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On the Surfaces with Plane or Spherical Curves of 
Curvatfure. 

BY PROF. CAYLEY. 

The theory is considered in two nearly cotemporaneous papers-Bonnet, 
"Memoire sur les surfaces dont les lignes de courbure sont planes ou spheriques," 
Jour. de l'Ecole Polyt. t. XX (1853), pp. 117-306, and Serret, " Memoire sur les 
surfaces dont toutes les lignes de courbure sont planes ou spheriques," Liouville, 
t. XVIII (1853), pp. 113-162. J desire to reproduce in a more compact form, 
and with some additional developments, the chief results obtained in these 
elaborate memoirs. 

The basis of the theory is a theorem by Lancret, 1806. In any curve 
described upon a surface, the angle between the osculating planes at consecutive 
points is equal to the difference of the angles between the. osculating planes and 
the corresponding tangent planes of the surface. 

This includes as a particular case Joachimsthal's theorem, Crelle, t. XXX 
(1846): If a surface have a plane curve of curvature, then at any point thereof 
the angle between the plane of the curve and the tangent plane of the surface 
has a constant value. 

Bonnet and Serret each deduce the like theorem for a spherical curve of 
curvature, viz: If a surface have a spherical curve of curvature, then at any 
point thereof the angle betweeni the tangenit plane of the sphere and the tangent 
plaine of the surface has a constant value. Bonnet (Me6moire, p. 235) says that 
this follows from Lancret's theorem. Serret (Memoire, p. 128) obtains it, by the 
transformation by reciprocal radius vectors, from Joachimsthal's theorem. 

I remark that the theoremn for a spherical curve of curvature, and (as a par- 
ticular case thereof) that for a plane curve of curvature, are obtained at. once 
from the most elementary geometrical considerations, viz: if we have (in the 
same plane or in different planes) the two isosceles triangles NPP', OPP' on a 
commlon base PP', then the angle OPN is equal to the angle OP'N. For take 
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P, P' consecutive points on a spherical curve of curvature; then at P, P' the 
normals of the surface meet in a point N, and the normals (or radii) of the 
sphere meet in the centre 0, and we have angle OPN= angle OP'N, that is, at 
each of these points the inclination of the normal of the surface to the normal of 
the sphere has the same value; and this value being thus the same for any two 
consecutive points, must be the same for all points of the curve of curvature. 
The proof applies to the plane curve of curvature; but in this case the 
fundamnental theorem may be taken to be, a line at right angles to the base PP' 
of the isosceles triangle NPP' is equally inclined to the two equal sides 
NP, NP'. 

A surface may have one set of its curves of curvature plane or spherical. 
To include the two cases in a comnmnon formula, the equation may be written 
k(x2 +y2 + z2)- 2ax- 2by- 2cz- 2-= 0; lc=1 in the case of asphere,= 0 
in that of a plane; and the expression a sphere may be understood to include a 
plane. I write in general A, B, C to denote the cosines of the inclinations of 
the normal of the surface at the point (x, y, z) to the axes of coordinates (con- 
sequently A2 + B2 + C2 1). Hence considering a surface, and writing down 
the equations 

k (x2 + y2 + Z2) - 2ax - 2by - 2cz - = 0, 

(kx - a) A + (7ky-b) B + (kz -c) C= 1, 

where (a, b, c, u, 1) are regarded as functions of a parameter t, the first of these 
equations is that of a variable sphere; and the second equation expresses that at 
a point of intersection of the surface with the sphere, the inclination of the 
tangent plane of the surface to the tangent plane of the sphere has a constant 
value 1, viz: this is a value depending only on the parameter t, and therefore 
constant for all points of the curve of intersection of the sphere and surface: by 
what precedes, the curve of intersection is a curve of curvature of the surface, 
and the surface will thus have a set of spherical curves of curvature. 

Supposing the surface defined by means of expressions of its coordinates 
(x, y, z) as functions of two variable parameters, we may for one of these take 
the parameter t which enters into the equation of the sphere; and if the other 
parameter be called 0, then the expressions of the coordinates are of the 
form x, y, z = x (t, 0), y(t, 0), z (t, 0) respectively; these give equations 
dx, dy, dz-adt+a'dO, bdt+b'dO, cdt+c'dO (where of course (a, b, c, a', b', c') 
are in general functions of t, 0), and we have A, B, C7 proportional to 
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be' - b'c, ca' - cta, ab' - atb, viz: the values are equal to these expressions each 
divided by the square root of the sum of their squares. In order that the 
surface may have a set of spherical curves of curvature, the above three equa- 
tions must be satisfied identically by mealns of the values of 

a, b, c, u, 1, A, B, C, x, y, z 

as functions of (t, 0); and it may be seen without difficulty that we are thereby 
led to a partial differential equation of the first order for the determination of 
the surface. But I do not at present further consider this question of the deter- 
mination- of a surface having one set of its curves of curvature (plane or) 
spherical. 

Suppose now that there is a second set of (plane or) spherical curves of 
curvature. We have in like mianner 

x(x + y2 + z2) - 2ax-2y-2yz-2v ?0, 

(xx -) A + (xy - 3) B + (xz - y') C- X = O, 

where x is 1 or = 0 according as the curves are spherical or plane, and 
(a, d3 7', v, A) are functions of a variable parameter 0. We take the t of the 
formner set of equations and the 0 of these equations as the two parameters in 
terms of which the coordinates (x, y, z) are expressed. This being so (the 
former equations being satisfied as before), if these equations are satisfied identi- 
cally by the values of a, y I', v, Aj, A, B, C, x, y, z as functions of (t, 0), then 
the surface will have its other set of curves of curvature also spherical. It will 
be recollected that by hypothesis a, b, c, u, I are functions of the parameter t 
only, and that a, d3, y, v, X functions of the parameter 0 only. The foregoing 
equations, together with the assumed relations 

A2+B2+ C2=1, 

Acdx + Bdy + adz! 0, 

are the "six equations" for the determination of a surface having its two sets of 
curves of curvature each of them (plane or) spherical. 

