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PREFACE.

THIS volume has been written on what appeared, in the

light of ten years experience in teaching the Calculus,

to be lines of least resistance. The aim has been, within

a prescribed expense of time and energy, to penetrate

as far as possible, and in as many directions, into the

subject in hand, that the student should attain as wide

knowledge of the matter, as full comprehension of the

methods, and as clear consciousness of the spirit and

power of this analysis as the nature of the case would

admit. Accordingly, what seemed to be natural suggestions

and impulses towards near-lying extensions or generaliza

tions have often been followed, and even allowed to direct

the course of the discussion. Hereby, necessarily, the

exposition has suffered in symmetry and in systematic

character
;

but everything has the defects of its own

qualities.

The aim already stated, no less than the plan of its

pursuit, has excluded Weierstrassian rigor from many

investigations and compelled the postponement of im

portant discussions as too subtle for an early stage of

study ;
in particular, no attempt has been made to deal

with Series, unless the most familiar, or to follow in the

wake of the masters of e-methods. But real difficulties

have not been knowingly disguised, and the reader is
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often warned that the treatment given is only provisional

and must await further precision or delimitation.

It has also resulted that some topics have been merely

mentioned, it appearing at once that further investigation

would lead straightway beyond the prescribed limits of

the volume, or into difficulties for which the reader was

not prepared. But it is believed that the glimpses thus

afforded of wider and higher fields have a distinct value,

and may attract the student with promise of richer reward

for renewed effort. The book is, in fact, written for such

as feel genuine interest in the subject, whose minds are

open to such inspiration.

It was in the original scheme of this volume to add

an Appendix, in which certain purely algebraic assump

tions of the text, as the Exponental Theorem and Decom

position into Part-Fractions, should be carefully grounded ;

but the volume having grown beyond expectation, such

addenda have been omitted, as in any case dispensable.

Though the discussion has been confined to real variables

an occasional passing employment of the Eulerian i has

seemed unavoidable.

The illustrations and exercises have been chosen with

frequent reference to practical or theoretic importance, or

to historic interest, and without any pretence of novelty.

The author acknowledges in full his great indebtedness

to the works of Amstein, Byerly, Edwards, Greenhill,

Gregory, Harnack, Johnson, Sohncke, Stolz, Todhunter,

Williamson, and others, from which the examples, in par

ticular, have been mostly culled.

He desires also to return thanks publicly to Professor

Dr. Carlo Veneziani for patient and painstaking revision

both of the MS. and of the proof-sheets. Such services

would under any circumstances have been valuable
;
but
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under the peculiar embarrassments that have beset every

stage of the composition of this volume they have been

invaluable. Thanks are also due to the author s colleague,

Mr. J. E. Lombard, for assistance in proof-reading, and

especially in drawing the figures.

The author will be grateful for indication of errors, either

of pen or of type. If, in spite of all such, the book shall

prove useful, whether by enlightening or by inciting, and

shall advance the mastery of the most powerful weapon
of thought yet devised by the wit of man, its end will

be in some measure attained.

W. B. S.

NEW ORLEANS,

Christmas, 1897.
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CHAPTER I.

FUNDAMENTAL NOTIONS AND OPERATIONS.

1. The Notion of Limit : Geometric Illustration

Denote by A the area of a circle, by I.n the area of

a regular inscribed, and by Cn the area of a regular

circumscribed, polygon of n sides; also let n increase

without limit, as by continual doubling.

Then we know from elementary geometry:

(a) That A is constant does not change in value.

(b) That In and Gn are not constant, but variable, /

increasing and Cn decreasing as n increases.

(c) That In is always less and Cn always greater than A.

(d) That by making n great enough we may make
the difference Cn In ,

and still more the differences A /

and Cn A, as small as we please, and may keep them

so for all greater values of n.

Let the student illustrate by a diagram.

2. Algebraic Illustration. Consider the series, a geo
metric progression,

and denote by Sn the sum of the first n terms.

Then

S. A.
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By making n great enough, we may make ~- as small

as we please, small at will, and it will remain so for all

following greater values of n
;
hence we may bring and

keep the variable Sn as close as ive please to the

constant 1.

But no matter how great we make n, we can never

make In= A, nor Cn = A, nor Sn = l.

3. Definition. The foregoing examples illustrate a state

of case that in some form or other meets us at nearly

every turn in higher mathematics both pure and applied :

we have to deal, namely, with some varying magnitude,

which changes its value according to some law and which

may be brought, and may be kept during all succeeding

stages of value, as close as we please to some constant

value, without ever coinciding in value with that constant.

In all such cases the Constant is called the Limit of the

Variable.

4. It is equally essential that we be able to bring and

be able to keep the variable close at will to the constant.

Consider the series

formed by adding +1 and 1 alternately to the terms of

the progression in Art. 2. If we take an even number

of terms, as 2m, then the +l s and 1 s annul each other

in pairs, we have

&amp;lt;* -i
l

&2m J-

22m

and by making 2m great enough we may bring the

variable $2m close at will to the constant 1. But we

cannot keep Sn close at will during all following stages

of its value. For the value of $2m+i is %
iWr^+i&amp;gt;

since

in taking an odd number of terms the last +1 will not

be annulled
;
and this value cannot be brought close at
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will to 1 by enlarging m, though it may be brought close

at will to another constant, 2. Accordingly, the general

value of the sum Sn of the first n terms is seen to sway
back and forth towards 1 and 2, according as n is even

or odd. It may be brought close at will to either, but

it can be kept close at will to neither
;
hence it has neither

1 nor 2 as limit; it has no limit at all.

Exercise. Show that SH of the series

3 i
5 1 5 i 1 7 i 3 3 127,f^t &quot;r+TV*&quot;** ~FT~ * &amp;gt;

approaches 1, 2, 3, for n = 3m, dm + 1, 3m + 2.

5. Infinitesimals. A magnitude small at will, which we

may make and keep as small as we please, is often called

an Infinitesimal. Thence, from Art. 3, The difference be-

tiveen a variable and its limit is an infinitesimal. Hence,

also, An infinitesimal is a variable whose limit is 0.

It is important to observe that the actual value of the

infinitesimal at any stage of its variation is a matter of

complete indifference. Its essence is found exclusively

in the fact that it is small at will, that we can make

and keep it as small as we please, that its magnitude is

wholly in our control.

6. Theorem I. Any finite multiple, of an infinitesimal

is itself an infinitesimal.

Let cr be any infinitesimal, m any definite number ; then

ma- is a finite multiple of cr, and it will be infinitesimal

in case we can make and keep it as small as we please.

Let us please to make and keep ma- &amp;lt; a-
,
where &amp;lt;/ is in

finitesimal
;

it may be chosen small at will, but we must

suppose one such choice, already made. We now choose

cr&amp;lt;- : this we can do, since cr is already chosen and cr

is completely at our disposal. Then m&amp;lt;r &amp;lt; cr
;
but or is

small at will, much more then is mcr small at will.
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7. Theorem II. The sum of a finite number of in

finitesimals is itself an infinitesimal.

Let 2 = o-t+ cr.2+ . 4- orw .

Then we may make and keep each and every one of

the cr s less than a previously chosen cr small at will :

hence we may make and keep 2 &amp;lt; no-
;
but 7io- is in

finitesimal, much more then is S infinitesimal.

N.B. The restriction that n be finite is important ;
if

n increase indefinitely, neither no- nor 2 will in general

remain infinitesimal.

8. Theorem III. // two variables, V and Y differ by

an infinitesimal only, and one of them (V) have a limit

L, then the other has the same limit.

For we have V L = ar, and VV=&amp;lt;r ,
whence

F-Z^er+o. ,

that is, V differs from L by an infinitesimal
;
hence L is

the limit of V.

Corollary. If V and V be always equal, and L be

the limit of V, then L is also the limit of V.

9. Theorem IV. The limit of the sum of a finite

number of variables is the sum of their limits.

Let vv v
z ,

... vn be the variables, /
15 2 ,

... ln their limits.

Then

That is, the sum of the limits differs from the sum of

the variables by an infinitesimal; hence the theorem.

Corollary. The limit of the difference of two variables

is the difference of their limits.

10. Theorem V.The limit of the product of a finite

number of variables is the product of their limits, those

limits being finite.
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For we have

=
l-Jz ... ln+ a, finite number of terms,

each containing an infinitesimal factor. Each of these

terms is infinitesimal, and so is their sum
;

hence

v^.j . . . vn differs from l^9 . . . ln by an infinitesimal, hence

the theorem.

11. Theorem VI. The limit of the quotient of two

variables is the quotient of their limits, the limit of the

divisor being finite.

For we have

h

the quotient of the vs differs from the quotient of the I s

by an infinitesimal
;
hence the theorem.

N.B. Observe the importance of the condition finite

in these theorems, and how they fail on its removal.

For instance, if a fixed length a be divided into n equal

parts, for n increasing at will the length of each part
is small at will, is infinitesimal

; nevertheless, the sum of

these n infinitesimals is not infinitesimal, but is a.

FUNCTIONS, DIFFERENCES, DERIVATIVES.

12. Definition. Tivo magnitudes so related that to

values of the one correspond values of the other are

called Functions of each other.

Such are a number and its logarithm, or sine, or cosine;

a circle s length or area and its radius
;
a sphere s surface

und its volume
;
the volume of a given mass of gas and

its tension
;
the elasticity of a medium and the velocity

of undulation through it, and so on. In fact, we may
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almost say that all scientific research is the study of

functional relations. Knowing one of the magnitudes we

may either calculate the other by some rule or formula,

as in mathematics, or we may observe it, as in physics.

That one of the two magnitudes to which we assign

arbitrary values in order then to calculate or observe the

corresponding values of the other is called the Argument,
while the other is called the function. Note carefully
that this distinction of argument and function is purely

subjective, depending on our arbitrary choice, which itself

follows convenience; objectively, each magnitude is alike

a function of the other. The terms independent variable

and dependent variable are often used instead of argument
and function.

13. Notation and Classification. The mathematical ex

pression of functional relations between (say) x and y is

f(a, 2/)
= 0, F(x,y) = 0, &amp;lt;p(x, y) = 0, etc.

(read, f-, or F-, or ^-function of x and y equals 0). Then

f, F, are not symbols of magnitude, but of operation,

indicating that when a certain set of operations is per
formed on x and y the result is for all pairs of

corresponding values of x and y. When these operations
consist of a finite number of fundamental algebraical

processes, namely, addition, subtraction, multiplication,

division, involution, evolution, the function is said to be

algebraic ; otherwise, it is said to be transcendental. Thus

f(x, y) = x*- Saxy+f and x*+ y* a% = 0(#, y),

are algebraic functions of x and y ;
but

X3 X5 X 1

y^mx=x
-p+-\5-

+ -

is a transcendental function of x, since no finite number
xn

of such operations as will produce the sine of x
\n_
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In the equation

f(avy)=?0,

unsolved as to both x and y, each is said to be an implicit

function of the other; but in

y = sin x,

solved as to y, this latter is said to be an explicit

function of x.

When to one value of the one variable there corresponds

only one value of the other, this latter is called a one-

valued or unique function of the former; but when to

one value of the one variable there correspond more

values than one of the other variable, this latter . is

called a many-valued function of the former. Thus in

y = sx+ b,

y is an explicit one-valued function x, while x is an

implicit one-valued function of y. In

x and y are implicit three-valued functions of each other.

In y
2 =

4&amp;lt;qx,

x is a one-valued, y is a, two-valued function. In

y = COS X,

y is an explicit one-valued function of x, while x is an

implicit infinitely many-valued function of y.

Though we may not be able to solve the equation

between x and y, yet we may always suppose it solved

as to either.

Exercise. Describe the functional relation between x and

y in the following Equations :

xy = c
2

;
x2

y
2 = a2

-,
kx2 + 2kxy +jf + 2gx + 2/y + c -

;

ay = ea + e~] y* + x* = c$; x = a(0-$inO), y = a(l-cosO).

14. Correspondences. Pairs of corresponding values of

x and y may be indicated by subscripts or accents. Thus
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(xv y-,), (x , y ).
Likewise x

1
x.

2 , y-^ y.2 and x x, y y

are pairs of corresponding differences, or changes in value

of x and y. It is convenient to designate all such differ

ences by the symbols Ax, Ay ;
also the letters h and k

are much used for the same purpose. Subscripts may be

attached to these symbols where there is need of greater

precision, as is rarely the case.

15. Continuity. If a be any special value of x, then

the range of value from a h to a+ h (where h and h

are positive, but at present not further defined) may be

called the neighbourhood or vicinity of the value a.

When h and h are small at will, the neighbourhood may
be called immediate.

When x may assume any value in the neighbourhood
of a, it is said to be continuous in that neighbourhood.

When y = f(x) and we can make and keep Ay small at

will by making and keeping Ax small at will, that is,

when to infinitesimal Ax there corresponds infinitesimal

Ay, then y is called a continuous function of x.

It often happens that y is continuous for certain ranges

of value of x, but discontinuous in the immediate vicinity

of certain critical values of x. Thus, in y = tan x, y is

continuous in general ;
we have, in fact,

_ {1 +(tan x)
2
} tan Ax

1 tan x tan Ax

As long as x is finitely different from vr/2, tan x is finite,

and we can make and keep the fraction (or Ay) small at

will by making and keeping Ax small enough. But such

is no longer the case as x nears ?r/2 indefinitely ;
for

then tan x increases (positively or negatively) beyond all

limit, and as x passes through the value 7r/2, or as x

changes by Ax (however small Ax may be) from

/0 Ax . /0 ,

Ax
7T/2 tO 7T/2 + ,

L ^
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tan x leaps from a very great positive value to an equal

negative one, so that Ay, far from being small at will,

is really made great at will by making Ax small at will.

Hence the values x= (2n+l)7r/2 are points of dis

continuity for the tangent of x.

Exercise. Show that

is discontinuous for x = a.

16. Difference-Quotient. Manifestly, in the study of

functional dependence, the question how the changes in

value of the one variable are related to the changes in

value of the other variable must be of prime importance;

manifestly also, a natural way to investigate the relation

of these changes would be to study their quotient, the

argument-change, which is entirely under our control, being

the divisor. Accordingly, let us examine the Difference-

Quotient, .

17. Illustrations. A very few examples will suffice to

teach us that the expression for this quotient is not in

general simple, but very complex. In the case of y a

linear function of x, y = sx+ b, let us increase any value

of x by Ax
;
thus the corresponding value of y is increased

by Ay, and

whence, on subtracting y = sx+ b, we obtain

Here indeed the relation is simple enough : Ay is obtained

from Ax by multiplying by s. The geometric illustration

needs no explanation.
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18. But now consider the simple relation y = x-. Ax and

Ay being corresponding differences,

whence

and

2 = x2+ 2x. Ax+ Ax

= 2# . Ax+ Ax2

,

Similarly, for

while in the case y = tan x we have

A?/_ (1 + tan x ) tan Ax
Ax

~&quot;

(1 tan x tanAx)Ax

When such complexity obtains in simple cases, it seems

superfluous to examine complicated ones.

19. Derivatives. However, it is a fact of observation,

to be verified at every step of our progress, that the

Difference-Quotient, no matter how unwieldy, in general

breaks up into two parts : the one, independent of Ax,.

constant with respect to Ax
;
the other, dependent on Ax,,

vanishing ivith Ax.

The event will show that the first part, the independent
constant part, is of supreme importance, and accordingly
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we give it a special name
;
we call it The Derivative of

y as to x. Symbolically,

and we name (7(Ax) Derivative of y as to x.

20. Symbolism. Of course we need a symbol as well

as a name for this magnitude, such as

/ n dy
yx , y , y, A#, gj-

We shall use all of these as quite equivalent, but not

quite indifferently. The second, y ,
is very convenient,

but only when there can be no uncertainty as to the

argument derivation; thus, when y = f(x), y or f (x)

will uniformly denote the derivative with respect to x.

The third, y, is especially used when the argument of

derivation is the time, as in Mechanics, where y = y t

derivative of y as to t. The fourth, Dxy, or simply Dy
where the argument of derivation is well understood, is

the most convenient in general discussions, where the

symbol D of derivation is used as an operator subject to

certain laws of operation. The fifth, -,
,

is the most
ax

common of all and is full of suggestion; unfortunately,

being written in the form of a fraction, it is liable to be

mistaken by the beginner for a fraction
;
a fraction, how

ever, it is not, though in certain operations it obeys certain

laws of fractions. In the main, and especially at first,

the symbol yx seems preferable.

21. Derivative as Limit. Whenever the Difference-

Quotient, T^I falls into the two parts mentioned in Art.
Ax

19, then it is plainly a variable magnitude, changing its

value as Ax changes, the values of x and y being regarded

as fixed. Moreover this variable, varying with Ax, differs

from a certain magnitude constant with respect to Ax by
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a magnitude small at will, by an infinitesimal that

vanishes with Ax. Hence by definition this constant with

respect to Ax, this Derivative of y as to x, is The Limit of

the Difference-Quotient for Ax vanishing a new and most

important definition of Derivative.

22. Differential Coefficients. In accordance with this

definition it would seem most natural to call this Limit

not Derivative, but Differential-Quotient, and the less

appropriate name Differential coefficient is, indeed, the

one in general use. However, there is a distinction.

It may happen, and, in fact, does happen, that the Limit

of the Difference-Quotient may be perfectly definite for

Ax positive and for Ax negative, but not the same for

both cases
; accordingly, we may have a progressive

Differential-Quotient and a wholly different regressive

Differential-Quotient, but not a Derivative. Only when

the progressive is the same as the regressive Differential-

Quotient is their common value named the Derivative

(Art. 31).

23. Starting from this conception of the Derivative

as the Limit of the Difference-Quotient, we may now
establish certain useful propositions :

Theorem VII The Derivative of the sum of a finite

number of functions of an argument equals the sum of
the Derivatives of the functions.

Let u =
(j)(x),

v = \[/(x), etc., be the functions of x, and

y = f(x) = u+ v+... .

Let Ax, Ay, Au, Av, etc., be corresponding changes in

x, y, u, v, etc., so that

y = f(), y+ y = f(x+ Ax), Ay = f&amp;lt;&amp;gt;
+ Ax)- f(a), etc.,

then y+ Ay = u-\-Au+v+Av+...

Ay = Au+ Av+ etc.,

^=^+ A?+ etc.
Ax Ax Ax
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Since the limit of the sum is the sum of the limits,

yx = ux+ vx+ etc.

Corollary. If y = u v, then yx = ux vx .

24. Theorem VIII. The Derivative of the product of

two functions of the same argument equals the sum of

the Derivatives of each factor multiplied by the other.

Let y = uv, where u and v are functions of x, and let

Ax, Ay, Au, Av be corresponding changes. Then

y + Ay = (u+ Au)(v+ Av) = uv+ u . Av+ v . Au+ Aw . Av.

Ay = Aw . v-\-u . Av+ Aw . Aa;.

Ay Au A^
,

Aw . Av
A ^T- V+tt. &quot;7 ;A# Ax Ax Ax

T .,, Aw Av , , ., r ., ,, Aw.Av .

If either -.
- or - - has a finite limit, then -.- is a.

Ax Ax Ax

finite multiple of an infinitesimal, hence is itself in

finitesimal
;
hence on taking limits

yx = ux .v+ u.vx .

Corollary. If y = uv.w, put uv = z: then

yx = zxW+ZWX = UXVW+ UVXW+UVWX ,

and the proof may thus easily be extended to any number

of factors.

We may write the result conveniently thus :

25. Theorem IX. The Derivative of a fraction equals

the quotient of the Derivative of the numerator multiplied

by the denominator, less the numerator multiplied by

the Derivative of the denominator, divided by the squared

denominator.

II

Let y = -
. then vy = u\ whence vxy+ vyx = ux \

whence
v

_uxv uvx
y* V2
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26. Theorem X. If y be mediately a function of x

i.e., if y = (/)(u) and u = \^(x), so that y = f(x) through u,

then the Derivative of y as to x equals the product of the

Derivatives of y as to u and u as to x.

Let Ase, A?/, Ate, be corresponding differences, then we
have identically

Ay_Ay Au.
Ax~ &u AOJ

whence yx = yu &amp;gt;ux .

Corollary. Similarly in case of several media, as when

Mediate Derivation is exceedingly useful.

27. Theorem XLThe Derivatives of y as to x and
x as to y are reciprocal.

For, identically,

Ay Ax _
Aa; A#

whence, on taking limits,

Vx xy I? xy ~-&amp;gt;

y*

since plainly the constant 1, like every other constant,
is its own limit

28. Theorem XII. An additive constant disappears in

Derivation.

Let y = u+ c, where c is constant as to x, then

y+ Ay = u+ Ait+ c,

A?/ AuA ?/
= Au, = yx = ux .

Ax Ax

This fact is sometimes expressed by saying that the

Derivative of a constant is zero. By constant is uniformly
meant a constant as to the argument of derivation.
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29. Theorem XIII. A multiplicative constant is un

affected by Derivation.

Let y = cu, where c is constant as to x, then

Derivation interpreted Geometrically and Mechanically.

30. Geometrical Illustration. Before proceeding, as we

are now prepared to do, to the actual derivation of

functions, it may be well to illustrate the purely analytic

process in more than one way, in order to convince the

beginner more fully both of its fundamental importance

and of its perfect intelligibility.

FIG. 2.

Let
2/
=

f(a;); then from Coordinate Geometry we know

that this algebraic relation may, in general, be depicted

geometrically by a curve whose equation is y i(x). Let

P be any ordinary point of this curve, Q and Q any two

neighbouring points with P between them. Draw secants

PQ and PQ
f

, making angles and & with +&amp;lt;-axis. Let

the coordinates of P be x, y: of Q be x+ Ax, y + ky; of
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Q be oj + Aff
, y+ ^y . Then in the triangles PUQ, PU Q\

we have

//&quot; now, by taking Q and Q
f

ever closer to P, we can

make and keep (for all still closer approaches of Q and Q
to P) the angle between the secants PQ and PQ small

at will, then the secants tend to fall together as Q and Q
close down on P, and the fixed position to which both

PQ and PQ may be brought and kept close at will is

called the limiting position of each, and a right line in

that position is called the tangent to the curve at P.

When such is the case the angles and 9 tend towards

a common limiting value, which we shall uniformly denote

by T, while tan and tan 9 tend also toward a common

limit tanr, and since -~
,

- are always equal to tan 0,
AOJ A x

tan 9 respectively, we have

limit of -^ = tan r == limit -.-7 .

Ax Ax

Now the common limit of these Difference-Quotients is

by definition the Derivative of y as to x; hence

yx= tan r
;

i.e., the Derivative as to x of a function of x (for some

special value of x) equals the tangent of the angle made

with x-axis by the tangent, to the curve depicting the

function in rectangular coordinates, at the point corre

sponding to the value of x.

31. Exceptional Cases. It is essential to the foregoing

definition of tangent that the secants through Q and Q
from P between Q and Q should tend to coincidence as

Q and Q near P. Sometimes such is not the case, but

PQ and PQ tend to different limiting positions PT and

PT as Q and Q near P, or indeed to no definite position
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at all. Then the notion of the tangent at P fails; we

may speak of tangent up to P and of tangent on from

P but not of the tangent at P. But then the notion

of Derivative fails also; there may be a Progressive

Differential-Quotient (the limit of -.

-J
and a Regressive

Differential-Quotient (the limit of
-r-&amp;gt;-

J,
but not a Deriva-

V _A Ju /

tive (for that value of x).

Observe likewise that when 0, which equals ,
is

made and kept small at will, then the fluctuation in value

of each angle, and
,
is made and kept small at will.

For the positions of Q and Q , or, what is tantamount, the

values of and
,
are entirely independent of each other,

so that any change in the value of either might produce
an equal change in the value of their difference; hence

the change in the value of either becomes small at will

when the change in the value of their difference becomes

small at will; i.e., geometrically, each secant settles down

toward a definite position and both secants toward the

same position.

32. Problem of Tangents. It is thus manifest that the

problem of deriving a function is in general the analytic

equivalent of the geometric problem of finding the tangent
to a curve at a given point of the curve : the problem of

s. A. B
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Derivation is geometrically interpreted the problem of

tangents. If now we ask for the Equation of the tangent

to the curve y = i(x) at the point (x, y) the answer is

where u and v are the current coordinates of a point on

the tangent referred to the same rectangular axes, OX
and OF. For this is the equation of a right line through

(x, y) and having the proper slope to the #-axis as deter

mined by yx .

Exercise. If w be the angle between oblique axes, show that

yx = sin #/sin (w
-

x).

33. Illustration from Mechanics. In order to interpret

the Derivative mechanically, let s be the space (of one

dimension) or path traversed by the body (conceived as a

point) during the time i
; also, let As be traversed in A,

i.e., let As and At be corresponding differences in s and t.

As
Let us form the difference-quotient -^. According to the

most familiar notions it is the average speed (or velocity)

during the time At. If the motion was uniform, then the

body actually traversed As at this speed ; if, however,

the motion was not uniform but varied, then it is not

certain that the body actually had this speed for any
finite time however small, nevertheless this quotient is

still by universal consent the average speed. If we make

At and therewith As ever smaller and smaller, the quotient

remains always the average speed, but it will in general

vary in value as At varies, whatever be the law of the

motion. If there exists any law connecting the space and

the time, whether or not we know what it is, in other

words, if the space be a function of the time, then in

general this difference-quotient will break up into two

parts, the one independent of At, the other vanishing with

At. The first part is analytically what we have met with
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repeatedly, namely, a Derivative, the derivative of the

space as to the time
;

it is the limit of the average speed

in the immediate neighbourhood of the instant t (i.e., the

end of t and the beginning of A). Mechanically, however,

this limit is not itself an average speed at all, it is not

As
of the same nature as the variable difference-quotient -r--.

At

For this quotient never assumes this limiting value, no

matter how small At be made. And this is quite what

we should expect and what the nature of the case demands.

For motion implies duration, however small, of time, and

change, however small, of place. When there is no lapse

of time and no displacement there is no motion, and hence

no speed (or velocity). In all strictness, there can be no

motion at an instant and hence no speed (or velocity) at

an instant. The concept of speed (or velocity) or motion

will not combine with the concept of instant (or point

of time) to form a compound concept. Nevertheless, it

is an established and unchangeable usage to speak of

velocity at an instant or instantaneous velocity. These

expressions have in themselves no meaning, but we may
(overlooking the inconsistency set forth above) assign

them a meaning, namely, the limit of the average velocity

in the immediate neighbourhood of the instant.

34. Of course, the question remains, is the game worth

the candle ? is this limit of such natural intrinsic import
ance for mechanics as to warrant us in giving it this

name and lifting it into this prominence ? This question

cannot be answered a priori, in advance, but only a

posteriori, from the event. We shall see at proper time

and place that our justification is complete.

35. Further Considerations. It is sometimes, indeed

generally, said that the velocity at an instant is the

(measure of the) space that would have been traversed

in the next unit of time if the velocity at the instant
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had remained constant during that unit. This definition

is doubtless useful for certain purposes, but it has little

logical value
;

for it manifestly defines the thing in

terms of itself. It may with more propriety be said

that the instantaneous velocity, whatever it be, charac

terizes the state of the body at each instant, but not

the action of the body, in its passage from one state to

another. We may accordingly assume two axes : one

horizontal as time-axis, the other vertical as speed-axis,

and laying off vertically ordinates to represent the speed

at each instant we form by their ends the useful curve

of velocity (or speed) ;
or by means of radii vectores

drawn from a fixed point, of length varying as the

instantaneous speed, and parallel to the tangents to the

path of the body, we may form another important curve,

the hodograph, the radius vector to any point of which

depicts geometrically the corresponding instantaneous

velocity. In case of some actual motions we might
have such a curve described by appropriate tachymetric

mechanism. But the fact remains that the Derivative

of the space as to the time, this limit of the average

velocity, characterizes not the action but the state of the

body, and is itself not a velocity though everywhere
named so. In like manner the circle is not a regular

polygon, though it is the limit of both in- and ex-poly

gons ;
the tangent is not (in general) a secant, though the

limit of two sets of secants; and in general the limit,

as a constant, is essentially different from the variable

whose limit it is.

36. Lastly, it is conceivable, though perhaps not actual,

that in case of impact with or without rebound, there

should be sudden change, discontinuity, in the varying

average velocity. Thus the notion of instantaneous

velocity of impact would fail for the point in question.

There would be and we might define instantaneous
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velocity up to and on from, but not at the instant of

impact, which corresponds precisely to the analytic phe
nomenon of progressive as well as regressive differential-

coefficient, in the absence of Derivative proper.

ELEMENTARY DERIVATIONS.

37. Derivation of Rational Powers. Leaving these

subtleties, which the student must not be discouraged

at not quite mastering on first reading, we proceed to

derive the ordinary functions.

1. Let y = xn
,
n being a positive integer.

where {A#
2
} means terms involving at least the second

power of A#. Hence

If n were not a positive integer the
{ } would not

consist of a finite number of infinitesimals, and we could

not affirm its vanishing without more ado.

We might also have regarded xn as the product of n

equal factors, each x, and have applied Art. 24, remem

bering that the derivative of x as to x is 1.

H
2. Let y = xq

,
where p and q are positive integers.

yq= xP
;
whence by mediate derivation

3. Let y = x~ n = -^ where n is rational.
xn

By Art. 25, yx= -
gf^= -nx

We may obtain the same result by deriving yx
n =l.

So for all rational values of n we have the rule : to
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derive x11

, multiply by the exponent and then reduce the

exponent by 1.

For n irrational, see Art. 40.

38. Derivation of the Exponental. Let y = e
x

.

We assume, as known from Algebra, that

/y2 /&amp;gt;iO /ytfl ?l GO /v7l

a series absolutely convergent for all finite values of x.

We have then

Comparing the series in { } with the series for e^
x

1,

Ace
2

Ace
3

namely, Ace+
&amp;lt;y-

-f ~-+ . . .
,
we find it less, term by term,

throughout; but for Ace vanishing e^
x

1 converges upon
as limit; much more, then, is the limit of { } for

Ace = 0. Hence, yx = (e
x
)x
= ex

,

a result of extraordinary simplicity and importance. By
actually deriving the series for ex term by term we see

that it actually reproduces itself, but we are not authorized

to derive an infinite series by deriving its terms separately.

Corollary. (e
u
)x
= eu . ux ; i.e., the derivative of an ex-

ponental = the exponental x the derivative of the exponent.

Thus

(e% = a.eott
,

e*~ = 2x . ex\

Also, ax = (e
lQz a

)
x = exlo% a

\
hence (a

x
)x
= ax . log a.

39. Derivative of the Logarithm. Let y = logx, where

log means natural logarithm. Then ey=x\ whence ey . yx 1
,

or
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The logarithm of x in any other system differs from the

natural logarithm only by the modulus M
,
as a factor

;

hence M will appear in the Derivative as a multiplier.

But other logarithms are seldom used.

1 u&amp;gt;

Corollary. (log u)x = - . ux= ;
hence to derive the

it u

logarithm of a function, derive the function and divide

the result by the function.

40. Derivative of Powers. Let y = xn
,
n being any

constant as to x.

Then

the complete generalization of Art. 37.

Special Cases. (+/x)x= 7=, (+/u) = ~r= ;

i.e., To derive the 2nd root of a function, derive the

radicand and divide by twice, the radical.

41. Derivatives of sine and cosine. We pass over now

to trigonometric functions, all of which depend on thee

sine.

Let y = since; y+ &y = sm(x+ Ace),

/ Acc\ ACK
A^/

=
sin(ic+ Ao;) sin x= 2 cos (x+-s- ) sin -x-.

. Ace

Ay /
,

AoA
sm

^&quot;

-r^ =cos I OJ+ -CT .

Ace 2 / Ace

T
From Trigonometry we know that the limit of the

ratio of an infinitesimal angle to its sine is 1, and the
/ Ace\

limit of cosue-j- 9
) is plainly cosce; hence

yx = (sin x)x = cos x.
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Corollary. (sin u)x = (cos u) . ux ;

7T

(cos x)x= (
sin

(
x

} }
= sin x.

\ \2 / /X

42. Geometric Proof. This fundamental relation may
also be deduced geometrically, thus :

Let AOP= x, take the radius OP as 1
;
then the metric

numbers of angle and corresponding arc are the same, so

that AP is also the arc x, while CP represents the sine

and 00 the cosine of x
; i.e., the metric numbers of CP and

00 are the metric numbers of sine and cosine of x. Now,

change x by Ax=POQ or =PQ. Draw PD parallel and

QD normal to OA, also the chord PQ. Then as A# is

taken ever smaller and smaller, the chord PQ turns about

P and tends to become normal to OP, the angle OPQ
may be brought and kept close at will to a right angle.

Hence the triangle PQD tends to become similar to

POC
t
its angles differ only infmitesimally from those of

POO. Hence we have the rigorously exact, not merely

approximate, relation:

QD 00
Limit of

PQ~OP

Moreover, we have the fundamental assumption :

,
Limit of DTY

arcPQ
= 1

5
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oc
also QD = Ay = A(sin x), arc PQ = A, = cos 35

;

A2/_ T . / QD chord PQ\_ OC.- m ~~/ &quot;

OP

hence 2/s
= (sin cc)^

= cos x.

Quite similarly, from the figure,

(cos x)x = sin x.

Analytically,

(cosa5)a.= jsinf^ a;) [ =cos(^ x}( 1)= since.
V. \^ / ) x \ Zi /

Or thus,

sinx
2

+cos#
2= l, 2 since coscc+ 2coscc(cos^)a;= 0,

(cos x)x = sin x.

43. Ratio of Chord and Arc. The assumption in the

foregoing proofs is so important as to call for special

elucidation.

Let Q and Q be two points of a curve C, and P a

point between them. Draw tangents at Q and Q ,
and

let these points approach P. Then this state of case will

FIG. 5.

in general present itself : by taking Q and Q close at

will to P we may exclude all flexures from the arc QQ ,

so that the tangent QI will turn only one way in turning

round the arc into the position Q /; also by approaching
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Q and Q to P we may make and keep (during all nearer

approaches of Q and Q ) the angle Q/Q close at will to

a straight angle TT. When this is the case, the triangle

QIQ tends to flatten out into a doubly laid tract QQ :

meanwhile it always encloses the arc QQ and the relation

holds constantly :

Q/+/Q &amp;gt; arc QQ &amp;gt; chord QQ .

But Limit of
&amp;gt;

chord QQ

hence Limit of -,-, r.
chord QQ

In such a case we may say the curve is elementally

straight in the immediate neighbourhood of P. By this

phrase we mean that if we cut out an ever smaller and

smaller piece of the curve, always including P, and magnify

it to a constant apparent size, as with a microscope, then

the smaller the piece cut out the straighter (or less curved)

it will look. Such would not be the case if the curve

* In fact, if a, 6, c, a, (3, y be the sides and opposite angles of the

triangle QPQ ,
then

a b c

sin a sin ft sin y

T a+ b T sin a + sin (3
. . JL = _L :. . J -LJ

c sin y
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flexed itself indefinitely often in the vicinity of P, nor

if P were a cusp (as in the figure), when the chord and

tangents would tend to a definite triangular shape under

the microscope.

44. The substitution of the chord for the arc, Ac for

AOJ, illustrates a very common artifice justified by the

following important

Theorem XIV. The limit of the ratio of tivo variables,

u and v, is the same as the limit of the ratio of two oilier

variables, u and v
,
when the limits of the ratios of u to u

and v to v are each 1.

For we have identically,

U U IJb V , T U
., T v= -,- -, and L = 1=L ;

V U V V U V

v U T . U
hence Lim. = Lim. .

V V

Observe the analogy with mediate derivation.

45. Other Modes of Proof. We may avoid all geometric

considerations by defining sine and cosine through imaginary

exponentals, thus :

e
ix = cos x+ i sin x,

whence 2 cosx= eix -\-e~
ix

,

Deriving, we have at once

(sin x)x = cos x, (cos x)x = sin x.

The same results are reached, free from all geometric refer

ence or dependence, by deriving the series for sine and

cosine term by term :

X* X5 X* X*
since= 05 TQ+-? +

&amp;gt;

cosx = I JQ-4-7T +... .

If: L_ L LI

This process is admissible as applied to these series a

fact, however, not yet established.
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46. Other Trigonometric Functions. Since all the other

trigonometric functions are expressible through sine and

cosine, the student will find no trouble in deducing these

results :

(tan x)x= I/cos x = sec x = 1 + tan x .

(cot x)x l/(sin x) = esc x =
(1 + cot x\

(sec x\ = sin x/cos x = sin x sec x = sec x . tan x.

(esc x)x = cos ft/sin x&quot;
= cos x . esc a; = esc x . cot x.

47. Sense of the Derivative. The signs of the foregoing

Derivatives are noteworthy. When the difference-quotient
A 7

?/-~ is positive, and therefore when its limit, the Derivative

yx ,
is positive for unless the limit be it manifestly

determines the sign of the whole expression
-~ the

meaning is that for Ax and Ay small enough they both

have the same sign, are both + ,
or both : i.e., for yx

positive, the function y and its argument x increase or

decrease together y is then called an increasing function

of x. Such are sine and tangent in first quadrant. But

if yx be negative it means that Ax and Ay, small enough,

have unlike signs ;
as the argument increases the function

decreases and is hence called a decreasing function of

the argument. Such are cosine and cotangent in first

quadrant.

INVERSE FUNCTIONS.

48. Definition. When y = f(a;), then x must equal some

function of y, say x = (p(y). These functions, f and 0,

are then said to be inverse functions or anti-functions

of one another. The sign of inversion is the negative

index, 1, superscribed to the functional symbol. Thus
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so that x = f~\y) and y = (p~
l

(%)-

We can pass at once from the inverse to the direct

function. Thus, if

y = F~ l

(x), then

The logarithm and the exponental form a very important

pair of inverse functions. Thus, if

y = \ogx, then ey = x,

and if y = e&amp;gt;

x
,

then \ogy = x.

49. Derivation of Inverse Functions. We can always
derive the anti-function when we can derive the function.

For let y = f.-\x), then

whence ?(y)yx =l ) yx
=

{f-i(x)}x =

We may then in general express (y) through x. Thus.

let y = sin~ l
x, then yx = I/cos &amp;lt;/,

or

As to the sign of the ^ it is geometrically evident that

angle and sign increase together in 4th and 1st quadrants,

but not in 2nd and 3rd; hence the ^J is + for

-
7T/2 &amp;lt; y &amp;lt; 7T/2,

- for Tr/ 2&amp;lt;y&amp;lt; 3x/2.

Similarly, let the student show that

Continental mathematicians write arcsin x (read arc whose

sine is x) instead of sin&quot;
1^ (read anti-sine (of) x), but

the latter is both more convenient and more logical.

Inverses of unique functions are not generally unique.



30 INFINITESIMAL ANALYSIS.

EXERCISES.

Derive the following expressions as to x :

1. a;
, x, x2

,
x3

,
x7

,
x~ 9

, c/x, c/x
2

, a/x
5

,
x*

t x~?, b/

N.B. {JTti
2
} x
= 2x/2jlx2 =

x/

3. (a
2 -x2

)?, (a
z -x3

)*, (ax
2 + 2bx + c)t,

(ax* + 4:bx3 + Qcx2 + 4dx + e%.

By mediate derivation, first as to
( ), then as to x,

we get

{(a
2 - x2

)%} x
= %(a

2 - x2
)?( -2x)=- 3xja2~^x2

.

Jl^x2

^

V J- ~n w &quot;H \/ JL $

By logarithmic derivation we have for the first,

2x x

- x*

6. log f

log (log x),

^^^

r+dsin*
|

^ COS fl?+ b SJn .
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8. y
= sm(ax

2
),

w = sin- 1
-, v^tan&quot;

1
-, sin(w.c + a), sin mx cos nx,

a a

(siumx)
p

, (co$nx)
q
, (a sin x

2 + b cos x
2

)

m
, Jsinx, sinjx,

,x 11 r^-o i
a2 x2

_-, 3 + 5 cos x
9. sec 1

-, tan- l xja,2 -x\ sin- 1
-, ,

cos 1
,--
--

,

a a2 +x2 o + 3cosa;

x x a
-, secy = -, cosy = -,
d Cl X

We may also write off this result immediately.

10.
logsin&quot;

1
^, logcos&quot;

1^ logtan
1
^, sin(loga), log (sin a),

cos&quot;
1

(log tan a;),
sin~ 1

(l
- 2a;

2
),

fjb + a + Jb-a tan

a-Jb - a tan
2

D log sin- 1^ = l/{x/l
- 2

. sin- 1
a:}.

11. af, e**, x*, to,u- l

*J(lx)/(l+x), \og
nx = log log . . . log x, u\

yx
= af{log x + 1

}
.

2 + axJ(._T-. ^ .

12. a*, sinxcosWl-^(sm^, log

13. If ax* + 2hxy + by
2 + 2gx+2fy + c = Q, find ^.

Here a; and y are implicit functions of one another,

but no new difficulty presents itself. We derive straight

forward term by term, and then solve for yx . Thus:

2ax + 2% + 2hxyx + 2%, + 2g + 2fy,
=

0,

whence yx = -
(ax + hy + g)/(hx + ly +/).

14. Find yx when x
m
y
n =

(x + y)
m+n

, (smx)
y = (cosy}

x
,

__ y _ ^2

xz -
Saxy + f =

0, aix/1 + y + yjl + x = 0, tan log x
=
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15. If y = &amp;lt;f&amp;gt;(t)

and x = ^(t), prove that yx = &amp;lt;f&amp;gt; (t)/i/, (t).

16. If u and v be functions of x, prove that uv
= uxjvx .

- 2x 2x
17. Derive & as to x

n
,

tan&quot;
1
^

2
as to sin 1 -

-, #
8in * as to log x.

18. If ?/
= V tan a; + v tan x + \/tan #+..., prove

x
y
= (2y- l)cosa; .

19. Derive the sum $w of TI terms of a G.P. as to the ratio r.

20. From

sin x = sin (x + a) sin (x + 2a) . . . sin (x + n - la) (sin nx)/2
n~ l

,

where na = Tr, prove that

f 7i - la) =n cotnx,

APPLICATIONS TO GEOMETRY.

50. Tangent and Normal. We shall now illustrate

further the exceeding importance of the Derivative in

problems involving tangency.

The Eq. of the Tangent to y = f(x) at (x, y) is

v-y = yx(u-x),

where u and v are the current coordinates. Hence the

Eq. of the Normal is

obtained by putting xy ,
instead of yx .

Deduce the corresponding eqs. for oblique axes.

51. Subtangent, etc. Now let the tangent at P (x, y}
to the graph of y = t(x) cut the axes at T and U, and

let the normal cut them at N and Q; also let S be the

projection of P on aj-axis. Then plainly
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ST=- Subtangent = y/yx = y xy ,

SN = Subnormal = y . yx ,

PT= Tangent length = y+/l+xv*,

PN= Normal length= y^/l + yx
z

,

OT= Tangent intercept on X-Six.is = x

OU= Tangent intercept on F-axis = y x.yx=OT.yx.

52. Derivative of the Arc. It is common to denote by
s the length of a curve, reckoned from some point

appropriately chosen. Evidently, then, this s is a function

of both x and y, and may be derived as to either. Let x

be reckoned up to the point P(x, y), and let Ax = PD,

Ay = DQ, As = arcPQ be corresponding changes in x,y,s;

also let Ac = chord PQ. Then

As As Ac

Now

Hence, in general,
S. A.
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Hence

and, similarly,

FIG. 8.

= cos r =

53. In Polar Coordinates let S be the pole, Sx the

polar axis, P(r, 0) any point on the graph of f(r, $) = 0,

T as before, &amp;lt; the radial angle of the radius vector r

with the tangent at P; let Ar, A$, As be corresponding

changes in r, 0, s, and Ac = chord PQ as before; also let

a perpendicular to r through S meet tangent and normal

at T and N. Then, much as before,

ST= polar subtangent, SN= polar subnormal,

PT= polar tangent length, PN= polar normal length.

About 8 describe the circle-arc PD, and draw the half-

chord PD perpendicular to SJ). Then

T- As
T j T-Lam. -r = 1

,
and Lim.

Ac arc PD
=

1,

as we know.
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FIG. 9.

Furthermore,

j)Q =DQ-D D =DQ-PD tan D PD
=D Q-D Q . tan SQP . tan DTD.

Hence

Lim. - = Lim. (1- tan SQP . tan D PD) = l.

Hence, applying theorem Art. 43 to each side of the

triangle PQD and remembering that

we get

or

/As\ 2
T .

/., ,

r2Ag
2
\

Lim. (
- -

)
= Lim. ( 1 + 2 ),

\A?v \ Ar /
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54. Infinitesimals of Higher Order. In passing we
have here established the very important fact that the

limit of the ratio, intercept on radius between chord and

arc divided by chord, is zero
;
or

/=

This fact is commonly expressed by saying that DD is

infinitesimal of second order with respect to PDf

taken

as infinitesimal of first order.

No obscurity need attach in the student s mind to the

nature of these infinitesimals of higher order. Consider

the three fractions
, ~, 5. If n be in our power to

n n* n*

make as great as we will, then each of these fractions

is in our power to make small at will, each is infinitesimal.

As n increases each approaches 0, not, however, in the

same way, but through very different series of values
;

e.g., if n increase through the series of natural numbers,

the fractions pass through these series of values:

1, 1, t, 1, ...... TV, ......

*i T&amp;gt; &amp;gt; rV&amp;gt;
......

Tlhr&amp;gt;
......

*J lb aV&amp;gt; 6&quot;

T
45 ...... ToVo? ......

Always the ratio of the second fraction to the first is

,
and of the third to the second is and of third ton n

first is . These ratios are themselves small at will,
n~&quot;

infinitesimal
;

in fact, there is in the first fraction only

one factor small at will, ;
but in the second there are

n

two, and -, while in the third there are three,
- andn n n

- and
,
hence the names, infinitesimals of first, second,n n

third order. Clearly the same reasoning may be extended

to infinitesimals of any order. In the foregoing illus-
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tration the factors are equal, but this circumstance is

entirely unessential. In the case of DD the two factors

small at will are D Q and i&nD PD; the removal of the

first leaves the second still present, and therewith the

quotient still infinitesimal, hence DD is of second order.

55. Additional Formulae. The other relations follow

now without difficulty:

hence tan d rOr
= r-r .

dr

Similarly sin = r0s ,
cos = rg .

In the right triangle TPN, since SP= r is perpendicular

to TN and ^-N=d), we have
rift

ST=SP tan 8PT= r tan = r2
r
= r*~,

dr

SN=SP cot SNP = r cot = r
e

=
^,

r/&amp;lt;?

PT=SP/cos SPT=rleaserp. = /^,
Jji

PN=SP/sm SNP = r/sin
= I/A = ^.

etc/

If SP
l =p be the perpendicular from the origin on the

tangent PT, and - = u a common and convenient sub

stitution then we have

Exercise. Prove

hence
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56. Angle between two Curves. The angle between

two intersecting curves at their point of intersection may
be defined as the angle between their tangents at that

point, which may be either of two supplemental angles.

To find this angle, first find the point of intersection,

then the value of yx for each curve at that point, say

y and
y&quot;,

then tangent of angle between curves

by Addition-theorem of tangent.

57. Pedal Curves : Definition. As P traces the original

curve C, the foot P
1
of the perpendicular p (or r^, from

the origin on the tangent will also trace a curve Cv
called the (First Positive) Pedal of C with respect to

the origin S. G
1

will itself have a F.P.P. with respect

to S, which we write C9 ,
and which is the Second P.P.

of C with respect to S. Consistently, G is called the

First Negative Pedal of G
1
and the Second N,P. of

2 ,

while C^ is the F.N.P. of C
2 ,

all with respect to 8. Clearly

this notation may be extended to any degree, and with

respect not simply to S, but to any point in the plane.

58. Equations. To find the Eq. of Cv we must express

the coordinates (xv y^ or (rv 0-^ of P
l through the

coordinates (x, y) or (r, 0) of P, in two eqs. ;
from these

eqs. and the eq. of C
} f(oj, y) = Q, or 0(r, $) = 0, we must

then eliminate the coordinates of P, (x, y) or (r, $); the

result, or so-called eliminant, will be the eq. of Cv a

relation holding between the coordinates, (xv y^) or (rv 6^,

of P
l

in every possible position of P. We remark in

passing that

O^XSP^-T+TT/Z Or T-7T/2.

59. Pedal Equations. It often happens that the relation

between the radii vectores r and i\ (or p as it is commonly

called) of C and G
l
is very simple. This relation is called
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the Pedal Equation of C and is especially useful in

mechanics.

C
2

ty
2

Illustrations. 1. The eq. of the ellipse is -2+?2 = l;

ux vy ,

the tangent at (xt y) is 3+72 =1
&amp;gt;

hence

ct

or =

also x2+ ?/
2 = r2

;
hence

the pedal eq. sought.

2. Let rn= ansiu(n6). By deriving, . r
e
= n cot (?i0)

hence cot &amp;lt;

= cot(?i#), &amp;lt;j)

= nO. Also

rw

p = r sin = r sin(TiO)
= r . ;

hence p= ,
the pedal eq. sought.

EXERCISES.

1. Discuss the common Apollonian parabola, y
2 =

4qx.

yx =my=y/2z ,

hence ST=2x, SN=2q; i.e., The subtangent is bisected by

the vertex (origin), the subnormal is a constant, the half-

parameter. Find lengths of .tangent and normal.

2. Discuss the logarithmic spiral, r = a9
. r

e
= ae

. loga = r log a;

tan&amp;lt;#&amp;gt;

= ? /rfl =l/loga, a constant, whence the name equi

angular spiral given to this curve. The student may

continue the discussion.

*To get this, reduce +*%- 1=0 to the normal form, by dividing
a2 b2

Ix? v2

by i+ &amp;gt;

and Put u= v= 0.
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3. Discuss the logarithmic curve, x = log y. yx = y \
hence

ST=y/yx =l, a constant.

4. Discuss the Archimedean and hyperbolic spirals,

r = a@, rO = a.

5. Under what angles do y
2 = qx and x2 = kqy intersect 1 The

real points of intersection are (0, 0) and (4g, 40). The

values of the derivatives are 2q/y and x/2q. For (0, 0)

these values become oo and 0, hence the values of r are

7T/2 and 0, the difference is 7r/2 hence at the origin

the curves are perpendicular to each other. At (40, 4&amp;lt;?)

the values become J and 2, which are tan r
x
and tan r

2 ,

2 -
hence tan(r2

- r
x )
= ^ = f ; i.e., the parabolas intersect

under an angle whose tangent is f .

6. Show that in the hypocycloid x^ + y$ = cft, the intercept on

the tangent, between the axes, is constant, a.

7. For what values of r do the curves x* + y$ = c$ and xz + ?/
2 = r2

touch each other ? Do they meet at right angles ? At

what points?
I

8. Show that the confocal conies

19 I9~T9
a2 a2 - A2 b2 b2 - A2

cross at right angles.

9. Prove that the hyperbolas x2 -y2 = a2 and xy = c2 cross at

right angles.

10. For what value of c does the circle x2 + y
2 + 2y = c cut the

parabola x2 = 4y orthogonally 1

11. How do the parabolas y
2 = 2ax + a2 and y

2 =-2bx + b2

meet, and under what angle ?

ft -

12. Show that in the catenary y = -(e
a + e-) the normal from

2

the foot of the ordinate (S) on the tangent is constant

in length.
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1 3. Prove that in the tractrix x = Ja2 -
i/
2 + - log \ ^

2 6
rt + x/a

2
-*/

2

the tangent-length PT is constant.

14. In what parabola y = cx
n

(i.e., for what value of n) is the

triangle bounded by axes and tangent constant in area?

15. In the hypocycloid x% + y3 = a$ show that the equation of

the tangent is 2x sin a + 2y cos a =, a sin 2a, where

x = a cos a
, y = a sin a

3

;

also that tangents mutually perpendicular meet on the

curve 2r2 = a2 cos1^
2

.

16. The F.P.P. of the equiaxal hyperbola pr = a? is Bernoulli s

Lemniscate r3 = a2
p.

17. Apply the result in (2), Art. 59, to show that the Pedal

Equations of Circle, Parabola and Cardioid are

a = r2 2 = ar and 2a = r3
.

ENVELOPES.

60. Pencils and Parameters. Analytic Geometry has

already familiarized the student with the notion of a

family or system of curves, all defined by a single

equation. Thus

y-yi= s(x~ xi)

is the eq. of a pencil, i.e., of a family of right lines, all

passing the same point (xv y^). For any particular value

of the direction-coefficient s, as 1, 2, 3, we get a particular

right line
; by letting s range through the complete series

of real values from oo to +00, we get the complete

system of right lines through (xv y^). The symbol or

arbitrary, by change of which we pass from one member

of the family to another, we may call the parameter of

the family. It is constant for any particular member,
but changes from member to member.
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Exercise. What systems are represented by these equations,

and what are the parameters :

61. Intersection of Elements. Now let

F(x,y,p) = ..........................(1)

be the eq. of a system of curves, the parameter being p.

For any particular value of p we have a particular curve

of the system ;
if we change this particular p into p -f Ap

we get another curve of the system, namely

F(x,y; p + Ap) = 0.. ....................(I ).

These two curves will intersect, generally in real points,

though it may be in imaginary points. By combining

(1) and (! ) we shall obtain the point (or points) of inter

section (Xi, yi), though this result would rarely be of

interest. In this result we may put Ap = 0; i.e., we may
find the limiting values of Xi and yi for Ap vanishing; i.e.,

we may find the points of intersection of two consecutive

curves of the family. Thus, let (x p)
2+y2= r2 be the eq.

of a family of circles of constant radius r, their centres on

the #-axis. Consider p as some particular value of the

parameter, then this is the eq. of a particular member of

the family and the equation of any other member will be

Hence (x p)
2

(x p Ap)
2 = 0,

or (x p+ x p Ap)(xp x+p+ Ap) = 0,

whence x

a result evident from purely geometric considerations.

For Ap = 0, x=p; i.e., two consecutive circles of the

family intersect at the ends of a diameter normal to

the centre-line.
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62. Intersection of Consecutives. But instead of finding

the points of intersection, whether of two consecutive

or of two non-consecutive members, we may eliminate

p between their eqs. (1) and (I ),
and thus obtain a

relation connecting x and y for all values of p. Then

x and y will be Xi and y it
since in eliminating p we

tacitly assume that x and y are the same in the two

eqs. Let the result of this elimination be
0(fl?i, yi , Ap)= 0.

This is the eq. of the locus of all points of intersection

of pairs of curves of the family whose parameters differ

by A&amp;gt;. In this eq. put Ap = 0; the result,
&amp;lt;t&amp;gt;(x

it yi\ 0) = 0,

is the eq. of the locus of the intersection of consecutive

curves of the family. Thus in the preceding example on

eliminating p we get

i.e., the circles whose centres are A&amp;gt; apart, intersect on

V/A/A
2

7
2

~&quot;

\ 2 /

On putting Ap = 0, we get y= r as locus of the inter

sections of pairs of consecutives. Both these results are

geometrically evident. Draw the figure.

63. Envelopes. The locus of the intersection of con

secutives is particularly important because the tangent

to it at any point is in general tangent to the con-

FIG. 10.

secutives intersecting at that point. In fact, consider

three curves of the family, Cv C
2 ,

(7
3 , corresponding to

the parameters p Ap, p, p+ Ap; let C
2
and (73 intersect
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at P
I}

6
3
and C\ at P

2 ,
(7

:
and (7

2
at P3 ;

draw the chords

P
X
P

2 ,
P

2
P

3 ,
P

3
Pr Now let Ap approach 0; then the

curves tend to become consecutive, and the chords P
1
P

2

and P
2
P

3
tend to become tangent to

3
and G

l respectively ;

the points Pl
and P

3
are always on the locus of inter

sections, PX
P

3 is always a chord of this locus, this locus

tends toward the locus of intersections of consecutives

as its limit, and at the same time P
15
P

3
tend to become

consecutive points, so that the chord P
X
P

3
tends to become

tangent to the locus of intersections of consecutives. If

then the curves and this locus really admit of tangents

in the neighbourhood of these P s, the three chords flatten

out towards one and the same limiting position as AP

approaches ; i.e., the consecutive members have a

common tangent with the locus of their intersection at

their point of intersection; hence this locus is said to be

itself tangent to the consecutives and is called the

envelope of the family.

