeration. First write each member of
{zo,z1,z2...} as an infinite decimal:

Ty = O,alagag [P/ PO
Iy = 0.b1b2b3 e bn Ces

T9 = 0.c1C2¢3...Cp ...

Now form z = O.kikzks... k... not in {zo,2;,22...} by choosing
ki # a1, ke # by, k3 # c3, etc. For example, take k; = 0 if a; # 0
and k1 = 1 if ay = 0, etc. This proves (4); it then follows immediately
from (3) that A # R. Hence T = R — A must be nonempty, and thus
the existence of transcendentals is newly established. In fact, T must
also be nondenumerable, for otherwise by (1) and (3) we would have R
denumerable. This is a stronger conclusion than Liouville’s, which was
merely that T is infinite.

Clearly there are two senses of the size of a set involved here. If S is
a proper subset of S, then it is smaller than Ss in the sense of containing
fewer elements. But it may well be possible for S; to be a proper subset
of S5 and still have S; and S2 being of the same size in the sense that
S1 ~ S,;. For example, N = {0,1,2,...,n,...} is equinumerous with the
set E = {0,2,4,...,2n,...} of even integers, though E is a proper subset
of N. Similarly, Q ~ A by the above, though Q is a proper subset of
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A. Intuitively, any infinite set .S is of the same size as some proper subset,
while finite sets are just those which are not equinumerous with any proper
subset.

So if S; is a subset of S3 and we do not know whether S; is a proper
subset of S, one way to establish that is to show that S; and S, are
not equinumerous, in symbols, 51 % S3; however, to do so would require
a special argument, since by the preceding S; ~ S3 is well possible for
proper subsets. In the case of §; = A and S; = R, that is accomplished
by the results (3) and (4) above. Cantor’s argument is novel not only in
the concepts (set, equinumerosity, denumerability, nondenumerability) and
results (1)-(4) involved but also in a basic point of methodology: Cantor
finds a property P* of sets and shows two sets S;,Ss to be distinct by
showing that one of them has the property P* while the other does not.
Moreover, the ezistence of elements of a special kind follows by a purely
logical argument: if S is a subset of S3 and P*(S;) holds while P*(S3)
does not hold, then S; must be a proper subset of Sy; that is, there exists
an element ¢ of Sy — S1.

Since two finite sets {a1,az,...,a} and {b1,bs,... ,bn} (of distinct
elements) are equinumerous just in case they have the same number of
elements (n = m), Cantor was led to say in general that two sets S; and S
have the same number of elements if S; ~ Sp. One may regard the number
of elements in S as an abstraction from its specific nature which isolates
just what it has in common with all equinumerous sets. Thus, for example,
{1,2,3} ~ {1,3,2} ~ {V2, V5, 7} all have the same number 3. For Cantor
this was a process of double abstraction; the first level S abstracts away
all that is distinctive about the elements of S except how they are placed
in a certain order, and the second level S abstracts away the order as
well; S is called the cardinal number of S. Here instead we shall write
card(S) for S. For example card({V/2, ¥/5,7}) = 3,card({5}) = 1, and
card(®) = 0. To identify the cardinal number of infinite sets we need new
names. Cantor used the Hebrew letter N (aleph) with subscripts to name
various infinite cardinal numbers, beginning with card(IN) = Ry. Thus also
card(Z) = card(Q) = card(A) = Rg, but card(R) # Np. To name the
cardinal number of the continuum R, a new symbol ¢ is introduced by
definition as ¢ = card(R).

There is another way of naming card(R) that comes from the extension
of the arithmetic operations of addition, multiplication, and exponentiation
to infinite cardinals, as follows. Suppose n = card(S;) and m = card(Ss);
we can assume, without loss of generality, that S; and S; are disjoint.
Then define n + m = card(S: + Sz), where S; + Ss is the union of S; and
S3. Next, define n x m = card(S; x S2) where S; x S; is the set of all
possible ways (z,y) of combining an element z of 5; with an element y
of S. Finally, define n™ = card(S;?) where S = ... 81 x ... x 8y x ...

~

S2
consists of all possible combinations of elements of Sy, one for each position
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in Sy. For S, .5, finite these definitions of 4+, X, and exponentiation agree
with the usual ones, but for S; or Sy infinite we obtain new results. As
examples of calculations with the latter, one has

n+ Ry = Rg + Ng = Ny
for any finite n. For this reflects the relations
{0,1,... ,n=1}+{n,n+1,..}~{0,2,4,.. }+{1,3,5,7,.. } ~{0,1,2,.. }.

Thus unlike the case for finite m where n + m is greater than m (for
n # 0), we have m + m = m for m = Rg. Similarly, for the same m we
have m x m = m; this corresponds to the fact that a denumerable union
of denumerable sets is denumerable.

In order to represent the cardinal number ¢ of R in terms of these
operations, we return to the relationship of R with Q. Each element z of
R is approximated by sequences or sets of rationals in various ways. One
way is to associate with z the subset Q; of Q consisting of all rationals
r with r < z; then z is uniquely determined by Q.. Let P(Q) be the set
of all subsets of Q, in symbols P(Q) = {S : S C Q}; thus card(R) <
card(P(Q)).2 Now for any set S the set P(S) of all subsets S’ of S is
equinumerous with {0,1}°, the set of all possible ways of associating a 0
or 1 with each element 1 of S (the correspondence puts 1 if the element i
belongs to S’ and 0 otherwise). Hence card(P(S)) = 2¢*745) (and for this
reason, P(S) is called the power set of S). In particular, card(P(Q)) = 2%,
so, by the above, ¢< 2%, On the other hand, it is not difficult to produce
2%0 distinct members of R, by looking for example at real numbers z =
0.a1aqa3,... in binary expansion, that is, where each a; = 0 or 1. The
conclusion is thus that

(5) ¢ = 2%o,

Obviously Ry < 2% since N is a subset of R; but since R is nondenu-
merable, we must have

(6) Ng < 2%o,

Thus there are at least two transfinite numbers Ny and c; can these be all?

A Plethora of Transfinite Numbers
Cantor was thus led directly to the following questions:

I. Are there any infinite cardinal numbers besides Ny and ¢?

3For n = card(S1),m = card(S2) define n < m to hold if S; ~ S| for some S; C Sa
and n < mifn <m but n #m.
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II. In particular, are there any cardinal numbers n strictly between Rg
and ¢?

Cantor first computed the cardinal numbers of other familiar structures
besides N and R. For example, the Euclidean plane when considered from
the point of view of analytic (coordinate) geometry may be represented as
R x R, and three-dimensional space as (R x R) x R. But Cantor succeeded
in showing (to his own surprise) that

(1) cxc=(cxc)xc=c.

The fact ¢ x ¢ = c is analogous to the fact Ry x Ny = Ny noted above.
Initially, Cantor indexCantor, Georg proved this by considering arbitrary
pairs (z,y) of elements x of R and y of R. Expanding the decimal parts
of each as 0.a1a2a3 ... and 0.b1bbs ... , one obtains a corresponding new
decimal number by alternating their terms: 0.a1b1a2b2a3b3 ... . That (c x
c) x ¢ = c then follows immediately from ¢ x ¢ = ¢. For a while, Cantor
found no other infinite cardinal numbers besides Ny and c. But eventually
he proved that ¢ < 2¢ and in fact that for any cardinal number n,

(2) n < 2",

The proof of this makes use again of his diagonal argument, via the repre-
sentation of 2™ as card({0,1}°) for n = card(5).

Now starting with n = ¥y we can form the sequence of larger and larger
infinite cardinals

(3) n<2t <2 <.

But we can go still further beyond these by forming the infinite sum n +
2" 422" 4+ .. (suitably defined), so that

(4) n<2"<2” <. .. .<(m+2"+2" +...).

Then one can continue still higher by exponentiating and, at limits, taking
sums.

One has here the beginnings of what appears to be a scale for represent-
ing infinite cardinal numbers. But in order to obtain a complete scale or
system of representations, every cardinal number must appear somewhere
in the list. This brings us back to question II above: is there any cardinal
number n between Rg and 2%°? Cantor conjectured that there is not, and
he expended considerable effort over many years trying to prove just that.
This conjecture has come to be called the Continuum Hypothesis, abbre-
viated CH. If CH is true, then c is the first cardinal larger than RNg, but
independently of whether or not CH is true, it is natural to ask whether
there is a first such cardinal. Cantor argued that must be so by invoking
what has come to be called the Well-Ordering Principle (WO). A set S is
said to be well-ordered by a relation < of ordering between its elements if
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every nonempty subset S’ of S has a first element. Thus, for example, the
rearrangements of N

(5) (i) 0,2,4,...,1,3,5,...
(i) ...,5,3,1,0,2,4...

determine three different orderings <i, <3, and <3 of N. Under the first
two of these, N is well-ordered (as it is under its standard order 0,1,2...),
but for the third, <3 is not a well-ordering of N since the subset {...5,3,1}
does not contain a first element. Note that <3 is the same as the natural
ordering of the set Z of all integers.

Now Cantor claimed WO is true by the following kind of argument?: if S
is any nonempty set, choose an element zg of S arbitrarily. Either S = {zq}
or S—{zo} is nonempty; in the latter case choose an element z; of S—{z¢}
arbitrarily. Now either S = {xo,z1} or S— {zo, 21} is nonempty; in the lat-
ter case we proceed by choosing an element x5 of S — {z¢,z1}. If S is finite,

then at some stage n, S = {zp,z1,... ,Zn}; otherwise {z¢,21,... ,Zn...}
is an infinite subset of S. If § = {zq,21,...,Zn ...} we are through; oth-
erwise choose an element z,, of S — {zg,z1,... ,Zn,... }. We proceed on,

as necessary, to choose distinct elements 2,417,242 ... of S; eventually we
must exhaust all the elements of S. Then we arrive at

(6) S:{anmly--'7In7"'axw7$w+1»"-7may~--}

where at each stage in the procedure of generating this transfinite sequence,
there is a first element beyond all those already chosen. This determines a
well-ordering of S by the order of generation,

(7) 20 <21 <. . <2y <o KT KTpp1 < ... < T < ovv

The problem with this argument is that it assumes there is a method
for making an unlimited number of successive arbitrary choices, so that
for each subset S’ = {zo,21,...,28,. . }g<a Of S, if §" # S, the method
chooses an element z, of S — S’. If one takes S to be the set N, there is no
problem since the standard ordering of N already provides a well-ordering.
But if one takes S to be the set R, there in no known method to make the
required choices. The assumption of the existence of such a sequence of
choices may thus be considered to be unjustified, and that was one cause
of opposition to Cantor’s theory.

4 Actually, Cantor initially asserted WO to be a “law of thought” when he first stated
it in 1883. Around 1895 he began to recognize the need for an argument and indicated
such in letters to Hilbert and Dedekind between 1896 and 1898; see Moore (1982), pp.
51-53.
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If one assumes the Well-Ordering Principle WO, then a complete scale
for the infinite cardinal numbers follows as a consequence. For if n =
card(S1) and m = card(Sz) and n < m, we have Sy ~ S}, where S] is
a subset of S3. Well-order S7, and then extend that to a well-ordering of
S2. Thus S; is equinumerous with an initial segment of the well-ordering
of S;. But since S; # Sz, there is a first initial segment S} of Sy with
Sy # Sy. Let p = card(S5); then p is larger than the cardinal number n
of S; and, by the way it is defined, there is no cardinal number between n
and p; furthermore, p < m. Hence, beyond any cardinal number n there is
a next larger one, nt, and for any m with n < m we have n™ < m.

Cantor now defined his complete scale of infinite cardinals (which he
labeled using the Hebrew aleph with subscripts), as follows:

(8) Rp <Ry <Rp <. < Np < <N <R <0 a < Ry

where at each successor stage Nqo+1 is taken to be (Rq)™ (the first cardinal
number greater than N, ), and at limit stages N, is taken to be the first
cardinal number larger than all preceding R, for v < a. The Continuum
Hypothesis can now be reexamined in terms of the relationship of ¢ to
Ng: since Ry < ¢ and N; is the first cardinal larger than Ny, we have
Rg < Ry < c. If there is any cardinal number between Ng and c, then N;
would certainly be such a number. Hence the question as to whether CH
is true is equivalent to the question whether ¢ = ¥;; in other words,

9) is 2R = N, ?

To summarize: Cantor achieved his complete representation (8) of in-
finite cardinal numbers at the cost of assuming a problematic principle
(WQO), and even with this he was left with the fundamental open question
(9) about the location of ¢ in the resulting scale.

Justifying Cantor: Enter Zermelo

At the (Second) International Congress of Mathematicians, held in Paris in
1900, David Hilbert gave a famous lecture entitled “Mathematische Prob-
leme,” in which he presented twenty-three major unsolved problems.® First
in Hilbert’s list, which began with problems in the foundations of mathe-
matics, was Cantor’s problem of the cardinal number of the continuum. In
his discussion of this, Hilbert states CH in the form that for every subset S
of R, either S is denumerable or S ~ R, that is, that there are no cardinal
numbers n between Ry and 2%¢. Hilbert found CH plausible, but he also
raised a question in this connection about Cantor’s principle WO and, in

SHilbert’s article on his talk was published in English translation in 1902 and is
reproduced in Browder (1976), which also contains separate articles detailing the devel-
opments arising from the various problems. Hilbert is here quoted in translation. [See
also the Appendix to chapter 1 in this volume.]
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particular, its consequence that R can be well-ordered. Concerning the lat-
ter Hilbert said, “It appears to me most desirable to obtain a direct proof
of this remarkable statement, perhaps by actually giving an arrangement
of [real] numbers such that in every partial system a first number can be
pointed out.” (Hilbert {1902), in Browder (1976), p. 9) Clearly, Hilbert was
not convinced by the argument for WO that Cantor had communicated to
him in 1896 or 1897—presumably in its use of a transfinite succession of
arbitrary choices—since he is here calling for an ezplicit construction of a
well-ordering of R..°

Hilbert was not the only one to recognize the significance of CH or to
question the grounds for accepting the WO principle, despite his favora-
bility to Cantor’s ideas. Since Kronecker, Cantor had received criticism
from many sides, though he had also gained adherents to his new math-
ematics. But as one of the leading mathematicians of the time, Hilbert’s
selection of the Continuum Hypothesis and the Well-Ordering Principle to
be the first in his entire list of questions gave added prominence to both
the importance of Cantor’s ideas and their problematic aspects.

Ernst Zermelo was one of the first to take up Hilbert’s challenge. Zer-
melo had initially worked on topics in analysis and mathematical physics,
but in 1899 he became a Privatdozent at Gottingen, where he came un-
der Hilbert’s influence and began pursuing set theory. Zermelo’s first main
contribution to the subject was achieved in 1904 with his proof of the Well-
Ordering Theorem on the basis of a new principle, which has come to be
called the Aziom of Choice, or AC in abbreviated form.” Zermelo’s original
statement of AC is to the effect that if S’ is any nonempty set, then there
is a function f which is defined on the collection C of all nonempty subsets
X of S such that for each X in C we have f(X) in X. In other words,
f provides for the simultaneous choice from each nonempty subset X of
S of a distinguished element (namely, f(X)) of X. By proving WO from
AC, Zermelo was able to reduce the construction of a transfinite sequence
of successive choices (which appear to proceed through time) needed in
Cantor’s attempt to prove WO, to the assumption of a single simultaneous
collection of choices. AC itself is an immediate consequence of WO, for if S
is well-ordered by a relation <, one can define f(X) to be the least element
of X under < for each nonempty subset X of S. Since WO and AC are
thus equivalent, Zermelo’s proof can only be considered to have achieved
progress if AC is evident in a way that WO is not.

In the years directly following Zermelo’s 1904 publication, his proof
provoked considerable controversy, centering on both the assumption of AC

6Modern logical work on set theory has shown that Hilbert’s hope is impossible to
realize; the precise sense of this is explained in a later section.

"Moore (1982) gives the most comprehensive history available concerning the back-
ground, development, and importance for set-theoretical mathematics of Zermelo's Ax-
iom, as well as the extensive controversies to which it has given rise. It was subse-
quently proved that many important set-theoretical propositions are equivalent to AC.
One which is closest to it is the Multiplicative Aziom, formulated independently by
Russell, which emerged from work of Whitehead and Russell.
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as well as his use of other set-theoretical concepts and principles. (Some
critics mistakenly believed that a form of the Burali-Forti paradox was
involved in Zermelo’s argument.) The main criticism of AC was that a
function f is asserted to ezist without any means being provided to de-
fine it uniquely. In this, AC violates a view of mathematics according to
which existence of an object satisfying a certain condition can only be as-
serted when such an object has been ezplicitly constructed or defined. In
contrast, Zermelo’s principle asserts the outright existence of an object, f,
independent of any means of definition.

Later, Zermelo formulated another principle AC’, which may be con-
sidered intuitively clearer than AC, but which can be shown equivalent to
it, namely, that if C is any collection of nonempty disjoint sets,® then there
is a function f defined on C such that for each X in C we have f(X) in
X. AC' can be pictured as follows:

X F(X) Y fY)

However, the basic objection to AC on the grounds that it asserts exis-
tence without explicit definability applies equally well to AC’. On the
other hand, if one conceives sets to be arbitrary collections of entities ex-
isting independently of human constructions and definitions, then AC’ is
immediately intuitively evident. Thus the question whether to accept or
reject AC comes down to a fundamental difference of viewpoints as to the
nature of mathematics.®

In order to disentangle the various objections to his proof of the Well-
Ordering Theorem and shore up his defense of it, Zermelo arrived in 1908

8This means that if X,Y are in C and X # Y, then the intersection of X and Y is
empty.

9AC was by no means the first example in mathematics of the assertion of existence
of an object without any means being known to construct it. However, it was the first
in which this difference is so blatantly revealed.
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at an explicit, systematic presentation of basic notions and principles for
sets, in the form of an aziomatic system of set theory. Two of Zermelo’s
axioms assert the outright existence of certain sets (namely, the empty
set and an infinite set representing the natural numbers N), while further
axioms state that if certain sets exist then other sets related to them also
exist. The latter include the nonconstructive existence statement AC but
also include axioms for the usual constructions in set theory such as those
of pairing, union, intersection, difference, product, set-of-all subsets, etc. A
principal general means of construction is guaranteed by Zermelo’s Aziom
of Separation according to which if S is any set and P is any definite
property of elements of S, then the set S’ = {z € S : P(z)} (that is,
{z :z € Sand P(z)}) exists. By this means Zermelo finessed the paradoxes
which had arisen from the unrestricted formation of sets {z : P(z)}. The
latter had led to what Cantor called inconsistent or absolutely infinite sets
such as the set C of all cardinal numbers, and the set V of all sets. While
not all sets {z : P(z)} are necessarily inconsistent in the logical sense, some
among them are, as for example Russell’s set R = {z : ¢ z} consisting
of all sets which are not members of themselves (the paradox results when
one asks whether R € R or not). Absolutely infinite or inconsistent sets in
Cantor’s sense cannot be constructed in Zermelo’s axiom system,!® since
there is no universal set V from which to separate {z : P(z)}.