Assuming now the values of a, b, c, 1, u as functions of t, and a, 7 /,7 v 

as functions of 0, the question at once arises whether we can then satisfy the 
six equations. These equations other than Adx + Bdy + Cdz-- 0, or say the 
five equations, in effect determine any five of the eight quantities A, B, C, 

10 
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x, y, z, t, 0, in terms of the remaining three, say they determine A, B, C, t, 0 as 
functions of x, y, z: we thus have a differential equation Adx + Bdy + Cdz = 0 
wherein A, B, C are to be regarded as given functions of (x, y, z). An equa- 
tion of this form is not in general integrable; and if the equation in question 
be not integrable, then clearly the system of equations cannot be satisfied by 
any value of z as a function of (x, y), or, what is the same thing, by any values 
of (x, y, z) as functions of (t, 0). We thus arrive at the condition, the equation 
must be integrable, viz: the condition is 

(dB dC\ du dA\ (dA - dBN _ 

V A z y-d) + B d x d C d d 

If this be satisfied, then we have an integral equation 1= 0 (containing a con- 
stant of integration which is an absolute constant) and which is in fact the 
equation of the required surface. But it is proper to look at the question 
somewhat differently. Supposing that the condition V = 0 is satisfied, then we 
have the integral equation 1=0 O, and this equation, together with the five equa- 
tions, in effect determine any six of the quantities A, B, C, x , y, z, t, 0 in 
terms of the remaining two of them, or, what is the same thing, they determine 
a relation between any three of these quantities. We can, from the five equa- 
tions and their differentials, and from the equation Adx + Bdy + Cdz= 0, 
obtain a differential equation between any three of the eight quantities: and it 
has just been seen that corresponding hereto we have an integral relation 
between the same three quantities; that is (the condition V= 0 being satisfied), 
we can from the six equations obtain between any three of the quantities 
A, B, C7, x y, z, t, 0 a linear differential equation of the foregoing form (for 
instance Zdz + Tdt + ?dO = 0, where Z, T, 0E are given functions of z, t, 0) which 
will ipSo facto be integrable, furnishing between z, t, 0 an integral equation which 
may be used instead of.the before-mentioned integral equation 1= 0. And we 
thus have (without any further integration) in all six equations which serve to 
determine any six of the quantities A, B, C7, x, y, z, t, 0 in terms of the 
remairling two. It is often convenient to seek in this way for the expressions 
of (A, B, C and) x,y, z as functions of t, 0 in`preference to seeking for the 
integral equation 1= 0 between the coordinates x, y, z. 

The condition V = 0 is in fact the condition which expresses that at any 
point of the surface the two curves of curvature intersect at right angles. 
Serret (and after him Bonnet) in effect obtain the condition by the assumptior 
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of this geometrical relation, without showing that the geometrical relation is in 
fact the necessary condition for the coexistence of the six equations. They give 
the condition in the form dAxx + dySy + dzz = 0, where dx, dy, dz are the 
increments of (x, y, z) along one of the curves of curvature, and Sx, Sy, Sz the 
increments along the other curve of curvature. The equations give 

(kx - a) dx + (ky - b) dy + (kz - c) dz = 0, 
Adx + Bdy + Cdz - O, 

and similarly 
(xx - a) Ax + (xy - 13) y + (xz - ') &z = 0, 

Ax + By + Sz_ O. 
We thence have 

dx: dy dz = 

B (kz - c)-C (ky-b): C(kx -a)- A (kz - c): A (ky - b)-B (kx-a), 

and 
& y: - 

B (xz-y) - C(xy-3): C (xx-a) -A (xz -y): A (zy /3) - B(xx -a). 

We have thus the required condition, in a form which is readily changed into 

(A2+B2+ C2) (kx-a)(x -a) +(ky-b)(xy-3) + (kz- c)(xz -7) 
-{A (kx-a)+B(ky- b) +C(kz-c)} I A(xx-a) +B (xy-3) + C(xz-7) J= 0, 

and writing herein A2 + B2 + C2 = 1, this becowes 
1 x {k (x2 + y2 + z2) - 2ax - 2by- 2czf 

+ 4 k {X (X2 + y2 +z2)- 2ax- 2y- 2yz } 

+ (aa + bfi + cy) - 2 =0, 
that is, 

aa + b6 + cy - la+ c + kv- 0. 

I proceed to show that this is the condition V = 0 for the integrability of the 
differential equation Adx + Bdy + Cdz = 0. Writing as before 

/ dB dC\ / d dA) dA dB 
dz dy / dx dy dx 
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we have from the six equations 

AdA + BdB + CdC= o, 
(kx - a) dA + (ky - b)dB + (kz - c) dC 

- k (Adx + Bdy + Cdz) + (Aal + Bb1 + Cc, + 11) dt, 
(xx-c ) dA + (xy - f) dB + (xz-r) dC 

- - (Adx + Bdy + Cdz) + (Aa' + Bgt3 + C(1 + J) dO, 
(kx- a) dx +(ky- b)dy +(kz- c)dz=(alx+bly+c1z+u1)dt, 
(xx - ) dx + (xy - f dy + (xz -ry) dz = (o'x + f'y + )'z + v) dO, 

where a,, bl, cl 1, , ul denote derived functions in regard to t and a/, p3', y, 2/, v' 
derived functions in regard to 0. Putting for shortness 

A, B, C, 
n- kx -a, ky-b, kz-c 

XX a, xy-g, XZ-)y 
we readily obtain 

?LdA = [(xy- j) C- (xz- 7)B] {-k (Adx + Bdy + Cdz) 

+ (al + Bbk + c, + 11 1(7cx-a) dx + (ky-b) dy + (kz-c) dz} } 

-[(ky-b) C-(7kz-c) B] {- x (Adx + Bdy + Cdz) 

a/+ X+ jj++,' {xx--a) dx + (xy-g)dy+ (xz-) - dz5) }; 
say this is 

fIdA = [(xy - () C - (xz - ') B] {- k (Adx + Bdy + Cdz) 

L 
+ p {(kx-a)dx+(ky-b)dy+(kz-c)dz} 

-[(ky-b) C-(kzz-c) B] -x (Adx + Bdy + Cdz) 

+ A 1 (xx-a)dx+ (xy-/3)dy+ (xz-y)dz4t 

or introducing further abbreviations, and writing -down the analogous values of 
fQdB and Q2dC, we have 

fQdA = [(xy - ) C - (xz- - 7) B] U- [(ky-b) C -(kz-c) B] T, 
VdIB= [(xz- -)A- (xx-a)C] U- [(kz - c) A- (7x -a)ClrT, 

Qd C = [(xz - a) B - (xy-3) A] U [(k-x- a) B -(ky-b) A] T. 
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We hence find 

dz = [(xz-y)A- (xx-a) C] kC + 
L 

(kz-c)) 

_[(kz-c)A-(kxG-a)C] -xC+ AJ (xz-y) 

-Qi E=-(xx -a) B-(xy-, A] - k-B + -p- (ky -b)) 

+ [(kx-a)B-(ky-b)A] (-xB + A (xy_) 
(dB dC\ 

and combining these two terms, ini the resulting value of a ( d - first 

the term without L or A is found to be 

-kA A (xx- a) + B (xy- )+ C(xz-y) 
-k (xx- a)(A2 + B2+ C2) 
+ x (kx- a)(A2?+ B2+ C2) 
+ xA [A (7kx - a) + B (ky-1b) + C(7z -c) , 

which is 
- -kA + k (xx - a)- x (kx - a) + xAl, 

A(xl- ka) - ka + xa. 