64. How to find Envelope. While the foregoing may
elucidate the nature of this locus of intersections of con

secutives, the method employed to find its Eq. would

generally prove to be excessively awkward. Instead of

eliminating p and then taking the limit for Ap approaching

0, we may proceed more simply, thus :

F(x,y;p) = .............. (1),

Hence F(x,y\ p + Ap)-F(x,y, p) = .............
(1&quot;),

hence &amp;gt; &quot;F(x t y ; p) ......... r/)
Ap

This Eq. (I &quot;)

we may now use instead of (I ).
In it

suppose the value of p taken from (1) to be inserted in

place of p ;
this would merely be eliminating p between

(1) and (I &quot;) or, what is tantamount, between (1) and

(I ),
the thing we set out to do and then let us take
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the limit for A^ approaching 0. So we get as Eq. of the

Envelope
F{x,y- p(x,y)}p = Q.

This however is nothing but the derivative of F as to p r

with the value of p taken from (1) substituted for p.

Hence, to find the Envelope of F(x, y , p)= :

Rule. Derive F as to p and then eliminate p by help

of the original Eq. ;
in other words,

Eliminate p betiveen F=0 and Fp = 0.

65. Parameters with Conditions. Often it is the case

that there are two or n parameters in the family, but

these parameters are then connected by 1 or n 1 Eqs.

of condition. Thus if we would find the Envelope of a

straight line two fixed points of which slide on two
/y

ni

rectangular axes, we have as Eq. of the family
- + = 1,
Cv

and the parameters a and 6 are connected by the con

dition o,
2+ 62 = cZ

2
(d the tract between the fixed points).

We may now eliminate one of the parameters, as 6, derive

as to the other, and then eliminate that other
;
or we may

choose either one, as a, for the parameter, regard the other

as a function of it (which is the case), and then proceed

to derive both the Eq. of the family and the Eq. of con

dition as to this one parameter a. So we shall get four

Eqs., from which we then eliminate the two parameters,

a and b, along with the derivative of a as to b. Thus,

in the problem proposed,

a b
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x* y
4

x* a2

X A

= = --.

a =

and similarly, & = -

A

/vi
/ly

On substitution in --}-- = ! we get as Eq. of the Envelope

xi+yt^cfl.

y

FIG. 11.

Otherwise, thus

Here 6
r

is derivative of b as to a, and we must eliminate

a, b, b from these four Eqs.

x V a-if &amp;lt;AJ \j -if \jj , iV U/
o = -5, 6 = hence -- =

j-s ;

2/
a2 6

hence a= dot

2/
1

,
as before, and the same result follows.

A still more elegant method of eliminating parameters

by undetermined multipliers must for the present be

reserved.
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We also reserve the rigorous analytic proof that in

general the locus of the intersections of consecutives

actually touches every member of the family, and hence

is properly named Envelope.

EXERCISES.

1. Find the envelope of a system of coaxal ellipses of

constant area.

Here F(x, y, a, b)
= -

2
+

2 -1=0, and 7rab = 7rc2 .

(t

Hence

a2
?/

2 + 1)
2x2 - c

2 =
0, af + bb x2 =

0, b + ab =
;

hence, *2xy
= c

2
,
a pair of equiaxal hyperbolas, asymp

totic to the axes of the ellipses.

2. Find the envelope of equal circles with centres on a given

circle.

3. Find the envelope of the right line y sx + ~.
s

4. Through the ends of a given tract (2a) are drawn two

parallels, and a transversal moves so that the rectangle

of the intercepts on the parallels between it and the

tract is constant (c
2
) ;

show that the envelope of the

x2
i/
2

transversal is -n-. = l.
a2 C

A

5. A moving right line forms with two fixed right lines a

triangle of constant area; show that the envelope is an

hyperbola asymptotic to the fixed lines.

6. Show that the four-cusped hypocycloid ar*-fy*
= e* is the

envelope of coaxal ellipses in which the sum of the

axes is constant.

7. Show that the same hypocycloid is the envelope of the

join of the projections on the axes of a point of an

ellipse.
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8. The centre of an ellipse, whose axes are fixed in size and

direction, moves on another ellipse whose axes are the

same in size and direction
;
show that the envelope of

the moving ellipse is itself an ellipse coaxal with the

fixed ellipse and similar.

9. Find the envelope of the polar of a point of an ellipse or

hyperbola with respect to a coaxal ellipse or hyperbola.

10. A pair of mutually perpendicular tangents are drawn to

an ellipse; show that the envelope of the join of the

points of tangency is a confocal ellipse.

11. Show that the envelope of the join of the ends of conjugate

diameters of a conic is a similar coaxal conic.

12. U and V are the projections on the x- and y-axis of a

point P of the cubical parabola y = ax*
;
show that the

envelope of UV is another cubical parabola

13. A fountain (in vacuo) throws up water in every direction

with the same velocity ;
show that the envelope of all

the parabolic jets is a paraboloid of revolution.

14. Show that the envelope of the drops of water flung from

the rim of a wheel of radius a revolving with velocity

\l2gh is a parabola x2 - a2 =
4:h(h

-
y).

15. Show that the envelope of the normals to x% + y* = a$ is

HIGHER DERIVATIVES.

66. Definition. The first derivative of a function of

x, y = f(x) is in general itself a function of x, and may
itself be derived as to x

;
the result of this second deriva

tion is called the second derivative as to x of the original

function y = f(x). Similarly, the derivative of the second
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Derivative is called the third Derivative, and so on, the

derivative of the nih Derivative being called the (?i-f l)
th

Derivative.

67. Notation. Higher Derivatives are denoted in several

ways, as :

/// (n \
d2
y d3

y dnyy,y ,
...y&amp;lt;&quot;&amp;gt;; ytn y*,...y; &&.-.-&

When the derivation is with regard to the time t, as in

Mechanics, we may write
ij, ij,

____

Still another form is often convenient, when we are

dealing with derivation as a mere operation obeying
certain laws : Dy, D2

y, D3
y . . . Dn

y ;
and we speak of the

operator D. Where any doubt might arise as to the

argument of derivation, we may suffix it thus : Dx
2

. The

various derivatives of i(x) as to x are

Where we would denote not merely a derivative but the

special value of one corresponding to some special value

of the argument of derivation, as for x = a
t
we enclose

the special argument value in the parenthesis instead

of x. Thus : \d) means the value of f
&quot;(#)

when x a.

Note carefully that the substitution of a for x takes

place after the derivation, not before. It would be

meaningless or impossible to substitute the constant or

special value a for x, and then derive as to x. These

remarks apply to all derivatives.

68. Formation of Higher Derivatives. We will now
learn to write down nih derivatives immediately, without

successive derivation.

1. The derivatives of xr are in order,

rxr ~ l
, r(r-l)x

r ~ 2
,

... rnx
r ~ n

,

where rn= r(r 1) ... (? n
s. A. D
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If r be a natural or count number (positive integer),

then the nih Derivative varnishes for n&amp;gt;r. If r be not

natural, then in general no derivative vanishes.

2. The nih Derivative of (x+ a)
r

is rn(x+ a)
r ~ n

.

3. The th Derivative of i is
(
~ 1^.

(#+)

4. The nth Derivative of - is

5. We see it is easy to form any derivative of a fraction

with but one linear factor (which may be repeated)

involving x in the denominator. Now any proper rational

fraction, as
f(x)/&amp;lt;J)(x),

where f and are integral functions,

may be decomposed as we learn in Algebra (see Appendix)
into a finite number of part fractions of the form

A/(x+ a)
r

. It may be that x-\-a takes the imaginary form

x+ u+ iv, but in that case there will also appear in the

same degree the conjugate factor x-t-u iv : on com

bining the ?i
th derivatives of

A /(x+ u+ iv)
r and A /(x+u iv)

r
,

the imaginary terms will annul, and we shall obtain a

real numerator over the real denominator (x+ u
2+ v

2
)
n+r

t

6. The derivative of sin a? is cosx, which is sin(#-f -rr/2);

hence deriving the sine merely increases its argument

by the quarter-period, Tr/2 ;
hence the nih derivative of

sin x is Bin ( 05 -f- -5-). Similarly the nih derivative of
\ 2^ J

^s
\ 2 /

7. The first derivative of the logarithm of a rational

expression will yield fractions to which apply 4 and 5.

8. The exponental eax appears as a factor in all its

derivatives, but after the first derivation it will generally

be most convenient to apply the following Theorem of

Leibnitz for deriving a product.
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69. Theorem XV. Let y = uv\ derive it successively as

to x.

y =uv + uv .

y&quot;
u&quot;v +2uv -f UV .

y
&quot; = u &quot;v + 3M-V +3u v&quot; + uv &quot;.

y&quot;&quot;

=
u&quot;&quot;v+ 4su &quot;v + 6 u&quot;v&quot;+Mv &quot;+ uv&quot;&quot;.

We observe that the coefficients are the same as in the

expansions of the Binomial (u-\-v), and that the orders

of the derivatives are the same as the degrees of the

powers, if we count u and v as zeroth derivatives of

themselves as to x, which we must do to be consistent.

We naturally suspect the same law to hold for all higher

derivatives and we easily prove it, thus : Assume

the Binomial expansion represented by two consecutive

typical terms. We now ask what is the coefficient of

the typical term containing u(n ~ r)
i&amp;gt;

(r+1) in the (?i+ l)
th

derivative, y(
n+V=

(uv)(
n+l ) ? Manifestly, on deriving y^&amp;gt;

only these two typical terms can contribute to the typical

term sought ;
in all preceding terms the derivative of u

is already too high, in all succeeding terms the derivative

of v is already too high. But each of these terms will

yield a contribution : the first on deriving the factor v^
r
\

the second on deriving the factor I*/
1 - - 1

); hence the

coefficient sought will be nCr+ nCr+ which = n+i^r+i-

Hence, if the law holds for the nih derivative it must

hold for the (?i+ l)
th

,
and so for all; it does hold for

the 4th
;
hence it holds for the 5th and all higher.

The sum of the orders of derivation is the same for

each term; as those of u descend, those of v ascend. We

may choose either factor as v, but if either factor of the

product be a positive integral power of x that factor should

be taken as v, so that the series of terms may clearly be
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seen to close with the proper derivative of v. Thus the

?i
th derivative of x3sinx is

all the higher derivatives of x* vanishing. In general,

if xc be the factor v, there will be (c+ 1) terms, c being

a count number, i.e., whole and positive only such

numbers can be counted.

70. Derivatives of e
ax

. Denoting derivation by D, we

have Deax = aeax
,
D2eax= a2eax

,
. . .

,
Dneax = aneax. So it appears

that the operator D before eax may be supplaced by the

multiplier a, and hence, if &amp;lt;(&amp;gt;)
denotes a rational in

tegral function of D, as C +Cl
D+ C2

D2
+... + CnDn

,
then

cp(D)e
ax =

&amp;lt;f&amp;gt;(a)e

ax a very important result.

71. Derivatives of eaa;JT Now let X be any function

of x
;
then we have

D( e**X) = aeaxX+ eaxDX= eaa;

(D+ a)Z.

Here (D+a)X means DX+ aX. Deriving again, we get

X) = D{e
ax
(D+ a)X] = aeax(D+ a)X+ eaxD(D+ a)Z

Or, by Leibnitz Theorem we have at once

D\e
axX) = a2

eaxX+ 2aeaxDX+ eaxD*X = eax(a

To establish this result generally, assume

Dn
(e

axX) = eax(a+ D)
nX

;

on deriving again,

Dn
+\e

axX) = aeax(a+ D)
nX+eax

D(a+ D)
nX = eax(a+D)n+lX.

Hence, if this assumption be correct for any derivative,

it is correct for the next higher; but it is correct for



HIGHER DERIVATIVES. 53

the second
;
hence is correct for the third, hence for the

fourth, and so on, i.e.,

Dn
(e

ax
X) = eax(D+ a)

nX.

Exercise. Obtain this result at once by Leibnitz theorem.

72. Meaning of Operator. It is important that the

student know just what the operator (D-\-a) signifies.

Written out in full,

(D+ afX = D*X+ 3aD2X+ 3a*DX+ a*X.

D and a obey the same laws of operation, but a?X means

the product of the magnitude a2
multiplied into X while

D2X means the second derivative of X as to x
;
a is a

symbol of magnitude, D of operation.

The foregoing formula holds as well for negative as

for positive n, and is specially important for n negative ;

however, we do not yet know what is meant by D&quot;
1

,

D~ 2
,

... D~ n
(see infra).

73. Application to Sine and Cosine. We have

D sin mx = in cos (mas) ;
D2 sin mx = ( m 2

} sin mx,

so that to derive sin mx twice is to multiply by ( m2
) ;

i.e., D2
before, or operating on, sin mx may be supplaced

by ( m2
).

The same holds for cos mx as well. Now

f(D), if it be a rational integral function of D, may be

separated into an even part &amp;lt;t&amp;gt;(D

z
) and an odd part ^(D),

which latter may be written D\js(D
2
),* where YX^2

) is

itself an even function of D. Hence

f(D)sin mx = (p(D
2
) sin mx+ D\^(D

2
) sin mx

=
&amp;lt;p(

m2
)sin mx+D^( m2

)sin mx
=

&amp;lt;/&amp;gt;(

m2
)sin mx-\-m\js( m2

)cosmic.

Also, f(D)cos mx = &amp;lt;j&amp;gt;(

m2
)cos mx m\js( m2

)sin mx.

*For we may collect all the even powers and call the sum of

them
&amp;lt;fi(D

2
) ;

also the sum of all the odd powers we may call

^i(J)) ;
out of each of these we take the factor J9, leaving only even

powers whose sum we write
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74. Extension of Theorem XV. Leibnitz&quot; Theorem

general as it is, admits of the following important gener

alization :

Dr
(uv) =uDr

(v)+ rCiuW-\v)+ u&quot;rC2Dr
~*(v)+...

where for convenience the derivatives of u are denoted

by accents, and the terms are arranged according to the

rising indices of u. Multiply this equation by an arbitrary

constant A r and then take the sum of (n-\-~L) such terms

in ascending order, i.e., let r range from to n. We
shall then have

o

an integral function of D(uv), say i.(D)(uv}. Hence

Now the first derivative as to D of A rDr
is rA TDr ~ l

,

the second derivative is

r(r-I)A rDr - 2 =
rC2 .

[2
. A rDr ~ 2

,

the p
ih derivative is rCp . \p . A rDr ~p

,
and so on. On com

paring these expressions with the series above we see

these terms with the factorials struck out are the co

efficients in the expansion. Hence we may write

fD(u, v) = ui(D)v+ u F(D)v+~ . ?(D) +^ . f
&quot;\D}v +....

L*. l.

If now u be some positive integral power of x, xc
,
then

this series will close with the (c+ l)
th

term, since

75. Operator xl). Another important operator is xD
;

prefixed to any symbol as u, it directs us to derive as to

x and then multiply by x. Any integral power of this
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operator, as (xD)
n

,
directs us to repeat the operation xD

n times. Observe that (xD)
n is quite different from xnDn

,

which latter means merely the nih derivative multiplied

by xn . We have (xD)x
r = rxr

, (xD)
2xr = (xD)rx

r= r*xr
,
so

that (xD) before any power of x may be supplaced by
the exponent of that power,

Hence if i.(xD} be any sum of positive integral powers
of xD,

76. Relation of (xD)
n and xnDn.We naturally ask,

how are (xD)
n and xnDn related ? We have seen that

(xD)
nxr = rllxr

\

also x2D2xr= x2
{r(r

-
l)}x

r ~ 2 = r(r -I)x
r

;

so that xnDnxr =
r(r

- 1
)(&amp;gt;

-
2) . . . (V- ?i+ 1 )x

r
.

Now (xD-l)x
r= (xD)x

r-xr = rxr-xr = (r-l)x
r

&amp;gt;

and (xD - 2)x
r= (xD)x

r- 2xr = rxr- 2xr= (r- 2)x
r

,

so that (xD s) before xr
may be supplaced by (r.s).

Hence making this substitution, we have

-
1)(XD -2)...(xD-n+ l).

77. Anti-Operators. All the foregoing properties of

these operators D and xD, proved for positive integral

exponents, may easily be extended as mere formalities

to negative integral exponents, by properly defining the

operator with negative exponent. We say then that we

shall denote by D 1 an operation that is precisely undone

by D, so that DD~ l
before, or operating on, a symbol,

may be supplaced by 1 as a multiplier; or
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What then is D~V? We have

but j)- =xr. hence

i.e., the operator D~ l directs us to increase the exponent

of a power of x by 1 and then divide by the increased

exponent. We may name and read D~ l anti-derivative.

Similarly, DD ~ l

(e
ax

)
= D(D

~ l
eax)

= eax.

But D(-eax
]
= eax

-

\a /

hence D ~ l
eax= -eax = a~ 1

e
ax

,

a

and D~ r
eax = a~ r

e
ax

,

i.e., any integral power of D operating on eax may be

supplaced by a raised to the same power.

Let the student extend this generalization for negative

integral powers of D to sine and cosine.

78. What is D- n
(e

axX)t We have seen that neither

D nor D~ l

operating on e
ax removes it a very important

peculiarity of the exponental ; naturally, then, we must

assume

where F is an unknown function of X. Operating now
with Dn on both sides, we get

Dn
{
D -

\t*X}} = e**X = Dn
(e

ax
Y) = e

ax
(D+ a)

n
Y,

whence X=(D+ a)
n
Y, or Y=(D+ a)~

nX.

Hence D~ n
(t

av
X) = ea\D+ a)~

nX.

We know precisely what we mean by the operators
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D and (D+ a) with any positive integral exponent. We
have defined D~ l to indicate an operation that undoes

the operation of D, and we have found how to perform

this operation on xr
;
we have not yet learned, nor in

fact shall we learn, how to perform this operation

generally, on any function of x, but the operation retains

its importance even when no longer feasible. Similarly,

we define the operator (D+ a)-
1 or y

- to indicate an
tv

operation that undoes the operation of (D+ a) or is undone

by the operation (D+a); but we have not yet learned

how to perform this operation on even the simplest

expressions. But it is not necessary to know how to

carry out the operation in order to reason about it as

above; all we pretend to know about Y is that it is a

function of x which turns into X when operated upon

by the operator (D+ a)
n

. Sometimes, however, we may
reduce the complex operation (D+ a)~

l back to the simple

operation D&quot;
1

,
and that is often a great gain. Thus,

This means that in order to operate with (D-\-a)~
n on

X, we operate with D~ n on eaxX and then multiply by eax .

This inverse operation (D-j-a)&quot;
1

is thus seen to be very

complex, and does not admit of immediate execution.

Exercise. Extend the theorems concerning the operator xD

to the case of whole negative exponents.

79. Indefiniteness of Inverse Operations. It must not

be disguised from the student that in all this argument

concerning inverse operators there has been made tacitly

an important assumption. Thus, since

Tr+l

D(D~
lxr

)
= xr and D ^=c

r
,
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it is concluded that

r+l
D-lxr= X

r+1

the assumed major premise is that functions which, being

operated upon in the same way, yield the same results,

are equal. But this is manifestly not universally true
;

for Dx* = 3x2
,
and D(x*+c) = 3x2

, but x* does not equal
x3+ c. The fact is, as we shall soon learn, that these

inverse or ati^-operations are definite only as to the

form of the result, but are wholly indefinite as to the

value of the result; it is just as correct to write

(where c is constant as to x), as to write

D- l
(e

ax
)
= a- l

e
ax

.

This indefiniteness is an exceedingly important character

istic of these inverse operations.

EXERCISES.

1. Write off the fifth Derivative of x7
;
the fourth of x3 the

ninth of x 2
: the third of and of _

4
(x-l)

3

2. Find the ?i
th Derivatives of

c ex 3x

x2 - a2

(x-a)(x-b) (2x-l)(x-2)

x2_ 2a2 + 3x-l 3x*-2x2 + x-3
(x-l)(x- 2)(x-3) (-l)3

(a;-2)%B-3/ ^^1)2
(

2 -
9)

3. V~~- to find I)
n
u.

x2 + a*

We have y = ^ ^
= A .

-
y .

\
hence

(-l)
n

\nC 1 1
|

2ai \(x-ai)
n+l

(x + ai)
n+

i)
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(
- 1

)*\n((x
+ ai)

n+l
-(x- (w)&quot;

+1

2ai T^Tr
~

Or thus : put z = a cot ;
then ?/

= -
2
sin &amp;lt;9

2

,
and

I = a(cot + i)
= -

0(cos
+ i sin 0)

=
-^ ^ ,

a

sin

Hence

_

(7i + 1)0.

4. Find 71
th Derivative of y = ~f~

Here put (x + $)
= u and apply Ex. 3.

5. Find wth Derivative of y =T^y +^
Put a; + a = rcos0, & = rsin^; whence

r2 = (a + a)
2 + 52

,
tan = -^- ;

x + ct

proceed as in Ex. 3.

6. y
= tan&quot;

1
-; find wth Derivative. Derive and apply Ex. 3.

7. Find n* Derivatives of -

8. Find rc
th Derivatives of

a^e&quot;*, a^sinaa;, X4 cosaa-, x
nax

,

xn
e
axsm bx, x

n
e
ax
cos bx.

9. Find ?t
th Derivatives of xyv x~yy ^3 ,

4
2/4&amp;gt;

where yn means

the 7?
th Derivative of y as to x.
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1 0. From
(
1 + x2

)i/2 + xyt
- m2

y = deduce

I + (w
2 -

m*)ya = 0,

and find yn when y = 0.

11. Find ?i
th Derivatives of sinx\ cos a

3

,
tana;

3
.

12. Find nttl Derivatives of x^logx and x
n
\ogx.

1 3. y = ; prove that ?/4
= -

4y, and thence show how to

find any Derivative.

14. From y = A sin ax + J? cos ax derive the differential equations

yz + m2
y = and yn+z + m2

yn = 0.

15. Obtain the differential equation x2
y.2 + xyl + y = from

y = a cos (log a;).

16. If u and v be functions of x establish the important relation

when the suffixes denote order of derivation as to x.

17. Extend Ex. 16 to three functions u, v, w, and then to

any number of functions of x.

18. Show that the ni}l Derivative of x
n
y
n

,
when x + y=I, is

19. If y = (cQ + eft + c.
2
x2 + . . . + cnx

n
)e

ax
,

deduce the differential

equation of the (n+I)
ih order (D -a)

n+l
y = Q.

20. If y = (CQ + c-fi + c
2
x2 + . . . + cnx

n
)(A cos ax + B sin ax), deduce

the differential equation of 2/i
th order (D

2 + a2
)

n
y = 0,

and find what change to make in y when (I)
2 - a2

)y
= 0.



CHAPTER II.

INTEGRATION.

80. Problem of Areas. One of the most important and

frequent problems in Geometry is the problem of Quad

rature, i.e., of finding a square equal in area to some

given figure, as a triangle, circle, ellipse, parabolic or

hyperbolic segment, etc. In case of rectilinear figures

the problem admits of ready solution by cutting them

up into triangles and trapezoids, whose areas may be

expressed either arithmetically or geometrically through

equivalent squares. But when the figure is curvilinear

in whole or in part, this method no longer applies, and

new concepts are required, of which chief and regulative

is the Limit.

y

B

FIG. 12.

81. Illustration. To illustrate, let it be required to

find the area bounded by the a&amp;gt;axis, the graph of y = ffa),

01
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and the two end-ordinates corresponding to x = a and x = b.

Divide the base AS ^ba into n parts, not necessarily

equal, but each small at will for n great at will, and

denote each by Ace. Consider any strip standing on one

of these sub-intervals, Ace. To different points in this Ace

there correspond different values of x, and to these there

correspond in general different values of y. Among these

various y s there will be a greatest and a least, or, in

any case, one as great and one as small as any other;

call them y and y L
. Then (except for the simple case

of y constant, where this discussion would be superfluous),

the rectangle of y and Ace is greater, while the rectangle

of y l
and Ace is less, than the strip on Ace; and if we

form the sum of all such greater rectangles, and the sum

of all such less rectangles, we shall have the one sum

greater and the other sum less than the area in question,

A
; or, in symbols,

Z^Acc &amp;gt; A &amp;gt; ^y^x.

This double inequality holds always, however great n

may be, and however the interval b a may be divided

into sub-intervals. Now, if y = f(x) be a continuous.

function of x, then by making each Ace small enough, we

may make each fluctuation y yL
in the value of y for

that Ace as small as we please; that is,

for each and every sub-interval Ace. Hence S^Ace
which is ^(yg 2/;)Acc, is&amp;lt;er 2Ao5, or&amp;lt;cr (6 a). Now b a

is finite, hence a- (b a) is small at will; or

Hence these two sums may be brought and kept close

at will to each other in value; meantime the area A

always lies fixed between them
;
hence each differs from

this constant A by an infinitesimal
;
hence they have this
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constant A as their common limit: moreover, if we sum

similarly, using any intermediate value of y for each Ax,

so that yg &amp;gt;y&amp;gt;y L ,
we shall get a sum between the two

preceding sums, which therefore has this same A for its

limit
; i.e.,

A = Limit

y being any ordinate on the sub-interval Ax.

For this new concept, this limit of a summation, we

need a new name and a new symbol ;
we name it Integral

of y as to x between the extremes a and b, and we

symbolize it thus :

A =
I ydx = t(x)dx.

a a

82. Integration not Summation. Observe carefully

that this symbol, though made up of several parts, is yet

a whole, a unit, and we must not yield to the temptation

to analyze it and seek out the meaning of each part.

These parts are indeed full of distinct suggestion, but

not of distinct significance. Thus, I suggests 2 and dx

suggests Ax, but 1 is not 2 and dx is not Ax. The

integral is in fact sharply distinguished from a summation :

the latter varies with Ax and with the y s chosen; the

former is constant, is dependent neither on Ax nor on the

y s chosen. The integral is in fact as little like the

summation as the circle is like the circumscribed or in

scribed regular polygon. So, too, dx is very unlike Ax
;

the latter is a linear magnitude, perfectly intelligible by

itself, apart from any other symbol ;
but dx is not a

magnitude at all, and is not intelligible apart from the

general integral symbol, I ... dx. We may, and in fact

often do, use dx and such symbols by themselves, but we

do not interpret them magnitudinally as thus used. These

symbols of operation obey certain laws of magnitudes

without themselves being magnitudes. There is nothing
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logically strange or surprising in this fact. We should

not expect to be able to convert simply the proposition,

Symbols of magnitude obey certain laws of operation, into

Symbols that obey certain laws of operation are symbols

of magnitude.

Of the separate symbolic use of dx (called differential of x)

we shall speak hereafter
;

at present we view the whole

p6

integral symbol I ... dx as a unit, a complete fusion of

a

all its elements.

The extremes a and b are commonly called the limits

of integration ;
but the term limit has already been

appropriated to denote something entirely different, so

that its use in this other sense seems unfortunate.

The function y or f(#) may be called Integrand.

83. Deductions. From this definition of Integral as

Limit of a Sum, several properties follow at once :

(i.) Exchanging the extremes reverses the Integral ; i.e.,

b a

For, if we begin with x = b and reckon backward to x = a,

the y s will not be affected, but each A# will be reversed,

therewith each term in the summation will be reversed :

then on taking out the common factor ( 1) we shall

have the original summation, and hence, on taking the

limit we shall get the original Integral, multiplied by

(-i).

(ii.) If a, b, c all lie in an interval where f(x) is

integrable (i.e., for the present, where f(oj) is finite, one-

valued, and continuous), then the Integral from a to b

equals the sum of the Integrals from a to c, and from

c to 6
; or, in symbols,

\(x)dx.f\
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For, manifestly, the summation from a to b equals the

sum of the summations from a to c and from c to b
;

then the limit of the sum equals the sum of the limits
;

hence, etc.

If c lies between a and b, both the part-integrals will

be taken in the same sense
;
but if c lies without the

interval a to 6, then the integrals will be taken in

opposite senses, and we must of course make sure that

(#) is actually integrable up to c.

(iii.) A constant factor, k, may be placed indifferently

within or without the sign of integration, J.
For by the

distributive Law of Multiplication the factor k may be

taken out of each summand and made a multiplier of

the summation, thus :

2 f()Asc = 2 kF(x)Aa? = k2 F(x)Ase.

On taking the limits we get

ik~F(

(iv.) The integral of the sum of a finite number of func

tions equals the sum of the integrals of the functions; i.e.,

For the limit of the sum equals the sum of the limits.

Of course, the separate functions are supposed integrable

within the extremes of integration, a and b
;

note also

that their number must be finite. Whether we may
integrate an infinite series by integrating its terms

separately, we leave as yet undecided.

(v.) The argument of integration x may be multiplied

by any constant m if at the same time the integral be

multiplied and the extremes divided by m, i.e.,

Jb

pb/m fb/m

i(x)dx =m t(mx)dx =m \ F(x)dx.

a/m a/m
S. A.
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For by merely writing mu for x we get

(6

/&

i(x)dx = I t(mii)d(mu).
u a

This is a mere change of name, but now in the summation

Amu = mAu, howsoever the interval be cut up into sub-

intervals. Hence

/*fr f*inu~b

f(mu)d(mu) =m I f(mw)du.

a mu= a

But when mu = a and 6, u = a/m and 6/m ; moreover, the

function f(mu) of mu equals some other function F(u)
of u; lastly, and this is very important, it is indifferent

what symbol we use for the argument of integrand and

integration, whether we write

or

the extremes being unchanged, the range of value being
the same, the mere change of name, as from u to x, has

no effect on the value of the integral. Hence

rfb/mt(x)dx = m\ F(x)dx,

a/m

if

84. Theorem of Mean Value: XVI If
&amp;lt;/&amp;gt;(x)

and \[,(x)

be two functions of x, both integrable from a to b, and

^fs(x) change not its sign in the interval a to b, then

r(p(x)\fs(x)dx
=

&amp;lt;p(x) \[s(x)dx,

where x is some value between a and b.

For, if
(j&amp;gt;(x) vary at all in the interval, let G be the

greatest and /&amp;gt; the least value it assumes; then G
&amp;lt;j&amp;gt;(x)

and
&amp;lt;p(x)

L are both positive throughout the interval
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a to b. Also, let \fs(x) be (say) positive from a to b
;
then

G\fs(x) &amp;lt;j)(x)\fs(x)
and

&amp;lt;j&amp;gt;(x)\}s(x) L\[s(x)

are both positive from a to b. Hence

f
{G\!s(x)-&amp;lt;j&amp;gt;(x)\fs(x)}dx&amp;gt;0,

since in each all the terms of the sum, hence the sums

themselves, and hence the limits of the sums, are positive.

Hence

G f \js(x)dx &amp;gt; I
&amp;lt;j&amp;gt;(x)\ls(x)dx

&amp;gt; L I \

ct

Hence there is some value M between G and L such that

f
&amp;lt;p(x)\/s(x)dx

= M\ \/s(x)dx,

and since
(j)(x)

is continuous, in passing from the value L
to the value G it must pass at least once through the

intermediate value M: for x = x let
(f&amp;gt;(x)

attain the value

M
,
so that

&amp;lt;p(x)

= M
;
then

1
(f&amp;gt;(x)\Js(x)dx

=
&amp;lt;p(x] \fs(x)dx.

If ^(x) be negative throughout the intervals a to 6,

no change worth mention is required in the reasoning.

If denote a proper fraction that may take any value

from to 1 inclusive, then we may write

and
pfc

_
p6

I
(j&amp;gt;(x)\ls(x)dx

=
&amp;lt;j&amp;gt;(a

+ b aO)\ \fs(x)dx.

85. Derivation of an Integral as to its extremes.
n

It is plain that the Integral /= I (x)dx is a function of

a

its extremes a and b; for by changing either one, the

number of terms in the summation is changed, the range
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of integration is varied, the area A is altered. Accordingly,

we may seek to derive / as to b. We have

f i(x)dx:

.. A
J *J

Here
&amp;lt;f&amp;gt;(x),

of 84, = f(#), and \/s(x)
= 1

;
also dx = A6,

6

for it is the limit of the sum of the Ace s into which the

interval from b to 6+ A& is cut, and this sum is always A6.

fgdx=g /). Hence

=
f(je)

= f(b+ $A6) ;
whence J, = (6) ; i.e.,

The Derivative of the Integral as to its upper extreme is

the value of the Integrand at the upper extreme.

Let the student show in two ways that I
a
=

f(c&).

These values f(6) and f(a) are the end-ordinates of A,

and may be called Derivatives of the area as to its

abscissae.

f ri

i

Corollary. If
a&amp;lt;u&amp;lt;b, then J f(x)dx I = f(u).U J

86. Quadrature of Parabola. Before proceeding further

with the general theory of Integrals, it may be well to

calculate or evaluate some of them, and thereby clinch

our notions. Take, for instance, the ordinary Apollonian

or quadratic Parabola x2 = py, and let us compute the

area from the vertex out to x = b = u, y = v. Cut the

fit

interval u into n sub-intervals, each = A$ = ;
then the

n
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successive values of yl
are

I 2
. u2 22

. \

0,

and of y are

2 22 .u2

n2
p

Forming the sums and taking out the constant factors

we get

O
//

AX B

FIG. 13.

The sum of the squares of the first n natural numbers is

1

7i 71(71+ 1Y2n+ 1) ; hence, on cancelling; n3
.

b

p 6\ TiA n)
&amp;gt; &amp;gt;

p 6\ *A ~W
Now letting TI increase without limit we close down

the two extremes in this inequation upon the constant

mean value A, and we get as - vanishes,

i3 , o,2 ^ . i
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r TV i r i u3

Also A = I ydx = dx = -\ x2dx -.-=-,

I *\JU I *?/7 77

hence I #2
cfcc =

;
hence I

2
df.T= -^ -^ .

J 3 J 33
M

87. Generalization. Similarly for the general Parabola

ftt

lp |W# = - ^mc?a? = - Lim Z#mA#.
C
u

1 C
u

1= ydx = - xmdx = ~ Li
J c i c

uWe divide the interval into n equal parts, Ax = -
;
the

successive values of x are 0, ,
.

n n n

Hence on taking out the common factor
u

...+71
W
).-.n 111 &quot; n

This sum of the mth
powers of the first n natural numbers

may be expressed as a series of (m+ 2) terms, arranged

according to falling powers of n with finite coefficients

tYttn+l

functions of m, the first term being5 m+l

+ lower powers

= = + negative powers of n .

On letting 71 increase without limit, these (m+ l) negative

powers all tend toward zero, the limit of their sum is 0,

and we get

T ^ r&amp;gt; r 1 Um+ 1

I ,1 Y11 &amp;gt; /yi/Tt A /vi ^^ I sY*Wl rt/yt -
j-jiiii ^// mu i ju ttJu ==

/ I

o

J, too, Ihence, too, xmdx =~ - -
,, ^.m+l m+ l m+f
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Accordingly, to integrate x, m being natural, increase

the exponent by 1, divide by the new exponent, and take

the value of this result at the lower extreme from its

value at the upper extreme.

88. Curve of Sines. Find the area of an arch of the

sinusoid, y = sin.x. Divide the interval from x= Q to

x = u into n equal parts, A#=
;
we have then

IV

( . u In . nu\
2 sin xA# = \ sin

- - + sin h + sin
I n n n }

16

The Integral sought, 1 sin xdx, is the limit of this ex-

o

pression for n large at will. We take the limits of the

factors separately : limit of sin f ~
J

is of course sin
(^ tfrj,

as is also limit of sin (- &amp;gt; -

-j,
the limit of the product

/ 1 \ 2 u / u
is therefore (sin 2

tu
;
limit of

/sin^-
is 1

5
hence we

have

{u
/ I \2

sin xdx= 2 (sin = u
j
= 1 cos u.

o

(1C
sin xdx = (1 cos w) (

1 cos u) = (cosw cos u).

u

Hence too, I sin xdx = (cos TT cos 0) = 2.

r.cos x = sin iv sin u,

u.

na .

cos --. sin

usino; cosa+ cos2a+ ...+cosna = : /ysin a/ &
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89. The Logarithmic Curve. Let the bounding graph
be the logarithmic y = ex . Cut the interval from x = o to

/y
/

x = u into n equal parts, Ax = - = h, and form the sum
fn

=
(e

h+ e2h+ esh+ . . . + enh)h

(/jft

1 \ Ti

^^.v-i)^

O w

FIG. 14.

pu
Hence Lim 2exAx = 1 exdx = e

u
I,

o

and f exdx = ew e
u

.

u

90. The Hyperbola. Thus far we have cut up the

range of integration into equal parts, but such a division

is by no means necessary nor indeed always expedient.
For example, let the graph y = i(x) be the rectangular

Hyperbola xy = l, referred to its asymptotes as axes,
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and let the extremes be x = l and x = u; we seek the

Integral I . We divide the interval 1 to u into n parts

i

in geometric progression at the points whose xs are in

order 1, k, /i
2

,
/i
3

, ..., hn
,
this last = u. The corresponding-

values of y are 1, h~ l
,
k~ 2

,
h~ s

, ..., h~ n
,
this last =l/u.

The corresponding sub-intervals are

We know from Analytic Geometry that the areas of the

strips are all equal, and it is moreover plain that each is

&amp;lt; h 1, but &amp;gt; -. or &amp;gt; 1
-,

. Since there are n such, we
k h

have n(h 1) &amp;gt; A &amp;gt; n (l , }
; i.e.,

rdx T . ,

l
,, T . (V -l)

A=\ = Lim n(h 1 )
= Lim n(u* 1

)
= Lim

J X n =&amp;lt;x&amp;gt; r= r
1

= Lim = Lim (log v. .+
.^

- + . . . J = log u,

(~\ \ ^^(M ^T ^L()

where r= --). Hence - = logiv log u = log .

91. Need of better Method. We have now integrated

a number of the simpler functions, algebraic and trans

cendental, and have learned by trial that the process of

integration is perfectly definite and leads to definite

results. We might continue these researches and learn

to integrate other functions. However, the method is a

tedious one and depends for its success in each individual

case upon our ability to bring our summation into a

form convenient for the recognition of its limit. The

question arises, Is there any general method for reckon

ing these limits that shall not depend upon our ingenuity
in effecting a summation ? There is, as may thus be made

evident.
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92. Integration in General. Let y = t(x) be finite, one-

valued and continuous between x = a and x b, y = a and

y = b . Let Ao?!, A#2 , ..., Axn be TI sub-intervals into which

6 a is divided, and Ay ly Ay2 , ..., Ay.n be the corresponding
sub-intervals of b a. Also let 0(oj) be the derivative

of f(03) -for every value of x in the interval a to 6, or

0(#) = (#). Then by Definition of Derivative (Art. 19)

we have

where cr is small at will and vanishes with Ace. This

equation is eosactf and holds for everyone of the sub-

intervals, AC
I}
A^

2 , ..., Afl3OT . Hence

y = a?

On taking the limits we obtain

(
l&amp;gt;

, (
b

(
b

(
b

} J J
^ x

}
a a a a

Now
rb

&amp;lt;rdx
= Lim. So- . Ao? = Lim. cr . Lim. 2 A#,

where cr is some mean of the infinitesimals cr
l5

&amp;lt;r.? , ..., &amp;lt;rn

corresponding to Axv Ax2 , ..., Axn ,
and is itself infini

tesimal, since even the greatest of the cr s is infinitesimal
;

also, by definition,

{6
dx = b a and Lim. cr = :

a

hence I ardx = and I f (x) dx = b a = f(6) f(a) ;

a a

i.e., the integral of the derivative of a function is the

value of that function at the upper extreme, less its value

at the loiver extreme, of integration.
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93. Another Proof. This same important fact may be

elicited otherwise, thus: Let 7=1
&amp;lt;p(x)dx,

and let 0(cc)

a

be the derivative of f(x) for every value of x in the

interval a to 6; then

and this result holds (see Cor., Art. 85) when b denotes

any value in the range of integration. Now a derivative

may of course vanish for some particular value of the

argument ;
thus 2(x c), the derivative of (x c)

2
,
vanishes

for x c, and this by no means implies that (x c)
2

is

constant
;
but when the derivative vanishes for every

value of the argument in a certain interval, then the

function is constant within that interval. For if the

function (y
= F(x)) were discontinuous at any value of x,

then in the neighbourhood of that value Ay would not

be small at will and Lim. - would not be
;
but if

y = F(x) be continuous, then it may be depicted geometri

cally by a curve, the tangent of whose slope to the

#-axis is yx \
and if this latter always =0, then the

curve is everywhere parallel to the x-axis, i.e., it is a

right line parallel to as-axis, i.e., y = a, const. Hence,

since {/-f(6)} 6
= 0, /-(&) =

To find this constant C we may give b any value in

the range of integration; for b = a, 1= and f(6)
= f(a);

hence 0-f(a)=C, or /=
^ &amp;lt;j&amp;gt;(x)dx=

J
f()dk=(&)- f(a).

94. Integration and Derivation. While then the so-

called Integral Calculus is in no wise dependent upon
the so-called Differential Calculus for its fundamental

notions or even processes, nevertheless the latter is in

valuable to the former in discovering the form of the
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Integral from the form of the Integrand. The law is

that, so far as form is concerned, whenever we recognize
the Integrand as the Derivative of a function, that

function may be taken as the form of the Integral ;
the

value of the Integral is then found as the difference of

values of this function at the upper and lower extremes.

But even if we could not discover a function which

derived would yield the Integrand, or even if there were

in the nature of the case no such function, the concept
of the Integral would not suffer. This latter might still

exist, and \ve might be able to calculate it, though it

would be impossible to derive it and obtain the Inte

grand. Whenever then the Integrand is a Derivative

and this simple but very general case shall engage at

present our exclusive attention, more difficult matters

being held in reserve the operation of Integration, so

far as form is concerned, is merely the Inverse of

Derivation.

If &amp;lt;p(x)
is the Derivative of f(x), then f(x) is the

Intec/ral of (p(x).

Symbolically, \
= D~ l = ~, .D = J-i

= i D and
J being

symbols of operation, not of magnitude. So far as form

only is concerned, the Integral is the anti-Derivative of

the Integrand.

95. Definite and Indefinite Integrals. It very often

happens that we are concerned solely or principally with

the form of the Integral. In such cases it is customary
to omit the extremes and write

or

These equations must be understood as declaring only
the form of the Integral, not its value. In fact, the

Integral is a mere form until the extremes of integration
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are assigned ; only then does it become a magnitude.

The arbitrary constant G constant, that is, with respect

to x is added because the form is for all purposes of

derivation unaffected by presence or absence of additive

constants
;
C would of course disappear in derivation.

Such a mere form is called an Indefinite Integral,

whereas the magnitude or value got by assigning ex

tremes is called the Definite Integral.

Observe carefully that in the Indefinite Integral the

argument-symbol is wholly indifferent: thus

0O) - etc.

So, too, in the Definite Integral the argument of in

tegration is indifferent : thus

= r

The very great importance of the arbitrary constant C
in giving generality to the Integral Form will be seen

in dealing with Differential Equations.

It is common to make a double use of one symbol,

as x, using it namely both as the argument of integra

tion and also as the upper extreme. Thus we often

write I f(x)dx. There is no objection to this mode of

writing, provided that no confusion result in the mind

of the student.

96. Fundamental Forms. We shall now use the

theorem of Art. 94 to determine the form of a number

of Elementary Integrals :

^m
-~= xm -

:. \x
mdx =

,.m+1 J m+l

2. :. \exdx = e
x

.
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3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

= sn x.
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; /. \e
uuxdx = e

u
.

fdx_
=

(ux
&amp;gt;

.*.

J
=

.

.*. cos

D( cos x)= sin x : . . I sin xdx= cos x.

D sin u = cos u . ux ;
/.I cos u . ux . dx = sin u.

D( cos u) = sin u . ux ;
. . I sin u . ?v&c = cos u.

D tan a? = (sec x)*
2

;
.*. l(secc)

2
. c& = tan#.

Z) tan 16 = (sec u)
2

. ux ; ,*. I (sec ?0
2

. ux . dx = tan u.

D( cot x )
=

(esc ^)
2

;
. . I (esc xfdx = cot x.

D( cot u) = (esc ufux ;
. .I (esc ?x)

2 .ux .dx= cot u.

7)/ _i \ 1
. f dx

_
. _j

_ -1
.

f -^ .j

I (f lT

1
. . f__j^ _

sin - i
x

.

D(SQC~
I
X) =

a

- sec &quot;
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r/1 i
x\ 1 f &amp;lt;fa 1 ,flJ

20. D (- sec&quot;
1- )= , =: .*, i

r------ =-- sec&quot;
1-.

Va aJ xjxt-a* Ix+/x2-a2 a a

i
x a\ 1 f dx 1 , x a

S

97. Change of Variable. When the Integrand is not

one of the foregoing forms it may often be reduced to

one of them by an appropriate change of argument of

Integration, thus :

Dx(p(u)
=

&amp;lt;/&amp;gt;
(u) . ux ,

hence
(f&amp;gt; (u)xudx = (p(u) ;

also Du
&amp;lt;j)(u)

=
(f) (u), hence

\&amp;lt;f&amp;gt; (u)du = (/&amp;gt;(u).

Hence I ^ (u)uxdx (-u )du ;

i.e., ic e ma?/ pass from an integration as to u over to an

integration as to x by multiplying the integrand by the

derivative of u as to x.

This change of the argument .of integration is of the

most frequent occurrence. The process may be called

Integration by substitution, or mediate Integration,

since it corresponds to mediate Derivation.

We see then, and this is extremely important, that

under the Integral sign we may supplace du by uxdx :

or that, for purposes of Integration, the symbolic equation

holds,
du = uxdx .

Here du and dx are called differentials of u and x, and

hence ux is called the differential coefficient of u as to x.

In the Integral Calculus, and especially in its applications

to Physics, this notation is more convenient than the

Derivative notation thus far employed ;
neither is it

logically objectionable, if properly understood. But we
must beware of attempting a magnitudinal interpretation.

The symbols du and dx are not symbols of magnitude ;

no matter how small the change in u may be, it is not
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equal to the corresponding change in x, multiplied by the

Derivative of u as to x. Accordingly, when asked what

we mean by the symbolism du = u xdx, our answer must

be we mean that the Derivative of u as to x is ux ;
thus

d(x
3
)
= 3x2dx means only that the Derivative of XB as to

x is 3x2
. This symbolism is convenient because we may

at once operate on both sides by integration and obtain

a formally correct result. Then on assigning the extremes

we get a correct relation between magnitudes. Similarly,

means simply that the second Derivative of y as to x is Qx.

From this point on we shall frequently employ this

Differential Notation.

98. Another very important general method is that of

Integration by Parts. We have

d(uv) = udv+ vdu, or

(uv)x = uvx + vux .

Whence I (uv)xdx = I uvxdx+ uxvdx.

or I uvxdx= uv I -a x . v . dx.

Hereby we make the Integral of uvx depend on that of

ux . v . dx, and this latter may be much simpler ;
or still

other advantages may accrue.

Illustrations. 1. Consider \xexdx. Here we put x = u,

ex = vxj hence ex = v, hence

xexdx = xex exdx = e
x
(x I).

Similarly integrate xz
ex

,
xs

e
x

,
... xnex .

2. I (cos xfdx = I (cos x)(cos x)dx = sin x cos x+ I (suoPxffilx

= sin x cos x+ I (1 cos x
2

)dx = sinx cosx + x I (cos^)
2^.
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Here the integral is made to depend on the same integral,

and this may be found by simply treating it as an un

known and solving the equation ; hence, transposing and

dividing by 2, we get

I cos x
2dx = (03+ sin x cos x) ;

I sin x
zdx= \(x sin x cos x)

3. \^/a2 x2dx. Such radicals are generally more

manageable in the denominator, accordingly we write

f /-I
-

2,7 f
a2-^2

,7 2 f
dx

f
aftfo

U/a2 -x2cfe =
/ 2 2

dx= a2
\

/-^--=- /
2 2

-

J
*v&amp;lt;* J+Ja^ x* J+ja^ x*

nr&amp;gt;

The first Integral on the right we recognize as sin&quot;
1
-;
Cv

the second we integrate by parts, thus :

fo3

2
cfcc f / a; \ 7 f , 7-5

-
5v 7

/-a
-=

2

=
p( /-g

-
J&amp;lt;fa= U(x/a

2-^2)^
x/a

2
.T

2 J \va2
a;

2/ J

= CVtt2 #2
IVa2

OJ
2^.

Here again the original J depends on itself
;
hence

or

a result of great significance and importance.

Exercise. Put # =
asin&amp;lt;/&amp;gt;

or x =
acos(f&amp;gt;,

and obtain the two

results of (3) by help of (2).

4. It is natural to investigate now the integrals of

tjx^ o?- and \/x2
-\-a

2
. As in (3) we get

s. A.
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We are as yet unacquainted with any simple ex

pression that on derivation yields ==, so that we
V x2 a?

cannot integrate these expressions at once. However,
f dx

their analogy with is evident, and their signi-
J va2 x2

ficance may be easily made geometrically apparent.

99. Circle and Equiaxial Hyperbola. Consider the

equations of a circle and a rectangular Hyperbola:

a).

= a2 and x2-y2 =

which may be written

x) and y
z=

S

From the figure it is seen that when we divide any
tract 2a internally and at each point of division erect

as perpendicular ordinate the geometric mean of the

parts a+ x and a x, the locus of the ends of the

ordinates is the circle, but when we divide externally

the locus is the hyperbola. So closely related are these

curves, apparently so unlike. If now we would compute

the area of a half-segment, we have in the circle and in

the hyperbola
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ra

APS=

AP S =

where u = 08 and u = OS .

Now, in the circle,

hence a*
,

=AOP;

but

hence

100. Anti-Functions re-defined. This last equation

may be taken as the definition of this function, cos&quot;
1-

True, we have already the notions of cosine and anti-

cosine defined for angles ;
but if we had no such notions,

neither of cosine nor of anti-cosine nor of angle, this

definition would serve us perfectly. Call this integral /

for the moment and hold the upper extreme a fast,

constant; then / is some function of the lower extreme

u, since to any value of either there corresponds a value

of the other. Hence

a a

If we put a = l, we have the cosine of a number, of a

definite integral, defined as the lower extreme of that
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integral ;
and it is important to observe that the cosine,

the lower extreme of the integral, is a much simpler
function than the anti-cosine, the integral itself.

101. Hyperbolic Cosine. Turning now to the Hyperbola
we have

hence %tf.== =AOP] or
J v& a2

a

dx 2. AOP dx 2.AOPf dx
, precisely as I . =

J x/a2-^2

Now we took the second of these Integrals as a Definition

of a new function, namely, the anti-cosine of
,
or a

U ^
number whose cosine is -. Cosine here means (as we

a

independently know) the ordinary or circular cosine, since

AOP is a sector of a circle. But AOP is a sector of a

(rectangular) hyperbola; accordingly, we must, or at least

ru /

we may, consistently name the first Integral, I -,
------

;

J v #2
O-
2

a

the hyperbolic anti-cosine of
,
that is, a number whose

hyperbolic cosine is
,
and we may write it thus:

a

dx(
u dx

J ^^ =

Calling this Integral / we have

= hc//

;
and for a =

102. Hyperbolic Sine. Similarly we generate the con

cept of hyperbolic sine, thus:

Consider the conjugate rectangular hyperbola,
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The area of the quadrilateral OBQ V is

Now

hence

85

dx

or
dx Z.OQ V

Similarly in the circle #2+ ;?/

2= a2 we have

OBQV= rja*^fa=l(u ;

hence

/*W ^7 /-y p da; _ 2 . OBQ

103. Anti-hyper -functions. We may now name this

u&amp;gt;

latter Integral (circular) anti-sine of and write it
a

u
sin 1

-; the Integral then is the analytic definition of
a

this new function, anti-sine, while its value, the quotient
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of the double sector by the squared radius, is the geometric

definition of the same function. Herein there is implied

no previous knowledge of sines, anti-sines, or angles. If

now we would be consistent, we must name the corre-

dx
i r dx 2.0Q ,, , . ..

sponding Integral, \

.
---

,
tne hyperbolic

J ^/ JL ~~T~ Cl&amp;gt; \A/

fit /If

anti-sine of
,
and write it / ^hs 1

. This is another
a a

new function, named from analogy, and has two equivalent

definitions, one analytic and one geometric. For a = 1

we have

ur

fl

LIJU_ = = = u =

104. The Arguments Pure Numbers. From the fore

going it would seem clear that these hyperbolic functions,

sine, cosine, anti-sine, anti-cosine, are quite analogous to

the ordinary (circular) sine, etc., and have like importance

for pure analysis. If now it be asked, what are these

magnitudes, circular anti-sine and hyperbolic anti-sine of

,
the answer must be that they are pure numbers, com-

a

pletely defined by their definitions, analytic and geometric,

and this is enough. It turns out, to be sure, that the

77

first, circ. sin&quot;
1

,
is the same number as the (natural)

metric number of the angle FOB, and of the arc PB:

hence the first Integral / may be interpreted geometrically

as an angle or as a circular arc. This, however, is a

circumstance quite extrinsic to the nature of anti-sine as

now defined, and we must not expect to find its analogue

in the hyperbolic anti-sine, which must not be understood

as the metric number of the angle Q OB.

105. Relations of the Functions. The real relation

subsisting between the circular and the hyperbolic
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functions is of another and very different nature, which

may be thus exhibited:

C
l dx_= hc

_
lv=J . ^ v =

V

Multiply both terms of the fraction by i, remembering

ii=-l;

(
l dx -r J

7=== ^cos~ 1
^&amp;gt;

= /; . . v = cos-
x/l-a2 *

. . hc&amp;lt;/=cos =cosiJ.
^

Again, 1 . = hs
~ lv = J ; /. v = hsJ.

Change x into iy, then t&amp;gt; changes into v/i, and

f/i

.-J^

7
= isiu~ 1

v/i
=J

)
. . v = isinJ/i=isiuiJ ,

o
^-y*

:. hsJ= i sin J/i= i sin i/.

Thus it appears that the hyperbolic functions equal

corresponding circular functions of imaginary angles, but

are themselves real.

106. Exponentals. Now we have these expressions for

sine and cosine in terms of imaginary exponentals:

cosx=l(e
ix+ e- ix

), smx= -,(e
ix.-e~ ix

);

whence we have for the hyperbolic functions :

the most convenient definitions of these functions. The

equivalent series are worth noting:

/g2
/v&amp;gt;4

fytQ

X3 X5 X 1

* Since -=-iJ and cos(
- iJ) = cos(iJ), the cosine being an even

function. Similarly for the sine, which however is an odd function.
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differing from the series for cosine and sine only in the

signs of the even terms.

107. Other Hyper-Functions. We now define the other

hyperbolic functions thus :

, __ex e~ x 1 hcx-- -

r ,
= ,
-

.

he x hs x

Now let the student prove :

1. he a?
2

hsa?
2

=l, ht x
2= 1 hsc x

2
.

2.

3.

4. D hsc x= hsc x . ht x.

5. hs(a; y)
=

6. hc(^2/) =

7. ht(x y) = (hix ht y)/(l ht x ht y).

8. The period of hs and he is 2^?r, of ht and hct it

is ITT.

9. The he and hsc are even functions, the others are

odd.

10. Changing the argument by the half-period reverses

hs and he; i.e., hs(xi7r)= hsx, hc(xi7r)= hex.

11. Hyperbolic sines of supplemental arguments are the

same. Hyperbolic cosines of supplemental arguments are

counter
;

i.e., hs(i7r x) = hsx, hc(i7r x)= hex.