Aside from the existence axioms of Zermelo's system, there is one fur-
ther axiom which reflects the underlying philosophical view as to the nature
of mathematics on which the system rests. This is the Aziom of Exten-
sionality, according to which if S; and S, are sets having exactly the same
members, then S; = Ss; in other words, a set is determined entirely by
its members and is to be regarded independently of any specific means of
determining just what those members are.!!

Zermelo showed how the proof of WO from AC could be carried out on
the basis of his other axioms. Furthermore, the Well-Ordering Theorem
has the following three basic consequences, as Zermelo had already shown
in his 1904 article: (i) for any cardinal numbers n and m, exactly one of
the three possibilities: n < m,n = m, m < n, must hold; (ii) every infinite
cardinal n is of the form N, for some (ordinal) ¢; and (iii) for any infinite
cardinal number m, we have m = m +m = m x m. The first of these
is called the Trichotomy Principle and says that the cardinal numbers are
linearly ordered; in other words, any two of them can be compared as in
a scale. The second result gives the complete system of representation for
infinite cardinals in terms of the “alephs.” The latter are defined in such
a way that each N, represents a well-ordered set; hence (ii} implies WO

19Unless the system is logically inconsistent for some other, less obvious reason; then
every statement would be derivable according to the usual laws of logic.

! For more detail on Zermelo’s axiom system and its development see Moore (1982),
pp. 153 ff., and, more extensively, Fraenkel, Bar-Hillel, and Levy (1973). Translations
of Zermelo’s 1904 and 1908 papers referred to above are in van Heijenoort (1967).
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and thus AC. It was shown later (by Hartogs) that (i) implies AC as well.
Still later Alfred Tarski proved that the statement m = m x m for all
infinite cardinals m also implies AC. Hence even this special fact from the
arithmetic of infinite cardinal numbers is as basic as the general principles
(i) and (ii) concerning their scale of representation.

Zermelo's axiomatization of set theory did not succeed in satisfying his
critics as he hoped. Indeed, it supplied even more fuel for criticism, partic-
ularly concerning Zermelo’s use of the vague notion of definite property in
his formulation of the Axiom of Separation. It was some years before this
was given a satisfactory explanation by means of formal languages which
had been developed for symbolic logic. This was done first by Hermann
Weyl and then in a simpler, improved way by Thoralf Skolem (in 1922).
In Skolem’s account, “definite properties” are replaced by (well-formed)
formulas in a language of the first-order predicate calculus, whose basic
predicates are € and =. The basic formulas are thus of the form z € y
and z = y; formulas in general are built up using symbols for propositional
connectives including negation (), disjunction (V), conjunction (A), im-
plication (—), and by existential and universal quantification, (3z)(...)
(“there exists z,...") and (Vz)(...) (“for all z,...”). The reasoning em-
ployed in making derivations from the axioms is that of first-order logic,
that is, the logic of propositional connectives and quantifiers with respect
to variables ranging over the domain of discourse. This formal version of
Zermelo Set Theory, without the Axiom of Choice, is often simply denoted
Z. The full system with AC added is denoted Z+ AC, or ZC in abbreviated
form.

Though basic facts about the arithmetic and ordering of cardinal num-
bers can be derived in ZC, it turns out that it is insufficient to prove the ex-
istence of the limit of the increasing sequence of cardinals Rg, 2%, 22" .|
or equivalently of the set M = {Ro, 2““,22% y...}. We have here a corre-
spondence R between the elements of a set whose existence is already given,
namely N, and those of a set M whose existence should be provable but is
not; moreover, this correspondence is definable in the first-order language
of set theory. In order to overcome this limitation in Zermelo's system,
Abraham Fraenkel introduced (in 1922) a new axiom called Replacement.
This says that if we have a first-order definable relation R(z,y) which as-
sociates with each element z of an already existing set A a unique element
y, then the set B of all the associated y’s exists; intuitively each element
z of A is replaced by the unique y such that R(z,y) holds. The system Z
with Fraenkel’s Axiom of Replacement added is called Zermelo-FraenkelSet
Theory and is denoted ZF.!1?2 Again, the adjunction of AC to ZF is indi-

12 Actually, the need for the new axiom was realized independently by Skolem, and
his formulation of it was even superior to Fraenkel's. Thus, properly speaking, the
system should be called Zermelo-Skolem Set Theory and denoted ZS, or to be more
generous, Zermelo-Fraenkel-Skolem Set Theory (ZFS). However, we are stuck with ZF
as the standard designation these days. Translations of Skolem’s and Fraenkel’s 1922
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cated by ZF + AC or simply ZFC. All of Cantor’s theory of infinite sets and
numbers can be formalized in ZFC, that is, can be developed in a logically
exact manner within that system.

While the logicians were improving and extending Zermelo’s axiom sys-
tem, mathematicians were employing its basic principles more and more
and with increasing assurance in the areas of algebra, analysis, and topol-
ogy. It would take us too far afield here to outline this development, and we
must refer the reader to other sources.’® Though concern about AC never
died down, set-theoretical methods and ideas were widely applied in math-
ematical practice by 1940 and eventually took over in textbook expositions
of many parts of mathematics following the Second World War. Simulta-
neously, a growing mild acquaintanceship with logic gave mathematicians
a better (though not deep) understanding of what Zermelo, Skolem, and
Fraenkel had accomplished; in this superficial sense, then, Zermelo finally

received his due.

The Foundational Issue (Part 1): Cantorian Set Theory
as Mathematical Platonism

Zermelo’s axiomatization and its extensions diminished one area of concern
about Cantorian set theory, namely, that it led to paradoxical construc-
tions; at least there is no obvious way to carry those out in systems such as
ZC and ZFC. But the objections based on more fundamental grounds as to
the nature of mathematics remained, and fueled a vigorous and continuing
controversy between the opponents and defenders of higher set theory.

The history of mathematics has been punctuated repeatedly by the
introduction of problematic concepts (for example, imaginary numbers, in-
finitesimals, and points at infinity), problematic principles (for example,
the parallel postulate), and problematic methods (for example, Fourier se-
ries expansions of arbitrary functions, and the operational calculus). These
have been dealt with in each case by either complete or partial (perhaps
modified) acceptance or outright rejection. Each instance raised anew the
question: What is it justified to say and do in mathematics? In the past,
such questions were dealt with by mathematicians sensitive to the issue of
justification on a case-by-case or “local” basis. Moreover, this tradition of
mathematics taking good care of its own house has continued to operate
right up to the present.'?

papers are to be found in van Heijenoort (1967).

13See, to begin with, Moore (1982), chapters 3 and 4. Of interest for the sociology of
the subject is that set-theoretical mathematics was given a great boost in Poland after
the First World War, largely under the leadership of Waclaw Sierpinski.

141 have analyzed various ways of dealing with such local foundational problems in
Feferman (1985), using both classical and modern cases as illustrations. [An updated
version of that paper is reproduced as chapter 5 in this volume; cf. also chapter 4 for an
abbreviated version.|
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The advent of higher set theory gave rise to a complex question of
justification of an altogether more fundamental and “global” nature, which
again engaged mathematicians first and foremost, but now brought it to the
doors of philosophy. Even the most basic modes of reasoning employed in
mathematics had to be reconsidered, and here the technical developments
of modern logic provided essential new tools for that purpose.

What were the aspects of Cantorian and Zermeloan set theory found to
be problematic by its opponents? Here there was no united view, but the
following features were of recurrent concern:

(i) Sets as independent existents. Sets are conceived to be objects hav-
ing an existence independent of human thoughts and constructions.
Though abstract, they are supposed to be part of an external, objec-
tive reality.

(ii) Actual infinity. Infinite sets are supposed to exist as completed objects;
the most basic of these is the totality of natural numbers.

(iii) Arbitrary (sub)sets. For each set, any arbitrary combination of its
elements is supposed to exist as a well-determined set in its own
right.

(iv) Power sets. For each set S, the totality P(S) of arbitrary subsets of
S is supposed to exist as another set.

(v) The aziom of choice. For any set S and any subset C of P(S) consisting
of disjoint nonempty sets, there is a choice set, existing as an arbitrary
combination of elements, one from each member of C.

(vi) Relations and functions as sets. A relation R between elements of a
set S; and those of a set Sy is supposed simply to be an arbitrary set
of pairs in S; x Sy. Functions from S; to S, are supposed simply to
be many-one relations.

(vii) Objectivity of truth and classical logic. Each proposition P about sets
has a definite truth value (true or false), independent of any means
we may have to verify it. The Law of Ezcluded Middle (LEM), that
P or =P holds, is thus accepted for any such P.

The following remarks expand on these features:

ad(i). Views of mathematical objects as independently existing abstract
entities are generally called a form of platonism. In its particular set-
theoretical manifestation, this reveals itself most obviously in such
principles as the Axiom of Extensionality and the Axiom of Choice.

ad(ii). The platonist position per se does not necessarily require the exis-
tence of infinite sets (or, for that matter, of sets at all), but of course
that is essential to Cantorian set theory.
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ad(iii). Though the Axiom of Separation—according to which for any
set S and well-determined property P(z) (of elements of .S) the set
{z € S : P(z)} exists—is fundamental and widely applied in set
theory, this must not be taken to mean only definable subsets of a
set need be assumed to exist.

ad(iv). The formation of power sets leads to the higher infinities by the
increase in cardinality of P(S) over that of S, for any set S. In ad-
dition, the existence of power sets justifies impredicative definition,
whereby a subset S’ of S can be singled out by reference (by quan-
tification over P(S) to arbitrary subsets X of S (for example, as the
intersection of all subsets X of S satisfying a given condition Q(X)).

ad(v). As already explained at length in the preceding sections, the Axiom
of Choice is essential to establish a linear (in fact, well-ordered) scale
of infinite cardinals.

ad(vi). The reduction of functions to sets goes far beyond mathemati-
cians’ previous conception of functions as given by laws. Since the
idea of one-to-one correspondence is explained in terms of one-to-one
functions, this is also essential for the theory of equinumerosity.

ad(vil). An immediate consequence of LEM and the other laws of logic
is the method of proof by contradiction: if the assumption that P is
false leads to a contradiction, then P is true; formally,

(-P) = (QA-Q)] — P.
Furthermore, the usual laws of quantification coupled with LEM yield
(Ir)P(z) « =(Vz)-P(x).

In other words, to establish an existence result (3z)P(z), it is suf-
ficient to assume (Vz)-P(z) and derive a contradiction. In general
this will not show how to produce a solution z to satisfy P(zx).

According to the platonist picture of set theory, then, statements such
as the Continuum Hypothesis CH have a definite truth value, which it
would be our aim as mathematicians to determine with all means at our
disposal.

The Foundational Issue (Part 2): Brouwer’s Way Off,
Hilbert’s Way Out, and Weyl’s Way to Get By

The possible responses to those who found the platonist philosophy of
mathematics unacceptable as a justification for higher set theory were ei-
ther to reject that theory in whole or in part, or attempt some alternative
form of justification. Here we review three basically different responses, due
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respectively to L. E. J. Brouwer, David Hilbert, and Hermann Weyl. To
carry out their ideas, Brouwer and Hilbert created substantial foundational
programs; these drew much attention but (as we shall see) proved far from
successful. Weyl’s initiative was more limited in its scope but achieved its
aims within that; his basic work and approach is a forerunner of the results
to be reported at the end of the essay [in chapter 12].

Brouwer’s Way Off

Brouwer’s program was the most radical and the most original of the three
considered here. He advanced this with passionate conviction and persis-
tence (despite its reception with general incomprehension and/or rejection)
from his doctoral dissertation in 1907 through his last paper in 1955.1%
Brouwer strongly criticized platonism and formalism (of which, see below).
In his 1908 paper “The unreliability of logical principles,” he argued that
the Law of Excluded Middle for statements about infinite sets is obtained
by an unjustified extension from finite sets, where it is correct. For exam-
ple, when P is a testable property, we can verify (3z)P(z) Vv (Vz)~P(z) for
“x” ranging over a finite S, by inspecting each element of S in turn, but
this method is evidently inapplicable to infinite S. For Brouwer, questions
of truth are restricted to statements that can be verified or disproved. Thus
Pv =P cannot be declared true until we have verified one or the other of its
disjuncts. Similarly (3z)P(x) cannot be recognized as true until we have
found an instance a which makes P(a) true. On the other hand, to verify
(Vz)P(z) in an infinite S we cannot check each element of S, and other
methods must be found according to the nature of S. Thus, for example,
the Principle of Mathematical Induction, that P(0)A(Vz)[P(z) — P(z+1))
implies (Vz)P(z), provides a method of drawing conclusions of the form
(Vz)P(zx) in the set N of natural numbers. Brouwer also rejected the com-
pleted infinite, and he called collections S such as R and Cantor’s second
number class 2 (the countable ordinals) denumerably unfinished: beyond
any well-determined denumerable subset S’ of such S we can associate an
element of S — S’. For Brouwer, then, the statement CH, which states the
equinumerosity of R and 2, has no definite meaning and the question of
its truth has no interest for him.

Brouwer thus took a completely constructivist stance in his critique of
platonism, continuing the way advanced by Kronecker. But Brouwer gave
his constructivism a particularly subjectivist stamp which he labeled in-
tuitionism, emphasizing the origin of mathematical notions in the human
intellect. Moreover, beginning in 1918, Brouwer went on to provide a sys-
tematic constructive redevelopment of mathematics for the first time, going
far beyond anything actually done by Kronecker.

15Brouwer was Dutch and did his dissertation in Amsterdam. All his published papers
on philosophy and the foundations of mathematics are to be found in volume 1 of
his Collected Works (1975); the papers originally in Dutch are there translated into
English. Incidentally, the second volume in his Collected Works consists of papers in
nonconstructive mathematics, mainly topology, to which Brouwer made fundamental
contributions during the period 1908-1913.
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The theory of real numbers provided the first obstacle to a straightfor-
ward constructivist redevelopment. With real numbers identified as con-
vergent sequences of rational numbers, all sorts of classical results would
apparently fail to have reasonable constructive versions if one restricted
attention only to sequences determined by effective laws. Brouwer intro-
duced instead a novel conception, that of free choice sequences (f.c.s.),
which might be determined in nonlawlike ways (for example, by random
throws of a die), and of which one would have only finite partial informa-
tion at any stage. Then with the real numbers viewed as convergent f.c.s.
of rationals, a function f from R to R can be determined using only a
finite amount of such information at any given argument. Brouwer used
this line of reasoning to conclude that any function from R to R must be
continuous, in direct contradiction to the classical existence of discontin-
uous functions. With this step Brouwer struck off into increasingly alien
territory, and he found few to follow him even among those sympathetic to
the constructive position.1®

Hilbert’s Way Out
When Hilbert addressed the International Congress of Mathematicians in
1900, he was nearing the age of forty and was already considered to be one
of the world’s greatest mathematicians. Hilbert had by that time made his
mark in algebra, number theory, geometry, and analysis. He would go on to
make further substantial contributions in analysis, mathematical physics,
and the foundations of mathematics. At Gottingen, where he was a profes-
sor, Hilbert had many first-rate colleagues and students who often helped
with the detailed development of his ideas. In particular, Hilbert’s program
for the foundation of mathematics was taken up by von Neumann, Acker-
mann, Bernays, Gentzen, and others, beginning in the 1920s. This program
was shaped initially by both Hilbert’s general tastes and interests as well
as his specific experience with axiomatic geometry. Hilbert was noted for
his clarity, rigor, and a penchant for systematically organizing subjects; at
the same time he had the knack of putting these pedagogical tendencies to
work to develop powerful methods for the solution of concrete problems.
His work in algebra and algebraic number theory was part of the growing
tendency toward abstract methods in the nineteenth century, which then
came to dominate twentieth-century mathematics. One advantage of such
methods is their generality—any mathematical structure meeting the basic
principles must satisfy all the conclusions drawn from them.

In his work on axiomatic geometry, Hilbert returned to the axiom sys-
tem that had come down from Euclid, for which he gave a superior devel-
opment meeting modern standards of rigor. In addition, Hilbert moved on

16 Nowadays, Brouwer’s theories of f.c.s. are much better understood and are demon-
strably coherent. Dummett (1977) gives an excellent introduction to the development of
mathematics based on Brouwer’s intuitionistic ideas. [Cf. also Troelstra and van Dalen
(1988) and van Stigt (1990).]
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to what we would now call “metageometry,” through the study of questions
such as the independence of certain axioms from the remaining ones. This
he achieved by a series of constructions of unusual models which satisfy all
the axioms but the one to be shown independent. Also, Hilbert demon-
strated the consistency of his axioms by the methods of analytic geometry,
which interpret the statements in the Cartesian plane R x R and space
R x R x R. In other words, geometry is shown consistent relative to a
theory of real numbers (and for weaker combinations of axioms, relative
to subsets of R such as the algebraic numbers). In the second problem of
his 1900 address (Hilbert 1900, 1902), the compatibility of the arithmetical
axioms, Hilbert proceeded to call for a proof of consistency for a system
of axioms for R, which he recognized would, in some sense, have to be
absolute.

Hilbert’s statement of Problem 2 already reveals some of his key posi-
tions, though they would be extended and elaborated later. He says there
that the foundations of any science must be provided by setting up an
ezact and complete system of axioms. “The axioms so set up are at the
same time the definitions of [the] elementary ideas [of that science}; and no
statement within the realm of the science whose foundation we are testing
is held to be correct unless it can be derived from those axioms by means
of a finite number of logical steps” (Hilbert (1902), in Browder (1976),
p. 10). After explaining the relative consistency proofs for geometry, he
says: “On the other hand a direct method is needed for the proof of the
compatibility of the arithmetical axioms” (ibid.) (that is, for a theory of
real numbers). Hilbert goes on to posit that a mathematical concept exists
if, and only if, it can be shown to be consistent (noncontradictory); thus,
for him “the proof of the compatibility of the axioms [for real numbers]
is at the same time the proof of the mathematical existence of the com-
plete system of real numbers” (ibid., p. 11). The real numbers are not to
be regarded as all possible convergent sequences of rational numbers, but
rather as a structure determined by or governed by certain axioms. Fi-
nally, in his statement of Problem 2, Hilbert expresses the conviction that
the existence of Cantor’s higher number classes will be demonstrated by a
consistency proof “just as that of the continuum.” Evidently, at that time
Hilbert thought the consistency proof of both the theory of real numbers
and set theory would be straightforward. But within a few years (Hilbert
1904) he was presenting a less sanguine view: the paradoxes of set theory
seemed to him to indicate that the problem of establishing the consistency
of set theory presented greater difficulties than he had anticipated. Further-
more, according to Paul Bernays, “although he strongly opposed Leopold
Kronecker’s tendency to restrict mathematical methods, he nevertheless
admitted that Kronecker’s criticism of the usual way of dealing with the
infinite was partly justified.”!”

