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"Cum formarum naturalium et corporalium esse non consistat iiisi in

unione ad materiam, ejusdem agentis esse videtur eas producere cujus est

materiam transmutare. Secundo, quia cum hujusmodi formae non excedant

virtutem et ordinem et facultatem principiorum agentium in natura, nulla

videtur necessitas eorum originem in principia reducere altiora." x'^quinas,

De Pat. Q. ui, a, 11. (Quoted in Brit. Assoc. Address, Section D, 1911.)

"...I would that all other natural phenomena might similarly be deduced

from mechanical principles. For many things move me to suspect that

everythmg depends upon certain forces, in wtue of which the particles of

bodies, through forces not yet understood, are either impelled together so as

to cohere in regular figures, or are repelled and recede from one another."

Newton, in Preface to the Principia. (Quoted by ]VIr W. Spottiswoode,

Brit. Assoc. Presidential Address, 1878.)

"When Science shall have subjected all natmal phenomena to the laws of

Theoretical Mechanics, when she shall be able to predict the result of every

combination as unerringly as Hamilton predicted conical refraction, or Adams
revealed to us the existence of Neptune,—that we cannot say. That day

may never come, and it is certainly far in the dim futiu-e. We may not

anticipate it, we may not even call it possible. But none the less are we
bound to look to that day, and to labour for it as the crowning triumph of

Science :—when Theoretical Mechanics shall be recognised as the key to every

physical enigma, the chart for every traveller through the dark Infinite of

Nature." J. H. Jellett, in Brit. Assoc. Address, Section A, 1874.
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'The reasonings about the wonderful and intricate operations

of nature are so full of uncertainty, that, as the Wise-man truly

observes, hardly do we guess aright at the things that are upon

earth, and ivith labour do we find the things that are before us."

Stephen Hales, Vegetable Staticks (1727), p. 318, 1738.



PREFATORY NOTE

THIS book of mine has little need of preface, for indeed it is

" all preface " from beginning to end. I have written it as

an easy introduction to the study of organic Form, by methods

which are the common-places of physical science, which are by

no means novel in their application to natural history, but which

nevertheless naturalists are httle accustomed to employ.

It is not the biologist with an inkling of mathematics, but

the skilled and learned mathematician who must ultimately

deal with such problems as are merely sketched and adumbrated

here. I pretend to no mathematical skill, but I have made what

use I could of what tools I had ; I have dealt with simple cases,

and the mathematical methods which I have introduced are of

the easiest and simplest kind. Elementary as they are, my book

has not been written without the help—the indispensable help

—

of many friends. Like Mr Pope translating Homer, when I felt

myself deficient I sought assistance ! And the experience which

Johnson attributed to Pope has been mine also, that men of

learning did not refuse to help me.

My debts are many, and I will not try to proclaim them all

:

but I beg to record my particular obligations to Professor Claxton

Fidler, Sir George Greenhill, Sir Joseph Larmor, and Professor

A. McKenzie ; to a much younger but very helpful friend,

Mr John Marshall, Scholar of Trinity; lastly, and (if I may say

so) most of all, to my colleague Professor William Peddie, whose

advice has made many useful additions to my book and whose

criticism has spared me many a fault and blunder.

I am under obligations also to the authors and publishers of

many books from which illustrations have been borrowed, and

especially to the following:

—

To the Controller of H.M. Stationery Office, for leave to

reproduce a number of figures, chiefly of Foraminifera and of

Eadiolaria, from the Reports of the Challenger Expedition.
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To the Council of the Royal Society of Edinburgh, and to that

of the Zoological Society of London :—the former for letting me
reprint from their Transactions the greater part of the text and

illustrations of my concluding chapter, the latter for the use of a

number of figures for my chapter on Horns.

To Professor E. B. Wilson, for his well-known and all but

indispensable figures of the cell (figs. 42—51, 53) ; to M. A. Prenant,

for other figures (41, 48) in the same chapter; to Sir Donald

MacAhster and Mr Edwin Arnold for certain figures (335—7),

and to Sir Edward Schafer and Messrs Longmans for another (334),

illustrating the minute trabecular structure of bone. To Mr
Gerhard Heilmann, of Copenhagen, for his beautiful diagrams

(figs. 388-93, 401, 402) included in my last chapter. To Pro-

fessor Claxton Fidler and to Messrs Grifl&n, for letting me use,

with more or less modification or simplification, a number of

illustrations (figs. 339—346) from Professor Fidler's Textbook of

Bridge Construction. To Messrs Blackwood and Sons, for several

cuts (figs. 127—9, 131, 173) from Professor Alleyne Nicholson's

Palaeontology ; to Mr Heinemann, for certain figures (57, 122, 123,

205) from Dr Stephane Leduc's Mechanism of Life ; to Mr A. M.

Worthington and to Messrs Longmans, for figures (71, 75) from

A Study of Splashes, and to Mr C. R. Darhng and to Messrs E.

and S. Spon for those (fig. 85) from Mr Darhng's Liquid Drops

and Globules. To Messrs Macmillan and Co. for two figures

(304, 305) from Zittel's Palaeontology; to the Oxford University

Press for a diagram (fig. 28) from Mr J. W. Jenkinson's Experi-

mental Embryology; and to the Cambridge University Press for

a number of figures from Professor Henry Woods's Invertebrate

Palaeontology, for oife (fig. 210) from Dr Willey's Zoological Results,

and for another (fig. 321) from " Thomson and Tait."

Many more, and by much the greater part of my diagrams,

I owe to the untiring help of Dr Doris L. Mackinnon, D.Sc, and

of Miss Helen Ogilvie, M.A., B.Sc, of this College.

D'ARCY WENTWORTH THOMPSON.

University College, Dundee.

December, 1916.
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CHAPTER I

INTRODUCTORY

Of the chemistry of his day and generation, Kant declared

that it was "a science, but not science,"
—

"eine Wissenschaft,

aber nicht Wissenschaft"; for that the criterion of physical

science lay in its relation to mathematics. And a hundred years

later Du Bois Reymond, profound student of the many sciences

on which physiology is based, recalled and reiterated the old

saying, declaring that chemistry would only reach the rank of

science, in the high and strict sense, when it should be found

possible to explain chemical reactions in the light of their causal

relation to the velocities, tensions and conditions of equihbrium

of the component molecules ; that, in short, the chemistry of the

future must deal with molecular mechanics, by the methods and

in the strict language of mathematics, as the astronomy of Newton
and Laplace dealt with the stars in their courses. We know how
great a step has been made towards this distant and once hopeless

goal, as Kant defined it, since van't Hoff laid the firm foundations

of a mathematical chemistry, and earned his proud epitaph,

Physicam chemiae adiunxit*.

We need not wait for the full reahsation of Kant's desire, in

order to apply to the natural sciences the principle which he

urged. Though chemistry fall short of its ultimate goal in mathe-

matical mechanics, nevertheless physiology is vastly strengthened

and enlarged by making use of the chemistry, as of the physics,

of the age. Little by little it draws nearer to our conception of

a true science, with each branch of physical science which it

* These sayings of Kant and of Du Bois, and others like to them, have been

the text of many discourses : see, for instance, Stallo's Concepts, p. 21, 1882 ; Hober,

Biol Cetdmlbl. xix, p. 284, 1890, etc. Cf. also Jellett, Rep. Brit. Ass. 1874, p. 1.

T. n. 1
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brings into relation wdth itself: with every physical law and every

mathematical theorem which it learns to take into its employ.

Between the physiology of Haller, fine as it was, and that of

Helmholtz, Ludwig, Claude Bernard, there was all the difference

in the world.

As soon as we adventure on the paths of the physicist, we
learn to weigh and to measure, to deal with time and space and

mass and their related concepts, and to find more and more

our knowledge expressed and our needs satisfied through the

concept of number, as in the dreams and visions of Plato and

Pythagoras; for modern chemistry would have gladdened the

hearts of those great philosophic dreamers.

But the zoologist or morphologist has been slow, where the

physiologist has long been eager, to invoke the aid of the physical

or mathematical sciences ; and the reasons for this difference he

deep, and in part are rooted in old traditions. The zoologist has

scarce begun to dream of defining, in mathematical language, even

the simpler organic forms. When he finds a simple geometrical

construction, for instance in the honey-comb, he would fain refer

it to psychical instinct or design rather than to the operation of

physical forces ; when he sees in snail, or nautilus, or tiny

foraminiferal or radiolarian shell, a close approach to the perfect

sphere or spiral, he is prone, of old habit, to beheve that it is

after all something more than a spiral or a sphere, and that in

this "something more"' there lies what neither physics nor

mathematics can explain. In short he is deeply reluctant to

compare the living with the dead, or to explain by geometry or

by dynamics the things which have their part in the mystery of

life. Moreover he is little inclined to feel the need of ^uch

explanations or of such extension of his field of thought. He is

not without some justification if he feels that in admiration of

nature's handiwork he has an horizon open before his eyes as

wide as any man requires. He has the help of many fascinating

theories within the bounds of his own science, whieh, though

a little lacking in precision, serve the purpose of ordering his

thoughts and of suggesting new objects of enquiry. His art of

classification becomes a ceaseless and an endless search after the

blood-relationships of things living, and the pedigrees of things
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dead and gone. The facts of embryology become for him, as

Wolff, von Baer and Fritz Miiller proclaimed, a record not only

of the life-history of the individual but of the annals of its race.

The facts of geographical distribution or even of the migration of

birds lead on and on to speculations regarding lost continents,

sunken islands, or bridges across ancient seas. Every nesting

bird, every ant-hill or spider's web displays its psychological

problems of instinct or intelhgence. Above all, in things both

great and small, the naturalist is rightfully impressed, and finally

engrossed, by the peculiar beauty which is manifested in apparent

fitness or "adaptation,"—the flower for the bee, the berry for the

bird.

Time out of mind, it has been by way of the "final cause,"

by the teleological concept of "end," of "purpose," or of "design,"

in one or another of its many forms (for its moods are many),

that men have been chiefly wont to explain the phenomena of

the living world; and it will be so while men have eyes to see

and ears to hear withal. With Galen, as with Aristotle, it was

the physician's way ; with John Ray, as with Aristotle, it was the

naturalist's way ; with Kant, as with Aristotle, it was the philo-

sopher's way. It was the old Hebrew way, and has its splendid

setting in the story that God made "every plant of the field before

it was in the earth, and every herb of the field before it grew."

It is a common way, and a great way; for it brings with it a

glimpse of a great vision, and it lies deep as the love of nature

in the hearts of men.

Half overshadowing the "efficient" or physical cause, the

argument of the final cause appears in eighteenth century physics,

in the hands of such men as Euler* and Maupertuis, to whom
Leibniz t had passed it on. Half overshadowed by the me-

chanical concept, it runs through Claude Bernard's LsQons siir les

* " Quum enim mundi universi fabrica sit perfectissima, atque a Creatore

sapientissimo absoluta, nihil omnino in mundo contingit in quo non maximi

minimive ratio quaepiam eluceat; quamobrem dubium prorsus est nullum quin

onines mundi effectus ex causis finalibus, ope methodi maximorum et minimorum,

aeque feliciter determinari queant atque ex ipsis causis efficientibus." Methodtis

inveniendi, etc. 1744 (cit. Mach, Science of Mechanics, 1902, p. 455).

t Cf. 0pp. (ed. Erdmann), p. 106, "Bien loin d'exclure les causes finales...,

c'est de la qu'il faut tout deduire en Physique."

1—2
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phenomenes de la Vie*, and abides in much of modern physio-

logy f . Inherited from Hegel, it dominated Oken's Natur'philosophie

and lingered among his later disciples, who were wont to liken

the course of organic evolution not to the straggling branches of

a tree, but to the building of a temple, divinely planned, and the

crowning of it with its polished minarets J.

It is retained, somewhat crudely, in modern embryology, by

those who see in the early processes of growth a significance

"rather prospective than retrospective," such that the embryonic

phenomena must be "referred directly to their usefulness in

building the body of the future animal§" :—which is no more, and

no less, than to say, with Aristotle, that the organism is the reXo^,

or final cause, of its own processes of generation and development.

It is writ large in that Entelechy|| which Driesch rediscovered,

and which he made known to many who had neither learned of it

from Aristotle, nor studied it with Leibniz, nor laughed at it with

Voltaire. And, though it is in a very curious way, we are told that

teleology was "refounded, reformed or rehabilitated^" by Darwin's

theory of natural selection, whereby "every variety of form and

colour was urgently and absolutely called upon to produce its

title to existence either as an active useful agent, or as a survival
'

of such active usefulness in the past. But in this last, and very

important case, we have reached a "teleology" without a reXo'i.,

* Cf. p. 162. "La force vitale dirige des phenomenes qu'elle ne produit pAs:

les agents physiques produisent des phenomenes qu'ils ne dirigent pas."

t It is now and then conceded with reluctance. Thus Enriques, a learned

and philosophic naturalist, writing "deUa economia di sostanza nelle osse cave"

{Arch.f. Entw. Mech. xx, 1906), says "una certa impronta di teleologismo qua e la

e rimasta, mio malgrado, in questo scritto."

% Cf. Cleland, On Terminal Forms of Life, J. Anat. and Phys. xvni, 1884.

§ Conklin, Embryology of Crepidula, Journ. of Marphol. xm, p. 203, 1897;

Lillie, F. R., Adaptation in Cleavage, Woods Holl Biol. Lectures, pp. 43-67, 1899.

II
I am inclined to trace back Driesch' s teaching of Entelechy to no less a

person than Melanchthon. When Bacon {de Augm. iv, 3) states with disapproval

that the soul "has been regarded rather as a function than as a substance," R. L.

ElUs points out that ho is referring to Melanchthon' s exposition of the Aristotelian

doctrine. For Melanchthon, whose view of the peripatetic philosophy had long

great influence in the Protestant Universities, affirmed that, according to the true

view of Aristotle's opinion, the soul is not a substance, but an ivTeXexe^o., or

function. He defined it as dvva/jLis qunedam ciens actiones—a description all but

identical with that of Claude Bernard's ""force vitale.'''

•1 Ray Lankester, Encijd. Brit. (9th ed.), art. "Zoology," p. 806, 1889.
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as men like Butler and Janet have been pronipt to shew : a teleology

in which the final cause becomes little more, if anything,' than the

mere expression or resultant of a process of sifting out of the

good from the bad, or of the better from the worse, in short of

a iprocess of mechanism*. The apparent manifestations of "pur-

pose" or adaptation become part of a mechanical philosophy,

according to which "chaque chose finit toujours par s'accommoder

a son miheuf." In short, by a road which resembles but is not

the same as Maupertuis's road, we find our way to the very world

in which we are living, and find that if it be not, it is ever tending

to become, "the best of all possible worlds {."

But the use of the teleological principle is but one way, not

the whole or the only way, by which we may seek to learn how
things came to be, and to take their places in the harmonious com-

plexity of the world. To seek not for ends but for "antecedents"

is the way of the physicist, who finds "causes" in what he has

learned to recognise as fundamental properties, or inseparable

concomitants, or unchanging laws, of matter and of energy. In

Aristotle's parable, the house is there that men may live in it;

but it is also there because the builders have laid one stone upon

another: and it is as a mechanism, or a mechanical construction,

that the physicist looks upon the world. Like warp and woof,

mechanism and teleology are interwoven together, and we must

not cleave to the one and despise the other; for their union is

"rooted in the very nature of totality §."

Nevertheless, when philosophy bids us hearken and obey the

lessons both of mechanical and of teleological interpretation, the

precept is hard to follow : so that oftentimes it has come to pass,

just as in Bacon's day, that a leaning to the side of the final

cause "hath intercepted the severe and diligent inquiry of all

* Alfred Russel Wallace, especially in his later years, relied upon a direct but

somewhat crude teleology. Cf. his World of Life, a Manifestation of Creative Power,

Directive Mind and Ultimate Purpose, 1910.

t Janet, Les Causes Finales, 1876, p. 350.

t The phrase is Leibniz's, in his Theodicee.

§ Cf. (int. al.) Bosanquet, The Meaning of Teleology, Proc. Brit. Acad.

1905-6, pp. 235-245. Cf. also Leibniz (Discours de Metaphysiqtte; Lettres inedites,

€d. de Careil, 1857, p. 354; cit. Janet, p. 643), "L'un et Tautre est bon, I'un et

I'autre pent etre utile... et les auteurs qui suivent ces routes differentes ne devraient

point se maltraiter: et seq."
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real and physical causes," and has brought it about that "the

search of the physical cause hath been neglected and passed in

silence." So long and so far as "fortuitous variation*" and the

"survival of the fittest" remain engrained as fundamental and

satisfactory hypotheses in the philosophy of biology, so long will

these "satisfactory and specious causes" tend to stay "severe and

diligent inquiry," "to the great arrest and prejudice of future

discovery."

The difficulties which surround the concept of active or " real

"

causation, in Bacon's sense of the word, difficulties of which

Hume and Locke and Aristotle were little aware, need 'scarcely

hinder us in our physical enquiry. As students of mathematical

and of empirical physics, we are content to deal with those ante-

cedents, or concomitants, of our phenomena, without which the

phenomenon does not occur,—with causes, in short, which, aliae

ex aliis aftae et necessitate nexae, are no more, and no less, than

conditions sine qua non. Our purpose is still adequately fulfilled

:

inasmuch as we are still enabled to correlate, and to equate, our

particular phenomena with more and ever more of the physical

phenomena around, and so to weave a web of connection and

interdependence which shall serve our turn, though the meta-

physician withhold from that interdependence the title of causality.

We come in touch with what the schoolmen called a ratio

cognoscendi, though the true ratio efficiendi is still enwrapped in

many mysteries. And so handled, the quest of physical causes

merges with another great Aristotelian theme,—the search for

relations between things apparently disconnected, and for " simili-

tude in things to common view unlike." Newton did not shew

the cause of the apple falling, but he shewed a similitude between

the apple and the stars.

Moreover, the naturahst and the physicist will continue to

speak of "causes," just as of old, though it may be with some

mental reservations : for, as a French philosopher said, in a

kindred difficulty: "ce sont la des manieres de s'exprimer,

* The reader will understand that I speak, not of the "severe and diligent

inquiry" of variation or of "fortuity," but merely of the easy assumption that

these phenomena are a sufficient basis on which to rest, with the all-powerful

help of natural selection, a theory of definite and progressive evolution.
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et si elles sont interdites il faut renoncer a parler de ces

choses."

The search for differences or essential contrasts between the

phenomena of organic and inorganic, of animate and inanimate

things has occupied many mens' minds, while the search for

community of principles, or essential simiUtudes, has been followed

by few; and the contrasts are apt to loom too large, great as

they may be. M. Dunan, discussing ^the "Probleme de la Vie*"

in an essay which M. Bergson greatly commends, declares: "Les

lois physico-chimiques sont aveugles et brutales ; la oil elles

regnent seules, au lieu d'un ordre et d'un concert, il ne pent y
avoir qu'incoherence et chaos." But the physicist proclaims

aloud that the physical phenomena which meet us by the way

have their manifestations of form, not less beautiful and scarce

less varied than those which move us to admiration among living

things. The waves of the sea, the Kttle ripples on the shore, the

sweeping curve of the sandy bay between its headlands, the

outUne of the hills, the shape of the clouds, all these are so many

riddles of form, so many problems of morphology, and all of

them the physicist can more or less easily read and adequately

solve : solving them by reference to their antecedent phenomena,

in the material system of mechanical forces to which they belong,

and to which we interpret them as being due. They have also,

doubtless, their immanent teleological significance; but it is on

another plane of thought from the physicist's that we contemplate

their intrinsic harmony and perfection, and "see that they are

good."

Nor is it otherwise with the material forms of hving things.

Cell and tissue, shell and bone, leaf and flower, are so many

portions of matter, and it is in obedience to the laws of physics

that their particles have been moved, moulded and conformed f.

* Revue Philosophique. xxxiii, 1892.

t This general prineiple was clearly grasped by Dr George Rainey (a learned

physician of St Bartholomew's) many years ago, and expressed in such words

as the following :
" it is illogical to suppose that in the case of vital organisms

a distinct force exists to produce results perfectly withm the reach of physical

agencies, especially as hi many instances no end could be attained were that the

case, but that of opposing one force by another capable of effecting exactly

the same purpose." (On Artificial Calculi, Q.J. M.S. (Trans. Microsc. Soc), vi,

p. 49, 1858.) Cf. also Helmholtz. Infm rit.. p. 9.
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They are no exception to the rule that 0eo<? aei yew/jLerpel. Their

problems of form are in the first instance mathematical problems,

and their problems of growth are essentially physical problems;

and the morphologist is, ipso facto, a student of physical science.

Apart from the physico-chemical problems of modern physio-

logy, the road of physico-mathematical or dynamical investigation

in morphology has had few to follow it ; but the pathway is old.

The way of the old Ionian physicians, of Anaxagoras*, of

Empedocles and his disciples in the days before Aristotle, lay

just by that highwayside. It was Gahleo's and BorelU's way.

It was little trodden for long afterwards, but once in a while

Swammerdam and Reaumur looked that way. And of latCT

years, Moseley and Meyer, Berthold, Errera and Roux have

been among the little band of travellers. We need not wonder

if the way be hard to follow, and if these wayfarers have yet

gathered httle. A harvest has been reaped by others, and the

gleaning of the grapes is slow.

It behoves us always to remember that in physics it has taken

great men to discover simple things. They are very great names

indeed that we couple with the explanation of the path of a stone,

the droop of a chain, the tints of a bubble, the shadows in a cup.

It is but the slightest adumbration of a dynamical morphology

that we can hope to have, until the physicist and the mathematician

shall have made these problems of ours their own, or till a new

Boscovich shall have written for the naturalist the new Theoria

Philosophiae Naturalis.

How far, even then, mathematics will suffice to describe, and

physics to explain, the fabric of the body no man can foresee.

It may be that all the laws of energy, and all the properties of

matter, and all the chemistry of all the colloids are as powerless

to explain the body as they are impotent to comprehend the

soul. For my part, I think it is not so. Of how it is that the

soul informs the body, physical science teaches me nothing:

consciousness is not explained to my comprehension by all the

nerve-paths and "neurones" of the physiologist; nor do I ask of

physics how goodness shines in one man's face, and evil betrays

itself in another. But of the construction and growth and working

* Whereby he incurred the reproach of Socrates, in the Phaedo.
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of the body, as of all that is of the earth earthy, physical science

is, in my humble opinion, our only teacher and guide*.

Often and often it happens that our physical knowledge is

inadequate to explain the mechanical working of the organism

;

the phenomena are superlatively complex, the procedure is

involved and entangled, and the investigation has occupied but

a few short lives of men. When physical science falls short of

explaining the order which reigns throughout these manifold

phenomena,—an order more characteristic in its totality than any

of its phenomena in themselves,—men hasten to invoke a guiding

principle, an entelechy, or call it what you will. But all the while,

so far as I am aware, no physical law^, any more than that of

gravity itself, not even among the puzzles of chemical "stereo-

metry," or of physiological "surface-action" or "osmosis," is

known to be transgressed by the bodily mechanism.

Some physicists declare, as Maxwell did, that atoms or mole-

cules more complicated by far than the chemist's hypotheses

demand are requisite to explain the phenomena of life. If what

is implied be an explanation of psychical phenomena, let the

point be granted at once ; we may go yet further, and decline,

with Maxwell, to believe that anything of the nature of physical

complexity, however exalted, could ever suffice. Other physicists,

like Auerbachf, or LarmorJ, or Joly§, assure us that our laws of

thermodynamics do not suffice, or are "inappropriate," to explain

the maintenance or (in Joly's phrase) the " accelerative absorption"

* In a famous lecture (Conservation of Forces applied to Organic Nature,

Proc. Roy. lustit., April 12, 1861), Helmholtz laid it down, as "the fundamental

principle of physiology," that "There may be other agents acting in the living

body than those agents which act in the inorganic world; but those forces, as far

as they cause chemical and mechanical influence in the body, must»be quite of the

same character as inorganic forces : in this at least, that their effects must be ruled

by necessity, and must always be the same when acting in the same conditions;

and so there cannot exist any arbitrary choice in the direction of their actions."

It would follow from this, that, like the other "physical" forces, they must be

subject to mathematical anatysis and deduction. Cf. also Dr T. Young's Croonian

Lecture On the Heart and Arteries. Phil. Trans. 1809, p. 1: Coll. Works, i, .511.

f Ektropismus, oder die physikalische Theorie des Lebens, Leipzig, 1910.

J Wilde Lecture, Nature, March 12, 1908; ibid. Sept. 6, 1900, p. 485;

Aether and Matter, p. 288. Cf. also Lord Kelvin, Fortnightly Review, 1892, p. 313.

§ Joly, The Abundance of Life, Proc. Roy. Dublin Soc. vii, 1890; and in

/Scientific Essays, etc. 1915, p. 60 et seq.
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of the bodily energies, and the long battle against the cold and

darkness which is death. With these weighty problems I am not

for the moment concerned. My sole purpose is to correlate with

mathematical statement and physical law certain of the simpler

outward phenomena of organic growth and structure or form:

while all the while regarding, ex hypothesi, for the purposes of

this correlation, the fabric of the organism as a material and

mechanical configuration.

Physical science and philosophy stand side by side, and one

upholds the other. Without something of the strength of physics,

philosophy would be weak ; and without something of philosophy's

wealth, physical science would be poor. " Rien ne retirera du

tissu de la science les fils d'or que la main du philosophe y a

introduits*." But there are fields where each, for a while at

least, must work alone ; and where physical science reaches its

limitations, physical science itself must help us to discover.

Meanwhile the appropriate and legitimate postulate of the

physicist, in approaching the physical problems of the body, is

that with these physical phenomena no ahen influence interferes.

But the postulate, though it is certainly legitimate, and though

it is the proper and necessary prelude to scientific enquiry, may
some day be proven to be untrue ; and its disproof will not be to

the physicist's confusion, but will come as his reward. In dealing

with forms which are so concomitant with life that they are

seemingly controlled by hfe, it is in no spirit of arrogant assertive-

ness that the physicist begins his argument, after the fashion of

a most illustrious exemplar, with the old formulary of scholastic

challenge,

—

An Vita sit ? Dico quod non.

The terms Form and Growth, which make up the title of this

little book, are to be understood, as I need hardly say, in their

relation to the science of organisms. We want to see how, in

some cases at least, the forms of living things, and of the parts

of living things, can be explained by physical considerations, and

to reahse that, in general, no organic forms exist save such as

are in conformity with ordinary physical laws. And while growth

is a somewhat vague word for a complex matter, which may
* Papillon, Histoire de la philosophie moderne, i, p. 300.
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depend on various things, from simple imbibition of water to the

complicated results of the chemistry of nutrition, it deserves to

be studied in relation to form, whether it proceed by simple

increase of size without obvious alteration of form, or whether it

so proceed as to bring about a gradual change of form and the

slow development of a more or less complicated structure.

In the Newtonian language of elementary physics, force is

recognised by its action in producing or in changing motion, or

in preventing change of motion or in maintaining rest. When we

deal with matter in the concrete, force does not, strictly speaking,

enter into the question, for force, unlike matter, has no independent

objective existence. It is energy in its various forms, known or

unknown, that acts upon matter. But when we abstract our

thoughts from the material to its form, or from the thing moved

to its motions, when we deal with the subjective conceptions of

form, or movement, or the movements that change of form implies,

then force is the appropriate term for our conception of the causes

by which these forms and changes of form are brought about.

When we use the term force, we use it, as the physicist always

does, for the sake of brevity, using a symbol for the magnitude

and direction of an action in reference to the symbol or diagram

of a material thing. It is a term as subjective and symbolic as

form itself, and so is appropriately to be used in connection

therewith.

The form, then, of any portion of matter, whether it be living

or dead, and the changes of form that are apparent in its movements

and in its growth, may in all cases ahke be described as due to

the action of force. In short, the form of an object is a "diagram

of forces," in this sense, at least, that from it we can judge of or

deduce the forces that are acting or have acted upon it: in this

strict and particular sense, it is a diagram,—in the case of a solid,

of the forces that have been impressed upon it when its conformation

was produced, together with those that enable it to retain its

conformation ; in the case of a Hquid (or of a gas) of the forces that

^re for the moment acting on it to restrain or balance its own

inherent mobihty. In an organism, great or small, it is not

merely the nature of the ynotions of the living substance that we

must interpret in terms of force (according to kinetics), but also
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the conformation of the organism itself, whose permanence or

equihbrium is explained by the interaction or balance of forces,

as described in statics.

If we look at the living cell of an Amoeba or a Spirogyra, we

see a something which exhibits certain active movements, and

a certain fluctuating, or more or less lasting, form; and its form

at a given moment, just like its motions, is to be investigated by

the help of physical methods, and explained by the invocation of

the mathematical conception of force.

Now the state, including the shape or form, of a portion of

matter, is the resultant of a number of forces, which represent or

symbolise the manifestations of various kinds of energy; and it

is obvious, accordingly, that a great part of physical science must

be understood or taken for granted as the necessary preliminary

to the discussion on which we are engaged. But we may at

least try to indicate, very briefly, the nature of the principal

forces and the principal properties of matter with which our

subject obliges us to deal. Let us imagine, for instance, the case

of a so-called "simple" organism, such as Amoeba; and if our

short list of its physical properties and conditions be helpful

to our further discussion, we need not consider how far it

be complete or adequate from the wider physical point of

view*.

This portion of matter, then, is kept together by the inter-

molecular force of cohesion ; in the movements of its particles

relatively to one another, and in its own movements relative to

adjacent matter, it meets with the opposing force of friction.

It is acted on by gravity, and this force tends (though slightly,

owing to the Amoeba's small mass, and to the small difference

between its density and that of the surrounding fluid), to flatten

it down upon the sohd substance on which it may be creeping.

Our Amoeba tends, in the next place, to be deformed by any

pressure from outside, even though sUght, which may be apphed

to it, and this circumstance shews it to consist of matter in a

fluid, or at least semi-fluid, state : which state is further indicated

when we observe streaming or current motions in its interior.

* With the special and important properties of colloidal matter we are, for

the time being, not concerned.
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Like other fluid bodies, its surface, whatsoever other substance,

gas, Hquid or sohd, it be in contact with, and in varying degree

according to the nature of that adjacent substance, is the seat

of molecular force exhibiting itself as a surface-tension, from the

action of which many important consequences follow, which

greatly afEect the form of the fluid surface.

While the protoplasm of the Amoeba reacts to the slightest

pressure, and tends to "flow," and while we therefore speak of it

as a fluid, it is evidently far less mobile than such a fluid, for

instance, as water, but is rather like treacle in its slow creeping

movements as it changes its shape in response to force. Such

fluids are said to have a high viscosity, and this viscosity obviously

acts in the way of retarding change of form, or in other words

of retarding the effects of any disturbing action of force. When
the viscous fluid is capable of being drawn out into fine threads,

a property in which we know that the material of some Amoebae

differs greatly from that of others, we say that the fluid is also

viscid, or exhibits viscidity. Again, not by virtue of our Amoeba
being liquid, but at the same time in vastly greater measure than if it

were a solid (though far less rapidly than if it were a gas), a process

of molecular diffusion is constantly going on within its substance,

by which its particles interchange their places within the mass,

while surrounding fluids, gases and sohds in solution diffuse into

and out of it. In so far as the outer wall of the cell is different

in character from the interior, whether it be a mere pellicle as

in Amoeba or a firm cell-wall as in Protococcus, the diffusion

which takes place through this wall is sometimes distinguished

under the term osmosis.

Within the cell, chemical forces are at work, and so also in

all probability (to judge by analogy) are electrical forces ; and

the organism reacts also to forces from without, that have their

origin in chemical, electrical and thermal influences. The pro-

cesses of diffusion and of chemical activity within the cell result,

by the drawing in of water, salts, and food-material with or without

chemical transformation into protoplasm, in growth, and this

complex phenomenon we shall usually, without discussing its

nature and origin, describe and picture as a force. Indeed we

shall manifestly be inclined to use the term growth in two senses.
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just indeed as we do in the case of attraction or gravitation,

on the one hand as a process, and on the other hand as a

force.

In the phenomena of cell-division, in the attractions or repul-

sions of the parts of the dividing nucleus and in the " caryokinetic
"

figures that appear in connection with it, we seem to see in opera-

tion forces and the effects of forces, that have, to say the least of

it, a close analogy with known physical phenomena ; and to this

matter we shall afterwards recur. But though they resemble

known physical phenomena, their nature is still the subject of

much discussion, and neither the forms produced nor the forces

at work can yet be satisfactorily and simply explained. We may
readily admit, then, that besides phenomena which are obviously

physical in their nature, there are actions visible as well as

invisible taking place within living cells which our knowledge

does not permit us to ascribe with certainty to any known physical

force ; and it may or may not be that these phenomena will yield

in time to the methods of physical investigation. Whether or

no, it is plain that we have no clear rule or guide as to what is

"vital" and what is not; the whole assemblage of so-called vital

phenomena, or properties of the organism, cannot be clearly

classified into those that are physical in origin and those that are

sui generis and peculiar to living things. All we can do meanwhile

is to analyse, bit by bit, those parts of the whole to which the

ordinary laws of the physical forces more or less obviously and

clearly and indubitably apply.

Morphology then is not only a study of material things and

of the forms of material things, but has its dynamical aspect,

under which we deal with the interpretation, in terms of force,

of the operations of Energy. And here it is well worth while

to remark that, in dealing wdth the facts of embryology or the

phenomena of inheritance, the common language of the books

seems to deal too much with the material elements concerned, as

the causes of development, of variation or of hereditary trans-

mission. Matter as such produces nothing, changes nothing, does

nothing ; and however convenient it may afterwards be to abbre-

viate our nomenclature and our descriptions, we must most

carefully reahse in the outset that the spermatozoon, the nucleus,
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the chromosomes or the germ-plasm can never act as matter
alone, but only as seats of energy and as centres of force. And
this is but an adaptation (in the light, or rather in the con-

ventional symbolism, of modern physical science) of the old

saying of the philosopher: apxv l^P V 4>^o-i^ /uLaWov r?}? vXrjq.



CHAPTER II

ON MAGNITUDE

To terms of magnitude, and of direction, must we refer all

our conceptions of form. For the form of an object is defined

when ' we know its magnitude, actual or relative, in various

directions ; and growth involves the same conceptions of magnitude

and direction, with this addition, that they are supposed to alter

in time. Before we proceed to the consideration of specific form,

it will be worth our while to consider, for a little while, certain

phenomena of spatial magnitude, or of the extension of a body

in the several dimensions of space*.

We are taught by elementary mathematics that, in similar

solid figures, the surface increases as the square, and the volume

as the cube, of the linear dimensions. If we take the simple case

of a sphere, with radius r, the area of its surface is equal to 477/^,

and its volume to 47rf^; from which it follows that the ratio of
o

volume to surface, or V/S, is ^r. In other words, the greater the

radius (or the larger the sphere) the greater will be its volume, or

its mass (if it be uniformly dense throughout), in comparison with

its superficial area. And, taking L to represent any linear dimen-

sion, we may write the general equations in the form

SocL^ F oc L\

or S^k.L^ and V = k'.L^;

and (S^
X L.

From these elementary principles a great number of conse-

quences follow, all more or less interesting, and some of them of

great importance. In the first place, though growth in length (let

* Cf. Hans Przibrain, Anwendung elementarer Mathematik auf Biologische

Probleme (in Roux's Vortrdge, Heft ra), Leipzig, 1908, p. 10.
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us say) and growth in volume (which is usually tantamount to

mass or weight) are parts of one and the same process or pheno-

menon, the one attracts our attention by its increase, very much
more than the other. For instance a fish, in doubhng its length,

multipHes its weight by no less than eight times ; and it all but

doubles its weight in growing from four inches long to five.

In the second place we see that a knowledge of the correlation

between length and weight in any particular species of animal,

in other words a determination of k in the formula W ^ k . L^,

enables us at any time to translate the one magnitude into the

other, and (so to speak) to weigh the animal with a measuring-

rod; this however being always subject to the condition that the

animal shall in no way have altered its form, nor its specific

gravity. That its specific gravity or density should materially or

rapidly alter is not very hkely; but as long as growth lasts,

changes of form, even though inappreciable to the eye, are likely

to go on. Now weighing is a far easier and far more accurate

operation than measuring; and the measurements which would

reveal shght and otherwise imperceptible changes in the form of

a fish—shght relative difiierences between length, breadth and

depth, for instance,—would need to be very dehcate indeed. But
if we can make fairly accurate determinations of the length,

which is very much the easiest dimension to measure, and then

correlate it with the weight, then the value of k, according to

whether it varies or remains constant, will tell us at once whether

there has or has not been a tendency to gradual alteration in the

general form. To this subject we shall return, when we come to

consider more particularly the rate of growth.

But a much deeper interest arises out of this changing ratio

of dimensions when we come to consider the inevitable changes

of physical relations with which it is bound up. We are apt, and
even accustomed, to think that magnitude is so purely relative

that differences of magnitude make no other or more essential

difference ; that Lilhput and Brobdingnag are all ahke, according

as we look at them through one end of the glass or the other.

But this is by no means so; for scale has a very marked effect

upon physical phenomena, and the effect of scale constitutes what
is known as the principle of similitude, or of dynamical similarity.
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This effect of scale is simply due to the fact that, of the physical

forces, some act either directly at the surface of a body, or other-

wise in proportion to the area of surface; and others, such as

gravity, act on all particles, internal and external ahke, and exert

a force which is proportional to the mass, and so usually to the

volume, of the body.

The strength of an iron girder obviously varies with the

cross-section of its members, and each cross-section varies as the

square of a linear dimension ; but the weight of the whole structure

varies as the cube of its linear dimensions. And it follows at once

that, if we build two bridges geometrically similar, the larger is

the weaker of the two *. It was elementary engineering experience

such as this that led Herbert Spencer f to apply the principle of

simihtude to biology.

The same principle had been admirably applied, in a few clear

instances, by LesageJ, a celebrated eighteenth century physician

of Geneva, in an unfinished and unpublished work§. Lesage

argued, for mstance, that the larger ratio of surface to mass would

lead in a small animal to excessive transpiration, were the skin

as "porous" as our own; and that we may hence account for

the hardened or thickened skins of insects and other small terrestrial

animals. Again, since the weight of a fruit increases as the cube

of its dimensions, while the strength of the stalk increases as the

square, it follows that the stalk should grow out of apparent due

proportion to the fruit; or alternatively, that tall trees should

not bear large fruit on slender branches, and that melons and

pumpkins must lie upon the ground. And again, that in quad-

rupeds a large head must be supported on a neck which is either

* The subject is treated from an engineering j^oint of view by Prof. James

Thomson, Comparisons of Similar Structures as to Elasticity, Strength, and

StabUity, Trans. Inst. Engineers, Scotland, 1876 {Collected Papers, 1912, pp. 361-

372), and by Prof. A. Barr, ibid. 1899; see also Rayleigh, Nattire, April 22, 1915.

t Cf. Spencer, The Form of the Earth, etc., Phil. Mag. xxx, pp. 194-6,

1847; also Principles of Biology, pt. n, ch. i, 1864 (p. 123, etc.).

% George Louis Lesage (1724-1803), well known as the author of one of the few

attempts to explam gravitation. (Cf. Leray, Constitution de la Matiere, 1869;

Kelvin, Proc. R. S. E. vn, p. 577, 1872, etc. ; Clerk Maxwell, Phil. Trans, vol. 157,

p. 50, 1867; art. "Atom," Emycl. Brit. 1875, p. 46.)

§ Cf. Pierre Prevost, Noticts de la vie et des ecrits de Lesage, 1805; quoted by

Janet, Causes Finales, app. in.
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excessively thick and strong, like a bull's, or very short like the

neck of an elephant.

But it was Galileo who, wellnigh 300 years ago, had first laid

down this general principle which we now know by the name of the

principle of siniihtude ; and he did so with the utmost possible

clearness, and with a great wealth of illustration, drawn from

structures hving and dead*. He showed that neither can man
build a house nor can nature construct an animal beyond a certain

size, while retaining the same proportions and employing the

same materials as sufiiced in the case of a smaller structure f.

The thing will fall to pieces of its own weight unless we either

change its relative proportions, which will at length cause it to

become clumsy, monstrous and inefficient, or else we must find

a new material, harder and stronger than was used before. Both

processes are famihar to us in nature and in art, and practical

appUcations, undreamed of by Gahleo, meet us at every turn in

this modern age of steel.

Again, as Gahleo was also careful to explain, besides the

questions of pure stress and strain, of the strength of muscles to

lift an increasing weight or of bones to resist its crushing stress,

we have the very important question of bending moments. This

question enters, more or less, into our whole range of problems

;

it afiects, as we shall afterwards see, or even determines the whole

form of the skeleton, and is very important in such a case as that

of a tall tree J.

Here we have to determine the point at which the tree will

curve under its own weight, if it be ever so little displaced from

the perpendicular §. In such an investigation we have to make

* Discorsi e Dimostrazioni majematiche, intorno a due nuove scienze.

attenenti alia Mecanica, ed ai Movimenti Local! : appresso gli Elzevirii, mdcxxxviii.

Opere, ed. Favaro, vni, p. 169 seq. Transl. by Henry Crew and A. de Salvio,

1914, p. 130, etc. See Nature, June 17, 191.5.

t So Werner remarked that Michael Angelo and Bramanti could not have built

of gypsum at Paris on the scale they built of travertin in Rome.

X Sir G. Greenhill, Determination of the greatest height to which a Tree of

given proportions can grow, Cambr. Phil. Soc. Pr. iv, p. 65, 1881, and Chree,

ibid. VII, 1892. Cf. Pojoiting and Thomson's Properties of Matter, 1907, p 99.

§ In like manner the wheat-straw bends over under the weight of the loaded

ear, and the tip of the cat's tail bends over when held upright,—not because they

"possess flexibility," but because they outstrip the dimensions withm which stable

2—2
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some assumptions,—for instance, with regard to the trunk, that

it tapers uniformly, and with regard to the branches that their

sectional area varies according to some definite law, or (as Ruskin

assumed*) tends to be constant in any horizontal plane; and the

mathematical treatment is apt to be somewhat difficult. But

Greenhill has shewn that (on such assumptions as the above),

a certain British Columbian pine-tree, which yielded the Kew flag-

staff measuring 22f ft. in height with a diameter at the base of

21 inches, could not possibly, by theory, have grown to more

than about 300 ft. It is very curious that Galileo suggested

precisely the same height {dugento braccia alta) as the utmost

limit of the growth of a tree. In general, as Greenhill shews, the

diameter of a homogeneous body must increase as the power 3/2

of the height, which accounts for the slender proportions of young

trees, compared with the stunted appearance of old and large

ones|. In short, as Goethe says in Wahrheit und Dichtung, "Es
ist dafiir gesorgt dass die Baume nicht in den Himmel wachsen."

But Eiffel's great tree of steel (1000 feet high) is built to a

very differeiit plan; for here the profile of the tower follows the

logarithmic curve, giving equal strength throughout, according

to a principle which we shall have occasion to discuss when we
come to treat of "form and mechanical efficiency" in connection

with the skeletons of animals.

Among animals, we may see in a general way, without the help

of mathematics or of physics, that exaggerated bulk brings with

it a certain clumsiness, a certain inefiiciency, a new element of

risk and hazard, a vague preponderance of disadvantage. The

case was well put by Owen, in a passage which has an interest

of its own as a premonition (somewhat like De Candolle's) of the

"struggle for existence." Owen wrote as follows $: "In pro-

portion to the bulk of a species is the difficulty of the contest

which, as a living organised whole, the individual of such species

equilibrium is possible in a vertical position. The kitten's tail, on the other hand,

stands up spiky and straight.

* Modern Painters.

t The stem of the giant bamboo may attain a height of 60 metres, while not

more than about 40 cm. in diameter near its base, which dimensions are not very

far short of the theoretical limits (A. J. Ewart, Phil. Trans, vol. 198, p. 71, 1906).

X Trans. Zool. Soc. iv, 1850, p. 27.
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has to maintain against the surrounding agencies that are ever

tending to dissolve the vital bond, and subjugate the living

matter to the ordinary chemical and physical forces. Any
changes, therefore, in such external conditions as a species may
have been originally adapted to exist in, will militate against that

existence in a degree proportionate, perhaps in a geometrical ratio,

to the bulk of the species. If a dry season be greatly prolonged,

the large mammal will suffer from the drought sooner than the

small one ; if any alteration of climate affect the quantity of

vegetable food, the bulky Herbivore will first feel the effects of

stinted nourishment."

But the principle of Galileo carries us much further and along

more certain lines.

The tensile strength of a muscle, like that of a rope or of our

girder, varies with its cross-section ; and the resistance of a bone

to a crushing stress varies, again like our girder, with its cross-

section. But in a terrestrial animal the weight which tends to

crush its limbs or which its muscles have to move, varies as the

cube of its linear dimensions ; and so, to the possible magnitude

of an animal, living under the direct action of gravity, there is

a definite limit set. The elephant, in the dimensions of its limb-

bones, is already shewing signs of a tendency to disproportionate

thickness as compared with the smaller mammals ; its movements

are in many ways hampered and its agility diminished : it is

already tending towards the maximal limit of size which the

physical forces permit. But, as Galileo also saw, if the animal

be wholly immersed in water, like the whale, (or if it be partly

so, as was in all probability the case with the giant reptiles of our

secondary rocks), then the weight is counterpoised to the extent

of an equivalent volume of water, and is completely counterpoised

if the density of the animal's body, with the included air, be

identical (as in a whale it very nearly is) with the water around.

Under these circumstances there is no longer a physical barrier

to the indefinite growth in magnitude of the animal*. Indeed,

* It would seem to be a common if not a general rule that marine organisms,

zoophytes, molluscs, etc., tend to be larger than the corresponding and closely-

related forms living in fresh water. While the phenomenon may have various

causes, it has been attributed (among others) to the simple fact that the forces of

growth are less antagonised by gravity in the denser medium (cf. Houssay, La
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in the case of the aquatic animal there is, as Spencer pointed out,

a distinct advantage, in that the larger it grows the greater is

its velocity. For its available energy depends on the mass of

its muscles ; while its motion through the water is opposed, not

by gravity, but by "skin-friction," which increases only as the

square of its dimensions ; all other things being equal, the bigger

the ship, or the bigger the fish, the faster it tends to go, but only

in the ratio of the square root of the increasing length. For the

mechanical work {W) of which the fish is capable being pro-

portional to the mass of its muscles, or the cube of its linear

dimensions : and again this work being wholly done in producing

a velocity (F) against a resistance {R) which increases as the

square of the said linear dimensions ; we have at once

W = l\

and also W = RV'- = l^VK

Therefore P = IW\ and V = y/l.

This is what is known as Fronde's Law of the correspondence of

speeds.

But there is often another side to these questions, which makes

them too complicated to answer in a word. For instance, the

work (per stroke) of which two similar engines are capable should

obviously vary as the cubes of their linear dimensions, for it

varies on the one hand with the surface of the piston, and on the

other, with the length of the stroke ; so is it likewise in the animal,

where the corresponding variation depends on the cross-section of

the muscle, and on the space through which it contracts. But

in two precisely similar engines, the actual available horse-power

varies as the square of the linear dimensions, and not as the

cube; and this for the obvious reason that the actual energy

developed depends upon the heating-surface of the boiler*. So

likewise must there be a similar tendency, among animals, for the

rate of supply of kinetic energy to vary with the surface of the

Forme et la Vie, 1900, p. 815). The effect of gravity on outward form is

illustrated, for instance, by the contrast between the uniformly upward branching

of a sea-weed and the drooping curves of a shrub or tree.

* The analogy is not a very strict one. We are not taking account, for instance,

of a proportionate increase in thickness of the boiler-plates.
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lung, that is to say (other things being equal) with the square of

the linear dimensions of the animal. We may of course (departing

from the condition of similarity) increase the heating-surface of

the boiler, by means of an internal system of tubes, without

increasing its outward dimensions, and in this very way nature

increases the respiratory surface of a lung by a complex system

of branching tubes and minute air-cells ; but nevertheless in

two similar and closely related animals, as also in two steam-

engines of precisely the same make, the law is bound to hold that

the rate of working must tend to vary with the square of the

linear dimensions, according to Froude's law of steamshij) com-

parison. In the case of a very large ship, built for speed, the

difficulty is got over by increasing the size and number of the

boilers, till the ratio between boiler-room and engine-room is

far beyond what is required in an ordinary small vessel * ; but

though we find lung-space* increased among animals where

greater rate of working is required, as in general among birds,

I do not know that it can be shewn to increase, as in the

" over-boilered " ship, with the size of the animal, and in a ratio

which outstrips that of the other bodily dimensions. If it be the

case then, that the working mechanism of the muscles should be

able to exert a force proportionate to the cube of the linear

bodily dimensions, while the respiratory mechanism can only

supply a store of energy at a rate proportional to the square of

the said dimensions, the singular result ought to follow that, in

swimming for instance, the larger fish ought to be able to put on

a spurt of speed far in excess of the smaller one ; but the distance

travelled by the year's end should be very much alike for both

of them. And it should also follow that the curve of fatigue

* Let L be the length, S the (wetted) surface, T the tonnage, D the displacement

(oi" volume) of a ship; and let it cross the Atlantic at a speed V. Then, in com-

paring two ships, similarly constructed but of different magnitudes, we know that

L = V", S = L~ = V*, D = T=L^ = V«; also R (resistance) = S . F- = F« ; H (horse-

power) = R .V^V ; and the coal (C) necessary for the voyage = HjV = F*. That

is to say, in ordinary engineering language, to increase the speed across the Atlantic

by 1 per cent, the ship's length must be increased 2 per cent., her tonnage or

displacement 6 per cent., her coal-consumpt also 6 per cent., her horse-power,

and therefore her boiler-capacity, 7 per cent. Her bunkers, accordingly, keep

pace with the enlargement of the ship, but her boilers tend to increase out of

proportion to the space available.
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should be a steeper one, and the staying power should be less, in

the smaller than in the larger individual. This is the case of long-

distance racing, where the big winner puts on his big spurt at the

end. And for an analogous reason, wise men know that in the

'Varsity boat-race it is judicious and prudent to bet on the heavier

crew.

Leaving aside the question of the supply of energy, and keeping

to that of the mechanical efficiency of the machine, we may find

endless biological illustrations of the principle of simihtude.

In the case of the flying bird (apart from the initial difficulty of

raising itself into the air, which involves another problem) it may
be shewn that the bigger it gets (all its proportions remaining the

same) the more difficult it is for it to maintain itself aloft in flight.

The argument is as follows

:

In order to keep aloft, the bird must communicate to the air

a downward momentum equivalent- to its own weight, and there-

fore proportional to tlie cube of its own linear dimensions. But

the momentum so communicated is proportional to the mass of

air driven downwards, and to the rate at which it is driven : the

mass being proportional to the bird's wing-area, and also (with

any given slope of wing) to the speed of the bird, and the rate

being again proportional to the bird's speed; accordingly the

whole momentum varies as the wing-area, i.e. as the square of the

linear dimensions, and also as the square of the speed. Therefore,

in order that the bird may maintain level flight, its speed must

be proportional to the square root of its linear dimensions.

Now the rate at which the bird, in steady ffight, has to work

in order to drive itself forward, is the rate at which it commmiicates

energy to the air; and this is proportional to mV^, i.e. to the

mass and to the square of the velocity of the air displaced. But

the mass of air displaced per second is proportional to the wing-

area and to the speed of the bird's motion, and therefore to the

power 2| of the hnear dimensions ; and the speed at which it

is displaced is proportional to the bird's speed, and therefore to

the square root of the hnear dimensions. Therefore the energy

communicated per second (being proportional to the mass and to

the square of the speed) is jointly proportional to the power 2| of

the linear dimensions, as above, and to the first power thereof

:
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that is to say, it increases in proportion to the power 3| of the

linear dimensions, and therefore faster than the weight of the

bird increases.

Put in mathematical form, the equations are as follows

:

{m = the mass of air thrust downwards ; F its velocity,

proportional to that of the bird; M its momentum; I a Hnear

dimension of the bird ; w its weight ; W the work done in moving

itself forward.)

M = w = l^.

But M^mV, and 7n = PV.

Therefore M ^ l^ V^

and ?2 y2 _ jz^

or 7 = V?-

But, again, W = mV^ ^PV x V^

= PxVl^l

The work requiring to be done, then, varies as the power 3| of

the bird's linear dimensions, while the work of which the bird is

capable depends on the mass of its muscles, and therefore varies

as the cube of its hnear dimensions*. The disproportion does not

seem at first sight very great, but it is quite enough to tell. It is

as much as to say that, every time we double the hnear dimensions

of the bird, the difficulty of flight is increased in the ratio of

2^ : 2^-, or 8 : 11-3, or, say, 1:1-4. If we take the ostrich to

exceed the sparrow in linear dimensions as 25 : 1, which seems well

within the mark, we have the ratio between 25^* and 25^, or

between 5'^: 5^; in other words, flight is just five times more

difficult for the larger than for the smaller birdf.

The above investigation includes, besides the final result, a

number of others, explicit or implied, which are of not less im-

portance. Of these the simplest and also the most important is

* This is the result ari'ived at by Helmholtz, Ueber ein Theorem geometrisch

ahnliche Bewegungen fliissiger Korper betreffend, nebst Anwendung auf das

Problem Luftballons zu lenken, Monatsber. Akad. Berlin, 1873, pp. 501-14. It

was criticised and challenged (somewhat rashly) by K. Miillenhof, Die Grosse

der Flugflachen, etc., Pfluger''s Archiv, xxxv, p. 407, xxxvi, p. 548, 1885.

t Cf. also Chabrier, Vol des Insectes, 3Iem. 3Ius. Hist. Nat. Paris, vi-viii,

1820-22.
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contained in the equation V = \^l, a result which happens to be

identical with one we had also arrived at in the case of the fish.

In the bird's case it has a deeper significance than in the other;

because it implies here not merely that the velocity will tend to

increase in a certain ratio with the length, but that it must do so

as an essential and primary condition of the bird's remaining aloft.

It is accordingly of great practical importance in aeronautics, for

it shews how a provision of increasing speed must accompany every

enlargement of our aeroplanes. If a given machine weighing, say,

500 lbs. be stable at 40 miles an hour, then one geometrically

similar which weighs, say, a couple of tons must have its speed

determined as follows:

W -.wi-.L^: P :: 8 : 1.

Therefore L:l::2:l.

But 72 : ^2 :: Z : I.

Therefore V : v.: V2 : 1 = 1-414 : 1.

That is to say, the larger machine must be capable of a speed

equal to 1-414 x 40, or about 56| miles per hour.

It is highly probable, as Lanchester* remarks, that Lilienthal

met his untimely death not so much from any intrinsic fault in

the design or construction of his machine, but simply because his

engine fell somewhat short of the power required to give the

speed which was necessary for stability. An arrow is a very

imperfectly designed aeroplane, but nevertheless it is evidently

capable, to a certain extent and at a high velocity, of acquiring

"stability" and hence of actual "flight": the duration and

consequent range of its trajectory, as compared with a bullet of

similar initial velocity, being correspondingly benefited. When
we return to our birds, and again compare the ostrich with the

sparrow, we know little or nothing about the speed in flight of

the latter, but that of the swift is estimated f to vary from a

minimum of 20 to 50 feet or more per second,—say from 14 to

35 miles per hour. Let us take the same lower limit as not far

from the minimal velocity of the sparrow's flight also ; and it

* Aerial Flight, vol. 11 (Aerodonetics), 1908, p. 150.

f By Lanchester, op. cit. p. 131.
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would follow that the ostrich, of 25 times the sparrow's linear

dimensions, would be compelled to fly (if it flew at all) with

a minimum velocity of 5 x 14, or 70 miles an hour.

The same principle of necessary S'peed, or the indispensable

relation between the dimensions of a flying object and the minimum

velocity at which it is stable, accounts for a great number of

observed phenomena. It tells us why the larger birds have a

marked difficulty in rising from the ground, that is to say, in

acquiring to begin with the horizontal velocity necessary for their

support; and why accordingly, as Mouillard* and others have

observed, the heavier birds, even those weighing no more than

a pound or two, can be effectively "caged" in a small enclosure

open to the sky. It tells us why very small birds, especially

those as small as humming-birds, and a fortiori the still smaller

insects, are capable of "stationary flight," a very sHght and

scarcely perceptible velocity relatively to the air being sufficient for

their support and stability. And again, since it is in all cases

velocity relative to the air that we are speaking of, we comprehend

the reason why one may always tell which way the wind blows

by watching the direction in which a bird starts to fly.

It is not improbable that the ostrich has already reached

a magnitude, and we may take it for certain that the moa did

so, at which flight by muscular action, according to the normal

anatomy of a bird, has become physiologically impossible. The

same reasoning applies to the case of man. It would be very

difficult, and probably absolutely impossible, for a bird to fly

were it the bigness of a man. But Borelli, in discussing this

question, laid even greater stress on the obvious fact that a man's

pectoral muscles are so immensely less in proportion than those

of a bird, that however we may fit ourselves with wings we can

never expect to move them by any power of our own relatively

weaker muscles ; so it is that artificial flight only became possible

when an engine was devised whose efficiency was extraordinarily

great in comparison with its weight and size.

Had Leonardo da Vinci known what GaHleo knew, he would

not have spent a great part of his life on vain efforts to make to

himself wings. Borelli had learned the lesson thoroughly, and

* Cf. Uempire de Vair ; oniitkologie appliquee a Vaviation. 1881.
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in one of his chapters he deals with the proposition, "Est im-

possibile, ut homines propriis viribus artificiose volare possint*."

But just as it is easier to swim than to fly, so is it obvious

that, in a denser atmosphere, the conditions of flight would be

altered, and flight facihtated. We know that in the carboniferous

epoch there hved giant dragon-flies, with wings of a span far

greater than nowadays they ever attain; and the small bodies

and huge extended wings of the fossil pterodactyles would seem

in like manner to be quite abnormal according to our present

standards, and to be beyond the limits of mechanical efficiency

under present conditions. But as Harle suggests f, following

upon a suggestion of Arrhenius, we have only to suppose that in

carboniferous and Jurassic days the terrestrial atmosphere was

notably denser than it is at present, by reason, for instance, of

its containing a much larger proportion of carbonic acid, and we

have at once a means of reconciling the apparent mechanical

discrepancy.

Very similar problems, involving in various ways the principle

of dynamical simihtude, occur all through the physiology of

locomotion: as, for instance, when we see that a cockchafer can

carry a plate, many times his own weight, upon his back, or that

a flea can jump many inches high.

Problems of this latter class have been admirably treated both

by Gahleo and by Borelli, but many later writers have remained

ignorant of their work. Linnaeus, for instance, remarked that,

if an elephant were as strong in proportion as a stag-beetle, it

would be able to pull up rocks by the root, and to level mountains.

And Kirby and Spence have a well-known passage directed to

shew that such powers as have been conferred upon the insect

have been withheld from the higher animals, for the reason that

had these latter been endued therewith they would have "caused

the early desolation of the world J."

* De Motu Animalium, I, prop, cciv, ed. 1685, p. 243.

f Harle, On Atmospheric Pressure in past Geological Ages, Bull. Geol. Soc.

Fr. XI, pp; 118-121; or Cosmos, p. 30, July 8, 1911.