Next the coefficient ofL is 

A (kz - c)(xz - y) - C(xx - a)(kz - c) 
+ A (ky -b)(xy- f) -B (cx a) (ky-b), 

which is 

= A [(kx - a)(xx - a) + (ky - b)(xy -f3) + (kz - c)(xz - y)] 
(xx- a)[A (kx - a) + B(ky -b) + C(kz-c)] 

= AM+ (xx-c a) l, 

if for shortness 

M= (kx - a)(xx - a) + (ky - b)(xx -) + (kz - c)(xz -y); 

and similarly the coefficient of Ais 

- A(kz -c)(xz -y) + C(kx -a)(xx- a) 
-A(ky - b)(xy -f3)+ B(kx -b)(xy -) 
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which is 
- A [(kx - a)(zx - a) + (ley - b)(xy -) + (kz - c)(xz )] 

(kx - a)[A (xx - a) + B (xy - + C(xZ - )] 
- AM- (kx -a) X. 

We thus obtain 

QK dz -dy) =A (xl-kX)-kca + xa +L JAM+ (xx-a) 1l 

A 
IAM+(kx -a)2X}, 

and similarly 

/dB dAL 
(dz- dz ) - (xl-k%)-kl+ xb + {BM+ (xy-fl) 1l 

r { BM+ (ky -b)X , 

f( dA dB Cz (xl-kX)-ky+xc + 
L 

ICM+(xz- /)l 
-y dx p 

A 
I- {CM+ (kz - c) X, 

and hence multiplying by A, B, C and adding, we obtain 

QV-xl- k- k (Aa + Bf + Cy) + x (Aa + Bb + Cc) 

+ L (M- 1) - A (M_ X), 
where the first four terms are together 

Xz1-k k+ kc x(Ax + By + Cz)-t - x{k(Ax + By + Cz) 1$, 

viz. these destroy each other, and the equation becomes 

fIV Lp- II)(M 1%). 
But we have 

M- %= 1 x ick (x; + y' + z2) - 2ax -2by -2ezt 

+ + k {x (x2 + y2 + Z2) - 2ax - 2,y - 22yzt + (aa + b,6 + cy) - 
which is -aa + b + cy-l1 + xi + kv, 
or we find L A 

(aa + + cy-1, + zu + kv) 

viz. the condition V =0 is 

aa + 6j +cy -l++xu +kv 0, 

the result which was to be proved. 
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If we consider separately the cases where the two sets of curves of curva- 
ture are each plane, the first plane and the second spherical, and each of them 
spherical; or say the cases PP, PS and SS, then in these cases respectively the 
condition is aa + bg3 + cy - l72 = 0, 

aa + b, + cy 1-t + u = 0, 
aa + bg + cy - 1i + u + V =0: 

we have in each case to take the italic letters functions of t and the greek 
letters functions of 0, satisfying identically the appropriate equation, but other- 
wise arbitrary; and then in each case the six equations lead to a differential 
equation Adx + Bdy + Cdz = 0 (or say Zdz + Tdt + @4O = 0) between three 
variables, which equation is ipso facto integrable; and we thus obtain a new inte- 
gral equation which with the original five integral equations gives the solution 
of the problem. The condition is in each case of the form 2aa = O, the number 
of terms aa being 4, 5 or 6. Considering for instance the form 

aa + b3+cy+dA+ ee+fcp=O 
with 6 terms, it is easy to see how such an equation is to be satisfied by values 
of a , b c, d , e, f which are functions of t, and values of a, d3, y (3, E, (p which 
are functions of 0. Suppose that t1, t2, .... are particular values of t, and a1, 
b, X.... . I; a2 , b2 * - - 6 2 Al etc., the corresponding values of a, b, .... f, these 
values being of course absolute constants; we have a, .... cp, functions of 0, 
satisfying all the equations 

(a,, bl, C17 dl, ej,fiXa, kt,y,Us, 6, El) o, 

(a2, b2, C2, d,2, e2,f2 , 

etc., 
and if 6 or more of these equations were independent, the equations could, it is 
clear, be satisfied only by the values a = y = (= E = (p = 0. To obtain a 
proper solution, only some number less than 6 of these equations can be inde- 
pendent. Suppose for instance only two of the equations are independent; we 
then have a, 93, y , E, (p functions of 0 satisfying these equations, but otherwise 
arbitrary; or, what is the same thing, we may take a,j3, y, 3, E, (p linear func- 
tiolns of 6 - 2, 4 arbitrary functions, say P, Q, R, S of 0; say we have 

a . (o. a, ,2, a3.P. Q, R, S), 
a 

(o07 ..... > " ), 
* * * * * * * * * * * * * * 

* * * * * * * * * * * * * * 

*p 
= 

((Po **** **. 
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where the suffixed greek letters denote absolute constants; and this being so, in 
order to satisfy the proposed equation aa + b,3 + cy + df3 + ee + fp =0, we 
must have 

(aox09 7o yo 7o, cox c pa, b, c, d, e, f)- 0, 
(., ....... .. ") 
(a2,S ....3 s )0 -, 

(a3 ., 

viz. a, b, c, d, e, f will then be functions of t satisfying these four equations, but 
otherwise arbitrary. The above is a solution for the partition 2 + 4 of the 
number 6. We have in like manner a solution for any other partition of 6; or 
if we disregard the extreme cases a = b = c = d = ef =f O and a = G =y =S 
= = = 0, then we have in this manner solutions for the several partitions 
15, 24, 33, 42 and 51 of the number 6. 

But applying this theory to the actual problem, there is a good deal of 
difficulty as regards the enumeration of the really distinct cases. I use the letters 
P, S to denote that a set of curves of curvature is plane or spherical as the case 
may be, the surfaces to be considered are thus PP, PS, and SS. First, for the 
PP problem where the equation is aa + b3 + cy - = 0, the two systems 
(a , b c, 1) and (a, iB, y, A) are symmetrically related to each other, and instead of 
the solutions 13, 22 and 31, it is sufficient to consider the solutions 13 and 22. 
But here (a , b c, 1) are not a system of four symmretrically related functions, 
(a, b, c) are a symmetrical system, and I is a distinct term: and the like for the 
systenm (a, j3, y, A). In the PS problem, where the equation is aax + b63 + cy 
-1i + u = O, and thus the systems (a, b, c, 1, u), (a, 3, y, A, 1) are of 
different forms, we should consider the solutions 14, 23, 32 and 41: but here 
again in each of the systems separately the terms are not symmetrically related 
to each other. Lastly, in the SS problem where the equation is aa + b/ + cy 
- ia + u + v=O, the systems (a, b, c, 1, u, 1) and (a, &, y/, A, 1, v) are of the 
same form, it is enough to consider the solutions 15, 24 and 33; but in this case 
also in each of the systems separately the terms are not symmetrically related to 
each other. I do not at present further consider the question, but simply adopt 
Serret's enunmeration. 