12.

ht(2a;) =
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x+y i.n-y

89

and corresponding prosthapheretic formulae.

14. L.
x=0

T htx= L. -- =1.

Hence it appears that the doctrines of circular and

hyperbolic functions stand on equal footing and supple

ment each other.

108. Gudermannians. We know that we may write

the equation of the circle x2+ y
2= a?, by use of a third

independent variable 0, thus : x = a cos 0, y= a sin 0. This

FIG. 18.

depends on the fact that (cos 0)
2
-{-(sin $)

2 = 1. Similarly,

since hcu2 hsu2 = l, we may write the equation of the

rectangular hyperbola x
L

y
L = u? thus: # = ahci(, y = ahsu.

Here u is the third independent variable, but is not an
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arc, nor an angle, like 0. However, it stands related to

the sector-area precisely as does
;

for

ia2$= circ. sect. AGP and Ja
2u = hyp. sect. AOP .

Moreover, it is remarkably related to an angle, for draw

SP tangent to the circle at P, denote i-AOP by r\, and

we have x = asect], y = at&uti as equations of the hyper
bola x2

y&quot;

2 = a2
,
this depending on the fact that--

2 7
-

2 i

sec?? tan
17 =1.

Comparing the values of x and also those of y we see

he u = sec
rj,

hs u = tan rj.

So it appears that u and
rj
are functions of each other,

and the relation between them having been especially

studied by Gudermann it is proposed by Cayley to call

rj
the Gudermannian of u and write

rj
= gdu, whence

u =gd~V We may also call
rj hyperbolic amplitude of

u :
r]
= amh u, whence u = amh &quot; l

rj.

109. Geometric Property. We have now

e
u = he u+ hs u = sec

r\+ tan */,

whence, on passing to logarithms and reducing,

We have also

,
s, and

i-

or, since

The geometric significance of this result is that the same

ray OM that halves the angle r\,
and therewith the circular

sector AOP, halves also the hyperbolic sector AOP
,
and

therewith the chord AP and so is the diameter conjugate
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to the chord. For draw two rays from 0, the one bisect

ing the circular sector, the other bisecting the hyperbolic

sector; their equations are y/x = t&n.r]/2, and y/x= ht~;
2*

these two values of y/x are equal, hence the two rays are

the same.

Exercise. Tangents at P, P and A concur with OM.

110. Ellipse and Hyperbola. We derive the Ellipse
/y2 *77

/
7&quot; 1J

-^+ Y5 = 1 from the circle -3+^ = l, and the Hyperbolaa2 b2 az a2

/vi2 Vy^ IT 1J

-5 ft 3*!, from the rectangular hyperbola
^- = 1, bya2 o2 a2 a2

merely shortening all their y s in the ratio b : a
;
hence

the equations of E and 5&quot; are a; = a cos 0, y = b sin 0, and

C = ahcu, 2/
= 6hsu. The angle 9 is called the excentric

anomaly of the point P in the Ellipse ; by analogy we

may call the number u the hyperbolic excentric anomaly
of P in the Hyperbola.

Manifestly the areas of corresponding parts in circle and

ellipse, in rectangular hyperbola and general hyperbola,

will be in the constant ratio a : b
;
hence the area of the

elliptic sector corresponding to is %ab6, and of the

hyperbolic sector corresponding to u it is

111. Logarithmic Expression. For a = b = l, in the

conjugate rectangular Hyperbola x2
y

2 =
1, we have

hence eu

and u = hs~ 1x = log (x+ x/1 + &2
).

But hs 1^

hence

p
(fa;
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These results are useful when for any reason we would

avoid the use of hyperbolic functions
; they may be readily

verified by derivation, and may indeed be obtained by
the substitution of z = x+ \/a2+ x2

)
but such a process

seems very arbitrary.

Exercise. Express all the inverse hyperbolic functions

through logarithms, as ht 1^ = log . /^
+x

.

\ 1 x

112. Imaginary Integrals. We have now integrated

\fa2+ x2
, \/a2-x2

, \/x2-a2
,
the remaining form *J-a2-x2

,

is reduced to one of the others by taking out the factor i

or by putting x = iu, but yields a purely imaginary result.

We see in fact that if in the general formula for area,

A=\ydx, we have y = */-a2-x2
,
then y

2+ x2+ a2 = 0:

whence it appears that the bounding curve is imaginary,
with no real points in the plane of x and y.

113. Reduction to Standard forms. When the radicand

is the general quadratic, Ax2+ 2~Bx+C, we reduce it to

the form of the sum or difference of two squares, + u2 a2
,

23 .4(7_B2

by the substitutions u x+ ~j and a2 = v 2
-

. For

The first or second form is preferred according as the

Discriminant AG-E2
is positive or negative, If A be

negative, let A = A
;
then
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EXERCISES.

f dx
.

=
Ja++l

,-^ = =tan~ 1 -=-2- = --tan

2
x3^

dx

ff
-

(a;
-

J)
2 x2

dx dx dx dxdx
(

dx fs/-; f %dx

x^ }a? + Wx* J

v
J 5^

((a -bx + ex2 - dx*)dx, f
f^

- ? + 3x - 7

v X

10s f a*
X

J4(&quot;l-3^p

f dx f 6fo; f dx f &amp;lt;fa

&amp;gt;

J
_ 5 + 6a; - x } -a;2 + 6x-13 J

2 a;+l
J

J^-IG

a;
2 -!

. I .

2

X
...

, 1-7= =tf
\--*L dx. [Putz =

dx \ dx dx
!

dx

114. Powers of Sine and Cosine. Integrating (cos a;)
2

and (sin xf by parts we have found,

I (cos xfdx = J (x+ sin x cos x), \ (sin a?)
2

&amp;lt;i^
= ^(x sin ic cos x\

*
. HB
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The same method avails for higher integral powers, thus :

(cos x)
ndx = (cos x)

n ~
^(sin x)

= sin x (cos x)
n ~ l

-f (n 1 ) I (cos x)
n ~ 2

(sin xfdx

= sin x(cos x}
n ~ l

-f (n 1) I (cos x)
n ~ 2dx - (n

-
1) I (cos x)

ndx
;

nl)\(cosx)
n - 2

dx}. (A)

By this Recursion-formula we lower the exponent by
2

; by repetition we may lower it to 1 if n be odd, or to

if n be even
;
in either case the integral is reduced to an

elementary form.

The same formula may serve to raise the exponent by 2
;

we have but to change n into m+ 2 and solve the equation

as to the second integral ;
then

I (cos x)
mdx

. ...(A )

By repeated application we may raise an even negative

exponent to 0, or an odd one to 1
;
but here we must

pause, since for m= 1 we have m+ l=0, and division

f dx
by has no sense

;

- calls for special treatment.
icosx

Exercise. Integrate similarly (sin)
n and (sino;)~

m
.

115. Secant and Cosecant. To integrate
------ we first
cosx

integrate .
, thus;siux

Put x = 2u; then

f dx f du [(sQCuYdu , x
i-s =\-- ~ = l^: -= log tan u = log tan rt

.

Jsino; Jsinucosw J tanu 2
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x-7
I M^ /y I

f \2 / fir x\

sinf^ xj

The devices here employed are very often useful.

Exercise. Integrate I/cos x by the substitution x = 2

116. Odd Powers. Other methods may be preferred in

special cases. Thus, to integrate an odd positive power
of the cosine we have

I (cos xf
p+ldx = I (cos xf

pcos xdx = I (1 sin x
z

)
pd (sin x) ;

Now we expand the integrand and integrate its terms

as to sin x.

Exercise. Integrate cos a;
3

,
sin a;

5
,

cosx
3
sin

4
,

cos
4
sm~

5
;

show how to integrate sin x
m
cos x

n
,
either m or n being odd.

117. Even Powers. In case of only even powers we

may use the double angle

2 cos x = 1 + cos 2o5, 2 sin x 1 cos 2x
;

and we may reduplicate the angle until an odd power
is attained, thus:

J

cos x*dx= TV (1 + cos 2x)
3d2x

= Tv[(l
+ 3 cos 2^+ 3 cos 2a;

2+ cosW)d(2x).

All of the terms in ( ) are now easily integrable as

to 2x. We may proceed thus with any product of

positive even powders of sine and cosine, but the method

is scarcely preferable to that of recursion.

Exercise. Integrate cos
4
,

sin
6

,
sin #

4
cos a;

4
,

sinic
4
cosx

6
.
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118. Powers of the tangent are integrated by recursion.

n -, n-2/ ^--2 i \ 7tanx dx=
Jtana; (SQCX l)dx

= tan x
n ~ l

1 tan x
n

dx.
n l J

So we sink the exponent to 1 for n odd, to for n even.

Exercise. Integrate cotx
n

by two methods; also tana;
,
tana; .

119. Special Integral. A very important integral is

f dx

ja+ bcosx

For x = 2u,

du

+ sin it ) + b(cosu sinu )

du 2

2 la^b x= . =rtan-\/ vtan-, if a&amp;gt;b.

Ja2-b2 &amp;gt; a+ 6 1

If a &amp;lt; b, show that I =

If a = 6, show that 1 = ?

Exercises. 1. Prove

cos&quot;

la + b cos x \/a
2 -b2 a + b cos :

or -
^/?J==hc- 1

^ C0
7

Sa;+
-,
or = ._ -log -

+ a - Jb - a tan ^

2. Integrate = -. , ^ , ^

a + bsmx a + b he x a + hs x
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120. A more general integral is I .

- -
:
-

.

J a -f b cos x+ c sin x

We reduce this to the form in Art. 119 by putting

b = r cos a, c = r sin a,

a -f- b cos x+ c sin x = a+ T(COS x cos a+ sin x sin a)

= a+ r cos(cc a).

Similarly, when hco? and hsce supplace cosx and sin#.

Exercise. Integrate

nz) and l/(3 + 4hc + 3 hsx).

121. Functions of multiple angles are easily integrated.Jl f 1
cos mx dx I cos ma? c? (mo?)= sin mx.

m) m
Products of sine and cosine of multiple angles must be

transformed into sums by the prosthapheretic formulae,

I sin mx cos nx dx = J {sin(??i+ ri)x+ sin(m n)x}dx.

Exercise. Integrate

sin mx
t
cos 3x sin 5x, cos 2x cos 4$, sin 3x sin 2x.

The more general problem of integrating any quotient

..,,. . . f(cos x, sinx) .

of rational functions of sine and cosine,
~--

=
-

r. is

&amp;lt;j)(cosx, since)

waived for the present, as is also the problem of ration

alizing or reducing certain other forms, particularly

binomials, such as x^a+ bx71

)^.

122. Simple Fractions. The integrands- ,
-,
-

^--&amp;gt;x a (x a)
n

which present themselves very frequently, are recognized

at once as the derivatives of

log (x a) and --r -,
--

^-, ;n 1 (x a)&quot;

1

these latter are then the integrals of the former :

dx 11f dx = log(X a),
)x a n

a)
n n-l (x

S. A. G
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When the denominator is a quadratic we have

6f 2x f dxf
c

\

)

a a

bx+ cc
-, b( 2xdx ( dx

2^i
(*x= n\7~2t 2\n~^ C

\i 2 i 2\ro

b
( dx= \-c\

2(71
- 1 ) (x

2+ a2
)
n ~ l^

J (x
2+ a 2

)
11

To find this last I, put # = atan0, cfcc= a sec
2

. cZ$ ;

then I / 2 i 2\n
=

2n-i I
cos

2n &quot;

2&amp;lt;^0
~~ a known form. If the

j\x + a ) a j

numerator contained higher powers of x even up to x2n ~ l
,

the same would answer, yielding lower powers of cos 0.

n q /?

Exercises. Integrate

123. The simple integrations of Art. 122 prepare us

to attack the general problem of integrating Rational

Algebraic Functions of the argument. Such a function is

the quotient of two entire functions of the argument, as

\ v and we may suppose i(x) of lower degree than 0(o?);
&amp;lt;p(x)

for if it were not, by division we could at once make it so.

This fraction
i(x)f&amp;lt;f&amp;gt;(x)

we now break up by known

algebraic methods (see Appendix) into part-fractions

p 1 f A , Bx+ c
or the forms

;
r- and / 9 .

, -rr. The first we
(x of (x

2 2bx+ c)
n

integrate as in Art. 122
;
the second presents itself only

when c 62
&amp;gt;0, i.e., when the factors of x2 2bx+ c are

imaginary. In that case we put xb = u, c b2 = a2
,
and

Bu+cbB , . , . ,, . bx+ c . .

which is of the form .

2 2
.

, integrated

in Art. 122. All such rational fractions may thus be

integrated.
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124. Irrational Quadratics. We have learned to in

tegrate rational functions of x and also the radical

^/S = \/Ax2
-\-2J3x+ C; the question is natural : What com

binations of x and \/S can we integrate? The most

general form of any rational function of the two is

R+ TjS UR-VTS+(UT-RV)JS W+X+/S_____ whlch .
T2_ ~T~

W /^&quot;Sf=
I

---
-.

;
where the large letters are entire functions

Y Y\fS
W

of x. The fraction - we integrate by Art. 123. The

E^

fraction v ,_ we break up on dividing by Y into ^ and

.-, where E is an entire function of x. and f (x) is of

lower degree than (p(x). Let the highest term in E be

fr
T==

fyJl-lflx
-

.-
,
and by repeating the process we can

fc#T=,
a .known form

;

^
so -~

^= ^s ^ntegraute.

The proper fraction
f(x)/&amp;lt;j&amp;gt;(x)

we break up as before into

part-fractions of the forms 7 r- and , ., 9A / nn n \)l I A nni

where A C &amp;gt;B&quot;

2
. To effect the integration I

it suffices to put x a = -
;
then 8 turns into Q/v

2
,
where

Q is a quadratic in v
,
dx turns into dv/v

2
,
and the integral

becomes I

^ ,
the form just treated.

In dealing with I- -.-dx, it is best to reduce S and S

simultaneously to the form of the sum or difference of two
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squares, by the substitution

The coefficients of the first powers of z in the transformed

expressions of S and S are

Alm+ B(l+m)+ C and A lm+B (l+ m)+ C .

These we equate to zero, and thence determine first Im and

l+ m, then I and m. On carrying out the substitution our

J^idz7=, where 2 is a

(z
2+ a 2)pjz2 a2

sum of powers of z lower than the 2p
th

. Integrating by

parts we may now lower the exponent of (z^+ a 2
) down

to 1
;
so that our I is made finally to depend on one of

three so-called Normal Integrals :

/TX
f

&amp;gt;

J (32

To effect these integrations we must pass over either

to circular or to hyperbolic functions, thus :

Let z a hs u ; then

ahcu, z2+ a 2= a2hsu

hence

du
\ f =

J 2 hs u* J /2+ (a
2- a/2

)ht

= - ^^ tan
&quot; l

f
- -- .lit it

if a2
&amp;gt;a

2
.

Exercises. 1. Putting s = atan&amp;lt;, show that

f-\
~ 1^2

1
-|
^v/ (AJ f

= = rrr^tail&quot;
1

;

/ 2 2 / 2 i

or
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1 fl ya22 + g
f* -

&amp;lt;$

2a Ja 2-a2
g
a Ja^+z* - Jcfi-a2

according as a2
&amp;gt;a

2
,
or ft

2 = a 2
,
or a2

&amp;lt;a
2

.

2. Putting z =
asec4&amp;gt; and z =

asiii(j&amp;gt;,
show that

(II)
f ]

IQ
W^ + ^ + aV^ a2

J

~
2a *Ja

2+a2 g
zja&quot;

2 + a? - a Jz2 - a2

3. Integrate (II.) by z = he i^, and (III.) by z = a cos
&amp;lt;/&amp;gt;,

= a ht w.

It appears that a rational function of x and x/$ is

always integrable in terms of algebraic, logarithmic, cir

cular and hyperbolic functions. The foregoing argument
seems the simplest to prove the integrability ;

but the

process indicated may not be the simplest for actually

finding the integral.

125. Higher Functions. Thus far the only radicands

we have attempted have been of second degree, of the

type, S= Ax2+ 2Bx+ C. In case the radicand is of first

degree, F=Ax+ B, it suffices to put u = \/Ax+ B; then

Adx = 2udu, and any rational function of x and \fF may
be rationalized in u by this substitution. But the student

may naturally inquire : what if the radicand be of third

degree, as T = Ax3+ 3Bx2+ 3Cx 4-D ? where without loss

of generality we may suppose B = 0.

The answer is that, precisely as the irreducible form

dx
--. gave rise to certain simply periodic circular and

hyperbolic functions, of some of which indeed we already

had knowledge, but which we defined through these

integrals quite independently of any such previous know-

JdxJY gives rise to a new
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class of functions, the Elliptic or Doubly Periodic, of

supreme importance in Higher Analysis. We may write

r=
\

J
_______ 7

--

-e^x-e^x-e,) J +/T(x)

Here y and u are plainly functions of each other, but

exactly as the sine is a simpler function than the anti-

sine in

dx
I=\

so the lower extreme y is here also a simpler function

of the integral u than u is of the lower extreme y ;

accordingly we write, following Weierstrass,

dxr
00

-J

The theory of the ^-function cannot even be broached

in this elementary work.

Exercise. Show that
$&amp;gt; (u) + \/T($u) = 0.

Hint : Deriving as to the lower extreme ^ (u) we get

du l

whence, on inverting and transposing,

We may write T(&) = 4(p
- ejty-ejdt -

3)
= 4p

8
-g$&amp;gt;

-

as is common, without loss of generality. Now show that

126. Exponentals and Trigonometric Functions.

Combinations of circular or hyperbolic with logarithmic

or exponental functions or integral powers of the argument
of integration will often yield to integration by parts, as

\xnexdx = xn
e
x-n\xn - lexdx,
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\xnemxdx =
l̂ \(mx)

nemxd(mx)==ihQ foregoing form.
J wi J

I excos xdx = exsin x I e^sin x dx

= e*sin x+ ex cos x \ e
xcos x dx,

f X

We may proceed similarly with many such forms.

127. Illustrations. We shall now exemplify the fore

going methods :

1. f
+

^dx. Decompose into part-fractions

:jz+ 2 ABC

Put x in turn = l, 2, 3; thence in turn

5 = 2^1, 8= -B, 11 = 20]

whence

= | I g(aj
-

1)
- 8 log(a;

-
2)+ V- log(

-
3)

The denominator

for a; = 3, 133 = ^4, ^i=iji -

{.tr
-
3} means terms containing x - 3 as factor.



104 INFINITESIMAL ANALYSIS.

Substitute for A, transpose, and divide by x 3;

for x = 3,
Z- = J/.4; A =

J-.-

Substitute for A
, transpose, and divide by x 3;

8 +{a5_3} 3 ;
for a = 3, A&quot; =

To find 5, put + 1 = 0, or 0*^1;

,
or -7 = JB(-64), 5 = ^.

Note that the multiplier of all the J. s is the same,

namely, D/(&amp;gt;-3)
3 =

=-&-l$
l u ^&quot;L

A&quot;u+ B&quot;

For u = i, -4&amp;lt;i

Substitute, transpose, and divide by

For u = i, 8i = A i

Substitute, transpose, divide by u2+ 1
;

.-. u+ 5 = A&quot;u+B&quot;; .-. A&quot;=l, B&quot; = 5.

(__A[ (^U . ^f du t udu . .f du

The third and fourth integrals are Iog\/u
2+ l and

ian&quot;
1
^; to find the first and second, put u = tan&amp;lt;; then

= cos tfidfy
= |(0+ sin cos 0).
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Combining these results and returning to x we get

4. Putting x = a tan 0, show that

dx 1 x 2?i-3 f dx

an important reduction.

J-ĵ-=.
We may consider n as odd; for if it were

x 1

even, say 2m, then we should have

/y,2m 1 -_/V_i_l \/m_ 1 \ __ -( ____
).^ ^m_ 1

-
2V^-l a^H-1/

To factor o;
n

1, put aj = e
a

. Such will be the form of x

when aj
w = 1

;
for if x = a + ib, we have

a = r cos and b = r sin 0, x = r (cos + i sin 0) = r**,

where

r ~ /v/a
2
4- tf = modulus or absolute worth of a+ ib;

hence
cw = 1 = rV H&amp;lt;? = rw (cos nO+ i sin 71$),

and = sin n6; hence cosn0 = l, hence ?-
n = l,

hence ^7l = eind in accord with the general proposition that

the absolute worth of the nih
power (of a number) equals

the 7i
th
power of the absolute worth of that number. Now

the only powers of e that = 1 are of the form e2r
&quot; !

,
where

r is any integer positive or negative. For e^ = cos
&amp;lt;j&amp;gt;

-f isin ;

hence if e
1^ = 1 we have cos 0=1 and sin = 0, which two

equations consist only when is some multiple of the

period ZTT. Hence, if xn = e
ln0 = 1, we have

71$ = 0, or STT, or 4x, ... or 2?r, or 4?r, ...;

/\ r\ 7T A 7T -.7T 1 7T=
0, or

,
or 4

,
... or 2-, or 4

, ...;n n n n

x=l, or e^i, or e
6*

2
,

... or e- 01
,
or e~ ie

*, ...;
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2r7r
where Or = . It is plain there are only n distinct values

n
of x, i.e., only n distinct nth roots of 1

;
for e2nvi+ie = e

ie
. It

is best to arrange these roots (except the real one) in pairs

of conjugates or reciprocals, as eie i and e~ Wl
,

it is clear that

the reciprocal of an nih root of 1 is itself an nih root of 1.

We have then

w_ A _*_ B B
.

L
-. .-a i ,-.Q i -t) nr -a i iT

xn \ xe49* xe~* x eitf* x e~ ie* x\

For x=l we have n = nL, whence L = l. Generally,

n=: X^-l^ A +
x eie *

whence A = e*n
~^ = e~ id\

Similarly A = e
iQ
\

Whence, remembering that eie -\-e~
id = 2cos6, we get

A A 2xcosOl
-2

This then is the typical form of the part-fractions, the

others are formed by changing the subscripts of 0. There

nl
are . such part-fractions. We now have

2

f 2xcosO-2
jx2 2x cos + 1

2(1 cos i

a; cos
2

i

ff
d(x cos 6) 1 ,03 cos

= \-7- av2 . ^2=
-^-Z tai1 T-TT

j(x cos0)
2+ sm sm0 sm0
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Hence we have as final result :

X COS

2 sin ^-^ tan ~ 1

sin
n

fx
m ~ *

1
= same, with mr for r in multipliers of

x l

log and tan 1
.

Jdx The linear factors of xn+ 1 are plainlyx -j- 1

a^ en
,

x e n
,

x e~ n
,

... x e~ n
,
...

since e 5r^ =
e&amp;lt;

2r1
&amp;gt;

r; = - 1 .

We may again combine conjugate terms and obtain

results of the same form as in (5) with 2r 1 put for 2r.

,_
j*

dx _l(dx If dx _ ?1 -

J a^ri~2j^^T&quot;&quot;2j^4rl~

dx lf dx If dx

_lf da; _lf_^_ If ^ =9M
4Jfl^-l&quot; 4jo^+l 2Ja;

4+ l~

f &amp;lt;ia;

9. l-g Y-
PU^ ^ = ^3

&amp;gt;

an(i decompose; or apply (5) at
J X ~~~ L

once.

dx f dx f dx

11. Multiply the numerators of the foregoing by x, x2

etc., and evaluate.
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12. Find the area of an arch of the cycloid :

x = a(0 sin 0), y = a(l cos 0),

A = f%dx = a2

p(
1 - cos O^cie

- sn + +
2 Z Jo

13. Find the length of a cycloidal arch.

Since sx = *Jl + yx
z and 8y

= *Jl+xy
2

,
we have

between proper extremes. Now

yx = ye-Qx = sin 0/(l cos 0)
= cos 0/sin &amp;lt;

= cot 0,

if
2&amp;lt;j&amp;gt;

= 0. Hence

v 1 4- yx
2 = v 1 + cot

&amp;lt;

2=
I/sin :

ca? = a(l cos
$)&amp;lt;i$

= 4a sin
&amp;lt;^d^&amp;gt;.

Hence

f . r v r v}

s = 46^1 sin0a0 = 4a-j cos r =4aicos0[ =8a
o

jo J -

Here the extremes are and 2jr for 0, and TT for

in O)
3

. (sec O)
2

. &amp;lt;i$= J(tan O)
4

.

f _^_ _ f_ dx _ f

Jsin^cos^
3

J tana? cos #
4

J tanx

=
log tan x+ J tan of.

/sin u . cZu f / 2 7 o / , \ 3
. = v tan it. secu . du = * (tan itK

(cos it)*
J

17. lsinte-
IB
cos-u*c?u. This may be written

I tan umcos um+n+ 2

d(isni u),
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since sin u = tan u . cos u and d tan w = sec u2
du. Now, if

= 2c, where c is a natural number, then

hence the integrand is rational in tanit and integrable

at once.

-.0

19- \r~r~, ?\5&amp;gt;
and show how to integrate L 9

- w
J(a

2+ ^2
)
2

J(a
2+ a;

2
)
n

inte^rate

21. --z. [Hint:
t

&quot;T&quot;C

cxdx f ca?
2
rfa; f ex ,

adx
- [Fut a =w

aa;
5

&amp;lt;ia? ax5dx

ax5
7 f 6dic f bdx--

7xCUC, ^ ,o^ [&quot;ZiiTi

--
4T\9-

+cc42 J7 + 3^5
Ja5

5 l ^c
42i

a5
5
(l

It is often well to put xn= u, substitute, and then choose

so as to make the result as simple as possible.

f adx fax2dx f axsdx

)xxQ-z }Y-XQ

^
xdx f dx f cfa;

28. . For u =
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- r adx f cdx f 2 a; , f ccfa;

30.

31
f

.
--

i
dx. [Hint : Put u = ^.

J a;
7+ x~*

fa5*-a;* , f d/2 + .

U^-rdo;, a;
4 -

J^i+^i J \:3_

Jaa5cl+aj*-,

+ x~

*
32.

33. Show by deriving (ax+ b)P(cx+ d)
= ppQv and then

integrating the result that

.....

This formula lowers the exponent of P by 1
; solving

as to the integral on the right we get a formula (A
7

) for

raising the exponent of P by 1.

^(2-3*0^,
(l

35. (a^+^i^- 1^. Put un = X] then

1 ^-i= -xn
dx;

Jl
f

=s- t

Apply 33; whence

. ...(B)

This formula reduces the exponent &amp;gt; by 1
; solving as

to the integral on the right we obtain a formula (B ) for

raising the exponent of (au
n+ b) by 1.
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36. \(au
n

J
v

.

a(m+np)

-n)((au
n+ b)Pu

m - n - 1 du\. ...(C)

This formula loivers the exponent of u by n, the exponent

within the parenthesis; solving as to the integral on the

right we obtain a formula (C ) for raising the exponent

of u by n.

37.

Lower the exponents, first of x, then of (1 #2
).

Similarly (x\\-x^dx, (x\l+x*^dx, (x\\
- x^dx.

- x*dx
_

3x-x*
;

.

_,OO. I
-

^
-

.----- : - .--_ I .
~

75- S1H 00,

-a;2

Lower exponent of x, raise exponent of (l x2
).

dx dx . ,.

;
raif exponents-

... f xmdx f (ia;

40. I , , 1
-

,
,

tor m even and m odd.
JVl x2 Jxm\/lx2fqxP(ax

2+ 2bx+ c)*dx. Bring the parenthesis to the

form of sum or difference of two squares, and proceed as

before.

42
f dx f d(x-2) f du _ r

&quot;*

J(a
2-4a+ 3)* J(^2

2

-l)i Jx/t?77!&quot;

= he
-
\x- 2)

= logO - 2+ x/^-

43. U/

or
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44.

45

2

. L- 2x/^2
~+x~+ldx, {

\x-\

} (_dx_ f _dx_ f xdx f x*dx

l*/ax*+ bx JVa^T6^ \J^^ )J&*-2a*

Jx
2dx

*Jx
2~+2ax

f
dx

(

dx dx

Jx**/2ax+ x2 Jx2*/x2 -2ax

\x2\/2axx2dx.

dx

xdx

(x-i)dx_ r

5ic
2 -18a; l7ViOaj2-22icH-13

&amp;gt;

J

50. f- _^_ ^2ht-i
Jx/^-a^-6 v cc-6

.= 2 log -/==- ,



CHAPTER III.

APPLICATIONS.

DEVELOPMENT IN SERIES.

128. A most important example of integration by

parts, I uvxdx=uv\ uxv dx, is the following :

-
\&amp;lt;t&amp;gt;&quot;(y)y

dy =-

(_iyi-i /_iv*f
&quot;-%=

-

--j^
*(1%)+5-^-J^

n+1
\y)y

n
dy.

Taking and h as extremes of integration, and re

membering that
\&amp;lt;p\y)dy

=
0(/i) 0(0), we have, on adding,

r*

When the last term is neglected and n is increased with

out limit, the result is Bernoulli s Series. This has the
s. A. H
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disadvantage of alternating signs, to remove which we

may put &amp;lt;f)(a u) for
(j&amp;gt;(y) ,

then

I
&amp;lt;p (a u)du = U(p (a u)+ I

0&quot;(a u)udu,

since { (j&amp;gt;(a u)}u = (f&amp;gt;&quot;(a u).

As before then, we get, on inserting extremes and h,

L

+p &amp;lt;j&amp;gt;

(n+l\a - u)u
ndu.

Now put x+ h for a, and there results

If
\n}

(
&amp;gt;

h - u)u
ndu.

129. Taylor s Series. This is by far the most important

series, expansion, or development, in the Calculus. It was

discovered and enounced by Brooke Taylor (Methodus
Incrementorum Directa et Inversa, 1715), without, how

ever, the last term or Integral, the so-called Remainder,

n being boldly put = QO. This Remainder, however, Rn ,
is

plainly an essential part of the series, and only in case

Limit of Rn is are we justified in omitting Rn and

extending the series to oo. We notice further that the

process by which this series is generated is admissible only

when and as long as
(j&amp;gt;

and its Derivatives and Integrals

may be derived and integrated by parts. Such are the

conditions, not so much of the validity as of the existence

of Taylor s Theorem.

130. Lagrange s and Cauchy s Forms. This Remainder

Rn tells us nothing about what properties $ must have in

the interval h, in order that Lim. Rn = 0; but it may be

brought into several forms more or less convenient for
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testing whether its limit be 0. Thus by the Theorem of

mean value,

1 ffe

Rn =
&amp;lt;t&amp;gt;(

n
+V(x+h- u)undu

\n J
1 o

1 ffc

+ Oh) undu =
J

Such is Lagrange s form. Similarly we deduce Cauchy s:

Rn= -
&amp;lt;f&amp;gt;(&quot;+V(x

+ 0/0 (1
-

e)
nhn

h

du=
~
71

6

Here 0, and therefore 1 0, are proper fractions.

Note that the vanishing of the Limit of the Integral

Remainder, Lim. Rn = 0, is the necessary and sufficient

condition of the existence of Taylor s Formula
;
while the

vanishing of Lagrange s or Cauchy s form of the Remainder

is a sufficient, but not always a necessary condition.

131. Interpretation of the Series. What does this

series signify or effect ? Suppose we know the value of

&amp;lt;t&amp;gt;(x)

and its derivatives for some special value of the

argument, as x
;
then this series furnishes us a rule for

calculating the value, of &amp;lt; for any other argument, x+ h.

For example, we know the value of sine and of its

derivatives, sine and cosine, for the special argument-

values, 0, -7T/6, 7T/4, 7T/3, 7T/2 ; accordingly, this series enables

us to calculate the value of sine for any other argument-

value and express it through sine and cosine of any of

these special values. In the general case we are said to

develop or expand the function &amp;lt;p

in the neighbourhood h

of the special value x. For instance, let us expand the sine

in the neighbourhood of 0. Here x = 0, = sine,
&amp;lt;/&amp;gt;

= cosine,

0&quot;

= sine,
&amp;lt;fi&quot;

= cosine,
&amp;lt;/&amp;gt;

lv = sine, etc.
; also, for the

special value all the sines or even derivatives vanish,

while the cosines or odd derivatives become alternately
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+ 1 and 1
; moreover, the Remainder, in Lagrange s

fon+l /j^_j_l
\

form, is seen to be , sin f -^ Tr+
Ohj,

and this is

fon+l

certainly not greater than -, and the limit of this

latter is 0; lastly, the resulting series is absolutely con

vergent for all finite values of h. We have, then,

Such is the well-known development of the sine in

the vicinity of the argument-value 0. Quite similarly,

let the student develop cosine and the exponental e
h

.

132. Stirling s Series. The most important argument-

value in whose neighbourhood we develop functions is

the value 0. Putting x = yields us a special formula

for this development, called after Maclaurin, but first

given by Stirling (1717) :

Of course, the derivatives are to be formed first, and the

critical argument-value inserted afterwards (Art. 67).

Clearly, any other symbol, as x, y, z, may be put for h.

133. Relation of the two Series. Maclaurin s then is

only a special case of Taylor s formula, for expansion in

the vicinity of 0. But by a mere change of variable,

equivalent to a change of origin, we may generalize

Maclaurin s into Taylor s formula. For then x will take

the place of and x+ h of h in the function
&amp;lt;;

but the

vicinity h remains unaffected. The student must note

carefully the significance of the symbols in Taylor s series :

x is the special or critical argument-value, x+ h is the
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general argument-value, h is the neighbourhood. In

Maclaurin s formula h has two quite distinct logical uses :

on the left, in
&amp;lt;p,

it stands for + h, the general argument-
value

;
while on the right it denotes the neighbourhood

only in case the critical value is will the general

argument-value be the same as the neighbourhood. This

double logical use of h rather obscures the significance

of Maclaurin s formula. We may perhaps set the matter

in clearer light by calling the critical argument-value a,

the general argument-value u
;
the vicinity will then be

u a, and we shall have

For a = 0, and only for a = 0, this becomes Maclaurin s

formula, and the neighbourhood u a coincides with the

general argument-value u.

134. Development of Logarithm. When a function

can be developed in the neighbourhood of 0, Maclaurin s

formula may be used, but not otherwise. Some functions

do not admit of such development, as the logarithm ;
for

plainly log x and all its derivatives become oo for x = 0,

wherefore our part-integrations used in the deduction of

the formula are seen to be inadmissible. But we can

develop the logarithm in the vicinity of the argument-
value 1. Thus:

whence

Here by Lagrange s form we have
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It is plain that for h not greater than 1 this expression

approaches as limit, but for h&amp;gt;l we cannot affirm so

much. For negative h, however, this form of the re

mainder is unavailable, since l + Oh may then be &amp;lt; 1.

But by Cauchy s,

-i Q $W?n+1
-

&amp;lt;j&amp;gt;^(x+eh)
=

(
-

i)
+
AL_|E*_.

I + Oh-

TI? z. ^ -x t,-i . ,, t
If /\&amp;gt; 1, then z /rr is finite while (- ^-J is the 7i

t

1

power of a proper fraction, and hence has for limit,

Hence

135. Another Series for Logarithm. The series is con

vergent within this narrow neighbourhood but not without

it. However, we may readily deduce another series with

wider range of rapider convergence. For, to make the

alternation in sign disappear,

rni .- l+k ,,The improper fraction - v we may equate to -- -

-, then

Hence, knowing the logarithm of n, we may find that

of n+ 1 by use of this very rapidly converging series
;

nor need n be integral.
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136. Expansion of Anti-tangent. Let us develop

&amp;lt;p(x)

= i&n.- lx

in the vicinity of 0. We have

-

Hence 0(0) = 0,
/

() = 1
&amp;gt; 0&quot;(0)

=
0&quot; (0)=-[2_, ....

In general the even derivatives vanish for x = 0, since

( i)*p
=

(+ i)
2^

5
and the odd derivatives are factorials with

alternating signs ;
hence

g
.

Let the student show that Lim. Rn = for -!&amp;lt; +1.

Only within this narrow neighbourhood does the expansion

hold.

137. Circle of Convergence. It is common to deduce

this series thus :

fx
I /I 2 i 4
I I J- *C ~i *^

J
tan

~ lx =
o o

But we have no logical right as yet to declare that the

integral of the sum equals the sum of the integrals when

the number of summands is not finite.

It is remarkable that the series should hold only within

a certain range, whereas the integrand remains finite and

devoid of peculiarity without that range; thus, for o?= 2,

= -. It is the fact that the integrand becomes.

1+sc2 1+45
oo for x= i, and that the absolute worth of i equals the

absolute worth of 1
,
that limits the circle of convergence to

the interior of the unit circle a fact which the student

may hereafter understand and appreciate.
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138. We may now deduce the Binomial Theorem by
developing &amp;lt;f&amp;gt;(x)

= (l+x)
m in the vicinity of 0, thus :

Hence

By Lagrange s form,

the limit of which is for x between +1 and 1.

To expand (a+x)
m we write

- or =
a/

according as a&amp;gt;x or x&amp;gt;a, and apply the preceding
formula.

139. Newton s (?) Method. Often the straight-forward
derivation of

&amp;lt;p

would lead to very complicated expressions
for the derivatives. In such cases it is well to find the

simplest rational or integral relation connecting with

its first derivatives, and then to derive the terms of this

relation separately by Leibnitz s Theorem
;
in this way we

may arrive at some simple general relation connecting the

higher derivatives, from which we may then obtain them

successively. Thus, suppose

(x) = cos(m sin
~ l

x).

Then *Jlx2
&amp;lt;/&amp;gt;

(x) = m sin (m sin
- l

x),

7=2== &amp;lt;i&amp;gt;v 1 #

whence (1 xz
)&amp;lt;j&amp;gt;&quot;(x) x&amp;lt;/&amp;gt; (x) +m 2

(p(x)
= 0.
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Derive n times this Differential Equation of second

order :

+m2
&amp;lt;j&amp;gt;(

n
\x) = 0,

or (1
- x2

) &amp;lt;/t

n
+*&amp;gt;(x)

-
(2w+ I)xfi

n+l
\x)+ (m

2- n2
) &amp;lt;fi*\x)

= 0.

This is an equivalent Differential Equation of (n-f 2)
th order.

For the special value x = 0, we have

0&quot;(0)
= -m2

0(0), 0&amp;lt;

w+2
XO) = (w

2-m2

)0&amp;lt;

w
&amp;gt;(0).

But 0(0)
= 1

, (0)
=

;
/.

0&quot;(0)
= -m2

,

0-(0) = -m2
(2

2 -m2
), (0) = f

*(0)(4
2~ 2

)

and so on, while all the odd derivatives vanish. Hence

cos (m sin
~ l

x)

m2
2
m2

(2
2-m2

) 4
m2

(2
2-m2

)(4
2-m2

) 6 _
;

&quot;12&quot;^ ~@7 [6_

Let the student test R n and the range of value of x.

140. Bernoulli s Numbers. A very remarkable expansion
% e

x
-\- 1

is that of
^,

or still better, of Jo;
-

.,,
which equals

C &quot;~ X o &quot;~*
-L

This latter is an even function of x, since it
&amp;gt;

&quot;

/yi /y

equals ^
hct

^,
which is the product of two odd functions of

x
;
hence its expansion can contain only even powers of x.

nt*

If =i
0(35), then

&amp;lt;f&amp;gt;(x){e

x !}=#; derive this equation
6/

&quot;^
J.

successively, put x 0, and there results :

0(0) =1, (Q)=-|, A)g.
///

(0)
= 0, 0-(0)=-^ ,etc.

We may, of course, insert these values and so obtain the

expansion desired, but it is customary to write it somewhat

otherwise, thus :

. ex+I x
,

x

.2n
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141. These B s, called Bernoulli s Numbers, having been

introduced into analysis by James Bernoulli (1654-1705)
in his Ars Conjectandi, are of great interest and importance.

They are fractions, apparently lawless in their values, yet

only apparently. Fifteen were given by Euler, the next

sixteen by Rothe, the next thirty-one by Adams, and

Glaisker has published the first 250 up to nine decimal

places, with their (Briggian) logarithms up to ten places.

The first nine Bernoulliaiis are in order :

1 1
_!_

1 5 691 7 3617 43867
6 30 42 30 66 2730 6 510 ~lW

Now let the student show that, putting x = 2u,

9/,
^ ?/ 4 /ii2n

and putting u= iv
t

Also, expand the secant in the vicinity of 0, and writing

where the E s are Enters Numbers, show that the first four

Eulerians are in order: 1, 5, 61, 1385.

EXERCISES.

1. Prove logsec =~ + 2^Vl6~ + 272^+..
\ Li l

b
_ 15.

2 2 4 24 17
2. Prove i&nx = x + x* + ~xf&amp;gt;

-\ -= x&quot; + . . . .-=

If., li. II

We have
&amp;lt;f&amp;gt;

= tan ,r, ft = 1 +
&amp;lt;/&amp;gt;

2
, i&amp;lt;^&quot;

= ^ .
&amp;lt;f&amp;gt; t

etc.

7-2 rp&

3. Prove e** = 1 +x + ^
-~ -

..., e** = 1
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-

4. Prove - 1 +x+ T^-
We have

&amp;lt;f&amp;gt;x

= e
sinx

, &amp;lt;f&amp;gt; x)
=

&amp;lt;/&amp;gt;

. cos
;&amp;gt;, &amp;lt;/&amp;gt;

(n

5. e
tanz =

L

We have

+ W, etc.

93 95

6. Prove logtanf . +
a:J

=2x+ x3 +
-^~

^+ ..., and show

that logtan(45 15&quot;)
= 0-00006315.

f w(?i
2 -2 2

) /
. )

7. Prove sin TIJ; = cos x in sin a;
- -^

TO
-

(
Sln ^) + r

cos nx = i _
I

We put &amp;lt;^(w)

= cos(7isin~
1
w)
= cos?^, and apply Art. 139.

The series terminate for n even.

Similarly prove that

15.

cos(m) = cos x
(l

- ~-~-
(sin a;)2 +^

~ 1^
2 &quot;

3)
(sin .x)

4
...

series terminating for ?i oc?c?.

8. Similarly putting ^(f*)-cos(nco8&quot;
1t)coii^ deduce ter

minating series in cos x
t
for cos nx and sin nx, for 71 even

and for n odd, and by help of these series and the

series of 7 obtain two expressions each for sin 3x, sin 5x,

sin 7x, sin 9, sin 2a;, sin 4x, sin 6, sin 8x, cos 3a;, cos 5a;,

cos 7x, cos 9.1-, cos 2x, cos 4^;, cos 6?:, cos 8.r.

9. Expand hs
,
he a;, ht a;, and hs 1

;/:,
he&quot;

1
.!

,
ht&quot;

1
^.

___ 1 a
&amp;gt;3 13

10. Prove

1 1111.31
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12. ^^--W-c^ + c^-..., where Cn =l +
l
+

*

+ ... +1.

13. Prove 2 (cos z)
2 = c - c^ + c^- ..., where cw

= .

1 4. Prove 4 (cos *)
3 = & - k^ + &

4
z4 - . . .

,
where kn =

3
&quot; + 3

r&amp;gt;

1 5. Prove cos x he x = I - &
2
,i
4 + k

4
xs - . . .

,
where L,n

= ^
.

16 Prove (1 +x)
x = 1 + ,

2 -L3 +^ - -
AJ o 4

r
-

,

a;

18. Prove cos 1

^ r*ir-iii* l =
2

.

19. Prove by expanding cosec^ that cosec 8&quot;-76 = 23546, and

if this angle be the sun s parallax, then the sun is

distant 150,000,000 kilometres (circa).

20. In the preceding developments ascertain the limits of con

vergence.

EVANESCENT OR UNDETERMINED FORMS.

142. Removal of Factors. It often happens that for a

certain value of x, as x = a, both numerator and denomin

ator of a fraction, Q-2 become 0, and the fraction loses all

\js(X)

meaning in this form. However, expressions may take

many forms, yielding the same value on computation, and

it is in fact generally possible to change the form that

becomes indeterminate and senseless into some other that

retains its sense and yields a definite value, even at the

so-called critical point x = a. When
&amp;lt;f&amp;gt;(x)

and -^(x) both

vanish for x = a, there will generally be present in each,

explicitly or implicitly, the factor x a. When this latter
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can be detected, the simplest needed change of form is

effected by removing it from both &amp;lt; and
i/&amp;gt;\

Thus the

xs a3

fraction ^ takes the meaningless form for x = a,
x2 a2

because of the presence in both terms of the factor x a.

Removing it, supposing x not = a, we get the equivalent
/v2

j xy
rv* I s* 2

form --
,
and this takes the definite value 4a for

x+ a

x = a. In general, if

(f&amp;gt;(x)=(xd\&amp;lt;f&amp;gt;1(x) and \^(x)
= (x a)\^l(x),

then ,,-{ takes the undetermined form ^ for x = a, but

always = y , (for & ?io = a), and /m value remains
\]s1(x)

definite, namely, even for x = a. If the factor x a

were repeated in both
&amp;lt;p

and
i/r,

so that

then we should reject (x a)
r from both terms.

143. Removal by Derivation. Often, however, it will

be difficult or impossible to recognize the vanishing factor

or to perform the division required to reject it. In such

cases we may generally employ derivation successfully.

d&amp;gt;(x} (x a]&amp;lt;t&amp;gt;^(x}
, . , ,

For we may assume ^-4= 7- f r / v which we know

= I
-.-( (for x not = a), which = l~, even for x = a.

Now, however,

cf&amp;gt; (x)
=

fa(x)+ (x
-

a) ^(x), \js\x)
= ^(x)+ (x- a)

Hence, if both
&amp;lt;/(&)

and ^-/(a) be finite, we have

\fs(a)

and this we know
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144, Repeated Factors. If the factor (x a) be repeated

and present r times in
&amp;lt;f&amp;gt;

and
i//%

it will require r deriva

tions to remove it, and we shall have

where {x a} 1
and {x a} 2

vanish with x a for finite

derivatives of and i/ hence

i 4.U-and this we know

145. Illustrations. Hence, to evaluate such illusory

forms as
^,

we derive both numerator and denominator

and form the quotient of these derivatives for the critical

argument-value, as x = a; we continue this process until

we arrive at a form not illusory for this critical value
;

the value of this form for the critical x is the value sought.

1

Thus

TV x &amp;lt;t&amp;gt;(

x ) ex e- x 2x ,

F(x}= , \= :
- becomes ^ for ^= 0:

\p{x) x sin x

-2 . ,, .

:
- asrain takes the torm

&amp;gt;r
tor x = ;

1 cos a?

sin x

^=2, for ^ = 0; hence
cos x

Expanding the exponentals and the sine, we find the

factor x actually present in third degree, wherefore a third

derivation was necessary to remove it entirely:
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\{s(x)

~
x sin x

x \x
6
-+

|5 }

2

+&amp;lt;*&amp;gt;.

The method here followed is often very useful.

146. Application of Taylor s Series. We may also treat

the subject by aid of Taylor s theorem. Developing ^
and \{s

in the vicinity of a we have

n

Now if 0(a) = and \fs(a)
= 0, then ^ a is plainly a

factor of 0(#) and of ^(a;), or at least of the controlling

terms in the expansions of and
\/s. Rejecting it we have

If the successive derivatives of both and
\fr

vanish

for x = a up to but not including the 7i
th

,
then we have

r- -^ T- -.

Limit -&quot; = Limit

always provided that any such limit really exists, that

&amp;lt;/t

n
\x) and \fs^(x) do not lose their meaning for x= a.

If they do, then this method of derivation fails.
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147- Simplifications. It often happens that we are

able to recognize in
&amp;lt;j&amp;gt;

or
\[s,

or both, certain factors that

do not vanish, nor become infinite
;
for the critical value

x= a. If f(x) be any such factor, we may set it aside

and introduce it finally into the result with its proper

critical value /(a). This observation is important, since

we may thus sometimes greatly simplify and abridge our

. sin x x cos x
,

, ,.

work. For instance, u = -T-- \r~~~ takes the form ^
^sin x) U

for a5 = 0. Hence

T . sin x x cos x T . cos x cos x+ x sin x
Lim u = Lim -. -5 = Lim

1

-r-. .-=

X=Q x=0 (sin a?) 3=0 3(smx)
2cosx

T . x 1= Lim ^-. = -
.

X=Q 3 sin x 3

Here Lim cos a; = 1, which we insert instead of cos a?.

x=

The principle herein assumed is the familiar one : the

limit of the product is the product of the limits.

148. The Form . There are several other illusory
oo

forms, all of which may be brought to the fundamental

form
^.

Thus, if
&amp;lt;p

and
i//-

both become x for x = a,

the quotient -?T-T takes the form . But we may write

Deriving now we get

Whence, if L
, { be not but some definite,



EVANESCENT OR UNDETERMINED FORMS. 129

whence it appears that in case
&amp;lt;f&amp;gt;

and
i/r

both become

oo we may proceed as when they both become 0.

149. Other Illusory Forms. Another form is
&amp;lt;/&amp;gt;(x) \^(x)

when
(p

and
&amp;gt;/r

become oc . This may be written

., N 1 1 -v u
(h(x) \ls(X)

=--- = -- =
A&amp;gt;rv

it v m&amp;gt;

where i& and v become 0, as
(/&amp;gt;

and ty become oc .

The form (j)(x)\fs(x), where tends to and ^ tends

...
(f&amp;gt;(x)

to oc tor x = a may be written
-^

=
^.

The forms (p(x)^
x
\ where tends to 1 and

\fr
to co

,
or

to oo and
\fs

to 0, or both tend to 0, assume the

illusory forms 1^,00, 0; to evaluate them we pass to

logarithms and proceed as before.

150. Illustrations.-!. For x = 0, =
* =

. But

T . , sec x . cot x . T sin 2x TLim 16 == L ^ -=iL^- = L =1.
2 sec 2x . cot 2a; sin x cos a;

a; 1
2. For 03=1, u = ^r

i

- becomes oo oo . But
051 log X

x log x x -\-~\.
,1. _o_!^^ _

_

(a; l)logaj

Hence, by deriving,

Lu = I/&quot;
& ~ A

! = L

3. For x = x, u = 2* tan ^ becomes oo . 0. But for x = y,

tan(a.29 .

u = ---V &amp;gt;

and
,hr

S. A. I
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hence

T,= L =- .

2^ log 2

4. For # = 0, it/ = xx becomes 0. But

log u= x log x= J* becomes
^

for x = 0.

x
1

Hence

1

5. For a? = 00, u = o;a; becomes 00. But

IOP^ u = becomes for a; = oo. Hence
a: oo

= -= for cc = oo; /. u= e
Q=

6. For 05= a, u = (2 x/a)
a becomes 1 . But

becomes ^ for #= a. Hence

a

1/q 2=-
-TTO; TT

2
a

Here we set aside sin with its critical value 1.
2a

Sometimes a slight transformation is more effective than

derivation, thus :

7. For x = Q, u = x&quot;*

x
becomes 0. But

alogx a am a=---
n nm+nox n

= e
a n

.

n= - for x = Q;
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Often convergent expansions may be used, thus :

i

(14-xY e
8. For x = 0, u = - ~= n Deriving, we get

.X
1

Now (1 +x)l~
l = S^^, and this = e for x = 0. The { }

*

(tan

icX
35 /0\

)
becomes (^) . But

iX/ / \\J/

and this vanishes for x =
,
hence u = e=l.

10. For ic = 0, u = -r-.
-^ 5 becomes oo oo . But

(sin xf x3

af-a n-^+~,,.x3
(sm xY \ p o

&amp;lt;

-= oo tor cc = 0.

Often a derivative presents itself under an illusory form

and must then be evaluated by one of the foregoing

methods, thus :

11. In -a**+2a?a*-at= ^ and this

takes the form at the origin (0, 0). But

Lys=L7r ,-- = L
(0, 0)

whence (L2/a;)
2 = 2, ~Lyx=\/2.

(0, 0) (0, 0)

The graph of this equation is of 4th
degree and has a

double point at the origin. Let the student construct

the curve in the vicinity of the origin and draw the two

symmetric tangents.
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NOTE. It must be carefully observed that in the fore

going division of numerator and denominator by the

common factor x a it is assumed that x does not equal a,

but a5=|= a. For x = a this division would lose all sense.

rm, C ,
. .,

, .,

The most we can affirm of -^~^ = }
-ffV-4 is that it

\M (-)^i()
equals ,\ { for all values of x not equal to a, that is,

^i(^) A
for #=|= tt

&amp;gt;

and that it approaches the value j\ ^
as its

limit as x approaches the critical value a indefinitely.

EXERCISES.

i en, ^ A T
4 -5 2 + 4 , . . 3

I. Snow that L -= =- 7 lor x= + 2 is -.
#4 - 3x2 - 4 5

T x -&amp;gt;
3 _

2. J^rove L . =-
;

= A/K lor x--

T
- - a - a ax -a K .

3. Prove L - .

-= - 5a for x =
x2 - 2ax - a2 + 2a*j2ax - x2

. -r, T sJX tJo, + \JX a 1 r-r. , 7-1
4. Prove L .

- = ~r= for x = a. [Put oj*a-f^.l
2 2

T
-

f
5. Prove L- - = - - for x = l.

6. Prove L.
~

= -2 for 1.
1 - x + log x

o -r* T x sin x 1 .,

8. Prove L--= = 7. for z = Q.
x3 6

sin T*

9. Prove L ~ = oo according as x nears from + or - side.

10. ProveL-= -2 for a; = 0.
sin x x

.,
, -T, T sin x - x cos x 1

11. Prove L-^ ^ = - for x = 0.

(sm x)
3 3



EXERCISES. 133

2. ProveL-1 for z =
log tan 2a;

13. Prove L{cosec x*-x~*} = 0, J,
^ for x = Q and ~1, 2, 3.

1 4. Prove L J . h -: h = ^ for x = 1 .

(log x l-xj 2

1 5. Prove L fT
- -v - -

j =4 for a- = 0.

\log(l+z) x) 2

16. Prove L j^&quot;-

1
- + ^-^_A = 1 +1 +U ... =^ for ;

=
0,

IT!&quot; * i
7T

W

and L-^r -- -rrh = l+^ + 7^+---^^r *or a?= 0.

17.
L.w&quot;loga:

= for a; = 0, n&amp;gt;0, but =00, n~ 0. Thus it

appears that log a; increases (negatively) without limit

as x nears 0, but its infinity is of lower than any finite

order. Examine the same expression for x = GO .

18. Prove Laf=l for z = 0.

19. Prove &quot;Lx
xH =l or for jc = according as w&amp;gt;0 or &amp;lt;0.

i

(tan

/ \ *^
w

i

^^j =
1, e

3
,
oo for a; = according as n = 1, 2, 3.

i

21. Prove L(l +sxf
+C
= e

s
for a; = 0.

i

22. Prove Lx*^ = e for =1.

23. Prove L-^=l for 25=1 and L^ = lo for x= - 1.

i
^ r

ing as m&amp;gt;%, m = 7?, m&amp;lt;%; and =
-j

lor

25. Prove L{hcx-cos-x2
}/ic

6 =
^^r for
360

, N n

^s)
26. Prove L

-j -| =1, e~^, for w = 0, and =1, 2, 3.

27. For a = prove (sina;)*&quot;^!, (muff&quot;*^^.j



134 INFINITESIMAL ANALYSIS.

28. For a; = o&amp;gt;

29. Prove that ic
3 + ?/

3 -
3axy = has a double point at origin,

and find values of yx there.

30. Similarly for (x
2 + f) = a*(x

2 -
f), f + (a*

(f + axy = aP(a* + 2ax-a?) t
and (f

- a

Ans. yx = 1, 1, 1, l/s/2a. Interpret geometrically.

MAXIMA AND MINIMA.

151. Definitions. When a varying magnitude increases

up to but not above a certain value and then decreases,

that value is called a maximum
;
when a varying magni

tude decreases down to but not below a certain value and

then increases, that value is called a minimum.