X Introduction to Entomology, 1826, ii, p. 190. K. and S., like many less learned

authors, are fond of popular illustrations of the "wonders of Nature," to the neglect

of dynamical principles. They suggest, for instance, that if the white ant were

as big as a man, its tunnels would be "magnificent cylinders of more than three
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Such problems as that which is presented by the flea's jumping

powers, though essentially physiological in their nature, have their

interest for us here: because a steady, progressive diminution of

activity with increasing size would tend to set limits to the possible

growth in magnitude of an animal just as surely as those factors

which tend to break and crush the living fabric under its own

weight. In the case of a leap, we have to do rather with a sudden

impulse than with a continued strain, and this impulse should be

measured in terms of the velocity imparted. The velocity is

proportional to the impulse (x), and inversely proportional to the

mass (M) moved : V = x/M. But, according to what we still speak

of as " Borelli's law," the impulse (i.e. the work of the impulse) is

proportional to the volume of the muscle by which it is produced *,

that is to say (in similarly constructed animals) to the mass of the

whole body ; for the impulse is proportional on the one hand to

the cross-section of the muscle, and on the other to the distance

through which it contracts. It follows at once from this that the

velocity is constant, whatever be the size of the animals : in

other words, that all animals, provided always that they are

similarly fashioned, with their various levers etc., in like proportion,

ought to jump, not to the same relative, but to the same actual

height f. According to this, then, the flea is not a better, but

rather a worse jumper than a horse or a man. As a matter of

fact, Borelli is careful to point out that in the act of leaping the

impulse is not actually instantaneous, as in the blow of a hammer,

but takes some little time, during which the levers are being

extended by which the centre of gravity of the animal is being

propelled forwards ; and this interval of time will be longer in

the case of the longer levers of the larger animal. To some extent,

then, this principle acts as a corrective to the more general one,

hundred feet in diameter"; and that if a certain noisy Brazilian insect were as

big as a man, its voice would be heard aU the world over: "so that Stentor

becomes a mute when compared with these insects
!

" It is an easy consequence

of anthropomorphism, and hence a common characteristic of fairy-tales, to neglect

the principle of dynamical, while dwelling on the aspect of geometrical, similarity.

* I.e. the available energy of muscle, in ft. -lbs. per lb. of muscle, is the same

for all animals: a postulate which requires considerable qualification when we are

comparing very different kinds of muscle, such as the insect's and the mammal's.

t Prop, clxxvii. Animaha minora et minus ponderosa majores saltus efficiunt

respectu sui corporis, si caetera fuerint paria.
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and tends to leave a certain balance of advantage, in regard to

leaping power, on the side of the larger animal*.

But on the other hand, the question of strength of materials

comes in once more, and the factors of stress and strain and

bending moment make it, so to speak, more and more difficult

for nature to endow the larger animal with the length of lever

with which she has provided the flea or the grasshopper.

To Kirby and Spence it seemed that " This wonderful strength

of insects is doubtless the result of something pecuhar in the

structure and arrangement of their muscles, and principally their

extraordinary power of contraction."' This hypothesis, which is

so easily seen, on physical grounds, to be unnecessary, has been

amply disproved in a series of excellent papers by F. Plateau
"f.

A somewhat simple problem is presented to us by the act of

walking. It is obvious that there will be a great economy of

work, if the leg s'wing at its normal 'pendnlum-rate; and, though

this rate is hard to calculate, owing to the shape and the jointing

of the limb, we may easily convince ourselves, by counting our

steps, that the leg does actually swing, or tend to swing, just as

a pendulum does, at a certain definite rate J. When we walk

quicker, we cause the leg-pendulum to describe a greater arc, but

we do not appreciably cause it to swing, or vibrate, quicker, until

we shorten the pendulum and begin to run. Now let two indi-

viduals, A and B, walk in a similar fashion, that is to say, with

a similar angle of swing. The arc through which the leg swings,

or the amplitude of each step, will therefore vary as the length

of leg, or say a? ajh ; but the time of swing will vary as the square

* See also (int. al.), John Bernoulli, de Motu Musculorum, Basil., 1694;

Chabrj', Mecanisme du Saut, J, de VAnat. et de la Physiol, xix, 1883; Sur la

longueur des membres des animaux sauteurs, ibid, xxi, p. 356, 1885; Le Hello,

De Taction des organes locomoteurs, etc., ibid, xxix, p. 65-93, 1893, etc.

t Recherches sur la force absolue des muscles des Invertebres, Bull. Acad. B.

de Belgique (3), vi, \ti, 1883-84: see also ibid. (2), xx, 1865, xxii, 1866; A^ut.

Mag. ]<:. H. x\ti, p. 139, 1866, xix, p. 95, 1867. The subject was also well treated

by Straus-Diirckheim, in his Considerations generales sur Vanatomie comparee des

animaux articules, 1828.

X The fact that the limb tends to swing in pendulum-time was first observed

by the brothers Weber [Mechanik der menschl. Gehicerkzeuxje, Gottingen, 1836).

Some later writers have criticised the statement (e.g. Fischer, Die Kiuematik des

Beinschwingens etc., Abh. math. phys. Kl. k. Sachs. Ges. xxv-xxvm, 1899-1903),

but for all that, with proper qualifications, it remains substantially true.
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root of the peiidulum-length, or -^/ajy/'b. Therefore the velocity,

, . , . 1 , amplitude .,, , ,

which IS measured by . , will also vary as the square-
time ^

roots of the length of leg : that is to say, the average velocities of

A and B are in the ratio of y'a : y/h.

The smaller man, or smaller animal, is so far at a disadvantage

compared with the larger in speed, but only to the extent of the

ratio between the square roots of their linear dimensions : whereas,

if the rate of movement of the limb were identical, irrespective

of the size of the animal,—if the limbs of the mouse for instance

swung at the same rate as those of the horse,—then, as F. Plateau

said, the mouse would be as slow or slower in its gait than the

tortoise. M. Delisle* observed a "minute fly" walk three inches

in half-a-second. This was good steady walking. When we
walk five miles an hour we go about 88 inches in a second, or

88/6 = 14-7 times the pace of M. Dehsle's fly. We should walk

at just about the fly's pace if our stature were 1/(14-7)^, or 1/216

of our present height,—say 72/216 inches, or one-third of an inch

high.

But the leg comprises a complicated system of levers, by whose

various exercise we shall obtain very different results. For

instance, by being careful to rise upon our instep, we considerably

increase the length or amplitude of our stride, and very considerably

increase our speed accordingly. On the other hand, in running,

we bend and so shorten the leg, in order to accommodate it to

a quicker rate of pendulum-swing "j". In short, the jointed structure

of the leg permits us to use it as the shortest possible pendulum

when it is swinging, and as the longest possible lever when it is

exerting its propulsive force.

Apart from such modifications as that described in the last

paragraph,—apart, that is to say, from differences in mechanical

construction or in the manner in which the mechanism is used,

—

we have now arrived at a curiously simple and uniform result.

For in all the three forms of locomotion which we have attempted

* Quoted in Mr John Bishop's interesting article in Todd's Cyclopaedia, ni,

p. 443.

t There is probably also another factor involved here : for in bending, and there-

fore shortening, the leg we bring its centre of gravity nearer to the pivot, that is

to say, to the joint, and so the muscle tends to move it the more quickly.
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to study, alike in swimming, in flight and in walking, the general

result, attained under very different conditions and arrived at by

very different modes of reasoning, is in every case that the velocity

tends to vary as the square root of the linear dimensions of the

organism.

From all the foregoing discussion we learn that, as Crookes

once upon a time remarked*, the form as .well as the actions of our

bodies are entirely conditioned (save for certain exceptions in the

case of aquatic animals, nicely balanced with the density of the

surrounding medium) by the strength of gravity upon this globe.

Were the force of gravity to be doubled, our bipedal form would

be a failure, and the majority of terrestrial animals would resemble

short-legged saurians, or else serpents. Birds and insects would

also suffer, though there would be some compensation for them

in the increased density of the air. While on the other hand if

gravity were halved, we should get a lighter, more graceful, more

active type, requiring less energy and less heat, less heart, less

lungs, less blood.

Throughout the whole field of morphology we may find

examples of a tendency (referable doubtless in each case to some

definite physical cause) for surface to keep pace with volume,

through some alteration of its form. The development of "vilh"

on the inner surface of the stomach and intestine (which enlarge

its surface much as we enlarge the effective surface of a bath-

towel), the various valvular folds of the intestinal lining, including

the remarkable "spiral fold" of the shark's gut, the convolutions

of the brain, whose complexity is evidently correlated (in part

at least) with the magnitude of the animal,—all these and many
more are cases in which a more or less constant ratio tends to be

maintained between mass and surface, which ratio would have

been more and mOre departed from had it not been for the

alterations of surface-form f.

* Proc. Psychical Soc. xn, pp. 338-355, 1897.

f For various calculations of the increase of surface due to histological and

anatomical subdivision, see E. Babak, Ueber die Oberflachenentwickelung bei

Organismen, Biol. Centralbl. xxs, pp. 225-239, 257-267, 1910. In connection

with the physical theory of surface-energy, Wolfgang Ostwald has introduced the

conception of specific surface, that is to say the ratio of surface to volume, or SjV.

In a cube, V=P, and S = 61^; therefore SjV— Q/l. Therefore if the side I measure
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In the case of very small animals, and of individual cells, the

principle becomes especially important, in consequence of the

molecular forces whose action is strictly limited to the superficial

layer. In the cases just mentioned, action is facilitated by increase

of surface : diffusion, for instance, of nutrient liquids or respiratory

gases is rendered more rapid by the greater area of surface ; but

there are other cases in which the ratio of surface to mass may
make an essential change in the whole condition of the system.

We know, for instance, that iron rusts when exposed to moist

air, but that it rusts ever so much faster, and is soon eaten away,

if the iron be first reduced to a heap of small filings ; this is a

mere difference of degree. But the spherical surface of the rain-

drop and the spherical surface of the ocean (though both happen

to be aUke in mathematical form) are two totally different pheno-

mena, the one due to surface-energy, and the other to that form

of mass-energy which we ascribe to gravity. The contrast is still

more clearly seen in the case of waves : for the httle ripple, whose

form and manner of propagation are governed by surface-tension,

is found to travel with a velocity which is inversely as the square

root of its length; while the ordinary big waves, controlled by

gravitation, have a velocity directly proportional to the square

root of their wave-length. In like manner we shall find that the

form of all small organisms is largely independent of gravity, and

largely if not mainly due to the force of surface-tension : either

as the direct result of the continued action of surface tension on

the semi-fluid body, or else as the result of its action at a prior

stage of development, in bringing about a form which subsequent

chemical changes have rendered rigid and lasting. In either case,

we shall find a very great tendency in small organisms to assume

either the spherical form or other simple forms related to ordinary

inanimate surface-tension phenomena ; which forms do not recur

in the external morphology of large animals, or if they in part

recur it is for other reasons.

6 cm., the ratio SjV = 1, and such a cube may be taken as our standard, or unit

of specific surface. A human blood-corpuscle has, accordingly, a si^ecific surface

of somewhere about 14,000 or 15,000. It is found in physical chemistry that

surface energy becomes an important factor when the specific surface reaches a

value of 10,000 or thereby.

T. G. 3
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Now this is a very important matter, and is a notable illustration

of that principle of similitude which we have already discussed

in regard to several of its manifestations. We are coming easily

to a conclusion which will affect the whole course of our argument

throughout this book, namely that there is an essential difference

in kind between the phenomena of form in the larger and the

smaller organisms. I have called this book a study of Growth

and Form, because in the most familiar illustrations of organic

form, as in our own bodies for example, these two factors are

inseparably associated, and because we are here justified in thinking

of form as the direct resultant and consequence of growth: of

growth, whose varying rate in one direction or another has pro-

duced, by its gradual and unequal increments, the successive

stages of development and the final configuration of the whole

material structure. But it is by no means true that form and

growth are in this direct and simple fashion correlative or comple-

mentary in the case of minute portions of living matter. For in

the smaller organisms, and in the individual cells of the larger,

we have reached an order of magnitude in which the intermolecular

forces strive under favourable conditions with, and at length

altogether outweigh, the force of gravity, and also those other

forces leading to movements of convection which are the prevaihng

factors in the larger material aggregate.

However we shall require to deal more fully with this matter

in our discussion of the rate of growth, and we may leave it mean-

while, in order to deal with other matters more or less directly

concerned with the magnitude of the cell.

The hving cell is a very complex field of energy, and of energy

of many kinds, surface-energy included. Now the whole surface-

energy of the cell is by no means restricted to its outer surface;

for the cell is a very heterogeneous structure, and all its proto-

plasmic alveoh and other visible (as well as in\asible) hetero-

geneities make up a great system of internal surfaces, at every

part of which one "phase" comes in contact with another "phase,"

and surface-energy is accordingly manifested. But still, the

external surface is a definite portion of the system, with a definite

"phase" of its own, and however httle we may know of the distri-

bution of the total energy of the system, it is at least plain that
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the conditions which favour equihbrium will be greatly altered by

the changed ratio of external surface to mass which a change of

magnitude, unaccompanied by change of form, produces in the cell.

Li short, however it may be brought aboi^t, the phenomenon of

division of the cell will be precisely what is required to keep

approximately constant the ratio between surface and mass, and

to restore the balance between the surface-energy and the other

energies of the system. When a germ-cell, for instance, divides

or "'segments" into two, it does not increase in mass; at least if

there be some shght alleged tendency for the egg to increase in

mass or volume during segmentation, it is very slight indeed,

generally imperceptible, and wholly denied by some*. The

development or growth of the egg from a one-celled stage to

stages of two or many cells, is thus a somewhat peculiar kind

of growth; it is growth which is limited to increase of surface,

unaccompanied by growth in volume or in mass.

In the case of a soap-bubble, by the way, if it divide into two

bubbles, the volume is actually diminished f, while the surface-area

is greatly increased. This is due to a cause which we shall have

to study later, namely to the increased pressure due to the greater

curvature of the smaller bubbles.

An immediate and remarkable result of the principles just

described is a tendency on the part of all cells, according to their

kind, to vary but little about a certain mean size, and to have,

in fact, certain absolute limitations of magnitude.

Sachs J pointed out, in 1895, that there is a tendency for each

nucleus to be only able to gather around itself a certain definite

amount of protoplasm. Driesch§, a little later, found that, by

artificial subdivision of the egg, it was possible to rear dwarf

sea-urchin larvae, one-half, one-quarter, or even one-eighth of their

* Though the entire egg is not increasing in mass, this is not to say that its

living protoplasm is not increasing all the whUe at the expense of tbe reserve

material.

t Of. Tait, Proc. R.S.E. v, 1866, and vi, 1868.

X Physiolog. Notizen (9), p. 425, 1895. Cf. Strasbiirger, Ueber die Wirkungs-

sphare der Kerne und die Zellgrosse, Histolog. Beitr. (5), pp. 95-129, 1893;

J. J. Gerassimow, Ueber die Grosse des Zellkernes, Beih. Bot. Centralbl. xvm,
1905 ; also G. Levi and T. Terni, Le variazioni dell' indice plasmatico-nucleare

durante 1' intercinesi. Arch. Ital. di Anat. x, p. 545, 1911.

§ Arch. f. Entw. Mech. iv, 1898, pp. 75, 247.

3—2
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normal size ; and that these dwarf bodies were composed of only a

half, a quarter or an eighth of the normal number of cells. Similar

observations have been often repeated and amply confirmed. For

instance, in the development of Crefidula (a httle American
" shpper-hmpet," now much at home on our own oyster-beds),

Conkhn* has succeeded in rearing dwarf and giant individuals,

of which the latter may be as much as twenty-five times as big

as the former. But nevertheless, the individual cells, of skin, gut,

liver, muscle, and of all the other tissues, are just the same size

in one as in the other,—in dwarf and in giant f. Driesch has laid

particular stress upon this principle of a "fixed cell-size."

We get an excellent, and more familiar illustration of the same

principle in comparing the large brain-cells or ganghon-cells, both

of the lower and of the higher animalsf

.

In Fig. 1 we have certain identical nerve-cells taken from

various mammals, from the mouse to the elephant, all represented

on the same scale of magnification ; and we see at once that they

are all of much the same order of magnitude. The nerve-cell of

the elephant is about twice that of the mouse in Unear dimensions,

and therefore about eight times greater in volume, or mass. But

making some allow^ance for difference of shape, the Unear dimen-

sions of the elephant are to those of the mouse in a ratio certainly

not less than one to fifty; from which it would follow that the

bulk of the larger animal is something like 125,000 times that of

the less. And it also follows, the size of the nerve-cells being

* Conklin, E. G., Cell-size and nuclear-size, J. Exp. Zool. xii. pp. 1-98, 1912.

t Thus the fibres of the crystalline lens are of the same size in large and small

dogs ; Eabl, Z. f. w. Z. Lxvn, 1899. Cf. {i7it. al.) Pearson, On the Size of the Blood-

corpuscles in Rana, Biometrilca, vi, p. 403, 1909. Dr Thomas Young caught sight

of the phenomenon, early in last century: "The solid particles of the blood do
not by any means vary in magnitude in the same ratio with the bulk of the animal,"

Natural Philosophy, ed. 1845, p. 466; and Leeuwenhoek and Stephen Hales were

aware of it a hundred years before. But in this case, though the blood-corpuscles

show no relation of magnitude to the size of the animal, they do seem to have some
relation to its activity. At least the coipuscles in the sluggish Amphibia are much
the largest known to us, whQe the smallest are found among the deer and other

agile and speedy mammals. (Cf. Gulliver, P.Z.S. 1875, p. 474, etc.) This apparent

correlation may have its bearing on modem views of the surface-condensation

or adsorption of oxygen in the blood-corpuscles, a process which would be greatly

facilitated and intensified by the increase of surface due to their minuteness.

% Cf. P. Enriques, La forma come funzione della grandezza: Ricerche sui

gangli nervosi degli Invertebrati, Arch. f. Entw. Mech. xxv, p. 655, 1907-8.
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about as eight to one, that, in corresponding parts of the nervous

system of the two animals, there are more than 15,000 times as

many individual cells in one as in the other. In short we may

(with Enriques) lay it down as a general law that among animals,

whether large or small, the ganglion-cells vary in size within

narrow limits ; and that, amidst all the great variety of structural

type of ganglion observed in different classes of animals, it is

always found that the smaller species have simpler ganglia than

the larger, that is to say ganglia containing a smaller number

of cellular elements *. The bearing of such simple facts as this

upon the cell-theory in general is not to be disregarded ; and the

Horse
Rabbit

Fig. 1. Motor ganglion-cells, from the cervical spinal cord.

(From Minot, after Irving Hardesty.)

warning is especially clear against exaggerated attempts to

correlate physiological processes with the visible mechanism of

associated cells, rather than with the system of energies, or the

field of force, which is associated with them. For the life of

* While the difference in cell-volume is vastly less than that between the

volumes, and very much less also than that between the surfaces, of the respective

animals, yet there is a certain diiJerenee ; and this it has been attempted to correlate

with the need for each cell in the many-celled ganglion of the larger animal to

possess a more complex "exchange-system" of branches, for intercommunication

with its more numerous neighbours. Another explanation is based on the fact

that, while such cells as continue to divide throughout life tend to uniformity of

size in all mammals, those which do not do so, and in particular the ganglion cells,

continue to grow, and their size becomes, therefore, a function of the duration of

life. Cf. G. Levi, Studii sulla grandezza delle cellule, Arch. Iktl. di Anat. e di

Emhryolog. V, p. 291, 1906.
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the body is more than the svm. of the properties of the cells of

which it is composed: as Goethe said, "Das Lebendige ist zwar

in Elemente zerlegt, aber man kann es aus diesen nicht wieder

zusammenstellen und beleben."

Among certain lower and microscopic organisms, such for

instance as the Rotifera, we are still more palpably struck by the

small number of cells which go to constitute a usually complex

organ, such as kidney, stomach, ovary, etc. We can sometimes

number them in a few units, in place of the thousands that make
up such an organ in larger, if not always higher, animals. These

facts constitute one among many arguments which combine to

teach us that, however important and advantageous the subdivision

of organisms into cells may be from the constructional, or from

the dynamical point of view, the phenomenon has less essential

importance in theoretical biology than was once, and is often still,

assigned to it.

Again, just as Sachs shewed that there was a limit to the amount

of cytoplasm which could gather round a single nucleus, so Boveri

has demonstrated that the nucleus itself has definite limitations

of size, and that, in cell-division after fertihsation, each new

nucleus has the same size as its parent-nucleus*.

In all these cases, then, there are reasons, partly no doubt

physiological, but in very large part purely physical, which set

hmits to the normal magnitude of the organism or of the cell.

But as we have already discussed the existence of absolute and

definite limitations, of a physical kind, to the possible increase in

magnitude of an organism, let us now enquire whether there be

not also a lower limit, below which the very existence of an

organism is impossible, or at least where, under changed conditions,

its very nature must be profoundly modified.

Among the smallest of known organisms we have, for instance,

Micromonas mesnili, Bonel, a flagellate infusorian, which measures

about -M fi, or •00034 mm., by •00025 mm.; smaller even than

this we have a pathogenic micrococcus of the rabbit, M. pro-

grediens, Schrdter, the diameter of which is said to be only -00015

mm. or -IS/x, or TS x 10"^ cm.,—about equal to the thickness of

* Boveri, Zellen-studien, V. Ueber die Ahhdngirjkeit der Kerncjrosse und Zellen-

zahl der Seeigellarven von der Chromosomenzakl der Ausgangszellert . Jena, 1905.
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the thinnest gold-leaf ; and as small if not smaller still are a few

bacteria and their spores. But here we have reached, or all but

reached the utmost limits of ordinary microscopic vision; and

there remain still smaller organisms, the so-called "filter-passers,"

which the ultra-microscope reveals, but which are mainly brought

within our ken only by the maladies, such as hydrophobia, foot-

and-mouth disease, or the "mosaic" disease of the tobacco-plant,

to which these invisible micro-organisms give rise*. Accordingly,

B B

Fig. 2. Relative magnitudes of: A, human blood-corpuscle (7-5^1 in diameter);

B, Bacillus anthracis {4: — 15 fx x I /j.) ; C. various Micrococci (diam. 0-5 — l/n,

rarely 2^i); D, Micromonas progrediens, Schroter (diam. 0-15/x).

since it is only by the diseases which they occasion that these

tiny bodies are made known to us, we might be tempted to

suppose that innumerable other invisible organisms, smaller and

yet smaller, exist unseen and unrecognised by man.

To illustrate some of these small magnitudes I have adapted

the preceding diagram from one given by Zsigmondyf . Upon the

* Recent important researches suggest that such ultra-minute '"filter-passers"

are the true cause of certain acute maladies commonly ascribed to the presence

of much larger organisms; cf. Hort, Lakin and Benians, The true infective

Agent in Cerebrospinal Fever, etc., J. Roy. Army Med. Corps, Feb. 1916.

(• Zur Erkenntniss cler Kolloide, 1905, p. 122; where there wiU be found an

interesting discussion of various molecular and other minute magnitudes.
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same scale the minute iiltramicroscopic particles of colloid gold

would be represented by the finest dots which we could make
visible to the naked eye upon the paper.

A bacillus of ordinary, typical size is, say, 1 /a in length. The

length (or height) of a man is about a milhon and three-quarter

times as great, i.e. 1-75 metres, or 1-75 x 10® /x; and the mass of

the man is in the neighbourhood of five million, million, million

(5 X 10^^) times greater than that of the bacillus. If we ask

whether there may not exist organisms as much less than the

bacillus as the bacillus is less than the dimensions of a man, it

is very easy to see that this is quite impossible, for we are rapidly

approaching a point where the question of molecular dimensions,

and of the ultimate divisibility of matter, begins to call for our

attention, and to obtrude itself as a crucial factor in the case.

Clerk Maxwell dealt with this matter in his article ''Atom*,'

and, in somewhat greater detail, Errera discusses the question on

the following lines f. The weight of a hydrogen molecule is,

according to the physical chemists, somewhere about 8*6 x 2 x 10-^^

milligrammes ; and that of any other element, whose molecular

weight is M, is given by the equation

(M) = 8-6 X ilf x 10-22.

Accordingly, the weight of the atom of sulphur may be taken as

8-6 X 32 X 10-22 jj^gni. = 275 x IO-22 mgm.

The analysis of ordinary bacteria shews them to consist ± of

about 85 % of water, and 15 % of solids; while the solid residue

of vegetable protoplasm contains about one part in a thousand

of sulphur. We may assume, therefore, that the living protoplasm

contains about

Tooo ^ Too — -L'J A iU

parts of sulphur, taking the total weight as = 1.

But our little micrococcus, of 0-15 /x in diameter, would, if it

were spherical, have a volume of

77

7, X 0-15^ u., = 18 X 10-^ cubic microns:

* Encyclopaedia Britannica, 9th edit., vol. ill, p. 42, 1875. v

t Sur la limite de petitesse des organismes, Bull. Soc. R. des Sc med. et nat.

de Bruxelhs, Jan. 1903 ; Rec. d'oeuvres (Physiol, generale), p. 325.

{ Cf. A. Fischer, Vorlesungen fiber Bakterien, 1897, p. 50.
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and therefore (taking its density as equal to that of water), a

weight of

18 X 10-4 X 10-9 == 18 X 10-13 mgm.

But of this total weight, the sulphur represents only

18 X 10-13 X 15 X 10-5 = 27 X lO-i^ mgm.

And if we divide this by the weight of an atom of sulphur, we have

27 X 10-17 ^ 275 X 10-22 _ io,000, or thereby.

According to this estimate, then, our little Micrococcus frogrediens

should contain only about 10,000 atoms of sulphur, an element

indispensable to its protoplasmic constitution ; and it follows that

an organism of one-tenth the diameter of our micrococcus would

only contain 10 sulphur-atoms, and therefore only ten chemical

"molecules" or units of protoplasm!

It may be open to doubt whether the presence of sulphur be

really essential to the constitution of the proteid or " protoplasmic
"

molecule ; but Errera gives us yet another illustration of a

similar kind, which is free from this objection or dubiety. The

molecule of albumin, as is generally agreed, can scarcely be less

than a thousand times the size of that of such an element as

sulphur: according to one particular determination*, serum

albumin has a constitution corresponding to a molecular weight

of 10,166, and even this may be far short of the true complexity

of a typical albuminoid molecule. The weight of such a molecule is

8-6 X 10166 X 10-22 _ 8-7 x lO-i^ mgm.

Now the bacteria contain about 14 % of albuminoids, these

constituting by far the greater part of the dry residue; and

therefore (from equation (5)), the weight of albumin in our micro-

coccus is about

^ij^ X 18 X 10-13 _ 2-5 X 10-13 i^gii^_

If we divide this weight by that which we have arrived at as the

weight of an albumin molecule, we have

2-5 X 10-13 ^ 8-7 X 10-18 = 2-9 x 10*,

in other w^ords, our micrococcus apparently contains something

less than 30,000 molecules of albumin.

* F. Hofmeister, quoted in Cohnheim's Chemie der Eiweisskorper, 1900, p. 18.
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According to the most recent estimates, the weight of the

hydrogen molecule is somewhat less than that on which Errera

based his calculations, namely about 16 x 10"^^ mgms. and

according to this value, our micrococcus would contain just about

27,000 albumin molecules. In other words, whichever determina-

tion we accept, we see that an organism one-tenth as large as our

micrococcus, in hnear dimensions, would only contain some thirty

molecules of albumin ; or, in other words, our micrococcus is only

about thirty times as large, in hnear dimensions, as a single albumin

molecule *.

We must doubtless make large allowances for uncertainty in

the assumptions and estimates upon which these calculations are

based ; and we must also remember that the data with which the

physicist provides us in regard to molecular magnitudes are, to

a very great extent, tnaximal values, above which the molecular

magnitude (or rather the sphere of the molecule's range of motion)

is not Ukely to he : but below which there is a greater element of

uncertainty as to its possibly greater minuteness. But nevertheless^

when we shall have made all reasonable allowances for uncertainty

upon the physical side, it will still be clear that the smallest known
bodies which are described as organisms draw nigh towards

molecular magnitudes, and we must recognise that the subdivision

of the organism cannot proceed to an indefinite extent, and in all

probability cannot go very much further than it appears to have

done in these already discovered forms. For, even after giving

all due regard to the complexity of our unit (that is to say the

albumin-molecule), with all the increased possibilities of inter-

relation with its neighbours which this complexity impHes, we
cannot but see that physiologically, and comparatively speaking,

we have come down to a very simple thing.

While such considerations as these, based on the chemical

composition of the organism, teach us that there must be a definite

lower hmit to its magnitude, other considerations of a purely

physical kind lead us to the same conclusion. For our discussion

of the principle of simihtude has already taught us that, long

before we reach these almost infinitesimal magnitudes, the

* McKendrick arrived at a still lower estimate, of about 1250 proteid molecules

in the minutest organisms. Brif. Ass. Rep. 1901, p. 808.
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diminishing organism will have greatly changed in all its physical

relations, and must at length arrive under conditions which must

surely be incompatible with anything such as we understand by

life, at least in its full and ordinary development and manifestation.

We are told, for instance, that the powerful force of surface-

tension, or capillarity, begins to act within a range of about

1/500,000 of an inch, or say 0-05 ^u,. A soap-film, or a film of oil

upon water, may be attenuated to far less magnitudes than this

;

the black spots upon a soap-bubble are known, by various con-

cordant methods of measurement, to be only about 6 x 10-'^ cm.^

or about -006 /x thick, and Lord Rayleigh and M. Devaux* have

obtained films of oil of -002 /x, or even -001 fi in thickness.

But while it is possible for a fluid film to exist in these almost

molecular dimensions, it is certain that, long before we reach

them, there must arise new conditions of which we have Uttle

knowledge and which it is not easy even to imagine.

It would seem that, in an organism of -1 /x in diameter, or even

rather more, there can be no essential distinction between the

interior and the surface layers. No hollow vesicle, I take it, can

exist of these dimensions, or at least, if it be possible for it to do

so, the contained gas or fluid must be under pressures of a formid-

able kindf, and of which we have no knowledge or experience.

Nor, I imagine, can there be any real complexity, or heterogeneity,

of its fluid or semi-fluid contents ; there can be no vacuoles within

such a cell, nor any layers defined within its fluid substance, for

something of the nature of a boundary-film is the necessary

condition of the existence of such layers. Moreover, the whole

organism, provided that it be fluid or semi-fluid, can only be

spherical in form. What, then, can we attribute, in the way of

properties, to an organism of a size as small as, or smaller than,

say -05 [x ? It must, in all probability, be a homogeneous, structure-

less sphere, composed of a very small number of albuminoid or

other molecules. Its vital properties and functions must be

extraordinarily limited ; its specific outward characters, even if we

could see it, must be nil ; and its specific properties must be httle

more than those of an ion-laden corpuscle, enabhng it to perform

* Cf. Perrin, Les Atomes, 1914, p. 74.

t Cf. Tait, On Compression of Air in small 'Bubbles, Proc. B. S. E. V, 1865.
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this or that chemical reaction, or to produce this or that patho-

genic effect. Even among inorganic, non-Hving bodies, there

must be a certain grade of minuteness at which the ordinary

properties become modified. For instance, while under ordinary

circumstances crystaUisation starts in a solution about a minute

solid fragment or crystal of the salt, Ostwald has shewn that we

may have particles so minute that they fail to serve as a nucleus

for crystallisation,—which is as much as to say that they are too

minute to have the form and properties of a " crystal" ; and again,

in his thin oil-films. Lord Rayleigh has noted the striking change

of physical properties which ensues when the film becomes

attenuated to something less than one close-packed layer of

molecules*.

Thus, as Clerk Maxwell put it, "molecular science sets us face

to face with physiological theories. It forbids the physiologist

from imagining that structural details of infinitely small dimensions

[such as Leibniz assumed, one within another, ad ivfiiiitiim]

can furnish an explanation of the infinite variety which exists in

the properties and functions of the most minute organisms."

And for this reason he reprobates, with not undue severity, those

advocates of pangenesis and similar theories of heredity, who

would place "a whole world of wonders within a body so small

and so devoid of visible structure as a germ." But indeed it

scarcely needed Maxwell's criticism to shew forth the immense

physical difficulties of Darwin's theory of Pangenesis : which,

after all, is as old as Democritus, and is no other than that

Promethean particulam tmdique desectani of which we have read,

and at which we have smiled, in our Horace.

There are many other ways in which, when we "make a long

excursion into space," we find our ordinary rules of physical

behaviour entirely upset. A very familiar case, analysed by

Stokes, is that the viscosity of the surrounding medium has a

relatively powerful effect upon bodies below a certain size.

A droplet of water, a thousandth of an inch (25 /x) in diameter,

cannot fall in still air quicker than about an inch and a half per

second; and as its size decreases, its resistance varies as the

diameter, and not (as with larger bodies) as the surface of the

,
* Phil. Mag. XLvni, 1*899 ; Collected Papers, iv. p. 430.
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drop. Thus a drop one-tenth of that size (2-5 ^u.), the size,

apparently, of the drops of water in a Ught cloud, will fall a

hundred times slower, or say an inch a minute; and one again

a tenth of this diameter (say -25 jj,, or about twice as big, in linear

dimensions, as our micrococcus), will scarcely fall an inch in two

hours. By reason of this principle, not only do the smaller

bacteria fall very slowly through the air, but all minute bodies

meet with great proportionate resistance to their movements in

a fluid. Even such comparatively large organisms as the diatoms

and the foraminifera, laden though they are with a heavy shell

of flint or lime, seem to be poised in the water of the ocean, and

fall in it with exceeding slowness.

The Brownian movement has also to be reckoned with,—that

remarkable phenomenon studied nearly a century ago (1827) by

Kobert Brown, facile frincefs botanicorum. It is one more of those

fundamental physical phenomena which the biologists have con-

tributed, or helped to contribute, to the science of physics.

The quivering motion, accompanied by rotation, and even by

translation, manifested by the fine granular particles issuing from

a crushed pollen-grain, and which Robert Brown proved to have

no vital significance but to be manifested also by all minute

particles whatsoever, organic and inorganic, was for many years

unexplained. Nearly fifty years after Brown wrote, it was said

to be "due, either directly to some calorical changes continually

taking place in the fluid, or to some obscure chemical action

between the soUd particles and the fluid w^hich is indirectly

promoted by heat*." Very shortly after these last words were

written, it was ascribed by Wiener to molecular action, and we

now know that it is indeed due to the impact or bombardment of

molecules upon a body so small that these impacts do not for

the moment, as it were, "average out" to approximate equality

on all sides. The movement becomes manifest with particles of

somewhere about 20 jj. in diameter, it is admirably displayed by

particles of about 12/^ in diameter, and becomes more marked

the smaller the particles are. The bombardment causes our

particles to behave just Hke molecules of uncommon size, and this

* Carpenter, The Microscope, erlit. 1862, p. 185.
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behaviour is manifested in several ways*. Firstly, we have the

quivering movement of the particles; secondly, their movement

backwards and forwards, in short, straight, disjointed paths

;

thirdly, the particles rotate, and do so the more rapidly the smaller

they are, and by theory, confirmed by observation, it is found

that particles of 1 /a in diameter rotate on an average through

100° per second, while particles of 13 /a in diameter turn through

only 14° per minute. Lastly, the very curious result appears, that

in a layer of fluid the particles are not equally distributed, nor do

they all ever fall, under the influence of gravity, to the bottom.

But just as the molecules of the atmosphere are so distributed,

under the influence of gravity, that the density (and therefore the

number of molecules per unit volume) falls off in geometrical

progression as we ascend to higher and higher layers, so is it with

our particles, even within the narrow limits of the little portion

of fluid under our microscope. It is only in regard to particles

of the simplest form that these phenomena have been theoretically

investigated!, and we may take it as certain that more complex

particles, such as the twisted body of a Spirillum, would show

other and still more compUcated manifestations. It is at least

clear that, just as the early microscopists in the days before Robert

Brown never doubted but that these phenomena were purely

vital, so we also may still be apt to confuse, in certain cases, the

one phenomenon with the other. We cannot, indeed, without the

most careful scrutiny, decide whether the movements of our

minutest organisms are intrinsically "vital" (in the sense of being

beyond a physical mechanism, or working model) or not. For ex-

ample, Schaudinn has suggested that the undulating movements of

Sfirochaete pallida must be due to the presence of a minute, unseen,

"undulating membrane"; and Doflein says of the same species

that "sie verharrt oft mit eigenthiimlich zitternden Bewegungen

zu einem Orte." Both movements, the trembhng or quivering

* The modern literature on the Brownian Movement is very large, owing to the

value which the phenomenon is shewn to have in determining the size of the atom.

For a fuUer, but still elementary account, see J. Cox, Beyond the Atom, 1913,

pp. 118-128; and see, further, Perrin, Les Atomes, pp. 119-189.

•j- Cf. R. Gans, Wie fallen Stabe mid Scheiben m euier reibenden Fliissigkeit ?

Munchener Bericht, 1911, p. 191; K. Przibram, Ueber die Brown'sche Bewegung

nicht kugelformiger Teilchen, Wiener Ber. 1912, p. 2339.
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movement described by Doflein, and the undulating or rotating

movement described by Schaudinn, are just such as may be easily

and naturally interpreted as part and parcel of the Brownian

phenomenon.

While the Brownian movement may thus simulate in a deceptive

way the active movements of an organism, the reverse statement

also to a certain extent holds good. One sometimes lies awake of

a summer's morning watching the flies as they dance under the

ceiling. It is a very remarkable dance. The dancers do not

whirl or gyrate, either in company or alone ; but they advance

and retire; they seem to jostle and rebound; between the rebounds

they dart hither or thither in short straight snatches of hurried

flight; and turn again sharply in a new rebound at the end of each

little rush. Their motions are wholly "erratic," independent of

one another, and devoid of common purpose. This is nothing else

than a vastly magnified picture, or simulacrum, of the Brownian

movement; the parallel between the two cases lies in their

complete irregularity, but this in itself implies a close resemblance.

One might see the same thing in a crowded market-place, always

provided that the bustling crowd had no business whatsoever.

In like manner Lucretius, and Epicurus before him, watched the

dust-motes quivering in the beam, and saw in them a mimic

representation, rei simulacrmn ef imago, of the eternal motions of

the atoms. Again the same phenomenon may be witnessed under

the microscope, in a drop of water swarming with Paramoecia or

suchlike Infusoria ; and here the analogy has been put to a numerical

test. Following with a pencil the track of each little swimmer,

and dotting its place every few seconds (to the beat of a metronome),

Karl Przibram found that the mean successive distances from a

common base-line obeyed with great exactitude the "Einstein

formula," that is to say the particular form of the "law of chance"

which is applicable to the case of the Brownian movement*. The

phenomenon is (of course) merely analogous, and by no means

identical with the Brownian movement; for the range of motion

of the little active organisms, whether they be gnats or infusoria,

is vastly greater than that of the minute particles which are

* Ueber die ungeordnete Bewegung niederer Thiere, Pfliiger^s Archiv, CLin,

p. 401, 1913.
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passive under bombardment; but nevertheless Przibram is

inclined to think that even his comparatively large infusoria are

small enough for the molecular bombardment to be a stimulus,

though not the actual cause, of their irregular and interrupted

movements.

There is yet another very remarkable phenomenon which may
come into play in the case of the minutest of organisms ; and this

is their relation to the rays of light, as Arrhenius has told us.

On the waves of a beam of light, a very minute particle {in

vacuo) should be actually caught up, and carried along with

an immense velocity; and this "radiant pressure" exercises

its most powerful influence on bodies which (if they be of

spherical form) are just about -00016 mm., or -16 /x in diameter.

This is just about the size, as we have seen, of some of

our smallest known protozoa and bacteria, while we have

some reason to believe that others yet unseen, and perhaps

the spores of many, are smaller still. Now we have seen that

such minute particles fall with extreme slowness in air, even at

ordinary atmospheric pressures: our organism measuring '16 /j,

would fall but 83 metres in a year, which is as much as to say

that its weight offers practically no impediment to its transference,

by the slightest current, to the very highest regions of the atmo-

sphere. Beyond the atmosphere, however, it cannot go, until

some new force enable it to resist the attraction of terrestrial

gravity, which the viscosity of an atmosphere is no longer at

hand to oppose. But it is conceivable that our particle ?nay ga

yet farther, and actually break loose from the bonds of earth.

For in the upper regions of the atmosphere, say fifty miles high,

it will come in contact with the rays and flashes of the Northern

Lights, which consist (as Arrhenius maintains) of a fine dust, or

cloud of vapour-drops, laden with a charge of negative electricity,

and projected outwards from the sun. As soon as our particle

acquires a charge of negative electricity it will begin to be repelled

by the similarly laden auroral particles, and the amount of charge

necessary to enable a particle of given size (such as our little

monad of -16 /x) to resist the attraction of gravity may be calculated,

and is found to be such as the actual conditions can easily supply.

Finally, when once set free from the entanglement of the earth's
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atmosphere, the particle may be propelled by the "radiant

pressure " of light, with a velocity which will carry it.—like

Uriel gliding on a sunbeam,—as far as the orbit of Mars in

twenty days, of Jupiter in eighty days, and as far as the nearest

fixed star in three thousand, years ! This, and much more, is

Arrhenius's contribution towards the acceptance of Lord Kelvin's

hypothesis that life may be, and may have been, disseminated

across the bounds of space, throughout the solar system and the

whole universe

!

It may well be that we need attach no great practical importance

to this bold conception ; for even though stellar space be shewn to

be mare liberum to minute material travellers, we may be sure that

those which reach a stellar or even a planetary bourne are infinitely,

or all but infinitely, few. But whether or no, the remote possibilities

of the case serve to illustrate in a very vivid way the profound

differences of physical property and potentiahty which are

associated in the scale of magnitude with simple differences of

degree.



CHAPTER III

THE RATE OF GROWTH

When we study magnitude by itself, apart, that is to say,

from the gradual changes to which it may be subject, we are

deaUng Avith a something which may be adequately represented

by a number, or by means of a hne of definite length ; it is what

mathematicians call a scalar phenomenon. When we introduce

the conception of change of magnitude, of magnitude which varies

as we pass from one direction to another in space, or from one

instant to another in time, our phenomenon becomes capable of

representation by means of a line of which we define both the

length and the direction ; it is (in this particular aspect) what is

called a vector phenomenon.

When we deal with magnitude in relation to the dimensions

of space, the vector diagram which we draw plots magnitude in

one direction against magnitude in another,—length against

height, for instance, or against breadth ; and the result is simply

what we call a picture or drawing of an object, or (more correctly)

a "plane projection" of the object. In other words, what we

call Form is a ratio of magnitudes, referred to direction in space.

When in deahng with magnitude we refer its variations to

successive intervals of time (or when, as it is said, we equate it

with time), we are then dealing with the phenomenon of groivth
;

and it is evident, therefore, that this term growth has wide

meanings. For growth may obviously be positive or negative

;

that is to say, a thing may grow larger or smaller, greater or less

;

and by extension of the primitive concrete signification of the

word, we easily and legitimately apply it to non-material things,

such as temperature, and say, for instance, that a body "grows"

hot or cold. When in a two-dimensional diagram, we represent

a magnitude (for instance length) in relation to time (or "plot"
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length against time, as the phrase is), we get that kind of vector

diagram which is commonly known as a "curve of growth." We
perceive, accordingly, that the phenomenon which we are now

studying is a velocity (whose " dimensions" are ^t or ^ J
; and

this phenomenon we shall speak of, simply, as a rate of growth.

In various conventional ways we can convert a two-dimensional

into a three-dimensional diagram. We do so, for example, by

means of the geometrical method of "perspective" when we

represent upon a sheet of paper the length, breadth and depth of

an object in three-dimensional space ; but we do it more simply,

as a rule, by means of "contour-lines," and always when time is

one of the dimensions to be represented. If we superimpose upon

one another (or even set side by side) pictures, or plane projections,

of an organism, drawn at successive intervals of time, we have

such a three-dimensional diagram, which is a partial representation

(hmited to two dimensions of space) of the organism's gradual

change of form, or course of development; and in such a case

our contour-lines may, for the purposes of the embryologist, be

separated by intervals representing a few hours or days, or, for

the purposes of the palaeontologist, by interspaces of unnumbered

and innumerable years*.

Such a diagram represents in two of its three dimensions form,

and in two, or three, of its dimensions growth ; and so we see how

intimately the two conceptions are correlated or iriter-related to

one another. In short, it is obvious that the form of an animal

is determined by its specific rate of growth in various directions

;

accordingly, the phenomenon of rate of growth deserves to be

studied as a necessary preliminary to the theoretical study of

form, and, mathematically speaking, organic foym itself appears

to us as a function of titnei.

* Sometimes we find one and the same diagram suffice, whether the intervals

of time be great or small; and we then invoke "Wolff's Law," and assert that

the life-history of the individual repeats, or recapitulates, the history of the race.

f Our subject is one of Bacon's "Instances of the Course," or studies wherein

we "measure Nature by periods of Time." In Bacon's Catalogue of Particular

Histories, one of the odd hundred histories or investigations which he foreshadowed

is precisely that which we are engaged on, viz. a "History of the Growth and Increase

of the Body, in the whole and in its parts."

4—2
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At the same time, we need only consider this part of our

subject somewhat briefly. Though it has an essential bearing on

the problems of morphology, it is in greater degree involved with

physiological problems ; and furthermore, the statistical or

numerical aspect of the question is peculiarly adapted for the

mathematical study of variation and correlation. On these

important subjects we shall scarcely touch ; for our main purpose

will be sufficiently served if we consider the characteristics of a

rate of growth in a few illustrative cases, and recognise that this

rate of growth is a very important specific property, with its own

characteristic value in this organism or that, in this or that part

of each organism, and in this or that phase of its existence.

The statement which we have just made that "the form of an

organism is determined by its rate of growth in various directions,"

is one which calls (as we have partly seen in the foregoing chapter)

for further explanation and for some measure of qualification.

Among organic forms we shall have frequent occasion to see that

form is in many cases due to the immediate or direct action of

certain molecular forces, of which surface-tension is that which plays

the greatest part. Now when surface-tension (for instance) causes

a minute semi-fluid organism to assume a spherical form, or gives

the form of a catenary or an elastic curve to a film of protoplasm

in contact with some sohd skeletal rod, or when it acts in various

other ways which are productive of definite contours, this is a pro-

cess of conformation that, both in appearance and reahty, is very

difierent from the process by which an ordinary plant or animal

grows into its specific form. In both cases, change of form is

brought about by the movement of portions of matter, and in

both cases it is ultimately due to the action of molecular forces

;

but in the one case the movements of the particles of matter lie

for the most part within molecular range, while in the other we.

have to deal chiefly with the transference of portions of matter

into the system from without, and from one widely distant part

of the organism to another. It is to this latter class of phenomena

that we usually restrict the term growth; and it is in regard to

them that we are in a position to study the rate of action in

different directions, and to see that it is merely on a difference

of velocities that the modification of form essentially depends.
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The difference between the two classes ^i phenomena is somewhat

akin to the difference between the forces which determine the

form of a rain-drop and those which, by the flowing of the waters

and the sculpturing of the sohd earth, have brought about the

complex configuration of a river ; molecular forces are paramount

in the conformation of the one, and molar forces are dominant

in the other.

At the same time it is perfectly true that all changes of form,

inasmuch as they necessarily involve changes of actual and relative

magnitude, may, in a sense, be properly looked upon as phenomena

of growth ; and it is also true, since the movement of matter must

always involve an element of time*, that in all cases the rate of

growth is a phenomenon to be considered. Even though the

molecular forces which play their part in modifying the form of

an organism exert an action which is, theoretically, all but

instantaneous, that action is apt to be dragged out to an appreciable

interval of time by reason of viscosity or some other form of

resistance in the material. From the physical or physiological

point of view the rate of action even in such cases may be well

worth studying ; for example, a study of the rate of cell-division

in a segmenting egg may teach us something about the work done,

and about the various energies concerned. But in such cases the

action is, as a rule, so homogeneous, and the form finally attained

is so definite and so httle dependent on the time taken to effect

it, that the specific rate of change, or rate of growth, does not

enter into the moriihological problem.

To sum up, we may lay down the following general statements.

The form of organisms is a phenomenon to be referred in part

to the direct action of molecular forces, in part to a more complex

and slower process, indirectly resulting from chemical, osmotic

and other forces, by which material is introduced into the organism

and transferred from one part of it to another. It is this latter

complex phenomenon which we usually speak of as "growth."

* Cf. Aristotle, Phys. vi, 5, 235 a 11. eVet yap airaaa Kivrjcm iv xP^''Vy '''''^•

Bacon emphasised, in like manner, the fact that "all motion or natural action

is performed in time : some more quickly, some more slowly, but all in periods

determined and fixed in the nature of things. Even those actions which seem

to be performed suddenly, and (as we say) in the twinkling of an eye, are found

to admit of degree in respect of duration." Nov. Org. XLVI.
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Every growing organism, and every part of such a growing

organism, has its own specific rate of growth, referred to a particular

direction. It is the ratio between the rates of growth in various

directions by which we must account for the external forms of

all, save certain very minute, organisms. This ratio between

rates of growth in various directions may sometimes be of a

simple kind, as when it results in the mathematically definable

outline of a shell, or in the smooth curve of the margin of a leaf.

It may sometimes be a very constant one, in which case the

organism, w^hile growing in bulk, suffers little or no perceptible

change in form; but such equilibrium seldom endures for more

than a season, and when the ratio tends to alter, then we have

the phenomenon of morphological "development," or steady and

persistent change of form.

This elementary concept of Form, as determined by varying

rates of Growth, w^as clearly apprehended by the mathematical

mind of Haller,—who had learned his mathematics of the great

John BernoulH, as the latter in turn had learned his physiology

from the writings of Borelli. Indeed it was this very point, the

apparently unlimited extent to which, in the development of the

chick, inequalities of growth could and did produce changes of

form and changes of anatomical "structure,'' that led Haller to

surmise that the process was actually without limits, and that all

development was but an unfolding, or "evolutio,'' in which no

part came into being which had not essentially existed before *.

In short the celebrated doctrine of "preformation" implied on the

one hand a clear recognition of what, throughout the later stages

of development, growth can do, by hastening the increase in size

of one part, hindering that of another, changing their relative

magnitudes and positions, and altering their forms ; while on the

other hand it betrayed a failure (inevitable in those days) to

recognise the essential difference between these movements of

masses and the molecular processes which precede and accompany

* Cf. (e.g.) Elem. Physiol, ed. 1766, viii, p. 114, '•Ducimur autem ad evolu-

tionem potissimum, quando a perfecto animale retrorsum progredimur, et incre-

mentorum atque nautationum seriem relegimus. Ita inveniemus perfectum illud

animal fuisse imperfectius, alterius figurae et fabricae, et denique rude et informe

:

et tamen idem semper animal sub iis diversis phasibus fuisse, quae absque uUo
saltu perpetuos parvosque per gradus cohaereant."
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them, and which are characteristic of another order of magni-

tude.

By other writers besides Haller the very general, though not

strictly universal connection between form and rate of growth

has been clearly recognised. Such a connection is implicit in

those "proportional diagrams" by which Diirer and some of his

brother artists were wont to illustrate the successive changes of

form, or of relative dimensions, which attend the growth of the

child, to boyhood and to manhood. The same connection was

recognised, more explicitly, by some of the older embryologists,

for instance by Pander*, and appears, as a survival of the

doctrine of preformation, in his study of the development of

the chick. And long afterwards, the embryological aspect of

the case was emphasised by His, who pointed out, for instance,

that the various foldings of the blastoderm, by which the neural

and amniotic folds were brought into being, were essentially

and obviously the resultant of unequal rates of growth,—of

local accelerations or retardations of growth,^—in what to begin

with was an even and uniform layer of embryonic tissue. If

we imagine a flat sheet of paper, parts of which are caused

(as by moisture or evaporation) to expand or to contract, the

plane surface is at once dimpled, or "buckled," or folded, by

the resultant forces of expansion or contraction : and the various

distortions to which the plane surface of the "germinal disc" is

subject, as His shewed once and for all, are precisely analogous.

An experimental demonstration still more closely comparable to

the actual case of the blastoderm, is obtained by making an

"artificial blastoderm," of httle pills or pellets of dough, which

are caused to grow, with varying velocities, by the addition

of varying quantities of yeast. Here, as Roux is careful to

point outt, we observe that it is not only the growth of the

individual cells, but the traction exercised through their mutual

interconnections, which brings about the foldings and other dis-

tortions of the entire structure.

* Beitrdge zur Entwickelungsgeschichte des Hiihnchens im Ei, p. 40, 1817. Roux
ascribes the same views also to Von Baer and to R. H. Lotze (Allg. Physiologie,

p. 353, 1851).

t Roux, Die Entwickdungsmeclianik, p. 99, 1905.
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But this again was clearly present to Haller's mind, and formed

an essential part of his embryological doctrine. For he has no

sooner treated of incrementum, or celeritas incrementi, than he

proceeds to deal with the contributory and complementary pheno-

mena of expansion, traction {adfractio)*, and pressure, and the

more subtle influences which he denominates vis derivationis et

revulsio7iis'\ : these latter being the secondary and correlated

effects on growth in one part, brought about, through such

changes as are produced (for instance) in the circulation, by the

growth of another.

Let us admit that, on the physiological side, Haller's or His's

methods of explanation carry us back but a little way
;
yet even

this little way is something gained. Nevertheless, I can well

remember the harsh criticism, and even contempt, which His's

doctrine met with, not merely on the ground that it was inadequate,

but because such an explanation was deemed wholly inappropriate,

and was utterly disavowed j. Hertwig, for instance, asserted that,

in embryology, when we found one embryonic stage preceding

another, the existence of the former was, for the embryologist,

an all-sufficient "causal explanation" of the latter. "We consider

.
(he says), that we are studying and explaining a causal relation

when we have demonstrated that the gastrula arises by invagina-

tion of a blastosphere, or the neural canal by the infolding of a

cell plate so as to constitute a tube §." For Hertwig, therefore, as

* Op. cif. p. 302, " Magnum hoc naturae instrumentum, etiam in corpore

animato evolvendo potenter operatur; etc."

t Ibid. p. 306. "Subtiliora ista, et aliquantum hypotliesi mista, tamen magnum
mihi videntur speciem veri habere."

{ Cf. His, On the Principles of Animal Morphology, Proc. JR. S. E. xv,

1888, p. 294: "My own attempts to introduce some elementary mechanical or

physiological conceptions into embryology have not generally been agreed to by
morphologists. To one it seemed ridiculous to speak of the elasticity of the germinal

layers; another thought that, by such considerations, we 'put the cart before

the horse ' : and one more recent author states, that we have better things to do
in embryology than to discuss tensions of germinal layers and similar questions,

since all explanations must of necessity be of a phylogenetic nature. This opposition

to the application of the fundamental principles of science to embryological questions

would scarcely be intelligible had it not a dogmatic background. No other explana-

tion of living forms is allowed than heredity, and any which is founded on another

basis must be rejected To think that hei'edity will build organic beings

without mechanical means is a piece of unscientific mysticism."

§ Hertwig, 0., Zeit und Streitfragen der Biologie, ii, 1897
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Roux remarks, the task of investigating a physical mechanism in

embryology,
—"der Ziel das Wirken zu erforschen,"—has no

existence at all. For Balfour also, as for Hertwig, the mechanical

or physical aspect of organic development had httle or no attraction.

In one notable instance, Balfour himself adduced a physical, or

quasi-physical, explanation of an organic process, when he referred

the various modes of segmentation of an ovum, complete or partial,

equal or unequal and so forth, to the varying amount or the

varying distribution of food yolk in association with the germinal

protoplasm of the egg*. But in the main, Balfour, hke all the

other embryologists of his day, was engrossed by the problems of

phylogeny, and he expressly defined the aims of comparative

embryology (as exemphfied in his own textbook) as being "two-

fold: (1) to form a basis for Phylogeny. and (2) to form a basis

for Organogeny or the origin and evolution of organsf."

It has been the great service of Roux and his fellow-workers

of the school of "Entwickelungsmechanik," and of many other

students to whose work we shall refer, to try, as His tried J, to

import into embryology, wherever possible, the simpler concepts

of physics, to introduce along with them the method of experiment,

and to refuse to be bound by the narrow limitations which such

teaching as that of Hertwig would of necessity impose on the

work and the thought and on the whole philosophy of the biologist.

Before we pass from this general discussion to study some of

the particular phenomena of growth, let me give a single illustration,

from Darwin, of a point of view which is in marked contrast to

Haller's simple but essentially mathematical conception of Form.

There is a curious passage in the Origin of Species^, where

Darwin is discussing the leading facts of embryology, and in

particular Von Baer's "law of embryonic resemblance." Here

Darwin says "We are so much accustomed to see a difference in

* Cf. Roux, Gesammelte Ahhandlungen, ii, p. 31, 1895.

t Treatise on Comparative Embryology, i, p. 4, 1881.

% Cf. Fick, Anal. Anzeiger, xxv, p. 190, 1904.

§ 1st ed. p. 444; 6th ed. p. 390. The student should not fail to consult the

passage in question; for there is always a risk of misunderstanding or mis-

interpretation when one attempts to epitomise Darwin's carefully condensed

arguments.
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structure between the embryo and the adult, that we are tempted

to look at this dift'erence as in some necessary manner contingent

on growth. But there is no reason why, for instance, the wing of

a hat, or the Jin of a porfoise, should not have been sketched out with

all their parts in proper proportion, as soon as any part became

visible.'' After pointing out with his habitual care various

exceptions, Darwin proceeds to lay down two general principles,

viz. "that shght variations generally appear at a not very early

period of hfe," and secondly, that "at whatever age a variation

first appears in the parent, it tends to reappear at a corresponding

age in the offspring." He then argues that it is with nature as

with the fancier, who does not care what his pigeons look hke

in the embryo, so long as the full-grown bird possesses the desired

qualities ; and that the process of selection takes place when

the birds or other animals are nearly grown up,—at least on the

part of the breeder, and presumably in nature as a general rule.

The illustration of these principles is set forth as follows: "Let

us take a group of birds, descended from some ancient form and

modified through natural selection for different habits. Then,

from the many successive variations having supervened in the

several species at a not very early age, and having been inherited

at a corresponding age, the young will still resemble each other

much more closely than do the adults,—just as we have seen

with the breeds of the pigeon....Whatever influence long-continued

use or disuse may have had in modifying the hmbs or other parts

of any species, this will chiefly or solely have affected it when
nearly mature, when it was compelled to use its full powers to

gain its own living; and the effects thus produced will have been

transmitted to the offspring at a corresponding nearly mature

age. Thus the young will not be modified, or will be modified

only in a shght degree, through the effects of the increased use or

disuse of parts." This whole argument is remarkable, in more

ways than we need try to deal with here ; but it is especially

remarkable that Darwin should -begin by casting doubt upon the

broad fact that a "difference in structure between the embryo

and the adult" is "in some necessary manner contingent on

growth"; and that he should see no reason why complicated

structures of the adult " should not have been sketched out
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with all their parts in proper proportion, as soon as any part

became visible." It would seem to me that even the most

elementary attention to form in its relation to growth would have

removed most of Darwin's difficulties in regard to the particular

phenomena which he is here considering. For these phenomena

are phenomena of form, and therefore of relative magnitude

;

and the magnitudes in question are attained by growth, proceeding

with certain specific velocities, and lasting for certain long periods

of time. And it is accordingly obvious that in any two related

individuals (whether specifically identical or not) the differences

between them must manifest themselves gradually, and be but

little apparent in the young. It is for the same simple reason

that animals which are of very dift'erent sizes when adult, differ

less and less in size (as well as in form) as we trace them back-

wards through the foetal stages.

Though we study the visible effects of varying rates of growth

throughout wellnigh all the problems of morphology, it is not very

often that we can directly measure the velocities concerned.

But owing to the obvious underlying importance which the

phenomenon has to the morphologist we must make shift to study

it where we can, even though our illustrative cases may seem to

have little immediate bearing on the morphological problem*.