It is to be remarked that for a developable (but not for a skew surface) the 
generating lines may be curves of curvature, and regarding the generating 
lines as plane curves we might have developables PP or PS; but a straight 
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line is not a curve in a determinate plane, and it is better to consider the case 
apart from the general theory. Again, the curves of curvature of one set or 
those of each set may be circles; anid a circle may be regarded either as a plane 
or a spherical curve; regarding it, however, as a spherical curve, it is a curve not 
in a determinate sphere. The cases in question, of the curves of curvature of the 
one set or of those of each set being circles, are therefore also to be considered 
apart from the general theory. The surfaces referred to present themselves for 
consideration among Serret's cases PP 10, 20, 30; PS 10, 20, 30, 40, 50, 60, 70; 

and 88 10, 20, 30, 40; but they are excluded from his enumeratioin, and he in fact 
reckons in his " Conclusion," pp. 161, 162, two kinds of surfaces PP, three kinds 
PS, and two kinds SS. 

It is very easily seen that if a surface has a plane or spherical curve of 
curvature, then on any parallel surface the corresponding curve is a plane or 
spherical curve of curvature: and thus if a surface be PP, PS, or SS, then the 
parallel surfaces are respectively PP, PS or SS. The solutions obtained 
include for the most part all the parallel surfaces, and thus there is no occasion 
to make use of this theorem; but see in the continuation of the present paper 
the case considered under the subheading post, PS40 = Serret's third case of PS. 

If a surface have a plane or spherical curve of curvature, then transforming 
the surface by reciprocal radius vectors (or inverting in regard to an arbitrary 
point), then in the transformed surface the corresponding curve is a spherical 
curve of curvature. Hence if a surface be PP, PS or SS, the transformed 
surface is 8S. Conversely, as shown by Bonnet and Serret, and as will appear, 
every surface SS is in fact an inversion of a surface PP or P8. 

I proceed to the enumeration, developing the theory only in regard to the 
two, three, and two, cases PP, PS and SS respectively. 

PP, THE Two SETS OF CURVES OF CURVATURE EACH PLANE. 

The six equations are 
A2+B2 +C2 -1, 

ax + by + cz + u 0, 
Aa+Bb +Cc+ =O, 
acx + f3y + yz + v-0, 
Aa +B13 +Cy+ O, 

Adx + Bdy + Cdz =0, 

11 
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the condition is 
aa + b61 + cy - 1= 0 

(not containing u or v, so that these remain arbitrary functions of t, 0 respec- 
tively). The cases are 

a b c 1 a a 
PP1? 1 0 c 0 0 1 0 a 
PP2? 0 1 0 -m a -ma y a 
PP3? 1 0 c mc 0 1 ma a 

m is an arbitrary constant, and in the body of the table c is an arbitrary function 
of t, and a, y/, a arbitrary functions of 0. 

PP1? is Serret's first case of PP, included in his second case. 
PP20 gives developable. 
PP3? is Serret's second case of PP. 

I consider the case 

PP30 = SERRET'S SECOND CASE OF PP. 

1 
Writing for greater symmetry m = g,-= =f, so that fg = 1; also ma = y, 

and consequently a = fy , we take c and y for the two paramieters respectively, 
or write c = t, 7 0; also changing the letters u , v, we write 

a b c 1 u a 3 y v 
-1, 0, t gt P 0 1 0 fO II 

and the six equations thus are 
A2+B2 +C2 =1, 

x+tz -P =0, 

A + tC -gt = 0, 

y+ Oz - =- , 

B+0C f0 =0, 
Adx + Bdy + Cdz= O. 

We seek for the differential equation in z, t, 0. We have 

A2 + B2 + C2 = 1, A = t(g -C), B= 0(f -C), 
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and thence t2 (g- C )2 + 02 (f -C) + C2_ 1i 

that is C2 (1 + t2 + 02) + 2C(gt2 + f02) = 1 - g2t2 -f202, 

or multiplying by 1 + t2 + 02 and completing the square, 

(1 + t2 + 02) C - gt2 -f022- (1 g2t2- f202)(1 + t2 + 02) - (gt2 + f02)2 
= Xf+ (f -g) t23 lg + (g + (gfA) 02) 

1 
if~~~~ 1 

= f +(f g) t2' 

1 _ g + (g _A 02 

and thence giving a determinate sign to the square root, say 

(1 + t2 + 02) Cgt2+f- + f 

an equation which may also be written 

C fT- -gE 
f-g 

In fact, observing that T2 - 02 (f1- g)(1 + t' + 02), we deduce from the 

original form 

(2 - 2) (f 
a = g)(t2+ f02) jj 

g or th n ot te f2 ri or 

(T E) )(T +{) 

or tbrowing out the factor T + ,E- and reducing, we have the required value; 

and thence forming the values of A anid B, we have 

A =-tT f e , B = - OE) f -e ,' a =fT-_ gO.@ T - 9' T- E' T-?E' 
we have, moreover, 

x+tz-P, y+z=H11, 

or differentiating, and writing P1 and I' for the derived functions in regard to 
t and 0 respectively, 

dx =-td,z-zdt + Pldtt, dy- 'Odz -zd,0-H dO. 
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The equation Adx. + Bdy + Cdz = 0 thus becomes 

-Ttdx - EOdy + fT 
- 

gE) dz = 0 
f- g 

viz. this is 
[- t T(- tdz - zdt + Pldt) -06 (- Odz - zd0 + H'dt)] (f- g) + (fT- gO) dz = 0, 
or collecting, 

[(f + (f- g) t2) T- (g + (g -f)) 0] dz + (tTzdt + O6zdO)(f - g) 
(tTP1dt + 06H'dO)(f-g) 0, 

that is, 
/1 1\ 

(S- T ) dz + (f- g) z (t Tdt + 06d0) - (f - g)) (t TPdt + 00171'd0) = 0, 

which is an integrable form as it should be, viz. the equation is 

d - I) z - (f- g)(tTP1dt + 0611'dO) = 0 

and we obtain 

(T- ))z - (f g)f (tTPidt + 061dO) = 0 

the constant of integration being considered as included in the integral. But 
it is proper to alter the form of the second term. Take F, cF arbitrary func- 
tions of t, 0 respectively; and writing F1, b' for the derived functions, assume 

p , rI =- ; we have 

f(tTP1dt + OErl'dO) = (gtT( T ) dt + f00 Q() do) 

gtFi, f0cF F + ( D- + <,2 

In fact this will be true if only 

(-F + T) = gtT T3 (- + .' 2 )=f06 E) 

which are equations of like form in t, 0 respectively, and it will be sufficient to 
verify the first of them. Effecting the differentiation, the terms in Fl1 destroy 
each other, and there remain only terms containing the factor F1, and throwing 
this out we obtain 