17Bernays (1967), p. 500. For more information about Hilbert’s shifting views con-
cerning foundations see Sieg (1984), pp. 166 and 170ff. [cf. also Hallett (1995)].
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In the following decades Hilbert was preoccupied with the theory of in-
tegral equations and mathematical physics, and he did not return to prob-
lems of foundations until 1917.* In the meantime, Zermelo had laid the
axiomatic grounds for Cantorian (platonist) set theory while Brouwer had
launched his attacks on mathematical platonism and formalism. Concern-
ing the latter, Brouwer stressed that consistency was not enough to justify
the use of mathematical principles; what was necessary was to assure their
correctness.

Hilbert’s mature program for the foundations of mathematics via fini-
tist proof theory was announced in his 1917 address, “Axiomatic thought”
(Hilbert 1918); it was then elaborated in a succession of almost yearly
publications through 1931. Briefly, the idea is that a given body of math-
ematics (such as number theory, analysis, or set theory) is to be treated
as formally represented in an axiomatic theory T. Each such T is to be
specified by precisely described rules for generating its well-formed formu-
las (statements) from a finite stock of basic symbols. Certain of these
formulas are then selected as axioms (both logical ones and axioms con-
cerning the specific subject matter of T), and rules for drawing inferences
from the axioms are specified. For a formal axiomatic theory T pre-
sented in this way, the set of provable formulas is defined to consist of
just those formulas for which there exists a proof (or derivation) in the
system, that is, a finite sequence ending with the formula, each term of
which is an axiom or is obtained from preceding terms by one of the rules
of inference. Then T is consistent just in case there is no contradiction
(P A —~P) which is provable in T. Hilbert's Beweistheorie, or theory of
proofs, was developed as a tool to analyze all possible derivations in formal
axiomatic systems. With proofs represented as finite sequences of formu-
las, and formulas as finite sequences of basic symbols, whose structure in
both cases is regulated by effective conditions, the question of consistency
of T in no way assumes the actual infinite. Now Hilbert’s idea was to use
entirely finitary methods in establishing the consistency of formal systems
which otherwise required for their justification the assumption of the actual
infinite. Not only the theory of real numbers but already a formal system of
elementary number theory would have to be shown consistent. Such a sys-
tem would be a first-order version PA (Peano Arithmetic) of Peano’s axioms
for N, formulated by replacing the second-order axioms of induction by the
corresponding first-order scheme: P(0) AVz(P(z) — P(z + 1)) — Vz P(z),
for all formulas P(z) in the language of PA. Hilbert wanted to justify
the use of such a system including classical logic, which leads by LEM to
statements like (3x)P(z) V (Vz)-P(z); in this, he indirectly acknowledged
Brouwer’s criticism of the assumption of the actual infinite.

In addition to his general program, Hilbert proposed some specific
proof-theoretic techniques to carry it out. These methods were shown

*{ft has been brought to my attention by W. Sieg that this is not quite correct:
Hilbert continued to lecture throughout that period on the foundations of mathematics;
cf. Hallett (1995).)
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to work in relatively simple cases for theories T much weaker than PA.
The success of the program would depend next on extending them to a
finitary proof of the consistency of PA, and so on, up to the consistency of
set-theoretical systems like ZFC. As we shall see, these hopes were to be
dashed by Gédel’s incompleteness theorems of 1931.

Hilbert’s 1926 paper “On the infinite”!® is a very readable exposition
of the finitist program for the foundations of mathematics and is a typ-
ical example of Hilbert’s style of heroic optimism, which nowadays may
be considered bombastic: “the definitive clarification of the nature of the
infinite has become necessary, not merely for the special interests of the
individual sciences, but rather for the honor of the human understanding
itself” (Hilbert (1926), in van Heijenoort (1967), pp. 370-371).

The first portion of Hilbert’s 1926 paper reviews the general “problem
of the infinite” in mathematics, from which he turns to the particular prob-
lems raised by Cantor’s theory of transfinite numbers. Here “the infinite
was enthroned and enjoyed the period of its greatest triumph” (ibid., p.
375). But the paradoxes discovered by Russell and others brought one to
an intolerable situation: is there no way to retain what Cantor achieved
while escaping the paradoxes? Yes, by careful investigation and proof of
the complete reliability everywhere of our inferences, “no one shall drive
us from the paradise that Cantor created for us” (ibid., p. 375).

The plan laid out in the mid-portion of Hilbert’s paper is that of ex-
pressing mathematical propositions formally and representing mathemat-
ical inferences by derivations in precisely described formal systems. The
formulas of these systems are divided into finitary propositions and ideal
propositions. Finitist proof theory is to be used to show how the latter
can be eliminated in terms of the former; this is to be achieved by finitary
proofs of consistency. The procedure of elimination here is analogous to
that used to justify the introduction of ideal elements in mathematics such
as imaginary numbers, points at infinity, and the algebraic number ideals
introduced by Kummer. Apropos of this last, Hilbert remarks that “it is
strange that the modes of inference that Kronecker attacked so passion-
ately are the exact counterpart of what . . . the same Kronecker admires so
enthusiastically in Kummer's work and praised as the highest mathemati-
cal achievement” (ibid., p. 379). Moving on to more definite proposals, a
formal system of elementary number theory is presented which is equiv-
alent to the first-order axioms PA of Peano Arithmetic indicated above.
Hilbert claims that the problem of its consistency is “perfectly amenable
to treatment”; moreover, what a “pleasant surprise that this gives us the
solution also of a problem that became urgent long ago,” (ibid., p. 383)
namely, the consistency of a system of axioms for the real numbers.

Finally, in the third part of his 1926 paper, Hilbert moves into high
gear, leaving even his acolytes standing bewildered in the dust. For here

18We refer here to the English translation in van Heijenoort (1967), pp. 369-392.
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he claims “to play a last trump” and to show how the continuum problem
can be solved by use of proof theory. Hilbert's plan has intriguing as-
pects roughly related to later work on constructive hierarchies of number-
theoretic functions as well as to Gédel’s own definitive results on the con-
sistency of CH (to be discussed below), but it has never been worked out
in any coherent form.* In his bravado and eagerness to demonstrate the
success of his program, Hilbert promised far more than he could deliver.
Indeed, even the claims of finitist proofs of the consistency of elementary
number theory and real number theory would not survive Godel's incom-
pleteness theorems of 1931. For one who trumpeted the cause of absolute
reliability, how wrong could he be? Nevertheless, Hilbert’s influence and
program were decisive factors in what followed: as we shall see, the attack
on the “problem of the infinite” was shifted to the arena of metamathe-
matics and in that proof theory became one of the primary tools.

One final remark concerning Hilbert vis & vis the constructivists needs
to be made. As Paul Bernays tells it, “there was a fundamental opposition
in Hilbert’s feelings about mathematics . . . namely his resistance to Kro-
necker’s tendency to restrict mathematical methods . . . particularly, set
theory . . . [and his] thought that Kronecker had probably been right. . .
. It became his goal to do battle with Kronecker with his own weapon of
finiteness.”'® But in his efforts to outfight the constructivists, Hilbert was
hoist with his own petard.

Weyl’s Way to Get By

Hermann Weyl was one of Hilbert’s most illustrious students, and his work
was almost as broad (and deep) as that of his teacher. After a period as
Dozent in Gottingen following his doctoral work there, Weyl took a position
in Ziirich shortly before World War I. Hilbert made several efforts to bring
him back, and Weyl finally returned as Hilbert’s successor in 1930, only
to leave for Princeton when the Nazis came into power in 1933. All these
personal and professional connections made it difficult for Weyl to express
his strong differences with Hilbert on foundational matters, but he did so
tactfully on a number of occasions.??

Weyl evolved his first approach to the foundations of mathematics in
the monograph Das Kontinuum (1918). In the introduction thereto he
criticized axiomatic set theory as a “house built on sand” (though the ob-
jects of, and reasons for, his criticism are not made explicit). He proposed
to replace this with a solid foundation, but not for all that had come to

*[Cf. the discussion by R. M. Solovay of one of Gédel’s proofs of the consistency of
CH in Godel (1995), 114-127.]

19Quoted in Reid (1970), p. 173.

20Weyl's best known works on logic and the philosophy of his mathematics are his
monograph (1918) and book (1949), both discussed below. But there are also many less
familiar articles on these subjects scattered through his Collected Works (1968), span-
ning the period 1918-1955. [Chapter 13 in this volume provides a detailed examination
of Weyl (1918); see also chapter 14.]
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be accepted from set theory; the rest he gave up willingly, not seeing any
other alternative. Weyl’s main aim in this work was to secure mathematical
analysis through a theory of the real number system (the continuum) that
would make no basic assumptions beyond that of the structure of natu-
ral numbers N. Unlike Hilbert, Weyl did not attempt to reduce first-order
reasoning about N to something supposedly more basic. In this respect
Weyl agreed with Henri Poincaré that the natural number system and
the associated principle of induction constitute an irreducible minimum of
theoretical mathematics, and any effort to “justify” that would implicitly
involve its assumption elsewhere (for example, in the metatheory). And,
unlike Brouwer, Weyl accepted uncritically the use of classical logic at this
stage (though at a later date he was to champion Brouwer’s views). For-
mulated in modern terms, a system like PA was thus accepted by Weyl as
basic. However, for a theory of real numbers one would have to provide a
means to treat sets or sequences of natural numbers (using the reduction of
Q to N) and then, for analysis, explain how to deal with functions of real
numbers as functions from and to such sets. Weyl added axioms for exis-
tence of sets of natural numbers which are arithmetically definable; these
are of the form (3X C N)(Vn € N)[n € X « P(n)] where the formula
P(n) contains no quantified variables other than those which range over
N. Using two sorts of variables, lowercase for elements of N and uppercase
for subsets of N, these axioms take the form (IX)(Vn)[n € X « P(n)).
Weyl deliberately excluded axioms of this type in which P contains quan-
tified variables ranging over subsets of N; in particular, he thus excluded
statements of the form (3X)(Vn)[n € X — (VY)Q(n,Y)], even when Q is
an arithmetical formula. Wey!’s reason for doing so was that otherwise one
would be caught in a circulus vitiosus. The matter at issue here requires a
lengthy aside.

The wvicious circle principle, first enunciated by Poincaré, was designed
to block certain purported definitions, in which the object introduced is
somehow defined in terms of itself. According to Poincaré, all mathemat-
ical objects beyond the natural numbers are to be introduced by explicit
definitions. But a definition which refers to a presumed totality—of which
the object being defined is itself to be a member—involves one in an ap-
parent circle, since the object is then itself ultimately a constituent of it
own definition. Such “definitions” are called impredicative, while proper
definitions are called predicative; put in more positive terms, in the latter
one refers only to totalities which are established prior to the object being
defined. The formal definition of a set X of natural numbers as X = {n :
(VY)Q(n,Y)}, taken from the axiom IXVn[n € X « (VY)Q(n,Y)], is im-
predicative in Poincaré’s sense because it involves the quantified variable
“Y” ranging over arbitrary subsets of N, of which the object X being de-
fined is one member. Thus in determining whether (VY)Q(n,Y’) holds, we
shall have to know in particular whether Q(n, X) holds—but that can’t be
settled until X itself is determined.
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Poincaré raised his ban on impredicative definition thinking doing so
would exclude the paradoxes. However, that succeeds only by taking a
very broad reading of what it means for a definition to refer to a totality.
For example, in Russell’s paradox, derived from JaVz{z € a < = ¢ z], or
a = {z : z ¢ z}, the formula P(x) = (z & z) does not refer to the pre-
sumed totality of all sets, since it does not contain any quantified variables
ranging over sets. On the other hand, it is true that in order to deter-
mine by its “definition” which members a has, we must already know the
answer; in particular, a € a would be determined true only if we already
knew that a € a. However, this vicious circle is not itself excluded by the
principle enunciated by Poincaré in its prima facie reading. On the other
hand, Poincaré’s principle as it stands would certainly exclude impredica-
tive definitions in analysis of the sort X = {n : P(n)} where P contains
quantified variables ranging over arbitrary subsets of IN; the objection to
such definitions is not that they are paradoxical, but rather that they are
implicitly circular and hence not proper.

Russell was one of the first to accept Poincaré’s ban on impredicative
definitions as applied to sets, and he turned to the construction of a for-
malism for generating predicative definitions. Roughly speaking, instead
of talking about arbitrary sets, one may only talk in this formalism about
sets of level 1, sets of level 2, etc. A set of level 1 is defined by a formula
using quantified variables ranging over individuals only. This determines
the totality of sets of level 1; then a set of level 2 is defined using just quan-
tified variables ranging over individuals and over arbitrary sets of level 1.
The problems with this kind of ramification (as Russell called it) is that in
the resulting theory of real numbers (introduced as sets of rational num-
bers) one would have reals of level 1, reals of level 2, etc., but analysis with
such distinctions would be unworkable. As an ad hoc device, Russell then
introduced his Aziom of Reducibility, which says that every set of higher
level is coextensive with one of lowest level. In effect, this “axiom” nullified
the point of ramification and indirectly permitted the use of impredicative
definitions in analysis. Russell recognized that this step did not jibe with
the initial philosophical outlook stemming from Poincaré’s definitionism,
but saw no alternative to developing analysis. As it happens, his theory of
types, which distinguished sets according as to whether they were sets of
individuals (type 1), sets of such sets (type 2), etc., and which restricted
the membership relation to objects of successive types (with individuals
taken to be of type 0), already blocked the paradoxes without in any way
forcing one to insist on predicative definitions. This was achieved by the
later move (due to F. P. Ramsey) to Simple Type Theory as opposed to
Russell’s original Ramified Type Theory (which distinguished sets both as
to types, and as to levels of definition).

Now if one accepts the platonist philosophy in set theory, the totality
P(N) of subsets of N exists independently of how its objects may be de-
fined, if at all. According to this view any formula P(z) involving variables
ranging over N and variables ranging over P(N), connected by arithmetical
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relations between individuals and relations of membership between individ-
uals and sets, has a definite meaning, independent of whether we have any
means to “determine” it; then the definition X = {z : P(z)} simply serves
to single out one member of P(N). According to the platonists, this is
entirely analogous to singling out a natural number as the minimum one
satisfying a certain (nonempty) property, formally £ = (minn)P(n), where
we may have no way to determine k effectively, even when P only involves
numerical quantification. But according to the predicativist (or “defini-
tionist”) there is a difference: the totality of natural numbers is granted
as clear and definite and each of its members can be singled out by a prior
representation, while there is no justification in the assumption of a totality
of subsets of N independent of how these may be defined, since sets can
be introduced only by definition on the basis of (successively) established
totalities.

To return to Weyl, we can say that he positioned himself as follows in
Das Kontinuum.?! First, he rejected the platonist philosophy of mathe-
matics as manifested in the impredicative existence principles of axiomatic
set theory, though he accepted classical quantifier logic when applied to
any established system of objects. Second, he accepted the predicativist
viewpoint taking the system of natural numbers as its point of depar-
ture. Third, he recognized that, whatever their justification on predica-
tive grounds, ramified theories would not give a viable account of anal-
ysis. Weyl’s main step, then, was to see what could be accomplished in
analysis if one worked just with sets of level 1, in other words, only with
the principle of arithmetical definition. Here it is to be understood that
such definitions may be relative; that is, if P(z,Y:,...Y,) contains vari-

ables Yi,...,Y, but no quantified set variables, then P serves to define
X ={z: P(z,Y1,...,Y,)} relative to Y1, ...Y,. Given any specific defini-
tions of Y3,...,Y, this will produce by substitution in P a specific defini-

tion of X. Finally, such means of relative arithmetical definition serve to
explain which functions from sets to sets are to be admitted, namely, just
those given as F(Y:,...,Y,) = {z: P(z,Y1,...,Y,)} with P arithmetical.

In this way, Weyl was able to set up a formal axiomatic framework for
arithmetical analysis in which he could define rational numbers in terms
of (pairs of) natural numbers, then real numbers as certain sets (namely,
lower Dedekind sections) of rational numbers, and finally functions of real
numbers as functions from sets to sets in the way just explained. He
then went on to examine which parts of classical analysis could be jus-
tified on these grounds. To begin with, the general least upper bound
(lu.b.) principle for sets of real numbers could not be accepted in its
full generality. According to that principle, any set S of real numbers
which is bounded above has a Lu.b. X. In Wey!l’s framework, S is given
as consisting of lower Dedekind sections Y satisfying an arithmetical con-

21See also his elaboration of this position in Weyl (1919).
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dition P;(Y); then its supposed lL.u.b. X is the union JY[P,(Y)]; that
is, X = {r e Q: 3Y(P(Y)Ar € Y)}. Translating rational numbers
to natural numbers, this gives X = {n : (3Y)P(n,Y)} for suitable arith-
metical P; but this is an impredicative definition which is not justified in
Weyl's system. On the other hand, the lu.b. principle for sequences of
real numbers does hold in his system. For, a sequence (Yi)ren is given by
an arithmetical condition P (r, k), which holds just in case r € Yi. If the
sequence is bounded above, its l.u.b. X is the union |J Y[k € NJ, that is,
X ={r e Q:(3k)P,(r,k)}, and this reduces to an arithmetical definition
of the form X = {n : (3k)P(n,k)} with P arithmetical.?® Thus Weyl’s
task was reduced to seeing which parts of classical analysis rest simply on
the Lu.b. principle for sequences of reals rather on the more general L.u.b.
principle for sets of reals. Here, in fact, he found that the entire theory
of continuous functions of reals goes through in a straightforward manner
in arithmetical analysis, including for such (i) the intermediate value the-
orem, (ii) the attainment of maxima and minima on a closed interval, and
(iii) uniform continuity on a closed interval.?®> From these it is a direct
step to develop the theory of differentiation and integration for continuous
functions. Here it is Riemann integration that can be treated in a straight-
forward predicative way. (Weyl remarks?* that it is less simple to deal with
the more modern theories of integration through theories of measure, but
gives no indications; their treatment would be left for the future develop-
ments of predicative analysis [outlined in chapters 12-14 in this volume].)