In a very simple organism, of spherical symmetry, such as the

single spherical cell of Protococcus or of Orbulina, growth is

reduced to its simplest terms, and indeed it becomes so simple

in its outward manifestations that it is no longer of special interest

to the morphologist. The rate of growth is measured by the rate

of change in length of a radius, i.e. V = {R' — R)/T, and from

this we may calculate, as already indicated, the rate of growth in

terms of surface and of volume'. The growing body remains of

constant form, owing to the symmetry of the system; because,

that is to say, on the one hand the pressure exerted by the growing

protoplasm is exerted equally in all directions, after the manner

of a hydrostatic pressure, which indeed it actually is : while on

the other hand, the "skin" or surface layer of the cell is sufficiently

* '"In omni rerum naturalium historia utile est mensuras definiri et numeros,"

Haller, Elem. Physiol, ii, p. 258, 1760. Cf. Hales, Vegetable Staficks, Introduction.



60 THE RATE OF GROWTH [ch.

homogeneous to exert at every point an approximately uniform

resistance. Under these conditions then, the rate of growth is

uniform in all directions, and does not affect the form of the

organism.

But in a larger or a more complex organism the study of growth,

and of the rate of growth, presents us with a variety of problems,

and the whole phenomenon becomes a factor of great morphological

importance. • We no longer find that it tends to be miiform in

all directions, nor have we any right to expect that it should.

The resistances which it meets with will no longer be uniform.

In one direction but not in others it will be opposed by the

important resistance of gravity; and within the growing system

itself all manner of structural differences will come into play,

setting up unequal resistances to growth by the varying rigidity

or viscosity of the material substance in one direction or another.

At the same time, the actual sources of growth, the chemical and

osmotic forces which lead to the intussusception of new matter,

are not uniformly distributed ; one tissue or one organ may well

manifest a tendency to increase while another does not; a series

of bones, their intervening cartilages, and their surrounding

muscles, may all be capable of very different rates of increment.

The differences of form which are the resultants of these differences

in rate of growth are especially manifested during that, part of

life when growth itself is rapid: when the organism, as we say,

is undergoing itfe develojoment . When growth in general has

become slow, the relative differences in rate between different

parts of the organism may still exist, and may be made manifest

by careful observation, but in many, or perhaps in most cases, the

resultant change of form does not strike the eye. Great as are

the differences between the rates of growth in different parts of

an organism, the marvel is that the ratios between them are so

nicely balanced as they actually are, and so capable, accordingly,

of keeping for long periods of time the form of the growing organism

all but unchanged. There is the nicest possible balance of forces

and resistances in every part of the complex body; and when

this normal equilibrium is disturbed, then we get abnormal

growth, in the shape of tumours, exostoses, and malformations

of every kind.
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The rate of growth in Man.

Man will serve us as well as another organism for our first

illustrations of rate of growth ; and we cannot do better than go

for our first data concerning him to Quetelet's Anthro'pometrie* , an

epoch-making book for the biologist. For not only is it packed

with information, some of it still unsurpassed, in regard to human
growth and form, but it also merits our highest admiration as the

first great essay in scientific statistics, and the first work in which

organic variation was discussed from the point of view of the

mathematical theory of probabilities.

Fig. 3. Curve of Growth in Man, from birth to 20 yrs (3) ; from Quetelet's Belgian

data. The upper curve of stature from Bowditch's Boston data.

If the child be some 20 inches, or say 50 cm. tall at birth, and

the man some six feet high, or say 180 cm., at twenty, we may
say that his average rate of growth has been (180 — 50)/20 cm., or

6-5 centimetres per annum. But we know very well that this is

* Brussels, 1871. Cf. the same author's Physique sociale, 1835, and Lettres

sur la theorie des probabilites, 1846. See also, for the general subject, Boyd, R.,

Tables of weights of the Human Body, etc. Phil. Trans, vol. cli, 1861 ; Roberts,

C, Manual of Aiithropometry, 1878; Daffner, F., Das Wachsthum des Menschen

(2nd ed.), 1902, etc.
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but a very rough preliminary statement, and that the boy grew

quickly during some, and slowly during other, of his twenty years.

It becomes necessary therefore to study the phenomenon of growth

in successive small portions ; to study, that is to say, the successive

lengths, or the successive small differences, or increments, of

length (or of weight, etc.), attained in successive short increments

of time. This we do in the first instance in the usual way, by

the "graphic method" of plotting length against time, and so con-

structing our "curve of growth." Our curve of growth, whether

of weight or length (Fig. 3), has always a certain characteristic

form, or characteristic curvature. This is our immediate proof of

the fact that the rate of growth changes as time goes on ; for had

it not been so, had an equal increment of length been added in

each equal interval of time, our "curve" would have appeared

as a straight line. Such as it is, it tells us not only that the rate

of growth tends to alter, but that it alters in a definite and orderly

way ; for, subject to various minor interruptions, due to secondary

causes, our curves of growth are, on the whole, "smooth" curves.

The curve of growth for length or stature in man indicates

a rapid increase at the outset, that is to say during the quick

growth of babyhood ; a long period of slower, but still rapid and

almost steady growth in early boyhood; as a rule a marked

quickening soon after the boy is in his teens, when he comes to

"the growing age" ; and finally a gradual arrest of growth as the

boy "comes to his full height," and reaches manhood.

If we carried the curve further, we should see a very curious

thing. We should see that a man's full stature endures but for

a spell; long before fifty* it has begun to abate, by sixty it is

notably lessened, in extreme old age the old man's frame is

shrunken and it is but a memory that "he once was tall." We
have already seen, and here we see again, that growth may have

a "negative value." The phenomenon of negative growth in old

age extends to weight also, and is evidently largely chemical in

origin : the organism can no longer add new material to its fabric

fast enough to keep pace with the wastage of time. Our curve

* Dr Johnson was not far wrong in saying that "life decHnes from thirty-five"

;

though the Autocrat of the Breakfast-table, like Cicero, declares that "the furnace

is in full blast for ten years longer."
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of growth is in fact a diagram of activity, or "time-energy"

diagram*. As the organism grows it is absorbing energy beyond

its daily needs, and accumulating it at a rate depicted in our

Stature, weight, and span of outstretched arms.

{After Qnetelet, pp- 193, 346.)

Stature in metres Weight in kgm. Span of % ratio

f
^

^ ,

'^
-, arms, of stature

Age Male Female % F/M Male Female % F/M male to span

0-500 0-494 98-8 3-2 2-9 90-7 0-496 100-8

1 0-698 0-690 98-8 9-4 8-8 93-6 0-695 100-4

2 0-791 0-781 98-7 11-3 10-7 94-7 0-789 100-3

3 0-864 0-854 98-8 12-4 11-8 95-2 0-863 100-1

4 0-927 0-915 98-7 14-2 13-0 91-5 0-927 100-0

5 0-987 0-974 98-7 15-8 14-4 91-1 0-988 99-9

6 1-046 1-031 98-5 17-2 16-0 93-0 1-048 99-8

7 1-104 1-087 98-4 19-1 •17-5 91-6 1-107 99-7

8 1-162 1-142 98-2 20-8 19-1 91-8 1-166 99-6

9 1-218 1-196 98-2 22-6 21-4 94-7 1-224 99-5

10 1-273 1-249 98-1 24-5 23-5 95-9 1-281 99-4

11 1-325 1-301 98-2 27-1 25-6 94-5 1-335 99-2

12 1-375 1-352 98-3 29-8 29-8 100-0 1-388 99-1

13 1-423 1-400 98-4 34-4 32-9 95-6 1-438 98-9

14 1-469 1-446 98-4 38-8 36-7 94-6 1-489 98-7

15 1-513 1-488 98-3 43-6 40-4 92-7 1-538 99-4

16 1-554 1-521 97-8 49-7 43-6 87-7 1-584 98-1

17 1-594 1-546 97-0 52-8 47-3 89-6 1-630 97-9

18 1-630 1-563 95-9 57-8 49-0 84-8 1-670 97-6

19 1-655 1-570 94-9 58-0 51-6 89-0 1-705 97-1

20 1-669 1-574 94-3 60-1 52-3 87-0 1-728 96-6

25 1-682 1-578 93-8 62-9 53-3 84-7 1-731 97-2

30 1-686 1-580 93-7 63-7 54-3 85-3 1-766 95-5

40 1-686 1-580 93-7 63-7 55-2 86-7 1-766 95-5

50 1-686 1-580 93-7 63-5 56-2 88-4 — —
60 1-676 1-571 93-7 61-9 54-3 87-7 — —
70 1-660 1-556 93-7 59-5 51-5 86-5 -^ —
80 1-636 1-534 93-8 57-8 49-4 85-5 — —
90 1-610 1-510 93-8 57-8 49-3 85-3 — —

curve ; but the time comes when it accumulates no longer, and at

last it is constrained to draw upon its dwindling store. But in part,

the slow decline in stature is an expression of an unequal contest

between our bodily powers and the unchanging force of gravity,

* Joly, The Abundance of Life, 1915 (1890), p. 86.
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which draws us down when we would fain rise up*. For against

gravity we fight all our days, in every movement of our limbs, in

every beat of our hearts ; it is the indomitable force that defeats

us in the end, that lays us on our deathbed, that lowers us to the

grave t-

Side by side with the curve which repiesents growth in length,

or stature, our diagram shows the curve of weight J. That this

curve is of a very different shape from the former one, is accounted

for in the main (though not wholly) by the fact which we have

already dealt with, that, whatever be the law of increment in a

Unear dimension, the law of increase in volume, and therefore in

weight, will be that these latter magnitudes tend to vary as

the cubes of the linear dimensions. This however does not

account for the change of direction, or "point of inflection"

which we observe in the curve of weight at about one or two

years old, nor for certain other differences between our two curves

which the scale of our diagram does not yet make clear. These

differences are due to the fact that the form of the child is altering

with growth, that other linear dimensions are varying somewhat

differently from length or stature, and that consequently the

growth in bulk or weight is following a more comphcated law.

Our curve of growth, whether for weight or length, is a direct

picturs of velocity, for it represents, as a connected series, the

successive epochs of time at which successive weights or lengths

are attained. But, as we have already in part seen, a great part

of the interest of our curve lies in the fact that we can see from

it, not only that length (or some other magnitude) is changing,

but that the rate of change of magnitude, or rate of growth, is

itseK changing. We have, in short, to study the phenomenon of

acceleration: we have begun by studying a velocity, or rate of

* " Lou pes, mestre de tout [Le poids, maitre de tout], mestre senso vergougnOi

Que te tirasso en bus de sa brutalo pougno," J. H. Fabre, Oubreto prouvenQcdo, p. 61.

f The continuity of the phenomenon of growth, and the natural passage from

the phase of increase to that of decrease or decay, are admirably discussed by

Enriques, in " La morte," Biv. di Scienza, 1907, and in " Wachsthum und seine

analytische Darstellung," Biol. Ceniralbl. June, 1909. Haller (Elem. vn, p. 68)

recognised decrementum as a phase of growth, not less important (theoretically)

than incrementum: "tristis, sed copiosa, haec est materies."

J Cf. (int. al.), Friedenthal, H., Das Wachstum des K6rpergewichtes...in

verschiedenen Lebensaltem, Zeit. f. allg. Physiol, ix, pp. 487-514, 1909.
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change of magnitude ; we must now study an acceleration, or

rate of change of velocity. The rate, or velocity, of growth is

measured by th? slope of the curve ; where the curve is steep, it

means that growth is rapid, and when growth ceases the curve

appears as a horizontal line. If we can find a means, then, of

representing at successive epochs the corresponding slope, or

steepness, of the curve, we shall have obtained a picture of the

rate of change of velocity, or the acceleration of growth. The

measure of the steepness of a curve is given by the tangent to

the curve, or we may estimate it by taking for equal intervals

of time (strictly speaking, for each infinitesimal interval of time)

the actual increment added during that interval of time : and in

practice this simply amounts to taking the successive differences

between the values of length (or of weight) for the successive

ages which we have begun by studying. If we then plot these

successive differences against time, we obtain a curve each point

upon which represents a velocity, and the whole curve indicates

the rate of change of velocity, and we call it an acceleration-curve.

It contains, in truth, nothing whatsoever that was not implicit

in our former curve ; but it makes clear to our eye, and brings

within the reach of further investigation, phenomena that were

hard to see in the other mode of representation.

The acceleration-curve of height, which we here illustrate, in

Fig. 4, is very different in form from the curve of growth which

we have just been looking at; and it happens that, in this case,

there is a very marked difference between the curve which we

obtain from Quetelet's data of growth in height and that which

we may draw from any other series of observations known to me
from British, French, American or German writers. It begins (as

will be seen from our next table) at a very high level, such

as it never afterwards attains ; and still stands too high, during

the first three or four years of life, to be represented on the scale

of the accompanying diagram. From these high velocities it falls

away, on the whole, until the age when growth itself ceases, and

when the rate of growth, accordingly, has, for some years together,

the constant value of nil ; but the rate of fall, or rate of change of

velocity, is subject to several changes or interruptions. During

the first three or four years of life the fall is continuous and rapid,

T. G. 5
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but it is somewhat arrested for a wkile in childhood, from about

five years old to eight. According to Quetelet's data, there is

another shght interruption in the falhng rate between the ages of

about fourteen and sixteen ; but in place of this almost insignificant

interruption, the Enghsh and other statistics indicate a sudden
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marked differences between different races, as we shall presently

see there are between the two sexes, in regard to the epochs of

acceleration of growth, in other words, in the "phase" of the

curve.

It is evident that, if we pleased, we might represent the rate

of change of acceleration on yet another curve, by constructing a

table of "second differences"; this would bring out certain very

interesting phenomena, which here however we must not stay to

discuss.

Annual Increment of Weight in Man (kgm.).

(After Quetelet, Anihropometrie, p. 346*.)

Increment Increment

Age
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during the first two or three years of hfe. After a shght recovery,

it runs nearly level during boyhood from about five to twelve

years old; it then rapidly rises, in the "growing period"' of the

early teens, and slowly and steadily falls from about the age of

sixteen onwards. It does not reach the base-line till the man is

about seven or eight and twenty, for normal increase of weight

continues during the years when the man is "filling out," long

after growth in height has ceased ; but at last, somewhere about

thirty, the velocity reaches zero, and even falls below it, for then

S 3

i4

year

Fig. 5. Mean annual increments of weight, in man and woman;
from Quetelet's data.

the man usually begins to lose weight a little. The subsequent

slow changes in this acceleration-curve we need not stop to deal

with.

In the same diagram (Fig. 5) I have set forth the acceleration-

curves in respect of increment of weight for both man and woman,
according to Quetelet. That growth in boyhood and growth in

girlhood follow a very different course is a matter of common
knowledge ; but if we simply plot the ordinary curve of growth,

or velocity-curve, the difference, on the small scale of our diagrams,
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is not very apparent. It is admirably brought out, however, in

the acceleration-curves. Here we see that, after infancy, say

from three years old to eight, the velocity in the girl is steady,

just as in the boy, but it stands on a lower level in her case than

in his : the Uttle maid at this age is growing slower than the boy.

But very soon, and while his acceleration-curve is still represented

by a straight hne, hers has begun to ascend, and until the girl

is about thirteen or fourteen it continues to ascend rapidly.

After that age, as after sixteen or seventeen in the boy's case, it

begins to descend. In short, throughout all this period, it is a very

similar curve in the tw^o sexes ; but it has its notable differences,

in ampUtude and especially in fliase. Last of all, we may notice

that while the acceleration-curve falls to a negative value in the

male about or even a httle before the age of thirty years, this

does not happen among women. They continue to grow in

weight, though slowly, till very much later in hfe ; until there

comes a final period, in both sexes alike, during which weight,

and height and strength all ahke diminish.

From certain corrected, or "typical" values, given for American children

by Boas and Wissler {I.e. p. 42), we obtain the following still clearer comparison

of the armual increments of stature in boys and girls : the typical stature at

the commencement of the period, i.e. at the age of eleven, being 135-1 cm.

and 136-9 cm. for the boys and gu'ls respectively, and the annual incx'ements

being as follows

:

Age 12 13 14 15 16 17 18 19 20

Boys (cm.) 4-1 6-3 8-7 7-9 5-2 3-2 1-9 0-9 0-3

Girls (cm.) 7-5 7-0 4-6 2-1 0-9 0-4 0-1 0-0 0-0

Difference -3-4 -07 4-1 58 43 2-8 18 09 0-3

The result of these differences (which are essentially phase-

difierences) between the two sexes in regard to the velocity of

growth and to the rate of change of that velocity, is to cause the

ratio between the weights of the two sexes to fluctuate in a some-

what complicated manner. At birth the baby-girl weighs on the

average nearly 10 per cent, less than the boy. Till about two

years old she tends to gain upon him, but she then loses again

until the age of about five ; from five she gains for a few years

somewhat rapidly, and the girl of ten to twelve is only some

3 per cent, less in weight than the boy. The boy in his teens gains
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steadily, and the young woman of twenty is nearly 15 per cent,

lighter than the man. This ratio of difference again slowly

diminishes, and between fifty and sixty stands at about 12 per

cent., or not far from the mean for all ages; but once more as

old age advances, the difference tends, though very slowly, to

increase (Fig. 6).

While careful observations on the rate of growth in other

animals are somewhat scanty, they tend to show so far as they

go that the general features of the phenomenon are always much

the same. Whether the animal be long-lived, as man or the

elephant, or short-lived, like horse or dog, it passes through the

80 90
years

Fig. 6. Percentage ratio, throughout life, of female weight to male;

from Quetelet's data.

same phases of growth*. In all cases growth begins slowly; it

attains a maximum velocity early in its course, and afterwards

slows down (subject to temporary accelerations) tow^ards a point

where growth ceases altogether. But especially in the cold-

blooded animals, such as fishes, the slowing-down period is very

greatly protracted, and the size of the creature would seem never

actually to reach, but only to approach asymptotically, to a

maximal limit.

The size ultimately attained is a resultant of the rate, and of

* There is a famous passage in Lucretius (v, 883) where he compares the course

of life, or rate of growth, in the horse and his boyish master : Principio circum

trihus actis imfiger annis Floret equus, puer hautquaquam, etc.
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the duration, of growth. It is in the main true, as Minot has

said, that the rabbit is bigger than the guinea-pig because he

grows the faster ; but that man is bigger than the rabbit because

he goes on growing for a longer time.

In ordinary physical investigations dealing with velocities, as

for instance with the course of a projectile, we pass at once from

the study of acceleration to that of momentum and so to that of

force; for change of momentum, which is proportional to force,

is the product of the mass of a body into its acceleration or change

of velocity. But we can take no such easy road of kinematical

investigation in this case. The "velocity" of growth is a very

different thing from the "velocity" of the projectile. The forces

at work in our case are not susceptible of direct and easy treatment

;

they are too varied in their nature and too indirect in their action

for us to be justified in equating them directly with the mass of

the growing structure.

It was apparently from a feeling that the velocity of growth ought in some

way to be equated with the mass of the growing structure that Minot* intro-

duced a curious, and (as it seems to me) an unhappy method of representing

growth, in the form of what he called " percentage-curves "
; a method which has

been followed by a number of other writers and experimenters. Minot's method

was to deal, not with the actual increments added in successive periods, such

as years or days, but with these increments represented as percentages of the

amount which had been reached at the end of the former period. For instance,

taking Quetelet's values for the height in centimetres of a male infant from

birth to four years old, as follows:

Years
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But when you take percentages of y, you are determining dyly, and when

you plot this against dx, you have

dijly dy 1 dy

dx y . ax y ax

that is to say, you are multiplying the thing you wish to represent by another

quantity which is itself continually varying ; and the result is that you are

dealing with something very much less easily grasped by the mind than the

original factors. Professor Minot is, of course, dealing with a perfectly

legitimate function of x and y ; and his method is practically tantamount to

plotting log y against x, that is to say, the logarithm of the increment against

the time. This could only be defended and justified if it led to some simple

result, for instance if it gave us a straight line, or some other simpler curve

than our usual curves of growth. As a matter of fact, it is manifest that it

does nothing of the kind.

Pre-natal and fost-natal groivtli.

In the acceleration-curves which we have shown above (Figs.

2, 3), it will be seen that the curve starts at a considerable interval

- from the actual date of birth ; for the first two increments which

we can as yet compare with one another are those attained during

the first and second complete years of life. Now^ we can in many

cases "interpolate" with safety between known points upon a

curve, but it is very much less safe, and is not very often justifiable

(at least until we understand the physical principle involved, and

its mathematical expression), to "extrapolate" beyond the limits

of our observations. In short, we do not yet know whether our

curve continued to ascend as we go backwards to the date of

birth, or whether it may not have changed its direction, and

descended, perhaps, to zero-value. In regard to length, or

stature, however, we can obtain the requisite information from

certain tables of Riissow's*, who gives the stature of the infant

month by month during the first year of its life, as follows

:

Age in months 12345 67 8 9 10 11 12

Length in cm. (50) 54 58 60 62 64 65 66 67-5 68 69 70-5 72

[Differences (in cm.) 4 4 2 2 2 1 1 1-5 -5 1 1-5 1-5]

If we multiply these )nonthlij differences, or mean monthly

velocities, by 12, to bring them into a form comparable with the

* Quoted in Vierordt's Anatomische...Daten und Tabellen, 1906. p. 13.
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anmial velocities already represented on our acceleration-curves,

we shall see that the one series of observations joins on very well

with the other ; and in short we see at once that our acceleration-

curve rises steadily and rapidly as we pass back towards the date

of birth.

But birth itself, in the case of a viviparous animal, is but an

unimportant epoch in the history of growth. It is an epoch whose

relative date varies according to the particular animal: the foal

cms.
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According to His*, the following are the mean lengths of the

unborn human embryo, from month to month.

Months 01 2345 6 7 89 10

(Birth)

Length in mm. 7-5 40 84 162 275 352 402 443 472 490)

500)

Increment per — 75 325 44 78 113 77 .50 41 29 18

1

month in mm. 28 I

These data link on very well to those of Riissow, which we
have just considered, and (though His's measurements for the

2 4 6

Fig. 8. Mean monthly increments of length or stature of child (in cms.)

8 10 12 14 16 18 20 22
months

pre-natal months are more detailed than are those of Riissow for

the first year of post-natal life) we may draw a continuous curve of

growth (Fig. 7) and curve of acceleration of growth (Fig. 8) for the

combined periods. It will at once be seen that there is a "point

of inflection" somewhere about the fifth month of intra-uterine

life f : up to that date growth proceeds with a continually increasing

* Unsere KorjKrforrn, Leipzig, 1874.

t No such pomt of inflection appears in the curve of weight according to

C. M. Jackson's data (On the Prenatal Growth of the Human Body, etc., Arner.

Journ. of Anat. ix. 1909, jip. 126 156), nor in those quoted by him from Ahlfeld,
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velocity; but after that date, though growth is still rapid, its

velocity tends to fall away. There is a shght break between our

two separate sets of statistics at the date of birth, while this is

the very epoch regarding which we should particularly like to

have precise and continuous information. Undoubtedly there is

a certain shght arrest of growth, or diminution of the rate of

growth, about the epoch of birth : the sudden change in the

-
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method of nutrition has its inevitable effect; but this shght

temporary set-back is immediately followed by a secondary, and

temporary, acceleration.

It is worth our while to draw a separate curve to illustrate on

a larger scale His's careful data for the ten months of pre-natal

life (Fig. 9). We see that this curve of growth is a beautifully

regular one, and is nearly symmetrical on either side of that point

of inflection of which we have already spoken; it is a curve for

which we might well hope to find a simple mathematical expression.

The acceleration-curve shown in Fig. 9 together with the pre-natal

20 22 24 26 28 30
days

Fig. 10. Curve of growth of bamboo (from Ostwald, after Kraus).

I

curve of growth, is not taken directly from His's recorded data,

but is derived from the tangents drawn to a smoothed curve,

corresponding as nearly as possible to the actual curve of growth

:

the rise to a maximal velocity about the fifth month and the

subsequent gradual fall are now demonstrated even more clearly

than before. In Fig. 10, which is a curve of growth of the

bamboo*, we see (so far as it goes) the same essential features,

* G. Kraus (after Wallich-Martius), Ann. du Jardin hot. dc Buitenzonj, xii, 1,

1894, p. 210. Cf. W. Ostwald, Zeitliche Eiyenschaften, etc. p. 56.
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the slow beginning, the rapid increase of velocity, the point of

inflection, and the subsequent slow negative acceleration *.

Variability and Correlation of Growth.

The magnitudes and velocities which we are here deahng with

are, of course, mean values derived from a certain number, some-

times a large number, of individual cases. But no statistical

account of mean values is complete unless we also take account

of the amount of variability among the individual cases from which

the mean value is drawn. To do this throughout would lead us

into detailed investigations which he far beyond the scope of this

elementary book ; but we ^may very briefly illustrate the nature

of the process, in connection with the phenomena of growth

which we have just been studying.

It was in connection with these phenomena, in the case of

man, that Quetelet first conceived the statistical study of variation,

on hnes which were afterwards expounded and developed by

Galton, and which have grown, in the hands of Karl Pearson and

others, into the modern science of Biometrics.

When Quetelet tells us, for instance, that the mean stature

of the ten-year old boy is 1-273 metres, this implies, according to

the law of error, or law of probabihties, that all the individual

measurements of ten-year-old boys group themselves iti an orderly

ivay, that is to say according to a certain definite law, about this

mean value of 1-273. When these individual measurements are

grouped and plotted as a curve, so as to show the number of

individual cases at each individual length, we obtain a characteristic

curve of error or curve of frequency; and the "spread" of this

curve is a measure of the amount of variabihty in this particular

case. A certain mathematical measure of this "spread," as

described in works upon statistics, is called the Index of Variabihty,

or Standard Deviation, and is usually denominated by the letter cr.

It is practically equivalent to a determination of the point upon

the frequency curve where it changes its curvature on either side

of the mean, and where, from being concave towards the middle

line, it spreads out to be convex thereto. When we divide this

* Cf. Chodat, R., et Monnier. A., Sur la courbe de croissance des vegetaux.

Bull. Herb. Boissier (2), v, pp. 615, 616, 1905.
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value by the mean, we get a figure which is independent of

any particular units, and which is called the Coefl&cient of Varia-

bility. (It is usually multiphed by 100, to make it of a more

convenient amount ; and we may then define this coefficient, C,

as = a/M X 100.)

In regard to the growth of man, Pearson has determined this

coefficient of variabihty as follows : in male new-born infants,

the coefficient in regard to weight is 15-66, and in regard to

stature, 6-50 ; in male adults, for weight 10-83, and for stature, 3'66.

The amount of variabihty tends, therefore, to decrease with

growth or age.

Similar determinations have been elaborated by Bowditqh, by

Boas and Wissler, and by other writers for intermediate ages,

especially from about five years old to eighteen, so covering a

great part of the whole period of growth in man*.

Coefficient of Variability (ujM x 100) in Man, at various ages.

Age 5 6 ? 8 9

Stature (Bowditch) ... 4-76 4-60 4-42 4-49 4-40

„ (Boas and Wissler) 4-15 4-14 4-22 4-37 4-33

Weight (Bowditch) ... 11-56 10-28 11-08 9-92 11-04

Age 10 11 12 13 14

Stature (Bowditch) ... 4-55 4-70 4-90 5-47 5-79

„ (Boas and Wissler) 4-36 4-54 4-73 5-16 5-57

Weight (Bowditch) ... 11-60 11-76 13-72 13-60 16-80

Age 15 16 17 18

Stature (Bowditch) .... 5-57 4-50 4-55 3-69

„ (Boas and Wissler) 5-50 4-69 4-27 3-94

Weight (Bowditch) ... 15-32 13-28 12-96 10-40

The result is very curious indeed. We see, from Fig. 11,

that the curve of variabihty is very similar to what we have called

the acceleration-curve (Fig. 4) : that is to say, it descends when the

rate of growth diminishes, and rises very markedly again when, in

late boyhood, the rate of growth is temporarily accelerated. We

* Cf. Fr. Boas, Growth of Toronto Children, Bep. of U.S. Comm. of Education,

1896-7, pp. 1541-1599, 1898; Boas and Clark Wissler, Statistics of Growth,

Education Re}]. 1904, pp. 25-132, 1906 ; H. P. Bowditch, Rep. Mass. State Board

of Health, 1877 ; K. Pearson, On the Magnitude of certain coefficients of Correlation

in Man, Pr. R. S. lxvi, 1900.
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see, in short, that the amount of variability in stature or in weight

is a function of the rate of growth in these magnitudes, though

we are not yet in a position to equate the terms precisely, one witli

another.

If we take not merely the variability of stature or weight at

a given age, but the variability of the actual successive increments

in each yearly period, we see that this latter coefficient of variability

tends to increase steadily, and more and more rapidly, within

sfi

o

Fig. 11. Coefficients of variability of stature in Man {^). from Boas

and Wissler's data.

the limits of age for w^hich we have information ; and this pheno-

menon is, in the main, easy of explanation. For a great part of

the difference, in regard to rate of growth, between one individual

and another is a difference of phase,—a difference in the epochs

of acceleration and retardation, and finally in the epoch when
growth comes to an end. And it follows that the variability of

rate will be more and more marked, as we approach and reach

the period when some individuals still continue, and others have
already ceased, to grow. In the following epitomised table,
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I have taken Boas's determinations of variability (cr) {op. cit.

p. 1548), converted them into the corresponding coefficients of

variability {a[M x 100), and then smoothed the resulting numbers.

Coefficients of Variability in Annual Increment of Stature.

Age 7 8 9 10 11 12 13 14 15 §
Boys 17-3 15-8 18-6 191 21-0 24-7 29-0 36-2 46-1

Girls 17-1 17-8 19-2 22-7 25-9 29-3 37-0 44-8 —
The greater variability of annual increment in the girls, as

compared with the boys, is very marked, and is easily explained

by the more rapid rate at which the girls run through the several

phases of the phenomenon.

Just as there is a marked difference in "phase" between the growth-

curves of the two'sexes, that is to say a difference in the periods when growth

is rapid or the reverse, so also, within each sex, will there be room for similar,

but individual phase-differences. Thus we may have children of accelerated

development, who at a given epoch after birth are both rapidly growing and

already "big for their age"; and others of retarded development who are

comparatively small and have not reached the period of acceleration which,

in greater or less degree, will come to them in turn. In other words, there

must under such circumstances be a strong positive "coefficient of correlation"

between stature and rate of growth, and also between the rate of growth in

one year and the next. But it does not by any means follow that a child who
is precociously big will continue to grow rapidly, and become a man or woman
of exceptional stature. On the contrary, when in the case of the precocious

or "accelerated" children growth has begun to slow down, the backward

ones may still be growing rapidly, and so making up (more or less completely)

to the others. In other words, the period of high positive correlation between

stature and increment will tend to be followed by one of negative correlation.

This interesting and important point, due to Boas and Wissler*, is confirmed

by the following table :

—

Correlation of Stature and Increment in Boys and Girls.

{From Boas and Wissler.)

Age
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A minor, but very curious point brought out by the same investigators

is that, if instead of stature we deal with lieight in the sitting posture (or,

practically speaking, with length of trunk or back), then the correlations

between this height and its annual increment are throughout negative. In

other words, there would seem to be a general tendency for the long trunks

to grow slowly throughout the whole period under investigation. It is a

well-known anatomical fact that tallness is in the main due not to length of

body but to length of limb.

The whole phenomenon of variabiUty in regard to magnitude

and to rate of increment is in the highest degree suggesti.ve

:

inasmuch as it helps further to remind and to impress upon us

that specific rate of growth is the real physiological factor which

we want to get at, of which specific magnitude, dimensions and

form, and all the variations of these, are merely the concrete and

visible resultant. But the problems of variabihty, though they

are intimately related to the general problem of growth, carry us

very soon beyond our present limitations.

Rate of growih in other organisms'^.

Just as the human curve of growth has its shght but well-

marked interruptions, or variations in rate, coinciding with such

epochs as birth and puberty, so is it with other animals, and this

phenomenon is particularly striking in the case of animals which

undergo a regular metamorphosis.

In the accompanying curve of growth in weight of the mouse

(Fig. 12), based on W. Ostwald's observations f, we see a distinct

slackening of the rate when the mouse is about a fortnight old,

at which period it opens its eyes and very soon afterwards is

weaned. At about six weeks old there is ( nother well-marked

retardation of growth, following on a very rapid period, and

coinciding with the epoch of puberty.

* See, for an admirable resume of facts, Wolfgang Ostwald, Ueber die ZeitUche

Eigenschaften der Entwickelungsvorgdnge (71 pp.), Leip/.ig, 1908 (Roux's Vortrdge,

Heft v) : to which work I am much indebted. A long list of observations on the

growth-rate of various animals is also given by H. Przibram, Exp. Zoologie, 1913,

pt IV (
Vitalitdt), pp. 85-87.

f Cf . St Loup, Vitesse de croissanoe chez les Souris, Bull. Soc. Zool. Fr. xvm,
242, 1893; Robertson, Arch. f. Entwickelung-smech. xxv, p. 587, 1908; Donaldson.

Boas Memorial Volume, New York, 1906.
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Fig. 13 shews the curve of growth of the silkworm*, during its

whole larv 1 hfe, up to the time of its entering the chrysalis stage.

The silkworm moults four times, at intervals of about a week,

the first moult being on the sixth or seventh day after hatching.

A distinct retardation of growth is exhibited on our curve in the

case of the third and fourth moults ; while a similar retardation

accompanies the first and second moults also, but the scale of

our diagram does not render it visible. When the worm is about

seven weeks old, a remarkable process of "purgation" takes place,

5

Fig. 12. Growth in weight of Mouse. (After W. Ostwald.)

as a preliminary to entering on the pupal, or chrysaHs, stage;

and the great and sudden loss of weight which accompanies this

process is the most marked feature of our curve.

The rate of growth in the tadpole | (Fig. 14) is hkewise marked

by epochs of retardation, and finally by a sudden and drastic

change. There is a slight diminution in weight immediately after

* Lupiani e Lo Monaco, Arch. Ital. de Biologie, xxvn, p. 340, 1897.

t Schaper, Arch. f. Entwickdmigsmech. xiv, p. 35fi, 1902. Cf. Barfiirth, Ver-

suche iiber die Verwandlung der Froschlarven, Arch. f. mikr. Anat. xxix, 1887.

6—2
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the little larva frees itself from the egg ; there is a retardation of

growth about ten days later, when the external gills disappear;

and finally, the complete metamorphosis, with the loss of the tail,

10 15 20 25 30
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While as a general rule, the better the animals be fed the

quicker they grow and the sooner they metamorphose, Barfiirth

has pointed out the curious fact that a short spell of starvation,

just before metamorphosis is due, appears to hasten the change.

Tngms.



Fig, 15. Development of Eel; from Leptocephalus larvae to youno

Elver. (From Ostwakl after Joh. Schmidt.)
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the flattened, lancet-shaped Leptocephalus larva and the httle

black cylindrical, almost thread-like elver, whose magnitude is

less than that of the Leptocephalus in every dimension, even, at

first, in length (Fig. 15).

From the higher study of the physiology of growth we learn

that such fluctuations as we have described are but special inter-

ruptions in a process which is never actually continuous, but is

perpetually interrupted in a rhythmic manner*. Hofmeister

shewed, for instance, that the growth of Spirogyra proceeds by

fits and starts, by periods of activity and rest, which alternate

with one another at intervals of so many minutes (Fig. 16). And

20 40 60 80 100 120 140 160 180 200 220 240 260
minutes

Fig. 16. Growth in length of Spirogyra. (From Ostwald, after Hofmeister.)

Bose, by very refined methods of experiment, has shewn that

plant-growth really proceeds by tiny and perfectly rhythmical

pulsations recurring at regular intervals of a few seconds of time.

Fig. 17 shews, according to Bose's observationsf, the growth of

a crocus, under a very high magnification. The stalk grows by

little jerks, each with an ampHtude of about -002 mm., every

* That the metamorphoses of an insect are but phases in a process of

growth, was firstly clearly recognised by Swammerdam, Bihlia Naturae, 1737,

pp. 6, 579 etc

t From Bose, J. C, Plant Eesponse, London, 1906, p. 417.
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twenty seconds or so, and after each little increment there is a

partial recoil.

Fig. 17. Pulsations of growth in Crocus, in micro-millimetres.

(After Bose.)

The rate of growth of various farts or organs*.

The differences in regard to rate of growth between various

parts or organs of the body, internal and external, can be amply

illustrated in the case of man, and also, but chiefly in regard to

external form, in some few other creaturesf. It is obvious that

there hes herein an endless field for the mathematical study of

correlation and of variabihty, but with this aspect of the case we

cannot deal.

In the accompanying table, I shew, from some of Vierordt's

data, the relative weights, at various ages, compared with the

weight at birth, of the entire body, of the brain, heart and hver

;

* This phenomenon, of incrementum inequale, as opposed to incrementum in

iiniversum, was most carefully studied by HaUer: "Incrementum inequale multis

modis fit, ut aliae partes corporis aliis celerius increscant. Diximus hepar minus

fieri, majorem pulmonem, minimum thymum. etc." (Elem. \ui (2), p. 34).

f See [inter alia) Fischel, A., Variabilitat und Wachsthum des embryonalen

Korpers, Morphol. Jahrb. xxiv, pp. 369-404, 18fi6. Oppel, VergUichung des

Entwickelungsgrades der Organe zu verschiedenen Entwickelungszeiten bei Wirbel-

thieren, Jena, 1891. Faucon, A., Pesees ef Mensurations fcetales n differents ages

de la grossesse. (These.) Paris, 1897. Loisel, G., Croissance comparee en poids

et en longueur des foetus male et femelle dans I'espece humaine, C. R. Soc. de

Biologie, Paris, 1903. Jackson, C. M., Pre-natal growth of the human body and

the relative growth of the various organs and parts. Am. J. of Anat. ix, 1909;

Post-natal growth and variability of the body and of the various organs in the

albino rat, ibid, xv, 1913.
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and also the percentage relation which each of these organs bears,

at the several ages, to the weight of the whole body.

Weight of Various Organs, compared with the Total Weight of

the Human Body (male). {After Vierordt, Anatorn. Tabellen,

pp. 38, 39.)
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age of twenty-five they have multiphed their weight at birth by

about thirteen times, while the weight of the entire body has been

multiphed by about twenty-one ; but the weight of the brain has

meanwhile been multiphed only about three and a quarter times.

In the next place, we see the very remarkable phenomenon that

the brain, growing rapidly till the child is about four years old, then

grows more much slowly till about eight or nine years old, and

after that time there is scarcely any further perceptible increase.

These phenomena are diagrammatically illustrated in Fig. 18.

5 10 15 20 ^ears 25

Fig. 18. Relative growth in weight (in Man) of Brain, Heart, and

whole Body.

Many statistics indicate a decrease of brain-weight during adult life.

Boas* was inclined to attribute this apparent phenomenon to our statistical

methods, and to hold that it could " hardly be explained in any other way

than by assuming an increased death-rate among men with very large brains,,

at an age of about twenty years." But Raymond Pearl has shewn that there

is evidence of a steady and very gradual decline in the weight of the brain

with advancing age, beginning at or before the twentieth year, and con-

tinuing throughout adult lifef.

* I.e. p. 1542.

t Variation and Correlation in Brain-weight, Biometrika, iv, pp. 13-104, 1905.



Ill] OF PAKTS OR ORGANS 91

The second part of the table shews the steadily decreasing

weights of the organs in question as compared with the body;

the brain falling from over 12 per cent, at birth to little over

2 per cent, at five and twenty; the heart from -75 to -46 per

cent. ; and the hver from 4-57 to 2-75 per cent, of the whole

bodily weight.

It is plain, then, that there is no simple and direct relation,

holding good throughout life, between the size of the body as a

whole and that of the organs we have just discussed; and the

changing ratio of magnitude is especially marked in the case of

the brain, which, as we have just seen, constitutes about one-eighth

of the whole bodily weight at birth, and but one-fiftieth at five

and twenty. The same change of ratio is observed in other

animals, in equal or even greater degree. For instance. Max
Weber* tells us that in the Hon, at five weeks, four months,

eleven months, and lastly when full-grown, the brain-weight

represents the following fractions of the weight of the whole

body, viz. 1/18, 1/80, 1/184, and 1/546. And KelHcott has, in

hke manner, shewn that in the dogfish, while some organs (e.g.

rectal gland, pancreas, etc.) increase steadily and very nearly

proportionately to the body as a whole, the brain, and some other

organs also, grow in a diminishing ratio, which is capable of

representation, approximately, by a logarithmic curve f.

But if we confine ourselves to the adult, then, as Raymond
Pearl has shewn in the case of man, the relation of brain-weight

to age, to stature, or to weight, becomes a comparatively simple

one, and rnay be sensibly expressed by a straight line, or simple

equation.

Thus, if W be the brain-weight (in grammes), and A be the

age, or S the stature, of the individual, then (in the case of Swedish

males) the following simple equations suffice to give the required

ratios

:

W = 1487-8 - 1-94^ = 915-06 -f 2-86 iS.

* Die Sdugethiere, p. 117.

t Amer. J. of Anatomy, vm, pp. 319-353, 1908. Donaldson {Journ. Camp.

Neur. and Psychol, xvm, pp. 345-392, 1908) also gives a logarithmic formula for

brain-weight (y) as compared with body-weight (x), which in the case of the white

rat is
J,
= -554 -^ -569 log (a;— 8-7), and the agreement is very close. But the

formula i& admittedly empinca and as Raymond Pearl says (Amer. Nat. 1909,

p. 303), " no ulterior biological significance is to be attached to it."
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These equations are applicable to ages between fifteen and eighty

;

if we take narrower limits, say between fifteen and fifty, we can get

a closer agreement by using somewhat altered constants. In the

two sexes, and in different races, these empirical constants will be
greatly changed* . Donaldson has further shewn that the correla-

tion between brain-weight and body-weight is very much closer

in the rat than in man"]".

The falling ratio of weight of brain to body with increase of size or age

finds its parallel in comparative anatomy, in the general law that the larger

the animal the less is the relative weight of the brain.
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The Length of the Head in Man at various Ages.

{After Quetelet, f. 207.)

Men Women

93

Age
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the stature at birth by about 1 per cent, exceeds it at the age of

twenty by about 4 per cent. After the age of twenty, Quetelet's

data are few and irregular, but it is clear that the span goes on

for a long while increasing in proportion to the stature. How
far the phenomenon is due to actual growth of the arms and

how far to the increasing breadth of the chest is not yet

ascertained.

Fig. 19. Ratio of stature in Man, to span of outstretched arms.

(From Quetelet's data.)

The differences of rate of growth in different parts of the body

are very simply brought out by the following table, which shews

the relative growth of certain parts and organs of a young trout,

at intervals of a few days during the period of most rapid develop-

ment. It would not be difficult, from a picture of the little

trout at any one of these stages, to draw its approximate form

at any other, by the help of the numerical data here set

forth*.

* Cf. Jenkinson, Growth, Variability and Correlation in Young Trout,

Biometrika, viii. pp. 444-455, 1912.
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Trout {Scdnio fario) : pwportionate groivth of various organs.

{From Jenkinson's data.)

Days
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The several values in this table he very nearly (as we see by
Fig. 20) in a smooth curve; in other words a definite law, or

principle of continuity, connects the rates of growth at successive

points along the growing axis of the root. Moreover this curve,

in its general features, is singularly hke those acceleration-curves

which we have already studied, in which we plotted the rate of

growth against successive intervals of time, as here we have

plotted it against successive spatial intervals of an actual growing

9
mm.
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having the form of a surface of revolution generated by the same

curve. This then is a simple and not unimportant illustration of

the direct and easy passage from velocity to form.

A kindred problem occurs when, instead of "' zones "' artificially marked out

in a stem, we deal with the rates of growth in successive actual "internodes" ;

and an interesting variation of this problem occurs when we consider, not the

actual growth of the internodes, but the varying number of leaves which they

successively produce. Where we have whorls of leaves at each node, as in

Equisetum and in many water-weeds, then the problem presents itself in a

simple form, and in one such case, namely in Ceratophyllum, it has been

carefully investigated by Mr Raymond Pearl*.

It is found that the mean number of leaves per whorl increases with each

successive whorl; but that the rate of increment diminishes from whorl to

whorl, as we ascend the axis. In other words, the increase in the number of

leaves per whorl follows a logarithmic ratio; and if y be the mean number of

leaves per whorl, and x the successional number of the whorl from the root

or main stem upwards, then

y — A + C log {x - a),

where A, C, and a are certain specific constants, varying with the part of the

plant which we happen to be considering. On the main stem, the rate of

change in the number of leaves per whorl is very slow; when we come to the

small twigs, or "tertiary branches," it has become rapid, as we see from the

following abbreviated table

:

Number of leaves per whorl on the tertiary branches of Ceratophyllum.

Position of whorl ... 1 2 3 4 5 6

Mean number of leaves 6-55 8-07 9-00 9-20 9-75 10-00

Increment — 1-52 -93 -20 (-55) (-25)

We have seen that a slow but definite change of form is a

common accompaniment of increasing age, and is brought about

as the simple and natural result of an altered ratio between the

rates of growth in different dimensions : or rather by the pro-

gressive change necessarily brought about by the difference in

their accelerations. There are many cases however in which

the change is all but imperceptible to ordinary measurement,

and many others in which some one dimension is easily measured,

but others are hard to measure with corresponding accuracy.

* Variation and Differentiation in Ceratophyllum, Carneqie Inst. Publica-

tions, No. 58, Washington, 1907.
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For instance, in any ordinary fish, such as a plaice or a haddock,

the length is not difficult to measure, but measurements of

breadth or depth are very much more uncertain. In cases such

as these, while it remains difficult to define the precise nature of

the change of form, it is easy to shew that such a change is

taking place if we make use of that ratio of length to weight

which we have spoken of in the preceding chapter. Assuming, as

we may fairly do, that weight is directly proportional to bulk or

volume, we may express this relation in the form WJL^ = k, where

k is a constant, to be determined for each particular case. {W
and L are expressed in grammes and centimetres, and it is usual

to multiply the result by some figure, such as 1000, so as to give

the constant k a value near to unity.)

Plaice caught in a certain area, March, 1907. Variation of k (the

weight-length coefficient) with size. {Data taken from the

Department of Agriculture and Fislieries' Plaice-Report,

vol. I, f. 107, 1908.)

Size in cm. Weight in gm. WjL^ x 10,000 WjL^ (smoothed)

23 113 92-8 —
24 128 92-6 94-3

25 152 97-3 96-1

26 173 98-4 97-9

27 193 98-1 990
28 221 100-6 100-4

29 250 102-5 101-2

30 271 100-4 101-2

31 300 100-7 100-4

32 328 100-1 99-8

33 354 98-5 98-8

34 384 97-7 98-0

35 419 97-7 97-6

36 454 97-3 96-7

37 492 95-2 96-3

38 529 96-4 95-6

39 564 95-1 95-0

40 614 95-9 95-0

41 647 93-9 93-8

42 679 91-6 92-5

43 732 92-1 92-5

44 800 93-9 94-0

45 875 96-0 —
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Now while this k may be spoken of as a "constant," having

a certain mean value specific to each species of organism, and

depending on the form of the organism, any change to which it

may be subject will be a very delicate index of progressive changes

of form ; for we know that our measurements of length are, on

the average, very accurate, and weighing is a still more dehcate

method of comparison than any linear measurement.

Thus, in the case of plaice, when we deal with the mean values

for a large number of specimens, and when we are careful to deal

only with such as are caught in a particular locality and at a par-

ticular time, we see that k is by no means constant, but steadily

increases to a maximum, and afterwards slowly declines with the

23 25 27 29 31 33 35 37 39 41 43cms.

Fig. 21. Changes in the weight-length ratio of Plaice, with increasing size.

increasing size of the fish (Fig. 21). To begin with, therefore, the

weight is increasing more rapidly than the cube of the length, and

it follows that the length itself is increasing less rapidly than some

other linear dimension ; while in later fife this condition is reversed.

The maximum is reached when the length of the fish is somewhere

near to 30 cm., and it is tempting to suppose that with this "point

of inflection" there is associated some well-marked epoch in the

fish's life. As a matter of fact, the size of 30 cm. is approximately

that at which sexual maturity may be said to begin, or is at least

near enough to suggest a close connection between the two

phenomena. The first step tov^ards further investigation of the

7—2
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apparent coincidence would be to determine the coefficient k of

the two sexes separately, and to discover whether or not the point

of inflection is reached (or sexual maturity is reached) at a smaller

size in the male than in the female plaice ; but the material for

this investigation is at present scanty.

A still more curious and more unexpected result appears when
we compare the values of k for the same fish at different seasons of

the year*. When for simphcity's sake (as in the accompanying

table and Fig. 22) we restrict ourselves to fish of one particular

Fig.

JFMAMJ JASONDJ
22. Periodic annual change in the weight-length ratio of Plaice.

size, it is not necessary to determine the value of k, because a

change in the ratio of length to weight is obvious enough ; but

when we have small numbers, and various sizes, to deal with,

the determination of k may help us very much. It will be seen,

then, that in the case of plaice the ratio of weight to length

exhibits a regular periodic variation with the course of the seasons.

* Cf. Lammel, Ueber periodische Variationen in Organismen, Biol. Centralhl.

xxn, pp. 368-376, 1903.
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RelMion of Weight to Length in Plaice of 55 cm. long, from Month
to Month. {Data taken from the Department of Agriculture

and Fisheries' Plaice-Report, vol. ii, p. 92, 1909.)
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changes comparatively little. The simple ratio between length

and height increases considerably, as indeed we should expect;

for we know that in all Ungulate animals the legs are remarkably

Relations between the Weight and certain Linear Dimensions

of the Ox. {Data from Przihrayn, after Cornevin*.)

Age in

months
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long ; t birth in comparison with other dimensions of the body.

It is somewhat curious, however, that this ratio seems to fall off

a little in the third year of growth, the animal continuing to grow

in height to a marked degree after growth in length has become

very slow. The ratio between height and weight is by much the

most variable of our three ratios ; the coefficient WjH^ steadily

increases, and is more than twice as great at three years old as

it was at birth. This illustrates the important, but obvious fact,

that the coefficient k is most variable in the case of that

dimension which grows most uniformly, that is to say most nearly

in proportion to the general bulk of the animal. In short, the

successive values of k, as determined (at successive epochs) for

one dimension, are a measure of the variability of the others.

From the whole of the foregoing discussion we see that a certain

definite rate of growth is a characteristic or specific phenomenon,

deep-seated in the physiology of the organism; and that a very

large part of the specific morphology of the organism depends upon

the fact that there is not only an average, or aggregate, rate of

growth common to the whole, but also a variation of rate in

different parts of the organism, tending towards a specific rate

characteristic of each different part or organ. The smallest change

in the relative magnitudes of these partial or localised velocities

of growth will be soon manifested in more and more striking

differences of form. This is as much as to say that the time-

element, which is implicit in the idea of growth, can never (or

very seldom) be wholly neglected in our consideration of form*.

It is scarcely necessary to enlarge here upon our statement, for

not only is the truth of it self-evident, but it will find illustration

again and again throughout this book. Nevertheless, let us go

out of our way for a moment to consider it in reference to a

particular case, and to enquire whether it helps to remove any of

the difficulties which that case appears to present.

* Herein lies the easy answer to a contention fiequently raised by Bergson,

and to which he asciibes great importance, that "a mere variation of size is one

thing, and a change of form is another." Thus he considers "a change in the

form of leaves" to constitute "a profound morphological difference." Creative

Evolution, p. 71.
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' In a very well-known paper, Bateson shewed that, among a

large number of earwigs, collected in a particular locality, the

males fell into two groups, characterised by large or by small

tail-forceps, with very few instances of intermediate magnitude.

This distribution into two groups, according to magnitude, is

illustrated in the accompanying diagram (Fig. 23) ; and the

phenomenon was described, and has been often quoted, as one

of dimorphism, or discontinuous variation. In this diagram the

time-element does not appear ; but it is certain, and evident, that

it lies close behind. Suppose we take some organism which is

T3 100

Length of tail-forceps, in mm.

Fig. 23. Variability of length of tail-forceps in a sample of Earwigs.

(After Bateson, P. Z. S. 1892, p. 588.)

born not at all times of the year (as man is) but at some one

particular season (for instance a fish), then any random sample

will consist of individuals whose ages, and therefore whose magni-

tudes, will form a discontinuous series ; and by plotting these

magnitudes on a curve in relation to the number of individuals

of each particular magnitude, we obtain a curve such as that

shewn in Fig. 24, the first practical use of which is to enable us

to analyse our sample into its constituent "age-groups," or in

•other words to determine approximately the age, or ages of the

fish. And if, instead of measuring the whole length of our fish,

we had confined ourselves to particular parts, such as head, or
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tail or fin, we should have obtained discontinuous curves of

distribution, precisely analogous to those for the entire animal.

Now we know that the differences with which Bateson was dealing

were entirely a question of magnitude, and we cannot help seeing

that the discontinuous distributions of magnitude represented by

his earwigs' tails are just such as are illustrated by the magnitudes

of the older and younger fish ; we may indeed go so far as to say

that the curves are precisely comparable, for in both cases we see

a characteristic feature of detail, namely that the "spread" of the

curve is greater in the second wave than in the first, that is to

20 25 30

Length of fish, in cm.

Fig. 24. Variability of length of body in a sample of Plaice.

say (in the case of the fish) in the older as well as larger series.

Over the reason for this phenomenon, which is simple and all but

obvious, we need not pause.

It is evident, then, that in this case of "dimorphism," the tails

of the one group of earwigs (which Bateson calls the "high males")

have either grown faster, or have been growing for a longer period

of time, than those of the "low males." If we could be certain

that the whole random sample of earwigs were of one and the

same age, then we should have to refer the phenomenon of di-

morphism to a physiological phenomenon, simple in kind (however

remarkable and unexpected) ; viz. that there were two alternative
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values, very different from one another, for the mean velocity of

growth, and that the individual earwigs varied around one or

other of these mean values, in each case according to the law of

probabilities. But on the other hand, it we could beheve that

the two groups of earwigs were of different ages, then the pheno-

menon would be simphcity itself, and there would be no more to

be said about it*.

Before we pass from the subject of the relative rate of growth

of different parts or organs, we may take brief note of the fact

that various experiments have been made to determine whether

the normal ratios are maintained under altered circumstances of

nutrition, and especially in the case of partial starvation. For

instance, it has been found possible to keep young rats alive for

many weeks on a diet such as is just sufficient to maintain life

without permitting any increase of weight. The rat of three

weeks old weighs about 25 gms., and under a normal diet should

weigh at ten weeks old about 150 gms., in the male, or 115 gms.

in the female ; but the underfed rat is still kept at ten weeks old

to the weight of 25 gms. Under normal diet the proportions of

the body change very considerably between the ages of three and

ten weeks. For instance the tail gets relatively longer ; and even

when the total growth of the rat is prevented by underfeeding,

the form continues to alter so that this increasing length of the

tail is still manifest |.

* I do not say that the assumption that these two groups of earwigs were of

different ages is altogether an easy one; for of course, even in an insect whose

metamorphosis is so simple as the earwig's, consisting only in the acquisition of

wings or wing-cases, we usually take it for granted that growth proceed? no more

after the final stage, or "adult form" is attained, and further that this adult form

is attained at an approximate^ constant age, and constant magnitude. But even

if we are not permitted to think that the earwig may have grown, or moulted,

after once the elytra were produced, it seems to me far from impossible, and far

from unlikely, that prior to the appearance of the elytra one more stage of growth,

or one more moult took place in some cases than in others: for the number of

moults is known to be variable in many species of Orthoptera. Unfortunately

Bateson tells us nothing about the sizes or total lengths of his earwigs; but his

figures suggest that it was bigger earwigs that had the longer tails ; and that the

rate of growth of the tails had had a certain definite ratio to that of the bodies,

but not necessarily a simple ratio of equality.

j- Jackson, C. M., J. of Exp. Zool. xix, 1915, p. 99; cf. also Hans Aron, Unters.
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conditions. Reaumur was the first to shew, and the observation

was repeated by Bonnet*, that the rate of growth or development

of the chick was dependent on tem.perature, being retarded at

temperatures below and somewhat accelerated at temperatures

above the normal temperature of incubation, that is to say the

temperature of the sitting hen. In the case of plants the fact

that growth is greatly affected by temperature is a matter of

familiar knowledge; the subject was first carefully studied by

Alphonse De Candolle, and his results and those of his followers

are discussed in the textbooks of Botany f.

That variation of temperature constitutes only one factor in determining

the rate of growth is admirably illustrated in the case of the Bamboo. It has

been stated (by Lock) that in Ceylon the rate of growth of the Bamboo is

directly proportional to the humidity of the atmosphere: and again (by

Shibata) that in Japan it is directly proportional to the temperature. The

two statements have been ingeniously and satisfactorily reconciled by

BlackmanJ, who suggests that in Ceylon the temperature-conditions are

all that can be desired, but moisture is apt to be deficient: while in Japan

there is rain in abundance but the average temperature is somewhat too low.

So that in the one country it is the one factor, and in the other country it is

the other, which is essentially variable.

The annexed diagram (Fig. 25), shewing the growth in length

of the roots of some common plants during an identical period

of forty-eight hours, at temperatures varying from about 14° to

37° C, is a sufiicient illustration of the phenomenon. We see that

in all cases there is a certain optimum temperature at which the

rate of growth is a maximum, and we can also see that on either

side of this optimum temperature the acceleration of growth,

positive or negative, with increase of temperature is rapid, while

at a distance from the optimum it is very slow. From the

data given by Sachs and others, we see further that this optimum

temperature is very much the same for all the common plants of

our own climate which have as yet been studied ; in them it is

* Reaumur : Uart de faire colore et elever en toufe saison des oiseaux domestiques,

foil ixir le moyeii de la chaleur du fumier, Paris, 1749.

f Cf. (int. al.) de Vries, H., Materiaux pour la connaissance de rinfluence de

la temperature sur les plantes, Arch. Neerl. v, 385-401, 1870. Koppen, Warme
und Pflanzenwachstum, Bull. Soc. Imp. Nat. Moscou. XLiii, pp. 41-110, 1870.

X Blackman, F. F., Ann. of Botany, xix, p. 281, 1905.
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somewhere about 26° C. (or say 77° F.), or about the temperature

of a warm summer's day ; while it is found, very naturally, to be

considerably higher in the case of plants such as the melon or the

maize, which are at home in warmer regions that our own.

In a large number of physical phenomena, and in a very marked

degree in all chemical reactions, it is found that rate of action is

affected, and for the most part accelerated, by rise of temperature
;

14°16 18 20 22 24 26 28' 30 32 34 36 38 40°
Temp.

Fig. 25. Relation of rate of growth to temperature in certain plants.

(From Sachs's data.)

and this effect of temperature tends to follow a definite "ex-

ponential" law, which holds good within a considerable range of

temperature, but is altered or departed from when we pass beyond

certain normal hmits. The law, as laid down by van't Hoff for

chemical reactions, is, that for an interval of n degrees the velocity

varies as x'^, x being called the "temperature coefficient"* for the

reaction in question.

* For various instances of a "temperature coefficient" in physiological pro-

cesses, see Kanitz, Zeitschr. f. Elektrochemie, 1907, p. 707; Biol. Centralhl. xxvii,

p. 11, 1907; Hertzog, R. 0., Temperatureinfluss auf die Entwicklungsgesch-

windigkeit der Organismen, Zeitschr. f. Elektrochemie, xi, p 820, 1905; Krogh,
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Van't Hoffs law, which has become a fundamental principle

of chemical mechanics, is likewise applicable (with certain qualifica-

tions) to the phenomena of vital chemistry ; and it follows that,

on very much the same lines, we may speak of the "temperature

coefficient" of growth. At the same time we must remember

that there is a very important difference (though we can scarcely

call it a fundamental one) between the purely physical and the

physiological phenomenon, in that in the former we study (or

seek and profess to study) one thing at a time, while in the latter

we have always to do with various factors which intersect and

interfere ; increase in the one case (or change of any kind) tends

to be continuous, in the other case it tends to be brought to arrest.