1+ T2 + T 3 

viz. this is 
-1 +g(f+(f -g)t2) -gt2(f g)= 0, 

which is identically true, and the equation is thus verified. 
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The foregoing result is 

( 1 (D\) z+(f-g) 
t F1 +cl gtF _0, 

we then have 

x= + tz=g0 , X Y+ Z- =0 

and hence, repeating also the equation for z, 

(4 - 1)x+(f-g){-t(-F+c) + gtF }+( -1 +=o, 

(T (9) +(f g){ - F+(D)gtol -3 } 0, 

equations which give the values of the coordinates x, y, z in terms of the 
parameters t, 0. It will be recollected thatfg = 1 (f or g being arbitrary), that 
the values of T, ? are 

T2 f+ (f - g)t2, t s g + (g f) 0, 

and that F, 'D denote arbitrary functions of t, 0 respectively. I repeat also 
the foregoinig equations 

A, B, C=- tTf_9 -f} OE f 
- 

3 fT (3(i 
- T -e' T- 0' T- e 

The equations may be presented under a different form; we have 

-tTx- -OE)y + fT_ g z + F+ D=o, 

-fT3(x + tz) +F 0, 

-ge3 (y + Oz) + '= 0, 

where it will be observed that the second and third equations are the derivatives 
of the first equation in regard to t and 0 respectively. We thus have the required 
surface as the envelope of the plane represented by the first equation, regarding 
therein t, 0 as variable parameters. Moreover, the second equation (which contains 
only the parameter t) represents the planes of the curves of curvature of the one 
set; and the third equation (which contains only the parameter 0) represents the 
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planes of the curves of curvature of the other set. It is to be observed that from 
the equations for 1, X (viz. A + tC=gt and B + OC=f0) it appears that for 
any plane of the first set the inclination to a tangent plane of the surface is 

=cos- gt and that for any plane of the second set the inclination is 

=cos' Vf+d CO- z1 + 02. 

It may be remarked that the last mentioned results may be arrived at by 
the consideration of an equation Ax + By + Cz + D = 0, where the coefficients 
are functions of t and 0 (A a function of t only, and B a function of 0 only) such 
that the derived equations A1x + GC1z +D1 = 0 and B'x + C'z +D' = 0 depend 
the former of them upon t only, and the latter of them upon 0 only. 

A very simple case of the equation is when f= g = 1; here T= 0 = 1, 

and the surface is the envelope of the plane z - tx - Oy + F + FD = 0. 
Returning to the general form 

-tTx -OE)y + fT-g) z + F+ 4) = 

I transform this by introducing therein in place of t, 0 two variable parameters 

a, (3 which are such that ka =-tT, kg3 = 0 (k a constant which is presently 

put = 1f )' we find 

= fk2a 2 02i gk2'3 
1-(f-g) T 2?' (g-f) k32 ' 

and thence 
1 -1 T Vi1 - (f g)k2o- (9- V 1 (g f ) k22, 

4/f 4/g 

or puttingk 1 these last values are 

1 1 
T-~ ~ ~ ~ ~~A ,y^ -2 F /1 + MI, 

and we hence obtain 

fT-gE 3 IN/f N/ 1- a?-/ V 1 + (2, 
f-gq =f-g f 

- 4/f~g{4f~g4/1 a2 4/ V+ g2, 
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say this is k.I%/F1-a2 -yV1 + [2}, 

where X = =f It __g , and therefore 2 _ 2 1 or y =VA2 _ 1. 
Vf -g' 1Vf -y 

Hence writing F+ ?D = k (A + B), k times the suin of two arbitrary func- 
tions of a and d3 respectively, the equation becomes 

ax dy + z t%s/i 71 + 2l + A + B= - 

viz. the surface is given as the envelope of this plane considering a, d3 as two 
variable parameters. This is the solution given by Darboux, "Le,cons sur la 
theorie generale des surfaces, etc.," Paris, 1887, pp. 128-131. He obtains it in a 
very elegant manner, starting fromn the followinig theoremn: Take A, Al, etc., 
functions of the parameter a, and B, B1, etc., functions of the parameter g3; then 
if we have identically 

(A1 - B1)2 + (A2 - B2)2 + (A3- B3)2 -(A4 - B4)2, 

the required surface will be obtained as the envelope of the plane 

(A1 - B1)x + (A2-B2)y + (A3 -B3)z = A - B, 

where A, B are two new functions of a, / respectively. 
The foregoing identity is the condition in order that each sphere of the 

one series (x - A1)2 + (y - A2)2+ (z - A3)2 -= A2 nay touch each sphere of the 

other series (x - B1)2 + (y - B2)2 + (z - B3)2 = B2; the two series of spheres 

thus envelope one and the same surface which will have its curves of curvature 
of each set circles: viz. this will be the surface of the fourth order called 
Dupin's Cyclide, the normals whereof pass through an ellipse and hyperbola 
which are focal curves one of the other, and which contain the centres of all the 

spheres touching the surface along its curves of curvature. The equations of 
the ellipse and hyperbola may be taken to be 

(X2 + Z2 =1 y = 0) and (y2 1, x=0) 

respectively, and we thence obtain the required PP surface as the envelope of 

the plane 

aux- gy + (V/1 a2 - /V-2 -i1VI + 32)z + A + B 0. 
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THE CASE PP10 = SERRET'S FIRST CASE OF PP. 

We deduce this from the second case by writing therein m = 0, that is, 
g = 0, f = oo; but it is necessary to make also a transformation upon the 
parameter 0, viz. in place thereof we introduce the new parameter p, where 

02~ gep 02 tgc2' this gives 

192 = f + (g _ f) 02 ( = g ( + (g 
-_ 

(l 
2 

2_ gcP2 

and thence 

06 = +( fT0=77 -2 f gE) for g 0 is = T. 0=Vg +(g f) 02 VfV1iq2~ f -g 

We have also T= Vf+ (f g)t2X = VfVi + t2 when g = 0, and substi- 

tuting these values, considering (F as a function of cp, and for F + CF writing 

as we may do F + (, the equation becomes 

-t my + z F+cF0 
^/f^/V + tf %If ,/ l t2 % Vf 

where the divisor VIf is to be omitted. Hence finally, instead of p restoring the 
original letter 0, and again considering 'D as a ftinction of 0, the equation is 

z- tx Oy 
s/1 t2 4,/ 02+ F + D =o, Vi+t2~~~~0 

viz. here F, 1 are arbitrary functions of t, 0 respectively, and the surface is the 
envelope of this plane considering t, 0 as variable. 