There is no mention of Brouwer or intuitionism, and no restriction on
the logic employed, in Das Kontinuum. However, within the next few
years Weyl became more familiar with Brouwer’s work and somewhat of a
convert. He is quoted as saying, during some lectures on Brouwer’s ideas
in 1920: “I now give up my own attempt and join Brouwer.”?® Over
the following years Weyl was to help champion Brouwerian intuitionism as
against Hilbert’s program in various publications, much to Hilbert’s annoy-
ance. However, in later years he became pessimistic about the prospects
for the Brouwerian revolution. Moreover, it is not true to say that Weyl
ever completely gave up his “own attempt,” which he continued to men-
tion over the years in articles on foundational matters, where his criticisms
of mathematical platonism in set theory remained constant. A relatively
mature expression of Weyl’s view is provided by his 1949 book, which is

22 Actually, Weyl establishes Cauchy’s convergence principle for sequences of reals,
which is equivalent to the l.u.b. principle for sequences. Note also that the l.u.b. principle
for sets (sequences) is equivalent to the g.l.b. principle for the same, and with the given
representation of real numbers this leads to a definition of the g.l.b. as an intersection
rather than a union.

23 As sketched in Wey! (1918), pp. 61-65. [Cf. also chapters 13 and 14 in this volume.]

24 Ibid., p. 65.

25See van Heijenoort (1967), p. 480; the original statement may be found in Weyl’s
Gesammelte Abhandlungen (1968), vol. 2, p. 158.
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readily accessible.?® The following quotations from this book reveal both
his settled convictions as well as his unsettled state of mind about the
eventual foundations of mathematics:

The leap into the beyond occurs when the sequence of numbers
that is never complete but remains open toward the infinite is
made into a closed aggregate of objects existing in themselves.
Giving the numbers the status of ideal objects becomes dan-
gerous only when this is done. . . . The vindication of this
transcendental point of view forms the central issue of the vio-
lent dispute . . . over the foundations of mathematics.?”

From an aggregate of individually exhibited objects we may by
selection produce all possible subsets and thus make a survey of
them one after another. But when one deals with an infinite set
like IN, then the existential absolutism for the subsets becomes
still more objectionable than for the elements.?8

There follows an explanation of the vicious circle principle, of levels of pred-
icative definition, and of the resulting “dilemma” for analysis concerning
the l.u.b. principle:

Russell, in order to extricate himself from the affair, causes rea-
son to commit harakiri, by postulating the above assertion [the
Axiom of Reducibility] in spite of its lack of support by any ev-
idence. . . . In a little book Das Kontinuum, published in 1918,
I have tried to draw the honest consequence and constructed a
field of real numbers of the first level, within which the most
important operations of analysis can be carried out.?®

Mathematics with Brouwer gains its highest intuitive clarity.
He succeeds in developing the beginnings of analysis in a nat-
ural manner, all the time preserving the contact with intuition
much more closely than had been done before. It cannot be
denied, however, that in advancing to higher and more gen-
eral theories the inapplicability of the simple laws of classical
logic eventually results in an almost unbearable awkwardness.
And the mathematician watches with pain the larger part of his
towering edifice which he believed to be built of concrete blocks
dissolve into mist before his eyes.39

Finally, “Hilbert’s mathematics may be a pretty game with formulas . . .
but what bearing does it have on cognition, since its formulas admittedly

26That is a revised and considerably augmented English edition of an article Weyl
wrote for the Handbuch der Philosophie in 1926.

2TWeyl (1949), p. 38.

28 Ibid., p. 49.

29 Ibid., p. 50.

30 bid., p. 54.
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have no material meaning by virtue of which they could express intuitive
truths?”3! In this connection, Weyl says that a consistency proof of arith-
metic “would vindicate the standpoint taken by the author in Das Kontin-
uwum, that one may safely treat the sequence of natural numbers as a closed
sequence of objects.” 32

Incidently, a famous wager was made in Ziirich in 1918 between Weyl
and George Pdlya, concerning the future status of the following two propo-
sitions:

(1) Each bounded set of real numbers has a precise upper bound.
(2) Each infinite set of real numbers has a countable subset.

Weyl! predicted that within twenty years either Pélya himself or a ma-
jority of leading mathematicians would admit that the concepts of number,
set, and countability involved in (1} and (2) are completely vague, and that
it is no use to ask whether these propositions are true or false, though any
reasonably clear interpretation would make them false (unless the concepts
involved were to acquire totally new meanings). The loser was to publish
the conditions of the bet and the fact that he lost in the Jahresberichten
der Deutschen Mathematiker Vereinigung; this never took place as such.%?

Weyl’s viewpoint in making this wager is often mistakenly identified as
being that of Brouwer’s intuitionism, though it was made at the time of
publication of Das Kontinuum, prior to Weyl’s taking up Brouwer’s views.
As we have seen, the l.u.b. principle was rejected in his 1918 publication on
the grounds of the vicious circle principle and the rejection of impredicative
definitions. And (2) requires some form of the Axiom of Choice applied to
subsets of R for its proof, so was rejected by Weyl along with his rejection
of the conception of R as a completed totality. As to the settlement of
the wager, there is no question that Weyl lost under its stated conditions.
Moreover, the vast majority of mathematicians (leading or otherwise) would
say then, as they would say now, that Weyl’s side of the bet was simply
wrong-headed. But Weyl would not be shaken by this: “The motives are
clear, but belief in this transcendental world taxes the strength of our faith
hardly less than the doctrines of the early Fathers of the Church or of the
scholastic philosophers of the Middle Ages.”3* So, the “Middle Ages” are

31Weyl (1949), p. 61.

32Jbid., p. 60. For elaboration of Weyl’s views, the reader should not overlook Ap-
pendix A of Weyl (1949), and see further his 1944 obituary article “David Hilbert and
his mathematical work,” reproduced in Reid (1970), pp. 245283, as well as Weyl (1946).
[Cf. also chapter 13 in this volume.]

33The document spelling out the bet was reproduced by George Pélya in a brief note
(1972). According to Pélya, “The outcome of the bet became a subject of discussion
between Weyl and me a few years after the final date, around the end of 1940. Weyl
thought that he was 49% right and I, 51%; but he also asked me to waive the conse-
quences specified in the bet, and I gladly agreed.” Pdlya showed the wager to many
friends and colleagues and, with one exception, all thought that he had won.

34Weyl (1946), p. 6.
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simply taking somewhat longer to wane than Weyl expected—but that’s
the way it goes with Middle Ages.

The Rise of Metamathematics and the Crumbling of
Hilbert’s Program

Hilbert’s emphasis on the axiomatic approach to mathematics and on the
metatheoretical questions concerning axiom systems constituted one of
the principal sources for the development of metamathematics as a new,
distinctive, and coherent subject. Here “meta” has taken the meaning
“about”; that is, axiom systems are objects of study examined externally.
Such a treatment fits very well with axiomatic mathematics in its tradi-
tional sense, as first exemplified in geometry, but also with modern axioma-
tizations of number theory, algebra, and topology; each of these deals with
a restricted or “local” part of mathematics. The metamathematical ques-
tions that Hilbert raised about axiom systems concerned their consistency,
completeness, categoricity, and independence (of the axioms, one from an-
other). In his program for the foundations of mathematics via finitist proof
theory, Hilbert imposed further requirements on how the investigation of
such questions was to be carried out, but those restrictions are not essential
to metamathematics and only influenced part of its development. What
is essential is that axiom systems are to be described precisely in formal
terms so that results concerning them may be established rigorously. The
term “metamathematics” then is suitable for the study in each case of
that part of mathematics formalized in a given axiom system. But this is
already troublesome, insofar as such study is to be carried out by infor-
mal mathematical means which may themselves be formalized. This novel
feature is exactly what was capitalized on in the first striking results of
metamathematics, namely, the Lowenheim-Skolem theorem and Gdédel’s
incompleteness theorems; these, furthermore, combined to undermine both
Hilbert’s conception of mathematical existence and his finitist program for
establishing “existence” via consistency proofs.

The following is devoted primarily to the highly discomfiting (if not
devastating) effects on Hilbert’s program of several metamathematical re-
sults of a general character (including those just mentioned). At the same
time, these results served to undermine the programs for the universal or
“global” axiomatization of mathematics initiated by Frege and carried on
in the work of Russell, Zermelo, Fraenkel, and others. In contrast to the ax-
iom systems for restricted areas of mathematics of the sort described above,
here one aimed at systems of such generality that “all” mathematics could
be formalized within them. As such, the idea of investigating these systems
from the outside was antithetical to the motives for their creation,®® but as

35This point has been emphasized particularly by van Heijenoort; cf., for example, his
1967 essay reproduced in van Heijenoort (1986), pp. 13-14.
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we shall see, the claims to universality could not withstand the ouslaught
of metamathematics.

The Lowenheim-Skolem Theorem
In 1915 Leopold Léwenheim established a theorem which is now stated as
follows: if a formula A of the first-order predicate calculus has a model
(is satisfiable in some domain), then it has a denumerable model. This
was improved by Thoralf Skolem in 1920 (and again in 1922) both in the
proofs and in the statement of results. Skolem’s theorem tells us that if S
is any set of first-order formulas which has a model, it has a denumerable
model. The Lowenheim~Skolem theorem was derived later (1930) as a
consequence of Godel’s completeness theorem, by which if S is consistent
in first-order predicate logic, then S has a denumerable model. For it is
trivial that if S has a model at all, then it must be consistent.?®

At first sight, Godel’s completeness theorem would seem to support
Hilbert’s dictum that existence of a mathematical concept is the same as
consistency of an axiom system for it. But Hilbert had in mind axiomatiza-
tions .9 like that of Peano for the natural numbers and of Dedekind for the
reals (as well as certain of his own for geometry) which are categorical, that
is, such that the models of the axiom system are uniquely determined up
to isomorphism. This implies that if M, M’ are any two models, then they
are equinumerous; that is, M ~ M’. But the Lowenheim-Skolem theorem
shows that no set of first-order axioms S for the real numbers, that is, for
which R is a model, can be categorical since § has a denumerable model
while R is nondenumerable.

A later result by Skolem showed that no set of first-order axioms for
N can be categorical; he did this by constructing a nonstandard model
N’ satisfying exactly the same first-order statements as N.37 A still more
general theorem of Tarski showed that if a first-order set of statements S
has a model M of any infinite cardinality m, then it has a model M’ of
any other infinite cardinality m’. So no set of first-order axioms S with an
infinite model can be categorical.

Since Peano's original axioms for N and Dedekind’s for R are categori-
cal, they must have an essentially non-first-order component. In fact these
are just, respectively, the axioms of induction for N and of completeness

38 The various basic papers of Lowenheim, Skolem, and Gédel may be found translated
in van Heijenoort (1967). [The paper of Skolem dated 1922 in that source was not
published until 1923 and appears as Skolem (1923a) in our bibliography; the reason given
by van Heijenoort for the earlier dating is that Skolem had lectured on this material in
1922.] See also Godel (1986). [Chapter 6 in this volume provides a survey of Godel’s life
and work.]

37In the language of current model theory, two structures M, M’ which provide in-
terpretations of the same language are called elementary equivalent, and one writes
M = M'’, if they satisfy the same first-order statements in that language. Then by a
nonstandard model of the natural numbers is meant an N' not isomorphic to N with
N = N’. Similarly a nonstandard model of the reals is an R’ such that R = R’ but R’
is not isomorphic to R.
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(or the Lu.b. principle} for R expressed set-theoretically. For example, in
the case of Peano’s axioms this takes the form

VX[0e XAVn(ne X - (n+1)€ X)— Vn(n € X)),

where the (set) variable “X” ranges over subsets of the domain. But for
categoricity there is a further requirement, called that of standard second-
order logic: in any interpretation of the axioms in a domain M, the set
variables are to be interpreted as ranging over the set P(M) of arbitrary
subsets of M.

Now this takes on a more puzzling aspect when we move to axioms
for sets like those of Zermelo-Fraenkel, ZF (or even Zermelo’s system Z).
Since ZF is first-order, if it has a model M at all then it has a denumerable
model M'. But any set A in M’ must have an interpretation of its powerset
P(A) in M', say Ppr(A). In ZF it is a theorem that if A is infinite then
P(A) is nondenumerable. But in M’, Py (A) has only denumerably many
members. This peculiar situation is referred to as “Skolem’s paradox”
though it is not actually paradoxical; the puzzle is resolved by noting that
externally, A ~ Pap(A), since both sets are denumerably infinite. But
internally, that is, within M’, there is no function which can establish the
one-to-one correspondence between A and the interpretation of P(A) in
M’. In other words, the formal statement —(A4 ~ P(A)) is still true in M’.

Now if we are to follow Hilbert’s dictum of mathematical existence
through in this context as well, the existence of set-theoretical concepts
must be secured by the consistency of axiom systems like ZF. As we see,
however, what would thereby be secured is not the intended concept but
a variety of possible interpretations in models of different cardinality. The
only way to secure the concept of set axiomatically is to add to the axioms
of ZF a second-order “completeness” axiom referring to arbitrary subsets of
the intended model M. This now puts us in a bind: one can’t capture the
notion of arbitrary set axiomatically without somehow already assuming
the notion of arbitrary set to be understood.

There is still a final problem for Hilbert’s conception of mathematical
existence when combined with his finitist program. According to the latter,
each axiomatic system must be prescribed finitarily: the syntax, axioms,
and rules of inference are all to be determined by finitary effective proce-
dures. For example, this is achieved in the axiom system PA by replacing
Peano’s second-order axiom of induction by the axiom scheme consisting
of all formulas of the form

P(0) AYR(P(n) — P(n + 1)) — YnP(n),

where P(n) is any formula in the first-order language of arithmetic using
the basic symbols (0,1, +,-, and =). Now from a purely formal point of
view, the statement of Peano’s original axiom,

VX[0e X AVn(ne X - (n+1)€ X)— Vn(n € X)],
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appears to be equally finitary. Indeed this is so, but being so does not
suffice for categoricity; there is nothing in such a formal axiomatization
within a second-order language that can force the system to be categorical.
Only the semantic requirement that we are dealing with standard second-
order logic, that is, that in any interpretation M, “X” ranges over P(M),
will ensure categoricity. But that requirement is on its face nonfinitary; in
fact, this is demonstrated as a consequence of the results with which we
deal next.

Godel’s Incompleteness Theorems
In his famous paper “On formally undecidable propositions of Principia
Mathematica and related systems,” Goédel (1931) proved that for a wide
class of effectively presented consistent extensions S of a formal system
PM containing PA, there are elementary statements A such that neither A
nor ~A is provable in S. For his proof, Godel introduced a class of finitarily
defined functions which are obtained from the zero and successor functions
by explicit definition and inductive definition on IN.3® The class of functions
so generated is now called the primitive recursive functions. All such are
effectively computable; through later work of Church, Kleene, Turing, and
Post,*® one arrived at a definition of the most general class of effectively
computable functions on N, which is now called the recursive functions.
Godel’s incompleteness results were achieved by first coding up syn-
tactic objects (expressions, terms, formulas, proofs) as sequences (or se-
quences of sequences, etc.) of numbers and then representing such sequences
(my,...,mg) as single numbers n using the prime power representation
n = p;" ... p;* (this process is called Gddel numbering). Gdédel then used
this numbering to formally represent the syntax of the system PM within
itself. More generally, he showed that if S is any extension of PM with
a primitive recursive set of axioms (under its Godel numbering) and S is
(what he called) w-consistent, then S is incomplete; that is, there are state-
ments A such that neither A nor —A is provable in S. Here w-consistency
is a mild technical extension of the usual concept of consistency. The hy-
pothesis of w-consistency was later replaced by that of simple consistency
by an argument of Rosser,*® who further strengthened Gédel’s theorem so
as to apply to any recursive system S extending PM. Godel pointed out
in 1931 that much weaker systems than PM served the same purpose. In
fact, other later improvements gave the result that any recursive consistent
extension S of PA is incomplete.*!

38In the simplest case, of a function of one argument, inductive definition takes
the form F(0) = ¢, F(n + 1) = H(n,F(n)), where H is a previously defined func-
tion; more generally, one defines functions F(n,my,... ,mg) by F(0,my1,... ,my) =
G(my,... ,mg), F(n+1,m1,...mg) = H(n,my,... ,mg, F(n,m1,... ,my)) where G
and H are previously defined functions. Nowadays, one uses “recursive” for “inductive”
in such definitions of functions.

39See Davis (1965).

408ee his 1937 paper reproduced in Davis (1965).

41Gee Tarski, Mostowski, and Robinson (1953) for the history and still more general
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One can say more about the kinds of statements A which are not decided
by such S; they can be chosen in the form Vn(F(n) = 0) where F is a
primitive recursive function. For primitive recursive S, Gddel arrives at
this by showing that the relation Proofs(m,n) which expresses that n is
the number of a proof in S of the statement with number m, is primitive
recursive; that is, it has a primitive recursive characteristic function. He
then constructs by a diagonal procedure a statement A such that

(1) A V¥n-Proofs("Al,n)

is provable in S, where 'A' is the number of 4; informally speaking, A
expresses of itself that it is not provable in S. By the above we obtain a
primitive recursive function F such that F(n) = 0 < —Proofs('A',n), so

(2) A o VYn(F(n) =0).
For this choice of A, Godel shows that

(3) (1) if S is simply consistent then A is not provable in S, and
(i1) if S is w-consistent then —A is not provable in S.

This is Godel’s first incompleteness theorem. (The construction of A must
be modified for Rosser’s improvement to simple consistency in (ii)).

The consistency of S can be expressed as the statement that no proof
in S ends in a contradiction; this may also be expressed by a statement
Cong of the form Yn(G(n) = 0), with G primitive recursive. By ordinary
logic, consistency is equivalent to the statement that some formula is not
provable in S; hence the statement Yn-Proofs('A',n) implies Cong. Now
(3)(i) expresses informally that the following formal statement is true:

(4) Cong — ¥Yn-Proofs("A',n).

Godel succeeded in showing that not only is (4) true, but it is also provable
in S—this, by formalizing the argument for (3)(i). Combining all of these
facts it follows that

(5) if S is simply consistent then Cong is not provable in S

(Godel’s second incompleteness theorem).

These results were both stunning and disappointing. Consider the latter
aspect first: since, under the given hypothesis, the A constructed in (1)
is not provable in S, then A is obviously true, for that is just what A
expresses of itself. No statement of prior mathematical interest (such as
the twin prime conjecture or the Riemann Hypothesis) has been shown

results. The reduction to PA essentially makes use of Godel’s result from his 1931 paper
that all primitive recursive functions are arithmetically definable, that is, definable in
the first-order language having 0,1, +,, = as basic symbols.
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to be independent of S. Rather, the statement produced has simply been
cooked up for the occasion, again by a diagonal trick. Even more, since A
is obviously true, there is no question which of A, -4 we would add to S
as an axiom if we were to try to overcome this instance of incompleteness;
if S is to reflect truth in N then A should be added. Of course then S’ =
S +{A} is again subject to the incompleteness theorem, but that is another
matter.

What was stunning about the incompleteness theorems was how they
put Hilbert’s entire conception of mathematical existence and his consis-
tency program into question. First of all, if one gives up categoricity as the
requirement on an axiom system S for it to uniquely specify the concept of
a mathematical structure (such as that of the natural numbers), still one
might hope that all truths in the supposed structure would be derivable in
S, in other words, that S would be complete. Indeed, Hilbert had said as
much in the statement of Problem 2 in his (1900) list of problems (quoted
above), and he later specifically conjectured that a formal system for arith-
metic is complete. This was shown false by Godel’s first incompleteness
theorem.