If the series of values through which the variable

moves be discontinuous we may say that a maximum is

greater, a minimun is less, than the adjacent values
;
thus

in the Binomial expansion of even powers, the coefficient

of the mid-term is the maximum. But if the series be

continuous, then the notion of adjacent values is no

longer exactly definable, and we must substitute the

notion of values close at will in the series of values,

saying a maximum is greater, a minimum is less, than

any value close at will to it in the series of values of

the variable. Symbolically, /(a) is a maximum of f(x)

when f(a)&amp;gt;f(a ^), and a minimum when f(a)&amp;lt;f(ah),

h being small at will.

152. Relativity. We notice that in these notions there

is no reference to absolute but only to relative size; in

fact, a maximum may very well be less than a minimum.

Thus a boy may inflate his balloon to a diameter of 12

inches, then let it shrink to one of 10 inches
;
then inflate
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it to 14 inches, then let it shrink to 6 inches
;
re-inflate

it to 9 inches, let it shrink again, and so on. In this case

12, 14, 9 are the maximal diameters, while 10, 6 are the

minimal
; they alternate with each other, and the maximal

9 is less than the minimal 10.

153. General Analytic Condition. The analytic problem
of Maximum-Minimum is this : Given any function of
the argument x, as u =f(x), required to find the values of
x for which u is a maximum or a minimum. The

definition of Art. 151 yields us readily a necessary con

dition. For if we suppose x increasing, as we may, then

so long as u increases the derivative ux is positive, being
the limit of the quotient of two positives A^/ and A#, or

of two negatives A?/ and Ao;
;
but so long as u decreases

the derivative ux is negative, being the limit of the

quotient of a positive and a negative, A;*/ and Ax or

A^/ and AOJ. Hence at that value of x which yields a

maximum the derivative ux must change its sign, with

increasing x from + to
;

while at that value of x

which yields a minimum the derivative ux must also

change its sign, but with increasing x from to +.

This change of sign of the derivative ux ,
from + to

for maximum, from to -f for minimum, is the necessary

and sufficient condition that a value of x yield maximum
or minimum of u.

154. Conditions in Detail. If now ux be finite and

continuous, it can change its sign only in passing through

the value
;
hence the general condition : For values of

x that can yield a maximum or a minimum of u, the

first derivative ux must vanish. But even for ux finite

and continuous this condition though necessary is not

sufficient. For ux might sink down to the value and

then rise up from the value 0, and thus vanish, attaining

the value but not passing through the value 0, not
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changing its sign. In that case the function u would

increase more and more slowly, at last stop increasing

and immediately begin again without ever decreasing at

all. To test whether the derivative ux actually changes

sign when it vanishes, we must form the second derivative

u&quot; or u-2x- While ux is decreasing, sinking down to 0,

the second derivative u2x is negative; if now ux passes

through 0, keeps on decreasing, then u2x remains negative ;

hence, if ux = and u2x is negative, then u is maximum
for that critical x. On the other hand, if ux sinks down

to 0, but does not pass through 0, and then rises up from

0, then u2x must first be negative for decreasing ux and

afterwards positive for increasing ux \
that is, u2x must

change its sign from to +. But u2x can change its

sign, if it be finite and continuous, only in passing through
0. By precisely similar reasoning, which is left for the

student to repeat, we show that if ux = and u2x be

positive, then u is a minimum for that critical x
;
while

only if u2x= may ux increase up to and then decrease

down from without ever changing its sign by passing

through 0. Hence, finally,

ux = is the necessary condition of change of sign in ux ,

that is, of maximum or minimum, ux being finite

and continuous. If then

u2x &amp;lt; 0, u is a maximum for that critical x
;

if

u2x &amp;gt;0,
u is a minimun for that critical x\ if

u2x= 0, the character of u remains undetermined.

155. Continued Vanishing of Derivatives. If u2x
= 0,

quite similar reasoning will show that i^x= is then the

necessary condition of maximum or minimum, and that

u will be maximum, or minimum, or perhaps neither,

according as u^x &amp;lt;0,
or

&amp;gt;0,
or =0. In this last case we

should then repeat with respect to u5x and u6x the pre

ceding arguments with respect to ux and u2x , u%x and u x .

Let unx be the lowest derivative that does not vanish
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then if n be even, u will be maximum or

according as unx &amp;lt;0 or
&amp;gt;();

but if n be odd, then u is

neither maximum nor minimum for the critical x in

question. Throughout this reasoning the derivatives are

supposed finite and continuous.

156. Use of Taylor s Theorem. On the same supposi

tion we obtain the same results by examining the behaviour

of the function in the vicinity of a critical argument-value

by help of Taylor s Theorem. For we have seen that if

/() be maximum or minimum, then the function-difference

f(ah)f(a) must not change sign with k, for k small

at will. Now

It is evident that the signs of the odd terms do change

and that the signs of the even terms do not change with

h
; also, when the derivatives are finite and h small at

will the term actually present with the lowest power of

h will control the sign of the w^hole right-hand member

by making h small enough we can make that term &amp;gt; the

sum of all the others. Hence if this term be an odd one,

or what is the same, if the lowest non-vanishing derivative

be odd, then the left side does change sign with h, that

is, f(d) is greater than neighbouring values on one side

of it, but less than neighbouring values on the other side ;

hence f(a) is neither maximum nor minimum. But if this

term be even, i.e., if the lowest non-vanishing derivative

be even, then the left side does not change sign with h,

i.e., either f(a) is &amp;gt; both f(a+ h) and f(a h) or /(a)

is &amp;lt; both /(c6+ /^) and /(a /&amp;lt;.);
hence f(a) is either

maximum or minimum. If this lowest even derivative

(non-vanishing) be &amp;gt; 0, then f(ah) is &amp;gt; /(a), i.e., /(a)

is a minimum; but if this derivative be &amp;lt; 0, then f(ah)
is &amp;lt; /(a), i.e., f(a) is maximum.
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157. Geometric Interpretation. The geometric mean

ing of the condition ux = is that the tangent to the

curve f(x) = u, at the critical value of a;, is parallel to the

x-axis. Such will generally be the case at maximal and

FIG. 19.

minimal points, as the figure indicates. But the tangent

when thus parallel to &-axis may cut the curve at the

point of contact, in which case there may be neither

maximum nor minimum, as the figure also shows. This

case is that of the vanishing of u&. This second derivative

of u is the first derivative of ux , i.e., of the tangent of the

slope of the tangent-line to the x-axis
;
as x increases this

tangent-line rolls clockwise round the curve in the vicinity

of a maximum, but counter-clockwise in the vicinity of

a minimum. But for uZx= this tangent-line may change

from rolling clockwise to rolling counter-clockwise. Such

a point where this sense of the rolling, and accordingly
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the second derivative, changes sign is called a point of

inflexion.

158. Rule for Practice. We have then this rule for

discovering maxima and minima : Derive the given function

u as to x : put the first derivative ux = ;
find the roots,

x
ly
x

2,...xn of this equation. Form the second derivative

UZK ;
substitute in it these roots in place of x

;
such roots as

make this second derivative u%x &amp;gt; yield minimal values

of 16, such as make u-&amp;gt;x &amp;lt; yield maximal values of u, but

such as make u^ may yield only points of inflexion

in the graph u=f(x). To test these we then form the

higher derivatives, and reason concerning the successive

pairs as concerning the first pair, ux and u^.

159. Exceptional Cases. Thus far the derivatives have

been supposed finite and continuous, but such is not always

the case. If the first derivative becomes oc
,

it may or

may not change sign in passing through this value oo .

A notable instance of change of sign is seen in the

logarithmic sine, u = log sin x. Here we have

coscc
ux= = cot x.

For x = (and supposed increasing) ux leaps from x to

+ oo
;

for x = TT, it leaps from -f x to x
;
and so on.

The simple function u = logx behaves similarly, ux .

! !
But in case of u=

,
we have u x = 2

. This ux becomes
t)U 00

x for x = 0, but does not change sign. As x approaches

0, ux rises towards x
;
as x passes through and goes on

increasing, ux rises to x but does not pass through it

nor change sign, but sinks back into finity through the

same series of positive values. In general, if u =
,
then

x

ux will or will not change sign for x = according as n

is even or odd, as the student may readily show. Hence

we should also test for maxima and minima by putting
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ux = x ,
and then observing whether or not it changes

sign on increasing thus beyond limit.

160. Discontinuities. If the derivatives be not con

tinuous but finitely discontinuous, it is plain that ux may

change sign by springing, say, from the value +3 to 2,

or from 4 to +-f. Such cases must in general be treated

on their own merits by observing at what points or for

what values of x such discontinuity in ux takes place,

and . then examining the behaviour of u and ux ,
or the

character of the graph u=f(x), in the immediate neigh

bourhood of such points. Such cases are illustrated in

the Exercises. See Fig. 19.

161. Geometric Problems. Hitherto the function u to

be maximized or minimized has been supposed known,

given. But in the most interesting problems, geometrical

and mechanical, this function is not given but is only

implied in the given conditions of the problem. The

preliminary step will then be to form this function, after

which formation the preceding methods are to be applied.

It will very often, in fact generally, happen that this

function u may be much more readily and elegantly

expressed through two or more variables, as x and y, or

x, y, z, than through a single one x. But in that case

there will be found one or more equations of condition

connecting these variables. If u be expressed through n

variables, we must discover (^ 1) equations of condition

connecting these n variables. Having found these (n 1)

equations, we may use them to eliminate (n 1) of the

variables, and thus leave u expressed through a single

variable, as x. If this elimination, however, promise to

be too tedious or difficult, we may merely suppose it

performed, treat each of the (n l) variables as an un

known function of the one leading variable, as x, and

then form ux and equate it to as already explained. This

ux will then contain besides x the (n 1) other variables
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and their first derivatives as to x, in all, 2 /i 2 auxiliary

variables. But we have (n l) equations of condition;

these derived as to x yield us (n l) other equations of

condition, or (2n 2) such equations in all. With these

we may now eliminate the (2?i 2) auxiliary variables

and get a single equation in the single variable x. As

derivation is often a simplifying process, it will often be

easier to eliminate (2n 2) variables after derivation than

(n l) before. A still more elegant method of elimination

by help of Undetermined Multipliers will be treated in

a subsequent section.

162. Simplifications. Various reflections will sometimes

avail to simplify the function to be maximized or mini

mized. Thus if u be maximum or minimum, so are uc,
Q

cu, un and log u, while is minimum or maximum
;
and

some one of these may be easier to deal with than u itself.

Also, geometrical or mechanical considerations will often

decide at once whether a certain critical value of x makes

u a maximum, or a minimum, or neither, without in

vestigation of higher derivatives. Such considerations

will sometimes indicate unequivocally and very directly

the maximum or minimum sought where the regular

analytic process would be exceedingly complicated ; they

may even disclose the maximum or minimum when the

analytic method would not at all.

EXERCISES.

1. Investigate u=f(x) = ax-x
2 for maxima and minima.

u = a- 2x
t
which vanishes for x =

^,

hence

u&quot; = -
2, which is negative for x = -

,

u is max. for x = ~, and then u =
-j-*
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Herewith is solved the problem of finding the maximum

rectangle of given perimeter. For, let 2a be the peri

meter, x one of the sides, then a - x is a concurrent side

and ax - x2 is the area. Hence the maximum rectangle

is a square of side a/2.

2. Investigate for maxima and minima u = x2j4a2 -x2
.

rfi= 2ov4a 2 - x2
. _

;
this vanishes for x = 0, and

- x2

for =a N/6. Also

a2 - x2
) (8a

2 - 9s2
) + x2

(8a
2 - 3

For x = 0, u&quot; is + ;
hence u is a minimum and = 0. For

x= fa\/6, u&quot; is -
;
hence u is a maximum and =-1

y
6
-a3v/3.

3. When is u = 3? maximal or minimal 1

u =af(logx+l); this vanishes for loga;
= -1, x = \je.

i

u&quot; x*\ (log x + 1
)
2 + - k and this = e (

-
J
and is + for x = -

i

/1\
Hence x* is minimal and =

(
-

) . There is no maximum.w
(ft\

x

-
} maximal or minimal ?

x)

u =u(loga-logx ~
1) ;

w = for loga/aj=l, x = a/e.

u&quot;
= u (log a/x

- 1
)
-
u/x ,

u&quot;
= -

u/x for x = a/e ; or

6 a

u&quot;
= --(e)

e
,
which is - or + according as a is + or -

.

(d

a

Hence u = e
e

is maximal or minimal according as a is + or -
.

5. u = sin x, u = cos x, u&quot;
= - sin x. Hence

u = for x = (2n+l)7r/2-

u&quot; = - 1 for x = (4n + l)7r/2 ;

and %&quot;=+! for ie = (4ft + 3)7r/2.

These results are evident from the well-known form of

the curve. Similarly investigate u = cos x.
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6. u = sin x cos 2x.

u = cos x cos 2x - 2 sin a; sin 2x = cos a; {cos x - 5 sin a

u- = for .T = (2wl)7r/2, and for x = 2mr$~

u&quot;
= -sin#(l

- Gsinz2

)- 12 sin cos z
2 = sin {

18 sin a;
2 -

13}.

For x = 2mr + 7r/2, sin x = 1, u&quot; is + ,
w = -

1, a minimum.

For x = 2mr -
ir/2, sin x = -

1, w&quot; is -
,
u = + 1, a maximum.

For x = 2nir + sin&quot;
1
*/-, sin a; =

A/g,
w&quot; is -

,
u =

g/s/6,
a max.

For x = 2mr-sm~ l

^l-, sina; = -
A/^, w&quot;is+,

w=-q&amp;gt;/6,
a min.

7. Find the dimensions of a cylindrical cup of constant volume

c3 and of minimal surface.

Let x = its height, y = radius of base. Then

u = 2irxy + iry
1 and 7rxy

2 = c
3

.

Hence u = 2c3/y + Try
2
,
u
y
= - I

2c3/y
2 + 2iry, which = for

7r?/
3 = c

3
,
which =rrxy

2 hence x = y; i.e., the height equals

the radius of the base. Without eliminating x we have

u =
2-n-y + 27rxy + 2iryy t

and Try
2 + 2-irxyy

= 0.

Whence y = -
y/2x, and for u =

0, y = -
y/(x + y) ; hence,

as before, x = y.

8. Find the rectangle of maximal area inscriptible in the

X2 V2

ellipse

The sides must be parallel to the axes and bisected by

them
;
hence u = 4xy, whence y + xy = 0. Also

2
+^ =

;

/^2 y2
&amp;lt;

ft

so that -s -fs* 0,
- = T ; *.&, the equi-conjugate diameters

a2 b2 y b

are diagonals of the rectangle.

9. Find the dimensions of a conical tent of given volume c
8

.

and of minimal spread of canvas.

x = altitude, y = radius of base; ^T?y
2x = c

3
,
and iryjx

2 + y
2

or y
2
(x

2 + y
2
)

is to be minimized. Hence 2yy x + y
2 = 0,

2yy x2 + 2y
2x + f\j = ;

whence z2 + 2?/
2 = 2x2

,
x =
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Here, as in many problems of geometry and mechanics,

it is unnecessary to consider higher derivatives, for it is

plain there is a minimum, and equally plain that y = Q

cannot yield it
;
hence the other relation must yield it.

(x + 2)
3

10. Show that ~
~J 2

is maximum for x = 3, minimum for x = 1 3.

11. Show that sec a: + cosec # is maximum for x =
ir/4:.

12. Examine x5 - 6.^
4
-f 6#3 - 4 for maximum and minimum.

1 3. Show that xz - 3 2 + 6x 5 has neither maximum nor

minimum.

14. If tf
= (x-iy(x-2)

3
(x- 3)

2
(^-4), discuss the curve near

JB-I, 2, 3, 4.

15. Show that 20 is a maximum and 19 a minimum of

i/. T&amp;gt; ^ ... , .

16. Prove that -- = is minimum, and its reciprocal
a + b- 2Jab

f (x-a}(x-b)maximum 01

17. Prove that e is a minimum of x/\ogx.

18. Show that (0, 0) and (a\/2, a-s/4) are maxima and minima

points of #3 + y
3 = Saxy.

n

Here i/ =-1: hence for v/ -O, ay = x2
,
whence the

ax - y
2

pairs of values. For sc = 0, y = both ?/ and
y&quot;

take

the form 0/0, but the limits are ^ = 0, y =
|a-.

19. Show that (sin a;)
2
(cos xf is maximum for tana; =

,
and

generalize.

20. Prove that the radius of the circle about the origin and

, . x y .,
. db

touching
- + j-

= 1 is -t= .h a b Ja*+&

21. The central equation of a conic is kx2 + 2hxy+jy
2
=--l

;
show

that the radii of the inscribed and circumscribed circles

are the roots of the quadratic (ar -I)(br -I) = h2r2 .
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22. Find the cone of maximum volume inscriptible in a given

sphere.

23. Find the cone of maximum convex surface inscriptible in a

given sphere.

24. Find the sphere which, being placed in a given conical cup

full of water will displace a maximum.

25. Find the maximum rectangle that can be cut out of a

given trapezoid.

26. Find the maximum rectangle that can be cut out of a

given triangle.

27. Find the maximum rectangle inscriptible in a half-circle.

28. Out of four given tracts a, b, c, d construct the maximum

quadrangle.

Hint : Let L between a and d, &amp;lt;$&amp;gt;

= L between b

and c. Then a2 + d2 - 2adcos = b2 + c
2 - 2bc cos

&amp;lt;/&amp;gt;,

and

we have ad sin + be sin &amp;lt; to maximize. Whence

ad cos ad sin 6 . . . n . A
&amp;lt;

e
= - T r= 7 .- TJ Sln

&amp;lt;/&amp;gt;

cos # -f sin B cos
&amp;lt;/&amp;gt;

=
0,

6c cos &amp;lt; 0c sin &amp;lt;&amp;gt;

=--7r, the quadrangle is encyclic.

29. The general equation of the conic is

-
CJ}ICjtj

is a maximum respectively minimum, where the large

letters are the co-factors of the corresponding small letters

in the quadric,

k h g

h j f

g f c

30. Show that f\/3 is a maximum of sin x . sin y . sin z when

x + y + z = TT.

31. Show that 3 and ^T (
- 1 +

7&amp;gt;/7)
are maxima, while - 1 and

T̂ (
- 1 -

7&amp;gt;/7)
are minima of cos x + cos 2x + cos 3z.

s. A. K
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32. Of all triangles having given base and given perimeter, find

the one with maximum area.

33. Of all triangles having a given angle 2a and given area a2

find the one of least perimeter.

34. From a point of a given circle draw two chords forming a

given (peripheral) angle, so that the sum of the chords

and the intercepted arc may be maxima. Ans. The

diameter through the point must halve the angle at

the point.

35. Find the circular sector of fixed area and minimal boundary.

36. Find the maximum quadrangle with given diagonals in

scribed in a given circle.

37. Find maximum or minimum quadrangle with given angles

and perimeter. Ans. The quadrangle must circum

scribe a circle.

38. Find the right circular cylinder of given volume and least

surface. Ans. It is inscriptible in a cube.

39. Find the cone of given convex surface and maximum volume.

Ans. Squares of radius of base, height, and slant height

are as 1:2: 3.

40. Find the cone of given total surface and maximum volume.

Ans. Slant height
= 3 (radius of base).

41. Inscribe in a given cone a cylinder of maximum convex

surface. Ans. Height = diameter of base.

42. Show that in a given sphere the same inscribed cone has

both maximum volume and maximum convex surface.

If f(a) be maximum respectively minimum of /(#), then

there must be two values f(a + h) and f(a-h ),
for h

and h very small that are equal, both less respectively

greater than f(a). This fact is often useful in solving

geometric problems.

43. A ray of light from A strikes a surface S at P and is

refracted to B
;

the velocity before refraction is v and



EXERCISES. 147

after refraction v find the relation of the angles of

incidence and refraction, i and i
,
when the time is a

minimum. (Format. )

N

B

Let APE and AQB be two paths described in the

same time t, and close at will to each other. Then

AP/v + PB/v = t = AQ/v + QB/v .

Hence PR/v = PB /v ,
where QR and QR are elementary

arcs of circles about A and B as centres, and the limits

of their ratios to the corresponding rectilinear elements

are 1 . Hence we have v/v
= Lim PRjPE = sin i/sin i

,

which is Snell s Law of Refraction.

Sometimes purely geometric considerations readily

yield results only with difficulty to be reached by

analysis.

44. Find a point the sum of whose distances from three fixed

points A, B, C is a minimum. Suppose the sum of the

distances from A and B to be what you will, as 5;

then the point P is somewhere on an ellipse of axis

major s about A and B as foci, and the distance d from

C will be least for the point on the normal to this

ellipse from C ;
and this normal CP bisects the angle APB.

Similarly, AP and BP must bisect BPC and CPA
;

hence AP, BP, CP trisect the round angle at P.

This celebrated problem, proposed by Fermat to Torri-

celli, was solved by him in three ways and commurii-
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cated to Viviani, who also solved it non nisi iteratis

oppugnationibus. Let the student show that P is found

by constructing through A, B, C an equilateral triangle

and drawing normals to the sides through A, B, C.

Still otherwise, mechanically, thus : Suppose a con

tinuous homogeneous elastic band to pass round smooth

pegs at A, B, C, P
;
then the three tensions from P

to A, B, C will be equal, and hence the three angles

at P will be equal, and the total length PA+PB + PG
will be minimum in equilibrium.

45. Show that DEF is a triangle of minimum perimeter in

scribed in ABC when AD, BE, CF are altitudes of the

triangle ABC.

46. Find the radius of the circle where the segment of an

arc of given length s is a maximum. Ans. r = s/7r.

This problem is solved geometrically in Pappus Collections.

47. Find the point on the centre line between two spheres

whence the greatest amount of sphere-surface may be

seen. Ans. The centre-tract is divided in the ratio

48. Find the greatest ellipse and parabolic arc that may be

cut from a given cone.



CHAPTER IV.

GEOMETRICAL INTERPRETATION OF HIGHER
DERIVATIVES.

163. Order of Contact. Let y=f(x) and
rj
=

(f&amp;gt;(x)
be

equations of two curves referred to the same rectangular

axes, and let us, if possible, develop both / and
&amp;lt;/&amp;gt;

in the

neighbourhood of x = a. Then

l

=
&amp;lt;j&amp;gt;(a)

+ (x-a]

When convenient we may put cc =

1&amp;gt;\a^

This expression y tj
is the distance apart of the two

curves measured on a common ordinate corresponding to

the common abscissa x : the curves are far apart or close

together according as y v\
is large or small. If the curves

meet for x = a, then let b be the common value of y and
v\ ;

the curves have then contact of zeroth order at the point

(a, 6), and the term /(a) 0(a) falls away. Let us consider
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the relations of the curves near this common point. For

x a (or h) small at will, the first term of the difference

y t], namely (x a) {/ (&) (0 &amp;gt; &amp;gt;

may he made to control

the sign of the whole difference, for the sum of all the

other terms may be made smaller than this first term, the

derivatives of course supposed finite. Also, for the same

value of x a the difference y y will be smaller or

greater according as more or less of the corresponding

derivatives f (a) and (a), /&quot;(&)
and

0&quot;(
a

)&amp;gt;

are equal.

FIG. 21.

Hence the curves lie close together near (a, b) or part

abruptly according as more or less of the successive

corresponding derivatives are equal in pairs. Hence, if

only /(a) = (a), we say there is contact of zeroth order,

that is, the curves merely intersect at (a, b) ; if, besides,

f(a)= &amp;lt;j&amp;gt; (d), they have contact of first order
; if, besides,

f&quot;(a)
=

&amp;lt;/&amp;gt;&quot;(a), they have contact of second order, and so

on. If, finally, f(
n
\a) =

&amp;lt;j&amp;gt;(

n
\a) )

while the higher derivatives

are unequal, they are said to have contact of ?i
th order.

164. Tangency of Curves. The equation of the tangent

to y =f(x) at (a, b) is

y = b+ (x
-

)/ () =f(a)+ (x- a)/(a),

and of the tangent to
rj
=

&amp;lt;p (x) at (a, b) it is

- a
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all higher derivatives of / and vanishing. If now

f (a) =
&amp;lt;p (a), i.e., if the curves have contact of first order

then these tangents are the same line
; and, conversely,

if these tangents be the same line, then the curves have

contact of first order, for then / () = (
a

)-
Such then is

the meaning of contact of first order. Two curves having
such contact, i.e., having a common tangent, are said to

touch each other, or be tangent to each other.

165. Concavity and Convexity. Let us consider more

carefully the relation of the curve

and its tangent, y=f(a)-\-(x a)f (a). At any point the

difference of ordinates or the vertical distance between

curve and tangent is

The lowest term in this power-series, i.e., the term con

taining the lowest derivative that does not vanish, controls

the sign of the series, for x a small at will
;

if this

derivative be even, then the power of x a is even and

does not change sign with x a, i.e., the tangent does

not cut the curve at (a, b) but lies on the same side of

the curve both for x&amp;lt;a and for x&amp;gt;a. If this lowest even

non-vanishing derivative be +, then the y of the curve

is greater than the y of the tangent, which lies below the

curve
;

the curve is then named convex towards the

a&amp;gt;axis. If, however, this same derivative be
,
then

the y of the curve is less than the y of the tangent,

which lies above the curve
;
the curve is then named

concave towards the #-axis. But if the lowest non-

vanishing derivative be odd, then the power of x a is

odd, the term changes sign with x a\ i.e., the y of the
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curve is greater on one side of (a, 6) than the y of the

tangent, but is less on the other side : i.e., the tangent

cuts the curve at (a, 6), and the curve itself is convex on

one side of (a, b) but concave on the other side, towards

the #-axis. Hence the curve is said to change the direction

of its curvature at (a, b), which is called a point of in

flexion for the curve (fig. 21).

166. Curvature. But we have not yet said what we

mean by the curvature of a curve, and we must define

this concept accurately before we can use it intelligently.

Suppose, then, that P and Q are two points on a curve,

let the tangents at these points meet at T and the normals

at N. Denote the inner angle of the normals, which

equals the outer angle of the tangents, and is called the

angle of contingence, by v, and denote the arc-length PQ
by s. Then v is the angle through which the tangent (or

normal) has turned as the point of contact has travelled

from P to Q. If for a fixed arc-length s this angle be

O X
FIG. 22.

small, then the curve is flat, does not bend rapidly ;
but

if this angle be large, then the curve is sharp, it bends

rapidly. Hence we name the quotient -, of the angle

through which the tangent turns by the path over which

the point travels, the average curvature of the arc s, the

angle v itself being called the total curvature of the arc.

If now we let the point Q approach the point P, both v and
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s become infinitesimals, Ai/ and As, and the limit of the

average curvature -r- is called the instantaneous curvature,

or simply the curvature at the point P. We may denote

it by K and write /c = -7.
ds

167. The problem now presents itself, to express /c

through the ordinary Cartesian x and y of the point P.

If T and T be the slopes of the tangent to the a-axis, it

is plain that V = T T, hence Ai/ = Ar and

dr dr d(tan r) c?x

K
~ds~d(ta,u T) dx ds

-_ , d?y ,

H ow tan T = 7 ,
hence

7
= -rt ;

also
dx dx dx1

= (cos r)
2 =-

cUanr

168. Uniform Curvature. From the equation of a

straight line, y = sx+ b, we have . y =
s, y&quot;

=
;
hence /c

= 0,

the curvature of a straight line is zero. From the equation

of a circle, a;
2+ y

2= r2
,
we have

hence K = -
; the curvature of a circle is constant and

r

equals the reciprocal of the radius.

Can we convert this proposition simply ? i.e., are all

curves with constant curvature circles ? To answer this

question we must find all curves with constant curvature
;

to do this we must pass back from the differential equation

y&quot; 1--- = -, which declares the curvature to be a constant

(i + *)*
c
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1/c, to some equivalent and equally general relation be

tween the finite coordinates, x and y, which will be the

equation of all curves of constant curvature 1/c ; i.e., we
must integrate the differential equation. To do this we

multiply both members by y and get

y&quot;y y

(i+/2
) *

Now we recognize the right member as the derivative of

y/c, and the left as the derivative of (l+2/
/2
)~^; hence

these two expressions can differ at most by a constant

only, which we may write conveniently b/c ;
hence

Here we recognize the left member as the derivative of

x as to y, and the right as the derivative of \/c
2

(y b)
2

as to y ;
hence these expressions can differ at most only

by a constant, say a
;
hence

x-a=-*Jc2
-(y-b}

2
,
or (x

-
a)

2+ (y
-

6)
2 = c

2
.

But this is the general equation of a circle of radius c

about the point (a, b) as centre
;

hence all curves of

constant curvature are circles. Accordingly, the straight

line is conceived as a circle of infinite radius, of cur

vature 0.*

169. Standard of Curvature. The circle having this

peculiar property, that its curvature at all of its points

is the same, namely, the reciprocal of its radius, we adopt

the circle as the standard of reference in all matters of

*The straight line is the limit of a circle whose radius increases

without limit.
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curvature. The circle having the same curvature as a

given curve at a given point is called the circle of cur

vature, and its radius the radius of curvature of that

curve at that point.

Now draw the tangent T to the curve y=f(x) at the

point P(a, b). The right line through P normal to the

tangent is named the normal to the curve at that point.

Draw it. All circles through P with centres on this

normal will have a common tangent at P, namely, the

tangent to the curve at P, and hence are said to be

tangent to the curve at P. These circles will have radii

ranging from to oo
,
curvatures ranging from oo to

;

they degenerate toward a mere point in the one direction,

FIG. 23.

towards a right line in the other. Some, as O
,

will

manifestly bend away from the common tangent more

rapidly than the curve does, others, as
C&quot;,

less rapidly :

between these will lie one that bends away just as rapidly

as the curve does. This is the circle of curvature in

position and is called the oscillatory circle, and its centre

K is called the centre of curvature of the curve for

the point P. This osculatory circle has the same first

and second derivatives as the curve at this point; no

other of the circles through P has the same second

derivative, though all have the same first derivative, for

no other has the same curvature; hence this osculatory

circle nestles up to the curve at the point P closer than

any other circle can
;
hence the name osculatory.
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170. Centre of Curvature. For each point P of the

curve C there is a corresponding centre of curvature K\
and we now naturally ask what relation connects the

coordinates (x, y) of P with the coordinates (u, v) of K?
How shall we find the latter, knowing the former ?

Calling the radius of curvature p, we have from the

figure at once

u = x p sin T, v = y + p cos r,

or u = x+ p sin r, v = y p cos r,

FIG. 24.

according as p is laid off towards K or ^T
r

. There seems

to inhere in p a certain ambiguity of sign as is plain

from any of its expressions, as p = ds/d\js. Here the sign

of p depends upon our choice in reckoning the angle \fs

and the arc. Again p = (l + 2/
2
)
T

/2/&quot;-
Here the sign

depends on our choice of sign for the radical \/l + y
2

.

We choose to make p always + and to lay it off toward

the concave side of the curve
;
so that for

y&quot; positive we

take + x/l-f?/ ^ but for
y&quot; negative we take \/l+y

2
,

With this understanding we may write always

u x p sin

Then on putting

cos

sin T= COS T =
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we get u = x
y y

formulae of universal applicability.

171. Evolute. If now we combine these two equations

with the equation of the curve C we may eliminate x

and ?/, obtaining an equation between u, v, and constants.

This equation holding for the coordinates of the centre

of curvature K for every point of the curve C is the

equation of the locus of this centre of curvature K. This

locus is named Evolute of the curve C. Denote it by E.

With respect to its evolute, the curve itself C may be

called Involute.

172. Relation to Involute. The propriety of these

names may thus be evidenced
;

let us derive v as to u r

regarding each as a function of x.

,dx y
2 dx y

2

TT dv idu 1--- *-

But yx and vu are the tangents of the angles which the

two tangents at P and K make with #-axis
;
hence these

tangents are normal to each other, i.e., the normal to the

Involute is tangent to the Evolute.

Now let us derive both p and the arc s of the evolute

with respect to x. We have

ds

-r-r do ds
f

Hence
-f-
=
-j,

hence p = s + c.

Accordingly, if a cord be kept stretched while it is-

unwound from the evolute, regarded as a groove, the
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free end of the cord will trace an involute. In fact,

every point of the cord, as it leaves the groove begins

to trace an involute, and every point of any length of

the cord kept stretched beyond the groove also traces an

involute. This is geometrically evident, and also analyti

cally from the indefiniteness of c in p = s + c. Hence to

any involute there corresponds one perfectly definite

FIG. 25.

evolute, but to any evolute there corresponds an infinity

of parallel (equidistant) involutes
; precisely as a function

has one and only one perfectly definite derivative, while

a derivative has an infinity of integral functions differing

among themselves by constants.

In the derivatives dp/dx and ds/dx we chose (l + 2/
/2

)^

with the same sign which yielded p = s + c, and corre

sponded to an unwinding of the cord from the evolute
;
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but we might have taken (1 + y
2
)^ with opposite sign,

which would have yielded p= s + c, and would have

corresponded to a winding of the cord upon the evolute,

the involutes are unaltered.

Exercise. Obtain the foregoing two properties by deriving

u = x - p sin r and v = y + p cos r as to s.

173. Hence, too, it appears that the centre of curvature

is the limit of the intersection of two normals, or is the

intersection of two consecutive normals, and may be so

defined.

The angle of contingence in the involute evidently

equals the corresponding angle of contingence in the

evolute, or Ar = Ar/

. Also As = A/o, p=l^^ f
= ~. But

/O
=

-T ,
hence P = -T Z i-e&amp;gt;,

the radius of curvature of the
d/T ClT

evolute is the second derivative of the arc-length as to

the angle of slope in the involute.

If A be the area between involute, evolute, and any
two p s, then we have approximately

~ n 9and accurately, 2-r =p, 2-y-
= p

2
,

whence A may be found by integration.

Any chord of the osculating circle drawn through the

point of contact is called a chord of curvature, every

direction has such a chord.

It is now manifest that the evolute is the envelope of the

normals to the involute, and in fact it may be so defined.

174. Let us now resume the general consideration of

the higher contact of curves. As before

h2

=
&amp;lt;p(a)

+
h&amp;lt;f&amp;gt; (a)+ r
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We have seen that f(a) = cf&amp;gt;(a)
means that the curves

meet for x = a\ the 1 additional equality f(a) = &amp;lt;j&amp;gt;
(a) means

they have the same direction, a common tangent, contact

of first order
;
the still additional equality f&quot;(a)

=
&amp;lt;&quot;(

a)

means they have the same curvature, radius of curvature,

centre of curvature, and have contact of second order,

since all of these depend only on first and second de

rivatives.

If now one of the curves, as y =f(x), be given completely,

but the other, y
=

(f&amp;gt;(x),
be given only as to its species, as

circle, ellipse, cycloid, or the like, with arbitrary para

meters in its equation, we may raise the question, what

curve of this species has closest contact with the given

curve, what is the highest order of contact possible for

a curve of this species, with the given curve (at the

given point) ? The answer will depend on how many
derivatives of the curve in question we can equate to

corresponding derivatives of the given curve; and this

in turn will depend on how many disposable constants

there are in the equation of the curve in question. If

there be (n+ 1) such arbitraries, then we may impose

(n+ 1 ) conditions,

f(a)
=

0(a), / () = &amp;lt;/&amp;gt; (a), / =0, . , , f^\a) = 0&amp;lt;&amp;gt;(a) ;

i.e., we can bring about contact of nih order. Thus, the

equation of the straight line, y = sx+ b contains but two

parameters, s and b
;
hence contact of first order, mere

tangency, is in general the closest possible between it

and a curve. But the general equation of the circle,

x2
-t-y

2+ 2gx-\-
&amp;lt;

2fy+ c = 0, has three arbitraries, g, f, c;

hence contact of second order, osculation, is in general

the closest possible between a circle and a curve. On the

other hand the general equation of the parabola,

has four disposables ;
hence a parabola may be found

having contact of third order with the given curve. The
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conic in general, kx2+ 2hxy +jy
2+ 2gx+ 2fy -f e = 0, has five

parameters, so that a conic may be found having contact

of fourth order.

175. Curves of Closest Contact. We may regard the

matter from still another point of view. We may, in

general, impose upon a curve as many distinct conditions

as there are parameters in its general equation ;
then

solving the equations of condition we find such values

for the parameters as satisfy the conditions. The simplest

form of these (n) conditions is that the curve goes through

(n) given points. Thus we may require of a straight line

that it pass through two (and only two) points of the

curve. Let these points approach to coincidence
;
we get,

in general, a tangent at the point of union of the points.

Similarly, we may make a circle pass through three given

points of the curve, but no more; as all these approach

to coincidence, the circle becomes tangent to the curve..

FIG. 26.

and since it can have, in general, no more than three

points in common with the curve, its contact must be

the closest possible, must be of second order, it osculates

the curve. We may, in fact, define the osculating circle

as one through three consecutive points of the curve.

Quite similarly the osculating parabola goes through four,

the osculatory conic through five, consecutive points of

the curve, i.e., the osculatory conic is the limit in size,
s. A.
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shape, and position, to which the conic through five

points of the curve tends as these five points approach
each other, become consecutive.

176. Exceptional Points. But while we cannot require

a straight line to pass through three given points of a

curve, it may yet happen that the straight line through
two prescribed points of the curve passes through a neigh

bouring third point and that these three points tend

simultaneously to coincidence. Thus, when P is held

FIG. 27.

fast and the secant turns about it, the points of inter

section Q and Q in opposite sides of P tend to fall

together on P; when they do so the secant becomes a

tangent through three consecutive points of the curve,

it has contact of second order. Hence second derivative

for the curve equals second derivative for the tangent ;

this latter is 0, hence the former is 0, as we have already

seen. Such a point P is called a point of Inflexion or of

contrary flexure, The secant may even go through four

points that tend to fall together on some one point as

the secant turns about that point. At such a point of

undulation the tangent has contact of third order with

the curve, and hence both 2nd and 3rd derivatives of the

curve must vanish, while the tangent does not cross the

curve. Of course still higher degrees of contact are

possible for the tangent.

177. Maximal and Minimal Curvature. Similarly,

though we cannot require a circle to go through more



INTERPRETATION OF HIGHER DERIVATIVES. 163

than three given points of the curve, yet the circle

through these three (Fig. 28) may go through a fourth

neighbouring point of the curve, and all four may tend

to fall together on the same point P. At P then the

osculatory circle goes through four consecutive points,

has its first three derivatives the same as the curves,

has contact of third order. In general, as the osculatory

circle agrees with the curve in 1st and 2nd, but not

FIG. 28.

in 3rd and higher derivatives, the differences of the y s

(of curve and circle) must change sign with h. The circle

must cut the curve on the one side of P, where the

curve bends less, it lies between circle and tangent; on

the other side of P, when the circle bends less it lies

between curve and tangent. But when four points fall

together in P, the curve and circle agree in 3rd derivatives,

but not in 4th and higher, the difference of the y s, y tj,

does not depend on the sign of h, the circle lies wholly
within or wholly without the curve, near the point P,
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and we have in P a point of maximal or minimal curva

ture. Such are the vertices of conies.

178. Another Conception of the Osculatory Circle.

Of the three points through which the osculatory circle

must pass we may at once let two fall together in P
then the circle becomes tangent to the curve and let the

third point Q approach P; then the tangent circle turns

into the osculatory circle. This change is effected by

letting the centre slip along the normal drawn through

P. If the curve be symmetric as to the normal in the

immediate neighbourhood of P, as in case of maximal or

minimal curvature, then to Q must correspond R, and

these two points of intersection of curve and circle fall

together on P, making four consecutive points, and there

with contact of third order.

179. Application to the Conic. This conception of the

osculatory circle yields a neat construction of it for any

point of a conic. Let the circle tangent at P cut the

curve again in Q and Q ,
and let QQ cut the tangent at

B

FIG. 29.

P in T. Then by the power-property of the circle

jTP
2 = TQ . TQ ,

and by the corresponding property of conies

TPZ

/TQ . TQ =~OA 2
/OB

2
. Hence the half-diameters OA and
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OB parallel to TP and TQ are equal, hence they are

isoclinal to the axis of the conic
;
hence their parallels

TP and TQ are isoclinal to the axis, for every position

of Q ;
hence the limit of TQ , namely, the chord of

curvature PI is also isoclinal to the axis with TP.

Hence, to construct the circle osculatory at P, draw

through P a chord of the conic isoclinal with the

tangent at P to the axis of the conic
;
the mid-normal of

this chord meets the normal to the conic in the centre

of curvature. Also, for any chord of curvature of any

curve,

PI= Lim TQ = Lim TP2

/TQ.

180. Illustrations. 1. Find radius of curvature and

volute of the Apollonian parabola, y
2 =

y = y = qx&amp;gt; y = -

&amp;lt; T
p = --

7T- 2 (x 4- q)^/\/q T=, r being focal radius.
&amp;lt;J -v q

For the origin r = q, hence p = 2q.

For x = oc
, p = cc

,
the curve tends to become straight.

To find the evolute we form the expressions for u and v,

coordinates of a point on it, and then eliminate x and y

from these expressions by help of the equation of the

parabola. u = x y (l + 2/

2
)/2/&quot;,

v= y+ (l + y &quot;)/y&quot;.
Whence

u 2q xy , .

u = 3x+ 2q, x - -

;
v= ---, qv

2 = 4ar.
q

Hence, by equating values of x*,

the semi-cubical parabola.

The focus of the Apollonian parabola lies midway
between the vertices of the two parabolas; the length of
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an arc of the semi-cubical is

FIG. 30.

It is plain that to rectify evolutes is easy, and this

semi-cubical parabola was in fact the first curve rectified

algebraically. (NEIL, 1657.)

2. Find curvature and evolute of the ellipse, ^-i-hlj
88 !.

(x*

y~\^ 62
tt

2

, + )
. At the ends of the axes p, =, p2

= -
t

- *

a4 tr J a r b
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Remembering that a2
y-+ b2x2 = a2b2

,
we get

u= (a
2 -b2

)x
s
/a*, v= -(a

2 -b2
)y*/

whence (au)%+ (bv)% = (a
2 62

)*, an asteroid.
*

FIG. 31.

3. Find the curvature and evolute of the hyperbola.

x2 y
2

srv*1-

4. Find the curvature and evolute of the cycloid,

x = a9 a sin 0, y = a a cos 0.

FIG. 32.

Hence p = 4asin0/2, which is seen to be double the

intercept of the normal between curve and -

For the vertex, p = 4a.
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In finding the evolute put

&amp;lt;/&amp;gt;

= J0; then

u= 2a(cj) sin &amp;lt; cos 0)+ 4a sin cos = a(0+ sin

v = 2a(sin 0)
2

-4a(sin0)
2=-(!- cos 0).

But these are the equations of a cycloid referred to

the tangent at its vertex and its axis as coordinate axes.

Hence, the evolute of a cycloid is an equal cycloid with

its vertices at the cusps of the involute. Suppose the

whole figure inverted, the point P to be weighted, the

cycloidal arcs to be rigid grooves; then we should have

a cycloidal pendulum, whose properties we shall hereafter

study.

5. Find the radius of curvature at the origin and at

(1, 3) for the curve y = x+ 3x2-x2
. Ans. 4714..., oo .

6. To find the curvature at the origin we may assume

(by Stirling s formula) y = y x+ ?n x2+
&amp;gt; Put this de-

1

velopment for y in the equation of the curve, and thence

equating coefficients to obtain the values of y and
y&quot;,

and thence of the curvature.

Thus in lx+my+ kx2+ Zhxy +jy
2+ . . .

= 0,

we obtain (l+my )x+ (k+2hy +jy
2+ %my&quot;)x

2
+... = 0,

whence Z+ m^/^O, y = --
,
and k+ 2hy +jy

2
+^my&quot;

= 0,

whence finding y and
y&quot;

and substituting in p, we obtain

= 1
P 2

7. Find the curvature at the origin of

Ans. The radii of curvature are f^/5 and
/v/2; the

two branches curve oppositely.
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8. If we take a tangent and normal at any point of

a curve as X- and F-axes, then the equation of any
circle tangent to the curve at the origin is x2= 2ry y

2
;

x
for the osculatory circle, therefore, 2p y= -. For y

y

small at will, the x and y of the curve approach a ratio

of equality with the x and y of this osculatory circle,

hence

x2 x2

Lim(2yo 2/)
= Lim -

-, or
/
o = Linix

o/ 9

So, if the F-axis be the tangent, p = Lim^-.

Apply this Method of Newton to show that the radii

of curvature of the conies at the vertices are the half-

2b2 b2

parameters, using the relation y
2 = --x-^x

2
.

9. Determine the parabola, with axis parallel to X-axis,

that touches a2x = y
s most closely at (a, a).

Ans.

10. Prove that the circle x*+ y
2 - 6x-6y+ 10 = and

the parabola x^-^-y^ z have contact of third order at

11. Two curves with common tangent at a point may
have contact there of fractional order. Describe about

the point a circle of radius r small at will; let s be the

arc of this circle intercepted between the curves, form

Q

the ratio -, and develop it in rising powers of r, thus :

Then the lowest exponent I of r in this power-series

tells the order of contact of the curves.

Thus the cycloid cc = 2(0-sin 0), y = 2(1- cos 6) and the

semi-cubical parabola y
s = 9x2 have contact of order 5/2
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at the origin; the two parabolas y^ x^ and
2/

5 = #4 have
contact of order J at the origin.

12. Find the parabolas with axes parallel to X and F,
and having contact of second order at (a, 2a) with

x2+ y
2= 5a2

.

Ans. (5y-8a)
2
=2a(7a-ox) and (5cc-a)

2

13. The curve ?/(2r-a) = x3
is called the Cissoid of

Diocles; show that its centre of curvature is

8ry

its radius of curvature

and its evolute 27y*+ ll52r22+4096^ = 0.



CHAPTEE V.

VARIOUS PROBLEMS OF INTEGRATION.

181. We were conducted to the notion of integral and

the process of integration by the problem of Quadrature.

But there are many other problems for which the same

process furnishes a ready solution, the simplest of which

may be here grouped together.

In case of rectangular Cartesian coordinates we have

already found the expression for an area bounded by the

JT-axis, the graph of y = i(x) and end-ordinates to be

= \ydx = n(x)dx

between proper extremes.

In case of other boundaries we cut the area into strips

parallel to either axis, as F-axis, express the varying

dx
FIG. 33.

length I of the strip as a function of x, say &amp;lt;/&amp;gt;(x),

and

integrate as to cc; hence

A Udx
\&amp;lt;$&amp;gt;

between proper extremes.

171
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In case of polar coordinates we have

AA &amp;lt; J(f + Ar)
2
A0,

r)
2

;

o
FIG. 34.

whence

whence

dA
dO

A =
J
[r

2^ . dr

between proper extremes.

Thus, to find area between first and second spires of

the spiral of Archimedes r= aO, we have

1 MTT 2M

-I **-fJ

Herein, however, we have reckoned the area of the first

spire twice, once in the integration from to 2-rr, and

again in the integration from 2?r to 4?r. Calling it A^
we have

A
I
(
2ir

2ia a* 8
3A

i
=

2\
rd0==

2 3
7r

Hence the area sought

= area of ellipse whose half-axes are the initial and final

radii.

Exercise. Find the area between %th and (n+ l)
th

spires.
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182. Rectification is finding the length of a curve. We
have found for plane curves, calling this length s,

ds /,
-

* ds i---r

ds ds dx
whence 8| = = . =

J.
r , r , .

N/l + yx
2

. dx = I v 1 + Xy* - dy = \ *Jx t + y? . dt.

Here t is any third independent variable on which x and y

depend separately, and of course proper extremes must

be inserted.

Thus, to rectify the cycloid, we have

x = a(0 sin 0), y = a(\ cos$), xe ci(\ cos$), ye

r\ f\
(/ -, u

In case of polar curves we have

Hence

. dO = 2

where ^ is as above, and proper extremes are to be inserted.

As aids to the memory these symbolisms, suggested by
the figures, are very useful :

Exercise. Rectify the parabola and the spiral of Archimedes.

183. Cubature is finding the volume of a solid. The

general problem cannot be discussed here, but only a

special case of great importance, namely: When the area

of a plane section of the solid is a known function of

the distance of that section from a fixed parallel plane,

say the F^-plane, normal to X. We suppose the solid

cut into thin slices by planes normal to X and A# apart.
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Then, if S(x) be the area of such a section, we see at once,

precisely as in quadrature, that for the volume we have

between proper extremes. If S(x) be a known and inte-

grable function of x, we can then obtain V.

A case of equal simplicity and importance is that of

Solids of Revolution, generated by turning an area

bounded by the axis of revolution (which we take for

X-axis), the graph of y = f.(x), and two end-ordinates as

y1
and yz corresponding to x

:
and x.2 . If the area is

turned completely round, then manifestly the sections are

circles whose radii are the ^ s, and S(x) = 7ry
2

.

Hence V= TT \ y
2
dx, with proper extremes.

If the area be turned not through the round angle 2x

but through 2a, we put a for TT in the formula.

O dx dx
FIG. 35.

If the generating area lie not on but without the axis

of revolution, then the volume generated will be a ring,

and the section 8(x) will not be a circle but the band

between two concentric circles, and for y
2 in the pre

ceding formula, we must put yi
2

ys
2

.

/-vi

Thus, to find the volume of the ellipsoid ^+ ^ + 2
= 1

\AJ G

we reflect that for any special value of x the section is
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y2 02 ^2 .2

the ellipse p + ~2
= of which the area 8(x) is

-

2
&quot;

Integrating this between the extremes x= a

and x = a we get V=^7rabc = % circumscribing cylinder.

For the paraboloid of revolution we have y
2 =

4&amp;lt;qx,

integrating which between x = and x = a (for which let

y = b) )
the student will find V= ^ciTrb

2 = J volume of

circumscribing cylinder.

To find the volume of a circular ring generated by

revolving a circle of radius r about an axis distant b

from its centre, take the axis of revolution for JT-axis,

and the perpendicular through the centre for ]T-axis
;

then the equation of the circle is x2 + (y b)
2= r2

.

For any special value of x the two values of y are

hence

/. V=

Exercises. 1. Find the volume of a sphere.

x2
y
2 z2

2. Consider the ellipsoid -5 +.?&quot;*&quot; ~^2
= ^ the circumscribing

CL C&quot;

X 2
I/
2 ^

cylinder about the z-axis, the single hyperboloid -3+fo--5 SB
l,

Ct&quot; C&quot;

O2 ^y2 r$t

and the asymptotic cone -^ + p
- ~

2
=

&amp;gt; integrate each from

- c to + c and compare the volumes. Ans. As 1:2:3:4.

3. Find the volume of an elliptic ring.

184. Quadrature of Revolutes (Surfaces of Revolution).

Such a surface is traced by the graph of y = i(x)

turned about the .X-axis (Fig. 35). In this revolution

any element of the curve, as As, and its chord Ac will

each trace out a narrow ribbon, and as the limit of

As
v- = l, we may find the sum of the ribbons traced by
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all the As s, that is, the whole surface swept out by any

length s of the curve y = i(x), by taking the limit of the

sum, that is, the integral, of the ribbons traced by the

various Ac s
;
such a ribbon traced by Ac is the convex

surface of the frustum of a right circular cone, which

may be treated as a trapezoid of altitude Ac, its bases

being 2-jry and %Tr(y + A^/); the area is 2^(^/4- ^JAc;

and we have finally for the surface swept out

each integral taken between proper extremes.

Thus, to find the surface of the paraboloid, traced by

S= 2

For the extremes and b this is

{(^
[\4tq

2

To find the surface of a cydoidal spindle, generated

by turning an arch of the cycloid about its base, we have

Hence, on substituting and putting 0/2 = 0, we get

p27T pTT_
=2TT\ y^/xf+yfdftWva?\ sin

&amp;lt;frd&amp;lt;/&amp;gt;

f (1
-= 167ra2 1 - cos d cos =

Exercises. 1. Find the volume and the surface generated by

revolving a wave-length of the sinusoid y = sin x about X.

2. If the catenary y/a
= he x/a be turned about X, prove that
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185. Averages. It is often very important to know

what is the arithmetic mean or average of a number of

values of a variable, which is defined as the sum of the

values divided by the number of the values. Thus, if

the vertices of a triangle be (xv 3^), (x2 , y2}, (xs , y3),
the

average x and y are and may be written :

- oi+2+8
,-7
_ 2/1+ 2/2 +2/3

3 J ~ 3

This point (x, y) is then the average or mean point of the

three vertices.

When the number of values n is very large we use

the sign of summation, 2, thus :

- 20 - 2yx=
, &amp;lt;/=.n n

Thus far all points have entered our reckoning alike,

but it often happens that all the points have not the

same valence or significance for our reckoning. If we

ask for the mean point (or centre) of population in any

region, we sum the distances of the inhabitants from

(say) a fixed north and south line and likewise from

a fixed east and west line
; dividing each sum by

the number of inhabitants we get the average distance

north (or south), and the average distance east (or west),

and all the inhabitants enter the reckoning alike. The

point whose coordinates are these distances, which is

thus at the average distance from the two axes or base

lines, may be called the centre of population. But if

we would determine the centre of wealth of the same

region, manifestly the inhabitants would not all enter

the reckoning alike. We should then consider each person

resolved into as many units as he possesses dollars, and

then proceed precisely as before, summing the distances

of the units and dividing by the sum of the units. This,

however, would be exactly the same as to multiply the

distance of each inhabitant by the number of his dollars,
s. A. M
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sum the products, and divide by the sum of the multipliers.

Calling such multipliers mv m2 ,
... m n we have for the

averages,

2/
=

~y^vT

We should proceed quite similarly in finding the average

or mean point or centre of any other magnitude distributed

over any plane region. The multipliers, the m s, merely
show the relative valence, significance or weight, with

which the various points in the region enter into our

reckoning. We may call them the iveights or the mass-

numbers, where neither weight nor mass connotes any

thing physical, but may indeed refer to intelligence,

ignorance, virtue, vice, or the like. It is not necessary

that we know how to measure these but only what is

the law of their relative distribution. In case, and only

in case, of even or uniform distribution we may set

each m = l.

If now the mass or agent under consideration, whatever

it be, is spread out continuously over the region in

question, then we must suppose the region cut up into

elementary regions, each of which has an elementary

mass Am. By multiplying each Am by the greatest

corresponding x and summing, we should get a sum

2o30Am, too great ; by multiplying by the smallest cor

responding x and summing we get a sum 2^sAm, too

small
;

the common limit of these two sums for the

elementary regions, and therefore the elementary masses,

taken small at will, is plainly the correct value, \xdm.

In like manner 2m becomes \dm, and the integration is

to be extended over the whole region in question. The

quotient p

,-t
dm
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is then the average x of the mass in question. So

ydrn\

\dm

If the mass be distributed along a line, as in case of

an electric current, the determination of one average ordin-

ate as x may suffice. But if it be distributed through a

solid, as in case of a body charged with weight, heat, or

magnetism, the similar determination of an average z,

\zdrn
& --^ /.- ,

\dm

will be necessary.

186. The mass-centre definite. At this point a very

important question arises : Is this average or mean point

(x, y, z) a definite point, the same for all coordinate

systems, or does it vary with the axes chosen ? If it

does so vary, it plainly has no scientific value. To answer

this question, we take two systems of axes, XYZ and

UVW
;
then by well-known formulae of transformation,

the origin remaining unchanged, we have

where the constants, a s, 6 s, c s need not be further

defined. Multiplying by Am we get, for any element,

uAm = a-^xAm+ a
2yAm+ a

B
zAm,

and so for v and w. Summing, taking the limit of the

.sum, and dividing by \dm = M, we get

\udrn \xdrn \ydrn hzdrn

By definition of u, x, y, z, we have then

u = a

A
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and so, too, v = b^c -f b2y+ 6
3i,

w= c
l
x+ c

2y+ c
35.