This is the simple meaning of that Law of Optimmn, laid down by

Errera and by Sachs as a general principle of physiology : namely

that every physiological process which varies (like growth itself)

with the amount or intensity of some external influence, does so

according to a law in which progressive increase is followed by

progressive decrease ; in other words the function has its optimum

condition, and its curve shews a definite maximum^. In the case

of temperature, as Jost puts it, it has on the one hand its accelerat-

ing effect which tends to follow van't Hoff's law. But it has also

another and a cumulative eft'ect upon the organism :
" Sie schadigt

oder sie ermiidet ihn, und je hoher sie steigt, desto rascher macht

sie die Schadigung geltend und desto schneller schreitet sie voran."

It would seem to be this double effect of temperature in the case

of the organism which gives us our "optimum" curves, which are

the expression, accordingly, not of a primary phenomenon, but

of a more or less complex resultant. Moreover, as Blackman and

others have pointed out, our '"optimum" temperature is very

ill-defined until we take account also of the duration of our experi-

ment ; for obviously, a high temperature may lead to a short,

but exhausting, spell of rapid growth, while the slower rate

manifested at a lower temperature may be the best in the end.

Quantitative Relation between Temperature and Standard Metabolism, l7it.

Zeifschr. J. physik.-chem. Biologie, i, p. 491, 1914; Piitter, A., Ueber Temperatur-

koefficienten, Zeiischr. f. allgern. Phi/siol. xvi, p. 574, 1914. Also Cohen.

Physical Chemistry for Physicians and Biologists (English edition), 1903; Pike,

F. H., and Scott, E. L., The Regulation of the Physico-chemical Condition of the

Orsranism, American Naturalist, Jan. 1915, and various papers quoted therein.
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The mile and the hundred yards are won by different runners

;

and maximum rate of working, and maximum amount of work

done, are two very different things*.

In the case of maize, a certain series of experiments shewed that

the growth in length of the roots varied with the temperature as

followsl

:

Temperature
°C.
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For an experiment on Lupinus albus, quoted by Asa Gray*,

I have worked out the corresponding coefficient, but a little more

carefully. Its value I find to be 1-16, or very nearly identical

with that we have just found for the maize ; and the correspondence

between the calculated curve and the actual observations is now
a close one.

18 20 22 24 26 28

Temperature

30

Fig. 26. Relation of rate of growth to temijerature in Maize,

values (after Koppen). and calculated curve.

34°C.

Observed

Since the above paragraphs were wi'itten, new data have come to hand.

Miss I. Leitch has made careful observations of the rate of growth of rootlets

of the Pea ; and I have attempted a further analysis of her principal resultsy.

In Fig. 27 are shewn the mean rates of growth (based on about a hundred

experiments) at some thirty-four different temperatures between 0-8° and

29-3°, each experiment lasting rather less than twenty-four hours. Working

out the mean temperature coefficient for a great many combinations of these

values, I obtain a value of 1-092 per C.°, or 2-41 for an interval of 10°, and

a mean value for the whole series showing a rate of growth of just about

1 mm. per hotir at a temperature of 20°. My curve in Fig. 27 is drawn from

these determinations ; and it will be seen that, while it is by no means exact

at the lower temperatures, and will of course fail us altogether at very high

* Botany, p. 387.

t Leitch, I., Some Experiments on the Influence of Temperature on the Rate

of Growth in Pisum sativum, Ann. of Botany, xxx, pp. 25-46, 1916. (Cf. especiallj'

Table III, p. 45.)
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temperatures, yet it serves as a very satisfactory guide to the relations between

rate and temperature within the ordinary limits of healthy growth. Miss

Leitch holds that the curve is not a van't Hoff curve ; and this, in strict accuracy,

we need not dispute. But the phenomenon seems to me to be one into which

the van't Hoff ratio enters largely, though doubtless combined with other

factors which we cannot at present determine or eliminate.

4° 12° 16° 20°

Temperature

24°

zu
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irregular, and sometimes (we might even say) misleading *. The

fact also, which we have already learned, that the elongation of a

shoot tends to proceed by jerks, rather than smoothly, is another

indication that the phenomenon is not purely and simply a

chemical one. We have abundant illustrations, however, among
animals, in which we may study the temperature coefficient under

circumstances where, though the phenomenon is always compli-

cated by osmotic factors, true metabolic growth or chemical

combination plays a larger role. Thus Mile. Maltaux and Professor

Massartf have studied the rate of division in a certain flagellate,

Cliilomonas faramoecium, and found the process to take 29 minutes

at 15° C, 12 at 25°, and only 5 minutes at 35° C. These velocities

are in the ratio of 1 : 2-4 : 5-76, which ratio corresponds precisely

to a temperature coefficient of 2-4 for each rise of 10°, or about

1*092 for each degree centigrade.

By means of this principle we may throw light on the apparently

comphcated results of many experiments. For instance. Fig. 28

is an illustration, which has been often copied, of 0. Hertwig's

work on the effect of temperature on the rate of development of

the tadpolef

,

From inspection of this diagram, we see that the time taken

to attain certain stages of development (denoted by the numbers

III-VII) was as follows, at 20° and at 10° C, respectively.

At 20° At 10°

Stage III
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10° was (on the average) somewhere about 55-6/16-7, or 3-33,

times as long as was required at 20°.
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Or,

Therefore

and

10 log X = log 3-33 - -52244.

log X - -05224,

x= 1-128.

That is to say, between the intervals of 10° and 20° C, if it

take m days, at a certain given temperature, for a certain stage

of development to be attained, it will take m x 1-128" days,

when the temperature is n degrees less, for the same stage to

be arrived at.

25'C. 20 0°15° 10°

Temperature

Fig. 29. Calculated values, corresponding to preceding figure.

Fig. 29 is calculated throughout from this value; and it will

be seen that it is extremely concordant with the original diagram,

as regards all the stages of development and the whole range of

temperatures shewn : in spite of the fact that the coefficient on

which it is based was derived by an easy method from a very few

points in the original curves.
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Karl Peter*, experimenting chiefly on echinoderm eggs, and

also making use of Hertwig's experiments on young tadpoles,

gives the normal temperature coefficients for intervals of 10° C.

(commonly written Q^q) as follows.

Sphaerechinus ... ... ... 2-15,

Echinus 2-13,

Rana 2-86.

These values are not only concordant, but are evidently of the

same order of magnitude as the temperature-coefficient in ordinary

chemical reactions. Peter has also discovered the very interesting

fact that the temperature-coefficient alters with age, usually but

not always becoming smaller as age increases.

Sphaerechinus ; Segmentation Q^" = 2-29,

Later stages ,, 2-03.

Echinus; Segmentation ,, 2*30,

Later stages ,, 2-08.

Rana; Segmentation ,, 2-23,

Later stages ,, 3-34.

Furthermore, the temperature coefficient varies with the

temperature, diminishing as the temperature rises,—a rule which

van't Hoff has shewn to hold in ordinary chemical operations.

Thus, in Rana the temperature coefficient at low temperatures

may be as high as 5-6 : which is just another way of saying that

at low temperatures development is exceptionally retarded.

In certain fish, such as plaice and haddock, I and others have

found clear evidence that the ascending curve of growth is subject

to seasonal interruptions, the rate during the winter months

being always slower than in the months of summer : it is as though

we superimposed a periodic, annual, sine-curve upon the continuous

curve of growth. And further, as growth itself grows less and less

from year to year, so will the difference between the winter and

the summer rate also grow less and less. The fluctuation in rate

* Der Grad der Beschleunigung tierischer Entwickelung durch erhcihte

Temperatur, A. f. Entiv. Mech. xx, p. 130, 1905. More recently, Bialaszewicz

has determined the coefficient for the rate of segmentation in Rana as being
2-4 per 10° C.
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will represent a vibration which is gradually dying out ; the ampli-

tude of the sine-curve will gradually diminish till it disappears

;

in short, our phenomenon is simply expressed by what is known
as a "damped sine-curve." Exactly the same thing occurs in

man, though neither in his case nor in that of the fish have we
sufficient data for its complete illustration.

We can demonstrate the fact, however, in the case of man by

the help of certain very interesting measurements which have

been recorded by Daffner *, of the height of German cadets,

measured at half-yearly intervals.

Growth in height of German military Cadets, in half-yearly

periods. {Dajfner.)

Increment in cm.

Number
observed
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of easy determination, and it is a point of considerable interest

to compare the phenomenon in evergreen and in deciduous trees.

I happen to have no measurements at hand with which to make
this comparison in the case of our native trees, but from a paper

by Mr Charles E. Hall* I have compiled certain mean values for

growth in the climate of Uruguay.

19 20
years

Fig. 30. Half-yearly increments of growth, in cadets of various ages.

(From Daffner's data.)

Mean monthly increase in Girth of Evergreen a?id Deciduous Trees,

at San Jorge, Uruguay. {After C. E. Hall.) Values expressed

as 'percentages of total annual increase.

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Evergreens 9-1 8-8 8-6 8-9 7-7 5-4 4-3 6-0 9-1 11 -1 10-8 10-2

Deciduous
trees ... 20-3 14-6 90 2-3 0-8 0-3 0-7 1-3 3-5 9-9 16-7 21-0

The measurements taken were those of the girth of the tree,

in mm., at three feet from the ground. The evergreens included

species of Pinus, Eucalyptus and iVcacia ; the deciduous trees

included Quercus, Populus, Robinia and Meha. I have merely

taken mean values for these two groups, and expressed the

monthly values as percentages of the mean annual increase. The

result (as shewn by Fig. 31) is very much what we might have

expected. Th^ growth of the deciduous trees is completely

arrested in winter-time, and the arrest is all but complete over

* Trans. Botan. Soc. Edinburgh, xvm, 1891, p. 456.
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a considerable period of time ; moreover, during the warm season,

the monthly values are regularly graded (approximately in a

sine-curve) with a clear maximum (in the southern hemisphere)

about the month of December. In the evergreen trees, on the

other hand, the amplitude of the periodic wave is very much
less ; there is a notable amount of growth all the year round,

and, while there is a marked diminution in rate during the coldest

months, there is a tendency towards equahty over a considerable

Fig. 31. Periodic annual fluctuation in rate of growth of trees (in the

southern hemisphere).

part of the warmer season. It is probable that some of the

species examined, and especially the pines, were definitely retarded

in growth, either by a temperature above their optimum, or by
deficiency of moisture, during the hottest period of the year;

with the result that the seasonal curve in our diagram has (as it

were) its region of maximum cut off.

In the case of trees, the seasonal periodicity of growth is so

well marked that we are entitled to make use of the phenomenon
in a converse way, and to draw deductions as to variations in
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climate during past years from the record of varying rates of

growth which the tree, by the thickness of its annual rings, has

preserved for us. Mr A. E. Douglass, of the University of

Arizona, has made a careful study of this question*, and I have

received (through Professor H. H. Turner of Oxford) some measure-

ments of the average width of the successive annual rings in " yellow

pine," 500 years old, from Arizona, in which trees the annual

rings are very clearly distinguished. From the year 1391 to 1518,

the mean of two trees was used; from 1519 to 1912, the mean of

five; and the means of these, and sometimes of larger numbers,

were found to be very concordant. A correction was applied by

drawing a long, nearly straight line through the curve for the

whole period, which line was assumed to represent the slowly

diminishing mean width of ring accompanying the increase of

size, or age, of the tree ; and the actual growth as measured was

equated with this diminishing mean. The figures used give,

accordingly, the ratio of the actual growth in each year to the

mean growth corresponding to the age or magnitude of the tree

at that epoch.

It was at once manifest that the rate of growth so determined

shewed a tendency to fluctuate in a long period of between 100 and

200 years. I then smoothed in groups of 100 (according to Gauss's

method) the yearly values, so that each number thus found

represented the mean annual increase during a century: that is

to say, the value ascribed to the year 1500 represented the average

annual growth during the whole period between 1450 and 1550,

and so on. These values give us a curve of beautiful and surprising

smoothness, from which we seem compelled to draw the direct

conclusion that the climate of Arizona, during the last 500 years,

has fluctuated .with a regular periodicity of almost precisely 150

years. Here again we should be left in doubt (so far as these

* I had not received, when this was written, Mr Douglass's paper, On a method
of estimating Rainfall by the Growth of Trees, Bull. Arner. Geograph. Soc. xlvi.

pp. 321-335, 1914. Mr Douglass does not fail to notice the long period here

described; but he lays more stress on the occurrence of shorter cycles (of 11, 21

and 33 years), well known to meteorologists. Mr Douglass is inchned (and I think

rightly) to correlate the variations in growth directly with fluctuations in rainfall,

that is to say with alternate periods of moisture and aridity; but he points out

that the temperature curves (and also the sunspot curves) are markedly similar.
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observations go) whether the essential factor be a fluctuation of

temperature or an alternation of moisture and aridity ; but the

character of the Arizona climate, and the known facts of recent

years, encourage the belief that the latter is the more direct and

more important factor.

It has been often remarked that our common European trees,

such for instance as the elm or the cherry, tend to have larger

leaves the further north we go ; but in this case the phenomenon

is to be ascribed rather to the longer hours of daylight than to

any difference of temperature*. The point is a physiological one,

and consequently of little importance to us here f ; the main point

for the morphologist is the very simple one that physical or

climatic conditions have greatly influenced the rate of growth.

The case is analogous to the direct influence of temperature in

modifying the colouration of organisms, such as certain butterflies.

Now if temperature affects the rate of growth in strict uniformity,

alike in all directions and in all parts or organs, its direct effect

must be limited to the production of local races or varieties dift'ering

from one another in actual magnitude, as the Siberian goldfinch

or bullfinch, for instance, differ from our own. But if there be

even ever so little of a discriminating action in the enhancement

of growth by temperature, such that it accelerates the growth of

one tissue or one organ more than another, then it is evident that

it must at once lead to an actual difference of racial, or even
" specific " form.

It is not to be doubted that the various factors of climate

have some such discriminating influence. The leaves of our

northern trees may themselves be an instance of it ; and we have,

* It may well be that the effect is not due to light after all ; but to increased

absorption of heat by the soil, as a result of the long hours of exposure to the sun.

t On growth in relation to light, see Davenport, Exp. Morphology, ii, ch. xvii.

In some cases (as in the roots of Peas), exposure to hght seems to have no effect

on growth; in other cases, as in diatoms (according to Whipple's experiments,

quoted by Davenport, n, p. 423), the effect of light on growth or multipHcation

is well-marked, measurable, and apparently capable of expression by a logarithmic

formula. The discrepancy would seem to arise from the fact that, while light-

energy always tends to be absorbed by the chlorophyll of the plant, converted into

chemical energy, and stored in the shape of starch or other reserve materials, the

actual rate of growth depends on the rate at which these reserves are drawn on:

and this is another matter, in which light-energy is no longer directly concerned.



124 THE RATE OF GROWTH [ch.

probably, a still better instance of it in the case of Alpine plants *,

whose general habit is dwarfed, though their floral organs suffer

little or no reduction. The subject, however, has been httle

investigated, and great as its theoretic importance would be to

us. we must meanwhile leave it alone.

Osmotic factors in growth.

The curves of growth which we have now been studying

represent phenomena which have at least a two-fold interest,

morphological and physiological. To the morphologist, who
recognises that form is a "function" of growth, the important

facts are mainly these: (1) that the rate of growth is an orderly

phenomenon, with general features common to very various

organisms, while each particular organism has its own character-

istic phenomena, or "specific constants"
; (2) that rate of growth

varies with temperature, that is to say with season and with

climate, and with various other physical factors, external and

internal; (3) that it varies in different parts of the body, and

according to various directions or axes ; such variations being

definitely correlated with one another, and thus giving rise to

the characteristic proportions, or form, of the organism, and to

the changes in form which it undergoes in the course of its

development. But to the physiologist, the phenomenon suggests

many other important considerations, and throws much light on

the very nature of growth itself, as a manifestation of chemical

and physical energies.

To be content to shew that a certain rate of growth occurs in

a certain organism under certain conditions, or to speak of the

phenomenon as a "reaction" of the living organism to its environ-

ment or to certain stimuli, would be but an example of that " lack

of particularity!" in regard to the actual mechanism of physical

cause and effect with which we are apt in biology to be too easily

satisfied. But in the case of rate of growth we pass somewhat

* Cf. for instance, Nageli's classical account of the effect of change of habitat

on Alpine and other plants : Sitzungsber. Baier. Akad. Wiss. 1865, pp. 228—284.

j Cf. Blackman, F. F., Presidential Address m Botany, Brit. Ass. Dublin, 1908.

The fact was first enunciated by Baudrimont and St Ange, Recherches sur le

developpement du foetus, Mem. Acad. Set. xi, p. 469, 1851.
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beyond these limitations ; for the affinity with certain types of

chemical reaction is plain, and has been recognised by a great

number of physiologists.

A large part of the phenomenon of growth, both in animals

and still more conspicuously in plants, is associated with "turgor,"

that is to say, is dependent on osmotic conditions ; in other words,

the velocity of growth depends in great measure (as we have already

seen, p. 113) on the amount of water taken up into the living

cells, as well as on the actual amount of chemical metabolism

performed by them*. Of the chemical phenomena which result

in the actual increase of protoplasm we shall speak presently, but

the role of water in growth deserves also a passing word, even in

our morphological enquiry.

It has been shewn by Loeb that in Cerianthus or Tubularia,

for instance, the cells in order to grow must be turgescent; and

this turgescence is only possible so long as the salt water in w^hich

the cells he does not overstep a certain Umit of concentration. The

limit, in the case of Tubularia, is passed when the salt amounts

to about 5-4 per cent. Sea-water contains some 3-0 to 3-5 p.c.

of salts ; but it is when the sahnity falls much below this normal,

to about 2-2 p.c.^ that Tubularia exhibits its maximal turgescence^

and maximal growth. A further dilution is said to act as a poison

to the animal. Loeb has also shewn f that in certain eggs (e.g.

those of the little fish Fundulus) an increasing concentration of

the sea-water (leading to a diminishing "water-content" of the

egg) retards the rate of segmentation and at length renders

segmentation impossible; though nuclear division, by the way,

goes on for some time longer.

Among many other observations of the same kind, those of

Bialaszewicz t , on the early growth of the frog, are notable.

He shews that the growth of the embryo while still within the

* Cf. Loeb, Untcr.tuchungen zur physiol. Morphologie der Thiere, 1892; also

Experiments on Cleavage, J. of Morph. vn, p. 253, 1892; Zusammenstellung der

Ergebnisse einiger Arbeiten iiber die Dynamik des thierischen Wachsthum, Arch,

f. Entw. Mech. xv, 1902-3, p. 669 : Davenport, On the Role of Water in Growth,

Bosto7i Soc. N. H. 1897; Ida H. Hyde, Am. J. of Physiol, xn, 1905, p. 241, etc.

t Pfldger's Archiv, lv, 1893.

J Beitrage zur Kenntniss der Wachstumsvorgange bei Amphibienembryonen,

B^dl. Acad. Sci. de Cracovie, 1908, p. 783 ; cf. Arch. f. Entw. Mech. xxvm, p. 160,

1909; xxxiv, p. 489, 1912.
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vitelline membrane depends wholly on the absorption of water

;

that whether rate of growth be fast or slow (in accordance with

temperature) the quantity of water absorbed is constant; and

that successive changes of form correspond to definite quantities

of water absorbed. The solid residue, as Davenport has also

shewn, may actually and notably diminish, while the embryo

organism is increasing rapidly in bulk and weight.

On the other hand, in later stages and especially in the higher

animals, the percentage of water tends to diminish. This has

been shewn by Davenport in the frog, by Potts in the chick, and

particularly by Fehhng in the case of man*. Fehhng's results

are epitomised as follows

:

Age in weeks ... 6 17 22 24 26 30 35 39

Percentage of water 97-5 91-8 92-0 89-9 86-4 83-7 82-9 74-2

And the following illustrate Davenport's results for the frog:

Age in weeks
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their young alive ; males disappear altogether in the more con-

centrated brines, and then the females lay eggs, which, however,

only begin to develop when the salinity is somewhat reduced.

The best-known case is the little "brine-shrimp," Artemia

salina, found, in one form or another, all the world over, and first

discovered more than a century and a half ago in the salt-pans at

Lymington. Among many allied forms, one, A. ynilhausenii,

inhabits the natron-lakes of Egypt and Arabia, where, under the

name of "loul," or "Fezzan-worm," it is eaten by the Arabs*.

This fact is interesting, because it indicates (and investigation

has apparently confirmed) that the tissues of the creature are not

impregnated with salt, as is the medium in which it lives. The

fluids of the body, the milieu interne (as Claude Bernard called

them t), are no more salt than are those of any ordinary crus-

tacean or other animal, but contain only some 0-8 per cent, of

NaClt, while the milieu externe may contain 10, 20, or more per

cent, of this and other salts ; which is as much as to say that

the skin, or body-wall, of the creature acts as a "semi-permeable

membrane," through which the dissolved salts are not permitted

to diffuse, though water passes through freely : until a statical

equilibrium (doubtless of a complex kind) is at length attained.

Among the structural changes which result from increased

concentration of the brine (partly during the life-time of the

individual, but more markedly during the short season which

suffices for the development of three or four, or perhaps more,

successive generations), it is found that the tail comes to bear

fewer and fewer bristles, and the tail-fins themselves tend at last

to disappear; these changes corresponding to what have been

* These " Fezzan-worms," when first described, were supposed to be "insects'

eggs"; cf. Humboldt, Personal Narrative, vi, i, 8, note; Kirby and Spence.

Letter x.

t Cf. Introd. a VeUide de la medecine experimentile, 1885, p. 110.

t Cf. Abonyi, Z. f. w. Z. cxiv, p. 134, 1915. But Fredericq has shewn that

the amount of NaCl in the blood of Crustacea (Carcinus moenas) varies, -and

all but corr s onds, with the density of the water in which the creature

has been kept {Arch, de Zool. Exp. et Gen. (2), in, p. xxxv, 1885); and
other results of Fredericq's, and various data given or quoted by Bottazzi

(Osmotischer Druck und elektrische Leitungsfahigkeit der Fliissigkeiten der

Organismen, in Asher-Spiro's Ergebn. d. Physiologie, vii, pp. 160-402, 1908) suggest

that the case of the brine-shrimps must be looked upon as an extreme or exceptional

one.
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described as the specific characters of A. milhausenii, and of a

still more extreme form, A. kop'peniana ; while on the other

hand, progressive dilution of the water tends to precisely opposite

conditions, resulting in forms which have also been described as

separate species, and even referred to a separate genus, Callaonella,

closely akin to Branchipus (Fig. 33). Pari passu with these changes,

there is a marked change in the relative lengths of the fore and

hind portions of the body, that is to say, of the " cephalothorax

"

and abdomen : the latter growing relatively longer, the Salter the

water. In other words, not only is the rate of growth of the whole

^ w w

^'
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character, that we may briefly define the species Artemia {Callao-

nella) Jelskii, for instance, as the Artemia of density 1000-1010

(NaCl), or the typical A. salina, or principalis, as the Artemia

of density 1018-1025, and so forth. It is a most interesting

fact that these Artemiae, under the protection of their semi-

permeable skins, are capable of living in waters not only of

great density, but of very varied chemical composition. The

natron-lakes, for instance, contain large quantities of magnesium

Koppeniana

160

140

^ 120

100

1000 1020 1040 1060

Density of water

1080 2000

Fig. 34. Percentage ratio of lengtli of abdomen to ceplialothorax in brine-shrimps,

at various salinities. (After Abonyi.)

sulphate; and the Artemiae continue to live equally well in

artificial solutions where this salt, or where calcium chloride, has

largely taken the place of sodium chloride in the more common
habitat. Furthermore, such waters as those of the natron-lakes

are subject to very great changes of chemical composition as

concentration proceeds, owing to the different solubilities of the

constituent salts. It appears that the forms which the Artemiae

assume, and the changes which they undergo, are identical or

T. G. 9
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indistinguishable, whichever of the above salts happen to exist,

or to predominate, in their saline habitat. At the same time we
still lack (so far as I know) the simple, but crucial experiments

which shall tell us whether, in solutions of different chemical

composition, it is at equal densities, or at "isotonic" concentrations

(that is to say, under conditions where the osmotic pressure,

and consequently the rate of diffusion, is identical), that the

same structural changes are produced, or corresponding phases

of equilibrium attained.

While Hober and others* have referred all these phenomena to

osmosis, Abonyi is inclined to believe that the viscosity, or

mechanical resistance, of the fluid also reacts upon the organism

;

and other possible modes of operation have been suggested.

But we may take it for certain that the phenomenon as a whole

is not a simple one; and that it includes besides the passive

phenomena of intermolecular diffusion, some other form of activity

wliich plays the part of a regulatory mechanismf

.

Growth and catalytic action.

In ordinary chemical reactions we have to deal (1) with a

specific velocity proper to the particular reaction, (2) with varia-

tions due to temperature and other physical conditions, (3) according

to van't Hoff's " Law of Mass," with variations due to the actual

quantities present of the reacting substances, and (4) in certain

cases, with variations due to the presence of "catalysing agents."

In the simpler reactions, the law of mass involves a steady, gradual

slowing-down of the process, according to a logarithmic ratio, as

the reaction proceeds and as the initial amount of substance

diminishes ; a phenomenon, however, which need not necessarily

* Cf. Sehmankewitsch, Z. f. w. Zool. xxv, 1875, xxix, 1877, etc. ; transl. in

appendix to Packard's Monogr. of N. American Phyllopoda, 1883, pp. 466-514

Daday de Dees, Ann. Sci. Nat. (Zool.), (9), xi, 1910; Samter imd Heymons, Abh
d. K. pr. Akad. Wiss. 1902; Bateson, Mat. for the Study of Variation, 1894, pp
96-101; Anikin, Mitth. Kais. Univ. Tomsk, xiv: Zool. Ce7itralM. vi, pp. 756-760

1908; Abonyi, Z.f. w. Z. cxiv, pp. 96-168, 1915 (with copious bibliograpliy), etc

t According to the empirical canon of physiology, that (as Fredericq expresses

it) "L'etre vivant est agence de telle maniere que chaque influence pertui-batrice

provoque d'elle-meme la mise en activite de I'appareil compensateur qui doit

neutrahser et reparer le dommage."
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occur in the organism, part of whose energies are devoted to the

continual bringing-up of fresh supplies.

Catalytic action occurs when some substance, often in very

minute quantity, is present, and by its presence produces or

accelerates an action, by opening " a way round," without

the catalytic agent itself being diminished or used up*.

Here the velocity curve, though quickened, is not necessarily

altered in form, for gradually the law of mass exerts its

effect and the rate of the reaction gradually diminishes. But

in certain cases we have the very remarkable phenomenon that

a body acting as a catalyser is necessarily formed as a product,

or bye-product, of the main reaction, and in such a case as this

the reaction-velocity will tend to be steadily accelerated. Instead

of dwind ing away, the reaction will continue with an ever-

increasing velocity : always subject to the reservation that limiting

conditions will in time make themselves felt, such as a failure of

some necessary ingredient, or a development of some substance

which shall antagonise or finally destroy the original reaction.

Such an action as this we have learned, from Ostwald, to describe

as "autocatalysis." Now we know that certain products of

protoplasmic metabolism, such as the enzymes, are very powerful

catalysers, and we are entitled to speak of an autocatalytic action

on the part of protoplasm itself. This catalytic activity of pro-

toplasm is a very important phenomenon. As Blackman says,

in the address already quoted, the botanists (or the zoologists)

"call it groivth, attribute it to a specific power of protoplasm for

assimilation, and leave it alone as a fundamental phenomenon;

but they are much concerned as to the distribution of new growth

in innumerable specifically distinct forms." While the chemist, on

the other hand, recognises it as a familiar phenomenon, and refers it

to the same category as his other known examples of autocatalysis.

* Such phenomena come precisely under the head of what Bacon called

Instances of Magic :
' By which I mean those wherein the material or efficient

cause is scanty and small as compared with the work or effect produced ; so that

even when they are common, they seem like miracles, some at first iight, others

even after attentive consideration. These magical effects are brought about in

three ways... [of which one isj by excitation or invitation in another body, as in

the magnet which excites numberless needles without losing any of its virtue, or

in yeast and such-like." Nov. Org., cap. li.

9—2
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This very important, and perhaps even fundamental pheno-

menon of growth would seem to have been first recognised by

Professor Chodat of Geneva, as we are told by his pupil Monnier *.

"On peut bien, ainsi que M. Chodat I'a propose, considerer

I'accroissement comme une reaction chimique complexe, dans

laquelle le catalysateur est la cellule vivante, et les corps en

presence sont Teau, les sels, et I'acide carbonique."

Very soon afterwards a similar suggestion was made by Loebt,

in connection with the synthesis of nuclein or nuclear protoplasm

;

for he remarked that, as in an autocatalysed chemical reaction,

the velocity of the synthesis increases during the initial stage of

cell-division in proportion to the amount of nuclear matter already

synthesised. In other words, one of the products of the reaction,

i.e. one of the constituents of the nucleus, accelerates the pro-

duction of nuclear from cytoplasmic material.

The phenomenon of autocatalysis is by no means confined to

living or protoplasmic chemistry, but at the same time it is

characteristically, and apparently constantly, associated therewith.

And it would seem that to it we may ascribe a considerable part

of the difference between the growth of the organism and the

simpler growth of the crystal J : the fact, for instance, that the cell

can grow in a very low concentration of its nutritive solution,

while the crystal grows only in a supersaturated one ; and the

fundamental fact that the nutritive solution need only contain

the more or less raw materials of the complex constituents of the

cell, while the crystal grows only in a solution of its own actual

substance §

.

As F. F. Blackman has pointed out, the multiplication of an

organism, for instance the prodigiously rapid increase of a bacterium,

* Monnier, A., Les matieres minerales, et la loi d'accroissement des Vegetaux,

Publ. de Vlnst. de Bot. de VUniv. de, Geneve (7), in, 1905. Cf. Robertson, On the

Normal Rate of Growth of an Individual, and its Biochemical Significance, Arch,

f. Entw. Mech. xxv, pp. 581-614, xxvi, pp. 108-118, 1908; Wolfgang Ostwald,

Die zeitlichen Eigenschafien der Eniwickelungsvonjdnge, 1908; Hatai, S., Interpreta-

tion of Growth-curves from a Dynamical Standpoint, Anat. Record, v, p. 373,

1911.

t Biochem. Zeitschr. n. 1906, p. 34.

J Even a crystal may be said, in a sense, to display "autocatalysis": for the

bigger its surface becomes, the more rapidly does the mass go on increasing.

§ Cf. Loeb, The Stimulation of Growth, Science, May 14, 1915.
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which tends to double its numbers every few minutes, till (were

it not for limiting factors) its numbers would be all but incalculable

in a day*, is a simple but most striking illustration of the potenti-

alities of protoplasmic catalysis ; and (apart from the large share

taken by mere "turgescence"' or imbibition of water) the same

is true of the growth, or cell-multiplication, of a multicellular

organism in its first stage of rapid acceleration.

It is not necessary for us to pursue this subject much further,

for it is sufficiently clear that the normal "curve of growth" of

an organism, in all its general features, very closely resembles the

velocity-curve of chemical autocatalysis. We see in it the first

and most typical phase of greater and greater acceleration ; this

is followed by a phase in which limiting conditions (whose details

are practically unknown) lead to a falling off of the former

acceleration ; and in most cases we come at length to a third phase,

in which retardation of growth is succeeded by actual diminution

of mass. Here we may recognise the influence of processes, or

of products, which have become actually deleterious ; their

deleterious influence is staved off for awhile, as the organism draws

on its accumulated reserves, but they lead ere long to the stoppage

of all activity, and to the physical phenomenon of death. But

when we have once admitted that the limiting conditions of

growth, which cause a phase of retardation to follow a phase

of acceleration, are very imperfectly known, it is plain that,

ipso facto, we must admit that a resemblance rather than an

identity between this phenomenon and that of chemical auto-

catalysis is all that we can safely assert meanwhile. Indeed, as

Enriques has shewn, points of contrast between the two phenomena

are not lacking ; for instance, as the chemical reaction draws to

a close, it is by the gradual attainment of chemical equilibrium:

but when organic growth draws to a close, it is by reason of a very

different kind of equilibrium, due in the main to the gradual

differentiation of the organism into parts, among whose peculiar

* B. coli-comynunis, according to Buchner, tends to double in 22 minutes; in

24 hours, therefore, a single individual would be multiplied by something like

10-8; Sitzung.<<ber. Munchen. Ges. MorphoJ. u. Physiol, in, pp. 65-71, 1888. Cf.

Marshall Ward, Biology of Bacillus ramosus, etc. Pr. R. S. lviii, 265-468, 1895.

The comparatively large infusorian Stylonichia, according to Maupas, would
multiply in a month by 10*^.
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and specialised functions that of cell-multiplication tends to fall

into abeyance*.

It would seem to follow, as a natural consequence, from what

has been said, that we could without much difficulty reduce our

curves of growth to logarithmic formulae | akin to those which

the physical chemist finds apphcable to his autocatalytic reactions.

This has been diligently attempted by various writersj ; but the

results, while not destructive of the hypothesis itself, are only

partially successful. The difficulty arises mainly from the fact

that, in the life-history of an organism, we have usually to deal

(as indeed we have seen) with several recurrent periods of relative

acceleration and retardation. It is easy to find a formula which

shall satisfy the conditions during any one of these periodic

phases, but it is very difficult to frame a comprehensive formula

which shall apply to the entire period of growth, or to the whole

duration of fife.

But if it be meanwhile impossible to formulate or to solve in

precise mathematical terms the equation to the growth of an

organism, we have yet gone a very long way towards the solution

of such problems when we have found a "qualitative expression,"

as Poincare puts it; that is to say, when we have gained a fair

approximate knowledge of the general curve which represents the

unknown function.

As soon as we have touched on such matters as the chemical

phenomenon of catalysis, we are on the threshold of a subject

which, if we were able to pursue it, would soon lead us far into

the special domain of physiology ; and there it would be necessary

to follow it if we were dealing with growth as a phenomenon in

itself, instead of merely as a help to our study and comprehension

of form. For instance the whole question of diet, of overfeeding

and underfeeding, would present itself for discussion §. But

without attempting to open up this large subject, we may say a

* Cf. Enriques, Wachsthum und seine analytisohe Darstellung, Biol. Centralbl.

1909, p. 337.

f Cf. (int. al.) Mellor, Chemical Statics and Dynamics, 1904, p. 291.

t Cf. Robertson, I.e.

§ See, for a brief resume of this subject, Morgan's Experimental Zoology,

chap. xvi.
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further passing word upon the essential fact that certain chemical

substances have the power of accelerating or of retarding, or in

some way regulating, growth, and of so influencing directly the

morphological features of the organism.

Thus lecithin has been shewn by Hatai*, Danilewskyf and

others to have a remarkable power of stimulating growth in

various animals; and the so-called "auximones," which Professor

Bottomley prepares by the action of bacteria upon peat appear

to be, after a somewhat similar fashion, potent accelerators of

the growth of plants. But by much the most interesting cases,

from our point of view, are those where a particular substance

appears to exert a differential effect, stimulating the growth of

one part or organ of the body more than another.

It has been known for a number of years that a diseased

condition of the pituitary body accompanies the phenomenon

known as "acromegaly," in which the bones are variously enlarged

or elongated, and w^hich is more or less exemplified in every

skeleton of a '"giant" ; while on the other hand, disease or extirpa-

tion of the thyroid causes an arrest of skeletal development, and,

if it take place early, the subject remains a dwarf. These, then,

are well-known illustrations of the regulation of function by some

internal glandular secretion, some enzyme or "hormone" (as

Bayhss and Starling call it), or "harmozone," as Gley calls it in

the particular case where the function regulated is that of growth,

with its consequent influence on form.

Among other illustrations (which are plentiful) we have, for

instance the growth of the placental decidua, which Loeb has

shewn to be due to a substance given off by the corpus luteum

of the ovary, giving to the uterine tissues an abnormal capacity

for growth, which in turn is called into action by the contact of

the ovum, or even of any foreign body. And various sexual

characters, such as the plumage, comb and spurs of the cock,

are believed in like manner to arise in response to some particular

internal secretion. When the source of such a secretion is removed

by castration, well-known morphological changes take place in

various animals; and when a converse change takes place, the

female acquires, in greater or less degree, characters which are

* Amer. J. of Physiol, x, 1904. f C'.J?. cxxi, cxxii, 1895-96.



136 THE RATE OF GROWTH [ch.

proper to the male, as in certain extreme cases, known from time

immemorial, when late in life a hen assumes the plumage of the

cock.

There are some very remarkable experiments by Gudernatsch,

in which he has shewn that by feeding tadpoles (whether of frogs

or toads) on thyroid gland substance, their legs may be made to

grow out at any time, days or weeks before the normal date of

their appearance*. No other organic food was found to produce

the same effect ; but since the thyroid gland is known to contain

iodine f , Morse experimented with this latter substance, and found

that if the tadpoles were fed with iodised amino-acids the legs

developed precociously, just as when the thyroid gland itself was

used. We may take it, then, as an established fact, whose full

extent and bearings are still awaiting investigation, that there

exist substances both within and without the organism which

have a marvellous power of accelerating growth, and of doing so

in such a way as to affect not only the size but the form or pro-

portions of the organism.

If we once admit, as we are now bound to do, the existence

of such factors as these, which, by their physiological activity

and apart from any direct action of the nervous system, tend

towards the acceleration of growth and consequent modification

of form, we are led into wide fields of speculation by an easy and

a legitimate pathway. Professor Gley carries such speculations

a long, long way : for he says J that by these chemical influences

"Toute une partie de la construction des etres parait s'expliquer

d'une fa^on toute mecanique. La forteresse, si longtemps inacces-

sible, du vitalisme est entamee. Car la notion morphogenique

etait, suivant le mot de Dastre§, comme 'le dernier reduit de la

force vitale.'

"

The physiological speculations we need not discuss : but, to

take a single example from morphology, we begin to understand

the possibility, and to comprehend the probable meaning, of the

* Cf. Loeb, Science, May 14, 191.5,

f Cf. Baumann u. Roos, Vorkommen von lod im Thierkorper, Zeitschr. fur

Physiol. Chem. xxi, xxii, 1895, 6.

% Le Neo-Vitalisme, Rev. Scientifique, Mars 1911, p. 22 (of reprint).

§ La vie et la mort, p. 43, 1902.
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all but sudden appearance on the earth of such exaggerated and

almost monstrous forms as those of the great secondary reptiles

and the great tertiary mammals*. We begin to see that it is in

order to account, not for the appearance, but for the disappearance

of such forms as these that natural selection must be invoked.

And we then, I think, draw near to the conclusion that what is

true of these is universally true, and that the great function of

natural selection is not to originate, but to remove : donee ad

interitum genus id natura redegitf.

The world of things living, like the world of things inanimate,

grows of itself, and pursues its ceaseless course of creative evolution.

It has room, wide but not unbounded, for variety of living form

and structure, as these tend towards their seemingly endless, but

yet strictly limited, possibilities of permutation and degree : it

has room for the great and for the small, room for the weak and

for the strong; Environment and circumstance do not always

make a prison, wherein perforce the organism must either live

or die ; for the ways of life may be changed, and many a refuge

found, before the sentence of unfitness is pronounced and the

penalty of extermination paid. But there comes a time when

"variation," in form, dimensions, or other qualities of the organism,

goes farther than is compatible with all the means at hand of

health and welfare for the individual and the stock ; when, under

the active and creative stimulus of forces from within and from

without, the active and creative energies of growth pass the

bounds of physical and physiological equilibrium : and so reach

the limits which, as again Lucretius tells us, natural law has set

between what may and what may not be,

"et quid quaeque queant per foedera naturai

quid porro nequeant."

Then, at last, we are entitled to use the customary metaphor,

and to see in natural selection an inexorable force, whose function

* Cf. Dendy, Evolutionary Biology, 1912, p. 408; Brit. Ass. Report (Portsmouth),

1911, p. 278.

I Lucret. v, 877. "Lucretius nowhere seems to recognise the possibility of

improvement or change of species by 'natural selection'; the animals remain as

they were at the first, except that the weaker and more useless kinds have been

crushed out. Hence he stands in marked contrast with modern evolutionists."

Kelsey's note, ad loc.
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is not to create but to destroy,—to weed, to prune, to cut down
and to cast into the fire*.

Regeneration, or growth and repair.

The phenomenon of regeneration, or the restoration of lost or

amputated parts, is a particular case of growth which deserves

separate consideration.. As we are all aware, this property is

manifested in a high degree among invertebrates and many cold-

blooded vertebrates, diminishing as we ascend the scale, until at

length, in the warm-blooded animals, it lessens down to no more

than that vis niedicatrix which heals a wound. Ever since the

days of Aristotle, and especially since the experiments of Trembley,

Reaumur and Spallanzani in the middle of the eighteenth century,

the physiologist and the psychologist have ahke recognised that

the phenomenon is both perplexing and important. The general

phenomenon is amply discussed elsewhere, and we need, only

deal with it in its immediate relation to growth f.

Regeneration, hke growth in other cases, proceeds with a

velocity which varies according to a definite law ; the rate varies

with the time, and we may study it as velocity and as acceleration.

Let us take, as an instance, Miss M. L. Durbin's measurements

of the rate of regeneration of tadpoles' tails : the rate being here

measured in terms, not of mass, but of length, or longitudinal

increment t.

From a number of tadpoles, whose average length was 34-2 mm.,

their tails being on an average 21-2 mm. long, about half the tail

* Even after we have so narrowed the scope and sphere of natural selection,

it is still hard to understand ; for the causes of extinction are often wellnigh as hard

to comprehend as are those of the origin of species. If we assert (as has been

lightly done) that Smilodon perished owing to its gigantic tusks, that Teleosaurus

was handicapped by its exaggerated snout, or Stegosaurus weighed down by its

intolerable load of armour, we may be reminded of other kindred forms to show
that similar conditions did not necessarily lead to extermination, or that rapid

extinction ensued apart from any such visible or apparent disadvantages. Cf.

Lucas, F. A., On Momentum in Variation, Amer. Nat. xh, p. 46, 1907.

t See Professor T. H. Morgan's Regeneration (316 pp.), 1901 for a full account

and copious bibliography. The early experiments on regeneration, by Vallisneri,

Reaumur, Bonnet, Trembley, Baster, and others, are epitomised by HaUer, Elem.
Physiologiae, vm, p. 156 seq.

J Journ. Experim. Zool. vii, p. ,397, 1909.
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day ; or it may have had within the first three days a change of

direction, or "point of inflection," and may then have sprung

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
days

Fig. 35. Curve of regenerative gro\\i;h in tadpoles' tails. (From
M. L. Durbin's data.)

at once from the base-hne at zero. That is to say, there may
have been an intervening "latent period," during which no growth

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
days

Fig. 3H. Mean daily increments, corresponding to Fig. 3.5.
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occurred, between the time of injury and the first measurement

of regenerative growth ; or, for all we yet know, regeneration

may have begun at once, but with a velocity much less than that

which it afterwards attained. This apparently trifling difference

would correspond to a very great difference in the nature of the

phenomenon, and would lead to a very striking difference in the

curve which we have next to draw.

The curve already drawn (Fig. 35) illustrates, as we have seen,

the relation of length to time, i.e. LjT = F. The second (Fig. 36)

represents the rate of change of velocity; it sets F against T

;

oing
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and V/T or L/T- , represents (as we have learned) the acceleration of

growth, this being simply the "differential coejficient," the first

derivative of the former curve.

Now, plotting this acceleration curve from the date of the

first measurement made three days after the amputation of the

tail (Fig. 36), we see that it has no point of inflection, but falls

steadily, only more and more slowly, till at last it comes down

nearly to the base-line. The velocities of growth are continually

diminishing. As regards the missing portion at the beginning of

the curve, we cannot be sure whether it bent round and came dowii

1-8

logs
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proper scale we shall find that the angle which it makes with the

base is about 25°, of which the tangent is 46, or in round numbers |.

Had the angle been 45° (tan 45° = 1), the curve would have

been actually a rectangular hyperbola, with VT = constant. As

it is, we may assume, provisionally, that it belongs to the same

family of curves, so that F'^T'S or V^'^'T, or VT"'"^; are all severally

constant. In other words, the velocity varies inversely as some

power of the time, or vice versa. And in this particular case, the

equation VT^ = constant, holds very nearly true ; that is to say

the velocity varies, or tends to vary, inversely as the square of

16 1i

days

Fig. 38. Rate of regenerative growth in larger tadpoles.

the time. If some general law akin to this could be established

as a general law, or even as a common rule, it would be of great

importance.

But though neither in this case nor in any other can the minute

increments of growth during the first few hours, or the first couple

of days, after injury, be directly measured, yet the most important

point is quite capable of solution. What the foregoing curve

leaves us in ignorance of, is simply whether growth starts at zero,

with zero velocity, and works up quickly to a maximum velocity

from which it afterwards gradually falls away; or whether after

a latent period, it begins, so to speak, in full force. The answer
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to this question depends on whether, in the days following the

first actual measurement, we can or cannot detect a daily increment

in velocity, before that velocity begins its normal course of diminu-

tion. Now this preUminary ascent to a maximum, or point of

inflection of the curve, though not shewn in the above-quoted

experiment, has been often observed : as for instance, in another

similar experiment by the author of the former, the tadpoles bein^

in this case of larger size (average 49-1 mm.)*.

Days
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rapidly increases to a maximum. The curve quickly,—almost

suddenly,—changes its direction, as the velocity begins to fall;

and the rate of fall, that is, the negative acceleration, proceeds

at a slower and slower rate, which rate varies inversely as some

power of the time, and is found in both of the above-quoted

experiments to be very approximately as 1/T'^. But it is obvious

that the value which we have found for the latter portion of the

curve (however closely it be conformed to) is only an empirical

value ; it has only a temporary usefulness, and must in time give

2 4 6 8

Fig. 39. Daily increment, or amount regenerated, corresponding to Fig. 38.

place to a formula which shall represent the entire phenomenon,

from start to finish.

While the curve of regenerative growth is apparently different

from the curve of ordinary growth as usually drawn (and while

this apparent difference has been commented on and treated as

valid by certain writers) we are now in a position to see that it

only looks different because we are able to study it, if not from

the beginning, at least very nearly so : while an ordinary curve

of growth, as it is usually presented to us, is one which dates, not

T. G. 10
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from the beginning of growth, but from the comparatively late,

and unimportant, and even fallacious epoch of birth. A complete

curve of growth, starting from zero, has the same essential charac-

teristics as the regeneration curve.

Indeed the more we consider the phenomenon of regeneration,

the more plainly does it shew itself to us as but a particular case

of the general phenomenon of growth*, following the same lines,

obeying the same laws, and merely started into activity by the

special stimulus, direct or indirect, caused by the infliction of a

wound. Neither more nor less than in other problems of physiology

are we called upon, in the case of regeneration, to indulge in

metaphysical speculation, or to dwell upon the beneficent purpose

which seemingly underlies this process of healing and restoration.

It is a very general rule, though apparently not a universal

one, that regeneration tends to fall somewhat short of a complete

restoration of the lost part ; a certain percentage only of the lost

tissues is restored. This fact was well known to some of those

old investigators, who, like the Abbe Trembley and like Voltaire,

found a fascination in the study of artificial injury and the regenera-

tion which followed it. Sir John Graham Dalyell, for instance,

says, in the course of an admirable paragraph on regeneration I

:

"The reproductive faculty... is not confined to one portion, but

may extend over many ; and it may ensue even in relation to the

regenerated portion more than once. Nevertheless, the faculty

gradually weakens, so that in general every successive regeneration

is smaller and more imperfect than the organisation preceding it

;

and at length it is exhausted."

In certain minute animals, such as the Infusoria, in which the

capacity for "regeneration" is so great that the entire animal

may be restored from the merest fragment, it becomes of great

interest to discover whether there be some definite size at which

the fragment ceases to display this power. This question has

* The experiments of Loeb on the growth of Tubulaiia in various saline

solutions, referred to on p. 125, might as well or better have been referred to under

the headmg of regeneration, as they were performed on cut pieces of the 7,oophji;e.

(Cf. Morgan, op. cii. p. 35.)

"f
Powers of the Creator, i, p. 7, 1851. See also Rare and Remarkable Animals,

II, pp. 17-19, 90, 1847.



ml KEGENERATION, OR GROWTH AND REPAIR 147

been studied by Lillie*, who found that in Stentor, while still

smaller fragments were capable of surviving for days, the smallest

portions capable of regeneration were of a size equal to a sphere of

about 80 jj, in diameter, that is^ to say of a volume equal to about

one twenty-seventh of the average entire animal. He arrives at

the remarkable conclusion that for this, and for all other species

of animals, there is a "minimal organisation mass," that is to say

a "minimal mass of definite size consisting of nucleus and cyto-

plasm within which the organisation of the species can just find

its latent expression." And in like manner, Boverif has shewn

that the fragment of a sea-urchin's egg capable of growing up into

a new embryo, and so discharging the complete functions of an

entire and uninjured ovum, reaches its limit at about one-twentieth

of the original egg,—other writers having found a limit at about

one-fourth. These magnitudes, small as they are, represent

objects easily visible under a low power of the microscope, and so

stand in a very different category to the minimal magnitudes in

which life itself can be manifested, and which we have discussed

in chapter II.

A number of phenomena connected with the linear rate of

regeneration are illustrated and epitomised in the accompanying

diagram (Fig. 40), which I have constructed from certain data

given by Ellis in a paper on the relation of the amount of tail

regenerated to the amount removed, in Tadpoles. These data are

summarised in the next Table. The tadpoles were all very much

of a size, about 40 mm. ; the average length of tail was very near

to 26 mm., or 65 per cent, of the whole body-length; and in four

series of experiments about 10, 20, 40 and 60 per cent, of the tail

were severally removed. The amount regenerated in successive

intervals of three days is shewn in our table. By plotting the

actual amounts regenerated against these three-day intervals of

time, we may interpolate values for the time taken to regenerate

definite percentage amounts, 5 per cent., 10 per cent., etc. of the

* Lillie, F. R., The smallest Parts of Stentor capable of Regeneration,

Journ. of Morphology, xii, p. 23.9, 1897.

t Boveri, Entwicklungsfahigkeit kernloser Seeigeleier, etc., Arch.f. Entw. Mech.

II, 1895. See also Morgan, Studies of the partial larvae of Sphaerechinus, ibid.

1895; J. Loeb, On the Limits of Divisibility of Living Matter, Biol. Lectures, 1894,

etc.

10—2
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The Rate of Regenerative Growth in Tadpoles' Tails.

{After M. M. Ellis, J. Exp. Zool. vii, p. 421, 1909.)

[CH.
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curve indicates the time taken to regenerate n per cent, of the

amount removed. All the curves converge towards infinity, when

the amount removed (as shewn by the ordinate) approaches 75

per cent. ; and all of the curves start from zero, for nothing is

regenerated where nothing had been removed. Each curve ap-

proximates in form to a cubic parabola.

The amount regenerated varies also with the age of the tadpole

and with other factors, such as temperature; in other words, for

any given age, or size, of tadpole and also for various, specific

temperatures, a similar diagram might be constructed.

The power of reproducing, or regenerating, a lost hmb is

particularly well developed in arthropod animals, and is some-

times accompanied by remarkable modification of the form of

the regenerated limb. A case in point, which has attracted

much attention, occurs in connection with the claws of certain

Crustacea*.

In many Crustacea we have an asymmetry of the great claws,

one being larger than the other and also more or less different in

form. For instance, in the common lobster, one claw, the larger

of the two, is provided with a few great ''crushing" teeth, while

the smaller claw has more numerous teeth, small and serrated.

Though Aristotle thought otherwise, it appears that the crushing-

claw may be on the right or left side, indifferently ; whether it

be on one or the other is a problem of "chance." It is otherwise

in many other Crustacea, where the larger and more powerful

claw is always left or right, as the case may be, according to the

species: where, in other words, the "probability" of the large

or the small claw being left or being right is tantamount to

certainty}".

The one claw is the larger because it has grown the faster;

* Cf. Przibram, H., Scheerenumkehr bei dekapoden Crustaceen, Arch. f. Entw.

Mech. XIX, 181-247, 1905; xxv, 266-344, 1907. Emmel, ibid, xxii, 542, 1906;

Regeneration of lost parts in Lobster, Rep. Comm. Inland Fisheries, Rhode Island,

XXXV, xxxvi, 1905-6; Science (n.s.), xxvi, 83-87, 1907. Zeleny, Compensatory

Regulation, J. Exp. Zool. n, 1-102, 347-369, 1905; etc.

t Lobsters are occasionally found with two symmetrical claws : which are then

usually serrated, sometimes (but very rai-ely) both blunt-toothed. Cf. Caiman,

P.Z.S. 1906, pp. 633, 634, and reff.
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it has a higher "coefficieDt of growth," and accordingly, as age

advances, the disproportion between the two claws becomes more

and more evident. Moreover, we must assume that the character-

istic form of the claw is a "function" of its magnitude; the

knobbiness is a phenomenon coincident with growth, and we

never, under any circumstances, find the smaller claw with big

crushing teeth and the big claw with little serrated ones. There

are many other somewhat similar cases where size and form are

manifestly correlated, and we have already seen, to some extent,

that th^ phenomenon of growth is accompanied by certain ratios

of velocity that lead inevitably to changes of form. Meanwhile,

then, we must simply assume that the essential difference between

the two claws is one of magnitudej with which a certain difEerentia-

tion of form is inseparably associated.

If we amputate a claw, or if, as often happens, the crab "casts

it off," it undergoes a process of regeneration,—it grows anew,

and evidently does so with an accelerated velocity, which accelera-

tion will cease when equilibrium of the parts is once more attained

:

the accelerated velocity being a case in point to illustrate that

vis revulsionis of Haller, to which we have already referred.

With the help of this principle, Przibram accounts for certain

curious phenomena which accompany the process of regeneration.

As his experiments and those of Morgan shew, if the large or

knobby claw (A) be removed, there are certain cases, e.g. the

common lobster, where it is directly regenerated. In other cases,

e.g. Alpheus*, the other claw (B) assumes the size and form of that

which was amputated, while the latter regenerates itself in the

form of the other and weaker one; A and B have apparently

changed places. In a third case, as in the crabs, the yl-claw re-

generates itself as a small or 5-claw, but the B-claw remains for a

time unaltered, though slowly and in the course of repeated moults

it later on assumes the large and heavily toothed ^-form.

Much has been written on this phenomenon, but in essence it

is very simple. It depends upon the respective rates of growth,

upon a ratio between the rate of regeneration and the rate of

growth of the uninjured limb : complicated a little, however, by

* Wilson, E. B., Reversal of Symmetry in Alpheus heterochelis, Biol. Bull, rv,

p. 197, 1903.
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the possibility of the uninjured Hmb growing all the faster for

a time after the animal has been relieved of the other. From the

time of amputation, say of ^, ^ begins to grow from zero, with

a high "regenerative" velocity; while B, starting from a definite

magnitude, continues to increase, with its normal or perhaps

somewhat accelerated velocity. The ratio between the two

velocities of growth will determine whether, by a given time,

A has equalled, outstripped, or still fallen short of the magnitude

of i5.

That this is the gist of the whole problem is confirmed (if

confirmation be necessary) by certain experiments of Wilson's.

It is known that by section of the nerve to a crab's claw, its

growth is retarded, and as the general growth of the animal

proceeds the claw comes to appear stunted or dwarfed. Now in

such a case as that of Alpheus, we have seen that the rate of

regenerative growth in an amputated large claw fails to let it

reach or overtake the magnitude of the growing little claw

:

which latter, in short, now appears as the big one. But if at the

same time as we amputate the big claw we also sever the nerve

to the lesser one, we so far slow down the latter's growth that

the other is able to make up to it, and in this case the two claws

continue to grow at approximately equal rates, or in other words

continue of coequal size.

The phenomenon of regeneration goes some way towards

helping us to comprehend the phenomenon of "multiplication by
fission," as it is exemplified at least in its simpler cases in many
worms and worm-like animals. For physical reasons which we
shall have to study in another chapter, there is a natural tendency

for any tube, if it have the properties of a fluid or semi-fluid

substance, to break up into segments after it comes to a certain

length ; and nothing can prevent its doing so, except the presence

of some controlling force, such for instance as may be due to the

pressure of some external support, or some superficial thickening

or other intrinsic rigidity of its own substance. If we add to this

natural tendency towards fission of a cylindrical or tubular worm,

the ordinary phenomenon of regeneration, we have all that is

essentially implied in "reproduction by fission." And in so far
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as the process rests upon a physical principle, or natural tendency,

we may account for its occurrence in a great variety of animals,

zoologically dissimilar ; and also for its presence here and absence

there, in forms which, though materially different in a physical

sense, are zoologically speaking very closely allied.

Conclusion and Summary.

But the phenomena of regeneration, like all the other

phenomena of growth, soon carry us far afield, and we must draw

this brief discussion to a close.

For the main features which appear to be common to all

curves of growth we may hope to have, some day, a physical

explanation. In particular we should like to know the meaning

of that point of inflection, or abrupt change from an increasing

to a decreasing velocity of growth which all our curves, and

especially our acceleration curves, demonstrate the existence of,

provided only that they include the initial stages of the whole

phenomenon: just as we should also like to have a full physical

or physiological explanation of the gradually diminishing velocity

of growth which follows, and which (though subject to temporary

interruption or abeyance) is on the whole characteristic of growth in

all cases whatsoever. In short, the characteristic form of the curve

of growth in length (or any other linear dimension) is a phenomenon

which we are at present unable to explain, but which presents

us with a definite and attractive problem for future solution.

It would seem evident that the abrupt change in velocity must be

due, either to a change in that pressure outwards from within,

by which the "forces of growth" make themselves manifest, or

to a change in the resistances against which they act, that is to

say the tension of the surface ; and this latter force we do not by

any means limit to "surface-tension" proper, but may extend to

the development of a more or less resistant membrane or "skin,"

or even to the resistance of fibres or other histological elements,

binding the boundary layers to the parts within. I take it that

the sudden arrest of velocity is much more hkely to be due to a

sudden increase of resistance than to a sudden diminution of

internal energies : in other words, I suspect that it is coincident

with some notable event of histological differentiation, such as
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the rapid formation of a comparatively firm skin; and that the

dwindUng of velocities, or the negative acceleration, which follows,

is the resultant or composite effect of waning forces of growth on

the one hand, and increasing superficial resistance on the other.

This is as much as to say that growth, while its own energy tends

to increase, leads also, after a while, to the establishment of

resistances which check its own further increase.

Our knowledge of the whole complex phenomenon of growth

is so scanty that it may seem rash to advance even this tentative

suggestion. But yet there are one or two known facts which

seem to bear upon the question, and to indicate at least the manner

in which a varying resistance to expansion may afiect the velocity

of growth. For instance, it has been shewn by Frazee* that

electrical stimulation of tadpoles, with small current density and

low voltage, increases the rate of regenerative growth. As just

such an electrification would tend to lower the surface-tension,

and accordingly decrease the external resistance, the experiment

would seem to support, in some slight degree, the suggestion

which I have made.

Delagef has lately made use of the principle of specific rate of growth,

in considering the question of heredity itself. We know that the chromatin

of the fertilised egg comes from the male and female parent alike, in equal or

nearly equal shares; we know that the initial chromatin, so contributed,

multiplies many thousand-fold, to supply the chromatin for every cell of the

offspring's body; and it has, therefore, a high "coefficient of growth." If we

admit, with Van Beneden and others, that the initial contributions of male and

female chromatin continue to be transmitted to the succeeding generations

of cells, we may then conceive these chromatins to retain each its own coefficient

of growth ; and if these differed ever so little, a gradual preponderance of one

or other would make itself felt in time, and might conceivably explain the

preponderating influence of one parent or the other upon the characters of

the offspring. Indeed O. Hertwig is said (according to Delage's interpretation)

to have actually shewn that we can artificially modify the rate of growth of

one or other chromatin, and so increase or diminish the influence of the maternal

or paternal heredity. This theory of Delage's has its fascination, but it calls

for somewhat large assumptions; and in particular, it seems (Kke so many
other theories relating to the chromosomes) to rest far too much upon material

elements, rather than on the imponderable dynamic factors of the cell.