We obtain an imaginary special form of PP10 by writing in this equation 
kO for 0 and then putting k = o; the ci reinains an arbitrary function of the new 
0, and the equation is 

- ~ ~~ ^/1 
tx 

Y F+ 

( =s/ - 1 as usual). This is in fact the equation which is obtained from PP30 
by simply writing therein g = 0 without the transformation upon 0. 
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PS. THE SETS OF CURVES OF CURVATURE, THE FIRST PLANE, THE SECOND 

SPHERICAL. 

The six equations are 

A2+B2+ C2 -1, 

ax+ by + cz + u o0, 
Aa +Bb+ Cc + - 0, 
x2 + y2 + Z2 - 2ax - 23y - 27z - 2v = 0, 

A(x-a) +B(y {()+ C(z-y)-2 =0, 
Adx + Bdy + Cdz -0. 

The condition is 
aa + b3 + cy- 1 + u== 0, 

(not containing v so that this remains an arbitrary function of 0). The cases are 

a b c I u i oc r 
PSi, a b c 0 0 0 0 0 

PS2? a b c I ml 0 0 0 m 

PS30 (a b c -mc 0 0 0 y y 
PS40 a b 0 1 ml 0 0 y m 
PS50 a b 0 0 0 0 0 y 

PS60 0 b 0 1 ml a 0 y m 
1 

Ps70 a b 0 ma 0 a 0 y - a 

where m is an arbitrary constant and in the body of the table the other italic 
letters are arbitrary functions of t, and the greek letters arbitrary functions of 0. 

PSi0 is Serret's first case of PS, included in his second case. 
P82? gives developable. 
PS30 is Serret's second case of PS. 
PS40 is Serret's third case of PS. 
PS50 gives circular sections (surfaces of resolution). 
PS60 gives circular sections (tubular surfaces). 
PS70 gives circular sections. 

12 
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I consider 

PS3?= SERRET'S SECOND CASE OF PS. 

The six equations are 
A2 +B2 + C2 = 1 

ax + by + cz =0, 
Aa+Bb + Cc- cm, 

x2+Y2 +(z-mcp)2=-O+m 2, 
Ax +By + C(z- mp) =p, 

Acdx +Bdy + Cdz 0, 

(where a, b, c are assumed such that a2 + b2 + c2 1). We easily obtain 

(1 - c2) A = - ac (C + m) -b, 

(i-c2)B - bc(C+m) +aV&f, 
and thence 

aB -bA = /V, 
where 

=(1 -c2)(1 - ) -c2(C+ m)2 c2: C_C2 c 2Cm -c2m2; 
also 

xV/ - c2in2 = ApVi - c2m2 + (bC cB) V0 + (2 1) (p2, 

YVl - C22 m BPV - cIm2 + (cA - aC) VO + (M2 1) - 2, 

z~Vi-c2m2- (C+ m)qp1 -c2n-2 + (aB -bA) VO +(m2 -)qp2. 

We seek for the differential equation in C, t, 0. From the equation 

Ax + By + (C- mp) z- , 

and attending to Adx + Bdy + Cdz = 0, we deduce 

xdA + ydB + (z - mqp) d C- (1 + Cm)p'dO = 0, 

and we have herein to substitute for dA, dB their values in terms of d , dt, do. 

We have AdA + BdB - Cdc, 

adA + bdB -cdC - Q, 

if for shortness Q = Ada + Bdb + (Ca + i) dc. Hence 

V dA = (-cB + bC)dC -BQ, 
VndB (-= aC+ cA) dC + AQ. 

We find without difficulty, 

(1 -- c2) Q = (C + in) c/c + (adb - bda)Vf?, 
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and consequently, 
(1-c2)/ dA= b(C +c'm) -acV/f a4dC 

-B (C + m) dc + (adb -bda)Vs/, 
(1 -c') VQ dB -a (C + c2in) - bcV? } dC 

Substituting these values we have + A I (C + m) dc + (adb - bda) V/f 
(bx - ay)(C + c2m) - (ax + by) cVJ tdC 

- (Bx - Ay) { (C + m) dc + (adb - bda) V?IQ} 
+(1 c')V,/fI(z-mcp)d C-(1+ Cm) cp'dO =O, 

viz. this is 

(bx -ay)(C + c2m) - (ax + by)cV?iQ + (1 c2)(z - mq) VSI C 

-(Bx -Ay)I(C+m)dc+ (adb -bda)V/fl 
-(1- c2)(1 + Cm)VQicp'dO 0. 

The coefficient of d C contains a term - (ax + by + ez) cV,2 which is=0. 
Moreover, we have 

bx-ay =-_WZ+ C + c2m 2 + (M2-1) V2 

and then 

(1-c2)(Bx -Ay) = c(C+ m)(bx ay) -czVD.. 

--c (C + m) { QV+ C + c2m /0 + (m2-1)q2} 
Vri- - c2m2 

-cVD/4l(C+ m)qp + V 1/+c(2m )2j 

which, observing that the terms in Ccp,/Vf destroy each other, and that we have 
(C+ m)(C+ c2m) + Q = (1 -c2)(1 + Cm), gives 

- c(1 + CM) 0 + (q2 -)2 Bx-Ay=~I% V1 c2m2VO+(n->p 
and the equation becoines 

-(_ %f + ++ C2I/V + (M2 1)p2(C+ C2M) +zV?1 

~(1 c2)pID i 2}dC 

-co(1 + Cm) j> 0 +(m 1P2 {(C + m) dc + (adb - bda)V%l2} 

-(1 - c2) V (1 + Cq) >p'dO O. 
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Here the coefficient of dC is = [z-(C + m) p] vf + (C + cm) V/0 +(m2M2_ )p2 

or substituting for z - (C + m)V/f its value = + and 
V% 1 _ C2m2 

I 

observing that Q + (C + c2m)2 = (1-c2m2)(1 - C2), this coefficient is found to 
be = i _- c2n.2 (1 - c2) V/0 + (M2 _ p 1>p2, and we have 

V1 -c2m2 (1 -2 2) VO + (m2 - 1) cp2 dC 

-c (l + Cm) ^/ 
0 + (m2 _1 p2 { (C + n) dc + (adb-bda)V/fi 

(1- C2)(1 + GCm)Vcp'dO =0-, 
or as this may be written 

1 /J1. -c2rn2dC (C + rn) cdc c (adh - bda) 
/ tl 1 +Cm (1cmc2)V1 C2m2 (1 - c2)V1 C2M2 

cp'dO 
VO+ (m2_ 1)ip2= ? 

where from the foregoing value of Ql we have identically 
?2 (1 - I) = (1 _-C2)(1 + Cm)2 - (1 - c2m2)(C + M)2. 

Here a, 6, c are functions of t and we have thus the required differential equa- 
tion in C, t, 0. 