Hence (u, v
y w) is the same point as (x, y, z). Similarly, let

the student show that the mean point is not affected by
a mere change of origin. Hence, this point is the same

for all coordinate systems, it depends solely on the dis

tribution of the agent over the region in question. It is

appropriately named mass-centre or centroid of the mass-

system.

187. First Moment. The product nix of a mass m by
its distance x from the F-axis (or F^-plane) is called the

(first) moment of that mass with respect to that axis or

plane. Manifestly, the mass-system would balance itself

about any right line through the mass-centre, which is

thus seen to be nearly (though not quite) the same as

the centre of gravity. With respect to any such right

line, taken (say) as o?-axis, we have y = 0, hence

yM= o= I ydm

= the moment of the whole system about a?-axis.

188. Higher Moments. If we multiply the mass m not

by its distance but by its squared distance r2 from any

axis, we obtain a product mr2
,
of great significance in

mechanics, commonly but ineptly called (after Euler) the

moment of inertia of the mass as to the axis
;

better

named the second (or quadratic) moment of mass; per

haps best of all the inertance (so named by Prof. Brown

Ayres) of the mass with respect to the axis. We might,

of course, form 3rd
,
4th

,
. . .

,
nih moments by multiplying

m by r3
,
r4

,
. . .

,
rn

,
but these products are not of any such

importance.

If there be a system of discrete masses m
1}
w

2 , etc., the

inertance of the system is the sum Zmr2 of the products
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m^2
, m2

r
2
2

,
etc. But if the mass be distributed con

tinuously, then manifestly the inertance of the system

is the integral Jr^m, the integration to be extended over

the whole region affected by the agent in question.

189. Radius of Gyration. If now we take the average

r2 for the whole system by dividing the whole inertance

by the whole mass, we shall obtain a very important new

notion, namely, the (squared) radius of gyration of the

mass with respect to the axis.

Denoting this radius by k, we have

k* =
\v*dmf\dm,

lAdm = k*M =
[
r*dm,

whence it appears that the inertance of the whole system

is the same as if the whole mass were concentrated at

the end of the radius of gyration, just as the whole

moment of the system is the same as if the whole mass

were collected at the mass-centre, but with this difference :

the mass-centre is fixed and definite for any given system

without any regard to axes, whereas the radius of gyration

is definite for each axis, but varies from axis to axis.

190. Parallel Axes. An axis through the mass-centre

may be called a principal axis, and the radius of gyration

as to it a principal radius of gyration. If now we can

y A

X

FIG. 36.

find such a principal radius of gyration, we can easily find

the radius with respect to any parallel axis. For let A
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be any axis through the mass-centre C, A any parallel

axis distant h, k and 7c the radii of gyration as to A
and A . Taking A for Jf-axis, any perpendicular between

A and A for F-axis, and the perpendicular to these two

for ^-axis, we have for any elementary mass m,

Inertance as to A = md2
,

Inertance as to A =md2
;

hence for the system

fmd 2 = (md2+ h2
\m 2h (y m.

The last term is 0, since C is the mass-centre. Hence

or =

Hence, to find the (squared) radius of gyration as to

any axis, find it for the parallel principal axis and add

the squared distance between the axes.

191. Normal Axes. When the region is plane, the

inertance about any axis OZ normal to it equals the sum

of the inertances about any two rectangular axes OX, OY
through in the plane. For if m be any mass at any

point P distant y, x, r from OX, OY, OZ, then

mx2+my2 = mr2
;

hence, on summing,

Iic
2
&amp;lt;im+ \y

2dm = \r2dm.

Hence too, on dividing by M or \dm, and calling the

radii kx ,
ky ,

kz ,
kz

2 = kx
2+ ky

2
.

These theorems, of 190 and 191, are very useful.

192. Density. The quotient of the mass in any region,

divided by the region itself (i.e., strictly, the quotient of

the metric numbers), is called the average density of the

mass in that region. The limit of this average density

in the immediate vicinity of any point P may be called
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the density, 8, at that point. Hence in integration over

a line, surface, or solid, we may supplace dm by S . ds,

S.dS, S.dV. Only in case the distribution of mass is

uniform may we put (5 = 1 throughout. Otherwise, we

must know S as some function of r, in order to integrate.

193. Theorems of Pappus (Guldin). The integrals for

volume and surface of revolution, 7r\y
2dx (or, moreJc(yf y^dx) and 27r\yds admit of very re-

J

markable interpretation. Writing 27r\^.ydx,
we may

y

O dx
FIG. 37.

X

y
regard ydx as the area of an elementary strip and as

the distance of the mass-centre of that strip from the

,r-axis
;
hence -^.ydx is the moment of that strip as to

Zt

theo;-axis; hence
V^.ydx

is the moment of the whole

area in question as to the #-axis
;
but this moment is y .A,

A being the area; hence

Now %7ry is the path of the mass-centre turned about

the #-axis
; hence, The volume generated in revolving a

plane area about an axis outside of the area, but in

the plane, equals the product of the area by the path of

its mass-centre.
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194. Similarly, yds is the moment of the line-element

ds with respect to the #-axis, and \yds the moment of

the whole line as to the x-axis
;
hence

\yds = s.y, S= . s;

i.e. the surface of revolution equals in area the rectangle

(or product) of the revolving arc and the path of its

mass-centre.

These two beautiful theorems are usually ascribed to

Guldinus (1577-1643), who seems to have discovered

them about 1620, though he did not prove them rigorously.

But they were known (at least the first) much earlier

to Pappus (circa 340 A.D.), who gives it in his Mathe

matical Collections, and who perhaps was the first to

prove it. By their help we may find any one of the

three magnitudes: A, V, y, or S, s, y, when the other

two are known.

195. Choice of Elements. In obtaining areas, volumes,

moments, by simple integration it is important to make

judicious choice of the element, which appears under the

I as dA, dV, etc., so that the argument of integration

shall have the same value throughout the element. Thus,

in finding the moment of an area as to the F-axis we
choose as element a narrow strip parallel to the ^/-axis,

for the whole of which x has the same value
;
but in

finding the quadratic moment of an area about an axis

normal to it we should choose as element a narrow

circular ring with centre on the axis, because throughout
such a ring the argument of integration r would have

the same value. In dealing with such problems mathe

matics shows itself to be &quot;

etherealized common sense.&quot;

196. Symmetry. Determinations of mass-centre are

often much facilitated by simple geometric considera-
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tions, especially of symmetry. Thus, from the definitions,

it is clear that the mass-centre of a system is the mass-

centre of the mass-centres of all the distinct parts of

that system. If all these part-mass-centres lie in a plane

or on a right line, then the mass-centre of the whole

lies in this plane or on this right line. In case of

uniform distribution, if there be a plane of symmetry,
then the mass-centre of each pair of symmetric points

lies in this plane; hence the mass-centre of the system

lies in this plane of symmetry. If there be two such

planes, it must lie in each, i.e., in their intersection, the

axis of symmetry ;
if there be three, it must lie in each,

i.e., at their intersection, the centre of symmetry. Gener

ally, if there be an axis of symmetry, it must contain

the mass-centre of each pair of symmetric points, and

hence of the whole system ;
and similarly, if there be a

centre of symmetry.

197. Illustrations. 1. Find the mass-centre of a tract

OA = a when the density varies as the nih
power of the

distance from 0. Here 3 = cxn
,
dm = S . dx = cxndx,

c I x . xndx

71+1
**-^r-

-- = -r-~--a.

c\ xndx

o

Oz^S
This is a result of high generality and great importance.

For 7i = 0, i.e., for uniform distribution, x = a/2, the

mass-centre is the mid-point of the tract. If OA be the

median of a plane triangle, it will contain the mass-centre

of any infinitesimal strip parallel to the base
;
the length

of such a strip varies as the distance from the vertex
;

hence the density along OA varies as the distance from
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0, hence x = %OA=%a; i.e., the mass-centre of a plane

triangular area is on (each) median, two-thirds of the

distance from the vertex a point independently known
to be the intersection of the medians.

If be the vertex, and A the mass-centre of the base,

of a cone or pyramid, then the mass-centre of every
section parallel to the base lies on A

;
the mass of

every such section (or infinitesimal slice), and hence of

every such mass-centre, varies as the squared distance

from 0; hence in this case n = 2 and x = ^OA, i.e., the

mass-centre of the cone or pyramid lies on the median

tract (from vertex to mass-centre of base) three-fourths

of the distance from the vertex.

Manifestly, similar reasoning might be applied to higher

extents, of 4, 5, ... ^-dimensions, corresponding to tract,

triangle, pyramid.

2. Find the mass-centre of a uniform circular arc of

angle 2a. For a;-axis take OA conjugate to the chord

EG. The mass-centre lies on this axis (why ?), and

\xds \rcos0.rdO

~pr~~
rB~a ~ ft

ds

FIG. 38.

Here, because of symmetry, it suffices to extend the

integration over the half-arc from = to 6 = a.o
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.3. To find the mass-centre of a uniform circular sector

of angle 2a, we note that the centroid of every elementary

circular strip will be on the axis of symmetry, which

will thus be laden with mass from out to G pro

portionally to the distance from ;
hence

_ r , sin a
x=U(jr =*r-- .

a

4. Find y for an arch of the cycloid

x = a(0 shift), y = a(l cos
ft).

We know the length is 8a, hence we have

Say = {yds = a2
f *(1

- cos 0)*/2- 2cosOdO

= 8a2

[Vain %}
= - 8a2

(cos %-\ cos f)
= 8a2

^ ;

J \ &J L \ L 4 ^ /o O

The mass-centre is on the axis, one-third of the distance

from vertex.

5. Find the radius of gyration, of a uniform linear rod,

of length a, as to an axis normal to it, through one end.

Putting 8=1, we have

/a

x2dx
r

= dx, tf =~
a =K2

-

\dx

dx

O A

For the same rod, as to an axis through the mid-point,
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6. Find k2 for a uniform circular plate, of radius a, as

to an axis normal to it, through its centre.

Putting (5 = 1, we have

2?r r2 .rdr

dm = 2:

FIG. 39.

The like holds for a right circular cylinder as to its axis.

7. For the same plate, as to a diameter, k2= Ja
2
(Art. 191).

8. For a right circular cylinder, as to an element as axis,

7,2 _ 3, ,2IV ^}^v

9. For a rectangle (ab), as to b as axis, &2 =Ja2
;
as to

an axis normal to it through its centre, k2 = -^(a
2
-\-b

2
).

10. For a linear rod, OA, of mass varying as the nih

power of the distance from 0, as to a normal axis

through 0,

I x2
. cxndx

b2

r&quot;

r-

Hence for a uniform isosceles triangle as to a parallel

through its vertex to its base b, U being the altitude,

k2 = W.
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11. Prove that the mass-centre of a parabolic half-

segment VAP (V the vertex, A on the axis, P on the

curve) is ($VA, %AP).

12. Find mass-centre of a parabolic arc VP, using as

equations of parabola x = u2
, y = 2\/qu.

13. Find k* for half-segment VAP (Ex. 11) as to VA,
as to AP, as to VB (parallel to AP), as to PB (parallel

to VA), and as to normals to VAP through V, A, P and B.

14. Find k* for parabolic arc VP as to VA, and A P.

15. Find centroid of elliptic quadrant OAB.

16. Find k2 for elliptic quadrant OAB as to OA, OB,

and the axis through normal to OA and OB.

17. Find the area of a paraboloid of revolution about

the axis of the parabola. Ans. f 7r{(;r+ g)x/2+ 4g
2

4g
2
}.

Find also the centroid of this surface.

18. Find the volume of the foregoing paraboloid (Zirq-x*),

and the abscissa of its centroid (#).

19. Find k2 for the paraboloid surface as to VA, AP,

VB, and their common perpendicular.

20. Find k2 for the paraboloidal volume as to the same

axes.

21. Find the volumes of the revolutes of the elliptic

quadrant OAB about OA and about OB. Ans. 7rafr
2

, f 7ra
2
6.

22. Find the areas of the revolutes of the elliptic

quadrant OAB about OA and OB.

Ans. 7rab(\/l e2+ - sin
^J,

7rfa2

+^-log ).

23. Find the centroids of the surfaces and volumes of

the foregoing ellipsoids.

24. Find k2 for the foregoing ellipsoidal surfaces and

volumes as to OA, OB, and the normal to both.
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25. The equation of the hyperbola referred to its asymp
totes is

4&amp;lt;xy

= a2+ b2 = 4c2
;
find the area and centroid of

a segment bounded by the curve, the ^-axis, and two

ordinates. Also the volume generated by rotating this

hyperbolic segment about the x-axis
;

also the centroid

of this volume
;

also the area of the surface traced by
the revolving arc, and its centroid : also k2 for both surface

and volume and segment itself as to the #-axis
;
notice

the result for x infinite.

26. Show that the centroid of the area between the

cissoid x* = y
2
(2r x), and its asymptote x = 2r is (fr, 0);

the volume of the revolute about the asymptote is 27rV3
;

/ 4^\
and the centroid of the half-volume is

( 2r, I
;
find also

\ 7T/

k2 for this volume as to the asymptote.

27. The equation of the logarithmic curve is y = a log
-

:

Cv

find the volume of the revolute about JT-axis of the curve

below the Jf-axis (27ra
3
),

its centroid
( , 0), and its k2

\o /

as to JT-axis (6a
2
); also the volume of the revolute of the

same curve about F-axis is (|-7ra
3
),

its centroid (0, a/2),

and its k2 as to F-axis.

28. Find centroid of an arch of the cycloid (?ra, J-a),

the volume of its revolute about its base (5jr
2as

) and its

surface Tra
2

;
also the centroid of the half-volume

, 0), and of the half-surface (f-fa, 0); also

the volume swept out by area bounded by half-arch,

tangent at vertex, and F-axis turned about F-axis is

{7ra
3
(j7r

2
8/3)), and its surface (*f-7ra

2
), the centroid of

/ syn 2 1 9 S \
the volume (0, --. Q 2 5fi

a
)
anc^ ^ ^ne surface (0, ffa);

find also k2 for these surfaces and volumes as to JT-axis

and F-axis.
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29. Find the whole length (16a) of the cardioid

x 2a cos a cos 20, y = 2asiuO a sin 20,

the centroid of half-periphery ( -get, fa), the volume of

the revolute about AT-axis (-Y-Tra
3
), the centroid of this

volume ( fa, 0), and k2 as to X-axis.

30. Find the area
(-&amp;gt;7ra

2
) of the asteroid a?+ y* = a%,

its length (6a), the centroid of a quadrant f
-

_-,
015&quot;&quot;)

and of the arc (fa, fa), the volume of the revolute of this

arc about the X-axis (TW Tra
3
),

and its surface (

also k2 as to A^-axis.



CHAPTER VI.

FUNCTIONS OF TWO OR MORE INDEPENDENT
VARIABLES. PARTIAL DERIVATIVES.

198. Double Dependence. Thus far we have considered

only functions of a single argument, as

F(x,2/) = 0, y = f(x); 0(r, 0) = 0, r=&amp;lt;/&amp;gt;(0).

Any such functional relation is, in general, depicted geo

metrically by a curve in the plane of (x, y) or (r, 0), so

that our calculus has thus far, in a sense, been linear.

But often we meet with magnitudes that depend not

on one argument only but on two or more arguments,
which are themselves quite independent of each other.

Thus, the area of a rectangle depends on its two dimensions,

base and altitude, and these may be wholly unconnected

with each other, so far as size is concerned. The volume

of a certain mass of gas depends both on the pressure

and on its absolute temperature ;
the velocity of undulation

depends both on the density and on the elasticity of the

medium
;
the logarithm depends both on the number and

on the base of the system. So; too, the volume of a

cuboid depends on its three dimensions, length, breadth,

thickness, all of which may be entirely independent of

each other. Such a functional dependence of one mag
nitude on two others independent of each other may be

expressed in symbols thus :

F(x,y, z)
= Q, z = t

(x, y);
192
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199. The geometric depiction of such a relation is in

general a surface. We may, in fact, assign any pair of

arbitrary values to x and y, that is, we may choose any

point (x, y) in the plane of X Y. To this choice corresponds

one (there may be several but we are concerned with

only one) value of the function z. From the point (x, y)

we measure up (or down) this value of z, and so come to

a point (a;, y t z) ;
and this we may do for every point

(x, y) in the XF-plane. Imagine, then, a very fine

needle z long, erected at every such point; the ends of

these needles (or z-ordinates) will form a surface,

f(x,y; s)
= 0.

Conversely, suppose any point of this surface projected

parallel to the ^&quot;-axis on the X F-plane ;
to this point there

corresponds a certain z (the projector) and a certain pair

of values, x and y, the coordinates of the projection, and

these three values satisfy the equation F(x, y\ z)
= Q.

Similarly we may reason about \fs(0, &amp;lt;/&amp;gt;\
r)
= 0; and

&amp;lt;f&amp;gt;

the former corresponding to longitude, the latter to

latitude determine a direction out from 0, and to any
such direction or right line corresponds a value of r,

which, being laid off, brings us to a point of the surface

; r) = 0.

200. Parallel Sections. If in

F(x,y, z) = or z = i(x,y)

we put y = b (a constant), the result

F(o;, b; z)
= or =

f(a&amp;gt;, 6)

will be the equation of a curve in the plane of ZX, or,

what is the same, in the plane parallel to ZX, and distant

b along the F-axis. Plainly such a curve is changed in

position only by simply pushing the plane of ZX along

the F-axis. The equation y = b is the equation of a plane

parallel to ZX and distant b from it
;
and this curve

S. A. N
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z = f(x, b), which results from combining y = b with z = f
(03, y),

is the intersection of this plane with our surface, z = f(x, y).

Similarly, z = i(a, y} or F(a, y: z)
= Q is the intersection

of our surface with a plane x = a, parallel to YZ. If

through every point of this curve of intersection there be

drawn a parallel to X, we shall obtain a cylindric surface

(or cylinder) whose equation is

z = f(a,y) or F(a,y; z)
= 0.

In this equation x does not appear, as plainly it should not,

since the relation between y and z is the same for all

sections parallel to YZ. Similarly

=
f(a;, 6) or F(aj, 6; z)

=

is the equation of a cylinder parallel to F, cutting the

surface z = i(x, y) or F(x, y, 0)
= in a plane parallel

to ZX.

201. Tangency. Consider now two planes parallel to

YZ and two parallel to ZX. Let the first pair cut the

surface z = f(oj, y) along two curves

z = f (a, y) and z = f(a + A#, y),

and the second pair along the two curves

z f(x, b) and z= f(x, b+ Ay).

They cut out in the plane of XY a small rectangle with

sides Ax and Ay, and they cut out in the surface a small

quadrilateral ABCD, whose projection on XY is the

rectangle of Ax and Ay. These four points determine four

planes, BCD, ACD, ABD, ABC. The first pair meet on

the diagonal chord CD, the second pair on AB. These

chords AB and CD do not in general meet, but if as Ax

and Ay tend toward zero, these four secant planes all tend

to fall together in one and the same position, no matter

how the ratio Ay/Aa? varies, then we say, this limiting
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position of the secant-planes* is the tangent-position, and

the plane in that position is tangent to the surface z = i(x, y)

at the point (a, b, c) c being the value of z corresponding

to x = a
y y = b

,
we may furthermore say the surface is

elementally plane in the immediate vicinity of (a, b, c).

Just as a curve may have sharp points or other singularities

X

FIG. 40.

where it is not elementally straight, and the notion of

tangent-line loses its definiteness or uniqueness, so a surface

may have sharp points or other singularities where it is

not elementally plane, and the notion of tangent-plane

loses its deliniteness or uniqueness for instance, the

vertex of a cone. But we have no present concern with

such singularities.

202. Partial Derivatives. Suppose then a plane T, tan

gent to z = f(x, y) at (a, 6, c). The plane x = a cuts the

surface along the curve =
f(a, y), and also cuts T in a

straight line which is manifestly the tangent to =
f(a, y).

The equation of this tangent, in its own plane, is

*Or simply of the one plane ABC, which is enough to consider, as

B and C move up to the fixed A in any manner whatever.
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z c = Zy(y b), where in zy we must put b and c for y
and z. This zy is merely the derivative of z as to y, the

limit of the difference-quotient A^/A^/, when x is constant,

namely a, and y varies
;
hence it is called Partial Deriva

tive of z as to y, and is conveniently written (Jacobi).

Similarly, the plane y = b cuts T in a straight line

tangent to z = i.(x, b\ and the equation of this tangent

in its own plane is z c zx(x a), where in zx we must

put a and c for x and z. Here zx or is the partial
OOu

derivative of z as to x, the limit of the difference-quotient

A^/Ax when y is constant, namely 6, and x varies.

Observe that kxz and Ayz may be quite different.

203. Equations of Tangent Plane. If now we ask,

What is the equation of this plane, T, tangent at (a, b, c)?

if there be any such tangent-plane, the answer is

z- c = zx(x
-

a)+ zy(y
-

b).

For this is the equation of some plane, being linear in

x, y, z; it meets the plane x = a in the right line

z c zy(y b), and the plane y = b in the right line

z G zx(x a) ;
but T goes through these same two lines

;

hence this plane is T, since only one plane can go through

both the lines.

The normal form of the equation of a plane is

x cos a + y cos j3+ z cos y p = 0,

where a, /3, y are the angles made with the axes X, Y, Z

by the perpendicular p from the origin on the plane;

the cosines of a, /3, y are the direction-cosines of p.

Comparing this equation with the one above, from which

it can differ only by a factor m, we see that

zx =m cos a, zy
=m cos /3,

1 =m cos y ;

s*
2+%2+ 1 =m2

(cos a + cos f?+ cos y
2

)
=m2

;

zx/\/zx
2+ Zy

2+ l, cosj3 = zy/\/ , cosy=



TOTAL DERIVATION. 197

204. The Equations of the Normal, N, to the surface

z = i(x, y) Sit the point (a, 6, c) are

xa yb zc xa yb zc__ I/_ _
y-&amp;gt;y

_ O__ _
7)

&quot;

J
V*-

-i
*

cos a cos p cos y zx zy 1

For if (x, y, z) be any point on this normal, then x a,

y b, z c are the projections on X, Y, Z of the tract of

this normal from (a, b, c) to (x, y, z) ;
and each of these

projections, divided by the proper direction-cosine, must

yield the tract itself; hence the first triple equality, and

dividing by m we get the second.

Any plane through this normal cuts the surface in a

normal section.

205. Simultaneous Changes in x and y. If x varies

and y remains constant, as y = b, then we have for A^,
the change in z along the surface, parallel to ZX,

&xz = f(x+ Ax, y)-i(x, y).

Similarly for the change in 0, parallel to YZ,

A^ = f(a, 2/ + Ay)-f(a, y).

If now both x and y change we shall have for the total

resulting change in z,

Az = f(aJ+ Aa, y+ ^y)-i(x, y).

The question naturally arises : Have the quotients Az/A# 3

A^/Ay any definite limits as Aas, Ay tend to zero, no

matter how, provided only that yx remains finite, and

zx ,
zy definite in the immediate vicinity of (x, y, z)?

(Fig. 40.)

We form the identity

Ax A#

f(a, y+ Ay)-f(a, y) A?y

A Aa?
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The first quotient on the right becomes
~ f(^ ff)

for Ay vanishing first, and this becomes zx for Ace

vanishing; but for Ace vanishing first it becomes at once

c)ce

and this will become

for Ay vanishing, TIO always but cmfo/ when (z-\-Ay z)x

is itself a continuous function of y. So it appears that

the order of vanishing of Ace and Ay is not wholly and

always a matter of indifference. More generally, when

will the first term on the right pass over into the same

limiting value zx,
no matter how Ace and Ay approach 0,

successively or simultaneously ? The second term gives

us no concern, but always passes over into zy . yx . The

answer is that the difference-quotient must be a uniformly
continuous function both of Ace and of y ;

that is, we

must be able to find two independent ranges of value

for Ax and Ay in the vicinity of (cc, y), such that within

them, . within the small rectangle of Ace and Ay, the

difference-quotient shall not vary so much as cr a pre

viously assigned magnitude small at will
; symbolically,

we must have

Ax

0Aa H&-fx HA~^

where and H are proper fractions ranging from to 1

inclusive, and the [ ] is to be taken absolutely, regardless

of sign.



LIMITATIONS. 199

206. When this necessary and sufficient condition is

satisfied we may pass to the limit and get

dz_tt 3f dy,
dx~dx dy dx

or symmetrically,

Such is the Theorem of Total Differential. The last

equation declares that the (so-called) Total Differential

of z is the sum of the (so-called) Partial Differentials

of z (or of f, which is the same) with respect to the

independent arguments x and y. Both the symbolism

and the expression in words are convenient, but they have

in themselves no meaning, or at least no magnitudinal

import, apart from the first equation, which has a definite

magnitudinal meaning, namely: The total derivative of

z as to x equals the sum, of partial derivatives of z (or f)

as to x, and of z as to y, this latter multiplied by the

derivative of y as to x, whatever it may be.

207. Limitations of the Theorem. Observe carefully

that the theorem of total differential holds only when

the surface z = (x, y) is elementally plane at (x } y); that

is, only when the secant-plane ABC through

(x,y,z), (x+ Ax,y,z+ kxz), (x, y + ky, z+ Ayz),

tips only infinitesimally, this way and that, as A# and

Ay vary independently, but settles down to one and the

same tangent-position, no matter how B and C close down

on J., no matter how A# and Ay approach 0. This will

not be the case at such a point as the vertex of a cone.

Thus, in case of the cone

/V

and these values are perfectly definite except at the vertex,

the origin (0, 0, 0), where they lose all determinateness.
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So, too, the tangent-plane is definite for every point of

the surface except the vertex, where the secant-plane

through the vertex and two neighbouring points does not

settle down to one and the same position, but rolls round

the vertex as the two neighbouring points circle round

closer and closer to the vertex.

207*. Tortuous Curves. Closely connected with the subject

of curved surfaces is that of curves in spaces, sometimes called

curves of double curvature, but better, winding, twisted, or tortuous

curves. They are such as do not lie in any part in a plane.

Any such curve may be regarded as the intersection of two

surfaces, and hence is determined by their two equations :

Or each of its three variable coordinates may be regarded as

function of a third independent magnitude t, so that its three

equations would be :

x = i,(t\ y = i,(t\ z = f
3(t).

From these, by elimination of t
t
the two, F

1
= and F

2
= 0,

would flow.

The tangent is defined as for plane curves. If it be sloped

a, /3, y to x, y, z, then plainly,

x
s
= cos a, ys

= cos f$, z
s
= cos 7 ;

also s
t
= jzf + yt

2 + z? ; where s = arc-length.

Hence, if u, v, w be coordinates of the tangent at the point

(x, y, z}, then the tangent is

u-x v -y w-z
%

t

&quot;

yt *t

The plane through (x, y, z) normal to the tangent is called

the Normal Plane
;

hence it is

(u -x)xt + (v- y)yt + (w-z)zt
= 0.

The Equation of any plane through (x, y, z) is

A(v-x)+B(v-y)+C(w-z)-Q................... (1)
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If this plane goes through the neighbour point

then A(u-x- A&) + B(v
-
y
-
Ay) + (7(w

- z - Az) = 0,

whence ^A# + Bky + Ckz = ......................... (2)

If besides it go through the point neighbour to this latter, that

is, through

(x + A + A2
, y + &y + A2

?/,
z + As + A%),

where A2x means A (Ax), a difference of a difference, then

A(u-x-&c- A2
x) + (v

-
y
- Ay - A2

?/) + 0(w - z - &z - A%) - 0,

whence Atfx+ BX2y+C^z = Q......................... (3)

If now we divide (2) and (3) by A and A 2

,
and take the

limits for A vanishing, we get

whence on eliminating A, B, G we obtain

(y&t
- z

ty*)(u
-

) + (ztx*
- x

t z^)(v -y) + (xty,t
-

as equation of the plane through three consecutive points of the

curve. As we can require no more of a plane than to go

through three points, it follows that this plane lies as close to

the curve as possible, it has the highest order of contact

possible for a plane with the curve at (x, y, z) hence it is

called the osculatory plane.

The normal to this plane is called Binomial to the curve,

since it is normal to two curve-elements neighbouring to (x, y, z).

Its equation is

its direction-cosines are

cos A =

It is often very expedient to choose the arc-length s as the

independent variable t. Then denoting by AT the angle (called

contingent) between two neighbouring tangents we have

T
-
= = D= ^{( ^&quot;

-
y&quot;^ + (z x

&quot; -

where and
&quot;

denote derivation as to s.
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Now since x 2 + y
2 + z 2 = 1 and x x&quot; + y y&quot;

+ z z&quot;
=

0,

D = V{ ^&quot;

2 +/2 + *&quot;

2 - (sV + y y&quot;
+ zzj} = Jx^-J^T^,

or D = V(cos a)/ + (cos /})/ + (cos y)/.

This magnitude &amp;gt;,

the limit of the ratio of the change in

angle to the change in arc, is called, consistently with Art.

166, the first curvature of the curve, or the curvature in

the osculatory plane. Its reciprocal, -,-, is called radius of

first curvature, and is denoted by p = sT .

All right lines in the normal plane are normal to the curve

at (#, y, z) ;
but the intersection of the osculatory plane with

the normal plane is named Principal Normal. Its direction-

cosines are readily seen to be

cos L = (cos a)T
=

px&quot;,
cosTlf= (cos/? )T

=
py&quot;,

cos N= (cos y)r
=

pz&quot;.

The Centre of Curvature is on this P.N., distant p from

(x, y, z) ;
hence its coordinates are

as we obtain by projecting p on the axes.

As the point P(x, y, z) passes through As along the curve,

not only does the tangent line turn through the contingent

angle AT, but the osculatory plane also turns through the

angle A7 called angle of torsion.

Al7

The ratio
-^-

is the average torsion of the curve in the

vicinity of P(x, y, z) and its limit Ts
is the instantaneous

torsion at the point P, called also second curvature. Its

ds
reciprocal -j7n=r is- called radius of torsion, or of second curva-

Ct L

ture. The value of the torsion is

s A)s + (cos /*) + (cos v),} ;

for the angle between the two osculatory planes equals the

angle between their binomials, and we have just found such

an expression for -r-
,
we have only to write X, ^ v for a, ft y.



CURVATURE. 203

This expression for the torsion or twist of the curve assumes

a remarkably elegant form. We have cos A =

hence (cos X)/
= (A D - ADJ\D\

and so for the other cosines. Adding the three, and remember

ing A 2 + B2 + C2 = D2
,
and hence

2 (AADD + BB DD + CCDD
)
= 2D 2D 2

,

we obtain (Ts)
2 - D2

(A
2 + B 2 + C&quot;

2 - D 2
)//)

4
.

Now A = y y&quot; and A y y

z z
&quot; (Art. 224),

as is seen at once on actually deriving as to s.

Now consider A 2
;

it is y
2z

&quot; 2 +
y&quot;&quot;

2 z 2 -
2y z y &quot;z &quot;. Form

the sum A&quot;
2 + B&quot;

2 + C 2
,
and remember x 2 + y

2 + z 2 =
l, there

results

x&amp;gt;&quot;2 +
y&quot;&quot;2

+ z &quot;&quot;2 _ tfW 2 _
yY l _ 2 2^&quot;

2

- 2 (x y x&quot;y + y z y &quot;z

&quot;

+ z x z&quot; x
&quot;)

which =
x&quot;&quot;

2 +
y&quot;

/2 + z
&quot;2 -

(x x&quot; +
yij&quot;

+ z
z&quot;J.

Now consider the determinant

x y z

x&quot;
y&quot;

z&quot;

x
&quot;

y
&quot;

z
&quot;

Square it, remembering

X 2 + y
2 + ,,

2 = x
f

a-v + y y&quot;
+ z z&quot;

=
0, x&quot;

2

and x&quot;ti&quot; +
&quot;y&quot;

+ z&quot;z

&quot;

hence A2 =
x x

&quot; + y y&quot;
+ z z

&quot;

DD
x x&quot; + y y &quot;+zz&quot; DD x

&quot; 2 + y
&quot;2 + s

&quot;2

= D2
{x

&quot;2 + y
&quot;2 + z&quot;

2 -
(x x&quot; + y y

&quot; + z z
&quot;)

2 -D 2
}.

Hence ~-

and A, B, C are seen to be derivatives of A as to x
&quot;, y &quot;,

z&quot; .

When, and only when, A = 0, the curve is plane.
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The square root of the sum of the squared curvatures is

named total curvature, and its reciprocal is named radius of

total curvature of the curve; that is,

The sphere that passes through P(x, y, z) and through three

adjacent points of the curve has manifestly the closest possible

contact with the curve since the general equation of the

sphere x - a
2
+ y

- b
2 + z - c

2 = r2
,
contains only four arbitraries

and is accordingly the osculatory sphere for the curve at that

point. As the centre of the osculatory circle is the inter

section of two consecutive normals, so the centre of the

osculatory sphere is the intersection of three consecutive

normal planes.

Its distance from the osculatory plane is -~ = r^- and its
dr ds

squared radius is p
2 + r2

(
-~

The curve in space that corresponds to the circle in the plane,

as being homeoidal throughout, is the Helix or circular spiral.

Its equations are

x = a cos 0, y = a sin 6, z = bO.

These declare that the curve lies on a circular cylinder of

radius a, and that the ascent of the curve on the cylinder is

uniform, varying directly as the angle 0, the rotation round the

cylinder.

The Helix that has all the foregoing geometric elements

(except osculatory sphere) the same as the curve at P(x, y, z),

is called osculatory Helix. The parameters a and b of this

helix are determined from the equations p = ,
r = r .

They are =r.^2 ,
t = P.^

Envelopes of Surfaces. The equation F(ic, /, z; p) = Q for any

particular value of p represents a particular surface
;

if p range

in value, the equation represents a varying surface or a system

of surfaces, whose members correspond to the various values

of p. Precisely as in the case of plane curves, two members



ENVELOPES. 205

will in general intersect
;
the curve of intersection is determined

by the two equations F(x, y, z; p)
= Q, F(a;, y, z\ p + &p) = Q,

and for consecutive members the intersection is determined by

F = and F
p
= 0. If we eliminate p between these two

equations, we shall obtain a general relation holding for all

such intersections, or Characteristics, as they are called. The

totality of such intersections of consecutive members is called

the Envelope of the system of surfaces
;

its equation is the

eliminant of p between F = and F^
= 0.

N.B. This ^-eliminant is the Discriminant as to p of the

equation F = 0, of course equated to 0. This ^-discriminant is

the product of the squared differences of the roots of F (p)
= 0,

so that its vanishing is the condition of the existence of equal

roots. That it is also the ^-eliminant appears plainly thus :

Suppose F (p)
= (p- a) (p -

b) . . . (p
-

/),

and let no root a, b ...I, be repeated. Then

where {p ct}
means terms containing (p-ci).

Hence F (a)
=

0, but F (a) does not = 0. The same may be

said of b,...l; hence if F(jo)
= have no equal roots, then

F(/?)
= and F (_p)

= have no common root. The equations

F(^) = and F (p)
= do not consist.

But if F(p) = (p-a)
2
(p-b) ...(p-l), that is, if a root -a be

repeated, if F(p) = have equal roots, then

Hence- F(^) = and F (p)
= for p = a, or F(p) = and

F (p)
= when and only when F(p) = has equal roots. Hence

if we eliminate p between F(p) = and F (^)
=

0, we shall

obtain the relation that must connect a, b, c ... /in order that

F(_p)
= may have equal roots. Hence the j?-eliminant and the

^-discriminant, since each by vanishing states the same fact of

equal roots, can at most differ from each other by a factor.

Hence if there be an Envelope of a system of curves or surfaces,

its equation will be the j9-eliminant or p-discriminant equated
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to 0. But it by no means follows that this equation will

actually be the equation of an Envelope. On the contrary,
the equation is the equation of the locus of all points for

which ~F(p)
= has equal roots. This locus will include the

envelope if there be any envelope, but may include other

points or assemblages of points where the roots of F (p)
=

are equal. Such other points are nodes, where two or more

branches of a curve intersect, and cusps where two or more

branches meet without intersecting. Here the jp-eliminant or

^-discriminant equated to may yield a node-locus or a cusp-

locus, as well as an envelope. Further discussion belongs to

Differential Equations.

It may be that two consecutive characteristics intersect, or

that three consecutive members (surfaces) meet in a point. In

that case we must have, by precisely similar reasoning

F(^) = 0, ~F (p)
=

0, and
F&quot;(p)

= 0.

Eliminating p we should then have two equations in x, y, z

determining the locus of the intersections of consecutive char

acteristics. This envelope of characteristics is called cuspidal

If the system of surfaces consist of planes, then the char

acteristics are right lines then the elementary strip between two

neighbouring characteristics may be considered plane. Calling

the successive characteristics 1
, 2, 3 ... n, we may turn the

strip 12 about 2 into the plane of 23
;
then this double strip,

12 and 23, about 3 into the plane of 34, and so on, thus

stripping off the whole surface and flattening it out into a

plane surface. Such a surface is accordingly said to be develop

able. The characteristics of the system, or the elements of

the developable surface, are tangents to the cuspidal edge ;

the osculatory planes of this edge, since they contain each

two characteristics (elements), touch the developable surface.

This latter is thus doubly an envelope ;
both of the tangent

lines and of the osculatory planes of the cuspidal edge.

The partial differential equation of the developable surface

may be obtained thus :
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Let z = lx + my + n be the moving oscillatory plane ;
then two

of the parameters, as I and m, must be functions of the third,

as n
;
or / =

&amp;lt;(%), m=^(n). Hence

z =
&amp;lt;t&amp;gt;(n).x+$(ri).y + n, ..................... (1)

where n takes the place of the parameter p in the preceding.

Hence Q =
&amp;lt;f&amp;gt; (n) . x + $ (n) . y + 1, .................... (2)

and =
c/&amp;gt;. +

&amp;lt;/&amp;lt;&amp;gt;)*/

......................... (3)

Eliminating ?i between (1) and (2) yields the characteristic]

eliminating n from (1), (2), (3) yields two equations determining

the cuspidal edge.

Deriving partially as to x and y we get zx
=

&amp;lt;t&amp;gt;(n\

z
y =^(n),

whence z
jf

=
i(zx);

= #W- W* w = Vr -^i z*y
= $(n)- ny

= y(n}- nx -

Hence (^)
2 = z^ . zyy or s

2 =
rt, as it is common to write,

following Euler, is the Partial Differential Equation of Developable,?.

The Equation z
y
=*i (z^ may be read thus :

A surface is developable when the partial derivatives of z

as to x and y are related independently of x, y, z.

208. In case we conceive of both x and y as dependent

on a third variable t, we may write the theorem for Total

Differential thus:

^_^_5! dx -df. dy
dt dt 3x dt&quot;*~ dy dt

a formula symmetrical and extensible to any number of

independent variables. We may write z or f indifferently,

always using d for total and 3 for partial derivation.

In case of implicit relation, F(OJ, y, z)
= 0, we may

conceive all three variables as dependent on a fourth, t,

and then we have

= VF dx 3F dy SF dz

~Vx dt*3 dt
^

dz db

dx 3F dy SF dz

dt*3y dt
^

dz db

from which of course
-jr

for -77
or

-JQ
is found at once.
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We have in fact

9F 9F
dz _ _9 dx cty dy
~dt~ ~&amp;lt;ff S. Sr ift

90 90

whence by comparison

9F 9F

^=?= _M 2^=2^= _M9~9~ *~~ 9F dy
= :

dy
=zZy 9F*

90&quot; 90

These expressions are often useful. We may now write

the equations of tangent-plane and of normal more

symmetrically, thus :

9F

209. Higher Derivatives. In forming pure higher

partial derivatives, as to any one variable, no difficulty

92 92f 92F
presents itself

;
we write them 2^ = ^-%

=
x-g, F

2y
=

-x-g,
u3C ooc oy

etc., and derive straight forward. But we may also form

mixed higher partial derivatives, by deriving, as to one

variable, the derivative as to another variable
; thus,

92

zxy = means the derivative as to y of the derivative
uX oy

of as to x, t/a;

= means derivative as to x of the
J

derivative of as to y. Now if we take any product

of powers of x and y as xr
y

s =
z, we get

zx = rxr~ l

y
s

,
zxy

= rsxr &quot; l

y
s ~ l

,

* Of course, in these partial derivatives #, y, z must be supplaced

by a, 6, c, their values at the point of tangence.
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here, then, zxy
= zyx the order of derivation is indifferent.

This holds for every term of a finite series of products

of powers of x and y, hence it holds for any such series

itself. The question then arises : Does it always hold ?

and if not always, under what conditions does it hold ?

The answer is that it holds for every point (x, y) in

whose immediate vicinity both zx and zyx (or zy and zxy)

are continuous functions of both x and y.

For a careful investigation of these conditions, as well

as for illustration of exceptional cases, the student is

referred to Vol. II.

210. These two propositions concerning the Total Dif

ferential and the order of Derivation are cardinal in

the doctrine of Partial Derivation. They are commonly
stated with too great generality, and the proofs adduced

are not rigorous. With these propositions established,

under proper conditions, the further discussion is easy.

Thus, to find the second Total Derivative of z as to t, we

, dz 3f dx 3f dy ,

have -T7 s=Bx-,-ii+^ . -T7, whence
dt Vx dt 3y dt

d?z_&amp;lt;?t
dx dx 92f dy dx 3f dfa

d^~&quot;dx
2

~dt dt
+
dxd ~di ~dt 3x dt2

2f dx dy 32f dy dy 3f d2

y__ -/ j__ _2. - - -I__ _2 or
-

dt dt ^dy2 dt dt^Vy dt 2

= -tft
(dx\

2 32f dx~ ~ _

dt
~

Vx-dy dt dt ^dy
2 \dt

3f dfa 3f d?y

We note that (dt)
2 divides every term in this equation,

and we may conveniently omit it; but then we must

understand d to mean derivation as to t, if the resulting

equation is to have any magnitudinal import, to be any

thing more than a convenient symbolism.

If t= x or t = y the equation becomes simpler, but less

symmetric.
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We may proceed similarly to form higher derivatives.

We note that in d2z the first three terms, containing
32

f, have the Binomial coefficients in order, 1, 2, 1; form

ing 3?z we shall find that the terms containing c)
3f have

also the Binomial coefficients in order, 1, 3, 3, 1
;
and

by reasoning quite like that used in proving Leibnitz s

Theorem we may establish this fact generally.

211. Taylor s Theorem Extended. We now inquire

whether and in what form we can develop 0, a function

of independent x and y, in the neighbourhood of any pair

of values x and y ;
that is, whether Taylor s Theorem may

be extended to functions of two independent arguments.

We attempt then to expand i(x+ h, y+ k) in the vicinity

of (x, y), but we conceive of the two arguments as

functions of a third arbitrary t
t
and write t(x+ ih, y+ tk),

which becomes f(#+ /&, y+ k) for the special case, t=\.

Accordingly z becomes some function of t, as

where for convenience we put u, v for x+ th, y+ tk.

Suppose now that / is a continuous function of its argu

ments in the vicinity defined by h and k, then is a

continuous function of t in the same vicinity, and if

Maclaurin s Theorem holds for
&amp;lt;,

we have

or for the special case t =

Now suppose furthermore that f and its partial deriva

tives, pure and mixed, are continuous as to both arguments ;

then we may form the Total Derivative of
&amp;lt;j&amp;gt;

as to t, thus :

3f (it, v) du 3f (u, v) dv ~ .,..
-J-+-- and so for * ( -
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But since u = x+ th and v =

dii _ , dv _j
~dt~

^ dt~

while all the higher derivatives of u and v as to

vanish, leaving for the higher total derivatives of

as to t only the Binomial forms of Art. 210, thus :

Here ( )1
is an operator operating on f (x, y), and ( )

2

is the same operator more compactly written. Similarly,

and so on. Hence on substitution

f(x+h, y+ k)

In case this last term, the remainder Rn , converges
towards 0, we may omit it and extend the series without

limit, and may then write :

4+4
t(x+ h,y+ k) = e

d* d
&quot;f(x,y).

Such is Taylor s Theorem, or the Theorem of Mean
Value as it may be called, for functions of two inde-
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pendents ;
it may be readily extended to functions of

three, four, or n independents, if we define, accurately

beforehand what we mean by continuity of derivatives

in case of such a function. Putting x and y each =0,
and then writing x and y for h and k, we shall obtain

Maclaurin s form, which expands f(a;, y) in the vicinity

of (0, 0),

212. Application. Now as Taylor s series was used to

disclose the character of a curve in the vicinity of a

point, so this extended form may be used to disclose the

character of a surface near any point. To this end let

us take the normal to the surface at the point in question

as ^-axis, and the tangent plane as JTF-plane. We must

then develop 2 = f(o?, y) in the neighbourhood of (0, 0, 0)

by the formula just given. Here we have on the right
-p,i_

.~- P

f(0,0) = 0, since 2 = 0, for 03 = 0,2/
= 0; also = and ^ =0

y

at the origin (0, 0, 0), since XY is the tangent plane ;
hence

where all the terms in { } 3
are at least of third degree

in x and y. Hence by taking x and y small enough we

may make { } 3 small at will in comparison with
{ } 2 ;

or, on putting x = r cos 0, y - r sin 9,

f -H ^i-f~

^2
=A cos 0+2cos sin 9+ Osin

where a- is small at will for x, y, z, r small at will.

Since A, B, C are in general finite, it is seen that z is

infinitesimal of second order.
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213. Osculating Paraboloid. Let us now consider the

surface (a conicoid)

and compare it with z = f(#, y).

For x a, 2z=Aa2+ 2Bay+ Cy
2 in a plane parallel to

YZ, a parabola ;
so for y = b

,
hence the conicoid is a

Paraboloid.

For z = c, 2c = Ax2+ 2Bxy+ Cfy
2

,
and this section parallel to

XY is an ellipse or an hyperbola according as AC B2
&amp;gt;0

or &amp;lt;
;

hence the paraboloid is elliptic or hyperbolic

according as AC B2
&amp;gt; or &amp;lt; 0.

The section made with z = t(x, y) by the plane z = c

is not the conic 2c = Ax2
-\-2Bxy+ Cy

2
,
but by taking c

small enough we may make the other terms in {...} 3

small at will in comparison with Ax2+ 2Bxy+ Cy
2

;
in

other words we have

Lim-=A cos O
2+ 2B cos sin + C sin ff

2

;

that is, the section of the paraboloid by the plane z = c

is the limit of the section of the surface by the same

20
plane. Moreover this Lim -^ is the curvature of the

jA

normal section made with either surface by a normal

plane through z-axis, the equation of the plane being
= K (a constant). For, on referring to Art. 179, Fig. 29,

we see that TP = r, TQ = z. Hence the corresponding

normal sections of paraboloid and surface agree in curva

ture; accordingly the former is called the paraboloid of

curvature or osculating paraboloid for this point of the

surface. For these two reasons we take it as representing

the surface at this point, the two have the same shape

in the immediate vicinity of this point.

214. Indicatrix. The sections of the paraboloid by

planes z = c parallel to the tangent-plane XY are similar

conies Ax2+ 2Bxy+ Cy
2 = 2c,
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of which the simplest

thought as in the XY-plaue, may be taken as the type;

its shape will indicate the shape of the surface near this

point 0, whence it is called the Indicatrix (Dupin).

For AC B2
&amp;gt; the indicatrix is an ellipse, the paraboloid

is elliptic, the surface is cup-shaped, the point is syn-

clastic
,

for AC I?
2

&amp;lt; the indicatrix is an hyperbola?

the paraboloid is hyperbolic, the surface is saddle-shaped,

the point is anticlastic the tangent-plane cuts the sur

face in two intersecting lines.

215. Illustration. In order to envisage these results

more distinctly, let us suppose our surface z = i(x, y) to-

be a snow-covered mountain range, the 0-axis vertical,

the #-axis lying with the range north and south
;
then

the section of the plane x = a will be an undulating (say

black) line along the range, the section or trace of the

plane y = b will be a waving line across the range, the

trace of the plane z c will be a contour line around the

range. As the plane z c rises up, the contour trace of

it may shrink and break up into a number of distinct

closed lines girdling the peaks; as z= c rises higher,

each of these contracts and finally vanishes in a point,

the apex of a peak, as the plane becomes tangent. Near

such a synclastic point the plane cuts off a cu^-like piece

of the surface. At such a point both the other traces, of

x = a and y = b, attain maxima, and we have

The like may be said of a depression (or inverted peak),

at the lowest point of which z c becomes tangent, while

the traces of x = a and y = b attain minima, and
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Near such points the contour lines become approximately

ellipses.

But there are not only peaks and depressions in such

a range, there are also passes, down from which the

range falls on two opposite sides, up from which it rises

on the others. At such a point the surface is saddle-

shaped, the plane z= c becomes tangent but cuts the sur

face along two intersecting lines; of the two traces made

by x = a and y = b, one attains a maximum and the other

a minimum, while both ^ = and - = 0. Such a pass^x ^y
inverted at the bottom of a lake becomes a bar (think

of the range reflected in a horizontal mirror). Near such

an anticlastic point the contour lines are approximately

hyperbolas.

216. Curvature. Now what the foregoing doctrine of

the Indicatrix teaches is that in general every point of

the surface is thus either a cup-point or a saddle-point,

and not merely these peak- and pass-points, where the

first partial derivatives and vanish : sections about
3x dy

every point perpendicular to the normal at that point

tend toward either an elliptic or an hyperbolic shape.

Keturning now to the normal sections, the traces of a

plane turning about the normal or 0-axis, we have for

the curvature of such a section

For a section at right angles to this we put (9 = $-f Tr/2,

and obtain

- =A sin
2 -2 cos 6 sin + Ccos O

2

P

whence -+ ,
=A + C, a constant (Euler). This constant

P P
has been named curvature of the surface, and is of use
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especially in the mathematical theory of capillarity, but

the now accepted measure of curvature is the Gaussian

&amp;gt;

where R and R are the radii of curvature of the

principal normal sections, i.e. the sections made by planes

through the axes of the Indicatrix. If this latter be an

ellipse, then it is plain that R and R are the maximum
and minimum radii of curvature corresponding to major
and minor axes

; they are called principal radii of

curvature.

The axes of the indicatrix are tangents to the principal

sections : if a point starts to move on one of these principal

sections, the indicatrix will start to move also, turning its

axes about the point, and therewith turning the normal

section. If the point follows up this turning of the axis

and normal section, keeping always on the latter and

facing always along the former, it will trace out on the

surface a path whose tangent at every point is the axis

of the indicatrix. Such a line is called a line of cur

vature of the surface. Through every point there pass

in general two and only two lines of curvature, perpen

dicular to each other.

When the indicatrix is a circle the radii of curvature

become equal, any two diameters at right angles may be

taken as axes, any two mutually perpendicular sections

as principal sections, and the point may trace out a line

of curvature by starting out on any normal section
;
hence

lines of curvature converge all around upon this point,

which is called a cyclic point or umbilicus.

217. Solid Angles. We recall (Art. 166) that the angle

through which the tangent turns in passing from P to Q,

or the angle between the normals at P and Q, was named

total curvature of the arc PQ ;
its ratio to PQ, the

average curvature of PQ ;
and the limit of this ratio as

Q neared P, the instantaneous curvature at P. In order
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to form an analogous concept for surfaces, we bound off

an area S on the surface, to correspond to PQ ;
at each

point of this boundary we draw a normal, but do these

normals determine an angular magnitude, as do the

normals at P and Q ? Assuming that any such magnitude,

if there be any so determined, will not be affected by

moving them each parallel to itself, we assume a unit-

sphere (of radius 1), and from its centre draw a parallel

to each normal along the boundary. These parallels form

a cone-surface, which piercing the sphere-surface bounds

off on it a piece S corresponding to S. The sphere-

surface being uniform (homeoidal), the area 8 may be

taken as measure of the opening of the cone, and this

latter being thus exactly measurable we name solid angle

of the cone, or of the normals. When the cone flattens

out to a plane, S becomes a hemisphere of area 2?r;

hence the solid angle formed by a plane about one of its

own points equals the round angle 2?r, or rather has the

same metric number ZTT as the round angle, though it is

an entirely different magnitude ;
and the whole solid

angle about any point in space is (or strictly has for its

metric number) 47r.*

The notion of solid angle formed by the normals being

thus made precise, we now define, by analogy, the average

curvature of S to be the ratio of the solid angle about

S to the area of S, and the limit of this ratio as S

contracts down upon the point P we name the instan

taneous curvature at P.

Now it has been proved (by Gauss) that the instan

taneous curvature, as thus defined, equals vy; also that

it equals (AB-Cz
)/(l+zx

*+ zy*f ;

*The unit-solid angle here tacitly assumed is the so-called stere-

radian (Halsted), which is subtended on the unit-sphere by an area

equal to the unit-square, whose side is the unit-length.



218 INFINITESIMAL ANALYSIS.

also that the average curvature of S remains unchanged
however 8 be bent without stretching.

Hence, if AB C2 = Q, the curvature is 0; and if this

hold for every point of S, then may S be flattened out

(being regarded as a perfectly flexible inextensible film)

on a plane, which also has zero curvature at every point ;

S is then said to be developable.

218. Maxima and Minima. We have already seen from

geometrical considerations that the general conditions for

the existence of a maximum or minimum of z = f(#, y) are

But .hereby we are not enabled to distinguish maximum
from minimum. The same conditions may be established

analytically, thus

= (hzx+ kzy\+ 1
(h*A + 2hkB+WC\+ T,

where T contains terms of at least third degree in h

and Jc. Now if f (x, y) be either maximum or minimum,

then the right member of this equation must not change

sign for any pair of infinitesimal values of h and kr

i(x, y) must be greater (or less) than any f(&+ /t, y-\-k)

in the immediate vicinity. But for h and k small at will,

the sign of the right member is controlled by ( )p since

all following terms are of higher degree, unless

hzx+ kzy = 0;

however, ( \ manifestly changes sign with h and k r

being of odd degree ;
hence there can be no maximum

nor minimum in general unless hzx+ kzy
= for all infini

tesimal values of h and k. Now the fact is a simple but

an important one, that in order for the sum of a number

of independent variables to vanish, the coefficients of

each must vanish separately. For we may equate, all

but one of the variables to 0, and that one to a value
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different from 0; then the coefficient of that one must

be 0, since the whole sum is 0; and so for the other

coefficients. Hence we must have zx = 0, zy = 0. The sign

of the right member now depends on ( )2 ,
which must

be &amp;lt;0 for maximum, &amp;gt;0 for minimum, and must not

change sign for h and k small at will. This ( )2 may
be written

In this expression (Ah+ Bk)
2
is positive : if then A C B2

&amp;lt; 0,

by choosing h and k properly we may make the whole

{ } positive or negative at will, hence maximum and

minimum are then impossible. But if AC B2
&amp;gt;0,

then

the whole { } is positive, or at least not negative, for

all values of h and k, and -
r { } is + or

, yielding
_/l

minimum or maximum, according as A is + or .

The same holds for AC B2 = 0, in which case the

indicatrix is a parabola.*

Similar analysis shows that for u = (x, y, z) to be

maximum or minimum we must have

while the controlling expression

LZ OIL ^ ,72^ ,97,7
^

, 977= h,
z - + 2fife _ + KL

^+ 2/i6 -f 2/d

*In this case { } will be + except along the right line

i.e., Ax+fli/= 0, which represents two coincident tangents to contour

lines. We should now investigate the cubic (hzx+ kzy)
3
,
which must

vanish for Ah+Bk= Q, if there is to be maximum or minimum, and

the biquadratic (hzx+ kzy}* must be independent in sign of h and k

for Ah+ Bk=Q. In this case the contour lines coincide through a

finite length, and we have a locus or ridge of maxima (resp. minima),
as around the crater of a volcano.
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must not change sign for h, k, I at will. This may be

written

xy

where A is the so-called Hessian

yX ,

and A
2 ,
A3

are the minors of u
yz ,

uzz . In order for this

sum of squares not to change sign with h, k, I at will,

the coefficients must have the same sign ;
hence A

3 must

be +, and then u is maximum or minimum according
as uxx and A are both or both +.