* J. Exp. Zool. VII, p. 457, 1909.

f Biologica, ni, p. 161, June,. 1913.
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We may summarise, as follows, the main results of the fore-

going discussion

:

(1) Except in certain minute organisms and minute parts of

organisms, whose form is due to the direct action of molecular

forces, we may look upon the form of the organism as a "function

of growth," or a direct expression of a rate of growth which varies

according to its different directions.

(2) Rate of growth is subject to definite laws, and the

velocities in different directions tend to maintain a ratio which is

more or less constant for each specific organism ; and to this

regularity is due the fact that the form of the organism is in general

regular and constant.

(3) Nevertheless, the ratio of velocities in different directions

is not absolutely constant, but tends to alter or fluctuate in a

regular way ; and to these progressive changes are due the

changes of form which accompany "development," and the slower

changes of form which continue perceptibly in after life.

(4) The rate of growth is a function of the age of the organism ,

it has a maximum somewhat early in life, after which epoch of

maximum it slowly declines.

(5) The rate of growth is directly affected by temperature,

and by other physical conditions.

(6) It is markedly affected, in the way of acceleration or

retardation, at certain physiological epochs of life, such as birth,

puberty, or metamorphosis.

(7) Under certain circumstances, growth may be negative, the

organism growing smaller : and such negative growth is a common
accompaniment of metamorphosis, and a frequent accompaniment

of old age.

(8) The phenomenon of regeneration is associated with a large

temporary increase in the rate of growth (or "acceleration'' of

growth) of the injured surface ; in other respects, regenerative

growth is similar to ordinary growth in all its essential phenomena.

In this discussion of grbwth, we have left out of account a

vast number of processes, or phenomena, by which, in the physio-

logical mechanism of the body, growth is effected and controlled.

We have dealt with growth in its relation to magnitude, and to
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that relativity of magnitudes which constitutes form ; and so we

have studied it as a phenomenon which stands at the beginning

of a morphological, rather than at the end of a physiological

enquiry. Under these restrictions, we have treated it as far as

possible, or in such fashion as our present knowledge permits, on

strictly physical lines.

In all its aspects, and not least in its relation to form, the

growth of organisms has many analogies, some close and some

perhaps more remote, among inanimate things. As the waves

grow when the winds strive with the other forces which govern

the movements of the surface of the sea, as the heap grows when

we pour corn out of a sack, as the crystal grows when from the

surrounding solution the proper molecules fall into their appro-

priate places : so in all these cases, very much as in the organism

itself, is growth accompanied by change of form, and by a develop-

ment of definite shapes and contours. And in these cases (as

in all other mechanical phenomena), we are led to equate our

various magnitudes with time, and so to recognise that growth is

essentially a question of rate, or of velocity.

The differences of form, and changes of form, which are brought

about by varying rates (or "laws") of growth, are essentially the

same phenomenon whether they be, so to speak, episodes in the

life-history of the individual, or manifest themselves as the normal

and distinctive characteristics of what we call separate species of

the race. From one form, or ratio of magnitude, to another there

is but one straight and direct road of transformation, be the

journey taken fast or slow; and if the transformation take place

at all, it will in all hkelihood proceed in the self-same way, whether

it occur within the life-time of an individual or during the long

ancestral history of a race. No small part of what is known as

Wolff's or von Baer's law, that the individual organism tends to

pass through the phases characteristic of its ancestors, or that the

life-history of the individual tends to recapitulate the ancestral

history of its race, lies wrapped up in this simple account of the

relation between rate of growth and form.

But enough of this discussion. Let us leave for a while the

subject of the growth of the organism, and attempt to study the

conformation, within and without, of the individual cell.



CHAPTER IV

ON THE INTERNAL FORM AND STRUCTURE OF THE CELL

In the early days of the cell-theory, more than seventy years

ago, Goodsir was wont to speak of cells as "centres of growth"

or "centres of nutrition," and to consider them as essentially

"centres of force." He looked forward to a time when the forces

connected with the cell should be particularly investigated : when,

that is to say, minute anatomy should be studied in its dynamical

aspect. "When this branch of enquiry," he says "shall have

been opened up, we shall expect to have a science of organic

forces, having direct relation to anatomy, the science of organic

•forms*." And likewise, long afterwards, Giard contemplated a

science of mor'phodynamique,—but still looked upon it as forming

so guarded and hidden a "territoire scientifique, que la plupart

des naturalistes de nos jours ne le verront que comme Moise vit

la terre promise, seulement de loin et sans pouvoir y entrerf."

To the external forms of cells, and to the forces which produce

and modify these forms, we shall pay attention in a later chapter.

But there are forms and configurations of matter within the cell,

which also deserve to be studied with due regard to the forces,

known or unknown, of whose resultant they are the visible

expression.

In the long interval since Goodsir's day, the visible structure,

the conformation and configuration, of the cell, has been studied

far more abundantly than the purely dynamic problems that are

associated therewith. The overwhelming progress of microscopic

observation has multiplied our knowledge of cellular and intra-

cellular structure ; and to the multitude of visible structures it

* Anatomical and Pathological Observations, p. 3, 1845; Anatomical Memoirs,

n, p. 392, 18G8.

t Giard. A., L'oeuf et les debuts de revolution, Bull. Sci. du Nord de la Fr.

VIII, pp. 252-258, 1876.



CH. IV] INTERNAL FORM AND STRUCTURE OF CELL L57

has been often easier to attribute virtues than to ascribe intelligible

functions or modes of action. But here and there nevertheless,

throughout the whole literature of the subject, we find recognition

of the inevitable fact that dynamical problems lie behind the

morphological problems of the cell.

Blitschli pointed out forty years ago, with emphatic clearness,

the failure of morphological methods, and the need for physical

methods, if we were to penetrate deeper into the essential nature

of the cell*. And such men as Loeb and Whitman, Driesch and

Roux, and not a few besides, have pursued the same train of

thought and similar methods of enquiry.

Whitman!, for instance, puts the case in a nutshell when, in

speaking of the so-called " caryokinetic " phenomena of nuclear

division, he reminds us that the leading idea in the term " caryo-

kinesis'' is motion,—"motion viewed as an exponent of forces

residing in, or acting upon, the nucleus. It regards the nucleus

as a seat of energy, which displays itself in -phenomena of motion J."

In short it would seem evident that, except in relation to a

dynamical investigation, the mere study of cell structure has but

little value of its own. That a given cell, an ovum for instance,

contains this or that visible substance or structure, germinal

vesicle or germinal spot, chromatin or achromatin, chromosomes

or centrosomes, obviously gives no explanation of the activities of

the cell. And in all such hypotheses as that of "pangenesis," in

all the theories which attribute specific properties to micellae,

* Entwickelungsvorgdnge der Eizelle, 1876; Investigations on Microscopic Foams
and Protoplasm, p. 1, 1894.

t Journ. of Morphology, i, p. 229, 1887.

J While it has been very common to look upon the phenomena of mitosis as-

sufficiently explained by the results towards which they seem to lead, we may iind

here and there a strong protest against this mode of interpretation. The following

is a case in point: "On a tente d'etablir dans la mitose dite primitive plusieurs

categories, plusieurs types de mitose. On a choisi le plus souvent comme base

de ces systemes des concepts abstraits et teleologiques : repartition plus ou moins
exacte de la chromatine entre les deux noyaux-fils suivant qu'il y a ou non des

chromosomes (Da.ngeard), distribution particuliere et signification dualiste des

substances nucleaires (substance kmetique et substance generative ou hereditaire,

Hartmann et ses eleves), etc. Pour moi tous ces essais sont a rejeter categorique-

ment a cause de leur caractere finaliste ; de plus, ils sont construits sur des concepts

non demontres, et qui parfois representent des generalisations absolument erronees."

A. AlexeiefE, Archivfitr Protistenkunde, xix, p. 344, 1913.
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idioplasts, ids, or other constituent particles of protoplasm or of

the cell, we are apt to fall into the error of attributing to matter

what is due to energy and is manifested in force : or, more strictly

speaking, of attributing to material particles individually what is

due to the energy of their collocation.

The tendency is a very natural one, as knowledge of structure

increases, to ascribe particular virtues to the material structures

themselves, and the error is one into which the disciple is likely

to fall, but of which we need not suspect the master-mind. The

dynamical aspect of the case was in all probability kept well in

view by those who, like Goodsir himself, first attacked the problem

of the cell and originated our conceptions of its nature and

functions.

But if we speak, as Weismann and others speak, of an

"hereditary substance/'' a substance which is split off from the

parent-body, and which hands on to the new generation the

characteristics of the old, we can only justify our mode of speech

by the assumption that that particular portion of matter is the

essential vehicle of a particular charge or distribution of energy,

in which is involved the capability of producing motion, or of

doing "work."

For, as Newton said, to tell us that a thing "is endowed with

an occult specific quality, by which it acts and produces manifest

effects, is to tell us nothing; but to derive two or three general

principles of motion* from phenomena would be a very great step

in philosophy, though the causes of these principles were not yet

discovered." The things which we see in the cell are less important

than the actions which we recognise in the cell; and these latter

we must especially scrutinize, in the hope of discovering how far

they may be attributed to the simple and well-known physical

forces, and how far they be relevant or irrelevant to the phenomena

which we associate with, and deem essential to, the manifestation

of life. It may be that in this way we shall in time draw nigh to

the recognition of a specific and ultimate residuum.

* This is the old philosophic axiom writ large: Ignorato motu, ignoratur

natura ; which again is but an adaptation of Aristotle's phrase, 17 dpxv rrjs Kivr]<T€us.

as equivalent to the "Efficient Cause." FitzGerald holds that ''all explanation

consists in a desciiption of underlying motions"; Scientific Writings, 1902, p. 385.



IV] STRUCTURE OF THE CELL 159

And lacking, as we still do lack, direct knowledge of the actual

forces inherent in the cell, we may yet learn something of their

distribution, if not also of their nature, from the outward and

inward configuration of the cell, and from the changes taking

place in this configuration ; that is to say from the movements

of matter, the kinetic phenomena, which the forces in action set up.

The fact that the germ-cell develops into a very complex

structure, is no absolute proof that the cell itself is structurally

a very comphcated mechanism : nor yet, though this is somewhat

less obvious, is it sufficient to prove that the forces at work, or

latent, within it are especially numerous and complex. If we blow

into a bowl of soapsuds and raise a great mass of many-hued and

variously shaped bubbles, if we explode a rocket and watch the

regular and beautifiil configuration of its falUng streamers, if we

consider the wonders of a limestone cavern which a filtering stream

has filled with stalactites, we soon perceive that in all these cases

we have begun with an initial system of very slight complexity,

whose structure in no way foreshadowed the result, and whose

comparatively simple intrinsic forces only play their part by

complex interaction with the equally simple forces of the surround-

ing medium. In an earlier age, men sought for the visible embryo,

even for the homunculus, within the reproductive cells ; and to

this day, we scrutinize these cells for visible structure, unable to

free ourselves from that old doctrine of "pre-formation*."

Moreover, the microscope seemed to substantiate the idea

(which we may trace back to Leibniz | and to HobbesJ), that

there is no limit to the mechanical complexity which we may
postulate in an organism, and no limit, therefore, to the hypo-

theses which we may rest thereon.

But no microscopical examination of a stick of sealing-wax,

no study of the material of which it is composed, can enlighten

* As when Nageli concluded that the organism is, in a certain sense, "vorge-

bildet" ; Beitr. zur iviss. Botanik, II, 1860. Cf. E. B. Wilson, The Cell, etc., p. 302.

t "La matiere arrangee par une sagesse divine doit etre essentieUement organisee

partout...il y a machine dans les parties de la machine Naturelle a I'infini." Sur le

qirincipe de la Vie, p. 431 (Erdmann). This is the very converse of the doctrine

of the Atomists, who could not conceive a condition "w6i dimidiae jjartis pars

semper habebit Dimidiam partem, nee res praefiniet ulla.'''

1 Cf. an interesting passage from the Elements (i, p. 445, Molesworth's edit.),

quoted by Owen, Hunterian Lectures on the Invertebrates, 2nd ed. pp. 40, 41, 1855.
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us as to its electrical manifestations or properties. Matter of

itself has no power to do, to make, or to become : it is in energy

that all these potentialities reside, energy invisibly associated with

the material system, and in interaction with the energies of the

surrounding universe.

That "function presupposes structure" has been declared an

accepted axiom of biology. Who it was that so formulated the

aphorism I do not know ; but as regards the structure of the cell

it harks back to Briicke, with whose demand for a mechanism,

or organisation, within the cell histologists have ever since

been attempting to comply*. But unless we mean to include

thereby invisible, and merely chemical or molecular, structure,

we come at once on dangerous ground. For we have seen, in

a former chapter, that some minute "organisms" are already

known of such all but infinitesimal magnitudes that everything

which the morphologist is accustomed to conceive as "structure"

has become physically impossible ; and moreover recent research

tends generally to reduce, rather than to extend, our conceptions

of the visible structure necessarily inherent in living protoplasm.

The microscopic structure which, in the last resort or in the simplest

cases, it seems to shew, is that of a more or less viscous colloid,

or rather mixture of colloids, and nothing more. Now, as Clerk

Maxwell puts it, in discussing this very problem, "one material

system can differ from another only in the configuration and

motion which it has at a given instant t-" If we cannot assume

differences in structure, we must assume differences in niotion, that

is to say, in energy. And if we cannot do this, then indeed we are

thrown back upon modes of reasoning unauthorised in physical

science, and shall find ourselves constrained to assume, or to

"admit, that the properties of a germ are not those of a purely

material system."

* "Wir miissen deshalb den lebenden Zellen, abgesehen von der Molekular-

structur der organischen Verbindungen welche sie enthalt, noch eine andere und
in anderer Weise complicirte Structur zuschreiben, und diese es ist welche wir

mit dem Namen Organisation bezeiclmen," Briicke^ Die Elementarorganismen,

Wiener Sitzungsber. xliv, 1861, p. 386; quoted by Wilson, The Cell, etc. p. 289.

Cf. also Hardy, Journ. of Physiol, xxiv, 1899, p. 159.

f Precisely as in the Lucretian concursus, motus, ordo, positura,figurae, whereby

bodies miitato ordine mutant naturam.
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But we are by no means necessarily in this dilemma. For

though we come perilously near to it when we contemplate the

lowest orders of magnitude to which life has been attributed, yet

in the case of the ordinary cell, or ordinary egg or germ which is

going to develop into a complex organism, if we have no reason

to assume or to believe that it comprises an intricate " mechanism,"

we may be quite sure, both on direct and indirect evidence, that,

like the powder in our rocket, it is very heterogeneous in its

structure. It is a mixture of substances of various kinds, more

or less fluid, more or less mobile, influenced in various ways by

chemical, electrical, osmotic, and other forces, and in their

admixture separated by a multitude of surfaces, or boundaries, at

which these, or certain of these forces are made manifest.

Indeed, such an arrangement as this is already enough to

constitute a "mechanism"; for we must be very careful not to

let our physical or physiological concept of mechanism be narrowed

to an interpretation of the term derived from the delicate and

complicated contrivances of human skill. From the physical

point of view, we understand by a "mechanism" whatsoever

checks or controls, and guides into determinate paths, the workings

of energy; in other words, whatsoever leads in the degradation

of energy to its manifestation in some determinate form of ivorh,

at a stage short of that ultimate degradation which lapses in

uniformly diffused heat. This, as Warburg has well explained, is

the general eflect or function of the physiological machine, and in

particular of that part of it which we call "cell-structure*."

The normal muscle-cell is something which turns energy, derived

from oxidation, into work; it is a mechanism which arrests and
utiUses the chemical energy of oxidation in its downward course

;

but the same cell when injured or disintegrated, loses its "use-

fulness," and sets free a greatly increased proportion of its energy

in the form of heat.

But very great and wonderful things are done after this manner
by means of a mechanism (whether natural or artificial) of

extreme simplicity. A pool of water, by virtue of its surface,

* Otto Warburg, Beitrage zur Physiologie der Zelle, insbesondere iiber die

Oxidationsgeschwindigkeit in Zellen; in Asher-Spiro's Ergebnisse der Physiologie.

•XIV, pp. 253-337, 1914 (see p. 315). (Cf. Bayliss, General Physiology, 1915, p. 590).

T. G. li
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is an admirable mechanism for the making of waves ; with a lump
of ice in it, it becomes an efficient and self-contained mechanism

for the making of currents. The great cosmic mechanisms are

stupendous in their simplicity ; and, in point of fact, every great

or little aggregate of heterogeneous matter (not identical in

'phase") involves, ipso facto, the essentials of a mechanisna.

Even a non-living colloid, from its intrinsic heterogeneity, is in

this sense a mechanism, and one in which energy is manifested

in the movement and ceaseless rearrangement of the constituent

particles. For this reason Graham (if I remember rightly) speaks

somewhere or other of the colloid state as "the dynamic state of

matter"; or in the same philosopher's phrase (of which Mr
Hardy* has lately reminded us), it possesses "ewer^rmf."

Let us turn then to consider, briefly and diagrammatically, the

structure of the cell, a fertilised germ-cell or ovum for instance,

not in any vain attempt to correlate this structure with the

structure or properties of the resulting and yet distant organism

;

but merely to see how far, by the study of its form and its changing

internal configuration, we may throw light on certain forces which

are for the time being at work within it.

We may say at once that we can scarcely hope to learn more

of these forces, in the first instance, than a few facts regarding

their direction and magnitude ; the nature and specific identity

of the force or forces is a very different matter. This latter

problem is likely to be very difficult of elucidation, for the reason,

among others, that very different forces are often very much alike

in their outward and visible manifestations. So it has come to

pass that we have a multitude of discordant hypotheses as to the

nature of the forces acting within the cell, and producing, in cell

division, the " caryokinetic " figures of which we are about to

speak. One student may, like Rhumbler, choose to account for

them by an hypothesis of mechanical traction, acting on a reticular

web of protoplasm J ; another, like Leduc, may shew us how in

* Hardy, W. B., On some Problems of Living Matter (Guthrie Lecture),

Tr. Physical Soc. London, xxviii, p. 99-118, 1916.

I As a matter of fact both phrases occur, side by side, in Graham's classical

paper on "Liquid Diffusion apphed to Analysis," Phil. Trans, cli, p. 184, 1861;

Chem. and Phys. Researches (ed. Angus Smith), 1876, p. 554.

X L. Rhumbler, Mechanische Erklarung der Aehnhchkeit zwischen Magne-
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many of their most striking features they may be admirably

simulated by the diffusion of salts in a colloid medium; others

again, like Gallardo* and Hartog, and Rhumbler (in his earher

papers) f, insist on their resemblance to the phenomena of

electricity and magnetism J ; while Hartog beUeves that the force

in question is only analogous to these, and has a specific identity

of its own §. All these conflicting views are of secondary import-

ance, so long as we seek only to account for certain configurations

which reveal the direction, rather than the nature, of a force.

One and the same system of Hues of force may appear in a field

of magnetic or of electrical energy, of the osmotic energy of

diffusion, of the gravitational energy of a flowing stream. In short,

we may expect to learn something of the pure or abstract dynamics,

long before we can deal with the special physics of the cell. For

indeed (as Maillard has suggested), just as uniform expansion

about a single centre, to whatsoever physical cause it may be due

will lead to the configuration of a sphere, so will any two centres

or foci of potential (of whatsoever kind) lead to the configurations

with which Faraday made us familiar under the name of "lines

of force||"; and this is as much as to say that the phenomenon,

tischen Kraftliniensystemen unci Zelltheilungsfiguren, Arch. f. Entw. Mech. xv,

p. 482, 1903.

* Gallardo, A., Essai d'interijretation des figures caryocinetiques, Anales del

Miiseo de Buenos-Aires (2), ii, 1896; La division de la cellule, phenoraene bipolaire

de caractere electro-colloidal. Arch. f. Entw. Mech. xxviii, 1909, etc.

t Arch. f. Entw. Mech. m, iv, 1896-97.

J On various theories of the mechanism of mitosis, see (e.g.) Wilson, The Cell

in Development, etc., pp. 100-114; Meves, Zelltheilung, in Merkel u. Bonnet's

Ergebnisse der Anatomic, etc., vii, viii, 1897-8; Ida H. Hyde, Amer. Journ.

of Physiol. XII, pp. 241-275, 1905; and especially Prenant, A., Theories et inter-

pretations physiques de la mitose, J. de VAnat. et Physiol, xlvi, pp. 511-578, 1910.

§ Hartog, M., Une force nouvelle: le mitokinetisme, C.R. 11 Juli, 1910;

Mitokinetism in the Mitotic Spindle and in the Polyasters, Arch. f. Entw. Mech.

xxvn, pp. 141-145, 1909; cf. ibid. XL, pp. 33-64, 1914. Cf. also Hartog's papers

in Proc. R. S. (B), lxxvi, 1905; Science Progress (n. s.), i, 1907; Riv. di Scienza,

II, 1908; C. R. Assoc.fr. pour VAvancem. des Sc. 1914, etc.

II
The configurations, as obtained by the usual experimental methods, were

of course known long before Faraday's day, and constituted the "convergent and

divergent magnetic curves" of eighteenth century mathematicians. As LesUe

said, in 1821, they were "regarded with wonder by a certain class of dreaming

philosophers, who did not hesitate to consider them as the actual traces of an

invisible fluid, perpetually circulating between the poles of the magnet." Faraday's

great advance was to interpret them as indications of stress in a medium,—of

11—2
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though physical in the concrete, is in the abstract purely mathe-

matical, and in its very essence is neither more nor less than a

property of three-dimensional space.

But as a matter of fact, in this instance, that is to say in

trying to explain the leading phenomena of the caryokinetic

division of the cell, we shall soon perceive that any explanation

which is based, like Rhumbler's, on mere mechanical traction, is

obviously inadequate, and we shall find ourselves limited to the

hypothesis of some polarised and polarising force, such as we deal

with, for instance, in the phenomena of magnetism or electricity.

Let us speak first of the cell itself, as it appears in a state of

rest, and let us proceed afterwards to study the more active

phenomena which accompany its division.

Our typical cell is a spherical body ; that is to say, the uniform

surface-tension at its boundary is balanced by the outward

resistance of uniform forces within. But at times the surface-

tension may be a fluctuating quantity, as when it produces the

rhythmical contractions or "Ransom's waves" on the surface of

a trout's egg; or again, while the egg is in contact with other

bodies, the surface-tension may be locally unequal and variable,

giving rise to an amoeboid figure, as in the egg of Hydra*.

Within the ovum is a nucleus or germinal vesicle, also spherical,

and consisting as a rule of portions of "chromatin," aggregated

together within a more fluid drop. The fact has often been

commented upon that, in cells generally, there is no correlation

of form (though there apparently is of size) between the nucleus

and the "cytoplasm," or main body of the cell. So Whitman
"f

remarks that "except during the process of division the nucleus

seldom departs from its typical spherical form. It divides and

sub-divides, ever returning to the same round or oval form....

How different with the cell. It preserves the spherical form as

rarely as the nucleus departs from it. Variation in form marks

the beginning and the end of every important chapter in its

tension or attraction along the lines, and of repulsion transverse to the hnes, of tlie

diagram.
* Cf. also the curious phenomenon in a dividing egg described as "spinning"

by Mrs G. F. Andrews, J. of Morph. xn, pp. 367-389, 1897.

t Whitman, J. of Morph. n, p. 40, 1889.

J
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history." On simple dynamical gromids, the contrast is easily

explained. So long as the fluid substance of the nucleus is quah-

tatively different from, and incapable of mixing with, the fluid

or semi-fluid protoplasm which surrounds it, we shall expect it

to be, as it almost always is, of spherical form. For, on the one

hand, it is bounded by a liquid film, whose surface-tension is

uniform ; and on the other, it is immersed in a medium which

transmits on all sides a uniform fluid pressure *. For a similar

reason the contractile vacuole of a Protozoon is spherical in form

:

it is just a "drop" of fluid, bounded by a uniform surface-

tension and through whose boundary-film diffusion is taking place.

But here, owing to the small difference between the fluid constitut-

ing, and that surrounding, the drop, the surface-tension equi-

librium is unstable ; it is apt to vanish, and the rounded outline

of the drop, like a burst bubble, disappears in a moment t-

The case of the spherical nucleus is closely akin to the spherical

form of the yolk within the bird's egg J. But if the substance of

the cell acquire a greater solidity, as for instance in a muscle

* "Souvent il n'y a qu'une separation physique entre le cytoplasme et le sue

nucleaire, comme entre deux liquides immiscibles, etc.;" Alexeieff, Sur la mitosc

dite ''primitive," Arch. f. Protistenk. xxix, p. 357, 1913.

f The aj^pearance of " vacuolation " is a result of endosmosis or the diffusion

of a less dense fluid into the denser plasma of the cell. Caeferis paribus, it is less

apparent in marine organisms than in those of freshwater, and in many or most

marine Ciliates and even Rhizopods a contractile vacuole has not been observed

(Biitschli, in Bronn's Protozoa, p. 1414) ; it is also absent, and probably for the same

reason, in parasitic Protozoa, such as the Gregarines and the Entamoebae. Rossbach

shewed that the contractile vacuole of ordinary freshwater Ciliates was very greatly

diminished in a 5 per cent, solution of NaCl, and all but disappeared in a 1 per cent,

solution of sugar {Arb. z. z. Inst. Wurzburg, 1872, of. Massart, Arch, de Biol, lx,

p. 515, 1889). Actmophrys sol, when gradually acclimatised to sea-water, loses its

vacuoles, and vice versa (Gruber, Biol. Centralbl. ix, p. 22, 1889) ; and the same is

true of Amoeba (Zuelzer, Arch. f. Entw. Mech. 1910, p. 632). The gradual enlarge-

ment of the contractile vacuole is precisely analogous to the change of size of a

bubble until the gases on either side of the film are equally diffused, as described

long ago by Draper {Phil. Mag. (n. s.), xi, p. 559, 1837). Rhumbler has shewn

that contractile or pulsating vacuoles may be well imitated in chloroform-drops,

suspended in water in which various substances are dissolved {Arch. f. Entw.

Mech. VII, 1898, p. 103). The pressure within the contractile vacuole, always

greater than without, diminishes with its size, being inversely proportional to

its radius; and when it lies near the surface of the cell, as in a Heliozoon, it

bursts as soon as it reaches a thinness which its viscosity or molecular cohesion no

longer permits it to maintain.

t Cf, p. 660.
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cell, or by reason of mucous accumulations in an epithelium cell,

then the laws of fluid pressure no longer apply, the external

pressure on the nucleus tends to become unsymmetrical, and its

shape is modified accordingly. "Amoeboid" movements may be

set up in the nucleus by anything which disturbs the symmetry of

its own surface-tension. And the cases, as in many Rhizopods,

where "nuclear material" is scattered in small portions throughout

the cell instead of being aggregated in a single nucleus, are probably

capable of very simple explanation by supposing that the "phase

difEerence" (as the chemists say) between the nuclear and the

protoplasmic substance is comparatively slight, and the surface-

tension which tends to keep them separate is correspondingly

small*.

It has been shewn that ordinary nuclei, isolated in a living

or fresh state, easily flow together; and this fact is enough to

suggest that they are aggregations of a particular substance rather

than bodies deserving the name of particular organs. It is by

reason of the same tendency to confluence or aggregation of

particles that the ordinary nucleus is itself formed, until the

imposition of a new force leads to its disruption.

Apart from that invisible or ultra-microscopic heterogeneity

which is inseparable from our notion of a "colloid," there is a

visible heterogeneity of structure within both the nucleus and the

outer protoplasm. The former, for instance, contains a rounded

nucleolus or "germinal spot," certain conspicuous granules or

strands of the pecuHar substance called chromatin, and a coarse

meshwork of a protoplasmic material known as "Hnin" or achro-

matin; the outer protoplasm, or cytoplasm, is generally believed

to consist throughout of a spongerwork, or rather alveolar mesh-

work, of more and less fluid substances ; and lastly, there are

generally to be detected one or more very minute bodies, usually

in the cytoplasm, sometimes within the nucleus, known as the

centrosome or centrosomes.

The morphologist is accustomed to speak of a "polarity" of

* The elongated or curved " macronucleus " of an Infusorian is to be looked

upon as a single mass of chromatin, rather than as an aggregation of particles in

a fluid drop, as in the case described. It has a shape of its own, in which ordinary

surface-tension plays a very subordinate part.
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the cell, meaning thereby a symmetry of visible structure about

a particular axis. For instance, whenever we can recognise in

a cell both a nucleus and a centrosome, we may consider a

line drawn through the two as the morphological axis of polarity

:

in an epithehum cell, it is obvious that the cell is morphologically

symmetrical about a median axis passing from its free surface to

its attached base. Again, by an extension of the term "polarity,"

as is customary in dynamics, we may have a "radial" polarity,

between centre and periphery; and lastly, we may have several

apparently independent centres of polarity within the single cell.

Only in cells of quite irregular, or amoeboid form, do we fail to

recognise a definite and symmetrical "polarity." The morpho-

logical "polarity" is accompanied by, and is but the outward

expression (or part of it) of a true dynamical polarity, or distribution

of forces; and the "hues of force" are rendered visible by con-

catenation of particles of matter, such as come under the influence

of the forces in action.

When the lines of force stream inwards from the periphery

towards a point in the interior of the cell, the particles susceptible

of attraction either crowd towards the surface of the cell, or, when

retarded by friction, are seen forming lines or "fibrillae" which

radiate outwards from the centre and constitute a so-called

"aster." In the cells of columnar or ciliated epithelium, where

the sides of the cell are symmetrically disposed to their neighbours

but the free and attached surfaces are very diverse from one

another in their external relations, it is these latter surfaces which

constitute the opposite poles; and in accordance with the parallel

lines of force so set up, we very frequently see parallel lines of

granules which have ranged themselves perpendicularly to the

free surface of the cell (cf. fig. 97).

A simple manifestation of "polarity" may be well illustrated

by the phenomenon of diffusion, where w^e may conceive, and may
automatically reproduce, a "field of force," with its poles and

visible lines of equipotential, very much as in Faraday's conception

of the field of force of a magnetic system. Thus, in one of Leduc's

experiments*, if we spread a layer of salt solution over a level

* Theorie physico-chimique de la Vie, p. 73, 1910; Mechanism of Life, p. 56,

1911.
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plate of glass, and let fall into the middle of it a drop of indian

ink, or of blood, we shall find the coloured particles travelUng

outwards from the central "pole of concentration " along the lines

of diffusive force, and so mapping out for us a "monopolar field"

of diffusion : and if we set two such drops side by side, their

lines of diffusion will oppose, and repel, one another. Or, instead

of the uniform layer of salt solution, we may place at a little

distance from one another a grain of salt and a drop of blood,

representing two opposite poles : and so obtain a picture of a

"bipolar field" of diffusion. In either case, we obtain results

closely analogous to the "morphological," but really dynamical,

polarity of the organic cell. But in all probabiUty, the dynamical

polarity, or asymmetry of the cell is a very complicated phenome-

non : for the obvious reason that, in any system, one asymmetry

^^'i^ tend to beget another. A chemical asymmetry will induce an

inequahty of surface-tension, which will lead directly to a modifi-

cation of form ; the chemical asymmetry may in turn be due to a

process of electrolysis in a polarised electrical field; and again

the chemical heterogeneity may be intensified into a chemical

"polarity," by the tendency of certain substances to seek a locus

of greater or less surface-energy. We need not attempt to

grapple with a subject so complicated, and leading to so many
problems which lie beyond the sphere of interest of the morph-

ologist. But yet the morphologist, in his study of the cell,

cannot quite evade these important issues ; and we shall return

to them again when we have dealt somewhat with the form of

the cell, and have taken account of some of the simpler pheno-

mena of surface-tension.

We are now ready, and in some measure prepared, to study

the numerous and complex phenomena which usually accompany

the division of the cell, for instance of the fertilised egg.

Division of the cell is essentially accompanied, and preceded,

by a change from radial or monopolar to a definitely bipolar

polarity.

In the hitherto quiescent, or apparently quiescent cell, we per-

ceive certain movements, which correspond precisely to what must

accompany and result from a "polarisation" of forces within the
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cell : of forces which, whatever may be their specific nature, at least

are capable of polarisation, and of producing consequent attraction

or repulsion between charged particles of matter. The opposing

forces which were distributed in equilibrium throughout the sub-

stance of the cell become focussed at two "centrosomes," which

may or may not be already distinguished as' visible portions of

matter ; in the egg, one of these is always near to, and the other

remote from, the "animal pole" of the egg, which pole is visibly

as well as chemically different from the other, and is the region in

which the more rapid and conspicuous developmental changes will

presently begin. Between the two centrosomes, a spindle-shaped

Fig. 41. Caryokinetic figure in a dividing cell (or blastomere) of the Trout's

egg. (After Prenant, from a preparation by Prof. P. Bouin.

)

figure appears, whose striking resemblance to the lines of force

made visible by iron-filings between the poles of a magnet, was at

once recognised by Hermann Fol, when in 1873 he witnessed for

the first time the phenomenon in question. On the farther side

of the centrosomes are seen star-like figures, or "asters," in which

we can without difficulty recognise the broken lines of force which

run externally to those stronger lines which lie nearer to the polar

axis and which constitute the "spindle." The lines of force are

rendered visible or "material," just as in the experiment of the

iron-fil ngs, by the fact that, in the heterogeneous substance of

the cell, certain portions of matter are more "permeable" to the

acting force than the rest, become themselves polarised after the
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fashion of a magnetic or "paramagnetic" body, arrange themselves

in an orderly way between the two poles of the field of force, cling

to one another as it were in threads*, and are only prevented by
the friction of the surrounding medium from approaching and

congregating around the adjacent poles.

As the field of force strengthens, the more will the hnes of force

be drawn in towards the interpolar axis, and the less evident will

be those remoter lines which constitute the terminal, or extrapolar,

asters : a clear space, free from materialised lines of force, may
thus tend to be set up on either side of the spindle, the

so-called "Biitschli space" of the histologistsf. On the other

hand, the lines of force constituting the spindle will be less con-

centrated if they find a path of less resistance at the periphery

of the cell : as happens, in our experiment of the iron-filings, when
we encircle the field of force with an iron ring. On this principle,

the differences observed between cells in which the spindle is well

developed and the asters small, and others in which the spindle

is weak and the asters enormously developed, can be easily

explained by variations in the potential of the field, the large,

conspicuous asters being probably correlated with a marked

permeability of the surface of the cell.

The visible field of force, though often called the "nuclear

spindle," is formed outside of, but usually near to, the nucleus.

Let us look a httle more closely into the structure of this body,

and into the changes which it presently undergoes.

Within its spherical outhne (Fig. 42), it contains an "alveolar"

* Whence the name "mitosis" (Greek /j-ltos, a thread), applied first by Flemming
to the whole phenomenon. Kollmann (Biol. Centralbl. ii, p. 107, 1882) called it

divisio per fila, or divisio laqueis implicata. Many of the earher students, such as

Van Beneden (Rech. sur la maturation de I'oeuf, Arch, de Biol, iv, 1883), and
Hermann (Zur Lehre v. d. Entstehung d. karyokinetischen Spindel, Arch.f. mikrosk.

Anat. XXXVII, 1891) thought they recognised actual muscular threads, drawing

the nuclear material asunder towards the respective foci or poles; and some such

view was long maintained by other writers, Boveri, Heidenhain, Flemming, R.

Hertwig, and many more. In fact, the existence of contractile threads, or the

ascription to the spindle rather than to the poles or centrosomes of. the active

forces concerned in nuclear division, formed the main tenet of all those who dechned

to go beyond the "contractile properties of protoplasm" for an explanation of the

phenomenon. (Cf. also J. W. Jenkinson, Q. J. M. S. xlviii, p. 471, 1904.)

f Cf. Biitschli, 0., Ueber die kiinsthche Nachahmung der karj'okinetischen

.Figur, Verh. Med. Nat. Ver. Heidelberg, v, pp. 28-41 (1892), 1897.
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meshwork (often described, from its appearance in optical section,

as a "reticulum"), consisting of more solid substances, with more

fluid matter filling up the interalveolar meshes. This phenomenon

is nothing else than what we call in ordinary language, a "froth"'

or a "foam." It is a surface-tension phenomenon, due to the

interacting surface-tensions of two intermixed fluids, not very

different in density, as they strive to separate. Of precisely the

same kind (as Biitschli was the first to shew) are the minute alveolar

networks which are to be discerned in the cytoplasm of the cell*,

and which we now know to be not inherent in the nature of

Fig. 42. Fig. 43.

protoplasm, or of living matter in general, but to be due to various

causes, natural as well as artificial. The microscopic honeycomb

structure of cast metal under various conditions of cooling, even

on a grand scale the columnar structure of basaltic rock, is an

example of the same surface-tension phenomenon.

* Arrhenius, in describing a typical colloid precipitate, does so in terms that

are very closely applicable to the ordinary microscopic appearance of the protojjlasm

of the cell. The precipitate consists, he says, "en un reseau d'mie substance

solide contenant peu d'eau, dans les mailles duquel est inclus un fluide contenant

un peu.de coUoide dans beaucoup d'eau. ..Evidemment cette structure se forme

a cause de la petite difference de poids specifique des deux phases, et de la con-

sistance gluante des particules separees. qui s'attachent en forme de reseau." Rev.

Scientifique, Feb. 1911.
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But here we touch the brink of a subject so important that we must not

pass it by without a word, and yet so contentious that we must not enter into

its details. The question involved is simply whether the great mass of

recorded observations and accepted beliefs with regard to the visible structure

of protoplasm and of the cell constitute a fair picture of the actual living cell,

or be based on appearances which are incident to death itself and to the

artificial treatment which the microscopist is accustomed to apply. The great

bulk of histological work is done by methods which involve the sudden killing

of the cell or organism by strong reagents, the assumption being that death

is so rapid that the visible phenomena exhibited diu'ing life are retained or

"'fixed"' in our preparations. While this assumption is reasonable and

justified as regards the general outward form of small organisms or of individual

cells, enough has been done of late years to shew that the case is totally

different in the case of the minute internal networks, granules, etc., which

represent the alleged structure of protoplasm. For, as Hardy puts it, "It is

notorious that the various fixing reagents are coagulants of organic colloids,

and that they produce precipitates which have a certain figure or structure,...

and that the figure varies, other things being equal, according to the reagent

used." So it comes to pass that some writers* have altogether denied the

existence in the living cell-protoplasm of a network or alveolar "foam";

others t have cast doubts on the main tenets of recent histology regarding

nuclear structure ; and Hardy, discussing the structure of certain gland-cells,

declares that "there is no evidence that the structure discoverable in the cell-

substance of these cells after fixation has any counterpart in the cell when
living." "A large part of it " he goes on to say "is an artefact. The

profound difference in the minute structure of a secretory cell of a mucous

gland according to the reagent which is used to fix it would, it seems

to me, almost suffice to establish this statement in the absence of other

evidence."

Nevertheless, histological study proceeds, especially on the part of the

morphologists, with but little change in theory or in method, in spite of these

and many other warnings. That certain visible sti'uctures, nucleus, vacuoles,

"attraction-spheres" or centrosomes, etc., are actually present in the living

cell, we know for certain; and to this class belong the great majority of

structures (including the nuclear "spindle" itself) with which we are at present

concerned. That many other alleged structures are artificial has also been

placed beyond a doubt ; but where to draw the dividing line we often do not

know j.

* F. Schwartz, in Cohn's Beifr. z. Biologie der Pflanzen, v, p. 1, 1887.

t Fischer, Anat. Anzeiger, ix, p. 678, 1894, x, p. 769, 1895.

J See, in particular, W. B. Hardy, On the structure of Cell Protoplasm, Journ.

of Physiol. XXIV, pp. 158-207, 1889; also Hober, Physikalische Chemie der Zelle

uiid der Gewebe. 1902. Cf. (int. al.) Flemming, Zellsubstanz, Kern und Zelltheilung

1882, p. 51, etc.
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The following is a brief epitome of the visible changes undergone

by a typical cell, leading up to the act of segmentation, and con-

stituting the phenomenon of mitosis or caryokinetic division. In

the egg of a sea-urchin, we see with almost diagrammatic com-

pleteness what is set forth here*.

1. The chromatin, which to begin with was distributed in

granules on the otherwise achromatic reticulum (Fig. 42), concen-

trates to form a skein or sfireme, which may be a continuous

thread from the first (Figs. 43, 44), or from the first segmented.

In any case it divides transversely sooner or later into a number

of chromosomes (Fig. 45), which as a rule have the shape of little

Fig. 44.

rods, straight or curved, often bent into a V, but which may
also be ovoid, or round, or even annular. Certain deeply staining

masses, the nucleoli, which may be present in the resting nucleus.

do not take part in the process of chromosome formation ; they

are either cast out of the nucleus and are dissolved in the cyto-

plasm, or fade away in situ.

2. Meanwhile, the deeply staining granule (here extra

-

nuclear), known as the centrosome, has divided in two. The two

resulting granules travel to opposite poles of the nucleus, and

* My description and diagrams (Figs 42—51) are based on those of Professor

E. B. WUson.
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there each becomes surrounded by a system of radiating Unes, the

asters; immediately around the centrosome is a clear space, the

centrosphere (Figs. 43-45). Between the two centrosomes with

their asters stretches a bundle of achromatic fibres, the spindle.

3. The surface-film bounding the nucleus has broken down,

the definite nuclear boundaries are lost, and the spindle now
stretches through the nuclear material, in which he the chromo-

somes (Figs. 45, 46). These chromosomes now arrange them-

selves midway between the poles of the spindle, where they form

what is called the equatorial plate (Fig. 47).

4. Each chromosome splits longitudinally into two : usually

equatorial plate

spindle fibres

Fig. 46. Fig. 47.

at this stage,—but it is to be noticed that the splitting may have

taken place so early as the spireme stage (Fig. 48).

5. The halves of the split chromosomes now separate from

one another, and travel in opposite directions towards the two

poles (Fig. 49). As they move, it becomes apparent that the spindle

consists of a median bundle of "fibres," the central spindle, running

from pole to pole, and a more superficial sheath of "mantle-

fibres," to which the chromosomes seem to be attached, and by

which they seem to be drawn towards the asters.

6. The daughter chromosomes, arranged now in two groups,

become closely crowded in a mass near the centre of each aster
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(Fig. 50). They fuse together and form once more an alveolar reti-

culum and may occasionally at this stage form another spireme.

central spindie

manHe-fii\

cplit chrcmosomc

2

Fig. 48. Fis. 49.

A boundary or surface wall is now developed round each recon-

structed nuclear mass, and the spindle-fibres disappear (Fig. 51).

The centrosome remains, as a rule, outside the nucleus.

7. On the central spindle, in the position of the equatorial

plate, there has appeared during the migration of the chromosomes,

a "cell-plate" of deeply staining thickenings (Figs. 50, 51). This

is more conspicuous in plant-cells.
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8. A constriction has meanwhile appeared in the cytoplasm,

and the cell divides through the equatorial plane. In plant-cells

the line of this division is foreshadowed by the "cell-plate," which

extends from the spindle across the entire cell, and splits into

two layers, between which appears the membrane by which the

daughter cells are cleft asunder. In animal cells the cell-plate

does not attain such dimensions, and no cell-wall is formed.

The whole, or very nearly the whole of these nuclear phenomena

may be brought into relation with that polarisation of forces, in

the cell as a whole, whose field is made manifest by the "spindle"

and "asters" of which we have already spoken : certain particular

phenomena, directly attributable to surface-tension and diffusion,

taking place in more or less obvious and inevitable dependence

upon the polar system*.

At the same time, in attempting to explain the phenomena, we

cannot say too clearly, or too often, that all that we are meanwhile

justified in doing is to try to shew that such and such actions lie

within the range of known physical actions and phenomena, or that

known physical phenomena produce effects similar to them. We
want to feel sure that the whole phenomenon is not sui generis, but

is somehow or other capable of being referred to dynamical laws,

and to the general principles of physical science. But when we

speak of some particular force or mode of action, using it as an

illustrative hypothesis, we must stop far short of the imphcation

that this or that force is necessarily the very one which is actually

at work within the living cell ; and certainly we need not attempt

the formidable task of trying to reconcile, or to choose between,

the various hypotheses which have already been enunciated, or

the several assumptions on which they depend.

Any region of space within which action is manifested is a

field of force ; and a simple example is a bipolar field, in which

the action is symmetrical with reference to the line joining two

points, or poles, and also with reference to the " equatorial

"

plane equidistant from both. We have such a "field of force" in

* The reference numbers in the following account refer to the paragraphs and

figures of the preceding summary of visible nuclear phenomena.
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the neighbourhood of the centrosome of the ripe cell or ovum,
when it is about to divide : and by the time the centrosome has

divided, the field is definitely a bipolar one.

The quality of a medium filling the field of force may be uniform,

or it may vary from point to point. In particular, it may depend

upon the magnitude of the field ; and the quality of one medium
may differ from that of another. Such variation of quality,

within one medium, or from one medium to another, is capable

of diagrammatic representation by a variation of the direction or

the strength of the field (other conditions being the same) from the

state manifested in some uniform medium taken as a standard.

The medium is said to be permeable to the force, in greater or less

degree than the standard medium, according as the variation of

the density of the lines of force from the standard case, under

otherwise identical conditions, is in excess or defect. A body

placed in the medium will tend to move toivards regions of greater or

less force according as its 'permeability is greater or less than that oj

the surrounding medium*. In the common experiment of placing

iron-fiHngs between the two poles of a magnetic field, the fihngs

have a very high permeability ; and not only do they themselves

become polarised so as to attract one another, but they tend to

be attracted from the weaker to the stronger parts of the field, and

as we have seen, were it not for friction or some other resistance,

they would soon gather together around the nearest pole. But
if we repeat the same experiment with such a metal as bismuth,

which is very little permeable to the magnetic force, then the

conditions are reversed, and the particles, being repelled from the

stronger to the weaker parts of the field, tend to take up their

position as far from the poles as possible. The particles have

become polarised, but in a sense opposite to that of the surround-

ing, or adjacent, field.

Now, in the field of force whose opposite poles are marked by

* If the word permeability be deemed too directly suggestive of the phenomena
of magnetism we may replace it by the more general term of specific inductive

capacity. This would cover the particular case, which is by no means an improbable

one, of our phenomena being due to a "'surface charge" borne by the nucleus

itself and also by the chromosomes : this surface charge being in turn the result

of a difference in inductive capacity between the body or particle and its surrounding

medium. (Cf. footnote, p. 187.)

T. G. 12
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the centrosonies the nucleus appears to act as a more or less perme-

able body, as a body more permeable than the surrounding medium,

that is to say the "cytoplasm" of the cell. It is accordingly

attracted by, and drawn into, the field of force, and tries, as it

were, to set itself between the poles and as far as possible from

both of them. In other words, the centrosome-foci will be

apparently drawn over its surface, until the nucleus as a whole

is involved within the field of force, which is visibly marked out

by the "spindle" (par. 3, Figs. 44, 45).

If the field of force be electrical, or act in a fashion analogous

to an electrical field, the charged nucleus will have its surface-

tensions diminished *
: with the double result that the inner

alveolar meshwork will be broken up (par. 1), and that the

spherical boundary of the whole nucleus will disappear (par. 2).

The break-up of the alveoh (by thinning and rupture of their

partition walls) leads to the formation of a net, and the further

break-up of the net may lead to the unravelling of a thread or

"spireme" (Figs. 43, 44).

Here there comes into play a fundamental principle which,

in so far as we require to understand it, can be explained in simple

words. The effect (and we might even say the object) of drawing

the more permeable body in between the poles, is to obtain an

"easier path" by which the lines of force may travel; but it is

obvious that a longer route through the more permeable body

may at length be found less advantageous than a shorter route

through the less permeable medium. That is to say, the more

permeable body will only tend to be drawn in to the field of force

until a point is reached where (so to speak) the way round and

the way through are equally advantageous. We should accordingly

expect that (on our hypothesis) there would be found cases in

which the nucleus was wholly, and others in which it was only

partially, and in greater or less degree, drawn in to the field

between the centrosomes. This is precisely what is found to

occur in actual fact. Figs. 44 and 45 represent two so-called

"types," of a phase which follows that represented in Fig. 43.

According to the usual descriptions (and in particular to Professor

* On the effect of electrical influences in altering the surface-tensions of the

colloid particles, see Bredig, Anorganische Fermente, pp. 15, 16, 1901.
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E. B. Wilson's*), we are told that, in such a case as Fig. 44, the

"primary spindle" disappears and the centrosomes diverge to

opposite poles of the nucleus; such a condition being found in

many plant-cells, and in the cleavage-stages of many eggs. In

Fig. 45, on the other hand, the primary spindle persists, and

subsequently comes to form the main or "central" spindle;

while at the same time we see the fading away of the nuclear

membrane, the breaking up of the spireme into separate chromo-

somes, and an ingrowth into the nuclear area of the "astral rays,"

—all as in Fig. 46, which represents the next succeeding phase of

Fig. 45. This condition, of Fig. 46, occurs in a variety of cases;

it is well seen in the epidermal cells of the salamander, and is

also on the whole characteristic of the mode of formation of the

"polar bodies." It is clear and obvious that the two "types"

correspond to mere differences of degree, and are such as would

naturally be brought about by differences in the relative per-

meabilities of the nuclear mass and of the surrounding cytoplasm,

or even by differences in the magnitude of the former body.

But now an important change takes place, or rather an

important difference appears ; for, whereas the nucleus as a whole

tended to be drawn in to the stronger parts of the field, when it

comes to break up we find, on the contrary, that its contained

spireme-thread or separate chromosomes tend to be repelled to

the weaker parts. Whatever this difference may be due to,

—

whether, for instance, to actual differences of permeabihty, or

possibly to differences in "surface-charge,"—the fact is that the

chromatin substance now behaves after the fashion of a "dia-

magnetic" body, and is repelled from the stronger to the weaker

parts of the field. In other words, its particles, lying in the

inter-polar field, tend to travel towards the equatorial plane

thereof (Figs. 47, 48), and further tend to move outwards towards

the periphery of that plane, towards what the histologist

calls the "mantle-fibres," or outermost of the lines of force of

which the spindle is made up (par. 5, Fig. 47). And if this com-

paratively non-permeable chromatin substance come to consist of

separate portions, more or less elongated in form, these portions,

or separate "chromosomes," will adjust themselves longitudinally,

* The Cell, etc. p. 66.

12—2
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in a peripheral equatorial circle (Figs. 48, 49). This is precisely

what actually takes place. Moreover, before the breaking up of

the nucleus, long before the chromatin material has broken up

into separate chromosomes, and at the very time when it is being

fashioned into a "spireme," this body already lies in a polar field,

and must already have a tendency to set itself in the equatorial

plane thereof. But the long, continuous spireme thread is unable,

so long as the nucleus retains its spherical boundary wall, to

adjust itself in a simple equatorial annulus ; in striving to do so,

it must tend to coil and "kink" itself, and in so doing (if all this

be so), it must tend to assume the characteristic convolutions of

the "spireme."

After the spireme has broken up into separate chromosomes,

these particles come into a position of temporary, and unstable,

Fig. 52. Chromosomes, undergoing splitting and separation.

(After Hatschek and FJemming, diagrammatised.)

equilibrium near the periphery of the equatorial plane, and

here they tend to place themselves in a symmetrical arrange-

ment (Fig. 52). The particles are rounded, linear, sometimes

annular, similar in form and size to one another; and

lying as they do in a fluid, and subject to a symmetrical system

of forces, it is not surprising that they arrange themselves

in a symmetrical manner, the precise arrangement depending

on the form of the particles themselves. This symmetry may
perhaps be due, as has already been suggested, to induced

electrical charges. In discussing Brauer's observations on the

splitting of the chromatic filament, and the symmetrical arrange-

ment of the separate granules, in Ascaris megalocephala, Lillie*

* Lillie, R. S., Amer. J. of Physiol, viii, p. 282, 1903.



IV] STRUCTURE OF THE CELL 181

remarks: "This behaviour is strongly suggestive of the division

of a colloidal particle under the influence of its surface electrical

charge, and of the effects of mutual repulsion in keeping the

products of division apart." It is also probable .that surface-

tensions between the particles and the surrounding protoplasm

would bring about an identical result, and would sufficiently

account for the obvious, and at first sight, very curious, symmetry.

We know that if we float a couple of matches in water they tend

to approach one another, till they lie close together, side by side

;

and, if we lay upon a smooth wet plate four matches, half broken

across, a precisely similar attraction brings the four matches

together in the form of a svmmetrical cross. Whether one of

these, or some other, be the actual explanation of the phenomenon,

it is at least plain that by some physical cause, some mutual and

-Fig. 53. Annular chromosomes, formed in the spermatogenesis of

the Mole-cricket, (From Wilson, after Vom Rath.)

symmetrical attraction or repulsion of the particles, we must seek

to account for the curious symmetry of these so-called '"tetrads."

The remarkable annular chromosomes, shewn in Fig. 53, can also

be easily imitated by means of loops of thread upon a soapy film

when the film within the annulus is broken or its tension reduced.

So far as we have now gone, there is no great difficulty in

pointing to simple and familiar phenomena of a field of force

which are similar, or comparable, to the phenomena which we
witness within the cell. But among these latter phenomena
there are others for which it is not so easy to suggest, in accordance

with known laws, a simple mode of physical causation. It is not

at once obvious how, in any simple system of symmetrical forces,
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the chromosomes, which had at first been apparently repelled

from the poles towards the equatorial plane, should then be spht

asunder, and should presently be attracted in opposite directions,

some to one pole and some to the other. Remembering that it is

not our purpose to assert that some one particular mode of action

is at work, but merely to shew that there do exist physical forces,

or distributions of force, which are capable of producing the

required result, I give the following suggestive hypothesis, which

I owe to my colleague Professor W. Peddie.

As we have begun by supposing that the nuclear, or chromo-

somal matter differs in permeability from the medium, that is to

Fb

Fig. 54.

say the cytoplasm, in which it Ues, let us now make the further

assumption that its permeabihty is variable, and depends upon the

strength of the field.

In Fig. 54, we have a field of force (representing our cell),

consisting of a homogeneous medium, and including two opposite

poles : fines of force are indicated by full lines, and loci of constant

magnitude offorce are shewn by dotted lines.

Let us now consider a body whose permeability (/x) depends

on the strength of the field F. At two field-strengths, such as

Fa, Ff,, let the permeability of the body be equal to that of the
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medium, and let the curved line in Fig. 55 represent generally

its permeability at other field-strengths; and let the outer and

inner dotted curves in Fig. 54 represent respectively the loci of

the field-strengths F^ and F^- The body if it be placed in the

medium within either branch of the inner curve, or outside the

outer curve, will tend to move into the neighbourhood of the

adjacent pole. If it be placed in the region intermediate to the

two dotted curves, it will tend to move towards regions of weaker

field-strength.

The locus 2^6 is therefore a locus of stable position, towards

which the body tends to move ; the locus Fg, is a locus of unstable

position, from which it tends to move. If the body were placed

f^

Fig. 55.

across F^, it might be torn asunder into two portions, the split

coinciding with the locus F^.

Suppose a number of such bodies to be scattered throughout

the medium. Let at first the regions F^ and F^ be entirely outside

the space where the bodies are situated: and, in making this

supposition we may, if we please, suppose that the loci which we

are calhng F^ and F^ are meanwhile situated somewhat farther

from the axis than in our figure, that (for instance) F^ is situated

where we have drawn Fj,, and that Fj, is still further out. The

bodies then tend towards the poles ; but the tendency may be

very small if, in Fig. 55, the curve and its intersecting straight fine

do not diverge very far from one another beyond Fa', in other
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words, if, when situated in this region, the permeabihty of the

bodies is not very much in excess of that of the medium.

Let the poles now tend to separate farth-er and farther from

one another, the strength of each pole remaining unaltered ; in

other words, let the centrosome-foci recede from one another, as

they actually do, drawing out the spindle-threads between them.

The loci F^, F^,, will close in to nearer relative distances from the

poles. In doing so, when the locus F„ crosses one of the bodies,

the body may be torn asunder; if the body be of elongated shape,

and be crossed at more points than one, the forces at work will

tend to exaggerate its foldings, and the tendency to rupture is

greatest when F„ is in some median position (Fig. 56).

When the locus F^ has passed entirely over the body, the body

tends to move towards regions of weaker force ; but when, in

Fa

Fig. 5n.

turn, the locus F^, has crossed it, then the body again moves towards

regions of stronger force, that is to say, towards the nearest pole.

And, in thus moving towards the pole, it will do so. as appears

actually to be the case in the dividing cell, along the course of

the outer hues of force, the so-called "mantle-fibres" of the

histologist*.

Such considerations as these give general results, easily open

to modification in detail by a change of any of the arbitrary

postulates which have been made for the sake of simplicity.

Doubtless there are many other assumptions which would more

or less meet the case; for instance, that of Ida H. Hyde that,

* We have not taken account in the above paragraphs of the obvious fact that

the supposed symmetrical field of force is distorted by the presence in it of the

more or less permeable bodies; nor is it necessary for us to do so, for to that

distorted field the above argument continues to apply, word for word.
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during the active phase of the chromatin molecule (during which

it decomposes and sets free nucleic acid) it carries a charge opposite

to that which it bears during its resting, or alkaline phase ; and

that it would accordingly move towards different poles under the

influence of a current, wandering with its negative charge in an

alkahne fluid during its acid phase to the anode, and to the kathode

during its alkahne phase. A whole field of speculation is opened

up when we begin to consider the cell not merely as a polarised

electrical field, but also as an electrolytic field, full of wandering

ions. Indeed it is high time we reminded ourselves that we have

perhaps been deahng too much with ordinary physical analogies

:

and that our whole field of force within the cell is of an order of

magnitude where these grosser analogies may fail to serve us,

and might even play us false, or lead us astray. But our sole

object meanwhile, as I have said more than once, is to demon-

strate, by such illustrations as these, that, whatever be the actual

and as yet unknown modiis operandi, there are physical conditions

and distributions of force which could produce just such phenomena

of movement as we see taking place within the living cell.

This, and no more, is precisely what Descartes is said to have

claimed for his description of the human body as a " mechanism *."

The foregoing account is based on the provisional assumption

that the phenomena of caryokinesis are analogous to, if not identical

with those of a bipolar electrical field; and this comparison, in

my opinion, offers without doubt the best available series of

analogies. But we must on no account omit to mention the

fact that some of Leduc's diffusion-experiments offer very remark-

able analogies to the diagrammatic phenomena of caryokinesis, as

shewn in the annexed figure f. Here we have two identical (not

opposite) poles of osmotic concentration, formed by placing a drop

of indian ink in salt water, and then on either side of this central

drop, a hypertonic drop of salt solution more lightly coloured.

On either side the pigment of the central drop has been drawn

towards the focus nearest to it ; but in the middle line, the pigment

* M. Foster, Lectures on the History of Physiology, 1901, p. 62.

t Op. cit. pp. 110 and 91.
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is drawn in opposite directions by equal forces, and so tends to

remain undisturbed, in the form of an "equatorial plate."