Second, Hilbert had divided the propositions of a formal system into
those which are real and those which are ideal, the latter being used simply
as an aid to derive the former. Among the “real” propositions would be
all statements of the form Vn(F(n) = 0) where F is a finitarily defined
function. Since Hilbert granted that all primitive recursive functions are
finitarily defined, Gddel’s results from (2) and (3) above showed that no
one consistent formal system S could even serve to derive all true “real”
propositions. Thus, even the fallback position from completeness for all
statements to completeness only for the class of “real” statements gives
way.

Third, Hilbert’s call for proofs of consistency of axioms systems to se-
cure the concepts they were supposed to express fails to secure the correct-
ness of some of the most elementary theorems in those systems. For if 4
is a true statement of the form Vn(#(n) = 0) with F primitive recursive
which is not provable in S, then S +{—A} is consistent and proves the false
statement 3In(F(n) # 0).42 Still, it is at least the case that consistency of
S (of the sort to which the incompleteness theorems apply) ensures that if
S proves a “real” statement B of the form Vn(G(n) = 0), with G primitive
recursive, then B must be true; for, otherwise, there would exist a specific
k such that G(k) # 0, hence also 3n{G(n) # 0) would be provable in S,
contradicting Yn(G(n) = 0).%3

Finally, there are the unsettling consequences that Godel’s second in-
completeness theorems ((5) above) have for Hilbert's program of finitary

42This was pointed out by Godel in his first public announcement (in 1930) of the
incompleteness theorems; see Godel (1986), pp. 196-204.

43This point has been stressed particularly by G. Kreisel. See his article (1976) on
Hilbert's Second Problem, in Browder (1976).
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consistency proofs. Since all mathematics is supposed to be formalizable,
this holds in particular for finitary mathematics. Now if all finitary methods
can be represented in a single formal system S, then either S is not consis-
tent or its consistency cannot be proved by finitary methods. A possible
alternative is that no one consistent formal system can serve to formalize
all of finitary mathematics, though any given portion can be formalized in
one system or another. However, it is difficult to conceive how single global
systems like PM or ZF could fail to formalize all finitary arguments. In
fact, all the finitary proofs of consistency of various systems that had been
carried out by workers in the Hilbert school were already formalizable in
PA, and this explains why their best efforts failed with PA itself. Never-
theless, it remained conceivable that the use of finitary methods involving
novel andfor more difficult arguments could serve to handle PA and even-
tually go on to succeed with systems like PM and ZF. Godel himself was
cautious on this point at the conclusion of his 1931 paper, but eventually he
came to the view that Hilbert’s conception of finitism is limited by PA .44
A basic problem here is that the general concept of finitary proof is not
sufficiently clear that one can draw definitive conclusions about its possible
limitations. Every actual finitary proof which had been carried out could
be recognized as such, and most proofs of current mathematics are evi-
dently nonfinitary, but this experience has not been sufficient to determine
the concept in any sharp way. Beginning with Gerhard Gentzen in 1936,
workers in proof theory extended the evidently finitary methods employed
for various consistency proofs to include certain transfinite elements, such
as principles of induction on various effectively presented systems of ordinal
notations, while hewing to Hilbert's requirement to use only “real” state-
ments Vn(F(n) = 0), with F' primitive recursive. [Cf. chapter 10 below]

Postscript on Second-Order Logic

Gaodel's 1930 completeness theorem showed that an effectively given system
PC; of axioms and rules of inference for the first-order predicate calculus
serves to prove just those statements which are valid in all models. His 1931
results could be used to show that there is no corresponding completeness
theorem for second-order predicate calculus PC,, if by validity is meant
validity in the standard sense, that is, that in each interpretation M the
set variables required are to range over P(M). Suppose to the contrary
that PCs has an effectively given system of axioms and rules which proves
just those statements that are valid in this sense. Then Peano’s axioms
with induction in its set-theoretical form are categorical when we use with
them the logic of PCy; call this system PAy. Now since PA; is true in the
structure of natural numbers, every theorem A of PA; is a truth about
N. Conversely, every truth A about N is equally a truth about any model

44Gee the introduction to Godel (1958); this paper is reproduced in translation, to-
gether with a later extended, revised version (1972) in Gadel (1990).
45See Gentzen (1969).
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isomorphic to N, hence any model of PAg; so, finally, A is a theorem of PA,.
Thus PAj is formally complete: for every statement A4 in its language, either
PA, proves A or it proves =A. Since PAj, contains PA, and is supposed
to be effectively given, the conclusion violates Gédel's first incompleteness
theorem. This fulfills the promise made in the previous subsection on the
Lowenheim-Skolem theorem, that second-order logic cannot be axiomatized

effectively.

Elimination of the Law of Excluded Middle
For Hilbert, the completed infinite already made its appearance, albeit im-
plicitly, in the use of instances of the Law of Excluded Middle (LEM) of
the form Va(F(n) = 0) V =Vn(F(n) = 0); these in turn lead to Vn(F(n) =
0) vV In(F(n) # 0) and the method of proof by contradiction for sim-
ple existential results. This is what made PA problematic for Hilbert and
brought him to call for a proof of its consistency. In 1930, Arend Heyting
set up a formal system of logic without LEM which was acceptable to the
Brouwerians and has thus come to be called intuitionistic logic. One can as-
sociate with any axiomatic system S based on classical logic a corresponding
system S' based on intuitionistic logic while otherwise retaining the same
mathematical axioms; obviously S* is contained in S. The particular system
PA' is called Heyting Arithmetic and is denoted HA. By a straightforward
argument in a paper of 1933 on the relationship between classical and in-
tuitionistic arithmetic, Gédel showed that PA can be translated into HA
in such a way as to preserve statements of the form VYn(F(n) = 0) with F
primitive recursive. To be more precise, with each statement A of the lan-
guage of PA (which is the same as that of HA) is associated a statement A’
such that if PA proves A then HA proves A’. Moreover, for A of the form
Vn(F(n) = 0), A’ = A.4% Godel’s translation was subsequently extended
to a wide variety of systems besides PA .47

Thus once more Goédel undermined Hilbert, who had stressed establish-
ing the consistency of the tertium non datur (excluded third, or LEM) in
the promotion of his program. Since the intuitionists said that they too
reject the completed infinite, and since HA is intuitionistically acceptable,
and since, finally, PA is reducible to HA by Gédel’s result, what more would
a finitary consistency proof of PA accomplish in the way of eliminating the
“actual” infinite? Hilbert himself gave no answer to that question.

The Elusiveness of Cantor’s Continuum Problem

With the general crumbling of Hilbert’s program, his specific aim to use
it in order to solve the continuum problem came, in the end, to nought.

46Godel’s result had a precursor in a similar one by Kolmogorov for the predicate
calculus. The result for arithmetic was found independently by Gentzen and Bernays
in papers withdrawn from publication when Gddel's work appeared; see Godel (1986),
p. 284.

47See the introductory note to his paper ibidem, especially pp. 284-285.



66 Foundational problems

The alternatives then seemed to be either to follow Brouwer and Weyl and
grant no definite meaning and no interest to the Continuum Hypothesis, or
to take seriously the claims for the reality and cogency of set theory based
on the platonistic vision of the set-theoretical universe. Apparently Godel
himself took this latter position early on, though he did not elaborate his
view until much later, in the 1940s. One can find only a few scattered,
brief indications thereof in his writings up to 1940.#® One early sign of
the direction in which his views pointed is in footnote 48a in Godel’s 1931
paper, evidently added as an afterthought:

the true reason for the incompleteness inherent in all formal sys-
tems of mathematics is that the formation of ever higher types
can be continued into the transfinite . . ., while in any formal
system at most denumerably many of them are available. For
it can be shown that the undecidable propositions constructed
here become decidable whenever appropriate higher types are
added. . . . An analogous situation prevails for the axiom
system of set theory.*®

The full extent of Godel’s platonism only began to emerge in his paper
“Russell’s mathematical logic” (1944). His attitude toward the Continuum
Hypothesis was then spelled out more specifically in the article “What is
Cantor’s continuum problem?” (1947, and in revised and expanded form,
1964). There he stated in no uncertain terms his views that Cantor’s
notion of cardinal number is definite and unique and that the Continuum
Hypothesis CH has a determinate truth value. His own conjecture was that
CH is false, because of various “implausible” consequences it has. In any
case, it was Godel’s conviction that it made sense to try to settle CH. At
the same time, he acknowledged the failure thus far to come even remotely
close to a solution. And finally, it was metamathematics that served to
explain why it was proving so difficult to arrive at an answer. Indeed, once
again, Godel himself (had already) provided the first definitive results of
that character, as follows.

Consistency of the Axiom of Choice and the Continuum
Hypothesis

In a series of brief descriptions of results, 1938-1939, and finally at length
in his 1940 monograph, Goédel proved the following result:

(1) if ZF is consistent then it remains consistent when we add to it the
Axiom of Choice AC and the Generalized Continuum Hypothesis
GCH, Va(2® = R,,,), as new axioms.

483ee the discussion of Godel’s philosophy of mathematics in Feferman (1986), pp.
28-32 [reproduced in chapter 6 in this volume].
49Gidel (1986), p. 181.
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Godel’s method of proof was to introduce a notion of “constructible set”
in the language of set theory and to show that when the universe of sets
is restricted to the constructible sets then all the axioms of ZF together
with AC and GCH become validated. Another way Gédel had of putting
this (in his system of sets and classes of his 1940 monograph), using V to
denote the class of all sets and L to denote the class of all constructible
sets, is that

(2) (1) if ZF is consistent then ZF + (V = L) is consistent, and
(i) ZF + (V = L) proves AC and GCH.

Here the equation V = L expresses the assumption that all sets are con-
structible, which is shown to be true in the universe of constructible sets
(a seemingly obvious proposition yet one whose precise statement requires
some technical work to establish, because the relativization of the notion
of constructibility to L must be shown to be absolute, that is, unchanged
thereby).

As we have seen, almost all the work with cardinal arithmetic requires
the assumption of AC. Once its consistency with ZF is established via
(2)(1), (it), it makes sense to speak of the scale of alephs N, and then to
consider the truth value of 2%« = R, 1, for any and all . But one still
needs the stronger hypothesis V = L to prove GCH itself.

What Goédel’s consistency result showed was that one could not hope
to disprove AC, and that if AC is assumed, one could not hope to disprove
any instance of GCH using Zermelo-Fraenkel Set Theory. It was still
conceivable that ZF could prove AC, or that ZFC (= ZF + AC) could prove
some instance of GCH, in particular, CH itself. Gddel himself made efforts
to establish these results, with only partial success, and only concerning
the independence of AC. In fact, no progress on this problem was made in
over twenty years, despite the general expectation that both AC and CH
would be independent, respectively, of ZF and ZFC.%°

Independence of the Axiom of Choice and the Continuum
Hypothesis
In 1963, Paul Cohen obtained the following results:
(3)(1) if ZF is consistent then AC is independent of ZF;
that is, it cannot be derived from ZF;
(i1) if ZF is consistent then CH is independent of ZFC;
(iii) if ZF is consistent then V = L is independent of ZFC + GCH.

Cohen’s method of proof>! involved a novel technique for building mod-
els of set theory, called the method of forcing and generic sets. Where

50 According to Gédel’s views in his article of 1947 and 1964, AC is true and CH is
false, so he would certainly expect independence of CH from ZFC.
51See Cohen (1966) for an exposition.
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Godel had restricted a presumed model of set theory to obtain that of the
constructible sets, Cohen extended such a model by adjunction of (a vari-
ety of )} “generic” sets. For example, by adjoining sufficiently many generic
subsets of N, he was able to construct a model of ZFC in which 2% = Ry,
thus contradicting CH.

Subsequently, building on Cohen’s work, it was shown by Easton that
for each regular R,, the power 2% “can be anything it ought to be”; that
is, one can arrange the simultaneous equations 28« = Rp(q) in a suitable
model of ZF, for any function F(a) = 3, from ordinals to ordinals satisfying
a few simple restrictions.

Consistency and Independence of Definable Well-Orderings
Godel’s consistency result for (V = L) and proof that 2% = R} holds under
that assumption showed

(4) it is consistent to assume with ZFC that there is a definable well-
ordering of the continuum R; in fact, this is provable in ZF + (V =
L).

Behind (4) lies the definition of L as | J Ly, where at each stage, L, consists

of the sets explicitly definable (in a predicative way) from the sequence of
Lg for 8 < a. (Godel pointed out that this was an extension of Russell’s
predicative ramified hierarchy through all the transfinite ordinals.) Each
constructible set is definable, and their definitions can be laid out in a
transfinite sequence g, ... ,pq,... without repetitions. Taking A, to be
the set in L defined by ¢,, this determines a definable well-ordering of
all of L by Ag < Ay ~ B < «. In particular, the restriction of this
well-ordering to R (or to P(N)) gives a definable well-ordering of R (resp.
P(N)) provably in ZF + (V = L).

Using Cohen’s generic model of ZFC + GCH + (V # L), I was able to
show the following:®?

(5) it is consistent with ZFC + GCH that there is no definable well-
ordering of R (or P(N)).

In other words, even if one assumes with ZF both the Axiom of Choice and
the Generalized Continuum Hypothesis (and hence in particular 28 = R),
one will not be able (provably) to arrive at any explicit definition of a well-
ordering for the real numbers. It is in this sense that Hilbert’s expressed
hope in Problem 1 of his 1900 address cannot be realized.>3

Of course Hilbert’s hope could be satisfied if one granted the truth of
V = L (or perhaps some similar axiom). By Cohen’s work (3)(iii} the
truth of V = L is not automatic if one accepts ZFC + GCH. In fact, most

52Feferman (1965).
53See footnote 6 above.
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everyone who holds a platonist view of set theory denies the truth of V =
L, for it is an axiom which says that every set is definable and, moreover,
in a special way. But the restriction to definable objects is just opposite
to the platonist position according to which the objects of set theory exist
independent of any means of definitions. So, for the avowed platonist, there
is nothing disturbing in (5).

New Axioms?

Godel already projected in his 1947 paper that CH would be independent
of ZFC, and that new axioms might be required to decide it; he developed
these ideas further in the 1964 revision of that paper.

For if the meanings of the primitive terms of set-theory . . . are
accepted as sound, it follows that the set-theoretical concepts
and theorems describe some well-determined reality, in which
Cantor’s conjecture must be either true or false. Hence its unde-
cidability from the axioms being assumed today can only mean
that these axioms do not contain a complete description of that
reality. . . . [T]he axioms of set theory by no means form a
system closed in itself but, quite the contrary, the very concept
of set on which they are based suggests their extensions by new
axioms which assert the existence of still further iterations of

the operation “set of.”54

The main kinds of new axioms thus suggested are called azioms of
mfinity or large cardinal azioms. The first of them asserts the existence
of an inaccessible cardinal m. This is supposed to satisfy the properties
(i) Rog < m, (ii) if n < m then 2™ < m, and (ili) if card(4) < m and F
is a function from A to cardinals less than m then 3, F(z) < m. In
other words, such m is a transfinite cardinal closed under exponentiation
and summation over any smaller number of cardinals. It is not hard to
show (in ZFC) that the assumption (3Im) “m is inaccessible” implies the
existence of a model for ZFC, and hence the consistency of ZFC. Thus
by Goédel’s second incompleteness theorem, ZFC cannot prove (3m) “m is
inaccessible,” if it is consistent.

The existence of inaccessible cardinals can be iterated further into the
transfinite; that is, one may assume as a new and stronger axiom the state-
ment that there is a strictly increasing sequence of inaccessible cardinals
Mg, indexed by arbitrary ordinals . Then one could go on to postulate
the existence of inaccessible cardinals p such that whenever o < p then
mq < p. The existence of such p cannot be proved under the assumption
of the existence of the sequence of m,s. Now p is an inaccessible fixed
point of the function F{a) = mg,, that is, F(p) = p, and it may be as-
sumed that there is a function of ordinals, F'(a) = pa, which enumerates

54Gsdel (1964), p. 264 {or Godel (1990), p. 260].
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all such fixed points in increasing order. One is led in this way to notions
of higher and higher levels of inaccessibility, which were first formulated
in a systematic way by P. Mahlo in 1911, the cardinals of these types are
thus called Mahlo cardinals. One is led correspondingly to stronger and
stronger axioms of infinity; according to Godel these “show clearly, not
only that the axiomatic system of set theory as used today is incomplete,
but also that it can be supplemented without arbitrariness by new axioms
which only unfold the content of the concept of set.”%5

The study of large cardinal axioms has been carried on intensively since
the 1960s, and by the introduction of new ideas vastly stronger axioms than
those for the existence of Mahlo cardinals have been proposed: existence of
“measurable” cardinals, “compact” cardinals, “supercompact” cardinals,
etc. These involve extremely technical notions which can be understood
only with somewhat advanced training in axiomatic set theory, so no at-
tempt will be made to explain them here.%6

There are two questions to be asked concerning the various existence
statements for infinite cardinals that have been indicated here. First, what
would lead one to accept them as axioms to be added to ZFC? Second, do
they help decide the continuum problem? Concerning the first question,
Godel thought that these or other types of proposed new axioms need not
“force themselves upon us” as being true in the same way as the axioms of
ZFC, but that “a more profound understanding of the concepts underlying
logic and mathematics would enable us to recognize [them] as implied by
these concepts.”®” Here the final arbiter would be that of “mathematical
intuition [which] need not be conceived of as a faculty giving an immediate
knowledge of the objects concerned.”®® Godel goes on to compare math-
ematical intuition with physical experience as a source of our ideas about
underlying physical objects, but he is not specific as to how this intuition
serves to decide between opposing theories of underlying mathematical ob-
jects in general, and between the existence or nonexistence of some huge
cardinal in particular. While Gédel’s remarks may be heartening to pla-
tonist set-theoreticians, they are too vague to be decisive in any particular
case. Rather, their tendency seems to be that if one’s mathematical in-
tuition leads one to judge that a statement about sets is true, then it is
true.