In case the terms of second order also vanish, further

and tedious investigations will be necessary, but often

geometric considerations will resolve all doubts very

simply.

219. Relative Maxima and Minima. Thus far we
have supposed x and y quite independent of each other,

but we often inquire for maxima and minima when some

equation of condition connects x and y. This is like

seeking, not the peaks or depressions of the whole mountain

range, but the highest and lowest points on some trail

over the range. We may at once generalize the problem
and ask for the maxima and minima of a function of

(m+7i) arguments subject to m conditions :
X
= 0, 2

= 0, . . .

m = 0. Theoretically we may eliminate m arguments,
and then treat the resulting function of n independent

arguments according to Art. 218; or we may select n

arguments for independents, treat the other m arguments
as dependents, derive the original function and the m
equations with respect to the n independents, and then

eliminate
;

but both these methods will generally be

tedious and often impracticable, owing to the difficulty
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of elimination. Preferable is Lagrange s Method of Un

determined Multipliers.

Let /(#!, x
2 , &amp;gt; ^w+n) be the function to be maximized

or minimized,
&amp;lt;j&amp;gt;i(xv x^ . . .

,
xm+n)

= 0,
^&amp;gt;2
= 0, . . .

,
&amp;lt;p
m =

the m equations of condition. We form a new function

^(fl51} fl5
2 , ..., xm+n)=f\ l (f&amp;gt;l

\2 (j&amp;gt;2
... \m

&amp;lt;/&amp;gt;m,

where the

X s are undetermined multipliers. Since the
&amp;lt;/&amp;gt;

s are always

equal to separately, the values of / and F are always

equal, and we now seek the maxima and minima of F

regarding all the x s as independent. These will be the

maxima or minima of /, since F=f, under the m con

ditions ; for the values of the x s will contain the X s,

and these latter, being at our disposal, we can choose so

as to fulfil the m conditions. In other words we form

the (m-Hi) partial derivatives of F as to the x s and

equate each to zero, thus :

1

-o~

These (m+ 7i) equations, with the m conditions, ^ = 0,

...
5 TO

= 0, make (2m+ 7i) equations, which suffice to

determine (2ra+ r&) magnitudes, namely, (m+ n) aj s and

m X s.

Maxima and Minima thus existing under such restric

tions or equations of condition are called Relative Maxima

and Minima.

Undetermined multipliers may be used quite similarly

in finding Envelopes when n parameters are subject to

Ti 1 conditions : if f(x, y ; pv ... pn)
= be the equation

of the system of curves, and ^(p^ p.2 , Pn) = 0, ^&amp;gt;2~ ^&amp;gt;

n _ 1==0 be the conditions on the parameters, then we

form the new function

F(x,y; pv ...pn)=f(x,y- pv ... pn)-\1 &amp;lt;j&amp;gt; l-...-\n-i^n-i
= Q

and equate to each partial derivative of F as to the

p s
;
we have then in all 2n equations, from which we
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can eliminate (2^1) symbols, the &amp;gt; s and X s, and obtain

a relation \fs(x, y) = 0, the equation of the Envelope.
It is often well to retain the X s as long as possible

in the calculation and express the variables through them
;

^N Tjl

often, too, the partial derivative equations, = 0, etc.,
OX-^

may be interpreted to declare adequately the state of

geometric fact, without finding the oj s.

220. Illustrations. 1. Find the equations of the tangent-

plane and of the normal to the sphere

Here Fx= 2x, Fy
=

2y, Fz =2z; hence if u, v, w be current

coordinates for the plane and the normal we have for

the plane

or since (x, y, z) is on the sphere,

xu+ yv+zw= a2
;

and for the normal

ux_vy_wz u_v_w
~2x~

:

~2y~~~ ~W~ ^
x

==

y
==
^

the equations of a right line through the origin, i.e. the

centre.

2. Similarly for the ellipsoid ^+ f^+^-l = 0, the

x2 y2 z
paraboloids 2+ j^

= ^~, and the hyperboloids

and show that the plane tangent to the conicoid

kx2
+jy

2+ iz2+ 2kxy + 2gxz+ 2fyz+ 2lx + 2my+ 2nz +d =

is kux +jvy+ iwz+ h(uy + vx) +g(uz+ wx) +f(vz+ wy)
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3. In optics we meet with a plane

Ix+my+ nz d = 0,

whose parameters I, m, n, d are so related that

_IO, and

what is the envelope of this plane ? what surface does

it touch ?

We form the new function F=f A&amp;lt;/&amp;gt; /UL\JS,
which =/

for = and
i/r
= 0.

Now regarding the four parameters I, m, n, d as inde

pendent we must have the total derivative of F as to all

the parameters = 0, and therefore the partial derivatives

as to I, m, n, d each = 0. That is,

x-m -2
M3i-^-2 =o,

.....................(i)

777

(2)

s-2Xn -2^:=0, (3)

Multiply (1), (2), (3) by Z, m, n and add
;

.-. 2X = cZ............................. (5)

Multiply (1), (2), (3) by x, y, z and add
;

In (1), (2), (3), transpose, square, and add;

.-, r-(P-M/X...........................(7)
Hence from (5) and (7), 2M = d(r

2 -cP)................... (8)

Substitute for 2X and 2/x in (1), (2), (3);

x Id y md z nd ,

q
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Multiply these by x, y, z\ then from (6), by adding,

subtract

52^

This is the Wave-Surface of FresneL

4. Find the equation of the tangent planes of a cone,

the vertex being the origin.

The equation of the cone is
Z=x&amp;lt;f&amp;gt;(y/x),

whence if

u, v, w be current coordinates for the plane,

x(w z)
= z(u x)+ (xu yv)

&amp;lt;f&amp;gt; (y/x).

This equation of the plane is satisfied for u = v =w = Q,

for all values of x, y, z\ hence all such planes pass

through the origin, the vertex, while for x = y= z = Q the

equation loses all meaning.

5. Find the pedal surface as to the origin (locus of

foot of normal from origin to tangent plane) of

The tangent plane is

xu yv zw

,, n
.

the normal is
x y

Hence xu = aV/X2
, yv = V2v2

/\
2

,
zw = c2w2

/\
2

;

hence \2 = u 2+ v2+w2
.

A1
x au y bv z cw
a
=
X^ 6

=^ c
=^

Hence on squaring and adding,

a2u2+6V+ chv2 = (u
2+ v2+w2

)
2 = r4

.

This is FresneUs Surface of Elasticity.
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Show that the tangent plane is

and is distant r4
/x/a%

2+ b*v2
-f- c*w

2 from the origin.

6. Investigate the circular spiral or helix.

Its equations are x a cos 0, y = a sin 0, z bO.

Its projection on XY is #2+ 2/
2 = a2

;
its projections on

YZ and ^X are sinusoids : y = a sin z/b, x = a cos z/b :

the length of a spire is 2w\/a2+ b2
; cosy is constant

(
= b/\/a

2+ b 2

), hence tangent cuts all elements of the

cylinder under the same angle, the curve is the isogonal

trajectory of the elements of the cylinder; also cosv

is constant (
= a/\/a

2
-+-b

2
), hence the binomials and there

fore the osculatory planes are like-sloped to Z; also cos^V

is constant (
=

0), hence the principal normals are all

parallel to XY; all the curvatures and the radius of the

osculatory sphere are also constant.

7. Investigate the conical spiral.

Its equations are x = t cos (a log t), y = t sin (a log t), z = bt.

It lies on the cone x2
-}-y

2 = z2/b
2

;
its projection on

XY is a logarithmic spiral r= e (f&amp;gt;fa

,
where tan

(j)
= y/x; y is

constant; the curve cuts all elements of the cone isogonally,

under the sin
&quot; l
a/\/l + a2+ b2

;
binormals and hence oscula

tory planes are all like-sloped to Z, principal normals

all parallel to XY; the radius of torsion is (l + a2+ b2
)t/ab,

the radius of first curvature is proportional hereto

,
etc.

8. Investigate the curve of intersection of the two

clinders x2+ z2 = a2 and

The tangent is ux+ wz = a2
, vy -\-wz-b

2
.

AT T T . U V W
Normal plane is H---- = 1.

x y z

Osculatory plane is

- a2
y*v+ (a

2- b2
)z*w = a262(a

2- b2
).

s. A. p
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Tangent lengths to YZ, ZX, XT are mx2
, my2

,
mz2

,

, /111where m =y_ +_+ _.

Osculatory plane is also

b2x*u- a2
y*v+ (b

2x2- a2
y

2
)zw = a2b2

(x
2- y

2
).

And so on.

9. Investigate the spherical ellipse.

x2 y2 z2

&quot;Its equations are x2
-f y

2+ z2 = r2
, -2+ T2 + -2

= l-
CL&quot; C

Forming the difference of these equations we see the

curve lies on a cone; eliminating x, y, z in turn, we see

it lies on three cylinders, namely,

and two other such.

If
(I, m, ri) be a point on the curve, then

&&quot;

whence by subtraction and simple reductions

x2 -l2
y

2-m2 z2-n2

a\b
2- c

2
)

~
b2

(c
2- a2

)

~
c
2
(a

2 - 62
)

the last expression following from symmetry.
These equations of the curve are the most convenient.

We have

2Ae
= ^ ^2/7^~

. C2) aV-fc2
)
2

y
y

and the others follow from symmetry.
All the geometric elements may now be expressed

readily. The sum of the distances (measured on great

circles) from two fixed points on the sphere to any point

of the spherical ellipse is constant, hence the name.
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10. Investigate the intersection of the circular cylinder

x2
-i-y

2 = a2 and the parabolic cylinder z2 =
2qx.

By addition and subtraction we obtain

so that the intersection lies on a sphere and on a simple

hyperboloid of revolution. The geometric elements are

now easy to express.

11. Investigate the equable spherical spiral, i.e., the

intersection of the sphere x2+ 2/
2+ ^2 = 4a2 with the

cylinder x2+ y
2 = 2ax through the sphere-centre.

12. Find the envelope of the plane that bounds with

the coordinate planes a pyramid of constant volume, k3
.

We have
^
+
^
+

^
= 1, a bc = 6k3

;

we form ^=%|+^_

then Va=-
X
i+ \bc = Q, -|~+Xca = 0,

- Z

2CLuC
/
y* ?y ^

\

whence -=^=5-=- and Qxyz = 2k3
.

a b c 3

13. Find the envelope of a system of equal spheres,

their centres on a circle about the origin in XY, radius c.

We have (a;
-

a)
2+ (y

-
6)

2+ z* = r2
,
a2+ 62 = c

2
.

The result is c+ *Jx2+ y
2 = x/r2- z2 .

14. Find the area of a central section of an ellipsoid.

The equations are

x2
ii

2 z2

2+ y2 + ~2
= l and

Ct C
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and we find the axes of the elliptic section by maximizing

minimizing r2= x2+ y
2+ 2

. Hence

TT \x 1 AV \z
(Jx= x - 2^ = 0, y j~ /xm = 0, ^ ^71 =

Cv C

Multiply by x, y, z and add; hence A = r2
,
thence

~a2-r2

and so for y and 0; whence forming Ix+my+nz,
a2

l
2 b2m2

c2n2

1 1

_ = 0.

The product of the roots r
1

2 and r
2
2 of this equation is

hence Area = Trabc/aW+ 62m2+ c
2^2

.

15. Find the maximum and minimum radii of a central

section of the surface of elasticity.

The equations are

O2+ y
2+ s2)

2 =
?-
2 = a%c2+&y+ cV, Ix+my + w0 = 0,

and we must maximize respectively minimize r or r2
.

Proceeding as in 14 we obtain

a quadratic in r2 with real positive roots, hence the r s

are real. This equation yields the velocities of undula

tion in a crystalline doubly refracting medium.

16. Maximize ax-\-by+ cz when x2
-\-y

2
-}-z

2 = I,

interpret geometrically. Ans. \/a2+ b2+ c~.

17. Maximize the cuboid inscribed in an ellipsoid.

Here u = xyz, and
2+ f2 + ^2

= 1
&amp;gt;

hence u = abc/\/27.
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18. How must the prime factors of a number enter

into it that it may have as many divisors as possible ?

(Waring.)

Let a, b, ..., I be the prime factors and aa . W ..... Z
x

= the number N. The divisors are found by taking

a, b, ... singly or in any combination
;
the factors due to

a are a, a1
,
a2

, ..., aa
,
and these may be taken in any

combination with the 6 s, etc. Hence the total number

of different factors is M=(a+ I). ( + 1) ..... (X+ l). This

M attains maximum when its logarithm does
;
hence we

maximize

or F=Slog(a-fl) ---2aloga-- logN;

Hence

/UL
= (a 4- l)log a log a

a+ log a = log bP 4- log 6 = etc.

Hence if n be the number of different prime factors

a, b, ..., I, we have

TI/X
= 2 log a

a
4- 2 log a = log JV4- log ab...l = log JVa . . . I,

or
/x,
=

(log Nab . . . l)/n, a 4- 1 = (log Nab . . . l)/n log a,

and so on. Hence

1 1 1

log a log 6 log I

19. Show that among cuboids the cube has greatest

volume with given surface and least surface with given
volume.

20. Show that is a maximum product of the cosines

of the angles of a plane triangle.

21. Find maximum and minimum radii of curvature
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of a curved surface. Denoting (with Euler) zx ,
zy , z%x ,.

Zxy, z-2y, l+_p
2+

&amp;lt;?

2
, by p, q, r, s, t, /c

2
,
we have

-

under the condition

Introduce A and derive as to x and y\ thence

rx+sy-\{(l+p2
)x+pqy}=0,

Multiply by x respectively y and add; thence X

Substitute and collect terms in x and y ;
thence

Multiply these equations together, divide by xy, and

there results:

a quadratic for determining p.

22. Show that (a*+&*)r
4 is maximum of

23. If AA
,
BE

,
GCT be altitudes of an acute-angled

triangle, show that A E G of all triangles inscribed in

ABC has least perimeter.

24. Find distance (or minimum tract) from a fixed

point to a fixed right line.

25. Find axes of ellipse cut out of the elliptic cylinder

4#2+ i/
2 = l by the plane 12x- 3y + 4z = 0. Ans. x/13

and J/v/13; direction cosines are as 3:4:12, and as

4:12: -3.
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26. Find axes of section of

3x2+ 2y*+ z2 = l by I2x + 4z = 3y.

Ans. /V/TY, x/if; direction cosines as 3: -4: 12, and

as 4:12: -3.

27. Find dimensions of strongest beam that can be cut

from a cylindric tree of diameter d, the cohesion varying

as the breadth and squared depth. Ans.

28. Show that in

the triplet (1, 1, 1) yields a maximum, ( 1, 1, 1)

a minimum, while (1, 0, 0), (0, 1, 0), (0, 0, 1) are

antidastic (neither maximum nor minimum).

29. Find when Venus appears brightest.

Let E, F, S be Earth, Venus, Sun;

EV= x, SE=a, 8V=b.

The brightness varies directly as 1 + cosSEV, inversely

as a;
2

;

_
Hence u = --

; whence for maximum,*

For a = 300, 6 = 217 (circa); whence a = 1291, and

SEV=39 43
r

28&quot; (circa),

about 64 days before and after inferior conjunction.

30. To inscribe a maximum ellipse in a given triangle.

OAB the given A, OA=a, OB = b, LAOS = w, take

OA, OB as X- and F-axes; let (u, v) be the centre of

the ellipse; then its equation is
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Since X is tangent, 2/
= must yield equal roots in #, or

what is tantamount, in x u; hence the discriminant

v--v =
,
or = -v = v,

where C is the criterion and is &amp;gt;0 for an ellipse.

Similarly, j=Cu2
;
h = JCWv*-C: u2

=j/C.

To find area of ellipse, solve as to y v\

.

-

, jy =jv h(x u) /j Cx u)
2

.

The difference of these two y s is the chord parallel

to F; hence

ru
2 ru ._

(2/i
&quot;~

y*)d
= sinc0 .

-
1 \Jj C(x u)

2
. d(x u)

= 2 sin CD i I \/u ^
(x u)

2
d(x u)= 7

=r~*
3 J \/0

-u

Hence the problem is to maximize -.. This C contains

k, h, j ,
we may eliminate them, and express C in terms

of u and v, by validating the third condition, that AB
touch the ellipse. The equation of AB is y = sx-\-b, or

yV=8(xu)+d, where s= and d= us v+ b. On
ct

substituting this value of y v the roots of the original

equation in x u must again become equal; hence

(k+ 2hs +js*)(d*
-

1)
- d\h +js)

z =
;

hence kj-h* or C=(k+ 2h8+js*)/d*

= (ka?+ 2hab +jb
2
)/(av+ bu- ab)

2
.

Divide by C, remember h2 = C2u2v2
C, and put

z = av + bu] then clear of fractions, destroy the terms

a?v2 and bV, divide by ab, and there results

- =ab+ 2uv-2z.
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Square, transpose, factor, and there results

(4tw+ ab- 2z)(2z
-
ab) = 4/0.

We equate now to the partial derivatives as to the

independents u and v, so that

(4&amp;gt;v-2b)(2z-ab)+ (4uv+ ab- 20)26=0,

(4u- lci)(2z-ab)+ (kuv+ ab- 2z) 2a = 0.

Multiply by a respectively ( b) and add
;
there results

either 2z ab = 0, which makes C= 00, and must be

rejected, or else, on simplifying, av= bu. Whence on

eliminating v there results 6u2 5au+ a2= 0; whence

u = Ja or Ja, f= Jfr or J6.

The point (a/2, 6/2) is the mid-point of AB and does

not concern us; it makes 0=0 and so yields no ellipse

but a parabola; the point (a/3, 6/3) is the centroid of

the A, and is the centre sought.

Hence the area =
^=sino)

= -i= (area of A).

Show the points of touch are mid-points of the sides.

31. Similarly show that the min. ellipse about a A nas

the mass-centre of the A for its centre and has an

4-7T
area=-v- (area of A). These are Euler s Problems.

/v/27

32. Show that if f(oj, y) = and
&amp;lt;f&amp;gt;(x, 2/)

= meet or

thogonally, then fx .
(j&amp;gt;

x -f- fy &amp;lt;f&amp;gt;y
=

;
and conversely.

Similarly, if f(oj, y, z)
= 0, &amp;lt;fr(x, y, 0)

= meet orthogo

nally then ix .

(px+ fy . y+ f. 0z
= 0; and conversely.

Hint : The formulae merely declare the cosine of the

angle between the normals to be 0.

33. Trace the system of conicoids

for X varying from -f oc to x
, showing that the
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surface starts as an oo sphere, and becomes successively

ellipsoid, single hyperboloid, double hyperboloid, imaginary

ellipsoid as X passes through c
2
,

62
,

a2
,
and show

the surfaces are confocal, and each set (of ellipsoids,

single hyperboloids, double hyperboloids) cuts the other

two sets orthogonally.

34. Show that the systems of anchor-rings

(3-2+ y
2+ Z2+ a2

of spheres, x2+ y
2+ 2

of planes, y = vx, cut each other orthogonally for all

values of X, /*, v.

35. Show that the equation of a tore (formed by

revolving a circle of radius a about an axis z in its plane,

distant d from its centre) is

(0-2+ 02+ ^2+ a2+ CJ2)2
= 4^2(^2+ ^2)

.

and that this tore has a circular ridge of maxima and

one of minima for z where ?

Compare this with Example 13.

CHANGE OF VARIABLES.

221. Use of a third Independent Variable. In Co

ordinate Geometry a frequent and important problem is

that of the Transformation of Coordinates, to pass from

one set of coordinates to another, as from rectilinear to

polar, or vice versa. The analogous problem in the

Calculus, to pass from one set of variables to another, is

of like importance.

Perhaps the simplest general case that arises is that

of expressing the derivatives of y as to x through the

derivatives of each as to a third variable, say t. We
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have then y t
=

&amp;lt;y
x .xt ,

whence yx = y t/xt
= ^7, if we denote
x

by accents derivation as to t.

_&y_y&quot;.x -y x&quot;_ y&quot;x&quot;\l
,3

y2x ~dx*- &quot;x*

~
y x

r

V
&quot;

where we note that in order to derive as to x, we first

derive as to t, and then divide the result by x
\

or in

, , d 1 d
symbols, -r-= -j-

.

dx x t dt

The numerator in this result is a noteworthy deter

minant form, which we may generalize and write thus

where the indices denote derivation as to t.

If now we derive this as to t we get

7 ^

We have now y.2x
=

-j {
= D^ijx^,

whence

_ d3
y _ (D31

and the higher derivatives may be similarly written off.

222. A special case, that of exchanging argument and

function, arises for t = y ;
we then express the derivatives

of y as to x through those of x as to y.

1 x,y

snce y = y =
.

Similarly we may form the higher derivatives, but the

expressions are cumbrous.

223. Reversion of Series. By help of Taylor s Theorem

we may obtain a larger comprehension of this last problem.
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.Denoting by k the function-difference f(x+ h) f(V) cor

responding to the argument-difference h, we have

when the / s are the special values for the argument x

of the derivatives as to x of y
= f(x). Denoting

*~ =
^

&quot;-

j |

by dn ,
we have k=

d-Ji+ d^h
2+ d

3
h3+

Similarly, if x = f- 1

(y)
= (j)(y\wQ shall have a function-

difference h =
&amp;lt;j&amp;gt;(y+k)&amp;lt;j&amp;gt;(y) corresponding to the argu

ment-difference k
}
and if en = ^ e-r--. we shall have by

\n \n r

Taylor s Theorem A, = ejc+ ejc
z+

ej&amp;lt;?
+....

Now to deduce this series for h from the series for k

is to revert this latter series
;
to accomplish this reversion

we must express the e s through the d s, that is, the

derivatives of x as to y through the derivatives of y as

to x
;

hence this problem of exchanging function and

argument is analytically the same as the problem of

reverting a power-series, namely, Taylor s Series. We
solve this latter problem by substituting for h in the

first series its value given in the second series, namely,
h = ejc 4- etc.

;
the result is a power-series in k, and we

express the e s through the d s by the familiar method

of equating to the coefficients of the powers of k, thus :

dl&,+^(2^3+ ef)+ Sdft
2^+ dff = 0, etc.

In each of these equations, but the first, the sum of

the subscripts of the e s in each term is constant; the

number of e-factors in each term is the subscript of the

&amp;lt;i-factor, while the numeral coefficients are combinatorials.

Higher equations may be easily written down. Hence

express the e s through the d s.
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224. Reciprocants. This old problem of reversion has

acquired a new interest under the treatment of Sylvester

(American Journal of Mathematics, Vol. VIII., p. 196,

IX., p. 1, 113, 297) who has studied those functions of

the d s that pass over into like functions of the es,

changing form either not at all or else only by some

power of xy as a factor
;

such functions he calls Re-

ciprocants, pure if they do not contain yx ,
mixed if

they do. Thus the Mongian d.-?d5 3d
2
d

sd4+ 2cZ
3
3

is a

pure reciprocant ;
while the Schwartzian d^ df is

mixed. Reciprocants emerge in Elimination (Art. 241).

Exercises. 1. Show that the radius of curvature
/&amp;gt;

-*/&amp;lt; *\-
I , y ar

1

2. Show that 4d
2
d
4
- 5d

3
2 is a pure, and 2d

1
d
i
- 5d

2
d.
s
a mixed,

reciprocant.

3. Show that the derivative of the determinant

where the indices denote derivations as to the common argu

ment tj of the y s, is the same determinant with only the

first row increased by 1 in order of derivation, i.e. changed

into y^ y2
(n}

...yn
ln)

.

Hint : Prove it when n = 2
; then, using this result, prove

it for w = any positive integer.

4. Extend the foregoing theorem to the determinant

225. Transformation from System to System. The

next problem is to pass from a system (x, y) to another
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system (u, v), and corresponds exactly to a transformation

of coordinates in a plane. We suppose x and y expressed

through u and v, thus:

then taking u as argument, we have

whence

This formula is cumbrous, and it is in general better

to find yx in terms of u and v, then derive the result as

to u, and divide by xu .

The most important special case is to pass from rect

angular to polar coordinates, +x being the polar axis.

We have then

x = r cos 0, y = r sin
;

x
e
= T

Q
cos r sin 0, yd

= r sin + r cos 0,

r sin $+ r cos #

x ~
dx2

~ ee ~ (~ cos _ r sin Qf

If denote derivation say as to t, then we have

x = r
7

cos r sin . $
, t/

= r sin + r cos 0.0
;

whence xx+yy =rr
,
........................... (1)

xy -yx = r*(y, ........................... (2)

iC
/2+ 2/

/2 = r/2+ r2 /2
.................... (3)

Equations (1) and (2) we form directly, equation (3)

we get by solving (1) and (2) as to x and y , squaring,

adding, remembering always that x2

-\-y
2 = r2

. We may
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also get (1) by deriving x 2+ y
2 = r2

; (2) declares the

equality of two elementary triangles in Cartesian and in

polar coordinates, and (3) declares the equality of the

elementary arcs in the two systems.

Exercises. 1. Express the radius of curvature in polars.

2. Transform tan
&amp;lt;J&amp;gt;

= rOr . to Cartesians.

226. Change of Independents. Our next problem is

to pass from one set of two independent arguments (x, y)

to another set (u, v), these two sets of independents being

connected by the relations :

and we shall of course have to deal with some function

of x and y, as z= (x, y). We inquire into the relations

of the partial derivatives of z as to these two sets of

variables,

** =fu =fx Xu +fy 2/, fv =fx Xv+fy . yv

since / depends on u and v through x and y. But

generally we seek fx and fy ;
and

/ =
Jx xu .yv-xv .yu \fv y

5tt yu

*v Vv

The terms of this fraction are very interesting forms;

their great importance for analysis was first perceived

by Jacobi, and hence they have been named (by Salmon)
Jacobians. We may write concisely

_
du dv

dx dx

dy dy
du dv

^ d(u, v) ^ J(f, y ; u, v)

d(x,y)~~J(x, y; u, v)

d(u, v)

Of course, ./;

dy J(x,y; u,v)
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227. The notion of Jacobian may be at once extended

to sets of three variables : x, y, z
; u, v, w ;

and to sets of n variables : x
lt

. . .
,
xn ;

uv . . .
,
un ;

In this expression the x s are regarded as functions of

the u s, which are independent of each other; and we

may easily show that to exchange the xs and u s will

invert the Jacobian precisely as to exchange argument
and function in ordinary derivation inverts the derivative.

For

J(x, y ; u, v) . J(u, v; x,y) =

= xu . ux+ xv . vx ,
xu . uy+ xv .vy \= 1,

I

since the sums are plainly the derivatives of x as to x, of

x as to y, of y as to x, and of y as to y; and of these

the second and third vanish if x and y are independent

of each other, while the first and fourth equal 1 if x and y

depend only on u and v.

Let the student extend the proof to higher Jacobians.

228. Mediate Derivation through Jacobians. We may
.. 3(c, ii) c)(it, v} ., P ,, 11

write r= l, the torm that most vividly
3(u, v) 3(05, y)

reminds us of ^ -y- = l. Note carefully that this latter
du dx

relation by no means follows in a formal way from mere

cancellation of factors, and in fact by no means holds
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for partial derivatives. Thus, if x = rcos9, y = rsiuO be

two systems of independent arguments, (x, y) and (r, 0),

p^/y* 7&quot;^

/y* /
y*

we have = cos 0, and also, since x2+ y
2 = r2

,

-- = - = cos 0,

whence -- =
cos&amp;lt;9

2
and not = 1. It is not the partial

or ox

derivatives themselves but their Jacobians that are in

verted by inverting the order of dependence among the

symbols. This observation suggests the question whether

in any other relations, as in mediate derivation, of which

the foregoing is really a special case, the Jacobian plays

the role of the ordinary derivative. We have

d(j&amp;gt;
du

_d&amp;lt;]&amp;gt;

du dx
~
dx

and from analogy we should suspect

3(u, v) 75 (x, y) 3(o5, y)

where and \^ are functions of u and v, which are

themselves functions of x and y. Now

&amp;lt;f&amp;gt;U, 01

&amp;lt;K, ^

Vx&amp;gt; fa - uy+ fa Vy

which confirms our conjecture ;
and plainly the same form

of proof holds good for n functions
&amp;lt;f&amp;gt;lt &amp;lt;p

9 , ..., (pn of n

independents xt , x, . . .
,
xn , through n mediate independents

Ui, U%, . . .
,
Un .

229. Vanishing of the Jacobian. We know that the

ft 1i

vanishing of -y- signifies that u is constant with respect

to x, and the question is natural, what does the vanishing

&amp;gt;of the analogous Jacobian
u

S. A. Q

signify ? We should



242 INFINITESIMAL ANALYSIS.

naturally suspect some constant relation between u and v

regarded as functions of x and y.

Suppose then

TTHence
3f 3f 3 1& 3f

OX

= = ()d^ du 3 dv ^~~

These equations are linear and homogeneous in fw and f,,;

hence, if they consist, we must have

UX) Vx

Uy, Vy
=o, or rr^=o.

Quite similarly let the student show that if a relation

f(u, v, w) = holds among three functions, u, v, w, of

three independents x, y, 0, then the Jacobian must vanish :

t^^=
&amp;lt;&amp;gt;;

3(#, y, z)

and let him extend the proof to the general case of n

functions, u\ t ..., un ,
of n independents, x\, ..., xn .

230. Does the converse hold ? If the Jacobian vanishes,

does some relation hold among the functions ?

Suppose = 0.

By the law for mediate partial derivation we have

UX,Uy

0, 1

We note that yx vanishes, since x and y are independent,

but we are not yet sure whether vu vanishes or not.

Hence either ux = 0, or vy = vu . uy .

If ux = 0, then, from the original Jacobian, either 1^ = 0,

or 1^= 0; if both ux and vx = 0, then both u and v are

independent of # and at most are functions of y alone, and
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on eliminating y between them, we get sortie relation

between u and v only ;
but if both ux = and uy 0, then

U contains neither x nor y, it is constant as to both, is

not actually a function of either a possible case which

we need not consider further.

If on the other hand vy= vu . uy ,
two cases arise : first,

suppose vu= ,
then v is independent of u, but then vy= Q,

hence v is independent of y, and precisely as before either

vx= 0, or uy
= 0j if vx = ()

t
then v is independent of x

also, is an absolute constant a case we reject as before

but if Uy = Q, then both u and v depend on x alone, and

on eliminating x we get some relation between u and v

only. If, however, vu does not =0, then v is a function

of u, there holds some relation between u and v. Hence

always, if both u and v are genuine functions of x

and y, neither a mere constant, the vanishing of the

Jacobian signifies that some relation exists between u and

v they are not independent, one is expressible through
the other.

231. Now let ^ v w) = 0. As before, we have
o(x, y, z)

d(u,v,z) &amp;lt;&amp;lt;X,Uy,U
g

=()
;_, v.y,

vz

0, 0, 1wu ,
wv ,

wz

Hence one of the two determinant factors must =0. If

the second 0, then we have just seen that some relation

holds between u and v, which may or may not contain z

as a constant. In either case, by combining this relation

with u =
l(x ) y, z), v =

2(x, y, z), w = f
s(x, y, z), we may

eliminate x, y, z, and get a relation among u, v, w. If

on the other hand the first factor = 0, and the derivatives

of the functions as to each other, namely, uvt vu ,
wu ,

wv

do not all =0, then some relation holds among them, for

the derivatives all vanish in case they are all independent
of each other. Combining any such relation with the
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three given equations for u, v, w, we may again eliminate

x, y, z, and obtain a relation among u, v, w. But if the

derivatives of the functions as to each other all vanish,

then ws must = 0, hence w must then be independent of z,

and w= some function of x, or of y, or of both, or an

absolute constant. In this result, from u=fv v=fz , w=/3 ,

we may substitute x and y in terms of u, v, z, and get

w =
&amp;lt;j&amp;gt;(u, v), for in this result we know z can not appear,

since we have just seen that w is independent of z,

wz
=

;
and this again is a relation among u, v, w. In

all cases, then, if u, v, w are genuine functions of x,y, z,

and no one of them a mere constant, the vanishing of

the Jacobian indicates the existence of some relation con

necting u, v, w. By precisely similar reasoning let the

student extend the proposition to the case of n functions

of n independents.

The foregoing argument may be greatly simplified

apparently by at once assuming, in the determinant factor,

that u, v, w are independent of each other
;
but it seems

inept to assume their independence in order straightway

to prove them dependent.

232. Illustrations and Exercises. 1. Transform

to . ^__

2. Transform x^y^x+ %%3
yx+ a?y = into y2z+ a?y = Q by

putting xz = ~L

3. Transform xy2x+ 2yx -f a*xy = into z^y^-\-o?y
= ^ by

Hint: In this important change of the argument into

its reciprocal., we have zx = --^
= z2 : hence

We derive on the right each time as to z, and multiply
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the result by (-
2
); then out of yx , yzx , etc., we form the

equation to be transformed.

4. Transform ( 1 x2
) y-2x xyx+ Q?y = by x = sin v

;

03 = cos i&amp;gt;

= v/1 x2
: yx = %

7/.2a
.=

(2/2*cos v+ 2/
sin v)/cos i;

3
.

The result is
3/2* + a2

?/
= 0.

5. Transform g+^.J+^^0 by , =

cfec_
-----

2
&amp;lt;JM_

1 ty-dy, ^
S~ &quot; dx~l + x dx~du dx&amp;gt;

cW dy
dx*du dx1

The result is -r?+ 2/
= 0.

auz

6. Transform the linear differential equation

dy dy 9
d2
y d*y dy

Hence x
7l

=
~&amp;lt;JW drf~ djfc

~
dtf

This may be written symbolically,

~
dO \ dx/* dO\dO J

where the operator D means derivation as to 0.

Similarly,

Hence the original equation becomes linear with
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dn

constant coefficients. Carefully distinguish xn
~j~n from

d \n

(d
\n

&-J-) The first operator directs us to derive n times

and multiply the result by xn
,
hence

but the second requires us to derive as to x, multiply
the result by x, and then continue the process; hence

*_n ,v.r rnTr AloO [! - I f I I HI if T (&amp;gt;$/ -, l &amp;lt;AJ / Ju . jCLloU I iX/
&quot;

7
I e/ \ 7 .~ I (/, 11 iC c? ,

dx/ \ dx/ \oO/

7. In Cartesian and polar coordinates show that

3_3r_ (\_
x _ x

dr~ fdx~
k ~~

r
~
^/^o-iX

while

dx _ n
.

fi _ W_ y y _ sin
sin (7 V)

~~

r r

W x x cos_ _
^rT V COS (7

XT 3u Bit 9r 9t6 90 _ 3u sin 3 it

JMow - = ^- + ^x- ^-^cosO. ^
---- -*^5-

3a? 9r 9^ W ?&amp;gt;x 9r r 90

Thus establish these equations of operators :

9 n 9 sin 9 d 9 . ,.3 cos 9 3
^ = cos 9---- ^, -^-

= sin $; H-- ^T\
3a; 9r r 30 3 3? r 30

Also . . =
3r 3# 30

_ _ ,2

30 3a; 3r 3
~
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233. The Operator V2
. An extremely important partial

differential expression is the sum of the pure second

derivatives,

32F 32F
,

32F 32F 32F
~+

and in practical applications it is often necessary to

transform to polar and spherical coordinates. Now

3/3F\ / n 3 sin0 3\/ .3F sin0 3F32 F 3/3F\ / ,3 sm0_ = ( -
J

I COS
&quot;3r r W

3F sin0 3F
&quot;3r

EL? ^J /9?Z
sin^ ^T

r 30 \
S

~^r T-~ 30

cos 3F sin 0* 32F
r2 302

I

2 3F 2 sin cos 3F

We exchange the notions of x and y by changing
r) 7)2

into its complement ^ ;
so we may get

- and -- -
2

,-, ^2
at once from and ^-^; or we may proceed as above.

uX O&amp;gt;K

32
F, 32 F 32

F, 1 3F, 1 ,3
2F

-tlence 5-+ ^=^ = -o-+ - ^ h -5 ^
3a;

2 3? 2 3r2 r 3r r2 3

^2 7^2 ^Z

To transform the operator ^r^+ ^-o+ ^^, commonlydx2
3z/

2 302

written V2
,

to spherical coordinates r (radius vector),

(longitude), (polar distance), we first project r on

Z-axis and JTF-plane, whence

z= rcos(p, and (say) ?
y =

rsin&amp;lt;/&amp;gt;;

we then project this projection T on X- and F-axes,

x = r cos 0, y = r sin 0.
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We now pass by the formula just established from

32
(x y y) to (? , 0), we then add -

2
and pass by the same

formula from (0, r ) to (r, 0), then we substitute for

1 3F ,1
;r-7 and 75, and so obtain

2

234. The Potential Function, so fundamental in higher

physics, satisfies, according to the theorem of Laplace,

generalized by Poisson, the equation,

e being the density at (x, y, z). Hence the great signi

ficance of the operator V 2
. The coordinates, r, 6, z are

called cylindric.

It is worth noting that the system of relations

x = r cos sin
&amp;lt;/&amp;gt;, y = r sin sin

&amp;lt;p,

z= r cos
&amp;lt;f&amp;gt;,

may readily be extended to four-dimensional space by

projecting the radius vector on the fourth rectangular

axis, say U, and on the XYZ space; if
&amp;lt;//

be the angle of

projection (on U) we have then at once,

x = r cos . sin . sin
*//, y = r sin . sin . sin

\fs,

z = r cos
&amp;lt;p

. sin
\fs,

u = r cos
\/^,

and we may now transform the operator

to the coordinates (r, 0, 0, i/r),
and these results the

student may generalize for space of ^-dimensions.

235. Orthogonal Transformation. If 0(X, F, Z) and

0(U, F, W) be two sets of rectangular axes, the passage
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from one to the other is called an orthogonal trans

formation. The formulae are

where the I s are the direction-cosines of U, V, W with

respect to X, and so for the m s and ns
;
and these are

connected by nine equations :

1^+ 1^+ 1^= 1, and so on; I
l

2+ml

2+ n
l

2 = l, and so on;

Zj
1
2+m1

m
2+ 71^2 = 0, and so on.

Now remembering these relations and that

3f_3f -dx 3f cty df
_3z

32f _ 3 /3f \

3u 3x 3u 3y 9 W/ 3^ 3w/ c)u2 ?)u\du/

let the student show that

cf f f 32f f 3f.

i.e., the operator V2 is unaffected by orthogonal trans

formation.

EXERCISES.

1 . If Xj
2 + x

2
2 + . . . ,;

2 = /
2
, r=/(jc1 , asj,

. . . a;M ),
show that

2. Show that l/r=I/Jx
2 + y + z2 vanishes when operated upon

byV2
.

3. Similarly show that 6 = tSLii~
l
y/ic vanishes when operated

, 32 32

n b^ 3^ + 3?

4. Show that V2
log tan

&amp;lt;f&amp;gt;/2

= where tan
&amp;lt;j&amp;gt;

=
x/z cos ^.

5. If V be a function of r = Jx2 + y
2 + z2 alone, prove

and generally for V a function of r = *Jx-f + jc
2
2 +

prove V2V= VZr -\ Fr .
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6. Given x = r cos 0, y = r sin 0, z = log r
;
show that

h(xDx + yD^u = rDr(rDr -\}u = Dz(Dz -l)u. (Art. 249)

7. The Equation of Legendre is commonly written

transform this by putting x = cos
;

also by 1 - x2 = z2
,

/ 1\ 2

and x1 -\ = \(u4
V

sin - + ?i
(71 + 1

)
cos 6&amp;gt; . P -

;

fl2 P rJP
&quot;2(1 &quot;&quot;2)

-2&quot;^
+ (+ !)(*- 1)

= 0.

Observe that D.= -Z)
9/sin 6, !,= -J),.^L_^, and so on.

2
/j , .

8. Show that if a; = e
, ?/

= e
,

z = e*, ... the formula

^ + .^2 +...)^ = A(A-l)(A-2) ...(A -?/+!&amp;gt;/

still holds, but A must mean Da + D^ + D , + ....
&amp;lt;j&amp;gt;

y

Observe merely that D = Dx .x = e
d

. Dx
= xDM etc.

9. When can you change aVx + bVy
into AVt or BF by turn

ing axes about origin ?

Remember g = x cos a - y sin a, 77
= a; sin a + y cos a.

10. When can you similarly turn aTx + bFy + cFz into AV& or

BV^ + CVp etc.?

11. Show that by turning rectangular axes you may change

aT2x +2bFxy + cF2!,
into AV^ + BV^.

12 Extend 11 to space of 3, 4, ...?i dimensions.

13. Transform

(D/ + Z&amp;gt;;

2
)w + Pw = and (D* + D* + D?)u + k2u = = (V

2 + tf)u

to polar coordinates.

14. Transform (x
2Dx

2 + fD^)u by means of loga;=0, logy = &amp;lt;#&amp;gt;.

Hint: We may write it (A
2 + A - 2xyD

2
xy)u (Art. 250).

15. Similarly transform
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ELIMINATION.

236. Systems of Curves. We know that the equation

of a curve in general contains certain parameters or

arbitrary constants, the particular values of which dis

tinguish one curve from another of the same family or

system. Thus x2+ y
2 = r2 is the equation of a circle about

the origin, of radius r. For any particular value of r,

as 1 or 3, we get a particular circle; letting r range in

value from to oo we get the whole system or family

of such circles about the origin. There is a simple infinity

of such circles, or there are oo 1 such circles. So too

2 ,

-
12 2

x a + b =r

is the equation of any circle in the JfF-plane. Here

there are three arbitraries, a, b, r
; by letting these range,

r from to oo
,
a and b from oc to + o

,
we get all

circles in the plane, no two the same. There are oo3 such

circles, a triple infinity, an infinity of infinities of infinities.

So there are oo 2
straight lines in the plane, and oo 5 conies.

237. Differential Equations. If now we derive the

equation x2
-\-y

2 = r2
,
of the system of circles about the

origin, we get

Hereby we eliminate the parameter r and obtain a dif

ferential equation, so called from the presence of the

derivative or differential coefficient, yx . This equation

expresses a geometric property, namely, the tangent at

(x, y) is normal to the radius vector to (x, y) a property

belonging to all circles about the origin and to no other

curves. Hence this differential equation characterizes or

defines the system of circles quite as precisely as the

original finite equation x 2+ y
2 = r2

. The presence of the

derivative yx imparts the same generality to the differ-



252 INFINITESIMAL ANALYSIS.

ential equation that the presence of the arbitrary constant

r imparts to the finite equation.

238. Systems of Rays. The equation of the two-fold

infinity of right lines in the plane is y = sx+ b, whence

yx = s, 2/2*
= 0.

We observe that one derivation does not suffice to

eliminate both parameters, s and 6
;

a second derivation

is necessary. The result, y-&amp;gt;
x = 0, is a differential equation

of second order, since it contains a second derivative and

none higher. It declares a geometric property, namely,

that the curvature, K = z
t 3 , of all such lines is 0.

Moreover, if we retrace our steps, integrating this differ

ential equation y%x
= twice, we shall get y = sx+ b, where

s and b are quite arbitrary ; i.e., we shall get the original

oo
2 of right lines and naught else. This geometric property

of 0-curvature at all points belongs in fact to all right

lines and to no other lines. Hence the differential equa

tion, y2x
= 0, expressing this property, defines the totality

of right lines perfectly ;
the presence of the second deriva

tive imparts exactly the same generality as the presence

of two parameters.

239. Systems of Circles. Once more, the equation of

all circles in the plane is

whence

x-a+ (y-b)yx =

whence

This differential equation of second order declares that

the radius of curvature in any circle is a constant, namely

r, the radius of the circle
;
and retracing our steps by

integration we show (Art. 168) that this property charac-



ELIMINATION. 253

terizes circles only, it may be taken as definition of

circle. But the differential equation still contains an

arbitrary r, to remove which we again derive, obtaining

y*

This expression is the tangent of the angle, called

&quot; deviation
&quot;

(Transon) or &quot;

aberrancy of curvature
&quot;

(Salmon), between the normal at P(x, y) and the medial

PM of the infinitesimal chord normal to this normal :

this angle, and hence its tangent, vanishes (as we know)
for all points of all circles, but for no other curves. Re

tracing our steps by integration we shall get the original

equation. Hence this property, and the differential equa
tion expressing this property, may be taken as definition

of the totality of circles, oo
3

,
in the plane XY. The

presence of the third derivative imparts the same gener

ality as the presence of three arbitrary constants.

240. Generalization. We may now see that if we

derive n times any equation,

F(x, y, c
lt

c
2 , ..., cn) = 0,

containing n constants or parameters, Ci, . . .
,
cn ,

we shall

get n equations, F = 0, F&quot; = 0, ..., F(n) = 0, and by com

bining these with the original F = we obtain (n+ l)

equations, from which we may eliminate the n c s and

obtain a differential equation of nih order (since it contains

an 7i
th

derivative), the equivalent of the original F =

with n parameters. By some analytic device we may
eliminate all the c s at one stroke, or we may eliminate

them one by one, and in this or that order. The question

arises, will all of these methods and orders lead indif

ferently to the same differential equation as result ? So,

too, we may retrace our steps by the most diverse paths,

and the question comes up, will all of these paths lead

to one and the same primitive finite equation ? Both
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these questions are to be answered affirmatively, as already

illustrated; but adequate discussion is too abstruse and

difficult for this stage of our study. It is to be observed

that the primitive (so-called) obtains its high generality

through the presence of the n arbitraries, whereas the

differential equation obtains equal generality through its

order, the nth
, whereby it expresses some intrinsic pro

perty of all such curves and of no others, and so defines

them perfectly. The doctrine of differential equations is

the most profound and far-reaching of mathematical

disciplines.

The expression, equated to zero, yielded by elimination

of the constants we may call the eliminant of the

primitive. In case this latter be a complete rational

algebraic function of x and y, this eliminant will be a

reciprocant ;
for it must be indifferent whether we derive

as to x or as to y.

241. Illustrations and Exercises. 1. Show that the

eliminant of the hyperbola xy+ ax+ by+ c = is the

Schwartzian 2yxy3X 3y2x
2 = Q, and show that this is a

reciprocant. We have

whence the Schwartzian on eliminating x+ b. Passing

from x to y as argument (Art. 222), or deriving as to y
arid eliminating, we see that the eliminant is a reciprocant.

2. Find the eliminant of the most general parabola

{ax+ &2/)
2+ 2c#;+ 2cfo/-|-l

= 0, and prove it a reciprocant.

3. Show that the eliminant of the general conic

foe
2+ Vixy +jy*+ 2gx+ 2fy+ c =

is the Mongian

$y^y$x- 45^2/3*2/4*+ 40yto
8= 0,

and show that it is a reciprocant. Three derivations
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remove c, g, k
; deriving this last result twice we get

three equations homogeneous in h, j, /; put the deter

minant of the coefficients of h, g, f equal to 0; reduce

it, and the equation discovered by Monge results.

242. New Functions. We have already learned that

transcendental functions may be removed by simple

derivation. Thus if

then yx = -&amp;gt; yx
z = rr ^\&amp;gt; 2/*

2 =
/-r &amp;lt;n-x (I x&quot;) (I+x

2
)

The real significance of these results lies in the fact

that when we attempt to pass back from the differential

equation to an equivalent finite equation we are compelled
to introduce these transcendental functions even though
we may never have heard of them before. What names

or symbols we shall use for them is of course arbitrary,

but their properties all lie in the differential equation

that requires them for its integration. Thus it appears

that the solution or integration of differential equations

may give rise to countless new functions, of which the

differential equations may themselves be regarded as

definitions.

243. Illustrations and Exercises. 1. Eliminate the

transcendentals from y = excosx. We have

yx= y-exsmx, y2x=yx-y-ex
sinx=2yx -2y.

2. Free y = sin ^ from transcendentals. W&quot;e have

+- = x*y = \ - y\xy -
y).* v J- y

3. Remove transcendentals and the independent 6 from

the equations of the cycloid

x = a(0 sin$), y = a(l cos 6).
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dx . m dy . n dy sin asinO= al-co8 e = -asmfl ---.-*
=l, or y.- + l-OL

a2

y

Of course we can eliminate without derivation, but the

result would contain a transcendental.

4. Remove the independent t from the relations

d2x _ y dz
y _ y

~dt*~ ~cTt*

=

when X and F are functions of x and #, but not of t.

We have (Art. 221)

_yu.x t-y t .x2t_Y-yx . X
,

hence

5. Eliminate a from (x+ y)(a+ logy) ye?.
X

Ans. xy = yx(x
2+ (x+ y)

2
e~v).

6. Eliminate k, h, j from kxz+ 2kxy+jy* = l.

Ans. ySx(ocyx -y) = 3xy2x .

7. Eliminate constants and exponentals from

Ans. (y3x+ y/-yx)(l- yx*)+ tyxy*? = 0.

8. Eliminate a from x = ae~ y
-\-y 1.

9. Eliminate a from ^+ ?/
=

tan(2/ a).

10. Eliminate c from
iy

2 = 2c#;+ c3 .

11. Eliminate a and 6 from y+ b = hc(x a).

12. Eliminate a and 6 from logy = aex -}-be~
x

.

Ans. yyzx-yx
2 = y

2
logy.

13. Eliminate a and 6 from log y = (x+ a)/(jc+ b).

14. Eliminate a and 6 from y = x( a sin&quot;
1 - Ky

\ x/
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244. Elimination of Functions. As ordinary derivation

with respect to one argument serves to eliminate arbitrary

constants and transcendentals, so partial derivation as to

more than one independent argument may serve to elim

inate arbitrary functions. Thus, let az = +
a&amp;lt;j&amp;gt;(ay bx),

x and y being independent ;
then

a~ =
atj) (ay bx)b, a - =

a&amp;lt;/&amp;gt; (ay bx)a ;

o

3z L 30whence a + 6 = 0.
Vx dy

If now, by appropriate methods not here treated, we

pass back from this result, a partial differential equation,

we shall find that the equivalent finite relation involves

an arbitrary function of ay bx, such as above is denoted

by &amp;lt;f&amp;gt;,

and has been eliminated. Geometric illustration is

possible, but shall not here be attempted.

245. A second derivation will suffice for the elimination

of a second arbitrary function. Thus,

z = x$(ax*+ by
2
) + y^(ax2+ by

2
),

to eliminate
&amp;lt;p

and
i/r.

byzx= ax\^
whence

azy+ axzyx
-
byzxx= a\js+ 2ax (ax\js

- byf) ;

- bzx- byzxy+ axzyy = - 60+ 2by(ax-\f/
-

by&amp;lt;p ) :

cfaPzyy
- 2abxyzxy+ b2y*zxx

- ab (xzx+ yzy)+z = 0,

or

246. Functions of Functions. Suppose now we would

/ xa /v^\
eliminate a function of a function, as

&amp;lt;f&amp;gt;

in
&amp;lt;j&amp;gt;( d -&amp;gt;

~~d)

We have, putting xa/u
d = a, y

b
/u

d =
/3,

S. A. R
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&amp;lt;t&amp;gt;x

=
&amp;lt;j&amp;gt;a.a

x+
&amp;lt;j&amp;gt;p./3

x = (pa.
-

. a (pa.-- a. ux (pp.
~

Mp W Ik

or
U&amp;gt; CC ll

Similarly ^ . /3 .
&amp;lt;pp

=
|

. a .
(pa . uy+ 1 .

&amp;lt;pp

. /3 . uy ;

whence on adding and rejecting the common factor, we get

u x y
d
=
a-
U*+

b
U

&quot;

Let the student extend this result to the case of three

independents, x, y, z, and then to n independents,

&amp;lt;\&amp;gt;

. . .
,
xn .

247. Functions of two Functions. Let us consider a

function of two arbitrary functions of different functions

of the independents, as

Hence we form the two simpler equations

xzx+ yzy
=

2xy&amp;lt;/&amp;gt; \lr, x(yzy
- xzx) = 2

By deriving these we get four more equations and intro

duce two more unknowns
&amp;lt;p&quot;

and i//
7

;
we shall then

have seven equations whence we may eliminate the six

unknowns,
&amp;lt;p, \/s, &amp;lt;/&amp;gt;

, \fr , $&quot;, \// .

zx+ xzxx+ yzxy = 2

+ xzxy =

-**- xzxx+ yzxy = - 2 ^ -

2

*y+y^- xzxy = -
Jb

yzy
- xzx+ y^Zyy

- x2zxx = 4&amp;gt;

(yzy+ xzx) (yzy
- xzx) =
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hence finally,

The second pair of derivations immediately above are

seen to be unnecessary. They yield on combination the

same result as the first pair, but such need not always

be the case. In general, the order of derivation that

produces sufficient equations to effect the elimination will

produce more than sufficient: we shall then have several

choices of eliminations, each leading to a partial differential

equation; or rather we shall have a set of eliminants,

partial differential equations, the equivalent of the original

equation containing the arbitrary functions. It would be

out of place to enter here more deeply into this matter.

The foregoing examples sufficiently illustrate the methods

to be followed.

248. A very important example of the elimination of

arbitrary functions is presented in Euler s Theorems on

Homogeneous Functions. The peculiarity of such a

function of any number of arguments, x, y, z, etc., is

that the sum of the exponents of the arguments in each

term is the same, namely, n, the degree of the function

itself. Hence if u or Hn be such a function we have

u =Hn = HCxa
y

bzc
..., where a-rb+ c+...=n. Hence if

we take out xn there can remain only expressions of

zeroth degree in x, y, z, ..., that is, only quotients

-, -, ...; hence we have u =Hn = xn
&amp;lt;j&amp;gt;(

--, -, ..A

From this equation we may now eliminate
&amp;lt;/&amp;gt;.

For if

we operate on any term Cxa
y

bzc
... with #--, that is,

(juu

derive as to x and multiply by x, we reproduce that

term multiplied by the exponent of x, as a; hence if

we operate on any term with

/ 3
, 3,3,(#- -+ 2/ + 0,.. +

\ 3x y ^ dz
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we shall reproduce that term multiplied by the sum of

the exponents, that is, by n
;
hence operating on u, the

sum of such terms, with the same operator we shall

reproduce u multiplied by n, that is,

3
. 3\

the first of JSulers Theorems, and hereby $ is eliminated.

249. General Proof. If each of the arguments x,y,z, ...

be multiplied by the same multiplier /m, then this /m will

be introduced into each term with the same exponent n,

the sum of the exponents of x, y, z, . . .
;
hence u witt be

multiplied by /x,

n
. Such would plainly not be the case

unless the sum of exponents were in each term the same,

n. Hence this important property may serve as definition

of homogeneous function of nih
degree in x, y, z, . ...

Putting fji
= I + t we have

Hn(x+ xt, y + yt, z+ zt, ...)
= (l+t)

nHn (x, y, z, ...).

This equation implies the main properties of such homo

geneous functions. For we may expand the left side by

Taylor s theorem (Art. 211) in the vicinity of (x, y, z, ...),

and the right side by the Binomial theorem; equating

then the coefficients of like powers of t, we shall get

Euler s theorems :

=nu
&amp;gt;

=(-!)*;

etc.

We may write these operators on u thus :

?&amp;gt;x?)y
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and so on, where the subscribed h reminds us to take

only the homogeneous terms of highest degree. For

instance,

.
3 3 \

2

and does -ftoi equal

3 3

for this latter equals

Now this latter ( )
= TIM

;
hence

3 9
2

so that the operator (aj~+...J
or (ajDa-H-...) is equivalent

to the multiplier n, and is plainly the natural generali

zation of the operator (xD) of Art. 75. Write it A.

250. Relation of ,A
l and A&quot;. We have found (Art. 76)

that xnDn = xD(xD-l)(xD-2)...(xD-n+ l); does any
like relation hold for this A, the generalization of xD?