Nor should we omit to take account (however briefly and

inadequately) of a novel and elegant hypothesis put forward by

A. B. Lamb. This hypothesis makes use of a theorem of Bjerknes,

to the effect that synchronously vibrating or pulsating bodies in

a hquid field attract or repel one another according as their

oscillations are identical or opposite in phase. Under such

circumstances, true currents, or hydrodynamic lines of force, are

produced, identical in form with the hues of force of a magnetic

field ; and other particles floating, though not necessarily pulsating,

in the hquid field, tend to be attracted or repelled by the pulsating

Fig. 57. Artificial caryokinesis (after Leduc), for comparison

with Fig. 41, p. 169.

bodies according as they are lighter or heavier than the surrounding

fluid. Moreover (and this is the most remarkable point of all),

the fines of force set up by the oppositely pulsating bodies are the

same as those which are produced by opposite magnetic poles

:

though in the former case repulsion, and in the latter case attrac-

tion, takes place between the two poles*.

But to return to our general discussion.

While it can scarcely be too often repeated that our enquiry

is not directed towards the solution of physiological problems, save

* Lamb, A. B., A new Explanation of the Mechanism of Mitosis, Journ. Exp.

Zool. y, pp. 27-33, 1908.
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only in so far as they are inseparable from the problems presented

by the visible configurations of form and structure, and while we

try, as far as possible, to evade the difficult question of what

particular forces are at work when the mere visible forms produced

are such as to leave this an open question, yet in this particular

case we have been drawn into the use of electrical analogies, and

we are bound to justify, if possible, our resort to this particular

mode of physical action. There is an important paper by R. S. Lillie,

on the "Electrical Convection of certain Free Cells and Nuclei*,"

which, while I cannot quote it in direct support of the suggestions

which I have made, yet gives just the evidence we need in order

to shew that electrical forces act upon the constituents of the

cell, and that their action discriminates between the two species

of colloids represented by the cytoplasm and the nuclear chromatin.

And the difference is such that, in the presence of an electrical

current, the cell substance and the nuclei (including sperm-cells)

tend to migrate, the former on the whole with the positive, the

latter with the negative stream : a difference of electrical potential

being thus indicated between the particle and the surrounding

medium, just as in the case of minute suspended particles of various

kinds in various feebly conducting media "j". And the electrical

difference is doubtless greatest, in the case of the cell constituents,

just at the period of mitosis : when the chromatin is invariably

in its most deeply staining, most strongly acid, and therefore,

presumably, in its most electrically negative phase. In short,

* Amer. J. of Physiol, via, pp. 273-283, 1903 [vide, supra, p. 181); cf. ibid.

XV, pp. 46-84, 1905. Cf. also Biological Btilleti^i, iv, p. 175, 1903.

f In Uke manner Hardy has shewn that colloid particles migrate with the

negative stream if the reaction of the surrounding fluid be alkahne, and vice versa.

The whole subject is much wider than these brief allusions suggest, and is essentially

part of Quincke's theory of Electrical Diffusion or Endosmosis: according to

which the particles and the fluid in which they float (or the fluid and the capillary

walls through which it flows) each carry a charge, there being a discontinuity of

potential at the surface of contact, and hence a field of force leading to powerful

tangential or shearing stresses, communicating to the particles a velocity which

varies with the density per unit area of the surface charge. See W. B. Hardy's

paper on Coagulation by Electricity, Journ. of Physiol. xxn% p. 288-304, 1899,

also Hardy and H. W. Harvey, Surface Electric Charges of Living Cells, Proc. R. S.

Lxxxiv (B), pp. 217-226, 1911, and papers quoted therein. Cf. also E. N. Harvey's

observations on the convection of unicellular organisms in an electric field (Studies

on the PermeabiHty of Cells, Journ. of Exper. Zool. x, pp. 508-556, 1911).
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Lillie comes easily to the conclusion that "electrical theories of

mitosis are entitled to more careful consideration than they have

hitherto received."

Among other investigations, all leading towards the same

general conclusion, namely that differences of electric potential

play a great part in the phenomenon of cell division, I would

mention a very noteworthy paper by Ida H. Hyde*, in which the

writer shews (among other important observations) that not only

is there a measurable difference of potential between the animal

and vegetative poles of a fertilised egg {Fundulus, toad, turtle,

etc.), but that this difference is not constant, but fluctuates, or

actually reverses its direction, periodically, at epochs coinciding

with successive acts of segmentation or other important phases

in the development of the eggt; just as other physical rhythms,

for instance in the production of CO2, had already been shewm

to do. Hence we shall be by no means surprised to find that the

"materialised" lines of force, which in the earlier stages form the

convergent curves of the spindle, are replaced in the later phases

of caryokinesis by divergent curves, indicating that the two foci,

which are marked out within the field by the divided and recon-

stituted nuclei, are now alike in their polarity (Figs. 58, 59).

It is certain, to my mind, that these observations of Miss

Hyde's, and of Lillie's, taken together with those of many writers

on the behaviour of colloid particles generally in their relation

to an electrical field, have a close bearing upon the physiological

side of our problem, the full discussion of which lies outside our

.present field.

The break-up of the nucleus, already referred to and ascribed

to a diminution of its surface-tension, is accompanied by certain

diffusion phenomena which are sometimes visible to the eye ; and

we are reminded of Lord Kelvin's view that diffusion is implicitly

* On Differences in Electrical Potential in Developing Eggs, Atner. Journ. of

Physiol, xn, pp. 241-275, 1905. This paper contains an excellent summary of

various physical theories of the segmentation of the cell.

t Gray has recently demonstrated a temporary increase of electrical con-

ductivity in sea-urchin eggs during the process of fertihsation (The Electrical

Conductivity of fertilised and unfertiUsed Eggs, Journ. Mar. Biol. Assoc, x, pp.

50-59, 1913).
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associated with surface-tension changes, of which the first step

is a minute puckering of the surface-skin, a sort of interdigi-

tation with the surrounding medium. For instance, Schewia-

kofE has observed in Euglypha* that, just before the break-up

of the nucleus, a system of rays appears, concentred about it,

but having nothing to do with the polar asters : and during the

existence of this striation, the nucleus enlarges very considerably,

evidently by imbibition of fluid from the surrounding protoplasm.

In short, diffusion is at work, hand in hand with, and as it were

in opposition to, the surface-tensions which define the nucleus.

Fig. 58. Final stage in tfte first

segmentation of the egg of Cerebra-

tulus. (From Prenant, after Coe.)|

Fig. 59. Diagram of field of force

with two similar poie.?.

By diffusion, hand in hand with surface-tension, the alveoli of

the nuclear meshw^ork are formed, enlarged, and finally ruptured

:

diffusion sets up the movements which give rise to the appearance

of rays, or striae, around the nucleus : and through increasing

diffusion, and weakening surface-tension, the rounded outline of

the nucleus finally disappears.

* Schewiakoff, Ueber die karyokinetische Kerntheilung der Euglypha alveolata,

Morph. Jahrb. xm, pp. 193-258. 1888 (see p. 216).

f Coe, W. R., Maturation and Fertihzation of the Egg of Cerebratuhis, Zool.

Jahrbiicher {Anat. Abth.), xii, pp. 425-476, 1899.
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As we study these manifold phenomena, in the individual cases

of particular plants and animals, we recognise a close identity of

type, coupled with almost endless variation of specific detail

;

and in particular, the order of succession in which certain of the

phenomena occur is variable and irregular. The precise order of

the phenomena, the time of longitudinal and of transverse fission

of the chromatin thread, of the break-up of the nuclear wall, and

so forth, will depend upon various minor contingencies and

"interferences." And it is worthy of particular note that these

variations, in the order of events and in other subordinate details,

while doubtless attributable to specific physical conditions, would

seem to be w^ithout any obvious classificatory value or other

biological significance*.

As regards the actual mechanical division of the cell into two

halves, we shall see presently that, in certain cases, such as that

of a long cyHndrical filament, surface-tension, and what is known

as the principle of "minimal area," go a long way to explain the

mechanical process of division; and in all cells whatsoever, the

process of division must somehow be explained as the result of

a conflict between surface-tension and its opposing forces. But

in such a case as our spherical cell, it is not very easy to siee what

physical cause is at work to disturb its equilibrium and its integrity.

The fact that, when actual division of the cell takes place, it

does so at right angles to the polar axis and precisely in the

direction of the equatorial plane, would lead us to suspect that

the new surface formed in the equatorial plane sets up an annular

tension, directed inwards, where it meets the outer surface layer

of the cell itself. But at this point, the problem becomes more

complicated. Before we could hope to comprehend it, we should

have not only to enquire into the potential distribution at the

surface of the cell in relation to that which we have seen to exist

in its interior, but we should probably also have to take account

of the differences of potential which the material arrangements

along the lines of force must themselves tend to produce. Only

* Thus, for example, Farmer and Digby (On Dimensions of Chromosomes
considered in relation to Phylogeny, Phil. Trails. (B), ccv, pp. 1-23, 1914) have

been at pains to shew, in confutation of Meek (ibid, ccni, pp. 1-74, 1912), that the

width of the chromosomes cannot be correlated with the order of phylogeny.
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thus could we approach a comprehension of the balance of forces

which cohesion, friction, capillarity and electrical distribution

combine to set up.

The manner in which we regard the phenomenon would seem

to turn, in great measure, upon whether or no we are justified in

assuming that, in the hquid surface-film of a minute spherical cell,

local, and symmetrically locahsed, differences of surface-tension

are likely to occur. If not, then changes in the conformation of

the cell such as lead immediately to its division must be ascribed

not to local changes in its surface-tension, but rather to direct

changes in internal pressure, or to mechanical forces due to an

induced surface-distribution of electrical potential.

It has seemed otherwise to many writers, and we have a number

of theories of cell division which are all based directly on in-

equalities or asymmetry of surface-tension. For instance, Biitschli

suggested, some forty years ago*, that cell division is brought

about by an increase of surface-tension in the equatorial region

of the cell. This explanation, however, can scarcely hold; for

it would seem that such an increase of surface-tension in the

equatorial plane would lead to the cell becoming flattened out into

a disc, with a sharply curved equatorial edge, and to a streaming

of material towards the equator. In 1895, Loeb shewed that the

streaming went on from the equator towards the divided nuclei,

and he supposed that the violence of these streaming movements

brought about actual division of the cell : a hypothesis which was

adopted by many other physiologists f. This streaming move-

ment would suggest, as Robertson has pointed out, a diminution

of surface-tension in the region of the equator. Now Quincke has

shewn that the formation of soaps at the surface of an oil-droplet

results in a diminution of the surface-tension of the latter; and

that if the saponification be local, that part of the surface tetids to

spread. By laying a thread moistened with a dilute solution of

caustic alkali, or even merely smeared with soap, across a drop

of oil, Robertson has further shewn that the drop at once divides

into two: the edges of the drop, that is to say the ends of the

* Cf. also Arch. f. Entw. Mech. x, p. 52, 1900.

t Cf. Loeb, Am. J. of Physiol, vi, p. 432, 1902. ; Erlanger, Biol. Centralbl.

xvn, pp. 152, 339, 1897 ; Conklin, Biol. Lectures, Woods Holl, p. 69, etc. 1898-9.
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diameter across which the thread Hes, recede from the thread,

so forming a notch at each end of the diameter, while violent

streaming motions are set up at the surface, away from the thread

in the direction of the two opposite poles. Robertson* suggests,

accordingly, that the division of the cell is actually brought about

by a lowering of the equatorial surface-tension, and that this in

turn is due to a chemical action, such as a liberation of choUn,

or of soaps of cholin, through the splitting of lecithin in nuclear

synthesis.

But purely chemical changes are not of necessity the funda-

mental cause of alteration in the surface-tension of the egg, for

the action of electrolytes on surface-tension is now well known

and easily demonstrated. So, according to other views than

those with which we have been dealing, electrical charges are

sufficient in themselves to account for alterations of surface-

tension ; while these in turn account for that protoplasmic

streaming which, as so many investigators agree, initiates the

segmentation of the egg|. A great part of our difficulty arises

from the fact that in such a case as this the various phenomena

are so entangled and apparently concurrent that it is hard to say

which initiates another, and to which this or that secondary

phenomenon may be considered due. Of recent years the pheno-

menon of adsorptio7L has been adduced (as we have already briefly

said) in order to account for many of the events and appearances

which are associated with the asymmetry, and lead towards the

division, of the cell. But our short discussion of this phenomenon

may be reserved for another chapter.

Hov/ever, we are not directly concerned here with the

phenomena of segmentation or cell division in themselves, except

only in so far as visible changes of form are capable of easy and

obvious correlation with the play of force. The very fact of

"development" indicates that, while it lasts, the equihbrium of

the egg is never complete J. And we may simply conclude the

* Robertson, T. B., Note on the Chemical Mechanics of Cell Division, Arclu

/. Entw. Mech. xxvn, p. 29, 1909, xxxv, p. 692. 1913. Cf. R. S. Lilhe, J. Exp.

Zool. XXI, pp. 369—402, 1916.

t Cf. D'Arsonval, Arch, de Physiol, p. 460, 1889; Ida H. Hyde, op.cit. p. 242.

I Cf. Plateau's remarks {Statique des liquides, n, p. 154) on the tendency towarda

equilibrium, rather than actual equilibrium, in many of his systems of soap-films^
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matter by saying that, if you have caryokinetic figures developing

inside the cell, that of itself indicates that the dynamic system

and the locahsed forces arising from it are in continual alteration

;

and, consequently, changes in the outward configuration of the

system are bound to take place.

As regards the phenomena of fertihsation,—of the union of

the spermatozoon with the "pronucleus" of the egg,—we might

study these also in illustration, up to a certain point, of the

polarised forces which are manifestly at work. But we shall

merely take, as a single illustration, the paths of the male and

female pronuclei, as they travel to their ultimate meeting place.

The spermatozoon, when within a very short distance of the

egg-cell, is attracted by it. Of the nature of this attractive force

we have no certain knowledge, though we would seem to have

a pregnant hint in Loeb's discovery that, in the neighbourhood

of other substances, such even as a fragment, or bead, of glass,

the spermatozoon undergoes a similar attraction. But, whatever

the force may be, it is one acting normally to the surface of the

ovum, and accordingly, after entry, the sperm-nucleus points

straight towards the centre of the egg ; from the fact that other

spermatozoa, subsequent to the first, fail to effect an entry, we
may safely conclude that an immediate consequence of the entry

of the spermatozoon is an increase in the surface-tension of the

egg*. Somewhere or other, near or far away, within the egg, hes

its own nuclear body, the so-called female pronucleus, and we
find after a while that this has fused with the head of the sperma-

tozoon (or male pronucleus), and that the body resulting from

their fusion has come to occupy the centre of the egg. This must

be due (as Whitman pointed out long ago) to a force of attraction

acting between the two bodies, and another force acting upon

one or other or both in the direction of the centre of the cell.

Did we know the magnitude of these several forces, it would be

a very easy task to calculate the precise path which the two

pronuclei would follow, leading to conjugation and the central

* But under artificial conditions, "polyspermy" may take place, e.g. under
the action of dilute poisons, or of an abnormally high temperature, these being

all, doubtless, conditions under which the surface-tension is diminished.

T. G. 13
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position. As we do not know the magnitude, but only the direction,

of these forces we can only make a general statement: (1) the

paths of both moving bodies will lie wholly within a plane triangle

drawn between the two bodies and the centre of the cell
; (2) unless

the two bodies happen to he, to begin with, precisely on a diameter

of the cell, their paths until they meet one another will be curved

paths, the convexity of the curve being towards the straight hne

joining the two bodies
; (3) the two bodies will meet a httle before

they reach the centre ; and, having met and fused, will travel

on to reach the centre in a straight hne. The actual study and

observation of the path followed is not very easy, owing to the

fact that what we usually see is not the path itself, but only a

"projection of the path upon the plane of the microscope ; but the

curved path is particularly well seen in the frog's egg, where the

path of the spermatozoon is marked by a httle streak of brown

pigment, and the fact of the meeting of the pronuclei before

reaching the centre has been repeatedly seen by many observers.

The problem is nothing else than a particular case of the

famous problem of three bodies, which has so occupied the

astronomers ; and it is obvious that the foregoing brief description

is very far from including all possible cases. Many of these are

particularly described in the works of Fol, Roux, Whitman and

others*.

The intracellular phenomena of which we have now spoken

have assumed immense importance in biological hterature and

discussion during the last forty years ; but it is open to us to doubt

whether they will be found in the end to possess more than a

remote and secondary biological significance. Most, if not all of

them, would seem to follow Immediately and inevitably from very

simple assumptions as to the physical constitution of the cell, and

from an extremely simple distribution of polarised forces within

it. We have already seen that how a thing grows, and what it

grows into, is a dynamic and not a merely material problem; so

far as the material substance is concerned, it is so only by reason

* Fol, H., Recherches sur la fecondation, 1879. Roux, W., Beitrage zur

Entwickelungsmechanik des Embryo, Arch. f. Mikr. Anat. xix, 1887. Whitman,

C. O., Ookinesis, Journ. of Morph. i, 1887.
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of the chemical, electrical or other forces which are associated

with it. But there is another consideration which would lead us

to suspect that many features in the structure and configuration

of the cell are of very secondary biological importance ; and that

is, the great variation to which these phenomena are subject in

similar or closely related organisms, and the apparent impossibility

of correlating them with the peculiarities of the organism as a

whole. "Comparative study has shewn that almost every detail

of the processes (of mitosis) described above is subject to variation

in different forms of cells*." A multitude of cells divide to the

accompaniment of caryokinetic phenomena ; but others do so

without any visible caryokinesis at all. Sometimes the polarised

field of force is within, sometimes it is adjacent to, and at other

times it Hes remote from the nucleus. The distribution of potential

is very often symmetrical and bipolar, as in the case described;

but a less symmetrical distribution often occurs, with the result that

we have, for a time at least, numerous centres of force, instead

of the two main correlated poles : this is the simple explanation

of the numerous stellate figures, or " Strahlungen," which have

been described in certain eggs, such as those of Cliaetofterus. In

one and the same species of worm {Ascaris megalocefhala), one

group or two groups of chromosomes may be present. And
remarkably constant, in general, as the number of chromosomes in

any one species undoubtedly is, yet we must not forget that, in

plants and animals alike, the whole range of observed numbers is

but a small one; for (as regards the germ-nuclei) few organisms

have less than six chromosomes, and fewer still have more than

sixteen t- In closely related animals, such as various species of

Copepods, and even in the same species of worm or insect, the

form of the chromosomes, and their arrangement in relation to

the nuclear spindle, have been found to differ in the various ways

alluded to above. In short, there seem to be strong grounds for

beheving that these and many similar phenomena are in no way

specifically related to the particular organism in which they have

* Wilson. The Cell. p. 77.

t Eight and twelve are by much the commonest numbers, six and sixteen

coming next in order. If we may judge by the list given by E. B. Wilson {The

Cell, p. 206), over 80 % of the observed cases lie between 6 and 16, and nearly

60 % between 8 and 12.

13—2
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been observed, and are not even specially and indisputably con-

nected with the organism as such. They include such manifesta-

tions of the physical forces, in their various permutations and

combinations, as may also be witnessed, under appropriate

conditions, in non-living things.

When we attempt to separate our purely morphological or

"purely embryological" studies from physiological and physical

investigations, we tend ipsofacto to regard each particular structure

and configuration as an attribute, or a particular "character," of

this or that particular organism. From this assumption we are

apt to go on to the drawing of new conclusions or the framing of

new theories as to the ancestral history, the classificatory position,

the natural affinities of the several organisms : in fact, to apply

our embryological knowledge mainly, and at times exclusively, to

the study of phytogeny. When we find, as we are not long of

finding, that our phylogenetic hypotheses, as drawn from em-

bryology, become complex and unwieldy, we are nevertheless

reluctant to admit that the whole method, with its fundamental

postulates, is at fault. And yet nothing short of this would

seem to be the case, in regard to the earlier phases at least of

embryonic development. All the evidence at hand goes, as it

seems to me, to shew that embryological data, prior to and even

long after the epoch of segmentation, are essentially a subject for

physiological and physical investigation and have but the very

slightest link with the problems of systematic or zoological

classification. Comparative embryology has its own facts to

classify, and its own methods and principles of classification.

Thus we may classify eggs according to the presence or absence,

the paucity or abundance, of their associated food-yolk, the

chromosomes according to their form and their number, the

segmentation according to its various "types," radial, bilateral,

spiral, and so forth. But we have little right to expect, and in

point of fact we shall very seldom and (as it were) only accidentally

find, that these embryological categories coincide with the lines

of "natural" or "phylogenetic" classification which have been

arrived at by the systematic zoologist.

The cell, which Goodsir spoke of as a "centre of force," is in
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reality a "sphere of action" of certain more or less localised

forces ; and of these, surface-tension is the particular force which

is especially responsible for giving to the cell its outline and its

morphological individuality. The partially segmented differs from

the totally segmented egg, the unicellular Infusorian from the

minute multicellular Turbellarian, in the intensity and the range of

those surface-tensions which in the one case succeed and in the

other fail to form a visible separation between the "cells." Adam
Sedgwick used to call attention to the fact that very often, even

in eggs that appear to be totally segmented, it is yet impossible

to discover an actual separation or cleavage, through and through

between the cells which on the surface of the egg are so clearly

delimited ; so far and no farther have the physical forces effect-

uated a visible "cleavage." The vacuolation of the protoplasm in

Actinophrys or Actinosphaerium is due to localised surface-tensions,

quite irrespective of the multinuclear nature of the latter

organism. In short, the boundary walls due to surface-tension

may be present or may be absent with or without the dehmi-

nation of the other specific fields of force which are usually

correlated with these boundaries and with the independent

individuality of the cells. What we may safely admit, however,

is that one effect of these circumscribed fields of force is usually

such a separation or segregation of the protoplasmic constituents,

the more fluid from the less fluid and so forth, as to give a field

where surface-tension may do its work and bring a visible boundary

into being. When the formation of a "surface" is once effected,

its physical condition, or phase, will be bound to differ notably

from that of the interior of the cell, and under appropriate chemical

conditions the formation of an actual cell-wall, cellulose or other,

is easily intelligible. To this subject we shall return again, in

another chapter.

From the moment that we enter on a dynamical conception

of the cell, we perceive that the old debates were in vain as to

what visible portions of the cell were active or passive, living or

non-living. For the manifestations of force can only be due to

the interaction of the various parts, to the transference of energy

from one to another. Certain properties may be manifested,

certain functions may be carried on, by the protoplasm apart
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from the nucleus; but the interaction of the two is necessary,

that other and more important properties or functions may be

manifested. We know, for instance, that portions of an Infusorian

are incapable of regenerating lost parts in the absence of a nucleus,

while nucleated pieces soon regain the specific form of the organism

:

and we are told that reproduction by fission cannot be initiated,

though apparently all its later steps can be carried on, indepen-

dently of nuclear action. Nor, as Verworn pointed out, can the

nucleus possibly be regarded as the "sole vehicle of inheritance,"

since only in the conjunction of cell and nucleus do we find the

essentials of cell-Hfe. "Kern und Protoplasma sind nur vereint

lebensfahig," as Nussbaum said. Indeed we may, with E. B.

Wilson, go further, and say that "the terms 'nucleus' and 'cell-

body ' should probably be regarded as only topographical expres-

sions denoting two difEerentiated areas in a common structural

basis."

Endless discussion has taken place regarding the centrosome,

some holding that it is a specific and essential structure, a per-

manent corpuscle derived from a similar pre-existing corpuscle, a

"fertihsing element" in the spermatozoon, a special "organ of

cell-division," a material "dynamic centre" of the cell (as Van

Beneden and Boveri call it) ; while on the other hand, it is pointed

out that many cells live and multiply without any visible centro-

somes, that a centrosome inaj disappear and be created anew,

and even that under artificial conditions abnormal chemical

stimuli may lead to the formation of new centrosomes. We may
safely take it that the centrosome, or the "attraction sphere,"

is essentially a "centre of force," and that this dynamic centre

may or may not be constituted by (but will be very apt to produce)

a concrete and visible concentration of matter.

It is far from correct to say, as is often done, that the cell-wall,

or cell-membrane, belongs " to the passive products of protoplasm

rather than to the living cell itself" ; or to say that in the animal

cell, the cell-wall, because it is "shghtly developed," is relatively

unimportant compared with the important role which it assumes

in plants. On the contrary, it is quite certain that, whether

visibly differentiated into a semi-permeable membrane, or merely

constituted by a hquid film, the surface of the cell is the seat of
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important forces, capillary and electrical, which play an essential

part in the dynamics of the cell. Even in the thickened, largely

soHdified cellulose wall of the plant-cell, apart from the mechanical

resistances which it affords, the osmotic forces developed in con-

nection with it are of essential importance.

But if the cell acts, after this fashion, as a whole, each part

interacting of necessity with the rest, the same is certainly true

of the entire multicellular organism: as Schwann said of old, in

very precise and adequate words, "the whole organism subsists

only by means of the reciprocal action of the single elementary

parts*."

As Wilson says again, "the physiological autonomy of the

individual cell falls into the background...and the apparently

composite character which the multicellular organism may exhibit

is owing to a secondary distribution of its energies among local

centres of actionf.
'

It is here that the homology breaks down which is so often

drawn, and overdrawn, between the unicellular organism and the

individual* cell of the metazoonj.

Whitman, Adam Sedgwick §, and others have lost no

opportunity of warning us against a too literal acceptation

of the cell-theory, against the view that the multicellular

organism is a colony (or, as Haeckel called it (in the case

of the plant), a "republic") of independent units of life||.

As Goethe said long ago, "Das lebendige ist zwar in Elemente

* Theory of Cells, p. 191.

f The Cell in Development, etc. p. 59; cf. pp. 388, 413..

J E.g. Briicke; Elementarorganismen, p. 387: "Wir miissen in der Zelle einen

kleinen Thierleib sehen, und diirfen die Analogien, welche zwischen ihr und den

kleinsten Thierformen existiren, niemals aus den Augen lassen."

§ Whitman, C. 0., The Inadequacy of the Cell-theory, Journ. of Morphol.

vm, pp. 639-658, 1893; Sedgwick, A., On the Inadequacy of the Cellular Theory

of Development, Q.J. M.S. xxxvii, pp. 87-101, 1895, xxxviii, pp. 331-337, 1896.

Cf. Bourne, G. C, A Criticism of the Cell-theory; being an answer to Mr Sedgwick's

article, etc., ibid, xxxvm, pp. 137-174, 1896.

II
Cf. Hertwig, 0., Die Zelle und die Gewebe, 1893, p. 1; "Die Zellen, in welche

der Anatom die pflanzlichen und thierischen Organismen zerlegt, sind die Trager

der Lebensfunktionen ; sie sind, wie Virchow sich ausgedriickt hat, die 'Lebensein-

heiten.' Von diesem Gesichtspunkt aus betrachtet, erscheint der Gesammtlebens-

process eines zusammengesetzten Organismus nichts Anderes zu sein als das hochst

verwickelte Resultat der einzelnen Lebensprocesse seiner zahbeichen, verschieden

functionirenden Zellen."
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zerlegt, aber man kann es aus diesen nicht wieder zusammenstellen

und beleben;" the dictum of the Cellularfathologie being just

the opposite, "Jedes Thier erscheint als eine Summe vitaler

Einheiten, von denen jede den vollen CharaJcter des Lebens an

sich tragi."

Hofmeister and Sachs have taught us that in the plant the

growth of the mass, the growth of the organ, is the primary fact,

that "cell formation is a phenomenon very general in organic

life, but still only of secondary significance." "Comparative

embryology" says Whitman, "reminds us at every turn that the

organism dominates cell-formation, using for the same purpose

one, several, or many cells, massing its material and directing its

movements and shaping its organs, as if cells did not exist*."

So Rauber declared that, in the whole world of organisms, "das

Ganze liefert die Theile, nicht die Theile das Ganze : letzteres

setzt die Theile zusammen, nicht diese jenes|." And on the

botanical side De Bary has summed up the matter in an aphorism,

"Die Pflanze bildet Zellen, nicht die Zelle bildet Pflanzen."

Discussed almost wholly from the concrete, or morphological

point of view, the question has for the most part been made to turn

on whether actual protoplasmic continuity can be demonstrated

between one cell and another, whether the organism be an actual

reticulum, or syncytium. But from the dynamical point of view

the question is much simpler. We then deal not with material

continuity, not with little bridges of connecting protoplasm, but

with a continuity of forces, a comprehensive field of force, which

runs through and through the entire organism and is by no means

restricted in its passage to a protoplasmic continuum. And such

a continuous field of force, somehow shaping the whole organism,

independently of the number, magnitude and form of the individual

cells, which enter, Kke a froth, into its fabric, seems to me certainly

and obviously to exist. As Whitman says, "the fact that physio-

logical unity is not broken by cell-boundaries is confirmed in so

many ways that it must be accepted as one of the fundamental

truths of biokgyj."
* Journ. of Morph. viii. p. 653, 1893.

•f
Neue Grundlegungen zur Kenntniss der Zelle, Morph. Jahrb. vin, pp. 272,

3] 3, 333, 1883.

I Journ. of Morph. ii, p. 49, 1889.



CHAPTER V

THE FORMS OF CELLS

Protoplasm, as we have already said, is a fluid or rather a

semifluid substance, and we need not pause here to attempt to

describe the particular properties of the semifluid, colloid, or

jelly-like substances to which it is allied; we should find it no

easy matter. Nor need we appeal to precise theoretical definitions

of fluidity, lest we come into a debateable land. It is in the most

general sense that protoplasm is "fluid." As Graham said (of

colloid matter in general), "its softness partaJces of fluidity, and

enables the colloid to become a vehicle for liquid diffusion, like

water itself*." When we can deal with protoplasm in sufficient

quantity we see it flow
;

particles move freely through it, air-

bubbles and hquid droplets shew round or spherical within it

;

and we shall have much to say about other phenomena manifested

by its own surface, which are those especially characteristic of

liquids. It may encompass and contain solid bodies, and it may
"secrete" within or around itself solid substances; and very

often in the complex living organism these solid substances

formed by the living protoplasm, like shell or nail or horn or

feather, may remain when the protoplasm which formed them

is dead and gone ; but the protoplasm itself is fluid or semifluid,

and accordingly permits of free (though not necessarily rapid)

diffusion and easy convection of particles within itself. This simple

fact is of elementary importance in connection with form, and

with what appear at first sight to be common characteristics or

pecuharities of the forms of living things.

The older naturalists, in discussing the differences between

inorganic and organic bodies, laid stress upon the fact or state-

ment that the former grow by "agglutination," and the latter by

* Phil. Trans, cli, p. 183, 1861; Researches, ed. Angus Smith, 1877, p. 553.
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what they termed "intussusception." The contrast is true,

rather, of solid as compared with jelly-Hke bodies of all kinds,

living or dead, the great majority of which as it so happens, but

by no means all, are of organic origin.

A crystal "grows" by deposition of new molecules, one by

one and layer by layer, superimposed or aggregated upon the

solid substratum already formed. Each particle would seem to

be influenced, practically speaking, only by the particles in its

immediate neighbourhood, and to be in a state of freedom and

independence from the influence, either direct or indirect, of its

remoter neighbours. As Lord Kelvin and others have explained

the formation and the resulting forms of crystals, so we beheve

that each added particle takes up its position in relation to its

immediate neighbours already arranged, generally in the holes and

corners that their arrangement leaves, and in closest contact with

the greatest number*. And hence we may repeat or imitate this

process of arrangement, with great or apparently even with

precise accuracy (in the case of the simpler crystalline systems),

by piling up spherical pills or grains of shot. Li so doing, we must

have regard to the fact that each particle must drop into the

place where it can go most easily, or where no easier place offers.

In more technical language, each particle is free to take up, and

does take up, its position of least potential energy relative to those

already deposited; in other words, for each particle motion is

induced until the energy of the system is so distributed that no

tendency or resultant force remains to move it more. The

application of this principle has been shewn to lead to the produc-

tion of planes
-f

(in all cases where by the limitation of material,

surfaces must occur) ; and where we have planes, straight edges

and solid angles must obviously also occur ; and, if equilibrium is

* Cf. Kelvin, On the Molecular Tactics of a Crystal, The Boyle Lecture, Oxford,

1893, Baltimore Lectures, 1904, pp. 612-642. Here Kelvin was mainly following

Bravais's (tod Frankenheim's) theory of "space-lattices," but he had been largely

anticipated by the crystallographers. For an account of the development of the

subject in modern crystallography, by Sohncke, von Fedorow, Schonfiiess, Barlow

and others, see Tutton's Crystallography, chap, ix, pp. 118-134, 1911.

f In a homogeneous crystalline arrangement, symmetry compels a locus of one

property to be a plane or set of planes; the locus in this case being that of least

surface potential energy.
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to follow, must occur symmetrically. Our piling up of shot, or

manufacture of mimic crystals, gives us visible demonstration

that the result is actually to obtain, as in the natural crystal,

plane surfaces and sharp angles, symmetrically disposed.

But the living cell grows in a totally dift'erent way, very much
as a piece of glue swells up in water, by "imbibition," or by inter-

penetration into and throughout its entire substance. The semi-

fluid colloid mass takes up water, partly to combine chemically

with its individual molecules*, partly by physical diffusion into

the interstices between these molecules, and partly, as it would

seem, in other ways ; so that the entire phenomenon is a very

complex and even an obscure one. But, so far as we are con-

cerned, the net result is a very simple one. For the equilibrium or

tendency to equilibrium of fluid pressure in all parts of its interior

while the process of imbibition is going on, the constant rearrange-

ment of its fluid mass, the contrast in short with the crystalline

method of growth where each particle comes to rest to move
(relatively to the whole) no more, lead the mass of jelly to swell

up, very much as a bladder into which we blow air, and so, by
a graded and harmonious distribution of forces, to assume every-

where a rounded and more or less bubble-like external formf.

So, when the same school of older naturahsts called attention to

a new distinction or contrast of form between the organic and

inorganic objects, in that the contours of the former tended to

roundness and curvature, and those of the latter to be bounded

by straight lines, planes and sharp angles, we see that this contrast

was not a new and different one, but only another aspect of

their former statement, and an immediate consequence of the

difference between the processes of agglutination and intussus-

ception.

This common and general contrast between the form of the

crystal on the one hand, and of the' colloid or of the organism on

the other, must by no means be pressed too far. For Lehmann,

* This is what Graham called the water of gelatination, on the analogy of xvater

of crystallisation ; Chem. and Phys. Researches, p. 597.

f Here, in a non-crystalline or random arrangement of particles, symmetry
ensures that the potential energy shall be the same per unit area of all surfaces;

and it follows from geometrical considerations that the total surface energy will

be least if the surface be spherical.
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in his great work on so-called Fluid Crystals*, to which we shall

afterwards return, has shewn how, under certain circumstances,

surface-tension phenomena may coexist with crystallisation, and

produce a form of minimal potential which is a resultant of both

:

the fact being that the bonds maintaining the crystalline arrange-

ment are now so much looser than in the solid condition that the

tendency to least total surface-area is capable of being satisfied.

Thus the phenomenon of "liquid crystallisation" does not destroy

the distinction between crystalline and colloidal forms, but gives

added unity and continuity to the whole series of phenomena f.

Lehmann has also demonstrated phenomena within the crystal,

known for instance as transcrystallisation, which shew us that we
must not speak unguardedly of the growth of crystals as limited

to deposition upon a surface, and Biitschli has already pointed out

the possible great importance to the biologist of the various

phenomena which Lehmann has described t.

So far then, as growth goes on, unafltected by pressure or other

external force, the fluidity of protoplasm, its mobility internal

and external, and the manner in which particles move with

comparative freedom from place to place within, all manifestly

tend to the production of swelling, rounded surfaces, and to their

great predominance over plane surfaces in the contour of the

organism. These rounded contours will tend to be preserved, for

a while, in the case of naked protoplasm by its viscosity, and in

. the presence of a cell-wall by its very lack of fluidity. In a general

way, the presence of curved boundary surfaces will be especially

obvious in the unicellular organisms, and still more generally in

the external forms of all organisms ; and wherever mutual pressure

between adjacent cells, or other adjacent parts, has not come into

play to flatten the rounded surfaces into planes.

But the rounded contours that are assumed and exhibited by

* Lehmann, 0., Flussige Krysfalle, soivie Plasticitdt von Krystallen im allge-

meinen, etc., 264 pp. 39 plL, Leipsig, 1904. For a semi-popular, illustrated account,

see Tutton's Crystals (Int. Soi. Series), 1911.

t As Graham said of an allied phenomenon (the so-called blood-crystals of

Funke), it "illustrates the maxim that in nature there are no abrupt transitions,

and that distinctions of class are never absolute."

X Cf. Przibram, H., Kristall-analogien zur Entwickelungsmechanik der Organ-

ismen, Arch. f. Entw. Mech. xxii,p. 207, 1906 (with copious bibliography); Lehmann,

Scheinbar lebende Kristalle und MyeUnformen, ibid. xxAa, p. 483, 1908.
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a piece of hard glue, when we throw it into water and see it expand

as it sucks the water up, are not nearly so regular or so beautiful

as are those which appear when we blow a bubble, or form a

drop, or pour water into a more or less elastic bag. For these

curving contours depend upon the properties of the bag itself,

of the film or membrane that contains the mobile gas, or that

contains or bounds the mobile liquid mass. And hereby, in the

case of the fluid or semifluid mass, we are introduced to the

subject of surface tension : of which indeed we have spoken in

the preceding chapter, but which we must now examine with

greater care.

Among the forces which determine the forms of cells, whether

they be solitary or arranged in contact with one another, this

force of surface-tension is certainly of great, and is probably of

paramount importance. But while we shall try to separate out

the phenomena which are directly due to it, we must not forget

that, in each particular case, the actual conformation which we

study may be, and usually is, the more or less complex resultant

of surface tension acting together with gravity, mechanical

pressure, osmosis, or other physical forces.

Surface tension is that force by which we explain the form of

a drop or of a bubble, of the surfaces external and internal of

a "froth" or collocation of bubbles, and of many other things of

like nature and in like circumstances*. It is a property of liquids

(in the sense at least with which our subject is concerned), and it

is manifested at or very near the surface, where the liquid comes

into contact with another liquid, a solid or a gas. We note here

that the term surface is to be interpreted in a wide sense ; for

wherever Ave have solid particles imbedded in a fluid, wherever

we have a non-homogeneous fluid or semi-fluid such as a particle

* The idea of a "surface-tension" in liquids was first enunciated by Segner,

De figuris superficierum fluidarum, in Comment. Soc. Boy. Gottiiigen, 1751, p. 301.

Hooke, in the Micrographia (1665, Obs. viii, etc.), had called attention to the

globular or spherical form of the httle morsels of steel struck off by a flint, and had

shewn how to make a powder of such spherical grains, by heating fine filings to

melting point. "This Phaenomenon" he said "proceeds from a propriety which

belongs to all kinds of fluid Bodies more or less, and is caused by the Incongruity

of the Ambient and included Fluid, which so. acts and modulates each other, that

they acquire, as neer as is possible, a spherical or globular form...."
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of protoplasm, wherever we have the presence of "impurities," as

in a mass of molten metal, there we have always to bear in mind

the existence of "surfaces" and of surface tensions, not only

on the exterior of the mass but also throughout its interstices,

wherever like meets unhke.

Surface tension is due to molecular force, to force that is to

say arising from the action of one molecule upon another, and it

is accordingly exerted throughout a small thickness of material,

comparable to the range of the molecular forces. We imagine

that within the interior of the liquid mass such molecular inter-

actions negative one another: but that at and near the free

surface, within a layer or film approximately equal to the range

of the molecular force, there must be a lack of such equilibrium

and consequently a manifestation of force.

The action of the molecular forces has been variously explained.

But one simple explanation (or mode of statement) is that the

molecules of the surface layer (whose thickness is definite and

constant) are being constantly attracted into the interior by those

which are more deeply situated, and that consequently, as

molecules keep quitting the surface for the interior, the bulk of

the latter increases while the surface diminishes ; and the process

continues till the surface itself has become a minimum, the surface-

shrinkage exhibiting itself as a surface-tension. This is a sufficient

description of t|;ie phenomenon in cases where a portion of liquid

is subject to no other than its oivn molecular forces, and (since the

sphere has, of all solids, the smallest surface for a given volume)

it accounts for the spherical form of the raindrop, of the grain

of shot, or of the living cell in many simple organisms. It accounts

also, as we shall presently see, for a great number of much more

complicated forms, manifested under less simple conditions.

Let us here briefly note that surface tension is, in itself, a

comparatively small force, and easily measurable: for instance

that of water is equivalent to but a few grains per linear inch,

or a few grammes per metre. But this small tension, when it

exists in a curved surface of very great curvature, gives rise to a

very great pressure directed towards the centre of curvature. We
can easily calculate this pressure, and so satisfy ourselves that,

when the radius of curvature is of molecular dimensions, the
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pressure is of the magnitude of thousands of atmospheres,—a con-

clusion which is supported by other physical considerations.

The contraction of a liquid surface and other phenomena of

surface tension involve the doing of work, and the power to do

work is what we call energy. It is obvious, in such a simple case

as we have just considered, that the whole energy of the system

is diffused throughout its molecules ; but of this whole stock of

energy it is only that part which comes into play at or very near

to the surface which normally manifests itself in work, and hence

we may speak (though the term is open to some objections) of

a specific surface energy. The consideration of surface energy,

and of the manner in which its amount is increased and multiphed

by the multiplication of surfaces due to the subdivision of the

organism into cells, is of the highest importance to the physiologist

;

and even the morphologist cannot wholly pass it by, if he desires

to study the form of the cell in its relation to the phenomena of

surface tension or "capillarity." The case has been set forth with

the utmost possible lucidity by Tait and by Clerk Maxwell, on

whose teaching the following paragraphs are based : they having

based their teaching upon that of Gauss,—who rested on Laplace.

Let E be the whole potential energy of a mass M of liquid;

let Cq be the energy per unit mass of the interior liquid (we may

call it the internal energy) ; and let e be the energy per unit mass

for a layer of the skin, of surface S, of thickness t, and density

p {e being what we call the surface energy). It is obvious that the

total energy consists of the internal flus the surface energy, and

that the former is distributed through the whole mass, minus its

surface layers. That is to say, in mathematical language,

E={M-S . ^tp) e^ + S . lltpe.

But this is equivalent to writing

:

= Mco + S .i:tp{e - Co)

;

and this is as much as to say that the total energy of the system

may be taken to consist of two portions, one uniform throughout

the whole mass, and another, which is proportional on the one hand

to the amount of surface, and on the other hand is proportional

to the difference between e and e^, that is to say to the difference

between the unit values of the internal and the surface energy.
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It was Gauss who first shewed after this fashion how, from

the mutual attractions between all the particles, we are led to an

expression which is what we now call the fotential energy of the

system; and we know, as a fundamental theorem of dynamics,

that the potential energy of the system tends to a minimum, and

in that minimum finds, as a matter of course, its stable equilibrium.

We see in our last equation that the term Me^ is irreducible,

save by a reduction of the mass itself. But the other term may
be diminished (1) by a reduction in the area of surface, S, or

(2) by a tendency towards equality of e and Cq, that is to say by

a diminution of the specific surface energy, e.

These then are the two methods by which the energy of the

system will manifest itself in work. The one, which is much the

more important for our purposes, leads always to a diminution of

surface, to the so-called "principle of minimal areas" ; the other,

which leads to the lowering (under certain circumstances) of

surface tension, is the basis of the theory of Adsorption, to which

we shall have some occasion to refer as the modus operandi in the

development of a cell-wall, and in a variety of other histological

phenomena. In the technical phraseology of the day, the

"capacity factor" is involved in the one case, and the "intensity

factor" in the other.

Inasmuch as we are concerned with the form of the cell it is

the former which becomes our main postulate : telling us that

the energy equations of the surface of a cell, or of the free surfaces

of cells partly in contact, or of the partition-surfaces of cells in

contact with one another or with an adjacent solid, all indicate

a minimum of potential energy in the system, by which the system

is brought, ipso facto, into equilibrium. And we shall not fail to

observe, with something more than mere historical interest and

curiosity, how deeply and intrinsically there enter into this whole

class of problems the "principle of least action" of Maupertuis,

the "lineae curvae maximi minimive froprietate gaiidentes" of

Euler, by which principles these old natural philosophers explained

correctly a multitude of phenomena, and drew the lines whereon

the foundations of great part of modern physics are well and

truly laid.
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111 all cases where the principle of maxima and minima comes

into play, as it conspicuously does in the systems of liquid films

which are governed by the laws of surface-tension, the figures and

conformations produced are characterised by obvious and remark-

able symmetry. Such symmetry is in a high degree characteristic

of organic forms, and is rarely absent in living things,—save in such

cases as amoeba, where the equilibrium on which symmetry depends

is likewise lacking. And if we ask what physical equilibrium has

to do with formal symmetry and regularity, the reason is not far

to seek ; nor can it be putbetter than in the following words of

Mach's*. "In every symmetrical system every deformation that

tends to destroy the symmetry is complemented by an equal and

opposite deformation that tends to restore it. In each deformation

positive and negative work is done. One condition, therefore,

though not an absolutely sufficient one, that a maximum or

minimum of work corresponds to the form of equilibrium, is thus

supplied by symmetry. Regularity is successive symmetry.

There is no reason, therefore, to be astonished that the forms of

equilibrium are often symmetrical and regular."

As we proceed in our enquiry, and especially when we approach

the subject of tissues, or agglomerations of cells, we shall have

from time to time to call in the help of elementary mathematics.

But already, with very little mathematical help, we find ourselves

in a position to deal with some simple examples of organic forms.

When we melt a stick of sealing-wax in the flame, surface

tension (which was ineffectively present in the solid but finds play

in the now fluid mass), rounds off its sharp edges into curves, so

striving towards a surface of minimal area ; and in like manner,

by melting the tip of a thin rod of glass, Leeuwenhoek made the

little spherical beads which served him for a microscope "j". When
any drop of protoplasm, either over all its surface or at some free

end, as at the extremity of the pseudopodium of an amoeba, is

* Science of Mechanics, 1902, p. 395 ; see also Mach's article Ueber die physika-

lische Bedeutung der Gesetze der Symnietrie, Lotos, xxi, pp. 139-147, 1871.

t Similarly, Sir David Brewster and others made powerful lenses by simply

dropping small drops of Canada balsam, castor oil, or other strongly refractive

liquids, on to a glass plate: On New Philosophical Instruments (Description of a

new Fluid Microscope), Edinburgh, 1813, p. 413.

T. G. 14
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seen likewise to "round itself off," that is not an effect of "vital

contractility," but (as Hofmeister shewed so long ago as 1867)

a simple consequence of surface tension ; and almost immediately

afterwards Engelmann* argued on the same lines, that the forces

which cause the contraction of protoplasm in general may "be

just the same as those which tend to make every non-spherical

drop of fluid become spherical
!

" We are not concerned here with

the many theories and speculations which would connect the

phenomena of surface tension with contractility, muscular move-

ment or other special 'physiological functions, but we find ample

room to trace the operation of the same cause in producing, under

conditions of rest and equilibrium, certain definite and inevitable

forms of surface.

It is however of great importance to observe that the living

cell is one of those cases where the phenomena of surface tension

are by no means limited to the ovter surface ; for within the

heterogeneous substance of the cell, between the protoplasm and

its nuclear and other contents, and in the alveolar network of the

cytoplasm itself (so far as that "alveolar structure" is actually

present in life), we have a multitude of interior surfaces ; and,

especially among plants, we may have a large, inner surface of

"interfacial" contact, where the protoplasm contains cavities

or "vacuoles" filled with a different and more fluid material, the

"cell-sap." Here we have a great field for the development of

surface tension phenomena : and so long ago as 1865, Nageli and

Schwendener shewed that the streaming currents of plant cells

might be very plausibly explained by this phenomenon. Even

ten years earlier, Weber had remarked upon the resemblance

between these protoplasmic streamings and the streamings to be

observed in certain inanimate drops, for which no cause but

surface tension could be assigned f.

The case of amoeba, though it is an elementary case, is at the

same time a complicated one. While it remains "amoeboid," it

is never at rest or in equilibrium; it is always moving, from one

to another of its protean changes of configuration ; its surface

tension is constantly varying from point to point. Where the

* Beitrage z. Physiologie d. Protoplasma, Pfluger''s Archiv, n, p. 307, 1869.

t Poggend. Annalen, xciv, pp. 447-459, 1855. Cf. Strethill Wright, Phil.

Mag. Feb. 1860.
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surface tension is greater, that portion of the surface will contract

into spherical or spheroidal forms ; where it is less the surface

will correspondingly extend. While generally speaking the surface

energy has a minimal value, it is not necessarily constant. It may
be diminished by a rise of temperature ; it may be altered by

contact with adjacent substances*, by the transport of constituent

materials from the interior to the surface, or again by actual

chemical and fermentative change. Within the cell, the surface

energies developed about its heterogeneous contents will constantly

vary as these contents are affected by chemical metabolism. As

the colloid materials are broken down and as the particles in

suspension are diminished in size the "free surface energy'

will be increased, but the osmotic energy will be diminished f.

Thus arise the various fluctuations of surface tension and the

various phenomena of amoeboid form and motion, which Biitschli

and others have reproduced or imitated by means of the fine

emulsions which constitute their "artificial amoebae." A multi-

tude of experiments shew how extraordinarily delicate is the

adjustment of the surface tension forces, and how sensitive they

are to the least change of temperature or chemical state. Thus,

on a plate which we have warmed at one side, a drop of alcohol

runs towards the warm area, a drop of oil away from it ; and a

drop of water on the glass plate exhibits lively movements when

* Haycraft and Carlier pointed out {Proc. E.S.E. xv, pp. 220-224, 1888) that

the amoeboid movements of a white blood-corpuscle are only manifested when the

corpuscle is in contact with some soUd substance: while floating freely in the

plasma or serum of the blood, these corpuscles are spherical, that is to say they

are at rest and in equihbrium. The same fact has recently been recorded anew

by Ledingham (On Phagocytosis from an adsorptive point of view, Journ. of Hygiene,

xu, p. 324, 1912). On the emission of pseudopodia as brought about by changes

in surface tension, see also (int. al.) Jensen, Ueber den Geotropismus niederer

Organismen, Pflilger's Archiv, Liii, 1893. Jensen remarks that in OrbitoUtes, the

pseudopodia issuing through the pores of the shell first float freely, then as they

grow longer bend over tiU they touch the ground, whereupon they begin to display

amoeboid and streaming motions. Verworn indicates (Allg. Physiol. 189.5, p. 429),

and Davenport says {Experim. Morphology, ii, p. 376) that "this persistent cUnging

to the substratum is a ' thigmotropic ' reaction, and one which belongs clearly to

the category of 'response.'" (Cf. Piitter, Thigmotaxis bei Protisten, A. f. Physiol.

1900, Suppl. p. 247.) But it is not clear to my mind that to account for this

simple phenomenon we need invoke other factors than gravity and surface-action.

t Cf. Pauli, Allgemeine physikalische Chemie d. Zellen u. Gewebe, in Asher-Spiro's

Ergebnisse der Physiologic, 1912; Przibram, Vitalitdt, 1913, p. 6.

14—2
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we bring into its neighbourhood a heated wire, or a glass rod

dipped in ether. When we find that a plasmodium of Aethalium,

for instance, creeps towards a damp spot, or towards a warm spot,

or towards substances that happen to be nutritious, and again

creeps away from solutions of sugar or of salt, we seem to be

dealing with phenomena every one of which can be paralleled by

ordinary phenomena of surface tension*. Even the soap-bubble

itself is imperfectly in equilibrium, for the reason that its film,

like the protoplasm of amoeba or Aethalium, is an excessively

heterogeneous substance. Its surface tensions vary from point

to point, and chemical changes and changes of temperature

increase and magnify the variation. The whole surface of the

bubble is in constant movement as the concentrated portions of

the soapy fluid make their way outwards from the deeper layers

;

it thins and it thickens, its colours change, currents are set up in

it, and little bubbles glide over it; it continues in this state of

constant movement, as its parts strive one with another in all

their interactions towards equilibrium f.

In the case of the naked protoplasmic cell, as the amoeboid

phase is emphatically a phase of freedom and activity, of chemical

and physiological change, so, on the other hand, is the spherical

form indicative of a phase of rest or comparative inactivity. In

the one phase we see unequal surface tensions manifested in the

creeping movements of the amoeboid body, in the rounding o£E

of the ends of the pseudopodia, in the flowing out of its substance

over a particle of "food," and in the current-motions in the interior

of its mass ; till finally, in the other phase, when internal homo-

geneity and equilibrium have been attained and the potential

* The surface-tension theory of protoplasmic movement has been denied by
many. Cf. (e.g.), Jennings, H. S., Contributions to the Study of the Behaviour

of the Lower Organisms, Carnegie Inst. 1904, pp. 130-230; Delhnger, O. P.,

Locomotion of Amoebae, etc. Journ. Exp. Zool. iii, pp. 337-357, 1906; also various

papers by Max Heidenhain, in Anatom. Hefte (Merkel und Bonnet), etc.

"]" These various movements of a liquid surface, and other still more striking

movements such as those of a piece of camphor floating on water, were at one time

ascribed by certain physicists to a peculiar force, sui generis, the force e'pipolique

of Dutrochet : imtil van der Mensbrugghe shewed that differences of surface tension

were enough to account for this whole series of phenomena (Sur la tension super-

ficielle des hquides consideree au point de vue de certains mouvements observes

a leur surface, Mem. Cour. Acad, de Belgique, xxxiv, 1869; cf. Plateau, p. 283).
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energy of the system is for the time being at a minimum, the

cell assumes a rounded or spherical form, passing into a state

of "rest," and (for a reason which we shall presently see)

becoming at the same time "encysted."

In a budding yeast-cell (Fig. 60), we see a more definite and

restricted change of surface tension. When a "bud" appears,

whether with or without actual growth by osmosis

or otherwise of the mass, it does so because at a

certain part of the cell-surface the surface tension

has more or less suddenly diminished, and the

area of that portion expands accordingly ; but in

turn the surface tension of the expanded area will

make itself felt, and the bud will be rounded of? p- gQ^

into a more or less spherical form.

The yeast-cell with its bud is a simple example of a principle

which we shall find to be very important. Our whole treatment

of cell-form in relation to surface-tension depends on the fact

(which Errera was the first to point out, or to give clear expression

to) that the incipient cell-wall retains with but little impairment

the properties of a liquid film *, and that the growing cell, in spite

of the membrane by which it has already begun to be surrounded,

behaves very much like a fluid drop. But even the ordinary

yeast-cell shows, by its ovoid and non-spherical form, that it has

acquired its shape under the influence of some force other than

that uniform and symmetrical surface-tension which would be

productive of a sphere ; and this or any other asymmetrical form,

once acquired, may be retained by virtue of the solidification and

consequent rigidity of the membranous wall of ^he cell. Unless

such rigidity ensue, it is plain that such a conformation as that of

the cell with its attached bud could not be long retained, amidst

the constantly varying conditions, as a figure of even partial

equilibrium. But as a matter of fact, the cell in this case is not

in equilibrium at all; it is in process of budding, and is slowly

altering its shape by rounding off the bud. It is plain that over

its surface the surface-energies are unequally distributed, owing

to some heterogeneity of the substance; and to this matter we

shall afterwards return. In like manner the developing egg

* Cf. infra, p. 306.
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through all its successive phases of form is never in complete

equilibrium ; but is merely responding to constantly changing

conditions, by phases of partial, transitory, unstable and con-

ditional equilibrium.

It is obvious that there are innumerable solitary plant-cells,

and unicellular organisms in general, which, like the yeast-cell, do

not correspond to any of the simple forms that may be generated

under the influence of simple and homogeneous surface-tension

;

and in many cases these forms, which we should expect to be

unstable and transitory, have become fixed and stable by reason

of the comparatively sudden or rapid solidification of the envelope.

This is the case, for instance, in many of the more complicated forms

of diatoms or of desmids, where we are dealing, in a less striking

but even more curious way than in the budding yeast-cell, not

with one simple act of formation, but with a complicated result

of successive stages of localised growth, interrupted by phases of

partial consolidation. The original cell has acquired or assumed

a certain form, and then, under altering conditions and new

distributions of energy, has thickened here or weakened there,

and has grown out or tended (as it were) to branch, at particular

points. We can often, or indeed generally, trace in each particular

stage of growth or at each particular temporary growing point,

the laws of surface tension manifesting themselves in what is

for the time being a fluid surface ; nay more, even in the adult

and completed structure^ we have little difficulty in tracing and

recognising (for instance in the outline of such a desmid as Euas-

trum) the rounded lobes that have successively grown or flowed

out from the original rounded and flattened cell. What we see in

a many chambered foraminifer, such as Globigerina or Rotalia, is

just the same thing, save that it is carried out in greater complete-

ness and perfection. The little organism as a whole is not a figure

of equilibrium or of minimal area ; but each new bud or separate

chamber is such a figure, conditioned by the forces of surface

tension, and superposed upon the complex aggregate of similar

bubbles after these latter have become consolidated one by one

into a rigid system.

Let us now make some enquiry regarding the various forms
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wliich, under the influence of surface tension, a surface can possibly

assume. In doing so, we are obviously limited to conditions

under which other forces are relatively unimportant, that is to

say where the "surface energy" is a considerable fraction of

the whole energy of the system ; and this in general will be

the case when we are dealing with portions of liquid so small

that their dimensions come within what we have called the

molecular range, or, more generally, in which the "specific

surface" is large*: in other words it will be small or minute

organisms, or the small cellular elements of larger organisms,

whose forms will be governed by surface-tension ; while the

general forms of the larger organisms will be due to other and

non-molecular forces. For instance, a large surface of water sets

itself level because here gravity is predominant; but the surface

of water in a narrow tube is manifestly curved, for the reason

that we are here dealing with particles which are mutually within

the range of each other's molecular forces. The same is the case

with the cell-surfaces and cell-partitions which we are presently

to study, and the effect of gravity will be especially counteracted

and concealed when, as in the case of protoplasm in a watery

fluid, the object is immersed in a liquid of nearly its own specific

gravity.

We have already learned, as a fundamental law of surface-

tension phenomena, that a liquid film in equilibrium assumes a

form which gives it a minimal area under the conditions to which

it is subject. And these conditions include (1) the form of the

boundary, if such exist, and (2) the pressure, if any, to which the

film is subject; which pressure is closely related to the volume,

of air or of liquid, which the film (if it be a closed one) may have

to contain. In the simplest of cases, when we take up a soap-

film on a plane wire ring, the film is exposed to equal atmospheric

pressure on both sides, and it obviously has its minimal area in

the form of a plane. So long as our wire ring lies in one plane

(however irregular in outline), the film stretched across it will

still be in a plane ; but if we bend the ring so that it lies no longer

in a plane, then our film will become curved into a surface which

may be extremely complicated, but is still the smallest possible

* Cf. p. 32.
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surface which can be drawn continuously across the uneven

boundary.

The question of pressure involves not only external pressures

acting on the film, but also that which the film itself is capable

of exerting. For we have seen that the film is always contracting

to its smallest limits ; and when the film is curved, this obviously

leads to a pressure directed inwards,—perpendicular, that is to

say, to the surface of the film. In the case of the soap-bubble,

the uniform contraction of whose surface has led to its spherical

form, this pressure is balanced by the pressure of the air within

;

and if an outlet be given for this air, then the bubble contracts

with perceptible force until it stretches across the mouth of the

tube, for instance the mouth of the pipe through which we have

blown the bubble. A precisely similar pressure, directed inwards,

is exercised by the surface layer of a drop of water or a globule

of mercury, or by the surface pellicle on a portion or "drop" of

protoplasm. Only we must always remember that in the soap-

bubble, or the bubble which a glass-blower blows, there is a twofold

pressure as compared with that which the surface-film exercises

on the drop of liquid of which it is a part ; for the bubble consists

(unless it be so thin as to consist of a mere layer of molecules*)

of a liquid layer, with a free surface within and another without,

and each of these two surfaces exercises its own independent and

coequal tension, and corresponding pressure |.