In a technical survey piece on large cardinal axioms, Kanamori and
Magidor suggest the acceptance of such axioms on “theological” grounds,
but have alternative arguments to engage those who are not already “true
believers.” For the latter, what is offered is an investigation of such state-
ments on a purely formal level whose interest lies in the fascinating and

55 Loc. cit.
56For a substantial introduction to the subject see Drake (1974). [Cf. also the more

recent comprehensive work, Kanamori (1994).]
57Godel (1964), p. 265.
58 Ibidem, p. 271.
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“aesthetic” intricacy of the net of consequences and interrelationships be-
tween them.®®

Others have attempted to provide an overall rationale which would
make large cardinal axioms the consequence of some very general principles.
Main attention has been given to forms of the set-theoretical reflection
principle, according to which any property of the universe of all sets must
already be true of a level Cy in the cumulative hierarchy of sets (where
Co =0,Cat1 = Ca UP(Ca),Cr = Uycy Co for limit A, and the universe
is the union of all Cys). Initially formulated by Azriel Levy for first-order
set-theoretical properties, this principle was extended to include second-
order properties in an elegant way by Paul Bernays, who showed that its
assumption leads to the existence of the Mahlo cardinals. This line was
continued in Reinhardt’s “Remarks on reflection principles, large cardinals
and elementary embeddings,” which provides a useful introduction to and
motivation for the approach. Reinhardt considers this work “a first step
in recognizing axioms . . . which will make {them] seem worth considering
as axioms rather than merely as conjectures or speculations.”®® On the
other hand, in his first footnote to this paper he says that Gddel finds
Reinhardt’s own proposed justification “rather unsatisfactory” and that
preferably an alternative one should be given in terms of some concept of
structural properties of sets.

It is apparent that those who accept large cardinal axioms have some
rationale or other for doing so (perhaps rationalization would be the better
word}, but are well aware that the whole enterprise may be put in question.
One of the most forceful statements in opposition is that of Paul Cchen
(1971} in his statement of reasons for rejecting the platonist realist posi-
tion and accepting a formalist position in the set-theoretical foundations
of mathematics.

A weakness which I believe any realist would have to accept
is his inability to explain the source of the never-ending se-
quence of higher axioms, such as the higher axioms of infinity.
Certainly even the staunchest realist must flinch when contem-
plating cardinals of a sufficiently inaccessible type. Also there
are axioms such as that of the Measurable Cardinal which are
more powerful than the most general Axiom of Infinity yet con-
sidered, but for which there seems absolutely no intuitively con-
vincing evidence for either rejection or acceptance.®

He goes on to accuse “zealous set-theoreticians” of a certain “oppor-
tunism” in the acceptance and/or pursuit of these axioms. In opposition
to that view we have, in turn, the comments of Kreisel (1971), who agrees

%9 Kanamori and Magidor (1978), pp. 103-105. [Cf. also Kanamori (1994) ]

80Reinhardt (1974), p. 205. [Cf. also Feferman (1996) for a discussion of Gédel’s
program for new axioms, as well as Feferman (1998).]

%1Cohen (1971), pp. 11-12.
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that those who work on large cardinals may have a “vested interest” in
the subject, but only such people are “competent to judge axioms about
them.” 62

What of Godel’s original hope, that new axioms and, specifically, large
cardinal axioms could help decide the Continuum Hypothesis? Here the
situation was surveyed in the report by Donald A. Martin on Hilbert’s First
Problem,%3 with a conclusion that is easily summarized: CH is consistent
with and independent from every large cardinal axiom A that has been
proposed as at all plausible.%*

Besides large cardinal axioms, little has been offered as a new axiom
which would be plausible and decide CH. In unpublished work, Gddel pro-
posed axioms about “scales of functions” which he stated imply 2% = Ry,
but his proof turned out to be wrong, and he withdrew the paper containing
it. Still later, he proposed other axioms about scales which imply 2% = R;
(also unpublished®®). Informed opinion about both of these efforts is that
they are very inconclusive. Indeed, the whole of Gddel’s thought about the
definiteness of the continuum problem and the program to find new axioms
to decide CH has so far come to nought, somewhat to the chagrin of his
followers. In the words of Martin,

I have been assuming a naive and uncritical attitude toward CH.
While this is in fact my attitude, I by no means wish to dismiss
the opposite viewpoint. Those who argue that the concept of
set is not sufficiently clear to fix the truth-value of CH have a
position which is at present difficult to assail. As long as no
new axiom is found which decides CH, their case will continue
to grow stronger, and our assertion that the meaning of CH is
clear will sound more and more empty.%5

Metamathematics, of which Godel was the first real master and clear-
eyed practitioner, has thus brought the platonist position in set theory, of
which Godel was the foremost exponent, to a very embarrassing position.
The continuum problem—to locate 2%° in the scale of cardinals R, and,
more specifically, to decide whether or not it is N;—is the very first chal-

62K reisel (1971). p. 194.

63Martin (1976).

64To be more precise, for each such A it has been shown that if ZFC + A is consistent
then it remains consistent when we add either CH or its negation. The independence re-
sults make use of strong extensions of Cohen's forcing methods but even the consistency
results require novel ideas, since Dana Scott (1961) showed that the existence of mea-
surable cardinals implies V # L. There are large cardinal axioms that give some partial
information about GCH. For example, Robert Solovay has shown that the existence of
a compact cardinal implies 2Re = R, 41 for all sufficiently large cardinals of a special
kind (cf. Martin 1976, p. 86).

85Cf. Godel (1986), pp. 26-27. [Godel's unpublished work on scales of functions is
now to be found in Goédel (1995) as *1970a, b, and c; cf. also the introduction to those
items by Solovay, ibid., p. 405ff.]

66Martin (1976), pp. 90-91.
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lenging problem of Cantorian set theory. The fact that it has not been
settled by any remotely plausible assumption leads me, for one, to agree
with Weyl that it is an inherently indefinite problem which will never be
“salved.”®” Of course, this conclusion will be difficult to accept for anyone
who regards “ordinary” set theory (for example, ZFC) as perfectly reason-
able and coherent and so tends to think of it as being about a fixed and
definite world. I believe a quite different account can be given for the rea-
sonableness and coherence of ZFC on the basis of a conception of an ideal
world of sets in the cumulative hierarchy, much like the original conception
of geometry as being about a world of ideal points (pure positions), ideal
lines (perfectly straight and without thickness), etc. This conception of
sets can be visualized well enough, just as for the conception of geomet-
rical objects. Such an account would give grounds for the plausibility of
the consistency of ZFC without assumption of its truth in some supposed
real world of sets. One might even go farther to say that the picture of
sets in the cumulative hierarchy is sufficiently clear that the portion C,
of the cumulative hierarchy consisting of the hereditarily finite sets is well
determined. Since the natural numbers are extracted from C,, in usual de-
velopments of set theory, according to this picture every number-theoretical
statement provable in ZFC is true. What is cloudy about the picture of
the cumulative hierarchy is both the effect of the power set operation in
general and the use of “arbitrary” ordinals. But in gross the picture is
clear enough to justify confidence in the use of ZFC (and like theories) for
deriving number-theoretical results.

671 am here excluding V = L from the “remotely plausible assumptions,” since, as
explained above, it is rejected by set-theoretical platonists as being contrary to the con-
ception of a untverse of arbitrary sets existing independently of any means of definition.
One should also mention recent work of Freiling (1986), where certain simple “axioms
of symmetry"” are added to ZFC and used to disprove CH. These new assumptions are
supposed to be consequences of a thought experiment involving throwing two (or more)
random darts at the real line. They are plausible-looking, but I have not found any
support for these assumptions among leading experts in set theory.
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Infinity in Mathematics: Is Cantor
Necessary? (Conclusion)

Is the Cantorian Transfinite Necessary for Finitary
Mathematics? Godel’s Doctrine

By Godel’s doctrine I mean the view first enunciated in footnote 48a of
Godel (1931) that the “true reason” for the incompleteness phenomena is
that “the formation of ever higher types can be continued into the transfi-
nite,” both in systems explicitly using types and in systems of set theory
such as ZF for which the (cumulative) type structure is implicit in the ax-
ioms. For, as Godel says, the “undecidable propositions constructed here
become decidable whenever appropriate higher types are added.” Since the
undecidable propositions are of finitary character, Godel’s doctrine says in
effect that the unlimited transfinite iteration of the power-set operation is
necessary to account for finitary mathematics.

In order to discuss Godel’s doctrine in detail, we shall have to introduce
various classifications of statements and formulas. In modern logical sym-
bolism, statements of the form Vn(F(n) = 0) with F primitive recursive
are in the class TI9 and their negations 3n(F(n) # 0) in the class LY. More
generally I19(X?) is used for the class of statements having a primitive re-
cursive matrix preceded by k alternating quantifiers of which the first is
a universal (existential) quantifier, and in which all variables range over
the natural numbers. The same classification is applied to formulas with
free variables and to the relations which such formulas define in N. The
negation of a formula in II{ (Z) is equivalent to one in LY(TI7). A relation
is said to be in class A if it is in both II and £2. The class &Y is identical

This chapter first appeared as the last third of “Infinity in mathematics: Is Cantor
necessary?” in G. Toraldo di Francia (ed.), L'infinito nella scienze (Infinity in Science),
Istituto della Enciclopedia Italiana, Rome (1987), 151-209 (Feferman 1987a); the first
two-thirds of that article appears as chapter 2 in this volume. The combined pieces
are reprinted here with the kind permission of the publisher. There are some minor
corrections and additions.
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with that of the recursively enumerable relations, and thus, by a theorem
of Post, AY consists exactly of the recursive relations. I, is used for the
union of the classes II2(k < w); every arithmetical formula is equivalent to
one in 112 .

When second-order quantifiers with variables X, Y, ... ranging over sets
of natural numbers are introduced, a formula is said to be in IT; (£}) form if
it has an arithmetical matrix preceded by k alternating second-order quan-
tifiers, beginning with a universal (existential) quantifier. The negation of
a formula in II}(X}) is equivalent to one in £}(IT}). Again, A} is used
for IT}, N £}. In some cases it is preferable to use variables ranging over
functions of natural numbers rather than over sets. The resulting classi-
fications are essentially the same, using the equivalence of sets with their
characteristic functions and of functions with their graphs (sets of ordered
pairs coded as numbers using a primitive recursive pairing function (n,m)).

If 7 is a class of formulas, the comprehension aziom schema (CA) for
formulas in F is

(F-CA) 3XVn[n € X & P(n)),

where P € F and P may have free variables (first or second order) besides
“n.” To express comprehension for properties definable by formulas both
in F and in complementary form, we use

(Ax-CA) Va[P(n) « Q(n)] — 3XVn[n € X & P(n)]

where P € F and (~ @) € F (up to logical equivalence). In particular,
(A1-CA) is used for (Ap:-CA). In should be noted that (IT% -CA) follows
from (A}-CA).

Godel’s doctrine is illustrated in the case of the extension of the first-
order system PA of Peano arithmetic to a second-order language and ax-
ioms. Basically, one introduces axioms which are sufficiently strong to
define the formal notion of truth for the first-order language and to estab-
lish the formal statement expressing that every statement provable in PA
is true; this theory thus proves the consistency statement Conpa which, as
we have seen, is in II{ form.

Such an argument will be carried out in an extension of PA,, that is,
second-order PA, by suitable comprehension axioms. Here PA, has the
same axioms as PA but with the induction scheme extended to apply to all
second-order formulas P(n). It is usual to take (F-CA) as an abbreviation
for the system PAjy + (F-CA). Incidentally, we shall deal later on with sys-
tems with restricted induction: (PAj) | has the induction schema replaced
by the second-order axiom

VX0e X AVn(ne X - (n+1)€ X) - Vn(n € X)],

and in general if S is any system with the full induction schema, S is the
corresponding system with the schema replaced by this axiom. (F-CA)l
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thus abbreviates (PAy)[ + (F-CA); this system includes PA as long as F
includes I1%,. For any system S, S - A means that A is provable in S.

For the argument indicated above, the obvious step is to define the
set of (Godel numbers of) true statements as the smallest set satisfying
certain arithmetical closure conditions; this requires (II}-CA). However,
one can make do with less, namely, (A}-CA). For one first defines a formula
Tr1(X, k) which expresses that X satisfies the conditions to be the truth-
set for the set Stj of statements of logical complexity < k. Then it is easily
proved using (119 -CA) that

(1) VXVK[TT(X, k) = 3V (Tri (Y, k + 1) AY 0 St = X)).

Then (1% — CA) F Vk3!XTr (X, k) by induction on k. Finally, one can
define T'r1(a) in the two equivalent forms

St(a) A 3k3X|[c(a) < kATri(X, k) Aa € X}, and
St(a) AVEYX[c(a) K kATr(X, k) = a € X]

where c(a) = complexity of a. Thus
(2) (A] = CA) F 3XVa[a € X & Tri(a)].

With the existence of the truth-set thus established, one can go on
to prove by induction in (A}-CA) that every numerical instance of every
formula provable in PA is true. Hence

(3) (A]—CA) - Va[St(a) A Provpa(a) — Tr1(a)].
Since =Tr1('0 = 1), it follows that
(4) (Al~CA) F Conpa.

As we have seen, Conpa is a true I19 statement not provable in PA
assuming PA is consistent, so in this case adjunction of higher types leads
to new results with finitary content.

This argument is paradigmatic: for any system S whose axioms are
intuitively true, we can define a formal extension S* of S using quantifi-
cation at a next higher level and axioms analogous to full induction plus
Aj-comprehension, for which we can establish

(5) S* + Cons.

In the case of systems of set theory, we proceed in a variant manner. Most
reasonable theories of sets S have natural models in the cumulative hierar-
chy; that is, for suitable a satisfying a special property K(a), the structure
(Vay € NVy) i1s a model of S. For example, for S = ZFC and K(a) =
Inacc(a) (the property that o is an inaccessible cardinal), we have that
V& is a model of S whenever K(a) holds. For such S in general let S* = S
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+ 3aK (a). Then in S* one can define the notion of truth in the structure
(Va, € NV,) and prove that this is a model of S whenever K (a); hence (5)
also holds in this situation. Thus Goédel’s doctrine is verified in these cases
by adjoining a “new type” V, in the form of an assumption JaK(a). (Here
the implicit adjunction of new types is far more wasteful than the direct
extension of a system by the adjunction of one higher type, since from the
axioms of ZFC, once we have an ordinal a we have many ordinals § larger
than o and thence the corresponding new type levels Vj.)

In this formal sense, then, Gddel’s doctrine can be verified: by adding
higher types to a system S either explicitly or implicitly we are able to
prove new I1Y statements, and by iterating this process transfinitely, we
are led to ever stronger such statements. Of course this assumes that at
each stage along the way, the system S is consistent. That will be the case if
we start out with a system true for the natural numbers, and we accept that
the iteration of the power-set operation leading to higher types has a well-
determined meaning so that at each stage, the full comprehension axiom is
validated (using the language available at that stage). In particular, both
full induction and the analogue of the Aj-comprehension axiom schema
will be true under that assumption and so the extension from S to S* as
above will preserve correctness and hence consistency. An analogous style
of reasoning can be applied to the set-theoretical case.

However, Gédel’s doctrine can be challenged when it is read as asserting
that the platonistic view of the determinateness of the power-set operation
and its iteration through all the ordinals is necessary for the derivation of
previously undecidable but true ITY statements. Consider the situation at
the outset: assuming one grants the correctness in an informal sense of
PA under its intended interpretation in the structure of natural numbers,
would not one immediately accept a predicate T'ri(x) with the appropriate
closure axioms for truth in the first-order language, without regarding it as
necessary to define this predicate in second-order terms? If so, extension of
PA by these axioms (with induction extended to the new formulas) suffices
to prove Conpa. Call this extension T'r{(PA); it is a first-order theory
which serves to decide the undecidable proposition constructed for PA. So
why is the extension to a higher type necessary? To be sure, T'r;(PA) is
again subject to the incompleteness results. But the same line of reasoning,
which begins with an informal judgment of the correctness of PA under
its intended interpretation and a recognition of the meaningfulness of the
predicate Tr;(z) for the language of PA, can be repeated: one recognizes
the correctness of Tr;(PA) and the meaningfulness of a truth predicate
Tro(z) for the language of T'r1 (PA), and then the correctness of new axioms
involving Try by means of which we can prove Conr, (pa), and so on.

According to this line of thinking, it is equally reasonable to replace
Godel’s doctrine by a variant doctrine, according to which the “true rea-
son” for the incompleteness phenomena is that the truth definition for the
language of a formal system is not expressible in that language (Tarski's
theorem) and that by adjunction of the notion of truth with suitable ax-
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ioms, the undecidable statements produced by Godel become undecidable.
In fact, even less will do: one need merely adjoin to S the formal reflection

scheme

(6) Provs('A') — A, for each sentence A,

as a means of expressing faith in the correctness of S without any new
predicates at all. For, if one takes the specific instance of (6) with A = (0 =
1), the consistency statement Cong is a consequence of S. In other words,
for S* = S + {Provs('A') — A : A any sentence of S}, we have S* + Cons.
So still another variant of Godel’s doctrine is that the “true reason” for
the incompleteness phenomena is that though a formal system S may be
informally recognized to be correct, we must adjoin formal expression of
that recognition by means of a reflection principle in order to decide Godel’s
undecidable statements. Either way, one has a reasonable alternative to
Godel'’s doctrine—the arguments for which are certainly no less persuasive
than for his—and which does not claim the necessity to accept higher type
notions d la Cantorian set theory.

These variant forms of Gédel’s doctrine, which lead to the considera-
tion of certain uniform extension procedures S — S*, may also be iterated
into the transfinite. But here, if one is not to accept the transfinite in
the Cantorian sense, ordinals must be understood and treated in a more
constructive way. That has been carried out in the subject of transfinite
recursive progressions of formal systems, initiated by Turing (1939) and
continued in Feferman (1962) and, for predicative extension procedures, in
Feferman (1964). The conclusion is that the incompleteness phenomena do
not, by themselves, force one to accept the “formation of ever higher types

. into the transfinite,” that is, the transfinite iteration of the power-set
operation. Application of Occam’s razor would cut the discussion at that.

However, the platonist will still insist on a rejoinder: notwithstand-
ing this counterargument to Godel’s doctrine, the systems of analysis (=
full second-order CA) and of type theory and, further on, of ZFC and
ZFC +VadfB(Inacc(B) A B > a) etc., are in fact all true, and for each
of these S the consistency statement will be unprovable in S. Moreover,
these statements Cons go, in strength, far beyond those of the piddling ex-
tensions produced above by iterating formal reflection principles or truth
definitions. So, according to this line, very strong set-theoretical principles
are needed to decide statements of finitary character.

But isn’t this argument begging the question? Sure, whatever leads
one to accept “correctness” of such S will, with one little additional step,
lead one to accept the consistency statement for S. But, as Brouwer re-
peatedly (and Goédel himself) emphasized, consistency does not by itself
ensure correctness. While consistency of such systems may be plausible,
the plausibility of such can (as I indicated at the end of chapter 2) rest on
quite different grounds than the assumption of an underlying set-theoretical
reality in its platonistic sense. In other words, unless one is already a set-
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theoretical platonist, Godel’s doctrine does not by itself provide compelling
reasons to embrace the Cantorian transfinite.!

There remains the question: What, if any, relevance do the incomplete-
ness phenomena have to finite combinatorial mathematics in the everyday
sense of the word? There are a number of specific results in recent years
which it is claimed establish that relevance. We turn next to a review of
those results.