Write AAn for {x
nDx

n+Cn^xn ~^Dxn
- lDyx ... }, the homo

geneous result of expanding h(xDx+ yDy+ ...)
n

according

to the Multinomial Theorem; also write Aw for

the operation A repeated n times. Then we have AA X = A1
,

and we have just seen (in case of two independents,

x and y, and the proof holds plainly for any number)

that A2 = AA2 + A, or AA2 = A(A-1). This reminds us of

x2D2= xD(xD l), and leads us to suspect there holds the

corresponding general relation:
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To test this we assume the relation for the index n,

and inquire whether it holds then for n+ 1. Now we

readily prove that A(^A
n
)
=

/lAn+1+ 7i/lAn
.

For suppose AAW
expanded by the Multinomial Theorem

and operate on it with A. All terms in the result that

involve derivatives of (?i+l)
th

order, as

where a+ b+ ... =n + l, must come from terms in AAn
by

applying derivation to factors that are themselves deriv-

c)
n

^d
n

atives (all of nih
order), as

,
. or -- -

. .
,
and

dxa ~ l

dy
b
... ^xa

^y
b ~ l

...

the total numeral coefficient (7 of this resulting type-term
will be the sum of the numeral coefficients cxt cy ,

... of

these contributory terms
; moreover, the exponents of

x, y, ... will each in turn be increased by 1 as we operate

(on the derivative factors) with xDxt yDy ,
. . .

;
the same

set of indices will result from each of these contributory

terms, and the total resultant term will be

But this (7, for each such resultant term, is obtained

in precisely the same way, as the sum of precisely the

same c s in multiplying the nih
power of the multinomial

(xDx+yDy+ ...) by the multinomial itself: hence the

result thus far is of the same form as in the ordinary

multinomial expansion, and we obtain ^A714&quot; 1 as the result

of operating with A on the derivatives in AAW
. The

rest of the complete result is obtained by operating with

A on the powers of x,y, . . .
,
in ^Aw ; but in this operation

the derivatives count as constant factors only, and the

whole expression AAn
is homogeneous of ^th

degree in

x, y, ...
;
hence the theorem for A operating on such

quantics applies, namely, the operator A is equivalent to
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the multiplier n
;
hence this part of the result is nh&n

;

that is,

Hence hhn+l = hAw
(A - n).

That is, if 7iAn = A(A-l)(A-2)...(A-w

The relation is known to hold for ?i = 2, hence it holds

for n = 3, etc.

If now the operand u be homogeneous of mth
degree

in aj, y, ..., we may put m for A, and hence obtain

7iAn+% =m(m l)(m 2). . .(m ti)it,

which is Euler s General Theorem for Quantics.

Equations non-homogeneous in coordinates x, y may
be made homogeneous by supplacing these with the ratios

/Y fit

-,
- and then multiplying by the highest power, zn

,
of z

;

x, y, z may then be treated as triangular, trilinear, or

homogeneous coordinates, which reduce to ordinary Car

tesians for = 1.

/
T* *?y 2?

Similarly for x, y, z supplaced with
, *-, -, where

t/ tv \Jb

x, y, z, -u may be tetrahedral or quadriplanar coordinates,

and so on for higher spaces.

EXERCISES.

1 . Eliminate functions from y
=

coslog.?:, y logcosz, y = logtanz,

y = tan logic, y = sin~ 1
loga;, ;y

= logsin~
1
a:.

Ans. x2
y&quot;+xy + y = Q, y&quot;

-
y

2 - 1 = 0, y&quot;

2 +
4y&quot;

2 -
y

4 = 0, etc.

2. Eliminate functions and constants A, B, from

Ans.
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3. Eliminate constants and log from y =

Ans. xW2

4. Eliminate functions from ^ = rcsin~ 1 ~ +
&amp;lt;(z).x

Ans. z
y

. Jx2 -
y
2 = x.

6. If u be the sum of two homogeneous functions of x and y,

of mth and ?i
th

degrees, prove

7. Extend (6) to the sum of three quantics in x and y, and
then to the sum of r such quantics, of degrees nv n

2,...nr .

Ans. =
0, p ranging from to r.

8. Eliminate &amp;lt; and ^ from u =
&amp;lt;f&amp;gt;[x+\//(y)].

Ans. Dxu . D
xv
n = DM . Dxxu.

9. If
&amp;lt;f&amp;gt;(u

2 -x2
)
=

Q, then plainly
-* = -; generalize this result
x u

10. If
&amp;lt;j&amp;gt;{s(u-x)}

=
0, when * = w + z, then plainly u.ux

=
x, or

(s-)ttx = s-w; similarly, if
&amp;lt;j&amp;gt;{s^(u -x), s^(u-y)} = 0,

then (s-x)^ + (s-?/)^
= s-%; generalize this result,

showing that if {j(it~a^), s(M-a;2),
... s(w-a;n)} = 0,

then ^(s-x)ux = s-u. where s = -M



CHAPTER VII.

PARTIAL INTEGRATION.

251. Partial derivation, or differentiation, as commonly
called, implies as its inverse, Partial Integration. This

latter implies at least two independent arguments, and

is entirely distinct from integration by parts as well as

from repeated integration as to the same argument, both

of which processes involve but one argument. The

simplest example of this process is afforded by the

attempt to evaluate the area of a plane surface bounded

by curves. We cut it up into small rectangles or elements

of surface, each of which we designate by A$, dis

tinguishing them when necessary, as is rare, by subscripts,

\S, A 2$, ... so that to find the total area we shall have
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to form the sum SAS, and take the limit of this sum

{dS, so that A = \dS.

Actually to carry out this summation, or this single

total integration as such, would not in general be feasible,

however. Accordingly, we suppose the surface to be

crossed by a double system of parallels to Y and X,

Ax and Ay apart. The area of surface-element is then

A$= Ax. Ay, and the summation 2AS becomes Z(Ax.Ay).
In performing the process last indicated, we first sum

all the elementary rectangles in one strip (say) parallel

to F. In this process Ax is constant and may be placed

outside the summatorial, thus, AxZAy. This latter ex

pression denotes now a partial summation, namely, with

respect to y, x and Ax being constants throughout the

length of the strip. To complete the summation we must

sum all such strips, that is, we must sum with respect

to x and form the expression ^(AxZAy). If now we

seek the limits of these expressions, we shall get for the

first a strip parallel to F, Aa?lcfo/, or Ax(yl y2),
where

yl
and y2

are the values of y at the upper and lower

ends of the strip, and these y s may be expressed through

x, if we know the bounding curve or its equation. The

second limit, namely, of the complete double summation,

may now be written

or

and means the limit of the sum of all such strips parallel

to F. This latter form, \(y1 y?)dx, is nothing but our

familiar quadrature integral, \ydx, extended to the case

where the lower boundary is not the X-axis. This second

integration can in general be performed when yl y2
is

expressed through x. The first integration is properly

termed partial, for in it x is constant, the integration
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being parallel to F, and y alone varies, ranging from ?/2

to yr The second integration as to x has nothing peculiar

about it, but is precisely such as we have heretofore

been executing. The double integral may be written

[(dajjdyj,
but the form

iMcfo/Jcfcc
or I Iffo/cfo is more

common. In this latter there is no instruction as to the

order in which the integrations are to be performed, and

it is geometrically evident that the order is indifferent :

we may sum for a strip parallel to X, obtaining

Aylc?^, and then sum all such strips, obtainingor

or

and this result is nothing but the whole area, as before.

252. Integration of f(x, y). But now let us suppose

that some function of x and y, as z= i(x, y), is attached to

each point in this bounded surface the value of z may
of course be depicted geometrically by a length erected

at (x, y) normal to the plane of XY. As before we cut

up the surface into elements A$, and form the summation

2sA$, and take its limit I zdS. The extremes of this

integration are not two values of $, or two points (x, y),

as in simple quadrature, but the whole line of values or

points (x, y) along the bounding curve
;

the integral is

no longer a line-integral, extended along a line, as #-axis,

but is a surface-integral, extended over the whole bounded

surface. As before, we sum (resp. integrate) at first

partially along a strip parallel (say) to F, thereby keeping

x constant, and then sum (resp. integrate) all such strips.

We symbolize these operations thus :

, \\zdxdy.
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But the question arises: does the summation 20A$ always

approach the same limit, \zdS, no matter how the surface

S be cut up into bits, nor in what order they be summed ?

Let us consider the case of 0, a finite, unique, continuous

function both of x and of y throughout the surface or

domain of integration, itself wholly in finity. Then

plainly the integral \zdS is represented geometrically by

the volume whose base is S, whose top is the surface

z = (x,y), whose side is the cylinder formed by the z s

along the border of S. Since this volume is one and

the same, and is yielded however we cut up 8 and in

whatever order we sum, it follows that the integral

\zdS is likewise unique. A purely analytic investigation

that shall take a wider range, dropping some of the

foregoing conditions, is reserved for the present.

x 2
i/
2 z2

Illustration. Find the volume of the ellipsoid
-~ + f- + =1.
a2 b2 c2

The three coordinate planes cut the ellipsoid into eight con

gruent (resp. symmetric) octants, so it will suffice to integrate z

x2 V2

over one quadrant of the ellipse 2
+ p^l- Hence

o /

oC I=
m]

(

^
4

(a
2 - x2

)dx
=

-=Trabc,a j o

the ellipsoid is the geometric mean of the three spheres on its
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FIG. 42.

444
three axes as diameters, their volumes being -Tra3

, r 7r&
3

,
-irc?\333

We may think of the ellipsoid as a strained sphere, produced

by compressing the sphere along two conjugate diameters, in

the ratios - and -.

253. Theorem of Mean Value. By reasoning precisely

like that in Art. 84, we show that if

where and
\Js,

and therefore / are integrable throughout

8, and if
\js

does not change sign anywhere in S, then

where I and G are the least and the greatest values of

in 8, and 0^0^1.
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254. Derivation as to Extremes. The double integral

i

f(oj, y)dxdy
II

is clearly a function of the integrand / and of the inde

pendent extremes of integration a, b and a, /3; where it

must be noted, as already shown in the preceding illus

tration, that, if we integrate first as to y and then as to

x, the extremes of ^/-integration will be functions of x,

but the extremes of ^-integration will be constants
;

similarly, if we exchange x and y. It is also a con

tinuous function of these extremes and may in general

be derived with respect to them, as may thus be shown.

fa+Aaf/3 + A/3=
J

I f(x,y)dxdy =

AJ=/(a

fct

H~ iACt rp H~ A&amp;gt; Pet |/3

zdxdy I I zdxdy
a b

fa
+ Aaf/3

+ A/3 faf/3
+ A/3= 1

&amp;lt;:&amp;lt;% zdxdy
j j j j
a b a b

n/3

+ A/3 fa f(3

zdxdy I I zdxdy
a b

Jo.

+ Aa f/3 + A/3 fa f/3 -f- A/3

J J J
a 6 a /3

= 1
i zdxdy+\ I zdxdy =A

J J J J
a 6 pa

where 5 and J. are mean values of

f
a

, p+^ ,

I zax and
| zay
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these being finite, and Aa, A/3 being small at will, it

follows that A/ is also small at will
; i.e., I is continuous.

We observe in passing that A7 is part of a cylindric

layer or rim around the original cylindric volume that

depicts the integral geometrically. For A/8=0,

A7 = A
Aa

ffa+Aa
|*j8 ^|

/

= \\ dx\ (x, y)dy\ I
Aa.

4 I
j/

IPf(#, y)dy is the integrand of the integration as

b

to x from a to a+ Aa; if in this interval this integrand

be continuous, then it (and therewith its equal -r
j

actually attains the mean value A : and if, in the im

mediate vicinity of x = a, the function / or z be a

uniformly continuous function of x for y anywhere in

the interval of b to /3,
then on passing to the limit we

obtain

3a
=
j
f(a,y)dy;

b

and similarly, under similar conditions,

so that symbolically

-dl , 37
or -..

Such is the Theorem of Total Differential. Similarly
with respect to the lower extremes. Also, in general

)
2/ B2/

the order of derivation as to the extremes is indifferent.

Hence the definite double integral with independent ex-
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tremes is a continuous function of those extremes
;
and

if in the immediate vicinity of those extremes the inte

grand be a uniformly continuous function of the extreme

in question, regardless of the other argument, then the

theorems hold for the total differential and the inter

changeable order in derivation.

255. Change of Variables. As in single, so in double,

integration, it is often required to change the variables

or arguments of integration. In the first case such a

change meant another way of cutting up into sub-intervals

the total interval of integration, from x = a to x = b
;

in

this second case such a change means cutting up in another

way the surface 8 over which we integrate, and it is

essential to the notion of integral that the result be

independent both of the manner of sub-division and of the

order of summation. In simple quadrature we had the

symbolic formula du= ux . dx or dx = xudu for changing

the variable of integration ;
in words, to pass from in

tegration as to x over to integration as to u, multiply

the integrand by the derivative of x as to u, the extremes

of course being changed appropriately.

FIG. 43.

Now we have already seen that in many relations, in

case of two independents, the Jacobian of (u, v) as to
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(x, y) supplaces the simple derivative of u as to x, so

that we suspect that there holds the symbolic equation

dudv = J(u,v, x,y)dxdy or dxdy = J(x,y\ u,v)dudv,

a suspicion readily confirmed thus :

Let x and y be rectangular Cartesians, and draw any

system of neighbouring lines along each of which u is

constant, also another such system along each of which

v is constant. The whole surface 8 is thus cut up into

a number of curvilinear quadrilaterals, which we take

for surface-elements. Consider one of them, as PQRS;
its vertices are the points

(u, v), (u 4- Au, v), (u+ AM, v+ Av), (u, v+ Av),

or in Cartesians

(x, y), [x+ (xu+ a-i)ku, y+ (yu+ a-i)ku],

[x+ (xu+ o-i)Au+ (xv+ o-2)Av, y + (?/M+ or/)Au+ (yw+ o--/

[05 +(,;+ 0-2) Av, y+ (yv +o-2)Av].

PQRS, as the double of PQR, is given (close at will) by

x, y,

,
xr , yr ,

where x
q , yq and xr , y r are coordinates of Q and ^.

On subtracting the second row from the third, and

the first from the second, and setting out AuAv, we have

which we may take for the element of area the o- s of
course being infinitesimals. On summing we have

22sAa AS/ = Det.

whence, on passing to the limit,

=
I \z

, 2/u

S. A.

dudv=

s
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Hence, in order to pass from integration as to (x, y)

over to integration as to (u, v), multiply the integrand

by the Jacobian of (x, y) as to (u, v). In case X and T
are not rectangular it will suffice to multiply Ax AT/ by
the sine of the angle between X and Y.

We note that

dxdy = J(x,y; u, v)dudv

is a mere symbolism that holds good under the integral

sign, but has no magnitudinal import outside.

Illustration. Pass from rectangular Cartesian to polar co

ordinates. Here x = r cos 6, y = r sin hence

xr
= cos 0, x

e
= -r sin 0, yr

= sin 6, ye
= r cos 0.

Hence J=r and dxdy = rdrdO.

From the figure this is also geometrically evident.

FIG. 44.

256. Generalization. The foregoing result is so re

markable that we may well ask, can it be generalized?

Suppose, then, we have n independents (x, y, z, ...),

functions of n other independents (u, v, w, ...). Assign
to the second set any n systems of simultaneous changes,

as

Let the corresponding n systems of changes in the first

set be

:,
Any, ....
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Form the quotient of the determinants of these two

groups of changes, namely,

^, A 2y, A30, ... jM, A2v,

Now we have A^^the sum of the changes in x due to

the changes A^u, A
1v, etc., so that we may write

Ax
A

l
X=-r

Au
Ax
^.Av

following the analogy of total differentials, where the
A

/y&amp;gt; &quot;T^^T

quotient - can differ from the partial derivative ^~Au c&amp;gt;u

only by an infinitesimal crv so that

T . Ax ^x
Lim - = ^-, etc.

Au c&amp;gt;u

On making these substitutions we recognize the num
erator of the foregoing determinant-quotient as the product

of the denominator by the corresponding determinant of

the foregoing difference-quotients*; that is, by

Ax Ay Az
An Av Aiv

Hence this last determinant equals the foregoing quotient* ;

hence on taking the limits we have

Lim
Ax Ay

&amp;gt; Av
ty

= Lim

Accordingly we may take as definition of the most gen
eralized Jacobian the equation

J(x, y, ...; u, v, ...)
= Lim

Strictly, they differ by infinitesimals only.
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257. Geometric Interpretation. Hence we may regard

the Jacobian as the derivative of the system x, y, ... with

respect to the system u, v, Now, however, we know

what we mean by the derivative of the magnitude x as

to the magnitude u, namely, the limit of the quotient of

the corresponding magnitudes Ax and Au, the corre

sponding changes in the magnitudes x and u; is the

Jacobian also the limit of the ratio of two corresponding

magnitudes, the corresponding changes in two magnitudes ?

In answer, we observe that the system u, v, ... determines

for any set of values of u, v, ... a point P in the 71-fold

extent in which u, v, ... are laid off as (say) rectangular

Cartesians. A linear relation among these coordinates,

as l-^u-^-m^v-^- ...=k^ will determine a simple (n l)-fold

extent, as a line in a plane, a plane in (our) space, a

space in a four-fold extent, etc. Hence (n-\-\) such linear

relations will bound off completely the simplest-bounded

part of 7i-fold extent in this n-fold space, as two points

bound a tract in a line, three lines a triangle in a plane,

four planes a tetraeder in (our) space, five (of our) spaces a

five-pointed portion of four-fold space (four-wayed spread),

etc., all of which are the simplest-bounded portions of

their respective extents.

Now, when all these (n+ 1) extents fall together, then

and only then this extent thus bounded by them flattens

down to that one (n l)-fold extent and vanishes, becomes

0, as an n-iold extent. But then and only then the (n+ 1)

points forming the vertices of the simplest-bounded 71-

fold extent, where the (n l)-fold extents intersect in

sets of n, all fall into one and the same (n l)-fold

extent, as when two ends of a tract fall together in a

point, or three sides of a triangle fall together in a line,

or four faces of a tetraeder fall together in a plane, etc.

But then and only then the coordinates of the (n+ 1)

points, (u, v, ...), (u , v, ...), ... (un ,
vn , ...), all satisfy



JACOBIANS. 277

the same linear relation, the equation of the (n l)-fold

extent, lu+mv+ ... = k; and the condition that (71+ 1) such

homogeneous linear equations hold among the (n+ l)

unknowns I, m, ..., k is that the determinant of the

coefficients vanish
;

i.e. on bringing the last column, of

1 s, the coefficients of k, into the first place,

1, U, V, W,

1, uv vv wl

1

=0= -A.

This determinant A is 7i-dimensional, it is geometrically

a portion of the n-iold extent; also, it vanishes when,

and only when, the simplest-bounded n-fold extent under

consideration vanishes; hence the two can differ, if at

all, only by a constant numerical factor, which actually

turns out to be n, as for n = 2, A = 2 (triangle) ;
for

n = 3, A = 6 (tetraeder); etc. Now these differences u^ u,

u
2

uv ..., v
l v, ... are nothing but \u, A2u, ..., A^, ...,

so that A is nothing but the denominator in the deter

minant-quotient of Art. 256
;
which accordingly is merely

n times the simplest-bounded ?i-fold extent in question.

Similarly the numerator of the same quotient is merely

n times the corresponding simplest-bounded Ti-fold extent

when x, y, z, ... are rectangular Cartesians dependent on

u, v, w, Moreover, when u, v, w, ... are neither rect

angular nor rectilinear coordinates, but curvilinear, then

the differences A^, ..., A^, ... will indeed be small arcs,

but, in general, the limits of the ratios of these arcs to

their chords being 1, we may put the chords for the

arcs without affecting the limit, so that the same result

will hold in general for u, v, ... any kind of coordinates.

Likewise, by similar reasoning, it will hold for x, y, ...

any sort of coordinates. If x, y, ... were not rectangular,

the determinant in question would still differ from the
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extent in question by only a constant factor, the general

ized sine of the higher angle determined by the axes at

the origin. Finally, then, it appears that the Jacobian

is in nature a true derivative, namely, the limit of a

difference-quotient, the differences being simplest-bounded

corresponding 7i-fold extents, or elements of the 7i-fold

extent, as determined in the two systems of coordinates.

258. Infinite Integrands. Thus far the integrand has

been assumed finite and definite throughout the domain

of integration. But sometimes it becomes infinite or

indeterminate at certain points, for certain values of the

argument of integration. Let x = c be such a value, in

case of the simple integral f.(x)dx, so that f(c) is oo, or

a fb

perhaps indeterminate. Then I i.(x)dx in general loses

a

all meaning; but if the two integrals

r&amp;gt;c

-
&amp;lt;TI

p6

t(x)dx and I i.(x)dx

approach each a definite limit as the infinitesimals or
1

and o-2 approach independently, then the sum of these

two limits is called the Principal Value of the integral
f*b

I i(x)dx, and is taken as the value. This means that

a

our result is definite and unique, got by extending the

integration close at will to the point c on both sides.

Such is certainly the case whenever the infinity of f(x)

at x = c is determinately lower than the infinity of ,

that is, algebraically loiver than first degree. For then

A
(x-c)

n

where the vertical bars mean absolute worth or sign dis

regarded, and n is &amp;lt; 1. Hence
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1-0&quot; FC+ (T
dy&amp;gt;

*)&&amp;gt;&amp;lt;
4

J (a^n
.

1
C+CT C+ (T

and this latter expression is infinitesimal for n finitely

&amp;lt; 1
;

that is, we can approach the integration on both

sides so close to the point x= c that no further approach
can make the value of either integral fluctuate by more

than an infinitesimal. The like holds in certain cases even

when n is not assignably less, but still less, than 1, but

manifestly fails for n ^ 1
;

for then

I

+ 0&quot;

i(x)dx

c+ff

and this latter fluctuates indeterminately with &amp;lt;j
and or.

When, as x approaches c, the integrand sways between

indefinitely great values positive and negative, but does

not tend to settle down upon any order of infinitude,

the principal value is definite.

It may happen that the integrand becomes infinite

determinately or indeterminately at a number of discrete

points ;
the foregoing reasoning holds as to each such

point. If the infinity be determinately &amp;lt; 1 or be inde

terminate at each of the points, the principal value is

definite
;
but otherwise there is no such value, the integral

loses all meaning.
It may even happen that these critical values of x, or

critical points, heap themselves indefinitely close together

in some small region of value, they become infinite in

number in a finite sub-interval; in that case the integral

loses all meaning for such sub-interval.

259. Infinite Integrands (continued). Similar reason

ing holds for integrands becoming infinite in double

integration. If f(x, y) becomes oo at the point (p, q),

then the surface z = i(x, y) at this point shoots up without

limit, and the question is, What contribution does this
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needle-peak make to the volume ? We enclose the point

by a small circle of radius a-, so that on this circle

x=p + cr cos 0, ?/
=

and
Jf(X y)dxdy= (p+ o-cos

We draw a second circle about (p, q\ of radius cr
,
and

integrate over the ring between the two. If then, as cr

and cr independently tend to 0, no matter how, the

integral over this ring, the cylindric lamina, tends to

as its limit, then by extending the integration ever nearer

and nearer to (p, q) we cannot make the value of the

integral fluctuate except infinitesimally, the volume or

integral will settle down upon a definite limit as the

integration closes down upon (p, q). The question, then,

is about the volume of the cylindric lamina: Does its

base shrink faster than its height expands ? If so, it is

infinitesimal, but not otherwise. Now its base is &amp;lt; Tnr
2

;

hence if its height z = f(x, y) be &amp;lt; A/a-
n

,
that is, if the

order of z s infinitude at (p, q) be n, we have the integral

over the ring or the volume of the lamina &amp;lt; TrAo2
~ n

,

and this is infinitesimal when and only when n &amp;lt; 2. For

n &amp;gt; 2 we have the volume of the cylindric lamina

log -^,
cr

and this is manifestly infinite or indeterminate, fluctuating

with the cr s, that is, with the nearness to (p, q).

Suppose now that z becomes infinite at a number of

discrete points; then the volume would shoot up these

infinite needle-peaks here and there, and the preceding

would apply in each case. Or these GO -points might be

heaped together so as to form a linear set, to fill out

a line or curve-length anywhere in S. Then the solid

would shoot up infinitely as a knife-edge or mountain-

ridge over this line or curve, of length (say) I, and the
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question is, What contribution does this ridge make to

the volume ? We bound off a strip about this I in 8,

(say) cr wide, on each side of 1. Then lor is the area of

this base of the ridge ;
then if all along this ridge z be

&amp;lt;A/a-

m
,
the contribution of this ridge to the volume is

certainly &amp;lt;lAo-
l ~m

,
and this is infinitesimal when and

only when m &amp;lt; 1. Hence the integral over S remains

finite even when the integrand becomes infinite along a

finite curve in 8, but only in degree less than 1.

260. Extension of domain of Integration. Thus far,

both in simple and in double integration, the domain of

integration has been finite, as from a to b or over the

finite 8. But often we have occasion to extend this

range indefinitely, and the question arises: Does the in

tegral still remain finite ? In case of a simple integral,

f(x)dx, we might at once change the variable to z = -,r x

then we have

The question then becomes, Does the integrand f-

become oo in the neighbourhood of = 0? and we already

know that the integral remains definite only when the

order of the integrand s infinitude is &amp;lt; 1. Now -^ becomes,

at (0), oo of order 2; hence
ff-J

must then become

of order &amp;gt;1,
that is, must become oo of order &amp;lt; 1;

hence in order for the integral

f&amp;lt;

to remain finite as b nears oo, the integrand f(x) must
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vanish of order &amp;gt; 1 as x approaches oc, or its degree of

nullitude must be &amp;gt; 1, or it must have at oo a zero of
order &amp;gt; 1 all which expressions are tantamount.

In case of double integration we might employ a similar

transformation, but we vary the method thus : Suppose
the domain S to enlarge without limit in every direction.

Then plainly the integral or volume must increase with

out limit unless the height z = i(x, y) in all the remote

regions of S at the same time decreases without limit,

the solid must thin out indefinitely in every direction,

The question then is. How fast must it thin out ? About

the origin we draw two circles of radii R and R
;
the

area of the ring between them is

Now let both R and R increase without limit
;
then the

contribution to the integral or volume made by this

cylindric lamina will be 7r(R+R)(R R)zm ,
where zm is

the average or mean height of the lamina. Now each

of the factors R+R and R R becomes or may become

oo with R we have only, for instance, to take R great

at will and then R twice as great; hence the base of

the lamina becomes oo in second degree ;
hence if z

becomes infinitesimal of only second degree the product

or volume will be finite but indeterminate, varying with

the ratio of R to R
;
hence the integral loses all meaning.

If z becomes infinitesimal of degree lower than 2, the

product or volume will become oo
,
and the integral again

loses meaning. But if z vanish (become infinitesimal) of

degree higher than 2, then on cancellation the product

will retain an infinitesimal factor, and the cylindric ring

will have a volume small at will, and the integral will

fluctuate only infinitesimally as S enlarges without limit,

and the limit of the integral or volume will be the true

and only value of the integral extended over the whole

plane.
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Most frequently 8 will not extend over the whole plane

but only over some region of it bounded by some unclosed

line or lines, as by a parabola, or by an hyperbola and

its asymptotes. In such a case the upper extremes, a

and /3, become oo in definite way or ways, and our general

method is to evaluate the integral for a and fl finite,

and observe how the value thus obtained fluctuates as

a and /3 grow without limit. Only when, on taking a

and /3 large enough, all further fluctuation caused by

taking them still larger is infinitesimal, does the integral

approach a limit and retain meaning.

It sometimes happens that, even when the double in

tegral loses its significance in general, it may yet attain

definite value for a definite succession of integrations;

in that case such a value is called a singular value, and

importance attaches to it in the theory and application

of the so-called Fourier s integrals.

261. Products of Integrals. Sometimes the integrand z

breaks up into two factors, functions the one solely of x,

the other solely of y, as z = i(x, yj
=

&amp;lt;/&amp;gt;(x)

. \[s(y), while

the extremes are constant, so that the domain 8 is a

rectangle of sides a a, fl b parallel to X and Y. In

that case

n/3

pa p

&amp;lt;t&amp;gt;(x).\ls(y)dxdy=\ ^(x)dx.\
a b a b

which means we are to integrate along a strip parallel

to Y, along which both (x) and dx (or A#) are constant

and accordingly may be set outside the sign of integration

as to ?/; the integral of this strip is a constant

which may be set in front of

i (j)(x)dx, so that I=
B\ &amp;lt;f&amp;gt;(x)dx.
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This latter integral is another constant A, so that, finally,

a b

i.e., the double integral between constant extremes, i.e.,

over a rectangle with sides parallel to the axes, of the

product of two functions, one of x and one of y, equals

the product of the integrals of these functions.

This result reminds us of Theorem V., Art. 10, and

may be reached by applying the same, thus :

pa ^
M

J m J
b

f
a

ff
I (f)(x)dx. I

a 6

-,{&amp;lt;

,a,/3

2/=J J
^&amp;gt;

ft 6

262. Surface and Line Integrals. Continuing our

study of the analogies of simple and double integrals,

we remark that the value of the first is expressible

through extreme or end values of the derivand, of which

function the integrand is the derivative, thus :

f&amp;lt;

where = f;

and we naturally ask, Is I If
(a?, y}dxdy expressible through

the extreme or border values of a function (derivand) of

which f is derivative ?
&quot; To answer this question we

suppose 8 any domain with simple or multiple border

(simply or multiply connected or compendent, ein-oder

mehr-fach zusammenhdngend), e.g., with triple border;
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over it we will integrate

and first as to x. We agree to reckon positively the

border S composed of s
, s&quot;,

s
/x/

,
so that S shall always

lie to the left of the arrow as it compasses 8. We may
push the axes so as to bring S wholly within first

quadrant. Then we regard f as everywhere except in

the region bounded by s. We integrate along a strip

Ay (or dy) wide and parallel to X. The effective integ-

FIG. 45.

ration begins where we enter S at dsi, and ends where

we pass out of 8 at dse . Along this strip f is a function

of x only, is constant as to y, and Ay (or dy) is constant
;

hence we may set out dy and integrate
----- as to x,
(jOO

which integration yields &amp;lt;p
e

&amp;lt;j&amp;gt;i-

Hence the contribution

made to the total integral by a strip parallel to X is

(fa $i)dy, where fa and fa are the extreme values of 0,

at points of exit and init. If we enter and pass out of

8 several times in course of integration along the strip,.
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as at B and (7, nothing new arises; instead of the one

difference of s we have a succession of differences

one for each part of the strip lying in S, and dy is the

same for all. Hence the total double integral over S

becomes
rP

\ (&amp;lt;j&amp;gt;e &amp;lt;f&amp;gt;i)dy
,

h

all the s considered. This form is not convenient but

becomes so on changing the variable of integration from

y to s. For at every point of exit we have

dy
-j-
= sin r = sin

i/,

where v = slope with respect to + Y of normal to ds, the

normal being drawn inward; and at every point of entrance

dy
j
= sin T= sin v.

ds

Hence substituting for dy we obtain

If(a?, y)dxdy= \ \~dxdy = \(p
sin rds= &amp;lt;sin vds,

where the integration as to s is to be extended round s

completely, along the wrhole border s, in positive sense.

Similarly by integrating first along a strip parallel to Y
we shall obtain

1 1 f (a;, y)dxdy = I ^dxdy = \\fs cos rds= \\[s
cos vds.

Here then the original surface-integral is expressed as a

line-integral extended over the line bounding the surface,

over a system of end-values of the original derivand.

The same formula may of course be used to turn a line-

integral into a surface-integral.

The advantage of introducing the slope v of the normal,

as to F, instead of the slope r of the tangent, as to X,

will appear in dealing with triple integrals.
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When S is multiply connected we may make it simply
connected by slitting it as in the figure, along Q ;

the

two edges of the slit then count as parts of the border s,

and the two integrations along these two edges, being

opposite in sense and of the same integrand, annul each

other.

263. Exact Differentials. A case of special importance

presents itself when
cp

and
\js

are partial derivatives as

to x and y of the same function F(x, y), so that

9r c)F

and therefore -:=-_.
dy dx

Hence, from the theorem of total differential,

H X
FIG. 46.

which latter expression is accordingly called an exact

differential. Let us integrate this E.D. all round 8
;
then

COS V+ Sni
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i.e., The integral of an E.D. of F(x, y) vanishes ivhen

extended positively round a domain in ^vhich F is

everywhere unique, with Fxy and Fyx everywhere equal
and integrable a result that may hold even when Fxy

is unequal to Fyx at discrete points or along a line, but

not over an area however small.

Hence, if two lines (or paths of integration) s and s 9

as ACB and A C B, bound completely such a region S, then

j
(E. D.)along s

~
j
( E.D.)along .

= 0,

for we compass S completely by traversing s positively
and s negatively. Hence

J(E.D.)ulong,-J(E.D.)
along s 5

i.e., Integrals of an E.D. from A to B along two paths

bounding completely such a domain S, are equal a pro

position of far-reaching significance.

Illustration. Let F=xy, then (E.D.)= \(ydx + xdy\ and we

are to extend it completely round S. Now \ydx along CAC

yields area CHHCA, and (ydx along CBC yields area HCBC H

in opposite or negative sense; hence \ydx all round S yields

area S negative. Similarly \xdy along T CT yields area I T CTI ;

\xdy along TC T yields area TIIT C negative; hence \xdy all

round S yields area S positive-, hence \(ydx-}-xdy)= \d(xy)
= Q

9

when extended all round S.

If now we suppose F some other function of x and y, then

our integration round S may not yield a simple area as above,

so that we shall not see the result so clearly, but the reason

ing will remain unchanged. The integration round S may be

regarded as walling S in, the height of the wall at each

point being the value of the integrand at that point. In the

illustration the height is the ordinate (resp. abscissa) of the
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point. When the wall turns out negative, it is to be conceived

as built downward. In the general case the height is not the

ordinate nor the abscissa, but some other function of the point.

What the theorem affirms is that the amount of walling up

equals the amount of walling down.

If now we change the sign of (say) ydx, we shall get xdy - ydx,

not an exact differential, and this integrated round S yields not

0, but twice the area S. Further discussion must be reserved.

264. Triple Integrals. The foregoing doctrine in general

admits of easy extension to higher multiple integrals.

Thus, if there be any portion of space, or volume, V, we

may suppose it cut up into a triple system of cuboidal

elements by a triple system of planes normal to X, Y, Z
respectively, and Ace, Ay, Az apart. The volume of any
such cuboid will be Ace, Ay, A0, and V will be the limit

of the sum of all such elements :

V= . Ay . Az =
f [ \dxdydz.

The triple 2 is to be understood thus : Choose any pair

Ax, Ay, that is, any rectangular element in the plane XY,
and sum for all the corresponding Az s; the result is a

small rectangular prismoid of right section AceAy extend

ing clear through the volume V from Zi to zc ;
hence this

contribution to the total sum is (ze ^) Ace Ay. Of course,

if the volume is folded or hollow (multiply connected),

there will be several entrances and as many exits, so that

ze Zi will = (ze zi\+ (ze Zi).2+ .... Now, holding Ace fast,

sum all such prismoids for all corresponding Ay s; the

result is a lamina, Ace thick and parallel to YZ. Lastly

sum all such laminae, and the limit of the result is the

volume V. But this is nothing but a triple integration,

first as to 3, then as to y, then as to cc. The extremes

of 0, ze and Zi, are determined by the equation of the

surface bounding V, hence are in general functions of

both x and y ;
the extremes of y are determined by the

S.A. T
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equation of the curve of section of the surface made by
the plane parallel to YZ, and hence are in general functions

of x
;
the extremes of x are absolute constants, intercepts

on X of tangent-planes normal to x. (See Fig. 42.)

If, now, we are called on to integrate F(x, y, z) through

out V, jJlF(^, y, z)dxdydz, our space-intuition fails us;

at each point of V we should have to imagine erected a

normal to our own three-fold space and of length F, but

we cannot imagine any such normal. Nevertheless, no

analytic difficulty is present ;
we merely suppose each

element dxdydz weighted with a multiplier F varying
from point to point, and proceed to integrate precisely

as before. If F be ^-dimensional in x, y, z, the result will

be (?i+ 3)-dimensional in the extremes of x, y, z.

Thus far F has been supposed finite, continuous, unique,

and V wholly in finity. Whether the triple integral loses

or retains meaning in case any of these conditions be

removed, must be tested as with double integrals. Similar

interpretations and limitations apply to higher multiple

integrals.

265. Space- and Surface-Integrals. As line- and sur

face-integrals may be turned into each other, so may
surface- and space-integrals. Let it be required to in

tegrate F(x, y, z) throughout a volume V bounded by a

surface $, let

-p =^ =^ = ^X
dx dy dz

let the element of the bounding surface S be A$ (or dS),

and let X be the slope of the normal to A$, with respect

to X. We now integrate F = along a prism parallel

to X, of right section AyAz: the contribution of this

elementary prism to the total integral is
(&amp;lt;/&amp;gt;

e &amp;lt;j&amp;gt;i)AyAz,

and of course, if the volume be folded or hollow so that
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the prism has several entrances and exits, we shall have

&amp;lt;pe &amp;lt;j&amp;gt;i

=
(0, 0;)x + (&amp;lt;, 0/)2+ . . . . Hence the total integral

will be
JJ(&amp;lt;A

&amp;lt;f&amp;gt;;)dydz
extended over the complete projec

tion of the space V on YZ. But now we may change
the variable of integration from (y, z) to S, remembering

that
^~^&quot;

= COS ^ =
^Ax where An is the element on

the normal, corresponding to Ax on X. Hence, under the

integral sign, dydz=GQB\dS=ljidS,
If this normal be

drawn imvard, \ will be in second or third quadrant, and

FIG. 47.

X

os X consequently ,
at all points of exit of the prism,

but X will be in fourth or first quadrant, and cosX con

sequently + ,
at all points of entrance. If the normal

be drawn outward, the opposite will hold. In either case

(pcdS and fadS take the same sign, dS being taken always

positively, and our total integral becomes 10 dS
J ox

extended over the whole bounding surface S. Similarly
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we proceed with the integrals of ^- and ~^, and there

results the convenient form :

which turns a space-integral into a surface-integral, and

vice versa.

266. Complanation. The simplest case of surface-integral

is presented in the problem of quadrature of a curved

surface, or complanation, as it is sometimes called, where

the multiplier of the surface-element, dS, is the constant, 1.

To evaluate the area we proceed thus :

Let A be the projection on the plane P of any area A
in the plane P inclined to P at the angle (PP )j then

A = Acos(PP ).

For consider any rectangle in A with sides parallel and

perpendicular to the intersection / of the planes ; by

projection the parallel sides will not be altered in length,

but the perpendicular ones will be shortened in the ratio

cos (PP ) : 1
;
hence the area of the rectangle will be

decreased in the same ratio. This conclusion is at once

extended from rectangle to parallelogram and any triangle,

and thence to any rectilinearly bounded area, since this

may be resolved into triangles. If the area be curvi-

linearly bounded, then inscribe and circumscribe polygonal

areas, In and Cn of n sides, and let In ,
Cn be their pro

jections. Then

In &amp;lt; A &amp;lt; Cn ,
and In &amp;lt; A &amp;lt; Cn ;

also 7n = 7M .cos(PP )&amp;gt;

Cn = Cn .cos(PP )

at every stage of variation. As n increases towards oo r

In and Cn close down upon the common limit A, In and

Cn upon the common limit A
,
and we have

A / = A.coa(PI
y

).
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Indeed, it suffices to imagine the area A resolved into

narrow rectangles (or covered with spider lines) per

pendicular to the intersection /; in projection, the breadth

of each such strip is unaltered, while the length is

shortened in the common ratio cos(PP ) : 1
; hence, as

before.

Now take JTFas the plane of projection P ,
and cut it

into elementary rectangles by two systems of planes : the

one perpendicular to Y and Ax apart, the other perpen
dicular to X and Ay apart. They cut the curved surface $

into curvilinear quadrangles as ABCD (Fig. 40). Pass

also a system of planes through each such BC and per

pendicular to XY. Pass a secant-plane K through A, B,C:

also a plane P tangent to 8 at the point T anywhere
within ABC. We thus inscribe and circumscribe $ with

?i-faced polyhedrons, In and Cn . By taking n large

enough, Ax and Ay each small at will, we establish the

inequality
rn &amp;lt;s&amp;lt;cnt

and for n increasing towards oo both In and Gn close

down upon the common limit S, since the secant-plane

K and the tangent-plane P settle down towards the same

limiting position as the triangle ABC closes down, no

,
matter how, upon T. Moreover, the projection of the

plane triangle ABC is always ^AxAy, and =ABC . cosy ,

where y is the inclination of K to XY. On passing to

the limit y becomes y, the inclination of the tangent-plane

P to the plane XY, and we obtain

S==Lim.2^/=ff
1

.dxdy.cos y J J cos y

The extremes of integration must be properly determined,

and we notice that the multiplier J falls away, as there

are two triangles, ABC and BCD, projected into the whole

Ax Ay. We obtain the same result at once by regarding

the surface as the limit of the sum of elements, one in
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each tangent-plane, about the points of tangence ;
each

of these equals its own projection A&Ay divided by the

appropriate cosine of inclination, cosy. If the surface

be not everywhere elementally flat, but have singularities,

as sharp points and the like, these must be cut out, and

the infinitesimal regions about them considered separately.

The inclination y is the same as the slope of the normal

at T to the Z-axis: hence, from Art. 203,

I/cos y = V^T+V+ l
&amp;gt;

if the surface be z = i(x, y).

Also, I/cos y = jFf+F/+F?/Fz ,

for F(x, y, z)
= 0.

Very often x, y, z are expressed as functions of two

independents, u and v, thus :

x =
&amp;lt;f&amp;gt;(u, v), y = \js(u, ?;),

z = x (u, v),

whence by elimination,

z = f(x, y) or F(x, y, z)
= 0.

Hence
zu = Zx-Xu+ zy .yu and z = zx .x + Zy.y v

whence
zx = J(z, y: u, v)/J(x,y: u, v),

zv
= J(x, z: u, v)/J(x, y: u, v),

Substituting these values of zx and zy under the ^/ ,

and remembering that in passing from the independents

(x, y) to the independents (u, v), the element dxdy under

the integral sign changes into J(x, y ; u, v)dudv, we get

8=

where Jx ,
Jy ,

Jz are the three Jacobians above
; they may

be obtained from the rectangular array

xv y v z v

by deleting the columns in order.
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Lastly, to integrate any function as M(x, y, z) = W(u, v)

over the surface, we multiply by M, respectively W, under

the 1 1 and proceed as in ordinary double integration.

Herewith we regard each element of the surface as loaded

with a mass M = W, whatever it may be, as electricity,

pressure, flow, or what not, and we take the integral or

limit of the sum, U/.r/$ or &amp;gt;F.d$, of all such loaded

surface-elements.

Thus suppose any agent, as electricity, spread over the

ellipsoid

so that its density at the point P equals the distance p,

from the origin to the plane tangent at that point ;
find

the total charge. We have to calculate \pdS over the

ellipsoid : also

* and

= 8c2

JJ^
y =

Sc^dxdyf^l
-
1
-
1

2

=

The double integration is extended over one quadrant of

the ellipse
2 .j/2

^__l_^__l9 1^ 79 -a 2 b 2

for one octant, and there are eight octants.

267. Green s Theorem. Perhaps the most important

example of the transformation of integrals is the following.

Let U and U be two functions of (x, y, z), whose values

are given for every point in a region of space V\ and

it is required to integrate Ux . Ux + Uy . Uy + Uz . Uz

throughout V. We have
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Hence integral

If, now, Ulfx , UUy, UUz be finite and continuous, or at

least integrable throughout V, we may apply Art. 265,

so that

snce

This transformation requires that U and U arid the first

derivatives of U be unique, finite, and continuous through
out the region of integration F; if also the first derivatives

of U be likewise unique, finite, and continuous throughout
the same region, then we may exchange the notions and

symbols U and Ur

in the formula above
;
and on equating

the two expressions for /, there results

This remarkable relation, first enounced by Green in his

famous Essay, printed at Nottingham (1828), escaped

notice till 1847, when Thomson, now Lord Kelvin, per

ceived its great significance for mathematical electricity.

It was then republished in Crelle s Journal (Vols. 39,

44, 47). By its aid may be determined the potential

function U for every point within a closed region where

the U is given for every point of the bounding surface 8,

and V2U for every point of the interior region. In

practice, U or its first derivatives will generally suffer

some discontinuity in the interior at some point or along
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some line or over some surface; these must then be bounded

off and their boundaries reckoned to S, but the detailed

treatment belongs to the theory of the potential, and lies

beyond the range of this volume.

ILLUSTRATIONS AND EXERCISES.

1. Find the Jacobian for passing from rectangular to cylindric

coordinates.

We have x = rcosO, ?/
= rsin#, z = z. Hence J=r;

hence under integral sign, dxdydz = rdrd0dz. This is

also geometrically evident
; for, to find an element of

volume we draw about Z a system of coaxal cylinders

and consider the tube bounded by two such with radii

r and r + dr; we cut this into rings by planes normal to

Z and consider the ring bounded by two such corre

sponding to z and z + dz; lastly, we cut this ring into

cuboidal blocks by planes through Z and consider the

block cut out by two such corresponding to 6 and 6 + dO.

The three edges of such a block are plainly dr, dz, and

rdO, and under the integral sign we may write its volume

rdrdddz.

2. Find the Jacobian for passing to spheric coordinates.

We have x = p sin &amp;lt; cos 0, y = p sin
&amp;lt;/&amp;gt;

sin 0, ,? =
/)Cos&amp;lt;/&amp;gt;.

Hence /=/o
2

sin&amp;lt;/&amp;gt;
and

dxdydz=pmn&amp;lt;j&amp;gt;dpd6d&amp;lt;j&amp;gt;.

We may envisage this geometrically thus : About the

origin lay a system of concentric spheres and consider

the shell bounded by two such with radii p and p + dp;

cut this shell into rings by cones about Z (polar axis),

vertex 0, and consider the ring formed by two such

corresponding to
&amp;lt;j&amp;gt;

and
&amp;lt;/&amp;gt;

+
c?c/&amp;gt;;

cut this ring into

cuboidal blocks by half-planes (of longitude) through Z
and consider the block cut out by two such corresponding

to and + dd. Three concurrent orthogonal edges of

this block are dp, pdfa p sin
&amp;lt;j&amp;gt;dO,

and for its volume we

may write, under
, p

2
sm(j&amp;gt;dpdOd&amp;lt;f&amp;gt;.
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3. Find formula for length of a tortuous curve.

If (x, y, z} and (X + &E, y + &yt
z + kz)

be ordinary neighbour points of the curve, then

hence, for t the independent,

Ac
Taking the limits and remembering L. - =

1, we have

Under the we may write ds = Jdx2 + dy
2 + dz2

,
and

we may freely use the symbolism ds2 = dx2 + dy
2 + dz2

r

which however obtains magnitudinal import only when

d signifies derivation, say as to t.

To find s we integrate between proper extremes.

4. In finding s, pass from the system (x, y, z) to (u, v, w).

Denoting derivations as to t, u, v, w by , p 2 , 3 ,
we

have x = x
l

. u + x
2

. v + x
3

. w, and so on for y and z
;

here

The system (x, y, z] is orthogonal, the coordinate sur

faces (planes) through the point (x, y, z) meet at right

angles ;
if now the system (u, v, tu) be also orthogonal,

if the coordinate surfaces (w
= a constant, v = another,

w = another) through the same point (u, v, w) meet also

at right angles, then D, E, F, being proportional to the

cosines of mutual inclinations of these surfaces (or their

tangent planes) at this point, must vanish
;
and if A

lr
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/AU v
l
be the slopes as to A^, Y, Z of the normal at this

point to the surface u = constant, then we have

cosA
i
=

^&amp;gt; cos/*!^,
cos ^ = 2;

and so for A
2 ,

etc.

But if we know u, v, w in terms of x, y, s, then we

may denote by subscripts 15 2 , 3
derivations as to x, y, s

and proceed precisely as before ; u, v, w being orthogonal,

Putting a2 =
u-f + ?/

2
2 + w.,

2
,
and so for li

2 and c-, we have

COS AT = ]

,
COS u, = * COS V, = l

a a a

and so for A
2 , etc.

Hence
-J
= -

1

-,
and eight other such relations.

Hence x
l
u

1
+ yl

v
1
+ z

l
w

1
= Aa, and so on.

Now x =
XjU

r + x
2
v + X

B
W

,
and so for

y/ , r/,

u = u
l
x

f

+ u9i/ + ?/y/, and so for v
,
w .

In this latter expression, for u
,
substitute the values

of x
, y ,

z and collect
;

so

u =
(x-jii-L

+ yl
v
l + z-^w^u + terms in v and w .

This relation holds whatever v and tc may be; hence,

putting each =0, we obtain

x
i
u

i
+ y\v\

+ z
\
u\ = ]*= Aa.

Hence, of course, Aa = Bb = Cc= 1
; Al&amp;gt;C=l/abc.

Now, remembering -7
=

&amp;gt; etc., form the Jacobians
^4 t^

^1^9.2-0 and
j Mji/

&amp;lt;

2
/u

tj I
;

there results

whence
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If dnv dn^ dn
3
be differentials on the three normals

to the three surfaces through (u, i\ w), show that

5. If V=i(x, y, z)
=

&amp;lt;t&amp;gt;(u, v, w), show that

Apply these results when w, -y,
w are spheric coordinates.

a;
2

v/

2 s2
6. If

2~-
----h

717
h -n~ = 1

,
and so for v and iv, then these

d&quot; ~T- U 0&quot; ~T- U C -\- U

three conicoids are confocal : an ellipsoid, an hyperboloid,

and its conjugate, and they are at right angles at every

intersection. Prove

x2 m (a
2 + u) (a

2 + v) (a
2 + w)/(a

2 - //
2
) (a

2 - c
2
), etc.

;

i^ 2 =
(a

2 + u) (W + u) (c
2 + u)/(u

-
v) (u

-
w), etc.

Show that the central normals on the three planes

tangent at (u, v, w) are the halves of the a, b, c of

Ex. 4.

7. Find the area of an ellipse by cutting it up into elements

by radii and concentric similar ellipses.

/v2
^/2

/v2 fit2i

If -a + fs
~ 1 be the E, then -r-s + vsra = 1 is a similar

2 b2 a 2u2 b2u2

concentric E, and y = - tan v . x is a radius. Also
QJ

x = aucosv, t/
= busmv for any such E. Hence

J(x t y , u, v)
= aim

;

rr

hence

Area = ab

8. Find the same area, dividing it by confocal ,&quot;s and ^Ts.

#2
y
2

The equation of a confocal E is ^ ^ + -^=1, where
u2 + a2e2 u2
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2u is the minor axis of the confocal, and e is the

eccentricity of the given E. Also

x = *ju
2
4- a2

e2 . cos V, y = u cos v
;

and a confocal hyperbola is

a2
e2(cosv)

2 a2
e
r
(siu v)

2
=

Hence J(x, y ; it, v)
= {u

2 + a2
e
2
(sin v)

2
}/Ju

2 + a2e
2

,
and

f
6
f
-&amp;gt;7r

f
6 2w2 + ftV2

Area = I Jdudv = TT 1 . -=du = irab.
1

J x/^Tft2^
00

Draw diagrams illustrating (7) and (8).

9. By analogous methods find volume of ellipsoid.

x2
y
2

10. Find area cut out of the paraboloid of revolution + ^-
= 2z

a b

by the elliptic cylinder -^ + ^ = c
2

.

Choosing x and y as independents we must integrate

Put x = can cos v, y = cbu sin v, so that /= abfiuil + c%2
~,

Area = a&c2
1 I Wl + cWdudv = 2-n-abc2 u*Ji + c

2u2du

00

11. Find area of the skew quadrilateral formed by two pairs

of right lines on the hyperbolic paraboloid z = xy.

The quadrilateral is cut out by two planes, x = a, x = a,

parallel to YZ, and two others, y = V, y = b, parallel to

ZX. Take as new origin the point ( ,
b

, 0) and reckon

IT

12. Find the volume bounded by the circular cylinders x2 + y
2 = a2

and x2 + z2 = a2
,
and the surface of each inside the other.
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13. Find the volume bounded by

I

Put x = a(cosusmv)
3

, y = b (sin u sin #)
3
,
z = c(cosv)

3
,

then /= 9a&(sin u cos
z/)

2
(sin v)

5cos 0,

the extremes for both u and v are and w/2, and the

volume is repeated in each octant. Ans.g~ of cir

cumscribed ellipsoid. Into what quadrilaterals do the

curves u = const., v = const, cut up the plane XY1

14. Find the quadratic moment as to its axes of a homogeneous
#2 7

,2 ^2

ellipsoid
- +^ + &quot;- = 1.

For the quadratic moment A, B, as to YZ, ZX,
XY we have

^=|| \x2
dxdyclz&amp;lt;

the density being 1. The extremes are not constant

(Art. 253) ;
to make them constant we introduce new

variables by the relations

x = au, y = bvjl - u2
,

z = civj(l -u2

)(\ -v
2
),

then /= abc(l
-
u^Jl^rf,

and the extremes are
(
-

1, 1), (-1, 1), (-1, 1).

A - ft-% r r r ^(i
_ U^I^

b2 c
2

= ~M, C=M, and the axal moments are

15. Determine the same moment when only similar concentric

coaxal laminae are homogeneous, i.e.,
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Here ^=11 \x2
8dxdydz, and proceeding as before we find

Moment as to X

+ J) +
3(

*
+

Apply method of (14) to find volume of ellipsoid.

16. Show that the area of (a
2 + // + s2

)
2 = a2

(z
2 -

y
2
)

is i^2
,

and describe the surface geometrically. Use spherical

coordinates.

17. Enneper s Minimal Surface has the equations

x = u* - 3uv* - 3u, y = 3u2 - 3v2
,

z = v*- 3u2v - 3v;

show that the rectangle of the four lines of curvature,

u = l, u=2, and v = 3, v = 4, has an area 22524.

18. Show that the centre of pressure on a circular disc just

submerged vertically is |r below its centre.

We have

x= I LT . xdxdy I \xdxdij,

the vertical diameter and the horizontal tangent being

.Y and Y, and the integration being extended over the

circle.

19. Show that the Newtonian attraction of a homogeneous

spherical shell, on a mass-point without it, is the same

as if the mass of the shell were at its centre.

Let P be the point of unit-mass, the centre of the

shell, and consider any zone-element cut out by planes

perpendicular to OP. Let a = radius of shell, c = OP,

r = PZ= distance of zone from P, 6 = POZ,
&amp;lt;f&amp;gt;

= OPZ.

Then plainly the components of attraction perpendicular

to OP annul each other in pairs, the resultant is along

PO. The mass of the zone for 8 = 1 is 27ra-sin OdO, its

total attraction is 27r 2sin OdO/r
2
,
the component C along

PO is 27r 2sin 6 cos
&amp;lt;/&amp;gt; dO/r

2
,
and this must be integrated
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from # = to 6 = IT. Also

r2 = c
2 + a2 - 2ca cos 0, cos

&amp;lt;/&amp;gt;

=
(c
- a cos #)/?

Taking as new variable ,r = a cos we obtain

= 2^2 (

J

FIG. 48.

But this is the attraction of an equal mass, 47r&2
,
at 0.

Show this holds when P touches the shell outside. Also

that it holds for a solid sphere composed of concentric

homogeneous layers, i.e., when 8 varies only with the

distance from the centre. Show also that the total

attraction vanishes for P inside the shell, and inquire

how it varies for P inside a solid sphere composed of

concentric homogeneous layers.

The analogous problem for an ellipsoid composed of

similar concentric coaxal homogeneous shells is inter

esting, important, and celebrated, but not in place here.

20. A hemisphere of radius a is bored into halves by an auger

of diameter a
;
show that the spherical area left is 4a2

.