If we stretch a tape upon a flat table, whatever be the tension

of the tape it obviously exercises no pressure upon the table

below. But if we stretch it over a curved surface, a cylinder for

instance, it does exercise a downward pressure ; and the more

curved the surface the greater is this pressure, that is to say the

greater is this share of the entire force of tension which is resolved

in the downward direction. In mathematical language, the

pressure (/j) varies directly as the tension {T), and inversely as

the radius of curvature {R) : that is to say, p = T/R, per unit of

surface.

* Or, more strictly speaking, unless its thickness be less than twice the range

of the molecular forces.

I It follows that the tension, depending only on the surface-conditions, is

independent of the thickness of the film.
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If instead of a cylinder, which is curved only in one direction,

we take a case where there are curvatures in two dimensions (as

for instance a sphere), then the effects of these riiust be simply

added to one another, and the resulting pressure j) is equal to

T/R + T/R' or p^TiljR+ l/R') *.

And if in addition to the pressure p, which is due to surface

tension, we have to take into account other pressures, 7?', j)", etc.,

which are due to gravity or other forces, then we may say that

the total 'pressure, P = p' + p" + T {l/R + l/R'). While in some

cases, for instance in speaking of the shape of a bird's egg, we

shall have to take account of these extraneous pressures, in the

present part of our subject we shall for the most part be able to

neglect them.

Our equation is an equation of equilibrium. The resistance

to compression,—the pressure outwards,—of our fluid mass, is a

constant quantity (P) ; the pressure inwards, T {l/R + 1/-R'), is

also constant; and if (unlike the case of the mobile amoeba) the

surface be homogeneous, so that T is everywhere equal, it follows

that throughout the whole surface l/R + l/R' -= C (a constant).

Now equilibrium is attained after the surface contraction has

done its utmost, that is to say when it has reduced the surface

to the smallest possible area ; and so we arrive, from the physical

side, at the conclusion that a surface such that l/R + l/R' = C,

in other words a surface which has the same mean curvature at

all points, is equivalent to a surface of minimal area : and to the

same conclusion we may also arrive through purely analytical

mathematics. It is obvious that the plane and the sphere are two

examples of such surfaces, for in both cases the radius of curvature

is everywhere constant, being equal to infinity in the case of the

plane, and to some definite magnitude in the case of the sphere.

From the fact that we may extend a soap-film across a ring of

wire however fantastically the latter may be bent, we realise that

there is no limit to the number of surfaces of minimal area which

may be constructed or may be imagined ; and while some of these

are very complicated indeed, some, for instance a spiral helicoid

screw, are relatively very simple. But if we limit ourselves to

* This simple but immensely important formula is due to Laplace {Mecanique

Celeste, Bk x. suppl. Theorie de Vaction capillaire, 1806).
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surfaces of revolution (that is to say, to surfaces symmetrical about

an axis), we find, as Plateau was the first to shew, that those which

meet the case are very few in number. They are six in all,

namely the plane, the sphere, the cylinder, the catenoid, the

unduloid, and a curious surface which Plateau called the nodoid.

These several surfaces are all closely related, and the passage

from one to another is generally easy. Their mathematical inter-

relation is expressed by the fact (first shewn by Delaunay*, in 1841)

that the plane curves by whose rotation they are generated are

themselves generated as "roulettes" of the conic sections.

Let us imagine a straight line upon which a circle, an elHpse

or other conic section rolls ; the focus of the conic section will

describe a line in some relation to the fixed axis, and this line

(or roulette), rotating around the axis, will describe in space one or

other of the six surfaces of revolution with which we are dealing.

If we imagine an ellipse so to roll over a line, either of its foci

will describe a sinuous or wavy line (Fig. 61 b) at a distance

alternately maximal and minimal from the axis ; and this wavy
line, by rotation about the axis, becomes the meridional line of

the surface which we call the unduloid. The more unequal the

two axes are of our elhpse, the more pronounced will be the

sinuosity of the described roulette. If the two axes be equal,

then our elhpse becomes a circle, and the path described by its

rolhng centre is a straight line parallel to the axis (A) ; and

obviously the solid of revolution generated therefrom will be a

cylinder. If one axis of our ellipse vanish, while the other remain

of finite length, then the ellipse is reduced to a straight line, and

its roulette will appear as a succession of semicircles touching one

another upon the axis (C) ; the solid of revolution will be a series of

equal spheres. If as before one axis of the elhpse vanish, but the

other be infinitely long, then the curve described by the rotation

* Sur la surface de revolution dont la courbure moyenne est constante, Journ.

de M. LiouvilU, vi, p. 309, 1841.
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of this latter will be a circle of infinite radius, i.e. a straight line

infinitely distant from the axis ; and the surface of rotation is now

a 'plane. If we imagine one focus of our ellipse to remain at a

given distance from the axis, but the other to become infinitely

remote, that is tantamount to saying that the ellipse becomes

transformed into a parabola ; and by the rolling of this curve

along the axis there is described a catenary (D), whose solid of

revolution is the catenoid.

Lastly, but this is a little more difl&cult to imagine, we have

the case of the hyperbola.

We cannot well imagine the hyperbola rolling upon a fixed

straight line so that its focus shall describe a continuous curve.

But let us suppose that the fixed line is, to begin with, asymptotic

to one branch of the hyperbola, and that the rolling proceed

until the line is now asymptotic to the other branch, that is to

say touching it at an infinite distance ; there will then be mathe-

matical continuity if we recommence rolling with this second

branch, and so in turn with the other, when each has run its

course. We shall see, on reflection, that the line traced by one

and the same focus will be an " elastic curve " describing a suc-

cession of kinks or knots (E), and the solid of revolution described

by this meridional line about the axis is the so-called nodoid.

The physical transition of one of these surfaces into another

can be experimentally illustrated by means of soap-bubbles, or

better still, after the method of Plateau, by means -of a large

globule of oil, supported when necessary by wire rings, within a

fluid of specific gravity equal to its own.

To prepare a mixture of alcohol and water of a density precisely

equal to that of the oil-globule is a troublesome matter, and a

method devised by Mr C. R. Darling is a great improvement on

Plateau's *. Mr Darling uses the oily liquid orthotoluidene, which

does not mix with water, has a beautiful and conspicuous red

colour, and has precisely the same density as water when both

are kept at a temperature of 24° C. We have therefore only to

run the liquid into water at this temperature in order to produce

beautifully spherical drops of any required size : and by adding

* See Liquid Drops and Globules, 1914, p. 11. Robert Boyle used turpentine

in much the same way. For other methods see Plateau, op. cit. p. 154.
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a little salt to the lower layers of water, the drop may be made
to float or rest upon the denser liquid.

We have already seen that the soap-bubble, spherical to begin

with, is transformed into a plane when we relieve its internal

pressure and let the film shrink back upon the orifice of the pipe.

If we blow a small bubble and then catch it up on a second pipe,

so that it stretches between, we may gradually draw the two pipes

apart, with the result that the spheroidal surface will be gradually

flattened in a longitudinal direction, and the bubble w^U be trans-

formed into a cylinder. But if we draw the pipes yet farther

apart, the cylinder will narrow in the middle into a sort of hour-

glass form, the increasing curvature of its transverse section being

balanced by a gradually increasing negative curvature in the

longitudinal section. The cylinder has, in turn, been converted

into an unduloid. When we hold a portion of a soft glass tube in

the flame, and "draw it out," we are in the same identical fashion

Fig. 62.

converting a cylinder into an unduloid (Fig. 62 a) ; when on the

other hand we stop the end and blow, we again convert the

cylinder into an unduloid (b), but into one which is now positively,

while the former was negatively curved. The two figures are

essentially the same, save that the two halves of the one are

reversed in the other.

That spheres, cylinders and unduloids are of the commonest

occurrence among the forms of small unicellular organism, or of

individual cells in the simpler aggregates, and that in the processes

of growth, reproduction and development transitions are frequent

from one of these forms to another, is obvious to the naturalist,

and we shall deal presently with a few illustrations of these

phenomena.

But before we go further in this enquiry, it will be necessary

to consider, to some small extent at least, the curvatures of the

six different surfaces, that is to say, to determine what modification
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is required, in each case, of the general equation which appHes

to them all. We shall find that with this question is closely

connected the question of the pressures exercised by, or im-

pinging on the film, and also the very important question of

the limitations which, from the nature of the case, exist to

prevent the extension of certain of the figures beyond certain

bounds. The whole subject is mathematical, and we shall only

deal with it in the most elementary way.

We have seen that, in our general formula, the expression

1/R + 1/R' = C, a constant; and that this is, in all cases, the

condition of our surface being one of minimal area. In other

words, it is always true for one and all of the six surfaces which

we have to consider. But the constant C may have any value,

positive, negative, or nil.

In the case of the plane, where R and R' are both infinite, it

is obvious that 1/R + 1/R' = 0. The expression therefore vanishes,

and our dynamical equation of equilibrium becomes P = p. In

short, we can only have a plane film, or we shall only find a plane

surface in our cell, when on either side thereof we have equal

pressures or no pressure at all. A simple case is the plane partition

between two equal and similar cells, as in a filament of spirogyra.

In the case of the sphere, the radii are all equal, R ^ R'

;

they are also positive, and T {1/R + 1/R'), or 2T/R, is a positive

quantity, involving a positive pressure P, on the other side of the

equation.

In the cylinder, one radius of curvature has the finite and

positive value R ; but the other is infinite. Our formula becomes

T/R, to which corresponds a positive pressure P, supplied by the

surface-tension as in the case of the sphere, but evidently of just

half the magnitude developed in the latter case for a given value

of the radius R.

The catenoid has the remarkable property that its curvature in

one direction is precisely equal and opposite to its curvature in

the other, this ^property holding good for all points of the surface.

That is to say, R = — R' ; and the expression becomes

{1/R+ 1/R') ^ {1/R- 1/R) = 0;

in other words, the surface, as in the case of the plane, has no
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curvature, and exercises no pressure. There are no other surfaces,

save these two, which share this remarkable property ; and it

follows, as a simple corollary, that we may expect at times to have

the catenoid and the plane coexisting, as parts of one and the

same boundary system; just as, in a cylindrical drop or cell, the

cylinder is capped by portions of spheres, such that the cylindrical

and spherical portions of the wall exert equal positive pressures.

In the unduloid, unlike the four surfaces which we have just

been considering, it is obvious that the curvatures change from

one point to another. At the middle of one of the swollen

portions, or "beads," the two curvatures are both positive; the

expression {IjR + 1/-R') is therefore positive, and it is also finite.

The film, accordingly, exercises a positive tension inwards, which

must be compensated by a finite and positive outward pressure

P. At the middle of one of the narrow necks, between two

adjacent beads, there is obviously, in the transverse direction,

a much stronger curvature than in the former case, and the curva-

ture which balances it is now a negative one. But the sum of the

two must remain positive, as well as constant ; and we therefore

see that the convex or positive curvature must always be greater

than the concave or negative curvature at the same point. This

is plainly the case in our figure of the unduloid.

The nodoid is, like the unduloid, a continuous curve which

keeps altering its curvature as it alters its distance from the axis

;

but in this case the resultant pressure inwards is negative instead

of positive. But this curve is a complicated one, and a full

discussion of it would carry us beyond our scope.

In one of Plateau's experiments, a bubble of oil (protected from

gravity by the specific gravity of the surrounding fluid being

identical with its own) is balanced between two

annuli. It may then be brought to assume the form

of Fig. 63, that is to say the form of a cylinder with

spherical ends ; and there is then everywhere, owing

to the convexity of the surface filjn, a pressure

inwards upon the fluid contents of the bubble. If

the surrounding liquid be ever so little heavier or

lighter than that which constitutes the drop, then

the conditions of equihbrium will be accordingly
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modified, and the cylindrical drop will assume the form of an

miduloid (Fig. 64 a, b), with its dilated portion below or above,

as the case may be ; and our cyUnder

may also, of course, be converted

into an unduloid either by elongating

it further, or by abstracting a portion

of its oil, until at length rupture

ensues and the cylinder breaks up

into two new spherical drops. In all

cases alike, the unduloid, hke the

original cylinder, will be capped by ^^'

spherical ends, which are the sign, and the consequence, of the

positive pressure produced by the curved walls of the unduloid.

But if our initial cylinder, instead of being tall, be a fiat or

dumpy one (with certain definite relations of height to breadth),

then new phenomena may be exhibited. For now, if a little

oil be cautiously withdrawn from the mass by help of a small

syringe, the cylinder may be made to flatten down so that

its upper and lower surfaces become plane ; which is of itself

an indication that the pressure inwards is now nil. But at

the very moment when the upper and lower surfaces become

plane, it will be found that the sides curve inwards, in the

fashion shewn in Fig. 65 b. This figure is a catenoid, which, as

B
Fig. 65.

we have already seen, is, hke the plane itself, a surface exercising

no pressure, and which therefore may coexist with the plane as

part of one and the same system. We may continue to withdraw

more oil from our bubble, drop by drop, and now the upper and

lower surfaces dimple down into concave portions of spheres, as

the result of the negative internal pressure ; and thereupon the

peripheral catenoid surface alters its form (perhaps, on this small

scale, imperceptibly), and becomes a portion of a nodoid (Fig. 65 a).
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It represents, in fact, that portion of the nodoid, which

in Fig. 66 hes between such points as o, p. While it is easy to

draw the outhne, or meridional

section, of the nodoid (as in

Fig. 66), it is obvious that the

sohd of revolution to be derived

from it, can never be reahsed in

its entirety : for one part of the

solid figure would cut, or en-
Fie. 66. .

tangle with, another. All that

we can ever do, accordingly, is to realise isolated portions of the

nodoid.

If, in a sequel to the preceding experiment of Plateau's, we
use solid discs instead of annuli, so as to enable us to exert direct

mechanical pressure upon our globule of oil, we again begin by

adjusting the pressure of these discs so that the oil assumes the

form of a cyhnder: our discs, that is to say, are adjusted to

exercise a mechanical pressure equal to what in the former case

was supphed by the surface-tension of the spherical caps or ends

of the bubble. If we now increase the pressure shghtly, the

peripheral walls will become convexly curved, exercising a pre-

cisely corresponding pressure. Under these circumstances the

form assumed by the sides of our figure will be that of a portion

of an unduloid. If we increase the pressure between the discs,

the peripheral surface of oil will bulge out more and more, and

will presently constitute a portion of a sphere. But we may
continue the process yet further, and within certain limits we shall

find that the system remains perfectly stable. What is this new
curved surface which has arisen out of the sphere, as the latter

was produced from the unduloid ? It is no other than a portion

of a nodoid, that part which in Fig. 66 lies between such limits as

M and N. But this surface, which is concave in both directions

towards the surface of the oil within, is exerting a pressure upon

the latter, just as did the sphere out of which a moment ago it

was transformed ; and we had just stated, in considering the

previous experiment, that the pressure inwards exerted by the

nodoid was a negative one. The explanation of this seeming

discrepancy lies in the simple fact that, if we follow the outline
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of our nodoid curve in Fig. 66 from o, p, the surface concerned

in the former case, to M, N, that concerned in the present, we shall

see that in the two experiments the surface of the hquid is not

homologous, but hes on the positive side of the curve in the one

case and on the negative side in the other.

Of all the surfaces which we have been describing, the sphere

is the only one which can enclose space ; the others can only help

to do so, in combination with one another or with the sphere itself.

Thus we have seen that, in normal equiUbrium, the cylindrical

vesicle is closed at either end by a portion of a sphere, and so on.

Moreover the sphere is not only the only one of our figures which

can enclose a finite space ; it is also, of all possible figures, that

which encloses the greatest volume with the least area of surface

;

it is strictly and absolutely the surface of minimal area, and it

is therefore the form which will be naturally assumed by a uni-

cellular organism (just as by a raindrop), when it is practically

homogeneous and when, like Orbulina floating in the ocean, its

surroundings are likewise practically homogeneous and sym-

metrical. It is only relatively speaking that all the rest are

surfaces minimae areae ; they are so, that is to say, under the

given conditions, which involve various forms of pressure or

restraint. Such restraints are imposed, for instance, by the

pipes or annuli with the help of which we draw out our cylindrical

or unduloid oil-globule or soap-bubble ; and in the case of the

organic cell, similar restraints are constantly suppUed by solidifica-

tion, partial or complete, local or general, of the cell-wall.

Before we pass to biological illustrations of our surface-tension

figures, we have still another preliminary matter to deal with.

We have seen from our description of two of Plateau's classical

experiments, that at some particular point one type of surface

gives place to another; and again, we know that, when we draw

out our soap-bubble into and then beyond a cylinder, there comes

a certain definite point at which our bubble breaks in two, and

leaves us with two bubbles of which each is a sphere, or a portion

of a sphere. In short there are certain definite limits to the

dimensions of our figures, within which limits equilibrium is

stable but at which it becomes unstable, and above which it

T. G. 15
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breaks down. Moreover in our composite surfaces, when the

cylinder for instance is capped by two spherical cups or lenticular

discs, there is a well-defined ratio which regulates their respective

curvatures, and therefore their respective dimensions. These two

matters we may deal with together.

Let us imagine a liquid drop which by appropriate conditions

has been made to assume the form of a cylinder ; we have already

seen that its ends will be terminated by portions of spheres.

Since one and the same liquid film covers the sides and ends of

the drop (or since one and the same delicate membrane encloses

the sides and ends of the cell), we assume the surface-tension (T)

to be everywhere identical ; and it follows, since the internal

fluid-pressure is also everywhere identical, that the expression

{1/R + l/R') for the cylinder is equal to the corresponding expres-

sion, which we may call (1/r + 1/r'), in the case of the terminal

spheres. But in the cylinder 1/R' = 0, and in the sphere 1/r = 1/r'.

Therefore our relation of equality becomes 1/R = 2/r, or r = 2R;

that is to say, the sphere in question has just twice the radius of

the cylinder of which it forms a cap.

And if Ob, the radius of the sphere, be equal to twice the radius

(Ort) of the cylinder, it follows that the angle aOb is an angle of

,
60°, and bOc is also an angle of 60°

;

that is to say, the arc be is equal to

1 77". In other words, the spherical

disc which (under the given conditions)

caps our cylinder, is not a portion

taken at haphazard, but is neither

more nor less than that portion of a

sphere which is subtended by a cone

of 60°. Moreover, it is plain that

the height of the spherical cap, de,

Fig. 67.

^Ob-ab = R{2-^3)^ 0-27R,

where R is the radius of our cylinder,

or one-half the radius of our spherical

cap: in other words the normal height of the spherical cap over

the end of the cylindrical cell is just a very little more than one-

eighth of the diameter of the cylinder, or of the radius of the
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sphere. And these are the proportions which we recognise, ander

normal circumstances, in such a case as the cylindrical cell of

Spirogyra where its free end is capped by a portion of a sphere.

Among the many important theoretical discoveries which we
owe to Plateau, one to which we have just referred is of peculiar

importance : namely that, with the exception of the sphere and
the plane, the surfaces with which we have been dealing are only

in complete equilibrium within certain dimensional limits, or in

other words, have a certain definite limit of stability ; only the plane

and the sphere, or any portions of a sphere, are perfectly stable,

because they are perfectly symmetrical, figures. For experimental

demonstration, the case of the cylinder is the simplest. If we
produce a liquid film having the form of a cylinder, either by

Fig. 68.

drawing out a bubble or by supporting between two rings a

globule of oil, the experiment proceeds easily until the length of

the cylinder becomes just about three times as great as its diameter.

But somewhere about this limit the cylinder alters its form ; it

begins to narrow at the waist, so passing into an unduloid, and

the deformation progresses quickly until at last our cylinder

breaks in two, and its two halves assume a spherical form. It is

found, by theoretical considerations, that the precise limit of

stability is at the point when the length of the cylinder is exactly

equal to its circumference, that is to say, when L = IttR, or when

the ratio of length to diameter is represented by tt.

In the case of the catenoid. Plateau's experimental procedure

was as follows. To support his globule of oil (in, as usual, a

mixture of alcohol and water of its own specific gravity), he used

15—2 .
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a pair of metal rings, which happened to have a diameter of

71 millimetres; and, in a series of experiments, he set these rings

apart at distances of 55, 49, 47, 45, and 43 mm. successively.

In each case he began by bringing his oil-globule into a cylindrical

form, by sucking superfluous oil out of the drop until this result

was attained ; and always, for the reason with which we are now
acquainted, the cylindrical sides were associated with spherical

ends to the cylinder. On continuing to withdraw oil in the hope

of converting these spherical ends into planes, he found, naturally,

that the sides of the cylinder drew in to form a concave surface

;

but it was by no means easy to get the extremities actually plane

:

and unless they were so, thus indicating that the surface-pressure

of the drop was nil, the curvature of the sides could not be that

of a catenoid. For in the first experiment, when the rings were

55 mm. apart, as soon as the convexity of the ends was to a certain

extent diminished, it spontaneously increased again ; and the

transverse constriction of the globule correspondingly deepened,

until at a certain point equilibrium set in anew. Indeed, the more

oil he removed, the more convex became the ends, until at last

the increasing transverse constriction led to the breaking of the-

oil-globule into two. In the third experiment, when the rings

were 47 mm. apart, it was easy to obtain end-surfaces that were

actually plane, and they remained so even though more oil was

withdrawn, the transverse constriction deepening accordingly.

Only after a considerable amount of oil had been sucked up did

the plane terminal surface become gradually convex, and presently

the narrow waist, narrowing more and more, broke across in the

usual way. Finally in the fifth experiment, where the rings were

still nearer together, it was again possible to bring the ends of the

oil-globule to a plane surface, as in the third and fourth experiments,

and to keep this surface plane in spite of some continued with-

drawal of oil. But very soon the ends became gradually concave,

and the concavity deepened as more and more oil was withdrawn,

until at a certain limit, th'e whole oil-globule broke up in general

disruption.

We learn from this that the limiting size of the catenoid was

reached when the distance of the supporting rings was to their

diameter as 47 to 71, or, as nearly as possible, as two to three;
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and as a matter of fact it can be shewn that 2/3 is the true

theoretical value. Above this limit of 2/3, the inevitable convexity

of the end-surfaces shows that a positive pressure inwards is being

exerted by the surface film, and this teaches us that the sides of

the figure actually constitute not a catenoid but an unduloid,

whose spontaneous changes tend to a form of greater stability.

Below the 2/3 limit the catenoid surface is essentially unstable,

and the form into which it passes under certain conditions of

disturbance such as that of the excessive withdrawal of oil, is

that of a nodoid (Fig. 65 a).

The unduloid has certain peculiar properties as regards its

limitations of stability. But as to these we need mention two

facts only: (1) that when the unduloid, which we produce with

our soap-bubble or our oil-globule, consists of the figure containing

a complete constriction, it has somewhat wide limits of stability

;

but (2) if it contain the swollen portion, then equilibrium is limited

to the condition that the figure consists simply of one complete

unduloid, that is to say that its ends are constituted by the

narrowest portions, and its middle by the widest portion of the

entire curve. The theoretical proof of this latter fact is difiicult,

but if we take the proof for granted, the fact will serve to throw

light on what we have learned regarding the stability of the cylinder.

For, when we remember that the meridional section of our unduloid

is generated by the rolling of an ellipse upon a straight line in its

own plane, we shall easily see that the length of the entire unduloid

is equal to the circumference of the generating ellipse. As the

unduloid becomes less and less sinuous in outline, it gradually

approaches, and in time reaches, the form of a cylinder; and

correspondingly, the ellipse which generated it has its foci more

and more approximated until it passes into a circle. The cylinder

of a length equal to the circumference of its generating circle is

therefore precisely homologous to an unduloid whose length is

equal to the circumference of its generating ellipse; and this is

just what we recognise as constituting one complete segment of

the unduloid.

While the figures of equihbrium which are at the same time

surfaces of revolution are only six in number, there is an infinite
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number of figures of equilibrium, that is to say of surfaces of

constant mean curvature, which are not surfaces of revolution

;

and it can be shewn mathematically that any given contour can

be occupied by a finite portion of some one such surface, in stable

equilibrium. The experimental verification of this theorem lies in

the simple fact (already noted) that however we may bend a wire

into a closed curve, plane or not plane, we may always, under

appropriate precautions, fill the entire area with an unbroken

film.

Of the regular figures of equilibrium, that is to say surfaces

of constant mean curvature, apart from the surfaces of revolution

which we have discussed, the helicoid spiral is the most interesting

to the biologist. This is a helicoid generated by a straight line

perpendicular to an axis, about which it turns at a uniform rate

while at the same time it slides, also uniformly, along this same

axis. At any point in this surface, the curvatures are equal and

of opposite sign, and the sum of the curvatures is accordingly nil.

Among what are called "ruled surfaces" (which we may describe

as surfaces capable of being defined by a system of stretched

strings), the plane and the helicoid are the only two whose mean

curvature is null, while the cylinder is the only one whose curvature

is finite and constant. As this simplest of helicoids corresponds,

in three dimensions, to what in two dimensions is merely a plane

(the latter being generated by the rotation of a straight line about

an axis without the superadded gliding motion which generates

the helicoid), so there are other and much more complicated

helicoids which correspond to the sphere, the unduloid and the

rest of our figures of revolution, the generating planes of these

latter being supposed to wind spirally about an axis. In the case

of the cylinder it is obvious that the resulting figure is indistinguish-

able from the cylinder itself. In the case of the unduloid we

obtain a grooved spiral, such as we may meet with in nature (for

instance in Spirochsetes, Bodo gracilis, etc.), and which accordingly

it is of interest to us to be able to recognise as a surface of minimal

area or constant curvature.

The foregoing considerations deal with a small part only

of the theory of surface tension, or of capillarity: with that

part, namely, which relates to the forms of surface which are
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capable of subsisting in equilibrium under the action of that force,

either of itself or subject to certain simple constraints. And as

yet we have limited ourselves to the case of a single surface, or

of a single drop or bubble, leaving to another occasion a discussion

of the forms assumed when such drops or vesicles meet and com-

bine together. In short, what we have said may help us to under-

stand the form of a cell,—considered, as with certain limitations

we may legitimately consider it, as a liquid drop or liquid vesicle

;

the conformation of a tissue or cell-aggregate must be dealt with

in the light of another series of theoretical considerations. In

both cases, we can do no more than touch upon the fringe of a

large and difficult subject. There are many forms capable of

realisation under surface tension, and many of them doubtless to

be recognised among organisms, which we cannot touch upon in

this elementary account. The subject is a very general one; it

is, in its essence, more mathematical than physical ; it is part of

the mathematics of surfaces, and only comes into relation with

surface tension, because this physical phenomenon illustrates and

exemplifies, in a concrete way, most of the simple and symmetrical

conditions with which the general mathematical theory is capable

of dealing. And before we pass to illustrate by biological examples

the physical phenomena which we have described, we must be

careful to remember that the physical conditions which we have

hitherto presupposed will never be wholly realised in the organic

cell. Its substance will never be a perfect fluid, and hence

equilibrium will be more or less slowly reached; its surface will

seldom be perfectly homogeneous, and therefore equilibrium will

(in the fluid condition) seldom be perfectly attained ; it will very

often, or generally, be the seat of other forces, symmetrical or

unsymmetrical ; and all these causes will more or less perturb the

effects of surface tension acting by itself. But we shall find that,

on the whole, these effects of surface tension though modified are

not obliterated nor even masked ; and accordingly the phenomena

to which I have devoted the foregoing pages will be found

manifestly recurring and repeating themselves among the pheno-

mena of the organic cell.

In a spider's web we find exemplified several of the principles
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of surface tension which we have now explained. The thread is

formed out of the fluid secretion of a gland, and issues from the

body as a semi-fluid cylinder, that is to say in the form of a surface

of equilibrium, the force of expulsion giving it its elongation and

that of surface tension giving it its circular section. It is prevented,

by almost immediate solidification on exposure to the air, from

breaking up into separate drops or spherules, as it would otherwise

tend to do as soon as the length of the cyhnder had passed its

limit of stabihty. But it is otherwise with the sticky secretion

which, coming from another gland, is simultaneously poured over

the issuing thread when it is to form the spiral portion of the

web. This latter secretion is more fluid than the first, and retains

its fluidity for a very much longer time, finally drying up after

several hours. By capillarity it "wets" the thread, spreading

itself over it in an even film, which film is now itself a cylinder.

But this liquid cylinder has its limit of stability when its length

equals its own circumference, and therefore just at the points so

defined it tends to disrupt into separate segments : or rather, in

the actual case, at points somewhat more distant, owing to the

imperfect fluidity of the viscous film, and still more to the frictional

drag upon it of the inner solid cylinder, or thread, with which it

is in contact. The cylinder disrupts in the usual manner, passing

first into the wavy outline of an unduloid, whose swollen portions

swell more and more till the contracted parts break asunder, and

we arrive at a series of spherical drops or beads, of equal size,

strung at equal intervals along the thread. If we try to spread

varnish over a thin stretched wire, we produce automatically the

same identical result * ; unless our varnish be such as to dry almost

instantaneously, it gathers into beads, and do what we can, we

fail to spread it smooth. It follows that, according to the viscidity

and drying power of the varnish, the process may stop or seem to

stop at any point short of the formation of the perfect spherules

;

it is quite possible, therefore, that as our final stage we may only

obtain half-formed beads, or the wavy outline of an unduloid.

The formation of the beads may be facilitated or hastened by

jerking the stretched thread, as the spider actually does: the

* Felix Plateau recommends the use of a weighted thread, or plumb-line,

drawn up out of a jar of water or oil; Phil. Mag. xxxiv, p. 246, 1867.
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effect of the jerk being to disturb and destroy the unstable

equiHbriiim of the viscid cyhnder*. Another very curious

phenomenon here presents itself.

In Plateau's experimental separation of a cyhnder of oil into

two spherical portions, it was noticed that, when contact was

nearly broken, that is to say when the narrow neck of the unduloid

had become very thin, the two spherical bullae, instead of absorbing

the fluid out of the narrow neck into themselves as they had done

with the preceding portion, drew out this small remaining part of

the liquid into a thin thread as they completed their spherical

form and consequently receded from one another : the reason being

that, after the thread or "neck" has reached a certain tenuity,

the internal friction of the fluid prevents or retards its rapid exit

from the little thread to the adjacent spherule. It is for the samfe

reason that we are able to draw a glass rod or tube, which we have

heated in the middle, into a long and uniform cylinder or thread,

by quickly separating the two ends. But in the case of the glass

rod, the long thin intermediate cylinder quickly cools and solidifies,

while in the ordinary separation of a liquid cylinder the corre-

sponding intermediate cylinder remains liquid ; and therefore, like

any other liquid cylinder, it is liable to break up, provided that its

dimensions exceed the normal limit of stability. And its length

is generally such that it breaks at two points, thus leaving two

terminal portions continuous with the spheres and becoming

confluent with these, and one median portion w^hich resolves itself

into a comparatively tiny spherical drop, midway between the

original and larger two. Occasionally, the same process of forma-

tion of a connecting thread repeats itself a second time, between

the small intermediate spherule and the large spheres ; and in this

case we obviously obtain two additional spherules, still smaller in

size, and lying one on either side of our first little one. This whole

phenomenon, of equal and regularly interspaced beads, often with

little beads regularly interspaced between the larger ones, and

possibly also even a third series of still smaller beads regularly

intercalated, may be easily observed in a spider's web, such as

that of Epeira, very often with beautiful regularity,—which

* Cf. Boys, C. v., On Quartz Fibres, Nature, July 11, 1889; Warburton, C,

The Spinning Apparatus of Geometric Spiders, Q.J.M.S. xxxi, pp. 29-39, 1890.
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naturally, however, is sometimes interrupted and disturbed owing

to a slight want of homogeneity in the secreted fluid ; and the

same phenomenon is repeated on a grosser scale when the web is

bespangled with dew, and every thread bestrung with pearls

innumerable. To the older naturalists, these regularly arranged

and beautifully formed globules on the spider's web were a cause

of great wonder and admiration. Blackwall, counting some

twenty globules in a tenth of an inch, calculated that a large

garden-spider's web comprised about 120,000 globules ; the net

was spun and finished in about forty minutes, and Blackwall was

evidently filled with astonishment at the skill and quickness with

which the spider manufactured these little beads. And no wonder,

for according to the above estimate they had to be made at the

rate of about 50 per second*.

The little delicate beads which stud the long thin pseudopodia

of a foraminifer, such as Gromia, or which in like manner appear

Fig. 69. Hair of Tnanea, in gtycerine. (After Berthold.)

upon the cylindrical film of protoplasm which covers the long

radiating spicules of 6'^o6i^e>ma, represent an identical phenomenon.

Indeed there are many cases, in which we may study in a proto-

plasmic filament the whole process of formation of such beads.

If we squeeze out on to a slide the viscid contents of a mistletoe

berry, the long sticky threads into which the substance runs shew

the whole phenomenon particularly well. Another way to

demonstrate it was noticed many years ago by Hofmeister and

afterwards explained by Berthold. The hairs of certain water-

plants, such as Hydrocharis or Trianea, constitute very long cylin-

drical cells, the protoplasm being supported, and maintained in

equilibrium by its contact with the cell-wall. But if we immerse

the filament in some dense fluid, a little sugar-solution for instance,

or dilute glycerine, the cell-sap tends to diffuse outwards, the proto-

plasm parts company with its surrounding and supporting wall,

* J. Blackwall, Spiders of Great Britain (Ray Society), 1859, p. 10; Trans.

Linn. Soc. xvi, p. 477, 1833.



V] OF GLOBULES OR BEADS 235

and lies free as a protoplasmic cylinder in the interior of the cell.

Thereupon it immediately shews signs of instability, and commences

to disrupt. It tends to gather into -spheres, which however, as in

our illustration, may be prevented by their narrow quarters from

assuming the complete spherical form ; and in between these

spheres, we have more or less regularly alternate ones, of smaller

size*. Similar, but less regular, beads or droplets may be caused to

appear, under stimulation by an alternating current, in the proto-

plasmic threads within the living cells of the hairs of Tradescantia.

The explanation usually given is, that the viscosity of the proto-

Fig. 70. Phases of a Splash. (From Worthington.

)

plasm is reduced, or its fluidity increased ; but an increase of the

surface tension would seem a more likely reason f.

We may take note here of a remarkable series of phenomena,
which, though they seem at first sight to be of a very different

order, are closely related to the phenomena which attend and
which bring about the breaking-up of a liquid cylinder or thread.

In some of Mr Worthington's most beautiful "experiments on

* The intermediate spherules appear, with great regularity and beauty, whenever
a hquid jet breaks up into drops; see the instantaneous photographs in Poynting
and Thomson's Proiierties of Matter, pp. 151, 152, (ed. 1907).

] Kiihne, Untersiwhungen iiber das Protoplasma, 1864, p. 75, etc.
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splashes, it was found that the fall of a round pebble into water

from a considerable height, caused the rise of a filmy sheet of water

in the form of a cup or cylinder ; and the edge of this cylindrical

film tended to be cut up into alternate lobes and notches, and the

prominent lobes or "jets" tended, in more extreme cases, to break

off or to break up into spherical beads (Fig. 70)*. A precisely

similar appearance is seen, on a great scale, in the thin edge of a

breaking wave : when the smooth cylindrical edge, at a given

moment, shoots out an array of tiny jets which break up into

the droplets which constitute " spray " (Fig. 71, a, b). We
are at once reminded of the beautifully symmetrical notching on

the calycles of many hydroids, which little cups before they became

stiff and rigid had begun their existence as liquid or semi-liquid

films.

Fig. 71. A breaking wave. (From Worthington.

)

The phenomenon is two-fold. In the first place, the edge of

our tubular or crater-like film forms a liquid ring or annulus,

which is closely comparable with the liquid thread or cylinder

which we have just been considering, if only we conceive the thread

to be bent round into the ring. And accordingly, just as the thread

spontaneously segments, first into an unduloid, and then into

separate spherical drops, so likewise will the edge of our annulus

tend to do. This phase of notching, or beading, of the edge of

the film is beautifully seen in many of Worthington's experiments'}".

In the second place, the very fact of the rising of the crater means

that liquid is flowing up from below towards the rim ; and the

segmentation of the rim means that channels of easier flow are

* A Study of Splashes, 1908, p. 38, etc. ; Segmentation of a Liquid Annulus,

Proc. Roy. Soc. xxx, pp. 49-60, 1880.

f Cf. ibid. pp. 17, 77. The same phenomenon is beautifully and continuously

•evident when a strong jet of water from a tap impinges on a curved surface and then

shoots off it.
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created, along which the Hquid is led, or is driven, into the pro-

tuberances: and these are thus exaggerated into the jets or arms

which are sometimes so conspicuous at the edge of the crater.

In short, any film or film-like cup, fluid or semi-fluid in its consis-

tency, will, like the straight liquid cylinder, be unstable : and its

instability will manifest itself (among other ways) in a tendency

to segmentation or notching of the edge ; and just such a peripheral

notching is a conspicuous feature of many minute organic cup-like

structures. In the case of the hydroid calycle (Fig. 72), we are led

to the conclusion that the two common and conspicuous features

of notching or indentation of the cup, and of constriction or

annulation of the long cylindrical stem, are phenomena of the

same order and are due to surface-tension in both cases alike.

Fig. 72. Calycles of Campanularian zoophytes. (A) C. Integra;

(B) C. groenlandica ; (C) C. bispinosa; (D) C. raridentafa.

Another phenomenon displayed in the same experiments is the

formation of a rope-like or cord-like thickening of the edge of the

annulus. This is due to the more or less sudden checking at the

rim of the flow of liquid rising from below : and a similar peri|)heral

thickening is frequently seen, not only in some of our hydroid

cups, but in many Vorticellas (cf. Fig. 75), and other organic

cup-like conformations. A perusal of Mr Worthington's book

will soon suggest that these are not the only manifestations of

surface-tension in connection with splashes which present curious

resemblances and analogies to phenomena of organic form.

The phenomena of an ordinary liquid splash are so swiftly
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transitory that their study is only rendered possible by "instan-

taneous" photography: but this excessive rapidity is not an

essential part of the phenomenon. For instance, we can repeat

and demonstrate many of the simpler phenomena, in a permanent

or quasi-permanent form, by splashing water on to a surface of

dry sand, or by firing a bullet into a soft metal target. There is

nothing, then, to prevent a slow and lasting manifestation, in

a viscous medium such as a protoplasmic organism, of phenomena

which appear and disappear with prodigious rapidity in a more

mobile liquid. Nor is there anything peculiar in the "splash"

itself; it is simply a convenient method of setting up certain

niotions or currents, and producing certain surface-forms, in a

liquid medium,—or even in such an extremely imperfect fluid as

is represented (in another series of experiments) by a bed of sand.

Accordingly, we have a large range of possible conditions under

which the organism might conceivably display configurations

analogous to, or identical with, those which Mr Worthington has

shewn us how to exhibit by one particular experimental method.

To one who has watched the potter at his wheel, it is plain

that the potter's thumb, like the glass-blower's blast of air,

depends for its efficacy upon the physical properties of the

medium on which it operates, which for the time being is essentially

a fluid. The cup and the saucer, like the tube and the bulb,

display (in their simple and primitive forms) beautiful surfaces of

equilibrium as manifested under certain limiting conditions.

They are neither more nor less than glorified "splashes," formed

slowly, under conditions of restraint which enhance or reveal

their mathematical symmetry. We have seen, and we shall see

again before we are done, that the art of the glass-blower is full

of lessons for the naturalist as also for the physicist: illustrating

as it does the development of a host of mathematical configura-

tions and organic conformations which depend essentially on the

establishment of a constant and uniform pressure within a closed

elastic shell or fluid envelope. In like manner the potter's art

illustrates the somewhat obscurer and more complex problems

(scarcely less frequent in biology) of a figure of equilibrium which

is an ofen surface, or solid, of revolution. It is clear, at the same

time, that the two series of problems are closely akin; for the
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glass-blower can make most things that the potter makes, by
cutting oft' 'portions of his hollow ware. And besides, when this

fails, and the glass-blower, ceasing to blow, begins to use his rod

to trim the sides or turn the edges of wineglass or of beaker, he

is merely borrowing a trick from the craft of the potter.

It would be venturesome indeed to extend our comparison

with these liquid surface-tension phenomena from the cup or

calycle of the hydrozoon to the little hydroid polype within : and
yet I feel convinced that there is something to be learned by such

a comparison, though not without much detailed consideration

and mathematical study of the surfaces concerned. The cylin-

drical body of the tiny polype, the jet-like row of tentacles, the

beaded annulations which these tentacles exhibit, the web-like

film which sometimes (when they stand a little way apart) conjoins

their bases, the thin annular film of tissue which surrounds the

little organism's mouth, and the manner in which this annular

"peristome" contracts*, like a shrinking soap-bubble, to close the

aperture, are every one of them features to which we may find

a singular and striking parallel in the surface-tension phenomena
which Mr Worthington has illustrated and demonstrated in the

case of the splash.

Here however, we may freely confess that we are for the

present on the uncertain ground of suggestion and conjecture;

and so must we remain, in regard to many other simple and
symmetrical organic forms, until their form and dynamical

stability shall have been investigated by the mathematician : in

other words, until the mathematicians shall have become persuaded

that there is an immense unworked field wherein they may labour,

in the detailed study of organic form.

According to Plateau, the viscidity of the liquid, while it

helps to retard the breaking up of the cyhnder and so increases

the length of the segments beyond that which theory demands,

has nevertheless less influence in this direction than we might

have expected. On the other hand, any external support or

adhesion, such as contact with a solid body, will be equivalent to

a reduction of surface-tension and so will very greatly increase the

* See a Study of Splashes, p. 54.
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stability of our cylinder. It is for this reason that the mercury

in our thermometer tubes does not as a rule separate into drops,

though it occasionally does so, much to our inconvenience. And
again it is for this reason that the protoplasm in a long and growing

tubular or cylindrical cell does not necessarily divide into separate

cells and internodes, until the length of these far exceeds the

theoretic limits. Of course however and whenever it does so, we

must, without ever excluding the agency of surface tension,

remember that there may be other forces affecting the latter, and

accelerating or retarding that manifestation of surface tension by

which the cell is actually rounded off and divided.

In most liquids. Plateau asserts that, on the average, the

influence of viscosity is such as to cause the cylinder to segment

when its length is about four times, or at most from four to six

times that of its diameter : instead of a fraction over three times

as, in a perfect fluid, theory would demand. If we take it at

four times, it may then be shewn that the resulting spheres would

have a diameter of about 1-8 times, and their distance apart would

be equal to about 2-2 times the diameter of the original cylinder.

The calculation is not difficult which would shew how these

numbers are altered in the case of a cylinder formed around a solid

core, as in the case of the spider's web. Plateau has also made

the interesting observation that the time taken in the process of

division of the cylinder is directly proportional to the diameter

of the cylinder, while varying considerably with the nature of the

liquid. This question, of the time occupied in the division of a

cell or filament, in relation to the dimensions of the latter, has not

so far as I know been enquired into by biologists.

From the simple fact that the sphere is of all surfaces that

whose surface-area for a given volume is an absolute minimum,

we have already seen it to be plain that it is the one and only

figure of equilibrium which will be assumed under surface-tension

by a drop or vesicle, when no other disturbing factors are present.

One of the most important of these disturbing factors will be

introduced, in tjie form of complicated tensions and pressures,

when one drop is in contact with another drop and when a system

of intermediate films or partition walls is developed between them.
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This subject we shall discuss later, in connection with cell-

aggregates or tissues, and we shall find that further theoretical

considerations are needed as a preliminary to any such enquiry.

Meanwhile let us consider a few cases of the forms of cells, either

solitary, or in such simple aggregates that their individual form is

little disturbed thereby.

Let us clearly understand that the cases we are about to

consider are those cases where the perfect symmetry of the sphere

is replaced by another symmetry, less complete, such as that of

an elhpsoidal or cyUndrical cell. The cases of asymmetrical

deformation or displacement, such as is illustrated in the production

of a bud or the development of a lateral branch, are much simpler.

For here we need only assume a sUght and locaHsed variation of

surface-tension, such as may be brought about in various ways

through the heterogeneous chemistry of the cell; to this point

we shall return in our chapter on Adsorption. But the diffused

and graded asymmetry of the system, which brings about for

instance the elhpsoidal shape of a yeast-cell, is another matter.

If the sphere be the one surface of complete symmetry and

therefore of independent equilibrium, it follows that in every cell

which is otherwise conformed there must be some definite force

to cause its departure from sphericity ; and if this cause be the

very simple and obvious one of the resistance offered by a solidified

envelope, such as an egg-shell or firm cell-wall, we must still seek

for the deforming force which was in action to bring about the

given shape, prior to the assumption of rigidity. Such a cause

may be either external to, or may lie within, the cell itself. On
the one hand it may be due to external pressure or to some form

of mechanical restraint: as it is in all our experiments in which

we submit our bubble to the partial restraint of discs or rings or

more complicated cages of wire ; and on the other hand it may be

due to intrinsic causes, which must come under the head either of

differences of internal pressure, or of lack of homogeneity or

isotropy in the surface itself*.

* A case which we have not specially considered, but which may be found to

deserve consideration in biology, is that of a cell or drop suspended in a liquid of

varying density, for instance in the upper layers of a fluid (e.g. sea-water) at whose

surface condensation is going on, so as to produce a steady density-gradient. In

this case the normally spherical drop will be flattened into an oval form, with its

T. G, 16
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Our full formula of equilibrium, or equation to an elastic

surface, is P = 'p^+ {TIE + T'/R'), where P is the internal

pressure, fg any extraneous pressure normal to the surface, R, R'

the radii of curvature at a point, and T, T' , the corresponding

tensions, normal to one another, of the envelope.

Now in any given form which we are seeking to account for,

R, R' are known quantities ; but all the other factors of the equation

are unknown and subject to enquiry. And somehow or other, by
this formula, we must account for the form of any solitary cell

whatsoever (provided always that it be not formed by successive

stages of solidification), the cylindrical cell of Spirogyra, the

ellipsoidal yeast-cell, or (as we shall see in another chapter) the

shape of the egg of any bird. In using this formula hitherto, we
have taken it in a simplified form, that is to say Ave have made
several limiting assumptions. We have assumed that P was

simply the uniform hydrostatic pressure, equal in all directions,

of a body of liquid ; we have assumed that the tension T was

simply due to surface-tension in a homogeneous liquid film, and

was therefore equal in all directions, so that T = T' ; and we have

only dealt with surfaces, or parts of a surface, where extraneous

pressure, 2^„, was non-existent. Now in the case of a bird's egg,

the external pressure 2>nj that is to say the pressure exercised by

the walls of the oviduct, will be found to be a very important

factor ; but in the case of the yeast-cell or the Spirogyra, wholly

immersed in water, no such external pressure comes into play.

We are accordingly left, in such cases as these last, with two

hypotheses, namely that the departure from a spherical form is due

to inequalities in the internal pressure P, or else to inequalities in

the tension T, that is to say to a difference between T and T'

.

In other words, it is theoretically possible that the oval form of

a yeast-cell is due to a greater internal pressure, a greater

"tendency to grow," in the direction of the longer axis of the

ellipse, or alternatively, that with equal and symmetrical tendencies

to growth there is associated a difference of external resistance in

maximum surface-curvature lying at the level where the densities of the drop

and the surrounding liquid are just equal. The sectional outline of the drop has

been shewn to be not a true oval or ellipse, but a somewhat complicated quartic

curve. (Rice, Phil. Mag. Jan. 1915.)
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respect of the tension of the cell-wall. Now the former hypothesis

is not impossible ; the protoplasm is far from being a perfect fluid

;

it is the seat of various internal forces, sometimes manifestly

polar; and accordingly it is quite possible that the internal

forces, osmotic and other, which lead to an increase of the content

of the cell and are manifested in pressure outwardly directed

upon its wall may be unsymmetrical, and such as to lead to a

deformation of what would otherwise be a simple sphere. But

while this hypothesis is not impossible, it is not very easy of

acceptance. The protoplasm, though not a perfect fluid, has yet

on the whole the properties of a fluid; within the small compass

of the cell there is little room for the development of unsymmetrical

pressures ; and, in such a case as Spirogyra, where a large part of

the cavity is filled by a fluid and w^atery cell-sap, the conditions

are still more obviously those under which a uniform hydrostatic

pressure is to be expected. But in variations of T, that is to say

of the specific surface-tension per unit area, we have an ample

field for all the various deformations with which we shall have to

deal. Our condition now is, that [TjR + T'/R') = a constant ; but

it no longer follows, though it may still often be the case, that this

will represent a surface of absolute minimal area. As soon as T
and T' become unequal, it is obvious that we are no longer dealing

with a perfectly liquid surface film ; but its departure from a

perfect fluidity may be of all degrees, from that of a slight non-

isotropic viscosity to the state of a firm elastic membrane*. And
it matters little whether this viscosity or semi-rigidity be mani-

fested in the self-same layer which is still a part of the protoplasm

of the cell, or in a layer which is completely differentiated into a

distinct and separate membrane. As soon as, by secretion or

"adsorption," the molecular constitution of the surface layer is

altered, it is clearly conceivable that the alteration, or the secondary

chemical changes which follow it, may be such as to produce an

anisotropy, and to render the molecular forces less capable in

one direction than another of exerting that contractile force by
which they are striving to reduce to an absolute minimum the

* Indeed any non-isotropic stiffness, even though T remained uniform, would
simulate, and be indistinguishable from, a condition of non-stiffness arid non-

isotropic T.

16—2
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surface area of the cell. A slight inequality in two opposite

directions will produce the ellipsoid cell, and a very great in-

equality will give rise to the cyHndrical cell*.

I take it therefore, that the cylindrical cell of Spirogyra, or

any other cylindrical cell which grows in freedom from any

manifest external restraint, has assumed that particular form

simply by reason of the molecular constitution of its developing

surface-membrane; and that this molecular constitution was

anisotropous, in such a way as to render extension easier in one

direction than another.

Such a lack of homogeneity or of isotropy, in the cell-wall is

often rendered visible, especially in plant-cells, in various ways,

in the form of concentric lamellae, annular and spiral striations,

and the like.

But this phenomenon, while it brings about a certain departure

from complete symmetry, is still compatible with, and coexistent

with, many of the phenomena which we have seen to be associated

with surface-tension. The symmetry of tensions still leaves the

cell a solid of revolution, and its surface is still a surface of equi-

librium. The fluid pressure within the cylinder still causes the

film or membrane which caps its ends to be of a spherical form.

And in the young cell, where the surface pellicle is absent or but

little differentiated, as for instance in the oogonium of Achlya,

or in the young zygospore of Spirogyra, we always see the tendency

of the entire structure towards a spherical form reasserting itself

:

unless, as in the latter case, it be overcome by direct compression

within the cylindrical mother-cell. Moreover, in those cases

where the adult filament consists of cylindrical cells, we see that

the young, germinating spore, at first spherical, very soon assumes

with growth an elliptical or ovoid form : the direct result of an

incipient anisotropy of its envelope, which when more developed

will convert the ovoid into a cyHnder. We may also notice that

a truly cylindrical cell is comparatively rare; for in most cases,

what we call a cylindrical cell shews a distinct bulging of its sides

;

it is not truly a cylinder, but a portion of a spheroid or ellipsoid.

* A non-symmetry of T and T' might also be capable of explanation as a result

of "liquid crystallisation." This hypothesis is referred to, in connection with the

blood-corpuscles, on p. 272.
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Unicellular organisms in general, including the protozoa, the

unicellular cryptogams, the various bacteria, and the free,

isolated cells, spores, ova, etc. of higher organisms, are referable

for the most part to a very small number of typical forms ; but

besides a certain number of others which may be so referable,

though obscurely, there are obviously many others in which

either no symmetry is to be recognized, or in which the form is

clearly not one of equihbrium. Among these latter we have

Amoeba itself, and all manner of amoeboid organisms, and also

many curiously shaped cells, such as the Trypanosomes and various

other aberrant Infusoria. We shall return to the consideration of

these ; but in the meanwhile it will suffice to say that, as their

surfaces are not equilibrium-surfaces, so neither are the living

cells themselves in any stable equilibrium. On the contrary, they

are in continual flux and movement, each portion of the surface

constantly changing its form, and passing from one phase to

another of an equilibrium which is never stable for more than

a moment. The former class, which rest in stable equilibrium,

must fall (as we have seen) into two classes,—those whose equi-

librium arises from liquid surface-tension alone, and those in

whose conformation some other pressure or restraint has been

superimposed upon ordinary surface-tension.

To the fact that these httle organisms belong to an order of

magnitude in which form is mainly, if not wholly, conditioned and

controlled by molecular forces, is due the hmited range of

forms which they actually exhibit. These forms vary according

to varying physical conditions. Sometimes they do so in so regular

and orderly a way that we instinctively explain them merely as

"phases of a life-history/' and leave physical properties and

physical causation alone : but many of their variations of form we

treat as exceptional, abnormal, decadent or morbid, and are apt

to pass these over in neglect, while we give our attention to what

we suppose to be the typical or "characteristic" form or attitude.

In the case of the smallest organisms, the bacteria, micrococci,

and so forth, the range of form is especially limited, owing to their

minuteness, the powerful pressure which their highly curved

surfaces exert, and the comparatively homogeneous nature of their

substance. But within their narrow range of possible diversity
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these minute organisms are protean in their changes of form.

A certain species will not only change its shape from stage to

stage of its Uttle " cycle " of life ; but it will be remarkably different

in outward form according to the circumstances under which we

find it, or the histological treatment to which we submit it. Hence

the pathological student, commencing the study of bacteriology,

is early warned to pay little heed to differences oiform, for purposes

of recognition or specific identification. Whatever grounds we

may have for attributing to these organisms a permanent or stable

specific identity (after the fashion of the higher plants and animals),

we can seldom safely do so on the ground of definite and always

recognisable for7n : we may often be inclined, in short, to ascribe

Fiw. 73. A flagellate "monad," Distigma

proteus, Ehr. (After Saville Kent.)
Fig, 74. Noctiluca miliaris.

to them a physiological (sometimes a "pathogenic"), rather than

a morphological specificity.

Among the Infusoria, we have a small number of forms whose

symmetry is distinctly spherical, for instance among the small

flagellate monads ; but even these are seldom actually spherical

except when we see them in a non-flagellate and more or less

encysted or "resting" stage. In this condition, it need hardly be

remarked that the spherical form is common and general among

a great variety of unicellular organisms. When our little monad

developes a flagellum, that is in itself an indication of "polarity"

or symmetrical non-homogeneity of the cell ; and accordingly, we
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usually see signs of an unequal tension of the membrane in the

neighbourhood of the base of the fiagellum. Here the tension is

usually less than elsewhere, and the radius of curvature is accord-

ingly less : in other words that end of the cell is drawn out to a

tapering point (Fig. 73). But sometimes it is the other way, as

in Noctiluca, where the large fiagellum springs from a depression

in the otherwise uniformly rounded cell. In this case the explan-

ation seems to lie in the many strands of radiating protoplasm

which converge upon this point, and may be supposed to keep it

relatively fixed by their viscosity, while the rest of the cell-surface

is free to expand (Fig, 74).

A very large number of Infusoria represent unduloids, or

portions of unduloids, and this type of surface appears and

reappears in a great variety of forms. The cups of the various

species of Vorticella (Fig. 75) are nothing in the world but a

Fig. 75. Various species of Vorticella. (Mostly after Saville Kent.)

beautiful series of unduloids, or partial unduloids, in every grada-

tion from a form that is all but cylindrical to one that is all but

a perfect sphere. These unduloids are not completely symmetrical,

but they are such unduloids as develop themselves when w^e

suspend an oil-globule between two unequal rings, or blow a

soap-bubble betw^een two unequal pipes; for, just as in these

cases, the surface of our Vorticella bell finds its terminal supports,

on the one hand in its attachment to its narrow stalk, and on the

other in the thickened ring from which spring its circumoral cilia.

And here let me say, that a point or zone from which cilia arise

would seem always to have a pecuKar relation to the surrounding

tensions. It usually forms a sharp salient, a prominent point

or ridge, as in our little monads of Fig. 73; shewing that,

in its formation, the surface tension had here locally diminished.

But if such a ridge or fillet consolidate in the least degree, it

becomes a source of strength, and a 'jwint (Vapfui for the adjacent

film. We shall deal with this point again in the next chapter.
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Precisely the same series of unduloid forms may be traced in

even greater variety among various other families or genera of the

Fig. 76. Various species of Salpingoeca.

ft

Fig. 77. Various species of Tintinnus, Dinobryon and Codonella. (After

Saville Kent and others.)

Infusoria. Sometimes, as in Vorticella itself, the unduloid is seen

merely in the contour of the soft semifluid body of the living

animal. At other times, as in Salpingoeca, Tin-

tinnus, and many other genera, we have a distinct

membranous cup, separate from the animal, but

originally secreted by, and moulded upon, its

semifluid living surface. Here we have an excellent

illustration of the contrast between the different

ways in which such a structure may be regarded

and interpreted. The teleological explanation is

that it is developed for the sake of protection, as a

domicile and shelter for the little organism within.

The mechanical explanation of the physicist (seeking

only after the "efficient," and not the "final" cause), is that it is

Fig. 78.

Vaginicola.
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FoUiculina.

present, and has its actual conformation, by reason of certain

chemico-physical conditions : that it was inevitable, under the

given conditions, that certain constituent

substances actually present in the proto-

plasm should be aggregated by molecular

forces in its surface layer ; that under this

adsorptive process, the conditions con-

tinuing favourable, the particles should

accumulate and concentrate till they

formed (with the help of the surrounding

medium) a pellicle or membrane, thicker

or thinner as the case might be ; that this

surface pellicle or membrane was inevitably bound, by molecular

forces, to become a surface of the least possible area which the

circumstances permitted ; that in the

present case, the symmetryand " freedom
"

of the system permitted, and ipso facto

caused, this surface to be a surface of

revolution ; and that of the few surfaces

of revolution which, as being also surfaces

?ninimae areae, were available, the undu-

loid was manifestly the one permitted,

and ipso facto caused, by the dimensions

of the organisms and other circumstances

of the case. And just as the thickness or

thinness of the pellicle was obviously a

subordinate matter, a mere matter of

degree, so we also see that the actual

outline of this or that particular unduloid

is also a very subordinate matter, such as

physico-chemical variants of a minute kind

would suffice to bring about ; for between

the various unduloids which the various

species of Vorticella represent, there is no

more real difference than that difference

of ratio or degree which exists between

two circles of different diameter, or two

lines of unequal length.

Fig. 80. Trachelophyllum.

(After Wreszniowski.)
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In very many cases (of which Fig. 80 is an example), we have

an unduloid form exhibited, not by a surrounding pelhcle or shell,

but by the soft, protoplasmic body of a ciliated organism. In

such cases the form is mobile, and continually changes from one

to another unduloid contour, according to the movements of the

animal. We have here, apparently, to deal with an unstable

equilibrium, and also sometimes with the more comphcated

problem of " stream-lines," as in the difficult problems suggested

by the form of a fish. But this whole class of cases, and of

problems, we can merely take note of in passing, for their treat-

ment is too hard for us.