It is convenient to inultiply by the constant factor V 1- i2. The first 
term is an exact differential, viz. writing 

V1-C2m2 C+m M_ _ _n__ _ 
sin = / - c2 1 + Cm' and therefore cos = - V _ C2 1 CM ~Vi C2 (I + CM)'7 

we have 
VI_s/1 - M~n2 VI 6-2M2 dCa (C + gn) cdc 

d ^-V ,7 l{V1 + Cmd + (1 c2)1 '-2M2 

as may easily be verified. And the second and third terms are obviously the 
differentials of a function of t and a function of 0 respectively. But to obtain 
the integral functions, a transformation of each term is required. 

First, for the term V/1 -m2 c (adb -6da) i we take a b c functions of t 7 ~ ~ ~ (-C2)VA/I - C2rn2 ; etk a,b uctoso 
which are such a2 + b2 + c2= 1; and then writing a1, b1, c1 for the derived 
functions so that aa1 + bb1 + cc1 =0, we assume a', b', c' = Va1, Vb1, Vc, where 

1 2 2 + C2 we 2+ + c'2 
V2- a + bi + c we have therefore aa' + bb' + cc' = 0, and a2+ b'2 '=1 
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and then writing a", b1, c" = bc' - b'c, ca' - c'a, ab' - a'b respectively, we 
have aa" + bb" + cc" = 0, a'a" + b'b" + c'c" = 0, a"12 + b"I2 + c"2=1; thus 
a, b, c, a', b', c', a", b", c" are a set of rectangular coefficients. We then write 

a b, c- (a' + mb"), (b' - ma"), - c', 

determining p so that a2 + b2 + c _ 1 as above, viz. we thus have 

p2 (1 + cm), + c'2m2. 
Observe that we thus have p2 (1 - c2) = p2 - c'2 and p2 (1-c2m2) = (1 + cm)2. 

Writing now 

T= tan-1 c"ac+ nd therefore Sii, c+ , cos T=c V i2'V p2- c'2 V9P2 / 

we find that V/ 1-m2 c (adb - bda) 
d T 

(1- C2)V 1 c2m2 

The verification is somewhat long, but it is very interesting. We have 

dT- mi 
l 

In2 {c"dc - (c + m) dc"d 
p2 c12 

or observing that c" ab' - a'b, = V(abl - alb), dc = cldt, this is 
Vi - .2 

d T = p- 2 z 2 V(ab - alb) el- (C + m) [ V, (ab - alb) + V (abl - allb)] dt, 

where we have 

= a2 + b2+ c2, and therefore-Vi. = alaV, + b1bIl + clell; 
also frolm aa1 + bb1 + cc, = 0, we have a' + bl + cl + aall + bbl + cc,1=O, 
and we thence obtain 

dT- /Vi- 
_ 

,2V7dt - (ab1 - alb) cl (aa,, + bbl + cc,,) p2 c12 

- (c + m)[- (a1all + bib,, + 1lcl)(ab, - alb) + (a' + b' + c1)(abli - ball)] $, 

the term in [] is found to be l- cI all(bel-blc) + bl, (cal- cla) + cln (abl- alb) }, 
hence cl appears as a factor of the whole expression, and reducing the part inde- 
pendent of m, we find 

dT= Vi1- ml1V3c1dt 
p2 c12 (alb1l - allbl) + m [a1,, (bc, - b1c) 

+ bl, (cal - c1a) + cil (ab, - a1b)] }. 

Next calculating the value of adb - bda, we have 
V V a= {al+r(cal-c1a)I, b= jbi-m(bci-bjc)}, P p 
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or as these may be written 
V V a= p-a1(1 + cm)-ac,m}, b= - b1(I+cm)-bbemJ, 

and we thence easily obtain 

adb - bda = V2 (1 + cm) g albil - allbl) 

+ m [a,, (bc1 - b1c) + b1l (ca1 - c1a) + c1l (ab1 - alb)] }, 

viz: the factor in b } has the same value as in the expression for dT, and we 

thus have dT 1-m2 Vcop2 IcV l-m2 

adb -bda (1 + cm)(p2 c'2) Vi I c2m2 (1 c2) ) 

that is, dT=Vi - m2 c (adb-bda) 

(1-c2)V1 c2Mn2 

the required equation. 

Secondly, for the term Vim (idO we introduce 1 a function of 0, 
VO/ + (in2 - 1) qp2 ' 

such that writing (V' for the derived function we have 

?> = /1-4 (1-m2) qq! + 4 (1-M2) - ,/ suppose, 

whence also 

S/ 0 + (M2_ 4)p2= /0 + (M2 _ 1) 4:2 43 
1- 2O(D' 

1%/M V/0+(M2-j)4p2-VO+(M2-j)C]2' 

Then writing Vi 0- 41/ 1 - m2 Vo 
0 + (m2 _ 1) qj2 

sin0 I 
/ , cos 0= 0 + (M/2 

_ O 

we find 

cos dE 
= _ I _1 m2(? -20c)dO 

that is, I = - in2 (1'- 20V) dO 
@- 0v~O./ + (m2 --j) (D2 

and similarly cos 60 dOTV = 2 0( -200') dO 

that is, dO - V - m2(p - 204p')dd 
0 O 0= 

V 
(M2_ 1p2 
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Hence 
Vi -m2l r - 20_:F' p - 20p' d 

clO+ d00 20 lye/0 + (m2 _~ 1)PiI2 4/0 + (m2 - 1) 21 

V - m2 (p -( -20q)) V p1-m2 p'dO 
-: - 20 1 /0 + (m2_ 1)-02f - + (A2 -(1)m) 2' 

the required equationl. 
We find, moreover, 

2DV/V1 qm2/0+ (m2- 1) 1- 2(1-m2)cIx sin (E- 00)- =I/ M I ,cs (E 00) - -M 

which will be presently useful. 
The differential equation now is d, - dT+ dO - dO = 0, hence the inte- 

gral equation (taking the constant of integration = 0) is < T - 0 + 0o, or 
say 

sin '-sin (T- 8 + 00), 

viz. substituting for sin T anld cos T their values, and observing that 

/l-c2m2 C+m _ 1 +cm C+ m 
sin< V A1-c2 1 + cm' VP, c12 1+ Cm 

the factor V2 9 multiplies out, and we have 

(1 + cm) 1 + cm = (c + m) cos (0 - 00)-c"V/1-m2 sin (0-00). 

And I further remark here that a former equation is 

Qai(1 
- m2) (1 c2)(1 + Cm)2-(1 - c2m2)(C+ rm)2, 

that is, 
- m (-c2m2)(C +m)1 (1 c2) cos24. 

We thus have 
1+Cm + cm Vp2 c 

p4/+i - m2 {C"Vi- m2 cos (Q-QO) + (c + m) sin (Q-O- } . 

We have thus C, and consequently also A, B, x, y, z all of them given as 
functions of t, 0; but the formulae admit of further development. 