Undecidable Diophantine Problems

The results here, and the question of their relevance to everyday mathemat-
ics just raised, are comparatively easy to discuss. Diophantine equations are
those of the form p(z1,... ,z,) = g{z1,... ,2,) where p, q are polynomials
in one or more variables with coefficients in Z (the integers). A Diophan-
tine problem concerns whether there exists an integer solution of such an
equation, that is, whether (3z1,... ,z, € Z)p(x1,... ,2n) = ¢(Z1,... ,Tn).
Hilbert’s Tenth Problem in his 1900 list called for an effective method to
determine whether or not a Diophantine equation is solvable, that is, has
any integer solutions [see chapter 1 in this volume for an introduction to
Hilbert’s Tenth Problem]. There is a closely related group of problems for
solutions in N, and for solutions in Q. Specific such questions were first
considered by the Greek mathematician Diophantus (third century A.D.);
after a long lapse, the subject was revived by Pierre de Fermat in the sev-
enteenth century and has been a staple of number theory ever since. Many
specific Diophantine problems have so far resisted attack.” [Also it follows
from the work described below that the (still unproved) Goldbach Con-
jecture, according to which every even integer greater than two is a sum
of two primes, reduces to a Diophantine problem. It happens that Godel
frequently referred to his undecidable propositions as being of “Goldbach
type.”]

The first step toward a negative solution of Hilbert’s Tenth Problem
was made by Godel in his 1931 incompleteness paper. He showed there
that every primitive recursive function F(z) is arithmetically definable,
and hence can be put in the form

(1) Flz)=y o Q121... QuznR(z,y, 21,... ,25),

The viewpoint here concerning independence results for arithmetical statements
should be compared with that of Isaacson (1987). He argues that the truths expressible in
the first-order language of arithmetic which are not derivable in PA “contain essentially
higher-order, or infinitary concepts.” This is opposite to the position taken here, that one
may be led to accept such results without assuming higher-type notions in the platonist
sense. However, as regards the finite combinatorial independence results to be discussed
in the next subsection, Isaacson and I agree that they are obtained by a transmutation
of essentially metamathematical statements coded in the language of arithmetic.

*[At the time I wrote the article from which this chapter was drawn, the example given
of the most famous such problem was Fermat'’s Last Theorem. This was subsequently
settled by A. Wiles by very advanced methods; see chapter 1 in this volume.]
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where each @, is the universal (V) or existential quantifier (3), the vari-
ables z; range over N, and R is built up by A,V, and - from polynomial
equations. It follows that every I19 statement Vo F'(z) = 0 is likewise defin-
able in that form. Godel concluded from (1) that for each (w-)consistent
formal system S containing a sufficient amount of number theory, there are
arithmetical propositions A which cannot be decided by S, that is, such
that neither S - A nor S - —A.

In the later development of the theory of effective computability at the
hands of Church, Kleene, Turing, Post, and others, attention shifted from
individual problems A undecidable relative to given formal systems S, to
effectively undecidable problems for subsets C of N, that is, for which there
is no effective method to determine, given an arbitrary z in IN, whether or
not z € C. By Church’s thesis, the effectively decidable sets C are exactly
those which have a general recursive characteristic function, and then these
are exactly the same as the A? sets. Church gave examples of recursively
enumerable sets which are not recursive, in other words, which are in the
class £9 but not in IIS.

Beginning in the 1950s, considerable progress was made on Hilbert's
Tenth Problem through the work of M. Davis, H. Putnam, and J. Robinson.
They succeeded in showing that if variable exponents are permitted, every
29 set C is definable in the form

(2) t€C e« 3z,...,zp(x,21,... ,20) = q(T, 21, ..., 2n)],

where p, q are exponential integer polynomials. Finally, in 1970, J. Matiya-
sevich succeeded in establishing a result of the same form for ordinary inte-
ger polynomials; this finally showed the answer to Hilbert’s Tenth Problem
to be negative. Subsequently, Matiyasevich and Robinson succeeded in
showing that it suffices to take n < 13 to represent as in (2) every recur-
sively enumerable set with ordinary p,q. This and a number of other results
concerning Hilbert’s Tenth Problem are reviewed in Davis, Matiyasevich,
and Robinson (1976). A few years later, Matiyasevich managed to reduce
the number of variables in the representation (2) of recursively enumerable
sets from 13 to 9 for ordinary polynomials, and even further to 3 variables
for exponential polynomials.?

Now, returning to undecidable propositions, it follows by Gédel’s re-
sults that for suitable consistent systems S of arithmetic, there are true II9
statements A of the form

(3) A =vx7zl7"' 7zn[p($»217-'- 7Zﬂ) #q(xazlv"- 7271.)]

which are not provable in S; by formalizing the work described above, this
can be reduced to n <9 for ordinary integer polynomials p, q.

2For references to this further work see Mathematical Reviews, 81f: 03055 [and
Matiyasevich (1993)].
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Impressive as these results are, the problems they concern are still very
distant from the bread-and-butter Diophantine problems of everyday num-
ber theory (“everyday” over the last three hundred years), because the
number of variables is so much larger than is considered in such problems,
and the complexities of the polynomials involved are so great (according
to various measures of complexity). There is no evidence that these un-
decidability and incompleteness results have any relevance to the classic
unsettled problems that have challenged generations of number theorists.
[Besides the example of the Goldbach Conjecture mentioned above, it has
been shown by Davis, Matiyasevich, and Robinson (1976) that the Riemann
Hypothesis—which is one of the most important outstanding problems in
number theory—reduces to a Diophantine problem. However, the numbers
of variables and degrees of the polynomials required for this might be rather
large.] Though the chain from the original undecidable propositions to the
undecidable propositions of the form (3) is a long and technically compli-
cated one (so that the point of departure recedes into the background),
it remains the case that the problems thus shown to be undecidable were
not of any prior mathematical interest—they have simply been derived in
a step-by-step process from problems “cooked up” to demonstrate the in-
completeness of formal systems. As a further reinforcement to the view
here that the results on undecidable Diophantine problems are irrelevant
to everyday mathematical concerns is that the character of these problems
is insensitive to the formal system considered. If one takes A in (3) to
be equivalent to Conpa, there is no way to tell it apart from an A taken
equivalent to Conzrc or from one which is equivalent to the consistency
(with ZFC) of the existence of measurable cardinals. This suggests that
the mathematical content of the resulting individual Diophantine prob-
lems simply has nothing to do with the internal mathematical content of
the formal systems from which their independence is established.

How much different it would be if one showed that some outstand-
ing number-theoretic I1{ statement A [such as the Goldbach Conjecture
or the Riemann , Hypothesis| is not provable in PA, or even more strik-
ingly, in ZFC—and thus demonstrated why it’s so difficult to prove it (if
true)! There is nothing in the work on undecidable diophantine problems
to suggest that one is anywhere near obtaining such a result—or anything
comparable—nor that further efforts in chopping n down in (2) or (3) is
going to get one any closer to achieving such a result. The situation at
present is thus analogous to that concerning transcendental numbers with
which we began this story in chapter 2; Liouville and Cantor showed how
to construct (explicitly or implicitly) transcendental numbers, but mathe-
maticians wanted to know whether the numbers 7 and e are transcendental.
For those results the work of Liouville and Cantor was useless. All they did
was demonstrate that the effort to show specific numbers to be transcen-
dental numbers was not a waste of time, since such numbers do after all
exist. Working number theorists want to know about the truth of specific
number-theoretic problems which can be put in diophantine form. It is
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highly unlikely that one will simultaneously demonstrate the unprovability
of, say, the Riemann Hypothesis RH from certain S and the truth of RH,
as was the case with the nonprovable propositions produced by Gédel. But
mathematicians would no doubt sit up and take notice if merely unprovabil-
ity were established. All that the chain of work from Gd&del to Matiyasevich
permits one to say currently is that efforts to obtain such independence re-
sults for propositions of prior mathematical interest are not necessarily a
waste of time.

Independence Results for Statements of Finite
Combinatorial Character

Starting in the mid 1970s, a number of interesting independence results
have been obtained with respect to a wide range of formal systems for state-
ments which are prima facie relevant to finite combinatorial mathematics
in its everyday sense. The expository article Simpson (1987a) provides an
excellent introduction to this area of work, and has been quite useful to me
in the following. Many of the results are “finitizations” Py;, of strong in-
finitary propositions P, where P implies Py;,. In some cases we even have
P equivalent to Py;,. The classic example of this sort is Kdnig's Infinity
Lemma, according to which if T is a finitely branching infinite tree then T
has an infinite branch and (as is obvious) conversely. For T represented as
a collection of finite sequences in IV, the statement P that T has an infinite
branch is E{, while for T finitely branching the equivalent statement Py,
that it contains infinitely many nodes is I13, and even IIY for branching
with fixed bounds.

As Simpson points out, Konig in his 1927 paper “Uber eine Schlussweise
aus dem Endlichen ins Unendliche” thought of his lemma as a method of
obtaining infinitary results from finitary ones. Indeed, one of the most
striking early applications of KL (Konig’s Lemma) was Gddel’s use of it in
his proof of the completeness theorem for first order predicate logic: if a
sentence A is consistent in that logic then it has a model.? The hypothesis
of consistency is I19, but this is used to build a binary branching infinite
tree whose nodes correspond to sequences of statements or their negations
consistent with S. In this case we obtain a £} conclusion from a I1¢ hypoth-
esis. The argument requires classical logic and can be carried out formally
within PA, since the model constructed is arithmetically definable. (This
situation is in a way a vindication of Hilbert’s view discussed in chapter
2 that the completed infinite is already implicit in the use of the Law of
Excluded Middle when combined with quantifier logic.)

Now, to continue with Simpson’s point, the newer results discussed here
proceed in the opposite direction. Starting with P which is independent

3Godel did not explicitly acknowledge the use of Konig’s Lemma; cf. the discussion
in Gédel (1986), pp. 53-54, of his 1929-1930 work on completeness.
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of a formal system S, the effort is to obtain a finitary consequence Pf;,
of P which is still independent of S. The first striking example of such
was provided by the theorem of Paris and Harrington (1977), which is a
modified form of the famous combinatorial theorem due to F. P. Ramsey
in 1930. Ramsey’s theorem concern partitions of the set of all k-element
subsets of a set X, that is,

(1) X)F=Cu...uC

where [X]* = {Y : Y C X and card(Y) = k} and Cy,... ,C; are pairwise
disjoint. We deal here only with denumerable X and may assume X C N.
The Infinite Ramsey Theorem P is the statement that if X is infinite then
for any k and partition of [X]* as in (1), there exists an 4+ < ¢ and an
infinite subset of ¥ of X such that

(2) [Y}* C Ci

In the case k = ¢ = 2 this is interpreted as saying that any infinite graph
whose edges (that is, members of [X]?) are colored by one of two colors
(C1 or Cy), there exists an infinite subgraph all of whose edges have the
same color. Ramsey proved a finitary form Py;,, of P which is as follows:

(3) for any k, ¢, and m there exists n such that for any X with
card(X) = n and partition [X]* = C1U...UCy, there exists
i <¢and Y C X such that card(Y) > m and [Y]* C C;.

This statement can be seen to be a consequence of P by use of KL; if (3)
is assumed false, then a finitely branching tree 7' can be constructed such
that an infinite branch X through it violates the conclusion of the Infinite
Ramsey Theorem. It turns out that this Finite Ramsey Theorem (3) can be
proved in Peano Arithmetic PA. The surprising result found by Paris and
Harrington is that a slightly modified form Py, of (3) is independent of PA.
This Modified Finite Ramsey Theorem differs from (3) only by addition, to
the conclusion, of the requirement that card(Y') > min(Y), where min(Y)
is the least element of Y. The argument that P implies Pf;, can again
be carried out by contradiction and use of KL (though, as pointed out by
Simpson, this use of KL is inessential).

Since the work of Paris and Harrington, a number of other results of
finite combinatory character have been shown to be independent of PA.
One of the simplest is a theorem due to Goodstein concerning the effect of
shifting bases in the representations of natural numbers to various bases b,
which has been shown by Kirby and Paris to be independent of PA.%

It should be emphasized at this point that the statements Py, thus
shown independent of PA are recognized to be true by infinitary methods

4See Simpson (1987a) for details.
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which go beyond PA. They can in fact be proved in the second-order
system (II2,-C'A) based on the arithmetical comprehension axiom with
full induction. Moreover, Py, is equivalent to the 1-consistency of PA (a
notion intermediate between w-consistency and consistency). Incidentally
(as is discussed in the next and final section), the system (II% -CA)[ with
restricted induction proves the same arithmetical statements as PA.°

The system (I1%,-CA) is predicatively justified, since the second-order
variables can be interpreted as ranging over the arithmetically definable
subsets of N. Schiitte and I both analyzed in formal terms the transfinite
iteration of the formal process of introducing sets by definitions referring
only to previously determined collections of sets, where the iteration ex-
tends -only to those ordinals corresponding to previously recognized well-
orderings. The limit of these is a certain countable ordinal I'g.® This char-
acterization of predicativity yields a sequence of ramified systems of analysis
Ra each of which is predicatively justified for « < I'g, but not for a = I'.
In my 1964 paper and in several subsequent papers I produced a variety
of single unramified systems S which are proof-theoretically of the same
strength as |J Ra[a < T',) and hence are locally predicative.” Another such
system of strength I'g has been introduced and utilized by Harvey Fried-
man, and denoted ATR( by him; in our notation this is denoted ATR], since
it uses restricted induction on N. The locally predicative system (ATR})
is itself a relatively weak subsystem of the patently impredicative system
(II;-CA)l.

The point of all this here is that Friedman found a finite combinato-
rial version Py;, of an existing infinite combinatorial theorem P known as
Kruskal’s Theorem, such that Pf;, is independent of AT R[ and hence can-
not be proved by predicative methods. In this case Kruskal’s proposition
P concerns a certain (relatively simple) embeddability relation < between
finite trees; it says that the collection of such trees is “well-quasi-ordered”
under <, that is,

(4) for any infinite sequence 11,7T3,...,Ty,... of finite trees
there exist ¢,j with ¢ < jand T; < Tj.

(In other words, there is no infinite descending sequence in this collection
under the relation <* defined by T <* T’ « T' £ T). Note that (4) is
equivalent to a I1j-statement. Now the following is Friedman’s finite form
Psin of Kruskal's theorem:

(5) For any k there exists n such that for any finite sequence
T, Ty,...,T, of trees with card(T;) < k-1 for all i < n,
there exist 7, j with i < j and T; embeddable in T}.

5See Simpson (1987a) for details.
6Cf. Feferman (1964).
"See Feferman (1968a) for references.
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This Prn is a consequence of Kruskal's P; its proof goes by assuming (5)
false and (once again) applying KL in a suitable way. Friedman showed
that the statement (5) implies the 1-consistency of ATR| and hence is not
predicatively provable; it is, however, provable in the system (II}-CA)[.
Friedman also found an extended finite form of Kruskal’s theorem which
is independent of (II{-CA)| though provable in (II}-CA) + BI, where BI
is a principle described below. This makes use of labeled finite trees and a
stronger embeddability relation. Details of the proofs of these independence
results are in Simpson (1985).

At the time of writing the strongest subsystem of full second-order anal-
ysis (IIL_-CA) for which a finite combinatory independence result has been
found is the system (II}-CA) + BI, where BI is the scheme expressing that
transfinite induction can be carried out (with respect to any second-order
formula) along any well-founded ordering relation in N. This result is due
to Buchholz (1987); the statement shown independent concerns “hydra”
games which involve specified alternations of amputation and regeneration
of limbs in finite trees.

With reference to our original question as to the relevance of such in-
dependence results to finite combinatorial mathematics, I would say the
following. None of the statements Py;, thus shown to be independent were
previously considered per se in ordinary combinatorial work. It is a matter
of pure speculation whether they would naturally have arisen for considera-
tion in the normal course of such work, had they not come out of the efforts
by logicians to establish the mathematical relevance of finitary results. At
any rate, all these statements are at first sight close enough to the kinds
of results which combinatorists have been dealing with and, conceivably,
could have dealt with, so that there is at least a prima facie case for their
relevance. Taking that for granted for the moment, what conclusions are
to be drawn as to the significance of this work?

The most favorable interpretation to be placed on these results is that
they tend to support Godel's doctrine. The argument goes somewhat as
follows. The system (II}-CA)[ is based on the impredicative comprehension
axiom:

(6) IXVnn € X e (VY)A(n,Y))],

where A is arithmetical. Now (the argument continues), this system is
justified only if one assumes that the power set P(N) exists as a fixed
definite totality. Hence, according to this line of argument, it is necessary
to make platonistic assumptions concerning the existence of uncountable
totalities in order to derive finite combinatorial truths Py;, such as those,
indicated above, independent of (II}-CA)[. In other words, according to
this line of thought, at least the first stage of the Cantorian transfinite is
necessary for everyday combinatorial mathematics.

Now there is an immediate counterargument to this particular effort
to support Godel’s doctrine. Namely, although the infinitary statements P
from which the finitary Py,, are derived as consequences clearly make use of
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impredicative principles, it turns out that the statements Py;, only require
the (1-)consistency of such principles. And, as we have stressed above, one
cannot argue from consistency (or even l-consistency) to existence of the
concepts in question, at least in their supposed “standard” intended sense.

There is a second line of response to the above argument, which makes
use of a body of proof-theoretical work on reductions of the subsystems of
analysis in question to constructive theories, in particular to various intu-
itionistic systems ID? of iterated inductive definitions. (“ID” abbreviates
“inductive definition,” “” is for “intuitionistic logic,” and the ordinal sub-
script “a” measures the extent of the iteration.) This work is reported
in Buchholz, Feferman, Pohlers, and Sieg (1981), which brings together a
series of earlier contributions by the individual authors. In particular, it
is demonstrated there that the system (II}-CA)[ is finitarily reducible to
IDL, = |J ID, and that (II}-CA) + BI is finitarily reducible to ID}, (in

n<w

both cases preserving II3 sentences). Now the justification for the systems

ID}, (for low a) is quite opposite to that for the classical subsystems of anal-
ysis which have been shown reducible to them. The systems ID?, concern
specific countable sets (the recursive number classes) which are inductively
generated “from below”; moreover, since only intuitionistic logic is used,
it may be claimed there is no implicit appeal to the completed infinite in
them. (This last is particularly clear for ID}, where it turns out that Fried-
man’s first finite form of Kruskal’s theorem can be proved, but calls for
argument in the case of ID! when o > 2.) At any rate, what the above
reductions demonstrate is that the classical systems in question have an
alternative constructive justification which does not require anything like
belief in a preexisting totality of subsets of N. Moreover, the same kind of
alternative constructive justification has been given for far stronger theo-
ries than (II}-CA) + BI, namely, for the system (A}-CA) in the work of
Buchholz, Feferman, Pohlers, and Sieg cited above, and for (A}-CA) + BI
in further work of Jager and Pohlers.® At present, none of the indepen-
dence results for finite combinatorial systems of the kind described above
come close to exhausting the strength of systems for which we thus have a
completely opposite (nonplatonist) constructive justification.