21. A smooth cylindric tree is cut down and the stroke of the

axe is sloped on each side 45 to the axis of the tree
;

find the volume of wood and area of bark chopped away.

22. A mass is spread uniformly (3=1) over a closed surface S,

inside which is a unit-mass at U(a, b, c) ;
find the total

tension normal to S due to the attraction of U.

Denote by dS the element of surface, as at P, and let

UP = r-, then the normal tension at P due to U is
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%, where v is the angle UPN, and PN is the

normal drawn inward. We must then reckon I y-dS
J r*

over the whole of S. Draw about U a unit-sphere and

lay about dS an elementary cone with vertex U; and

first suppose S simple and everywhere concave towards

U. Then the integrand cos v/r
2 is nothing but a Jacobian,

the limit of the ratio of the surface-element to the cor

responding unit-sphere-element. For a sphere-surface

about U, and through P, radius r, would be sloped v to

S at P, hence its element cut out by the elementary

cone would be the projection of the element of S, that

is, would be cosvdS, and the central projection of this

on the unit-sphere is cos v dS/r
2

. Hence to integrate this

latter over S yields the same as to integrate 1 over the

unit-sphere, and this latter yields the area 4?r. Hence

= 4:7T.

cosv-5-
r2

Mere considerations of sign will now show that this

result holds even when S is multiple or folded. Show

that when U is on S the integral equals 2;r, and vanishes

for U without S.

If a mass M be any way distributed inside
,
the

total normal tension on S will be 4-n-M. (Gauss.)

s. A. u



CHAPTER VIII.

PARAMETRIC DERIVATION. DEFINITE

INTEGRALS AS FUNCTIONS.

268. Derivation as to Parameters. We have seen

(Art. 85), that
j

f(x)dx is a function of the form /, and

a

of the extremes a and a, but not of x\ and we have

learned to derive it as to a and a, though the study of

a derivation as to the form / would not be in place here.

If, however, i(x) contain an arbitrary or parameter p,

then 1= \(x, p)dx will contain p and be a function of p,

and hence in general may be derived as to p. Thus,

omitting extremes, with which we have no present concern,

/ = \xp
~ 1dx =

,
hence Ip = (logos ).

J p p\ p/

Here we integrated and then derived, but we may derive

under the integral sign and then integrate with the same

result, thus :fp 1 f X& / 1 \
x*- l

logx&amp;lt;fa=
p logx--]xP-

1dx =
-(logx--).

So, if

/ = 1 cos px . dx, then Ip = (px cospx siupxj/p
2

,

whether we integrate and derive, or derive and integrate.

Does this commutative law hold in general ?
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/.a

If $ (x) = t(x\ then 7=
&amp;lt;t&amp;gt; (xv)dx = &amp;lt;}&amp;gt; (a, p) -$(((, p);

it

whence, by integrating and then deriving, we have

lp = $p(a,p)-&amp;lt;}&amp;gt;p (&amp;lt;i,p)
=

$&amp;lt;l&amp;gt;(x,p)}
.

Also, by deriving and then integrating, we have

Ip=\ w(&,p)\dx=\ f&amp;lt;f&amp;gt;p(x, p)\ dx

Symbolically,

Dx
- 1

. Dpt(x t p) =Dp .Dx
-
if(, p).

We have found in general the order of derivation as to

independents, and also the order of integration, inter

changeable; here we find the order of the two processes,

derivation and integration, likewise in general inter

changeable. We may establish this highly important
result by straightforward derivation as to the parameter,
thus:

AI
Ap

where V(Ap) is the infinitesimal vanishing with Ap. Now

in general I V(Ap)dx is also infinitesimal, vanishing with

Ap; hence, in general, on taking the limits,

Of course, it is herewith assumed that f(x, p) is actually
derivable as to p, and fp(x, p) actually integrable as to x
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throughout the range, from a to a. The figure illustrates

geometrically. The change from p to p+ Ap changes the

bounding curve; the waving strip is the change in /, its-

Aa

FIG. 49.

varying width is the varying A^/ or A/ due to Ap. Hence

the name differentiatio de curva in curvam. If a and

a contain p, then

L 3f(x, p)

269. Integration as to Parameters. Since f (#,

is in general a function of p, as F(p), we may integrate

it as to p, thus:

f

I, a b b a

a definite double integral, to which the discussion of double

integrals applies. In particular, / being a continuous

function both of x and of p, and the extremes independent

constants, the order of integration is indifferent. Both

derivation and integration as to parameters are fruitful

of important results in the evaluation of integrals.

The double integral 7=1 I f(#, y ; p)dxdy is plainly

a b

a function of p, and may in general be derived and
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integrated as to p. The integral being geometrically a

volume on a base S with varying height z = i(x, y, p),

the change Ap would entail a change A/ represented

geometrically by a lamina of varying thickness Apz spread
over the undulating top of the volume /. If the border

of S be changed by the change Ap, then there would

be laid round the cylindric volume a cylindric lamina of

varying thickness.

EXERCISES.

1. From

[

l

xp
- l dx = -

J Jj

prove by derivation (n times) as to p

and by integrating as to p,

Cb fi pi n
dp\ xp ~ l dx = dx\ x p ~ l

dp
&amp;lt;i a

f1-6-1 _ r -l
/..!_---

_&amp;lt;felog* (a&amp;gt;0,

J log x
& a v

o

2. By deriving

as to ^? (w times), prove

o

and by integration as to p t

fi&amp;gt; f* f
30

f/* f%-*

J
rfpl e-pxdx=\ dx\ e-**dp=
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3. From
r dx_^l TT

J x2 + a2 a 2

prove by deriving as to p = a2 that

r dx _1. 3. 5 ... (2rc -3) 1 TT

J (z
2 + a2

)

n ~2.4. 6 ... (2% -2) o^31 2

4. Integrating by parts, prove that, for
a&amp;gt;0,

J

00

_ f̂
. 5 p _ T fl

~2^Tp J

Hence by derivation and integration as to a
(a&amp;gt;0,

2ft& r^
e~

uxx sin fecc?^ =
T-^ vj-^,

I e~

b~
MU

FJ

~ sm ^

r6~

aa e~^x B2 + 52

cos bxdx=^ log^ ^,

The third integral is a continuous function, both of

a and of /3, even for a decreasing and /? increasing

without limit
; hence for a = 0, ft

=
&amp;lt;x&amp;gt;

,

according as&&amp;gt;0 or 5&amp;lt;0.

For 5 = every element of the 1 vanishes, hence I = 0,

so that the I is discontinuous, making two leaps, from

-
^ to 0, and from to

^,
as b changes from - o- to O

r

and from to +0-.

Now put b + a and b-a for 5, add and subtract, and

prove

cos bx
rcos

ax . sin bx , TT
(&quot;&quot;sin ax .

j

-

-^
--

d=2 J

&quot;

&quot;~^
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Psin 2ax
7

TT

and
I

-dx=^i tor 6 = a.

Note that, for =
0, the resulting

I sin fticdc and I cos bxdx

lose all meaning, since at oo both sine and cosine oscillate

endlessly between -1 and +1. But for #&amp;gt;0 the factor

e
-ax

un(jer the I becomes at oo infinitesimal of infinite

order, and multiplied into sin bx and cos bx reduces their

oscillations at oo within - cr and 4-
&amp;lt;r,

so that

are definite.

I e
axsinbxdx and I e~

ax cosbxdx

(&quot;
1

5. Prove I e~
ax

sin. xdx=
2 =-,

and then derive as to a
;
also integrate as to a, and prove

tl&quot;

. sin xdx =
, p

6. Similarly prove

fI t/ V/VJO Jj U/iV = n 7 )

J fl
2 +l

derive as to a, also integrate as to a, and prove
/OO -I _ ax

I

. cos xdx = log \/a
2 + 1 .

7. Multiplying

f^cos

ax . sin bx 7 TT . hrdx= 7i by e~
,

a; 2

and integrating as to 6 from to oo
, prove for all real

values of a,

, TT e+ac

]

&quot; &quot;&quot;

according as a&amp;gt;0, &amp;lt;0,
a
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n
r&amp;gt; f

x
x sin ax 7 TT

8. Prove
J -j^-dx

=
^

. e+,

according as
&amp;gt;0, a&amp;lt;0. Does this hold for fl = 0?

Can we derive again ?

Prove also, by integrating as to a, from to oo
,
that

or

Also derive as to c
; and why not integrate as to c 1

9. P= I e~^dx = e~^dy is the probability-integral By Art. 261,

pa-rV&quot;^. fv^= rjv***dw^
00

Here S is the first quadrant; for polar coordinates J=r,

and the extremes are and oo for r, and ^ for 0.

Hence

&amp;gt; = f re

00

=
JV-Vfa ^, 2P = fV-da;

Observe that z = e~^-^ is a surface cutting ^ at .?=!,

and sinking thence symmetrically over the whole XY
plane ;

2P is numerically the area between X and

z = e&quot;*

2

,
the section of this surface with XZ, and 4P2 the

volume between this surface and XY.

10. In 2P put x = u*Ja (a of course
&amp;gt;0)

and prove

For x put ua and show

f-Ha
e- u^ 2aud
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Put u = v-Ja, b = 2a*fa; whence

J

+ CO

e
~ 2 + fctft; = N/7r/a . e62/4a.

30

i 2 r
Multiply r- = I e~ au&amp;lt;2du by cos a and integrate as to

\/a xArJ

a; so

S
-rda -

I COS a da \ e~ au du.
J Va ^J J

The integrand cosae~ au
&quot;

is throughout continuous and

vanishes in oo degree for a = oo
;
hence the integrations

are exchangeable ;
on integrating twice by parts,

\
e-au2 cos ado. = -

;

J u4 + 1

o

and this integrated as to u from to oo yields 7r/2\/2*;

hence, finally,

rsina
/7T /I? ,

-^-A.-y5
- (

Euler
-&amp;gt;

Obtain a like result on putting sin a for cos a.

11. Since sine and cosine in the first quadrant range through

the same values in opposite order, we have

tr

I (cosa)
n

d=| (sinx)
n
dx.

Also, since sin = and cos ?r/2
=

0, by Reduction-

formula (Art. 114),

r H 1 f
1

I (cos x)
ndx = I (cos x)

H
~~dx.

. r xmdx TT I . m + l

*By the formula /
-

M
= -/sm -

TT, for n
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For w = 2w-l, 2m, 2m + 1, denote the
j*
by 0, E,

then

o
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The two integrals have the same form, differing only by
the factor n. It was Euler who first perceived the im

portance of this form, and treated it as a function of n :

Legendre named it accordingly Eulerian Integral of

second species, and denoted the latter integral above by

T(n) (read Gamma-Function of n), so that the first would

be F( ft-hl), and the relation holds:

But a more convenient equivalent is the Gaussian

so that

Both Euler and Lagrange preferred

Kl
x n-l

logi)
du,

obtained by putting u for e~ x
,
but for most purposes the

original form is better. For xn = v,

whence r(|) = 2 e~ v dv = x/7r = II(-i).

For n negative T(n), thus defined, becomes oe.

271. Fundamental properties of F and II. This in

tegral is like a, factorial, since \n
= n\n 1, but the factorial

loses all sense for fractional arguments, whereas

so that F or II may be considered as the generalized

factorial. By means of this factorial property we may
find T(n) for any positive n, knowing T(n) for &amp;lt;n^I,

thus :
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Moreover, if n be a proper fraction, so is l-n, and

o o

We may transform this IT by a substitution of Jacobi s,

useful in dealing- with definite integrals : x+ y = u,y = uv:
whence

pfi
J=u, T(n)T(l-n)=\ \ e- uv~ n

(l-v)
n - ldudv

=
J
v
-

(i
_ V)n

- i
civ= 2r%Hi O)

1 - 2n
dO, (v= siiTO

2

).

Since 1 271 is not integral, there is no very simple way
to evaluate this integral ;

the following seems good as any :

Consider

Resolve xn+ eai into n factors x r^ x r
s ,

... x-r2n -i,

where

smpk) for k = I, 3, 5 ... 2w-l.

,v, -l

Hence nA k= ei(-m ~^ = e^
a -V ai

. evaik
, (a = m/n).

Hence

nl= eft- 1)**
. {e

irai

log(x e 1

^) -f- e
37rai

log(x &**)+ . . .

Now if u+ iv be any complex number, we have

u = p cos
&amp;lt;p,

v p sin
^&amp;gt;,

Hence
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Hence log(x e ip*
)
= log(x cos pi i sin pk)

X COS pi

We must evaluate / between and oo. The U s and F s

remain continuous throughout this range of integration :

each U vanishes for x = 0, but increases continuously

with x. However,

x2 2# cospk+l=x*{l (2

.-. f4= logx+Hog{l-(2

Hence, on summing the Ts, the multiplier of \ogx

_
?

1 ~~ 6

since na =m and e2w 7r = l for 971 an integer; hence the

multiplier of log a? vanishes absolutely throughout the

range of integration, the total contribution of the integrals

of log a; is 0. But for m = /

n,, a would =1, the divisor

1 e27rai would = 0, and our conclusion would fail
;
in fact,

the integral would =00. Neither would 1 e2m7r! = for

m not integral; hence, at most, m = n 1. Also the other

part of Uk, 2\og{ }, manifestly vanishes for cc = oc; hence

the total contribution to / made by the U s is 0.

As for the &quot;F s, it is readily seen that pk &amp;lt; 2?r, that each

V is continuous,,and becomes = for x = 00, and that V,,

becomes = ph for x = 0. Hence

//) =
ai2(p

[ Jo ^6
where A; = l, 3,5,... 2n-l.

To calculate 2^&quot;. e^mi, we observe that this
n n

a+kirmi

type-term is the derivative as to mi of e n
;
hence this 2

a+kir .

&quot;u
is the derivative as to mi of e n

;
and this
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To find 2 we derive this 2^ as to mi, and denoting such

derivation by ,
we have

M N D
k- k MN-M. -, which =-;

since, for man integer, N=0. Hence

(a+ ir)mi -, ami

2 = n
. 2?r . s=i = i . e~*~ .

sin
w

Hence

o 71 sin
n

Putting u= xn
,
a mju, we get

,a-l

a result fundamental for the doctrine of definite integrals.

Thus far a has been a positive proper fraction; but

if a be irrational, it will lie between two such fractions,

&amp;lt;U) W-\- 1- and
,
and the value of the integral will lie between

two integrals, evaluated as above, corresponding to these

fractions; and by closing down the fractions upon the

irrational a as their common limit, we may close down
the two integrals evaluated as above upon their common

limit, of the form given above, even for a irrational.

For a = 0, and u= (lv)/v, the equation above takes

the form

i va

hence finally

TT r 71
&quot;/

2

-n)=~ -=2 (tanfl)
1 - 2

&quot;^,
sin n-TT J

6

one of the most beautiful, remarkable, and important of

Euler s discoveries.
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272. First Eulerian Integral. On writing x = u2
,

r ~ v v2n
- l dv.

Hence

=4rfYv-
J J
o o

Pass to polar coordinates; then J=r, and we have

T/2 ____ 9)H-1 2-l

J&amp;lt;

fTT/

e -r&amp;gt;2(m+n)-l^r

fn
...&amp;lt;ir,

is F(m+ 7i); hence

o

JT/2

______o . _ -1 __ _ -I

cosO &quot;sine

~

d6 = B(m f n)

o

= B(n,m),

the value being unaffected by exchange of m and n.

This 5, named (by Legendre) First Eulerian Integral,

is thus expressible through three F s. For ^ = cos^T it

takes the form

B(m, n)= f xm-\l-x)
n ~ ldx= f xn-\l-x)

m - ldx= B(n ) m).

Just as the relation cos a = sin (V/2 a) reduces the

calculation of sine and cosine for the first quadrant down

to the calculation of them for the first octant, so the

second fundamental relation

T(n)T(ln) = 7r/sin ntr

reduces the calculation of T(n), for n between and 1,

clown to the calculation for n between and | ;
and a

table of T s for this range of argument-value enables us

to find r for any positive argument. Further discussion
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of these Eulerians and actual calculation would lead

beyond the range of this volume, into the Doctrine of

Infinite Products; but it may be well to remark that a

definition of F by help of this doctrine will give the

function a meaning even for negative arguments.

EXERCISES.

1. Translate foregoing properties of F into properties of II.

2. Find area bounded in 1st quadrant by x

Hint: Put x = a (sin &amp;lt;9)

2
&quot;. Ans. ^m

3. Find centroid of that area. x = y = ^a(T2n)
2
/T3n.

4. Find volume in 1st quadrant bounded by

1

*J
/

and centroid of that volume.

Ans. V= abcttm . Hn . Hp/Ii (m + n +p) ;

xV= U2m . Tin . Up/ll(2m

5. Generalize the property

{

1

xm-\l-x)
n ~ ldx = Tm.

into the theorem of Dirichlet :

If /= I \...x
1
ai
~ lx

2
a2
~ l

...dx
1
dx

2 ..., where the integration

extends throughout the region where

and the x s, a s, a s, and p s are all positive, then

...pnan + I)

We make the border condition linear by the substitution

iCjttj
= w/ 1

,
x
2
a.
2
=

u.f
1

,
etc.

;
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then U, +w9 + ... +un^l is the condition. Also
1 t

x
aaa = upa

,
xa

~ ldx =^ upa
~ l

du,
a

for each index 1, 2, ..., n. Hence

/= Pl PyPn

The extremes are determined by
hence they are: for unJ and 1 -w

x
-w ... -n n _ 1

:
l

for

un-i, and 1 - w
x
- M

2
... - wn_2 , etc.; for w

x ,
and 1.

The variability of these extremes complicates the problem

excessively, but we can make the extremes constant by

introducing a new set of variables by the equations :

In the Jacobian of this substitution all the elements on

one side of the diagonal are 0, since
u-^

contains only vv

u
2 only v

l
and v

2 , etc, ;
hence

/= diagonal term = (I -v1 )

n~ 1

(l -v2)
M~ 2

...(l -vn_ 1 ).

The extremes for each v are now and 1, as we

easily prove step by step, beginning at vv thus : for

M!
= and 1

, i\
= and 1

;
for u

2
=

0, v
z
= 0, and for

u
2
= I -u

1
= 1 -Vj, v

2 =l, etc. This substitution is sug

gested b} the case of two variables, is extended by

analogy, and is tested as above.

On substituting in /, the extremes become these

constants and 1, the integrations are independent of

each other, and the integral of the product becomes the

product of the integrals as to each of the v s. We
begin with the integration in vn :

f
1

t i/, ri . Ttn
I Vn

n
(l-Vn) d^n =

^7~f f\&amp;gt;

Wnere * tmP^9

P( ;
and so on.

- 1

S. A.
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On forming the product all the denominators but the

last are cancelled by factors in the numerator, and we

obtain the result enounced.

6. Write the border condition

w = (x^ajpi +

form the new integral

and prove by reasoning like the foregoing :

/ = /. {

h

f(w)w
p^+ -- +pnan - ldw* (Liouville.)

7. Use Dirichlet s theorem in quadrature of ellipse and cuba-

ture of ellipsoid.

8. Use Liouville s extension to find mass of unit-sphere com

posed of homogeneous concentric spherical shells of varying

radius r, the density varying as l/\/l-r
2

.

We must integrate l/*Jl -x2 -y2 -z2
throughout the

region where x2 + y
2 + z2 ^l, and for the first octant,

The integral multiplier of / is I dw = 7r/2 ;

^ M J Vl-
hence / = = . Generalize this for n variables.

o o

9. Prove xm-\-logx)
n - ldx = Tn/m

n
, (Put u = x

m
.)

10. Prove dx = S(m, n)la
n
(l+ar. (Abel.)

u

* / is here the same as in (5), but with the + 1 omitted from the

argument of F in the denominator.
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/

^a-l
/

J
11. Prove I YY y)

dx =
I&amp;gt;(a, b-a), for b&amp;gt;a. (Put x -1.

12. Prove IV . T(2r) . r(3r)...T(l -r) = (2ir)^~
1

)r* for r=
X

.

Employ IV . T(l -
r)
=

7r/sin ?-TT
;
remember

. Sin, _, . f, \ . (,.
2\ sin(^_,V in/2-+ ,Y..
/ \n J \n )sin z \n n

the last pair of factors being

TT \ . fn - 1

-^ or sm^
according as n is even or odd

;
and put z = 0.



CHAPTER IX.

CURVE TRACING.

273. This extensive, difficult, and important subject can

be treated here not adequately, but only in measure to

meet the more frequent needs of the student.

Given the equation of a curve, we may inquire :

A. What is its general course ? How shall we draw

it roughly?
B. How is it to be drawn, how does it behave, in the

vicinity of certain critical points ?

C. How is it to be drawn towards infinity ?

We answer A. by several observations as determinations,

like the following, made in any order:

1. Its intercepts on X resp. F are found by equating

y resp. x to 0, and solving the resulting equation for x

resp. y ; approximate roots suffice.

2. If the exponents of x resp. y be all even, then the

curve is symmetric as to F resp. X ;
if the exponents of

both x and y be all even, then it is symmetric as to both

F and X\ if all the terms be of even or all of odd

degree, then if (x, y} be on the curve so is ( x, y), and

the curve is symmetric as to the origin, in opposite

quadrants (e.g. xy = a2
), the origin bisects every chord

through it and is the centre of the curve
;

if the equation

be symmetric as to x and y, not changing when x and y

are exchanged, then the curve is symmetric as to the

line y = X] if
,
on changing y into y, the equation becomes

symmetric as to x and y, then the curve is symmetric as
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to x = y ;
and other symmetries may sometimes be

detected by simple transformations.

3. Find maxima and minima of y resp. x, where the

tangent is parallel to X resp. 7, by equating yx resp. xy

to 0. Herewith the concavity resp. convexity of the

curve will be determined in certain vicinities.

4. Determine any points of inflexion, where the curve

changes from convex to concave, and vice versa] at such

points d?y/dx
2 must change sign, and in general vanish.

5. If convenient, solve the equation as to x or y or

each, notice how either coordinate changes as the other

changes, and for what value or values (if any) of either

the other becomes imaginary ; loops may often be thus

detected.

6. If the form of the curve be not revealed by any

such considerations, it may be well to pass to polars by
the relations x= p cos 0, y = p sin 6

;
or a change of origin

or axes may be helpful.

274. Arrangement of Terms. In order to study the

rational integral algebraic curve ~F(x,y) = Q in the neigh

bourhood of critical points, it is generally best to collect

terms of the same degree, and express F(x, y) as a sum

of binary quantics, thus :

F(x, y)=--u -\-

where

and so on. For x = p cos 0, y = psmO these become

where v =
,

v
1
= p(a1

cos 6+ /jjsin 0},

and so on.

If the critical point be the origin, then a = 0; if it

be not the origin, transfer the origin to it ; we may
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suppose this done and accordingly omit u . Then it
1
=

or v
1
=

)
u

2
= or v

2
= 0, and so on, are all equations of

right lines through the origin 0, being homogeneous in x

and y : also v^ = or v
l
= 0, u^+ u2

= or v
l+ v

2
= 0,

1^+ ^2+ ^3 = or ^+ ^2+ ^3
= 0, etc., are curves of 1 st

,

2nd
,
3rd degrees, etc., through the origin and closely

touching the curve in question. Of these, u-^
= or v

1
=

is the right line tangent at the origin ;
for on combining

this equation with J?(x, y) or 0(p, $) = 0, we see that

the resulting equation has two roots =0 in x, or in y, or

in p, as the case may be; that is, 1^ = or 1^
= meets

F = or = at in two points, or is tangent. Similarly,

the conic u
l -\-u2

= or v
l+ v

2
= Q meets the curve at

in three consecutive points, and is hence called osculating

conic
,

like remarks apply to the cubic, quartic, etc.

275. Nodes. If ^ = = ^, then the equation F = =

begins with u
2
or v

2 ,
that is, with terms of 2nd degree;

then t^= or ^2
= is the equation of a pair of right

lines tangent to the curve at 0. The factors of u
2 may

be real and unequal, when the tangents are real and

separate; or real and equal, when the tangents are real

and coincident
;

or imaginary, when the tangents are

imaginary ; according as the discriminant of u9 , namely
6
2
2 a

z
c
2

is &amp;gt; 0, or = 0, or &amp;lt; 0. In the first case two

branches of the curve pass through 0, the generating

point passes through twice, the point is a double

point or crunode of the curve
;
in the second case, two

branches of the curve reach but do not in general pass

through 0, the generating point attains the position

but retires from it on the same tangent, the origin is

a cusp or spinode : in the third case no contiguous points

of the curve lie about 0, the generating point attains the

position discontinuously, along no path, the origin is

an isolated or conjugate point or acnode.
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276. Plucker s Method. Perhaps clearer notions may
be obtained thus : Suppose a point to glide along a right

line while the right line turns about the point ;
then the

point traces a curve, and the right line envelopes (as

tangent) the same curve. If As be the change in arc-

length, corresponding to AT, the change in direction of

the tangent, or the angle through which the right line

turns while the point traces As, then, as we know,

AT/As = average curvature, and dr/ds = instantaneous cur

vature.

Now at a point of inflexion the generating point glides

still along the right line in the same sense, but the right

line stops turning in one sense and begins to turn in the

opposite sense; at a cusp the right line keeps on turning

in the same sense, but the generating point stops moving
in one sense along the right line and begins to move in

the opposite sense.

A relation connecting s and T, telling how the point

glides as the line turns, is called the intrinsic equation

of the curve, since it contains no reference to extrinsic

coordinate axes or the like, but determines the curve by
its inner nature. Such equations are often useful.

277. Multiple Points. Returning from this digression

we remark that if
1(^
= and u.

2
= (^ = =

^), then

F=0 = (
f) begins with u

s
or v

s
with terms of 3rd

degree.

Hence three values of p, each =0, will satisfy
= 0, or

three pairs of 0-values of x and y satisfy F= ;
that is,

the origin is a triple point of the curve. Also, u
3
=

is the equation of three right lines tangent at 0, real and

separate, or (two or more) coincident or (two) imaginary,

according to the discriminant of it
s

. We may extend this

reasoning to multiple points of any order.

In order to detect such points in the first place, we

observe that yx must lose its uniqueness where there exist
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more than one tangent. Accordingly, we write off the

system
(1)

yxx ,
............... (2)

.yxxx= Q, etc.......(3)

Now in general yx is given by (1) uniquely ;
but if

Fx= $ = F
y)

then it is given by (2) or (Fx+Fv .yx)*
= 0,

a quadratic giving

_FXy \Fxy
*-FXX . Fyy

yx pr yy

If all the second derivatives, Fxx ,
Fxy ,

Fyy ,
also vanish,

then three values of yx are given by the cubic

and so on.

Hence, for a double point solve simultaneously

F=0, Fx=0, Fy
= (\

and find yx from (2); for a triple point solve

and find yx from (3); and so on.

For helpful devices see special works on Curve Tracing

as Frost s, Johnson s, Salmon s Higher Plane Curves, etc.

278. In drawing a curve near a singular point, as the

origin 0, it is well to have some better guide than the

tangents, and some kind of parabola will generally offer

itself as a close approximation. For we can usually pick

out two quantics, u s, that will be controlling, in com

parison with which all the others are small at will

near 0. To discover these we plot the u s, representing

the term axmy
n
by the point A(m, n), using exponents

for coordinates; also let B(p, q) and
&amp;lt;7(r, s) depict the
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terms bxpyv and cxr
y

8
. Draw the right line AE\ then if

C lie beyond this line, from the origin 0, the term cxr

y*

will be small at will, near 0, for at least one branch of

the curve
;
and if all the other terms are depicted by

points lying beyond AB, then are they all infinitesimal

in comparison with these two terms, so that these two

are the controlling terms, and this branch of the curve

near approximates the parabola axmy
n
-{-bxpyq= Q, or

n = Q. For along this parabola it is plain

FIG. 50.

that the two terms, though of different degrees, must be

of the same order of magnitude, otherwise their sum

could not be
;
thus for n large at will, a could not annul

nl

. Hence regarding y as infinitesimal of 1 st
order, we

m p

must have x q
~ n also infinitesimal of 1 st

order, hence x itself

sy /vi

must be infinitesimal of order -*
,
and this is tan r,m p

where T is the inclination of AB to OX
;
hence the in-

finitesimality of the terms axmy
n and bxpyv is of order

n mtanr = # p tanr, and this is geometrically nothing

but 01, the intercept of AB on Y. So, too, the order of
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infinitesimality of cxr
y

s
is s r tan r, that is, the intercept

on Y of the parallel to AB drawn through (7; this order

is therefore higher, and hence this term may be neglected,

if G lie beyond AB. It may happen that several lines

like AB can be drawn, so that all other depicting points

will lie beyond the two: in that case there will be as

many branches of the curve through 0.

It will be well for the student to draw the parabolas

for(m,iO = (l,l); (1,2); (1,3); ,..; (2,1); (2,2); ...(3,1);....

Illustration. af + 3a?fx +^Y ~^ =
-

Depicting the terms in order by the points A, B, C, D, we see

that the lines are AB and BD
;
hence at the origin the branches

FIG. 50A.

approximate the parabolas y
2 + Sax = and 3a/z/

2 = #3
. Draw

them for a= 1.
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279. The curve at oc. In order to study the curve in

remote regions of the plane, we again ask what curve it

approaches as x or y or p increases without limit. In case

F(x, y) be rational, integral, and algebraic, we may
use the method of Art. 278, but now we draw AB so

as to be beyond all other depicting points (7; then the

terms axmy
n and bxpyi are great at will (in remote

regions) in comparison with every such term cxry\ and

at oo the curve approximates to axmy
n+ bxpyQ = Q. Thus,

in the foregoing illustration AC and CD are two such

lines, and the curve approximates at oo the parabolas

ay
z+ 2x3= Q and 2y

2 = ax. The most important case of

approximation is when the difference between two corre

sponding ordinates (either x or y) approaches as the

other ordinate (either y or x) approaches oo. In such

case the two curves are said to be asymptotic. Thus

the quadratic curve y = axz+ 2bx+ c and the cubic

y = ax*+ %bx+ c+ -
x

are asymptotic, since for a common x the difference
x

between the corresponding y a approaches as x approaches
GO. Of course, the most important asymptotic lines are

right lines, and they are called Asymptotes.
If then we can bring the equation of the curve to the

form

c d

then y = sx-\-b is an asymptote.

But this cannot always be done, and the asymptotes must

be discovered otherwise. Accordingly, we reflect that an

asymptote must meet the curve in at least two points at oo,

and we ask for what values of s and b does y = sx+ b, on

combination with F(x, y) = (\ yield at least two oo roots

in x?
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Putting y = ax+ b, we may write F(x, y) thus

This last expression is yielded by Taylor s theorem.

There will be two oo values of x when, and only when, the

two coefficients of the two highest powers, xn and xn ~ l
,

vanish; that is, when fn (s)
= and 6fw

/

(s)+ fn _ 1 (s)
= 0.

Now fn (s)
= 0, being of nih

degree in s, has n roots,

sv s
2 ,

. . . sn ;
and to each of these corresponds a value of b,

as 6
:
= f-i(s1)/ w

/

(8 i)&amp;gt;

etc.; and to each such pair of

values corresponds a right line, as y = s
l
x+ b

1 , y = s^c-{-b.2 ,

etc.
;
and these n right lines are the n asymptotes of the

curve of nih
degree. Of course, some may be coincident,

some imaginary; but if n be odd, at least one must be

real; that is, a rational integral algebraic curve of odd

degree has at least one real asymptote. It is indeed

evident that such a curve cannot be closed. But among
these n asymptotes may be the Right Line at oo, with

p points of contact with the curve, hence counting as p
tangents at oo, and reducing the number of asymptotes

proper (in finity) to n -
p] thus, in y

2 =
4&amp;lt;ax, n-p = 2-2 = 0,

since s=0 and 6= 00.

In case the term in y
11 be missing from F, the term in s

n

will also be missing on substitution, and, accordingly, one

of the asymptotes yielded as above will be missing. But

this vanishing of the highest power of 8 simply means

that one value of s is oc, that is, one asymptote is parallel

to Y. Or, in this case, we may exchange the notions of

x and y, substitute ty+ a for x, and proceed as before.

Let the student show that the asymptotes parallel to the
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axes are obtained by equating to the coefficients of the

highest powers of x and of y, when possible.

The foregoing and many other methods will become

clearer in practice, which will also disclose various higher

singularities of transcendental curves.

ILLUSTRATIONS AND EXERCISES.

1. Investigate the Witch of Agnesi (1718-1799).

The geometric property is OM : OB = MQ : MP.

The equation is x*y
= 4a? (2a

-
y) or y = 8a*/(x

2 + 4 2
).

A glance at this equation shows that

FIG. 51.

(a) The curve is symmetric as to Y\ (b) y is a maximum,

2a, for # = 0; (c) the curve lies wholly above x,

there is no negative y\ (d) y = Q for x=cc, X is an

asymptote, the other asymptotes are imaginary. By

deriving twice, we find
?/&quot;

= 8a3
(6z

2 - 8(i
2
)/(z

2 + 4a2
)
3

,

whence if
= for aj = - - -

,
two points of inflection

;

o

within them the curve is concave, without convex,

to X.

2. Investigate the Cissoid of Diocles
( ?-?).

The geometric property is OP=QT.

The equation is y
3 = x2

(2a
-

y) or 2 = -= .

&CI ?/
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(a) The curve is symmetric as to Y.

(b) It lies above Jf, only + y s are possible.

(c) It lies below y = 2a, y &amp;gt; 2a makes x imaginary,

(d) For y = 2a, x=&amp;lt;x&amp;gt;; y = 2a is an asymptote, the other

asymptotes are imaginary.

y

FIG. 52.

(e) yx
= ~

3.2 + 3 2
takes tne form

Q
at and the

equation takes the form 2ax2
-y(x

2 + y
2
)
= Q whence

it appears that the F-axis, x 0, is the double

tangent, and the origin is a keratoid cusp.

3. Investigate the Lemniscate of Bernoulli.

FIG. 53.
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It is the locus of a point, the product of whose distances

from two fixed points, 2c apart, is the constant c
2

.

Let the student show that it is the central pedal of

the rectangular hyperbola, and that its equation is

P
2 = a2cos26 or (x* + f)* = a?(x*-f), (ft

2 = 2c2
).

(a) The curve lies wholly within the circle p a.

(b) It is symmetric as to X, as to Y, and as to 0.

(c) It lies wholly within the right lines xy = 0, for

|

x
|

&amp;lt;

| y the curve is imaginary.

(d) At it approaches xy =
0, which are tangents there,

so that is a double point and point of inflexion

for each tangent or branch.

(e) It is throughout concave towards X.

4. Trace xy = e
x

.

5. Investigate the Folium Cartesii.

The equation is #3 + if
-
3axy = 0.

(a) The curve goes through 0, where it approaches

xy = Q, the axes, which are tangents, and is a double

point.

(5) x = y is an axis of symmetry, which it may be

FIG. 54.

well to take for a new axis of abscissa by the equations
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whence /3ft
v

u2
( = - u \

^2

3(u

so that w2 - v2 = is now the equation of the tangent
at 0. Also for = we have

For w &amp;gt; -:-_ the value of v is imaginary, and also for

u&amp;lt;
- -=, so that the curve does not extend beyond these
v2

values of u. For &amp;lt; u &amp;lt; r- the value of v is always

finite, so that the curve has a loop ;
let the student find

the maximum v2. For u + = = 0, v becomes oo
,
so that

this line is an asymptote ;
its equation is

x + y + a = 0.

6. Investigate the curve x

FIG. 55.

(a) The curve passes through and is symmetric as to

0, lying wholly in 1st and 3rd quadrants.

(6) It has a maximum y = \ for x = 3, and a minimum

y-\ for x= - 3.

(c) The second derivative

,,_6a(a;
2
-27)
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vanishes for jc = or \/27, and also changes sign, hence

the origin and the points

(3v/3, JV3), (-3v/3, -iv/3)

are points of inflexion.

((?)
For a: = ao

, y = 0, so that A is an asymptote.

GA. Investigate the curve p = a cos 40.

3

FIG. 56.

As ranges from - - to + 0, p ranges from to a
;

as

ranges from to
, p ranges from a to

; hereby one
o

loop is yielded. As ranges from - to -Q-, p ranges
O O

from to -
a, and from - a to again, which negative

values are to be laid off backward from ; hereby loop

(2) is traced. A new loop is traced for each octant-range

of 0, alternately positively and negatively. A point

in continuous motion (the end of +p resp.
-

p) passes

eight times through (9, which is an octuple point.

Similarly for p = a cos nO, p = a sin nO. Let the student

show that the curve has n loops for n odd, but 2n loops

for n even.

S.A. Y
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7. Trace the curves p cos nO = a (Cotes spirals), the inverses of

the preceding, and draw the asymptotes.

8. Trace the indented curve p = 3 + cos 50.

It lies between the circles p = 2 and p = 4, touches each

at the vertices of a regular pentagon, and has ten points

of inflexion.

9. Show that the curve x2
(a

2 - x2
)
=f (a

2 + x2
) may be derived

from B. s lemniscate by lengthening each p in the ratio

sec : 1.

10. Trace the Cardioid p = a(c
\

This belongs to the important group p
n = a

n co$nO.

11. Trace the Limac/m of Pascal, p = a + bcosO.

x2 a2

12. Trace the Trident, x3 -axy = a3 or y
------.

d X

It meets X at x = a, where it has a point of contrary

flexure
;
for x&amp;gt; a it rises, approaching the parabola x2 = ay ;

for x = 0, y = + oo
,
the curve is asymptotic to Y on

both sides; for x= -a/\2, y is & minimum, =
fa&amp;gt;/2.

1 3. Trace x5 - 5a*xf + 2?/
5 = = F.

Here /M (s)
= 2s5 + l (Art. 279), which, equated to 0,

yields s = -
-37=

and four imaginary roots, hence there is

y2
only one real asymptote. Also /n _ 1(s)

=
0, hence from

6/n(s)+/w _ 1(s)
= we see that 5 = 0, and the asymptote

passes through 0. Since u^
= and u^

= 0, is a triple

point ;
the tangents are x = 0, y = + 0, y = -

0, the last

two coincident. This last result we may obtain analyti

cally, thus : At 0,

0; F
y
=

10?y
4 -

0; F^-Oj Fxyy=-\W; ^=120^ = 0.

Hence to determine yx we have the cubic

= = Q + 3. + 3
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of which the three roots are yx = oo or + or -
0, which

yield, as above, X as a double, and Y as a single,

tangent.

14. Trace f-x2

(x-a) = 0.

For x = 0, . y = 0, the origin is a point of the curve.

For all other values of x &amp;lt; a, y is imaginary ;
hence

is isolated. The tangents at are imaginary, as appears

thus : At 0,

F=0, Fx =-3x* + 2ax=0, F
l/

= 2y = 0;

Fxx =-Qx+2a = 2a, ^ = 0, ^ = 2;

hence from

The curve consists of one infinite branch cutting X
orthogonally for x = a, and with two symmetric points of

inflexion for x = ^a.

15. Show that ay~
= xs has a cusp at 0.

16. All curves of third degree may be produced from

by projection. Trace this latter on five suppositions :

(1) a, b, c real and unequal; (2) a and 5 equal ; (3) b and

c equal ; (4) a, ft,
c all equal ; (5) b and c imaginary.

17. Trace the Strophoid, x(x
2 + f) = a(x

z
-y*); the Catenary,

tif= hc-; and its involute, the Tractrix,
ct

x = Vft
2 - f + a {log (ft

-
x/rt-

-
y-)

-
log y } ;

and the Logarithmic curve, x = log y.

18. Trace the Asteroid, x% + y% = a%, and show that its evolute

is similar, but twice as great.

19. Trace the Equiangular Spiral, p = ae
c9

,
where c is cotangent

of the constant angle, and show that its evolute is a

congruent spiral ;
also trace the Parabolic spirals, p = aOn

,

for n=I, -1, and -|; also the Probability curve,

20. Trace the curve, y = sin .

x
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For x=l
t y = ;

for x&amp;gt; 1 the curve rises to a maximum

at (2, 1); thence for x&amp;gt;2 it sinks down asymptotically

FIG. 57.

towards A&quot;. For x between 1 and

below X
;

for x between ~ and
\

i

andabove X
;

for a between -
n

it forms an arch

it forms an arch

it forms an+r
arch above or below JT, according as n is even or odd.

For x approaching 0, n approaching co
,

these waves

retain the same amplitude 2, but are crowded together

more and more, so that for # = 0, at 0, the curve loses

all definite character, the sine is in fact not defined for

infinite arguments. The curve is symmetric as to the

origin.

21. Trace

FIG. 58.
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The curve crosses X at x=\, thence with increasing x

it rises towards the asymptote, y = ir. For x decreasing

towards 0, the waves in the preceding example die

away toward 0-amplitude at 0. The curve is symmetric

as to Y.

22. Trace (a) y
2 = sin-, and (b) y

2 = asin-.

The undulations in Ex. 20 are changed in shape but

not in amplitude in (a) ;
those of Ex. 21 are changed in

shape and increased in amplitude in (5) ;
in both (a)

and (b) they are reflected above and below X, and

vanish from the plane for y
2

negative, y imaginary,

leaving for -
l&amp;lt;x&amp;lt;l,

two symmetric series of detached

arcs that shrink, and in (b) sink, toward at 0. The

asymptotes in (b) are y= V/TT.

23. Trace v/
2 =

FIG. 59.
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For x + j
the vanishing imaginary arcs of Ex. 23

reappear as real
;
but for x -

,
the whole curve vanishes

as imaginary, leaving only a series of isolated points on

the negative Jf-axis, for

-x l

2 3
*

and these are heaped together infinitely towards 0. Such

a series is called by Vincent a branche pointilUe.

24. Trace y = xxj y = x*, y = x*.

25. Trace =

FIG. GO.

The curve meets A&quot; at x = and x = 1
;

it has a minimum

y= for x = -
;

for x = e, y = e; for x = 0, y = ;
for x

e e

negative, y is imaginary, the single branch of the

curve stops at 0, which is accordingly called a stop point

or point d arret. The progressive differential coefficient

becomes - oc at 0, the regressive becomes imaginary ;
the

tangent on from is Y.

26. Trace y
n = x

m
logx and y = e

x
.

i _ -L

ex 1 1 e x
~ m c/ 1 1 C/

27. Trace y = -^- v
g* + 1 i + *n*

These expressions being in general equivalent, the curve

is symmetric as to 0. For x= +0 (nearing through
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positive values), y= +1, for #= -0, y= -
1, the curve

suffers discontinuity at the origin, the two branches stop

FIG. 61.

at (0, +1) and (0,
-

1). Let the student find the points

of flexure and the asymptote.

28. Trace .

Here the factor x introduces symmetry as to Y, and

dissolves the foregoing discontinuity in y, but works a

similar discontinuity in yx . For in the vicinity of

we have
i.

nt /?* _ 1

progressive differential coefficient = L-= L ^- =
1,

y e
x - 1

regressive differential coefficient = L -= L-j
-- = -1,

O

FIG. 62.

while the notion of derivative proper fails. The branches
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diverge at right angles. Such a point of finite divergence

of branches is called a salient point (point saillant).

29. Trace
==|Yl

/?^Y

O

FIG. 63.

At 0, Fx =--Q = F
i/

= Fxx
= F^ Fm = -2a*

t
hence yt = 0,

so that is a double point, and apparently a cusp.

But from the value of y we see at once that for x = Q

4.

(at 0)yxx
= - or 0, according as we take the

&amp;lt;J

+ or -
,

(t

that is, for the upper or the lower branch of the curve.

Hence this lower branch has also an inflexion at 0. Such

a point, where cusp and inflexion combine to form a

double cusp of both species, is called a point of Oscul-

inflexion (Cramer). Observe that the parabola ay = x2

bisects all chords of the curve parallel to Y, it is a kind

of curvilinear diameter.

30. Trace the Conchoid, (x
1 + f)

2
(x

- of = bzx* the Quadratrix,

y = (a x) tan (rrx/2d) ;

the Cartesian oval,

(a;2 + y
i _ 2ax + &2

)
2 = W(x

2 + f) ;

and the Cassinian oval,
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31. Trace x (x + y)
2 a2

y = 0.

For +a2 the curve has the parallel asymptotes

x +ya = Q, a third asymptote # = 0, and is inflected

at
;

oo is a ?w&amp;gt;efe. For - a2
,
the parallel asymptotes

are imaginary, oo is an acnode.

32. Trace a4
(6

2 -a;2
)
= :e%-c)

2
.

Here Y is asymptotic to the real branches, and X is

asymptotic to the imaginary branches.

33. Trace tf + 2a3
y
- tff = 0.

There are two parabolic asymptotes x2 = a(y
-

a).

34. Trace p = a (cos 0- cos 26) and
/a
= n(sin #-sin 20).

35. Trace xy = sin ira, a# = sin -, and generalize.
x



NOTES.

Page 17. For another view of the relation of Derivative and

Differential Coefficient, see Stolz, Grundzuge der Differential- und

Integralrechnung, p. 27.

Page 97. By Trigonometry, l+cos2a= 2(cosa)
2

,

1 cos 2a= 2 (sin a)
2

;

v, _. 1 (tan a)
2

. r
2 . tan ahence cos 2a= ---

)-
--L. sin 2a = -

7
-----

X9 ;

l+(tana)
2

l+(tana)
2

that is, sine and cosine, and therefore all other simple trigonometric

functions of an angle are expressible rationally through the tangent

of the half-angle. Hence, to integrate / Fdx^ where F is a rational

function of the ordinary trigonometric functions of #, we put .^=2y,

and u= \&\\y ;
then F passes over into

&amp;lt;/&amp;gt;,

a rational function of w,

and dx is supplaced by and we have only to integrate, as

to w, a rational function of u, which is easily done by Part-Fractions.

Let the student extend the reasoning to functions of hyperbolic

functions. This tangent of the half-angle is an extremely important
and useful new variable. This observation was originally intended

for Vol. II., but is in place here.

Page 125. That Derivation in the vicinity of the critical value

x=a does actually remove the vanishing factor x-a from both

numerator and denominator, may also be shown thus :

LetF(#)= ,
and

&amp;lt;/&amp;gt;()

=
0, T/r(a)

=
;
then to evaluate

*&amp;lt;&amp;gt;-!$

^i , i n &amp;lt;&amp;gt;

we note that identically -)-H = TT-T-rrr, for x not =* -
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If now we take the Limit of both sides for x= a, the left side

becomes
, , ^, and the right side becomes ,- .. and we observe
)K) y/O)

that both numerator and denominator of the right member are

divided by x a.

Page 173. The notion of arc-length presents some logical difficulty.

We can easily fix the meaning of equal, greater, and less, in case of

tracts, segments of straight lines, because all such are homoeoidal

throughout, and hence may be compared immediately by super

position. Like may be said of arcs of equal circles, and of congruent

circular spirals. So we may compare integers directly, by counting

them off, or fractions by reducing them to a common denominator

and then counting off the numerators. The parts of the magnitudes

compared here fit on one another, and the question is simply of

excess, or defect, or neither.

But such comparison is not possible between arcs of different

curves, as unequal circles, or arcs in general from different regions

of the same curve, as from near the vertices (major and minor) of

an ellipse ;
nor between any arc and a straight segment ;

since in

none of these cases is superposition possible, no part of the one

magnitude will fit on any part of the other.

In order then to compare arcs, we first refer them to the simplest

standard, the straight line, which may be supposed broken up into

a polygon of sides small at will, as a rational number into fractions.

Accordingly we inscribe and circumscribe the arc with polygons

of n sides, and these we may suppose parallel in pairs. Then as

n increases and each side decreases the two polygons close down

upon each other indefinitely, the one always increasing in length,

the other always decreasing, so that the difference between their

lengths becomes er,
small at will

;
but neither ever becomes com

parable in any part with any part of the arc lying always between

the two. The area of the strip or ring between the polygons tends

to vanish, but does not vanish for any finite value of n however

great, so that we cannot by such process prove that the arc

has length at all, in the sense in which the rectilinear polygons

have length. It seems then that our only recourse must be to

an Assumption in the form of a Definition : We assume that the

arc has length, and we define that length to be the common Limit-

length of both inscribed and circumscribed polygons of n sides

when each side becomes small at will as n becomes large at will.

The question remains, Will this arc-length, this Limit, be the
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same, no matter how the polygons be inscribed and circumscribed ]

This amounts to the pure analytic question : Is the value of the

Definite Integral entirely independent of the way in which the

interval or region of Integration is cut up into elements or sub-

intervals ? The answer is in general Yes, but the proof would not

be in place in this volume.

Similar remarks apply to Complanation of surfaces. Quite ana

logous, in pure Arithmetic, is the genesis of the notion of an

Irrational Number, as itself not any rational number, but the Limit

of a series of rational numbers, n^ n.2,
n

3 ,
... nk ,

...
,
formed after

some definite law, and such that the difference

|

nk+s
- nk

|

may be made and kept small at will, for all values of
, by taking

k large enough ; or, still better, as the common Limit of two such

series, ...nk ... and ...n k ..., where
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[Numerals refer to pages

Abel, 322.

Aberrancy, 253.

Aenode, 326.

Agnesi, 333.

Algebraic, 6.

Angle of curves, 38.

Angles, solid, 216.

Anomaly, 91.

Anticlastic, 214.

Anti-functions, 83.

Anti-operators, 55.

Anti-tangent, 119.

Arc, 25, 33.

Areas, 61, passim.

Argument, 6, passim.

Array, rectangular, 294.

Asteroid, 167.

Asymptotes, asymptotic, 331.

Attraction, 303.

Averages, 18, 177.

Axes, normal, 182.

Axes, parallel and principal, 181.

Bernoulli, 113, 121, 334.

Binomials, 120, 201.

Binormal, 201.

Cartesius, 335.

Cauchy, 114.

Centre of curvature, 155.

Centroid, 180.

Characteristic, 205.

Chord, 25.

Circle of convergence, 119.

Circle of curvature, 155.

Cissoid, 170, 333.

Complanation, 292.

Concavity and convexity, 151.

Confocals, 300.

Conjugates, 50.

Contact, 149, 159, 161.

Contingence, 152, 201.

Continuity, 8.

Convergent expansions, 131.

Coordinates, cylindric, 248.

polar, 34, 274.

spheric, 247.

Correspondence, 7.

Cosecant, 94.

Cosine, 23, 84, passim.

Cramer, 344.

Crunode, 326.

Cubature, 173.

Curvature, 152-3, 215-6.

centre of, 155, 159, 202,

lines of, 216.

maximal and minimal, 162.

order of, 169.

radius of, 155.

total, 204.

Cusp, 326.

Cuspidal edge, 206.

Cyclic points, 216.

Cycloid, 167, 176.

Density, 182.

Dependence, multiple, 192.

Derivation, mediate, 14.

Derivatives, 10, 48, 195, 208,

passim.
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Developables, 206-7.

Deviation, 253.

Difference-quotient, 9.

Differential, coefficient, 12.

equations, 121, 251.

notation, 80.

total, 199.

Diocles, 170, 333.

Dirichlet, 320.

Discriminant, 92, 205.

Double angle, 95.

Double points, 131.

Doubly periodic functions, 102.

Dupin, 213.

Elasticity, surface of, 224, 228.

Elirninant, 205, 251, sqq.

Elliptic functions, 102.

Enneper, 303.

Envelopes, 43, 204.

Euler(ian), 122, 215, 313, 315, 319.

Evanescents, 124.

Evolute, 157.

Exact differentials, 287.

Exceptional cases, 139.

Explicit, 7.

Exponental, 22, 102.

Extremes, 64, 67, passim.

Fermat, 147.

Folium Cartesii, 335.

Fourier, 283.

Fresnel, 224.

Frost, 328.

Function, 5, 314, passim.

Fundamental forms, 77.

Gamma-function, 315.

Gauss(ian), 216-7, 305, 315.

Green, 295.

Gudermannian, 89.

Guldinus, 184.

Gyration, 181.

Halsted, 217.

Helix, 204.

Higher Functions, 101.

Hodograph, 20.

Hyperbolic Functions, 84, passim.

Hypocycloid, 47.

Illusory forms, 129.

Implicit, 7.

Indicatrix, 213.

Inertance, Inertia, 180.

Infinitesimal, 3, passim.
Infinite products, 314, 320.

Inflexion, 152, 162, 325.

Integral, 63, pasxim.

Integrand, 64, passim.

Integrand, infinite, 278-9.

Integration, 63, passim.

Integration by parts, 80.

Intersections, 42, 43.

Intrinsic equations, 327.

Inverse functions, 28.

Involute, 137.

Irrational quadratics, 99.

Jacobi(an), 316, 239, passim.

Johnson, 328.

Kelvin, 296.

Keratoid, 334.

Lagrange, 114.

Laplace, 248.

Legendre, 315.

Leibnitz, 50, 54.

Lemniscate, 334.

Limit, 1, passim.

Linear set, 280.

Line-integral, 286.

Liouville, 322.

Logarithm, 22.

Loops, 325.

Maclaurin, 116.

Mass-centre, 178-9.

Maxima and minima, 134, 218.

Maximum-minimum theorem, 66.

Mean value, 66.

Mediate derivation, 14.

Mediate integration, 29.

Mixed higher derivatives, 208.

Moment, 180.
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Monge, Mongian, 254.

Multiple dependence, 192.

Multiple points, 327.

Neighbourhood, 8.

Neil, 16(3.

Newton, 120, 169.

Nodes, 206, 326.

Normal, 32, 102.

Normal integrals, 100.

Operators, 49, 54, 247.

Orthogonal transformation, 249.

Osculatory circle, 155, 164.

conic, 326.

paraboloid, 213.

plane, 201.

sphere, 204.

Oscul-inflexion, 344.

Pappus, 183.

Parabolas, 165.

Paraboloid, osculating, 213.

Parallel axes, 191.

Parallel sections, 193.

Parameters, 41, 45, 306, passim.

Part-fractions, 12.

Partial derivatives, 195.

Pedals, 38.

Pliicker, 327.

Poisson, 248.

Potential function, 248.

Powers, even and odd, 95.

Pressure, centre of, 303.

Principal value, 278.

Probability-curve, 339.

Probability-integral, 312.

Products, infinite, 314, 320.

Progressive differential coeffici

ent, 98.

Pure higher derivatives, 208.

Quadrature, 61, 68, passim.

Radius of curvature, 155.

Radius of torsion, 202.

Rational algebraic functions, 98.

Reciprocants, 237.

Rectangular array, 294.

Rectification, 173.

Recursion, 94.

Refraction, 147.

Regressive differential coeffici

ent, 12.

Remainder, 114.

Removal of factors, 124.

Reversion of series, 255.

Revolutes, 175.

Revolution, Solids of, 174.

Saillant, point, 17, 344.

Salmon, 328.

Schwarzian, 237, 254.

Secant, 94.

Sense, 28.

Series, 2, 116, passim.

Simultaneous changes, 197.

Sine, 23, passim.

Snell, 147.

Solid Angles, 216.

Speed, 18.

Spinode, 326.

Spirals, 204, 225, 227.

Stere-radian, 217.

Stirling, 116.

Subnormal and subtangent, 33.

Substitution, 79.

Surface of elasticity, 224, 228.

Sylvester, 237.

Symbolism, 11, passim.

Symmetry, 184.

Synclastic, 214.

Tangency, 150, 194.

Tangents, 16, 32.

Taylor, 114, 211.

Theorem of mean value, 211.

Torricelli, 147.

Torsion, 202.

Tortuous curves, 200.

Total curvature, 204.

Total differential, 199.

Transcendental, 6.

Transon, 253.

Triple integrals, 289.
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Umbilicus, 216.

Undulation, point of, 162.

Unique, 7.

Undetermined multipliers, 141

221.

Value, mean, 66.

Value, principal, 278.

Value, singular, 283.

Variable, change of, 234, sqq.

Velocity, 19.

Viviani, 148.

Waring, 229.

Wave-surface, 224.

THE END.
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