Write C+ m ____-_ 

WriteC + m' whence also C -m 
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We have C(1-mn) + m =t, and hence (1+ cm) C (1 -me) + m , = (1 + cm) 8, 

=(c + m) cos () -00) - c"/1 -m2 sin (E -0). Using the value of C 
given by this equation, and calculating from it those of A, B; then writing for 
shortness 

X = a/ 1 -m2 cos (0-0) (a" -mb') sin (-0 -0), 
Y= bVi/ - 2 cos ( -00) -(b" + ma') sin (- 00), 
Z-= (c + m) cos (E --0) -c"V/ -m2 sin (E-00), 

we have 
A (1-m)(1 + cM)=V-m/ _ 2X, 

B(1-ma)(1 + cM) = m2Y, 
C(i mt)( + cm) = Z- m (1 + C) 

to which I join U (1 + cm)-= Z. 

By way of verification observe that Al + B2 + C2 = 1, and that the equations 
give 
(1 _mt)2(1 + cm)2 (1 m2)(X2+ Y2+Z2) + M2Z2 - 2mZ(1 + cm) + m2 (1 + Cm)2; 

we have X2 + Y2 + Z2 = (1 + CM)2, Z = (1 + cm), and hence the identity 
(1 - nw)2(1 + cm)2 (1 - m2 + m9 - 2nwa + m2)(1 + cm)2. 

Proceeding to calculate the values of x, y, z, recollecting that V/ 1 - c2m2 
1 

- (1 + cm), we have 
x(1 +cm)-=A4(1 +cm) +p(bC-cB) V/O+ (m2 1)>p2, 

-Aqp(i + cm) + {(b'- ma") C- c'B^VO0 + (M2I 1)q2, 
that is, 

Z(1 + cm)(l- ms) = (PS/ 1 M2X + 1 + Cr I b'-mall)(Z -m (+ cm)) 

-c'V-m2 y}'/ + (m2-1)i2 

=pVi/ l-m2X + 1 4cm (b'-ma") Z cV 1-_M2 Y}/ 0 + (m2 _1)2 

-m (b'- ma") V/O + (m2-1) p2, 

where the term (b' - ma") Z - c'V 1 - m2 Y contains the factor 1 + cm; in fact 
this is 

=(b'- ma")1 (c + m) cos (E-030)- ,/ 1W-qm2 sin (0E- ) } 

-c'i/ 1-m2 bVi -m2 cos (0 -00)-(b" + Ma') sin ((3- 0) t . 

The coefficient of the cosine is (b'- ma")(c + m) - bc' (1 - M2), which is 

b'c- bc'+ m (b'- ca") + m2 (- a" + bc'), - a" + m (b'- ca") + m2 (- b'c), 
(1 + cm)(-a" + mb'), 
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and similarly the coefficient of V 1- m2 sine is - c" (b'- ma") + c' (b" + ma'), 
- b'c" + b"c' + m (a'c' + a"c"), - a + m (- ac), =(1 + cm)(- a). Cal- 
culating in like manner the values of y and z, and putting for shortness 

X1= (-a" + rnb') cos (Q3-80)- aV 1-m2 sin ( 3-0), 
Y1-= b" -ma') cos (Q3 -0) -bV I -- ml sin (-? 60), 

Z=- c"V1 -in2) cos (E0- 00) + (c + i) sinQ(3 - o- 
we have 
x = qV M2IX + XiV 0 + (m2l 1) q)2- m (b'- ma")/0 + (m 1) q2, 

y __= pVi-m2Y+ YiV0 + (m2- 1p2+m (a'+ mb")VO + (VI2_ 1) >2, 

Z-VI - m2{pV1-,m2Z+ Z1VO+( n2 1)q 

which are the requiired expressions of x, y, z in termns of t and 0. It will be 
noticed that X, X1, Y, Y1, Z, Z1, each contain a term with cos (9 - e0) and 
one with sin (0 - 0,), but as the terms in X1, YI1, Z1 are each multiplied by 
V/0 + (m2- 1) c2, the cosinie and sine terms of X, X1, of Y, Y1 and of Z, Z1 do 
not in any case unite into a single term. 

I remark that we have identically 

aX+ bY + cVI - qn2Z = 0, 

afl bY1+ CV/1 _M2Zl aX + b Y1+c - IZ= 0. 

The foregoing values of x, y, z thus satisfy ax + by + cz = 0, which is one 

of the six equations. The others of them might be verified without diffi- 

culty. I recall that we have a, b, c- (a' + mb"), -(b'- ma"), -c'; the 

six equations might therefore be written 

A2+B2+ C2=1, 

(a' + mbb") x +- (b' -ma") y + c'z = 0, 
(a' + mb") A + (b' - ma") B + c' C = - c'm 
x2+ y2 + (Z_ M)2 =0 + m2p2, 

Ax+By+C(z -imp) . 1 
Adx+Bdy+ Cdz 0. 

THE CASE PS10 = SERRET'S FIRST CASE OF PS. 

This is at once deduced from PS30 by writing therein Mn= 0; the formulae 
are a good deal more simple. We introduce as before the rectangular coefficients 

13 
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a, b, c, a', b', c', a", b", c", and the values of a, b, c then are a', b', c'. The six 
equations, using therein these values for a, b, c, are 

A2 +B2 + C0 = 1, 

a'x + by + c'z = 0, 
a'A+b'B +c'C=0-, 

X2 + y2 + z2 = 0 

Ax + By + Cz =. 
Adx + Bdy + Cdz = O. 

The function CD is such that p = , F2- -F, 4Y We have 
,I- 4CFCF' + 4 041) 2 V/M 

sin (3 - ,/ cos e= -P- 

sin8(0=_ cos80= vo/)0 
and thence 

sin (O -() 24VVOjf (DI 
cos(?- - 0)= 

I - 

Also 
C / V-c2 - C2 c ci sinc = 42 =-c2 ; sin T= i c2,Cos T= 4 2' 

; - T- O0 + C= C c cos (O- 0) -c/ sin (8 - 890), 
VI - _ C2 C c" cos (8 - 80) + c sin (O--0). 

We have 

A =X = a cos (8 - 80)- a" sin (? - 80); X1 = a" cos (- -0) + a sin (e-0), 
B= Y= b cos(8 -?0)- bsin(0- -0); Y =b"cosQ(3- -0)+bsin(8- 8o), 
0-= Y= c cos(E- 0)- c sin ((3 '0); Z1 =c" cos(0 -90)+c sin (0-?- ), 
and then 

X-Xq + X1V0-(P2, 
Y= p + Y1V0- V2, 

Z=Zq = +ZVl0-p 0 , 

which are the expressions of the coordinates in terms of the parameters t and 0. 

(To be continuqd.) 
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