In the preceding discussion 1 have, for the sake of argument, taken
for granted that the independent statements produced are indeed relevant
to everyday combinatorial mathematics, even though they do not solve
problems of prior mathematical interest. But even that may be challenged:
it seems to me that as one passes from statements of the sort provided
by Paris-Harrington and Kirby-Paris for PA, through those provided by
Friedman for ATR| and (II}-CA)J, on to those provided by Buchholz for
(I1}-CA) + BI, the connection to practice becomes more and more tenuous.
Viewed as an observer from the sidelines, there is a nagging feeling that the
statements still have a “cooked up” look. This already appears with the use

8See Buchholz et al. (1981) for a general review of this work and further references.
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in the Paris-Harrington statement of the condition card(Y') > min(Y’), and
in Friedman'’s finite form of Kruskal's theorem of the condition card(T;) <
k- i. Examination of the details of the argument in Simpson (1985) for
the independence of the latter from ATR[ makes clear how the imposition
of the linear condition on growth allows one to pass from that statement
(with the aid of Konig's Lemma) to the well-foundedness with respect to
a wide-enough class of (possible) descending sequences to carry through a
proof-theoretical demonstration of the 1-consistency of ATR[. Note that
the Paris-Harrington statement, which is most clearly relevant to results
of established mathematical interest (finitary forms of Ramsey’s theorem),
does nothing to support Gédel's doctrine, since it can be proved in a mild,
predicatively justified, extension of PA. But, in my view, the further one
moves to support Godel’s doctrine by independence results for increasingly
stronger systems, the less convincing is the case for the relevance of such.?

This section would not be complete without some discussion of the
leap that has been taken in Friedman (1986). The effort there is to pro-
duce finite combinatorial statements Py;, independent of relatively strong
systems of set theory, and in particular of ZFC + {“(there exists an n-
Mahlo cardinal)”},<,. While the statement thus produced!® does make
use only of concepts from ordinary finitary mathematics, it is extremely
remote from any ordinary mathematical reading. (Indeed, so much so that
it would be unrewarding to reproduce the statement here—the reader must
see for himself in Friedman’s paper.) Here, I am evidently in complete dis-
agreement with Friedman that his statement is “readily understandable.”
But Friedman himself goes on to say that this statement “is still not quite
as simple or as natural as we would like [and] we are continuing to strive for
an improved form.”* What Friedman believes his result in this instance
accomplishes is to “open up, for the first time, the realistic possibility, if
not probability, that strong abstract set theory will prove to play an es-
sential role in a variety of more standard finite mathematical contexts.”
If that case can be made then, according to Friedman, “this would open
up a foundational crisis of nearly unprecedented magnitude since we seem
to have no way of convincing ourselves of the correctness or consistency
of such set theoretic principles short of faith in our very uneasy intuition
about them.”!! In other words, Friedman is hesitatingly plumping for some
form of Godel’s doctrine.

9In personal communications to me, both Friedman and Simpson have taken issue
with the views expressed in this paragraph, particularly with respect to the comparison of
the finite form of Kruskal’s theorem given in the text and the Paris-Harrington statement
(PH). I agree with them that the former statement is more readily understandable (or
visualizable) than the latter, and also that cardinality restrictions on the sizes of finite
trees are more natural than the ad hoc cardinality condition appearing in PH. However,
this does not affect my overall conclusion at the end of the paragraph, which also concerns
much stronger statements.

10Friedman (1986), proposition VIII.

*[His most recent efforts in that direction are presented in Friedman (1998).]

11 The quotations are from Friedman (1986), pp. 92-93.
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My general arguments against that doctrine in the last section, except
one, apply equally to this specific case. Once more there is a petitio prin-
cipii: would we believe Friedman’s independent finitary statement to be
true if we did not believe in the correctness of ZFC + Vn (“there exists
an n-Mahlo cardinal”) in some independent set-theoretical reality? So how
does it justify the latter to demonstrate independence of the former from
a slightly weaker system? Since the statement is clearly fabricated to do
a job, and the evidence for its truth begs the question, the necessary use
of such strong systems for everyday finitary mathematics has yet to be
demonstrated. As I read Friedman’s statements above, he agrees that the
case has yet to be clinched; clearly, we differ on how much farther one will
have to go in order to do that decisively, if at all. But my overall conclu-
sion (announced in the introduction to chapter 2) about the independence
results discussed in this section is even stronger: the case remains to be
established that any use of the Cantorian transfinite beyond Ny is necessary
for the mathematics of the finite in the everyday sense of the word.”

Countable Foundations for Applicable Mathematics

In this final section,** I shall explain the basis for the second claim an-
nounced in the introduction to chapter 2, that higher set theory is dispens-
able in scientifically applicable mathematics. The argument for this follows
the trail blazed by Weyl in his 1918 monograph Das Kontinuum, but goes
much farther by making use of modern logical tools. First of all, the work
sketched by Weyl can be formalized in (I1% -CA)J, which is a conservative
extension of PA; that is, for any first order A, if (II2-CA)| I A then PA
F A. This conservation result can be proved very simply by use of Gédel’s
completeness theorem, as follows. If PA ¥ A then there is a model M of
PA + {-A}; one then expands M to a model M’ of (II% -CA)[ + {-A}
by taking the range of the set variables to be the collection of all first-
order definable subsets of M. There are also standard proof-theoretical
techniques which may be used to prove this conservation result by strictly
finitary means. Thus, the portion of classical mathematical analysis that
can be formalized in (II% -CA)], following Wey!’s plan, rests on first-order
Peano Arithmetic as a foundation. Since the general notion of real number
is defined in the wider system, the conservation result shows that such uses
of the uncountable in classical analysis can be eliminated.

Though Weyl did not himself carry his plan very far, the direction he
set for it was clear enough to see how to formalize substantially all of the
classical analysis of piecewise continuous functions of a real variable devel-
oped through the nineteenth century (and relatedly for complex analysis).

*[ For a more recent discussion of the issues in this and the preceding sections, see

Feferman (1998).]
**[The material of this section overlaps that of chapters 13 and 14 in this volume,

whose writing it preceded.]
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Since this part of analysis already includes a considerable portion of scien-
tifically applicable mathematics, the execution of Weyl’s program would go
far toward substantiating the claim made above. However, one would also
have to be able to provide a countable foundation for significant portions of
twentieth-century analysis and accessory parts of mathematics in algebra
and topology in order to establish the claim in full. Among other things
one would want to be able to deal with the Lebesgue integral and more gen-
eral theories of integration, as well as with a variety of function spaces and
more general abstract spaces ( Banach spaces, Hilbert spaces, etc.), and the
operators on them, which form the subject matter of functional analysis.
One way in which this might be done is to deal only with countably pre-
sented mathematical objects (functions, sets, structures, spaces), each of
which is determined by a countable amount of information and hence can
be represented by a subset of N. While this approach is possible in prin-
ciple, it is not very natural. It is preferable to find a system S for which
one can proceed in a direct way from a body of mathematical notions and
theorems to the formalization of such in the system, and such that S can be
given a countable foundation (as (I1%,-CA)| is justified by PA). However, a
system of this type would have to incorporate higher type notions. For, as
soon as we wish to speak about functions of real numbers in a direct way
in general, we must move to third-order concepts; then direct discussion of
functionals (such as various linear operators on functions) would require
dealing with (prima facie) fourth-order concepts, and so on.

Thus the aim would be to find a finite type theory S which can be given
a countable foundation, say by proof-theoretical reduction to PA, and in
which scientifically applicable twentieth-century mathematics can be di-
rectly formalized. The first part of this aim was realized in two ways by
systems presented in Feferman (1977) and Takeuti (1978). But these sys-
tems are still not as convenient as one would like for the second part of the
aim. The reason is that types are fized syntactic objects in these systems,
so there is no simple direct means to handle subtypes given by separating
with respect to properties having variable parameters. A second reason
for wanting variable types is that, following modern abstract mathematics,
one wants to speak of arbitrary structures of any given algebraic, topolog-
ical, or analytic kind and there is no natural sense in which these should
be restricted to range over a fixed type. For example, one would like to
speak of all groups (or all linear spaces, or all Banach spaces, etc.) and
not just of all groups (etc.) within a given type. What is thus required
is a formal system in which the types themselves may be wvariable and in
which subtypes can be freely separated by suitable definitions. Such a sys-
tem would approach set theory in appearance. Indeed, Friedman (1980)
provided a theory ALPO which is contained in ZFC and is conceptually
rich, yet is a conservative extension of PA. However, Friedman’s system is
semi-intuitionistic (in the sense that classical logic is applied in it only to
number-theoretic equations).

Since the use of classical logic pervades modern mathematics, in my
view it is preferable to have a formal system with variable types using clas-
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sical logic in full and having a countable foundation, say by reduction to
PA. Such a theory has been described in Feferman (1985a)'?; it was there
denoted Res-VT + (p) but is denoted VT, in the following (“VT” abbre-
viates “Variable Types” and “u” is for the unbounded minimum operator
described below). While the formalism employs set variables, it differs from
set theory in that the notion of function is treated as a primitive and not
reduced to the notion of set. This conceptual separation is characteristic of
certain approaches to constructive mathematics. At the same time it ac-
cords with the highly asymmetric use that working mathematicians make
of functions and sets (in general, in practice, functions are not nearly as
complicated as sets).

It is not possible here to go into details of the system VT,J, but the
following sketches its main features. Besides class variables (or “type vari-
ables”) X,Y,Z . . . there are class terms U, V,W, . . . built up from class
constants and variables by the following operations: (i) if U,V are class
terms then so also are U x V and (U — V'); and (ii) if U is a class term and
A is a bounded formula (defined below), then {z € U : A} is a class term.
Individual terms are all introduced in context: for any class term U (which
may contain variables) there is a list of individual variables z¥,yY 2V, ...
of type U; further terms are built from these and individual constants by
pairing and projections (corresponding to U x V), and by function ap-
plication and abstraction (corresponding to U — V). Thus we have the
full means of a typed A-calculus but with variable types. Unlike ordinary
type theory, the formalism permits equations s = ¢ between terms of arbi-
trary type. Formulas are built from atomic formulas (s =) by -, A, V, —,
and universal and existential quantification with respect to both class vari-
ables and (relative to any class term U), individual variables 32Y(...) and
VYzV(...).'® Bounded formulas are those containing no quantified class
variables. (The preceding description of the syntax requires a simultane-
ous definition of class terms, individual terms and formulas). One defines
(teU)asIzV(t =z) and {x e U : A} = {2V : A},(3z € U)A = 324,
and (Vz € U)A = VzUA.

The basic axioms of VT, [ are the usual ones for abstraction and applica-
tion, pairing and projections, and separation. The further axioms concern
N (a constant symbol for the set of natural numbers). This comes equipped
with constants for 0 and the successor function sc¢(x) = z’, and a primitive
recursor ry which gives for each a € N and ¢ € N x N — N a function
f =rn(a,g) € (N — N) with f(0) = aAVn € N[f(n') = g(n, f(n))].
From this we can derive primitive recursion with parameters drawn from

12This paper was presented to a meeting in Bogotd, Colombia, in 1981. The excep-
tional delay in publication of the proceedings of the meeting accounts for its date. [An
improved system W for this purpose is described in chapters 13 and 14.]

13The system in Feferman (1985a) did not employ quantified class variables, using
such only for pure statements of generality. The present extension is conservative over
that system.
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any classes. The axiom of induction for N is given in a form restricted to
classes defined by characteristic functions:

(1)  f(0)=0AVz e N(f(z) =0— f(2') =0) - Vz € N(f(z) =0).
Finally, there is an axiom for a function x4 € (N — N) —» N with

(2) w(f) = L’Eiﬁ[f(x) = 0] if (3z € N)[f(z) = 0], otherwise 0;

w is called the unbounded minimum operator. Using it we can define an
operator En with En(f) =0 « (3z € N)(f(z) = 0).
The main mathematical result obtained for this system is that

(3) VT, is a conservative extension of PA.

The proof of (3) described in Feferman (1985a) proceeds by a series of
reduction steps—first from variable types to constant types, then by elim-
ination of subtypes, and finally by reduction to the system Res-Z* + () of
Feferman (1977); it was there shown how to reduce the latter system to PA
by proof-theoretical means. All of this argument is finitary; furthermore,
conservation with respect to arithmetical statements is preserved at each
step.*

While (3) shows that VT, | has a countable foundation, many sets which
are ordinarily thought of as being uncountable can be defined to exist in the
system. To prepare the way, Z is defined as usual in terms of N x N, and Q
in terms of Z x (Z — {0}). Then the class R of real numbers is defined to be
the class of all Cauchy sequences of rationals, that is, all functions from N
to Q satisfying the Cauchy convergence criterion; an equality relation =g
is introduced to tell when these represent the same real number. The class
Fung of all real functions is then defined to be the subclass of (R — R)
consisting of all f which preserve =g. We can then proceed to define the
class of all functionals on these and so on. Of course the complex numbers C
are defined as usual from R via R x R.. Since n-tupling can be explained in
terms of pairing, one has all finite-dimensional spaces R™ and C”; one also
has Cantor space and Baire space via N — {0,1} and N — N, respectively.
All of these spaces may be shown to be locally sequentially compact; that
is, every bounded sequence contains a convergent subsequence. (The proof
uses Konig's Lemma, which in turn is proved by a combination of primitive
recursion and the En operator.) The Cauchy completeness of these spaces
follows. More generally one deals with arbitrary complete separable metric
spaces, for which fundamental results like the Baire Category Theorem
and the Contraction Mapping Theorem (existence of a fixed point) can be
proved.

The space R as dealt with in VT',[ cannot be proved complete in the
sense that the L.u.b. (or g.l.b.) axioms holds for arbitrary sets of reals; one

*[The reduction to PA of the improved system W referred to in the postscript to ftn.
12 above is carried out in Feferman and Jager (1993) and (1996).]
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only has that for arbitrary sequences of reals. Since the L.u.b. (or g.l.b.)
axiom for sets of reals is applied ubiquitously in analysis, one must in
each case see whether such an application can be replaced by use of the
corresponding principle for sequences. Often that is very easy but in some
cases it requires more care; finally, there are certain cases in actual analysis
where this replacement simply cannot be made. One such is when Lebesgue
measure meas(X ) of a set X C R is defined in terms of its outer measure
meas*(X ), which is the g.1.b. of {meas(Y): X CY and Y is open} (where
for open Y, meas(Y) is the sum of the lengths of the components of Y').
Failing this, we cannot deal with nonmeasurable sets. But for applications
it is only necessary to deal with measurable sets X, and for these a direct
definition of measure is possible in terms of sequential open covers of X
and of the complement of X. Similarly measurable functions can be dealt
with directly in terms of limits (a.e.) of sequences of step functions. By
this means we can represent the positive theory of Lebesgue measurable
sets and functions (and similarly for more general theories of measure and
integration).

Finally, one can develop substantial portions of functional analysis in
VT, | for linear operators on separable Banach and Hilbert spaces, in-
cluding the principal results for the spectral theory of compact self-adjoint
operators. I have verified that usable forms of the Riesz Representation
Theorem, Hahn-Banach Theorem, Uniform Boundedness Theorem, and
the Open Mapping Theorem can all be proved in VT, [. It seems, then,
that all of applicable classical and modern analysis can be developed in this
conservative extension of PA.

There is further detailed evidence which can be brought from another
corner to support this claim. Namely, in his famous 1967 work, Errett
Bishop gave a new constructive redevelopment of classical and modern
analysis which he carried out in great detail for a number of fundamental
results (many of which could be considered test cases). Bishop said that
each of his theorems provides a constructive substitute A* for a classical
theorem A. The relationship is that A implies A* and that A* implies A
by use of classical logic. In fact, according to Bishop the use of classical
logic can be reduced in each case to that of what he called the Limited
Principle of Omniscience (LPO), namely, that

(4) Yn € N(f(n) =0)Vv 3In € N(f(n) #0)

holds for each f € (N — N).!* Now Friedman had found in 1977 a sub-
system of intuitionistic ZF in which all of Bishop's constructive analysis
(with a later form of his theory of measure) can be formalized, and which
is conservative over HA. In my paper “Constructive theories of functions
and classes”!® I provided an alternative constructive theory of functions

14This explains Friedman’s use, in his 1980 paper, of “ALPO” as an abbreviation for
“Analysis with the Limited Principle of Omniscience.”
15Feferman (1979).
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and classes T, containing a subtheory EMg[ in which all of this work of
Bishop can be formalized. I showed that EM¢[ with classical logic is conser-
vative over PA and Beeson showed its conservation over HA in intuitionistic
logic.!® The crucial point for the present purposes is that when classical
logic is added, one regains from Bishop’s work all the classical theorems
A for which he found constructive substitutes A*, in a theory conservative
over PA. (The system EMf is related in certain ways to VT[, without the
p operator; addition of the latter builds in a strong form of LPO.) Actually
as far as the claim here is concerned, the detour via Bishop’s work takes one
through unnecessary technical complications, since those are necessitated
only by his insistence on constructivity. But at least the foregoing provides
another way of giving massive detailed support for the main claim of this
section.

Still further evidence for that has been gathered in the program of
“Reverse Mathematics” initiated by Friedman and pursued by Simpson and
others, which shows that even much weaker theories, conservative over PRA
(Primitive Recursive Arithmetic), suffice for the development of significant
portions of analysis and algebra.!”

Nothing here is meant to suggest that a system S which makes prima
facie use of uncountable sets of various kinds must be reduced to PA in
order to show that higher set theory is eliminable in the applications of
S. Any predicatively reducible system is a candidate for that and even,
from a certain point of view (suggested above), are certain (prima facie)
impredicative theories of iterated inductive definitions. Moreover, there is
no question that in the current practice of mathematics there are a number
of results in which the use of transfinite set theory is essential. While these
results are far from the applications of mathematics, further efforts should
be made to see whether any of them might lead to a crucial test case of
the claim made here.

Independently of such detailed work which puts into question the ne-
cessity of higher set theory for everyday mathematics,” I am convinced
that the platonism which underlies Cantorian set theory is utterly unsat-
isfactory as a philosophy of our subject, despite the apparent coherence of
current set-theoretical conceptions and methods. To echo Weyl, platonism
is the medieval metaphysics of mathematics; surely we can do better.

16Feferman (1979), pp. 218-219.
17gee Simpson (1985a), for an introduction and references [and, now, Simpson (1998)).
*[In this respect, cf. also the following chapters 13 and 14.]