In considering such series of forms as the various unduloids

which we have just been regarding, we are brought sharply

up (as in the case of our Bacteria or Micrococci) against the bio-

logical concept of organic species. In the intense classificatory

activity of the last hundred years, it has come about that every

form which is apparently characteristic, that is to say which is

capable of being described or portrayed, and capable of being

recognised when met with again, has been recorded as a species,

—

for we need not concern ourselves with the occasional discussions,

or individual opinions, as to whether such and such a form deserve

"specific rank," or be "only a variety." And this secular labour

is pursued in direct obedience to the precept of the Systema

Naturae,—"ut sic in summa confusione reriim apparenti, siimmvs

conspiciatur Naturae ordo." In hke manner the physicist records,

and is entitled to record, his many hundred "species" of snow-

crystals*, or of crystals of calcium carbonate. But regarding

these latter species, the physicist makes no assumptions : he

records them simpliciter, as specific "forms"; he notes, as best

he can, the circumstances (such as temperature or humidity)

under which they occur, in the hope of elucidating the conditions

determining their formation ; but above all, he does not introduce

* The case of the snow-crystals is a particularly interesting one; for their

"distribution" is in some ways analogous to what we find, for instance, among our

microscopic skeletons of Radiolarians. That is to say, we may one day meet

with myriads of some one particular form or species only, and another day with

myriads of another; while at another time and place we may find species inter-

mingled in inexhaustible variety. (Cf. e.g. J. Glaisher, III. London News, Feb. 17,

1855; Q.J. M.S. iii, pp. 179-185, 1855).
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the element of time, and of succession, or discuss their origin and

affihation as an historical sequence of events. But in biology, the

term species carries with it many large, though often vague

assumptions. Though the doctrine or concept of the " permanence

of species" is dead and gone, yet a certain definite value, or sort

of quasi-permanency, is still connoted by the term. Thus if a tiny

foraminiferal shell, a Lagena for instance, be found living to-day,

and a shell indistinguishable from it to the eye be found fossil

in the Chalk or some other remote geological formation, the

assumption is deemed legitimate that that species has "survived,"

and has handed down its minute specific character or characters,

from generation to generation, unchanged for untold n\yriads of

vears*. Or if the ancient forms be like to, rather than identical

with the recent, we still assume an unbroken descent, accompanied

by the hereditary transmission of common characters and pro-

gressive variations. And if two identical forms be discovered at

the ends of the earth, still (with occasional slight reservations on

the score of possible "homoplasy"), we build hypotheses on this

fact of identity, taking it for granted that the two appertain to

a common stock, whose dispersal in space must somehow be

accounted for, its route traced, its epoch determined, and its

causes discussed or discovered. In short, the naturalist admits

no exception to the rule that a "natural classification" can only

be a genealogical one, nor ever doubts that " The fact that we are

able to classify organisms at all in accordance with the structural

characteristics ivhich they fresent, is due to the fact of their being

related by descenti" But this great generahsation is apt in my
opinion, to carry us too far. It may be safe and sure and helpful

and illuminating when we apply it to such complex entities,

—

such thousand-fold resultants of the combination and permutation

of many variable characters,^—as a horse, a lion or an eagle

;

but (to my mind) it has a very different look, and a far less firm

foundation, when we attempt to extend it to minute organisms

whose specific characters are few and simple, whose simplicity

* Cf. Bergson, Creative Evolution, p. 107: "Certain Foraminifera have not

varied since the Sihirian epoch. Unmoved witnesses of the innumerable revolu-

tions that have upheaved our planet, the Lingulae are today what they were at

the remotest times of the palaeozoic era."

t Ray Lankester, A.M.N.H. (4), xi, p. .321, 1873.
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becomes much more manifest when we regard it from the point

of view of physical and mathematical description and analysis,

and whose form is referable, or (to say the least of it) is very

largely referable, to the direct and immediate action of a particular

physical force. When we come to deal with the minute skeletons

of the Radiolaria we shall again find ourselves dealing with endless

modifications of form, in which it becomes still more di£6-cult to

discern, or to apply, the guiding principle of affiliation oi genealogy.

Among the more aberrant forms of Infusoria is a little species

known as Trichodina fediculus, a parasite on the Hydra, or fresh-

water polype (Fig. 8L ) This Trichodina has the form of a more or less

flattened circular disc, with a ring

of cilia around both its upper and

lower margins. The salient ridge

from which these cilia spring may
be taken, as we have already said,

to play the part of a strengthening

"fillet." The circular base of the

animal is flattened, in contact with

the flattened surface of the Hydra

over which it creeps, and the oppo-

site, upper surface may be flattened nearly to a plane, or may at

other times appear slightly convex or slightly concave. The sides

of the little organism are contracted, forming a symmetrical

equatorial groove between the upper and lower discs ; and, on

account of the minute size of the animal and its constant

movements, we cannot submit the curvature of this concavity to

measurement, nor recognise by the eye its exact contour. But

it is evident that the conditions are precisely similar to those

described on p. 223, where we were considering the conditions

of stability of the catenoid. And it is further evident that, when

the upper disc is actually plane, the equatorial groove is strictly

a catenoid surface of revolution ; and when on the other hand it

is depressed, then the equatorial groove will tend to assume

the form of a nodoidal surface.

Another curious type is the flattened spiral of Dinenympha^

* Leidy, Parasites of the Termites, J. Nat. Sci., Philadelphia, vm, pp. 425-

447, 1874—81; cf. Saville Kent's Infusoria, ii, p. 551.
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which reminds us of the cylindrical spiral of a Spirillum among

the bacteria. In Dinenympha we have a symmetrical figm-e, whose

two opposite surfaces each constitute a surface of constant mean

curvature ; it is evidently a figure of equilibrium under certain

special conditions of restraint. The cylindrical coil of the

Spirillum, on the other hand, is a surface of constant mean curva-

ture, and therefore of equilibrium, as truly, and in the same sense,

as the cylinder itself.

\

Fig. 82. Dinenympha gracilis, Leidy.

A very curious conformation is that of the vibratile "collar,"

found in Codosiga and the other "Choanoflagellates," and which

we also meet with in the "collar-cells" which line the interior

cavities of a sponge. Such collar-cells are always very minute,

and the collar is constituted of a very delicate film, which

shews an undulatory or ripphng motion. It is a surface of

revolution, and as it maintains itself in equilibrium (though a

somewhat unstable and fluctuating one), it must be, under the

restricted circumstances of its case, a surface of minimal area.

But it is not so easy to see what these special circumstances are

;

and it is obvious that the collar, if left to itself, must at once



254 THE FORMS OF CELLS [ch.

contract downwards towards its base, and become confluent with

the general surface of the cell ; for it has no

longitudinal supports and no strengthening ring

at its periphery. But in all these collar-cells,

there stands within the annulus of the collar

a large and powerful cilium or flagellum, in

constant movement; and by the action of this

flagellum, and doubtless in part also by the

intrinsic vibrations of the collar itself, there is

set up a constant steady current in the sur-

rounding water, whose direction would seem to

be such that it passes up the outside of the

collar, down its inner side, and out in the middle

in the direction of the flagellum ; and there is a

Fig. 83.^ distinct eddy, in which foreign particles tend to

be caught, around the peripheral margin of the collar. When the

cell dies, that is to say when motion ceases, the collar immediately

shrivels away and disappears. It is notable, by the way, that

the edge of this little mobile cup is always smooth, never notched

or lobed as in the cases we have discussed on p. 236: this latter

condition being the outcome of a definite instability, marking the

close of a period of equilibrium; while in the vibratile collar of

Codosiga the equilibrium, such as it is, is being constantly

renewed and perpetuated like that of a juggler's pole, by the

motions of the system. I .take it that, somehow, its existence

(in a state of partial equilibrium) is due to the current motions,

and to the traction exerted upon it through the friction of

the stream which is constantly passing by. I think, in short,

that it is formed very much in the same way as the cup-like ring

of streaming ribbons, which we see fluttering and vibrating in the

air-current of a ventilating fan.

It is likely enough, however, that a different and much better

explanation may yet be found; and if we turn once more to

Mr Worthington's Study of Splashes, we may find a curious

suggestion of analogy in the beautiful craters encircling a central

jet (as the collar of Codosiga encircles the flagellum), which we see

produced in the later stages of the splash of a pebble*.

* Op. cit. p. 79.

i
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Among the Foraminifera we have an immense variety of forms,

Avhich, in the hght of surface tension and of the principle of

minimal area, are capable of explanation and of reduction to a

small number of characteristic types. Many of the Foraminifera

are composite structures, formed by the successive imposition of

cell upon cell, and these we shall deal with later on ; let us glance

here at the simpler conformations exhibited by the single cham-

bered or " monothalamic " genera, and perhaps one or two of the

simplest composites.

We begin with forms, like Astrorhiza (Fig. 219, p. 464), which

are in a high degree irregular, and end with others which manifest a

perfect and mathematical regularity. The broad difference between

these two types is that the former are characterised, like Amoeba,

by a variable surface tension, and consequently by unstable equi-

librium ; but the strong contrast between these and the regular forms

is bridged over by various transition-stages, or differences of degree.

Indeed, as in all other Rhizopods, the very fact of the emission of

pseudopodia, which reach their highest development in this group

of animals, is a sign of unstable surface-equilibrium ; and we must

therefore consider that those forms which indicate symmetry and

equilibrium in their shells have secreted these during periods when

rest and uniformity of surface conditions alternated with the

phases of pseudopodial activity. The irregular forms are in

almost all cases arenaceous, that is to say they have no sohd shells

formed by steady adsorptive secretion, but only a looser covering

of sand grains with which the protoplasmic body has come in

contact and cohered. Sometimes, as in Ramulina, we have a

calcareous shell combined with irregularity of form ; but here we

can easily see a partial and as it were a broken regularity, the

regular forms of sphere and cylinder being repeated in various

parts of the ramified mass. When Ave look more closely at the

arenaceous forms, we find that the same thing is true of them

;

they represent, either in whole or part, approximations to the form

of surfaces of equilibrium, spheres, cylinders and so forth. In

Aschemonella w^e have a precise replica of the calcareous Ramulina ;

and in Astrorhiza itself, in the forms distinguished by naturalists

as A. crassatina, what is described as the " subsegmented interior*
"

* Brady, Challenger Monograph, pi. xx, p. 233.
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seems to shew the natural, physical tendency of the long semifluid

cylinder of protoplasm to contract, at its limit of stability, into

unduloid constrictions, as a step towards the breaking up into

separate spheres : the completion of which process is restrained or

prevented by the rigidity and friction of the arenaceous covering.

Passing to the typical, calcareous-shelled Foraminifera, we have

the most symmetrical of all possible types in the perfect sphere of

Orbulina ; this is a pelagic organism, whose floating habitat places

Fig. 84. Various species of Lagena. (After Brady.)

it in a position of perfect symmetry towards all external forces.

Save for one or two other forms which are also spherical, or

approximately so, like Thurammina, the rest of the monothalamic

calcareous Foraminifera are all comprised by naturalists within

the genus Lagena. This large and varied genus consists of "flask-

shaped" shells, whose surface is simply that of an unduloid, or

more frequently, like that of a flask itself, an unduloid combined

with a portion of a sphere. We do not know the circumstances
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under which the shell of Lagena is formed, nor the nature of the

force by which, during its formation, the surface is stretched out

into the unduloid form ; but we may be pretty sure that it is

suspended vertically in the sea, that is to say in a position of

symmetry as regards its vertical axis, about which the unduloid

surface of revolution is symmetrically formed. At the same time

we have other types of the same shell in which the form is more

or less flattened ; and these are doubtless the cases in which such

symmetry of position was not present, or was replaced by a broader,

lateral contact with the surface pellicle*.

While Orbulina is a simple spherical drop, Lagena suggests to

our minds a "hanging drop," drawn out to a long and slender

neck by its own weight, aided by the viscosity of the material.

Fig. 8.5. (After Darling.

Indeed the various hanging drops, such as Mr C. R. Darling shews

us, are the most beautiful and perfect unduloids, with spherical

ends, that it is possible to conceive. A suitable liquid, a little

denser than water and incapable of mixing with it (such as

ethyl benzoate), is poured on a surface of water. It spreads

* That the Foraminifera not only can but do hang from the surface of the

water is confirmed by the following apt quotation which I owe to Mr E. Heron-

Allen: "Quand on place, comme il a ete dit, le depot provenant du lavage des

fucus dans un flacon que Ton remplit de nouveUe eau, on voit au bout d'une heure

environ les animaux [Gramid dujardinii] se mettre en mouvement et commencer
a grimper. Six heures apres ils tapissent I'exterieur du flacon, de sorte que les plus

eleves sont a trenjte-six ou quarante-deux millimetres du fond; le lendemain

beaucoup d'entre eux, apres avoir atteint le niveau du liquide, ont continue a ramper
'a sa surface, en se laissani pendre au-dessous comme certains mollusques gastero-

podes." (Dujardin, F., Observations nouvelles sur les pretendus cephalopodes

microscopiques, Ann. des Sci. Nat. (2), iii, p. 312, 1835.)

T. n. 17
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over the surface and gradually forms a hanging drop, approxi-

mately hemispherical ; but as more liquid is added the drop

sinks or rattier grows downwards, still adhering to the surface

film ; and the balance of forces between gravity and surface

tension results in the unduloid contour, as the increasing weight

of the drop tends to stretch it out and finally break it in two.

At the moment of rupture, by the way, a tiny droplet is formed

in the attenuated neck, such as we described in the normal

division of a cylindrical thread (p. 233).

To pass to a much more highly organised class of animals, we find the

unduloid beautifully exemplified in the little flask-shaped shells of certain

Pteropod mollusca, e.g. Cuvierina*. Here again the symmetry of the figure

would at once lead us to suspect that the creature lived in a position of

symmetry to the surrounding forces, as for instance if it floated in the ocean

in an erect position, that is to say with its long axis coincident with the direction

of gravity; and this we know to be actually the mode of life of the little

Pteropod.

Many species of Lagena are complicated and beautified by a

pattern, and some by the superadd!tion to the shell of plane

extensions or "wings." These latter give a secondary, bilateral

symmetry to the little shell, and are strongly suggestive of a

phase or period of growth in which it lay horizontally on the

surface, instead of hanging vertically from the surface-film : in

which, that is to say, it was a floating and not a hanging

drop. The pattern is of two kinds. Sometimes it consists

of a sort of fine reticulation, with rounded or more or

less hexagonal interspaces : in other cases it is produced by a

symmetrical series of ridges or folds, usually longitudinal, on the

body of the flask-shaped cell, but occasionally transversely arranged

upon the narrow neck. The reticulated and folded patterns we

may consider separately. The netted pattern is very similar to the

wrinkled surface of a dried pea, or to the more regular wrinkled

patterns upon many other seeds and even pollen-grains. If a

spherical body after developing a "skin" begin to shrink a little,

and if the skin have so far lost its elasticity as to be unable to

keep pace with the shrinkage of the inner mass, it will tend to

fold or wrinkle ; and if the shrinkage be uniform, and the elasticity

.and flexibility of the skin be also uniform, then the amount of

* Cf. Boas, Spolia Atlantica, 1886, pi. 6.
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folding will be uniformly distributed over the surface. Little

concave depressions will appear, regularly interspaced, and

separated by convex folds. The little concavities being of equal

size (unless the system be otherwise perturbed) each one will tend

to be surrounded by six others ; and when the process has reached

its hmit, the intermediate boundary-walls, or raised folds, will be

found converted into a regular pattern of hexagons.

But the analogy of the mechanical wrinkling of the coat of

a seed is but a rough and distant one ; for we are evidently dealing

with molecular rather than with mechanical forces. In one of

Darlmg's experiments, a little heavy tar-oil is dropped onto a

saucer of water, over which it spreads in a thin film showing

beautiful interference colours after the fashion of those of a soap-

bubble. Presently tiny holes appear in the film, which gradually

increase in size till they form a cellular pattern or honeycomb,

the oil gathering together in the meshes or walls of the cellular

net. Some action of this sort is in all probability at work in a

surface-film, of protoplasm covering the shell. As a physical

phenomenon the actions involved are by no means fully under-

stood, but surface-tension, diffusion and cohesion doubtless play

their respective part? therein*. The very perfect cellular patterns

obtained by Leduc (to which we shall have occasion to refer in

a subsequent chapter) are diffusion patterns on a larger scale, but

not essentially different.

The folded or pleated pattern is doubtless to be explained, in

a general way, by the shrinkage of a surface-film under certain

* This cellular pattern would seem to be related to the "cohesion figures"

described by Tomlinson in various surface-films (Phil. Mag. 1861 to 1870) ; to

the "tesselated structure" in hquids described by Professor James Thomson in

1882 [Collected Papers, p. 136); and to the tourbiUo7is cellulaves of Prof. H. Benarcl

(Ann. de Chimie (7), xxni, pp. 62-144, 1901, (8), xxiv, pp. 563-566, 1911),

Rev. geae'r. des Sci. xi, p. 1268, 1900; cf. also E. H. Weber. Prggend. Ann.
xciv, p. 452, 1855, etc.). The phenomenon is of great interest and various

appearances have been referred to it, in biology, geology, metallurgy and even

astronomy : for the flocculent clouds in the solar photosphere shew an analogous

configuration. (See letters by Kerr Cirant, Larmor, Wager and others, in Nature,

April 16 to June 11, 1914.) In many instances, marked by strict symmetry or

regularity, it is very possible that the interference of waves or ripples may play

its part in the phenomenon. But in the majority of cases, it is fairly certain that

locahsed centres of action, or of diminished tension, are present, such as might be

provided by dust-particles in the case of Darling's experiment (cf. infra, p. 590).

17—2



260 THE FORMS OF CELLS [ch.

conditions of viscous or frictional restraint. A case which (as it

seems to me) is closely analogous to that of our foraminiferal

shells is described by Quincke*, who let a film of albumin or of

resin set and harden upon a surface of quicksilver, and found

that the little solid pelhcle had been

thrown into a pattern of symmetrical

folds. If the surface thus thrown into

folds be that of a cylinder, or any other

figure with one principal axis of sym-

metry, such as an ellipsoid or unduloid,

the direction of the folds will tend to

be related to the axis of symmetry,
^^ and we might expect accordingly to

find regular longitudinal, or regular transverse wrinkling. Now
as a matter of fact we almost invariably find in the Lagena

the former condition : that is to say, in our ellipsoid or unduloid

cell, the puckering takes the form of the vertical fluting on

a column, rather than that of the transverse pleating of an

accordion. And further, there is often a tendency for such

longitudinal flutings to be more or less localised at the end of the

ellipsoid, or in the region where the unduloid merges into its

spherical base. In this latter region we often meet with a regular

series of short longitudinal folds, as we do in the forms of Lagena

denominated L. semistrinta. All these various forms of surface

can be imitated, or rather can be precisely reproduced, by the art

of the glass-blower f.

Furthermore, they remind one, in a striking way, of the

regular ribs or flutings in the film or sheath which splashes up to

envelop a ^smooth ball which has been dropped into a liquid, as

Mr W( r hington has so beauiifully shewn J.

* Ueber piiysikalischen Eigenschaften dunner, fester Lamellen, S.B. Berlin.

Akad. 1888, pp. 789, 790.

t Certain palaeontologists (e.g. Haeusler and Spandel) have maintained that

in each family or genus the plain smooth-shelled forms are the primitive and ancient

ones, and that the ribbed and otherwise ornamented shells make their appearance

at later dates in the course of a definite evolution (cf. Rhumbler, Foramini/eren

der Pla:'kton-Exi:)edition, 1911, i, p. 21). If this were true it would be of funda-

mental importance : but this book of mine would not deserve to be written.

X A Study of Splashes, p. 116.
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In Mr Worthington's experiment, there appears to be something

of the nature of a viscous drag in the surface-pellicle ; but whatever

be the actual cause of variation of tension, it is not difficult to

see that there must be in general a tendency towards longitudinal

puckering or "fluting" in the case of a thin-walled cylindrical or

other elongated body, rather than a tendency towards transverse

puckering, or "pleating." For let us suppose that some change

takes place involving an increase of surface-tension in some small

area of the curved wall, and leading therefore to an increase of

pressure : that is to say let T become T + t, and P become P + f.

Our new equation of equilibrium, then, in place of P = Tjr + T/r'

becomes

P^ T+tT+t
P + P = \

7—

and by subtraction,

]) = t/r + t/r'.

Now if r < r', t/r > t/r'.

Therefore, in order to produce the small increment of pressure f,

it is easier to do so by increasing t/r than t/r' ; that is to say, the

easier way is to alter, or diminish r. And the same will hold good

if the tension and pressure be diminished instead of increased.

This is as much as to say that, when corrugation or "rippling"

of the walls takes place owing to small changes of surface-tension,

and consequently of pressure, such corrugation is more likely to

take place in the plane of r,—that is to say, in the plane of greatest

curvature. And it follows that in such a figure as an ellipsoid,

wrinkling will be most likely to take place not only in a longitudinal

direction but near the extremities of the figure, that is to say again

in the region of greatest curvature.

The longitudinal wrinkhng of the flask-shaped bodies of our

Lagenae, and of the more or less cylindrical cells of many other

Foraminifera (Fig. 87), is in complete accord with the above theo-

retical considerations ; but nevertheless, we soon find that our result

is not a general one, but is defined by certain limiting conditions,

and is accordingly subject to what are, at first sight, important

exceptions. For instance, when we turn to the narrow neck of

the Lagena we see at once that our theory no longer holds ; for
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the wrinkling which was invariably longitudinal in the body of

the cell is as invariably transverse in the narrow neck. The reason

for the difference is not far to seek. The conditions in the neck

are very different from those in the expanded portion of the cell

:

the main difference being that the thickness of the wall is no longer

insignificant, but is of considerable magnitude as compared with

the diameter, or circumference, of the neck. We must accordingly

take it into account in considering the bending ynoments at any

point in this region of the shell-wall. And it is at once obvious

that, in any portion of the narrow neck, fl,exnre of a wall in a

Fig. 87. Nodosaria scalaris,

Batsch.

Fig. 88. Gonangia of Campanularians.

(a) C. gracilis; (b) C. grandis.

(After Allman.)

transverse direction will be very difficult, while flexure in a

longitudinal direction will be comparatively easy; just as, in the

case of a long narrow strip of iron, we may easily bend it into

folds running transversely to its long axis, but not the other way.

The manner in which our little Lagena-shell tends to fold or wrinkle,

longitudinally in its wider part, and transversely or annularly in

its narrow neck, is thus completely and easily explained.

An identical phenomenon is apt to occur in the little flask-

shaped gonangia, or reproductive capsules, of some of the hydroid

zoophytes. In the annexed drawings of these gonangia in two

species of Campanularia, we see that in one case the little vesicle
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has the flask-shaped or unduloid configuration of a Lagena ; and

here the walls of the flask are longitudinally fluted, just after the

manner we have witnessed in the latter genus. But in the other

Campanularian the vesicles are long, narrow and tubular, and here

a transverse folding or pleating takes the place of the longitudinally

fluted pattern. And the very form of the folds or pleats is

enough to suggest that we are not dealing here with a simple

phenomenon of surface-tension, but with a condition in which

surface-tension and stiffness are both present, and play their

parts in the resultant form.

Passing from the solitary flask-shaped cell of Lagena, we have,

in another series of forms, a constricted cylinder, or succession

a h c d e f g

Fig. 89. Various Foraminifera (after Brady), a, Nodosaria simplex; b, N.
pygmaea; c, N. costulata; e, N. hispida; f, N. elata; d, Rheophax (Lituola)

distans; g, Sagrina virgata.

of unduloids ; such as are represented in Fig. 89, illustrating

certain species of Nodosaria, Rheophax and Sagrina. In some of

these cases, and certainly in that of the arenaceous genus Rheophax,

we have to do with the ordinary phenomenon of a segmenting or

partially segmenting cylinder. But in others, the structure is

not developed out of a continuous protoplasmic cylinder, but as

we can see by examining the interior of the shell, it has been

formed in successive stages, beginning with a simple unduloid

"Lagena," about whose neck, after its solidification, another drop

of protoplasm accumulated, and in turn assumed the unduloid,

or lagenoid, form. The chains of interconnected bubbles which
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Morey and Draper made many years ago of melted resin are a

very similar if not identical phenomenon*.

There now remain for our consideration, among the Protozoa,

the great oceanic group of the Radiolaria, and the little group of

their freshwater allies, the Heliozoa. In nearly all these forms we
have this specific chemical difference from the Foraminifera, that

when they secrete, as they generally do secrete, a hard skeleton,

it is composed of silica instead of lime. These organisms and the

various beautiful and highly complicated skeletal fabrics which

they develop give us many interesting illustrations of physical

phenomena, among which the manifestations of surface-tension

are very prominent. But the chief phenomena connected with

their skeletons we shall deal with in another place, under the head

of spicular concretions.

In a simple and typical Heliozoan, such as the Sun-animalcule,

Actinophrys sol, we have a "drop" of protoplasm, contracted by

its surface tension into a spherical form. Within the heterogeneous

protoplasmic mass are more fluid portions, and at the surface

which separates these from the surrounding protoplasm a similar

surface tension causes them also to assume the form of spherical

"vacuoles," which in reality are little clear drops within the big

one ; unless indeed they become numerous and closely packed, in

which case, instead of isolated spheres or droplets they will

constitute a "froth," their mutual pressures and tensions giving

rise to regular configurations such as we shall study in the next

chapter. One or more of such clear spaces may be what js called

a "contractile vacuole": that is to say, a droplet whose surface

tension is in unstable equilibrium and is apt to vanish altogether,

so that the definite outline of the vacuole suddenly disappears "j".

Again, within the protoplasm are one or more nuclei, whose own

surface tension (at the surface between the nucleus and the

surrounding protoplasm), has drawn them in turn into the shape

* See SiUi7na7i''s Journal, n, p. 179, 1820; and cf. Plateau, op. cit. ii, pp. 134,

461.

t The presence or absence of the contractile vacuole or vacuoles is one of the

chief distinctions, in systematic zoology, between the Heliozoa and the Radiolaria.

As we have seen on p. 165 (footnote), it is probably no more than a physical con-

^sequence of the different conditions of existence in fresh water and in salt.
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of spheres. Outwards through the protoplasm, and stretching far

beyond the spherical surface of the cell, there run stiff linear

threads of modified or differentiated protoplasm, replaced or

reinforced in some cases by delicate sihceous needles. In either

case we know little or nothing about the forces which lead to their

production, and we do not hide our ignorance when we ascribe

their development to a "radial polarisation" of the cell. In the

case of the protoplasmic filament, we may (if we seek for a

hypothesis), suppose that it is somehow comparable to a viscid

stream, or "liquid vein," thrust or squirted out from the body of

the cell. But when it is once formed, this long and comparatively

rigid filament is separated by a distinct surface from the neigh-

bouring protoplasm, that is to say from the more fluid surface-

protoplasm of the cell ; and the latter begins to creep up the

filament, just as water would creep up the interior of a glass tube,

or the sides of a glass rod immersed in the liquid. It is the simple

case of a balance between three separate tensions : ( 1 ) that between

the filament and the adjacent protoplasm, (2) that between the

filament and the adjacent water, and (3) that between the water

and the protoplasm. Calling these tensions respectively Tf^.,, Tf^,

and T^,p, equilibrium will be attained when the angle of contact

between the fluid protoplasm and the filament is such that

T — T
cos a = ^^-, -^

. It is evident in this case that the angle is
Tfp

a very small one. The precise form of the curve is somewhat

different from that which, under ordinary circumstances, is assumed

by a liquid which creeps up a solid surface, as water in contact

with air creeps up a surface of glass ; the difference being due to

the fact that here, owing to the density of the protoplasm being

practically identical with that of the surrounding medium, the

whole system is practically immune from gravity. Under normal

circumstances the curve is part of the "elastic curve" by which

that surface of revolution is generated which we have called,

after Plateau, the nodoid ; but in the present case it is apparently

a catenary. Whatever curve it be, it obviously forms a surface

of revolution around the filament.

Since the attraction exercised by this surface tension is

symmetrical around the filament, the latter will be pulled equally
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in all directions ; in other words it will tend to be set normally

to the surface of the sphere, that is to say radiating directly

outwards from the centre. If the distance between two adjacent

filaments be considerable, the curve will simply meet the filament

at the angle a already referred to ; but if they be sufficiently near

together, we shall have a continuous catenary curve forming a

hanging loop between one filament and the other. And when this

is so, and the radial filaments are more or less symmetrically

interspaced, we may have a beautiful system of honeycomb-like

depressions over the surface of the organism, each cell of the

honeycomb having a strictly defined geometric configuration.

In the simpler Eadiolaria, the spherical form of the entire

organism is equally well-marked ; and here, as also in the more

complicated Heliozoa (such as Actinosphaerium), the organism is

Fig. 90. A, Trypanosoma tineae (after Minchin); B, Spirochaeta anodontae

(after Fantham).

differentiated into several distinct layers, each boundary surface

tending to be spherical, and so constituting sphere within sphere.

One of these layers at least is close packed with vacuoles, forming

an "alveolar meshwork," with the configurations of which we shall

attempt in another chapter to correlate the characteristic structure

of certain complex types of skeleton.

An exceptional form of cell, but a beautiful manifestation of

surface-tension (or so I take it to be), occurs in Trypanosomes, those

tiny parasites of the blood that are associated with sleeping-

sickness and many other grave or dire maladies. These tiny

organisms consist of elongated solitary cells down one side of which

runs a very delicate frill, or "undulating membrane," the free

edge of which is seen to be slightly thickened, and the whole of
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which undergoes rhythmical and beautiful wavy movements.

When certain Trypanosomes are artificially cultivated (for instance

T. rotatorium, from the blood of the frog), phases of growth are

witnessed in which the organism has no undulating membrane,

but possesses a long cilium or "flagellum,'" springing from near

the front end, and exceeding the whole body in length*. Again,

in T. lewisii, when it reproduces by "multiple fission," the

products of this division are likewise devoid of an undulating

membrane, but are provided with a long free flagellum "j". It is

Fig. 91. A, Trichomonas muris, Hartmann; B, Trichomastix serpentis, Dobell;

C, Trichomonas angusta, Alexeieff. (After Kofoid.)

a plausible assumption to suppose that, as the flagellum waves

about, it comes to lie near and parallel to the body of the cell.

and that the frill or undulating membrane is formed by the clear,

fluid protoplasm of the surface layer springing up in a film to run

up and along the flagellum, just as a soap-film would be formed in

similar circumstances.

This mode of formation of the undulating membrane or frill

appears to be confirmed by the appearances shewn in Fig. 91.

* Cf. Doflein, Lehrbuch der Protozoenkmide, 1911, p. 422.

t Cf. Minchin, Introduction to the Study of the Protozoa, 1914 p. 293, Fig. 127.
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Here we have three little organisms closely allied to the ordinary

Trypanosomes, of which one, Trichomastix (B), possesses four

flagella, and the other two. Trichomonas, apparently three only:

the two latter possess the frill, which is lacking in the first*. But
it is impossible to doubt that when the frill is present (as in A and

C), its outer edge is constituted by the apparently missing flagellum

{a), which has become attached to the body of the creature at the

point c, near its posterior end ; and all along its course, the super-

ficial protoplasm has been drawn out into a film, between the

flagellum {a) and the adjacent surface or edge of the body (6).

Moreover, this mode of formation has been actually witnessed

and described, though in a somewhat exceptional case. The little

flagellate monad Herpetomonas is normally destitute of an undulat-

ing membrane, but possesses a single long terminal flagellum.

According to Dr D. L. Mackinnon, the cytoplasm in a certain stage

of growth becomes somewhat "sticky," a phrase which we may
in all probability interpret to mean that its surface tension is

being reduced. For this stickiness is

shewn in two ways. In the first place,

the long body, in the course of its

various bending movements, is apt to

adhere head to tail (so to speak), giving

a rounded or sometimes annular form

to the organism, such as has also been

described in certain species or stages

of Trypanosomes. But again, the

long flagellum, if it get bent back-

wards upon the body, tends to adhere

to its surface. "Where the flagellum

was pretty long and active, its efforts

to continue movement under these

abnormal conditions resulted in the

gradual lifting up from the cytoplasm

of the body of a sort of fseudo-

undulating membrane (Fig. 92). The movements of this structure

were so exactly those of a true undulating membrane that it was

* Cf. C. A. Kofoid and Olive Swezy, On Trichomonad Flagellates, etc. Pr.

Amer. Acad, of Arts and Sci. li, pp. 289-378, 1915.

Fig. 92. Herpetomonas assuming
the undulatory membrane of' a
Trypanosome. (After D. L.

Mackinnon.

)
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difficult to believe one was not dealing with a small, blunt

trypanosome*.'' This in short is a precise description of the

mode of development which, from theoretical considerations

alone, we should conceive to be the natural if not the only

possible way in which the undulating membrane could come into

existence.

There is a genus closely allied to Trypanosoma, viz. Trypano-

plasma, which possesses one free flagellum, together with an

undulating membrane ; and it resembles the neighbouring genus

Bodo, save that the latter has two fiagella and no undulating

membrane. In like manner, Trypanosoma so closely resembles

Herpetomonas that, when individuals ascribed to the former genus

exhibit a free flagellum only, they are said to be in the "Her-

petomonas stage." In short all through the order, we have pairs

of genera, which are presumed to be separate and distinct, viz.

Trypanosoma-Herpetomonas, Trypanoplasma-Bodo,Trichomastix-

Trichomonas, in which one differs from the other mainly if not

solely in the fact that a free flagellum in the one is replaced by an

undulating membrane in the other. We can scarcely doubt that

the two structures are essentially one and the same.

• The undulating membrane of a Trypanosome, then, according

to our interpretation of it, is a liquid film and must obey the law

of constant mean curvature. It is under curious limitations of

freedom : for by one border it is attached to the comparatively

motionless body, while its free border is constituted by a flagellum

which retains its activity apd is being constantly thrown, like the

lash of a whip, into wavy curves. It follows that the membrane,

for every alteration of its longitudinal curvature, must at the same

instant become curved in a direction perpendicular thereto ; it

bends, not as a tape bends, but with the accompaniment of beautiful

but tiny waves of double curvature, all tending towards the

establishment of an " equipotential surface "
; and its characteristic

undulations are not originated by an active mobility of the

membrane but are due to the molecular tensions which produce

the very same result in a soap-film under similar circumstances.

In certain Spirochaetes, S. anodontae (Fig. 90) and S. halhiani

* D. L. Mackinnon, Herpetomonads from the Alimentary Tract of certain

Dungtlies, Parasitoloyy, ni, p. 268, 1910.
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(which we find in oysters), a very similar undulating membrane
exists, but it is coiled in a regular spiral round the body of the cell.

It forms a "screw-surface," or helicoid, and, though we might

think that nothing could well be more curved, yet its mathematical

properties are such that it constitutes a "ruled surface" whose

"mean curvature" is everywhere nil; and this property (as we
have seen) it shares with the plane, and with the plane alone.

Precisely such a surface, and of exquisite beauty, may be

produced by bending a wire upon itself so that part forms an

axial rod and part a spiral wrapping round the axis, and then

dipping the whole into a soapy solution.

These undulating and helicoid surfaces are exactly reproduced

among certain forms of spermatozoa. The tail of a spermatozoon

consists normally of an axis surrounded by clearer and more fluid

protoplasm, and the axis sometimes splits up into two or more

slender filaments. To surface tension operating between these

and the surface of the fluid protoplasm (just as in the case of the

fiagellum of the Trypanosome), I ascribe the formation of the

undulating membrane which we find, for instance, in the spermato-

zoa of the newt or salamander; and of the helicoid membrane,

wrapped in a far closer and more beautiful spiral than that which

we saw in Spirochaeta, which is characteristic of the spermatozoa

of many birds.

Before we pass from the subject of the conformation of the

solitary cell we must take some account of certain other exceptional

forms, less easy of explanation, and still less perfectly understood.

Such is the case, for instance, with the red blood-corpuscles of man
and other vertebrates ; and among the sperm-cells of the decapod

Crustacea we find forms still more aberrant and not less perplexing.

These are among the comparatively few cells or cell-like structures

whose form seenis to be incapable of explanation by theories of

surface-tension.

In all the mammalia (save a very few) the red blood-corpuscles

are flattened circular discs, dimpled in upon their two opposite

sides. This configuration closely resembles that of an india-

rubber ball when we pinch it tightly between finger and thumb

;

and we may also compare it with that experiment of Plateau's
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(described on p. 223), where a flat cylindrical oil-drop, of certain

relative dimensions, can, by sucking away a little of the contained

oil, be made to assume the form of a biconcave disc, whose periphery

is part of a nodoidal surface. From the relation of the nodoid

to the "elastic curve," we perceive that these two examples are

closely akin one to the other.

The form of the corpuscle is symmetrical, and its surface is

a surface of revolution ; but it

is obviously not a surface of

constant mean curvature, nor of

constant pressure. For we see

at once that, in the sectional

diagram (Fig. 93), the pressure

inwards due to surface tension

is positive at A, and negative at C ; at B there is no

curvature in the plane of the paper, while perpendicular to

it the curvature is negative, and the pressure therefore is also

negative. Accordingly, from the point of view of surface tension

alone, the blood-corpuscle is not a surface of equilibrium ; or in

other words, it is not a fluid drop suspended in another liquid.

It is obvious therefore that some other force or forces must be

at work, and the simple effect of mechanical pressure is here

excluded, because the blood-corpuscle exhibits its characteristic

shape while floating freely in the blood. In the lower vertebrates

the blood-corpuscles have the form of a flattened oval disc, with

rather sharp edges and ellipsoidal surfaces, and this again is

manifestly not a surface of equilibrium.

Two facts are especially noteworthy in connection with the

form of the blood-corpuscle. In the first place, its form is only

maintained, that is to say it ig only in equilibrium, in relation to

certain properties of the medium in which it floats. If we add a

little water to the blood, the corpuscle quickly loses its character-

istic shape and becomes a spherical drop, that is to say a true

surface of minimal area and of stable equilibrium. If on the other

hand we add a strong solution of salt, or a little glycerine, the

corpuscle contracts, and its surface becomes puckered and uneven.

In these phenomena it is so far obeying the laws of diffusion and

of surface tension.
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In the second place, it can be exactly imitated artificially by

means of other colloid substances. Many years ago Norris made the

very interesting observation that in an emulsion of glue the drops

assumed a biconcave form resembling that of the mammalian cor-

puscles*. The glue was impure, and doubtless contained lecithin
;

and it is possible (as Professor Waymouth Reid tells me) to make

a similar emulsion with cerebrosides and cholesterin oleate, in

which the same conformation of the drops or particles is beautifully

shewn. Now such cholesterin bodies have an important place

among those in which Lehmann and others have shewn and studied

the formation of fluid crystals, that is to say of bodies in which

the forces of crystallisation and the forces of surface tension are

battling with one another f ; and, for want of a better explanation,

we may in the meanwhile suggest that some such cause is at the

bottom of the conformation the explanation of which presents so

many difficulties. But we must not, perhaps, pass from this

subject without adding that the case is a difficult and complex

one from the physiological point of view. For the surface of a

blood-corpuscle consists of a "semi-permeable membrane,"' through

which certain substances pass freely and not others (for the most

part anions and not cations), and it may be, accordingly, that we

have in life a continual state of osmotic inequilibrium, of negative

osmotic tension within, to which comparatively simple cause the

imperfect distension of the corpuscle may be also due J. The whole

phenomenon would be comparatively easy to understand if we

might postulate a stifEer peripheral region to the corpuscle, in the

form for instance of a peripheral elastic ring. Such an annular

thickening or stiffening, like the " collapse-rings '' which an engineer

inserts in a boiler, has been actually asserted to exist, but its

presence is not authenticated.

But it is not at all improbable that we have still much to

learn about the phenomena of osmosis itself, as manifested in the

case of m^ute bodies such as a blood-corpuscle ; and (as Professor

Peddie suggests to me) it is by no means impossible that curvature

* Prnc B y. Soc. xii, pp. 251-257, 1862-3.

t Cf. (int. al.) Lehmann, Ueber scheinbar lebende KristaUe und Myelinformen,

Arch. f. Enho. Mech. xxvi, p. 483, 1908; Ann. d. Physik, xliv, p 969, 1914.

f Cf. B. Moore and H. C. Roaf, On the Osmotic Equilibrium of the Red

Blood Corpuscle, BiocJiem. Journal, in, p. 55, 1908.
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of the surface may itself modify the osmotic or perhaps the adsorp-

tive action. If it should be found that osmotic action tended to

stop, or to reverse, on change of curvature, it would follow that

this phenomenon would give rise to internal currents ; and the

change of pressure consequent on these would tend to intensify

the change of curvature when once started*.

The sperm-cells of the Decapod Crustacea exhibit various

singular shapes. In the Crayfish they are flattened cells with

stiff curved processes radiating outwards like a St Catherine's

wheel ; in Inachus there are two such circles of stif? processes

;

in Galathea we have a still more complex form, with long and

Fig. 94. Sperm-cells of Decapod Crustacea (after Koltzoff). a, Inachus scorpio;

b, Galathea squamifera ; c, do. after maceration, to shew spiral fibrillae.

slightly twisted processes. In all these cases, just as in the case

of the blood-corpuscle, the structure alters, and finally loses, its

characteristic form when the nature or constitution (or as we may
assum.e in particular—the density) of the surrounding medium is

changed.

Here again, as in the blood-corpuscle, we have to do with a

very important force, which we had not hitherto considered in this

connection,—the force of osmosis, manifested under conditions

similar to those of Pfeffer's classical experiments on the plant-cell.

The surface of the cell acts as a "semi-permeable membrane,"

* For an attempt to explain the form of a blood-corpuscle by surface-tension

alone, see Rice, Phil. Mag. Nov. 1914; but cf. Shorter, ibid. Jan. 1915.

T. G. 18
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permitting the passage of certain dissolved substances (or their

"ions") and including or excluding others; and thus rendering

manifest and measurable the existence of a definite "osmotic

pressure." Li the case of the sperm-cells of Inachus, certain

quantitative experiments have been performed*. The sperm-cell

exhibits its characteristic conformation while lying in the serous

fluid of the animal's body, in ordinary sea-water, or in a 5 per

cent, solution of potassium nitrate ; these three fluids being all

"isotonic" with one another. As we alter the concentration of

potassium nitrate, the cell assumes certain definite forms corre-

sponding to definite concentrations of the salt; and, as a further

and final proof that the phenomenon is entirely physical, it is

found that other salts produce an identical effect when their

concentration is proportionate to their molecular weight, and

KNO

Pig. 95. Sperm-cells of Inachus, as they appear in saline solutions of

varying density. (After Koltzoff.)

whatever identical effect is produced by various salts in their

respective concentrations, a similarly identical effect is produced

when these concentrations are doubled or otherwise proportionately

changed f.

Thus the following table shews the percentage concentrations

of certain salts necessary to bring the cell into the forms a and c

of Fig. 95 ; in each case the quantities are proportional to the

molecular weights, and in each case twice the quantity is necessary

to produce the effect of Fig. 95 c compared with that which gives

rise to the all but spherical form of Fig. 95 a.

* Koltzoff, N. K. , Studien iiber die Gestalt der Zelle, Arch. f. mihrosk. Anaf.

Lxvn, pp. 364-571, 1905; Biol. Centralbl. xxm, pp. 680-696, 1903, xxvi,

pp. 854-863, 1906; Arch. f. Zellforschung, ii, pp. 1-65, 1908, vii, pp. 344-423,

1911; Anat. Anzeiger, xli, pp. 183-206, 1912.

t Cf. supra, p. 129.
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% concentration of salts in wkicli

the sperm-cell of Inachus
assumes the form of
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presence, among the multitudinous other dift'erentiations of their

protoplasmic substance, of such more or less elastic fibrillae,

which play as it were the part of a microscopic skeleton*.

But these cases which we have just dealt with, lead us to

another consideration. In a semi-permeable membrane, through

which water passes freely in and out, the conditions of a liquid

surface are greatly modified ; and, in the ideal or ultimate case,

there is neither surface nor surface tension at all. And this would

lead us somewhat to reconsider our position, and to enquire

whether the true surface tension of a liquid film is actually

responsible for all that we have ascribed to it, or whether certain

of the phenomena which we have assigned to that cause may not

in part be due to the contractility of definite and elastic membranes.

But to investigate this question, in particular cases, is rather for

the physiologist : and the morphologist may go on his way,

paying little heed to what is no doubt a difficulty. In surface

tension we have the production of a film with the properties of an

elastic membrane, and with the special peculiarity that contraction

continues with the same energy however far the process may have

already gor^e ; while the ordinary elastic membrane contracts to

a certain extent, and contracts no more. But within wide limits

the essential phenomena are the same in both cases. Our

fundamental equations apply to both cases alike. And accord-

ingly, so long as our purpose is mofphological, so long as what we

seek to explain is regularity and definiteness of form, it matters

little if we should happen, here or there, to confuse surface tension

with elasticity, the contractile forces manifested at a liquid

surface with those which come into play at the complex internal

surfaces of an elastic solid.

* As Bethe points out (Zellgestalt, Plateausche Fliissigkeitsfigur unci Neuro-

fibrille, Anat. Anz. XL. p. 209, 1911), the spiral fibres of which Koltzoff speaks must

lie in the surface, and not within the substance, of the cell whose conformation is

affected by them.



CHAPTER VI

A NOTE OX ADSORPTION

A very important corollary to, or amplification of the theory

of surface tension is to be found in the modern chemico-physical

doctrine of Adsorption*. In its full statement this subject soon

becomes complicated, and involves physical conceptions and

mathematical treatment which go beyond our range. But it is

necessary for us to take account of the phenomenon, though it

be in the most elementary way.

In the brief account of the theory of surface tension with which

our last chapter began, it was pointed out that, in a drop of liquid,

the potential energy of the system could be diminished, and work

manifested accordingly, in two ways. In the first place we saw

that, at our liquid surface, surface tension tends to set up an

equilibrium of form, in which the surface is reduced or contracted

either to the absolute minimum of a sphere, or at any rate to the

least possible area which is permitted by the various circumstances

and conditions ; and if the two bodies which comprise our system,

namely the drop of liquid and its surrounding medium, be simple

substances, and the system be uncomplicated by other distributions

of force, then the energy of the system will have done its work

when this equilibrium of form, this minimal area of surface, is

once attained. This phenomenon of the production of a minimal

surface-area we have now seen to be of fundamental importance

in the external morphology of the cell, and especially (so far

as we have yet gone) of the solitary cell or unicellular organism.

* See for a further but still elementary account, Michaelis, Dynamics of Surfaces,

1914, p. 22 seq.; Macallum, Oberfldchenspcmnttng und Lebenserscheinungen, in

Asher-Spiro's Ergebnisse der Physiologic, xi, pp. 598-658, 1911; see also W. W.
Taylor's Chemistry of Colloids, 1915, p. 221 seq., Wolfgang Ostwald, Grundriss der

Kolloidchemie, 1909, and other text-books of physical chemistry; and Bayhss's

Principles of General Physiology, pp. 54-73, 1915.
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But we also saw, according to Gauss's equation, that the

potential energy of the system will be diminished (and its diminu-

tion will accordingly be manifested in work) if from any cause

the specific surface energy be diminished, that is to say if it be

brought more nearly to an equality with the specific energy of the

molecules in the interior of the liquid mass. This latter is a

phenomenon of great moment in modern physiology, and, while

we need not attempt to deal with it in detail, it has a bearing on

cell-form and cell-structure which we cannot afford to overlook.

In various ways a diminution of the surface energy may be

brought about. For instance, it is known that every isolated drop

of fluid has, under normal circumstances, a surface-charge of

electricity : in such a way that a positive or negative charge (as

the case may be) is inherent in the surface of the drop, while a

corresponding charge, of contrary sign, is inherent in the

immediately adjacent molecular layer of the surrounding medium.

Now the effect of this distribution, by which all the surface

molecules of our drop are similarly charged, is that by virtue of

this charge they tend to repel one another, and possibly also to

draw other molecules, of opposite charge, from the interior of the

mass ; the result being in either case to antagonise or cancel,

more or less, that normal tendency of the surface molecules to

attract one another which is manifested in surface tension. In

other words, an increased electrical charge concentrating at the

surface of a drop tends, whether it be positive or negative, to

lower the surface tension.

But a still more important case has next to be considered.

Let us suppose that our drop consists no longer of a single chemical

substance, but contains other substances either in suspension or

in solution. Suppose (as a very simple case) that it be a watery

fluid, exposed to air, and containing droplets of oil : we know that

the specific surface tension of oil in contact with air is much less

than that of water, and it follows that, if the watery surface of

our drop be replaced by an oily surface the specific surface energy

of the system will be notably diminished. Now under these

circumstances it is found that (quite apart from gravity, by which

the oil might float to the surface) the oil has a tendency to be

drawn to the surface ; and this phenomenon of molecular attraction
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or "adsorption" represents the work done, equivalent to the

diminished potential energy of the system*. In more general

terms, if a liquid (or one or other of two adjacent liquids) be a

chemical mixture, some one constituent in which, if it entered

into or increased in amount in the surface layer, would have the

effect of diminishing its surface tension, then that constituent will

have a tendency to accumulate or concentrate at the surface : the

surface tension may be said, as it were, to exercise an attraction

on this constituent substance, drawing it into the surface layer,

and this tendency will proceed until at a certain "surface con-

centration" equilibrium is reached, its opponent being that osmotic

force which tends to keep the substance in uniform solution or

diffusion.

In the complex mixtures which constitute the protoplasm of

the living cell, this phenomenon of "adsorption" has abundant

play : for many of these constituents, such as oils, soaps, albumens,

etc. possess the required property of diminishing surface tension.

Moreover, the more a substance has the power of lowering the

surface tension of the Uquid in which it happens to be dissolved,

the more will it tend to displace another and less effective substance

from the surface layer. Thus we know that protoplasm, always

contains fats or oils, not only in visible drops, but also in the

finest suspension or "colloidal solution." If under any impulse,

such for instance as might arise from the Brownian movement,

a droplet of oil be brought close to the surface, it is at once drawn

into that surface, and tends to spread itself in a thin layer over

the whole surface of the cell. But a soapy surface (for instance)

would have in contact with the surrounding water a surface tension

even less than that of the film of oil : and consequently, if soap

be present in the water it will in turn be adsorbed, and will tend

to displace the oil from the surface pellicle f. And this is all as

* The first instance of what we now call an adsorptive phenomenon was

observed in soap-bubbles. Leidenfrost, in 1756, was aware that the outer layer

of the bubble was covered by an "oily" layer. A hundred years later Dupre
shewed that in a soap-solution the soap tends to concentrate at the surface, so

that the surface-tension of a very weak solution is very httle different from that

of a strong one (Theorie me'canique de la chaleur, 1869, p. 376; cf. Plateau, ii,

p. 100).

t This identical phenomenon was the basis of Quincke's theory of amoeboid
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much as to say that the molecules of the dissolved or suspended

substance or substances will so distribute themselves throughout

the drop as to lead towards an equilibrium, for each small unit

of volume, between the superficial and internal energy ; or so, in

other words, as to lead towards a reduction to a minimum of the

potential energy of the system. This tendency to concentration

at the surface of any substance within the cell by which the surface

tension tends to be diminished, or vice versa, constitutes, then,

the phenomenon of Adsorption ; and the general statement by

which it is defined is known as the Willard-Gibbs, or Gibbs-

Thomson law*.

Among the many important physical features or concomitants

of this phenomenon, let us take note at present that we need

not conceive of a strictly superficial distribution of the adsorbed

substance, that is to say of its direct association with the surface

layer of molecules such as we imagined in the case of the electrical

charge; but rather of a progressive tendency to concentrate,

more and more, as the surface is nearly approached. Indeed we

may conceive the colloid or gelatinous precipitate in which, in the

case of our protoplasmic cell, the dissolved substance tends often

to be thrown down, to constitute one boundary layer after another,

the general effect being intensified and multiplied by the repeated

addition of these new surfaces.

Moreover, it is not less important to observe that the process

of adsorption, in the neighbourhood of the surface of a hetero-

geneous liquid mass, is a process which takes time ; the tendency

to surface concentration is a gradual and progressive one, and will

fluctuate with every minute change in the composition of our

substance and with every change in the area of its surface. In

other words, it involves (in every heterogeneous substance) a

continual instability of equilibrium : and a constant manifestation

movement (Ueber periodische Ausbreitung von Fliissigkeitsoberflachen, etc., SB.

Berlin. Akad. 1888, pp. 791-806; of. Pfluger's Archiv, 1879, p. 136).

* J. WiUard Gibbs, Equilibrium of Heterogeneous Substances, Tr. Conn. Acad.

Ill, pp. 380-400, 1876, also in Collected Papers, i, pp. 185-218, London, 1906;

J. J. Thomson, Applications of Dynamics to Physics and Chemistry, 1888 (Surface

tension of solutions), p. 190. See also (int. al.) the various papers by C. M. Lewis,

Phil. Mag. (6), xv, p. 499, 1908, xvii, p. 466, 1909, ZeUschr. f. physik. Chemie,

Lxx, p. 129, 1910; Milner, Phil. Mag. (6), xiii, p. 96, 1907, etc.



VI] THE GIBBS-THOMSON LAW 281

of motion, sometimes in the mere invisible transfer of molecules

but often in the production of visible currents of fluid or manifest

alterations in the form or outUne of the system.

The physiologist, as we have already remarked, takes account

of the general phenomenon of adsorption in many ways : particu-

larly in connection with various results and consequences of

osmosis, inasmuch as this process is dependent on the presence

of a membrane, or membranes, such as the phenomenon of adsorp-

tion brings into existence. For instance it plays a leading part

in all modern theories of muscular contraction, in which phenome-

non a connection with surface tension was first indicated by

E'itzGerald and d'Arsonval nearly forty years ago*. And, as

W. Ostwald was the first to shew, it gives us an entirely new

conception of the relation of gases (that is to say, of oxygen and

carbon dioxide) to the red corpuscles of the blood f.

But restricting ourselves, as much as may be, to our morpho-

logical aspect of the case, there are several ways in which adsorption

begins at once to throw light upon our subject.

In the first place, our prehminary account, such as it is, is

already tantamount to a description of the process of develop-

ment of a cell-membrane, or cell-wall. The so-called "secretion"

of this cell-wall is nothing more than a sort of exudation, or

striving towards the surface, of certain constituent molecules or

particles within the cell ; and the Gibbs-Thomson law formulates,

in part at least, the conditions under which they do so. The

adsorbed material may range from the almost unrecognisable

pelUcle of a blood-corpuscle to the distinctly differentiated

''ectosarc" of a protozoan, and again to the development of a

fully formed cell-wall, as in the cellulose partitions of a vegetable

tissue. In such cases, the dissolved and adsorbable material has

not only the property of lowering the surface tension, and hence

* G. F. FitzGerald, On the Theory of Muscular Contraction, Brit. Ass. RejJ.

1878; also in Scientific Writings, ed. Larmor, 1902, pp. 34. 75. A. d'Arsonval,

Relations entre I'electricite animale et la tension superficielle, C. B. cvi, p. 1740,

1888; cf. A Imbert, Le mecanisme de la contraction musculaire, deduit de la con-

sideration des forces de tension superficielle, Arch, de Pliys. (5), ix, pp. 289-301 , 1897.

t Ueber die Natur der Bindung der G^se im Blut und in seinen Bestandtheilen,

Kolloid. Zeitschr. ii, pp. 264-272, 294-301, 1908; cf. Loewy, Dissociationsspan-

nung des Oxyhaemoglobin ini Blut, Arch. f. Anat. und Physiol. 1904, p. 231.
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of itself accumulating at the surface, but has also the property

of increasing the viscosity and mechanical rigidity of the material

in which it is dissolved or suspended, and so of constituting

a visible and tangible "membrane*." The "zoogloea" around a

group of bacteria is probably a phenomenon of the same order.

In the superficial deposition of inorganic materials we see the

same process abundantly exemplified. Not only do we have the

simple case of the building of a shell or "test" upon the outward

surface of a living cell, as for instance in a Foraminifer. but in a

subsequent chapter, when we come to deal with various spicules

and spicular skeletons such as those of the sponges and of the

Radiolaria, we shall see that it is highly characteristic of the

whole process of spicule-formation for the deposits to be laid

down just in the " interfacial " boundaries between cells or

vacuoles, and that the form of the spicular structures tends in

many cases to be regulated and determined by the arrangement

of these boundaries.

In physical chemistry, an important distinction is drawn between adsorption

and pseudo-adsorption'f, the former being a reversible, the latter an irreversible

or permanent phenomenon. That is to say, adsorption, strictly speaking,

impUes the surface-concentration of a dissolved substance, under circumstances

which, if they be altered or reversed, will cause the concentration to diminish

or disappear. But pseudo-adsorption includes cases, doubtless originating in

adsorption proper, where subsequent changes leave the concentrated substance

incapable of re-entering the liquid system. It is obvious that many (though

not all) of our biological illustrations, for instance the formation of spicules

or of permanent cell-membranes, belong to the class of so-called pseudo-

adsorption phenomena. But the apparent contrast between the two is in

the main a secondary one, and however important to the chemist is of Uttle

consequence to us.

* We may trace the first steps in the study of this phenomenon to Melsens,

who found that thin films of white of egg become firm and insoluble (Sur les modi-

fications apportees a ralbumine...par Taction purement mecanique, C. R. Acad.

Sci. XXXIII, p. 247, 1851); and Harting made similar observations about the same

time. Ramsden has investigated the same subject, and also the more general

phenomenon of the formation of albuminoid and fatty membranes by adsorption

:

cf. KoaguHerung der Eiweisskorper auf mechanischer Wege, Arch. f. Anat. u. Phys.

{Phys. Ablh.) 1894, p. 517; Abscheidung fester Korper in Oberflachenschichten

Z.f. phys. Chem. XLVn, p. 341, 1902; Proc. R. S. lxxii, p. 156, 1904. For a general

review of the whole subject see H. Zangger, Ueber Membranen und Membranfunk-

tionen, in Asher-Spiro's Ergebnisse der Physiologic, vii, pp. 99-160, 1908.

t Cf. Taylor, Chemittry of Colloids, p. 252,
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While this brief sketch of the theory of membrane-formation

is cursory and inadequate, it is enough to shew that the physical

theory of adsorption tends in part to overturn, in part to simplify

enormously, the older histological descriptions. We can no longer

be content with such statements as that of Strasbiirger, that

membrane-formation in general is associated with the "activity

of the kinoplasm," or that of Harper that a certain spore-membrane

arises directly from the astral rays*. In short, we have easily

reached the general conclusion that the formation of a cell-wall

or cell-membrane is a chemico-physical phenomenon, which the

purely objective methods of the biological microscopist do not

suffice to interpret.

If the process of adsorption, on which the formation of a

membrane depends, be itself dependent on the power of the

adsorbed substance to lower the surface tension, it is obvious that

adsorption can only take place when the surface tension already

present is greater than zero. It is for this reason that films or

threads of creeping protoplasm shew little tendency, or none, to

cover themselves with an encysting membrane ; and that it is

only when, in an altered phase, the protoplasm has developed

a positive surface tension, and has accordingly gathered itself up
into a more or less spherical body, that the tendency to form a

membrane is manifested, and the organism develops its "cyst"

or cell-wall.

It is found that a rise of temperature greatly reduces the

adsorbability of a substance, and this doubtless comes, either in

part or whole, from the fact that a rise of temperature is itself

a cause of the lowering of surface tension. We may in all pro-

bability ascribe to this fact and to its converse, or at least associate

with it, such phenomena as the encystment of unicellular organisms

at the approach of winter, or the frequent formation of strong

shells or membranous capsules in "winter-eggs."

Again, since a film or a froth (which is a system of films) can

only be maintained by virtue of a certain viscosity or rigidity of

* Strasbiirger, Ueber Cytoplasmastrukturen, etc. Jahrb. f. luiss. Bot. xxx>

1897 ; R. A. Harper, Kerntheilung und freie Zellbildung im Ascus, ibid. ; of.

Wilson, The Cell in Devdo-pment, etc. pp. 53-55.
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the liquid, it may be quickly caused to disappear by the presence

in its neighbourhood of some substance capable of reducing the

surface tension ; for this substance, being adsorbed, may displace

from the adsorptive layer a material to which was due the rigidity

of the film. In this way a "bathytonic" substance such as ether

causes most foams to subside, and the pouring oil on troubled

waters not only stills the waves but still more quickly dissipates

the foam of the breakers. The process of breaking up an alveolar

network, such as occurs at a certain stage in the nuclear division

of the cell, may perhaps be ascribed in part to such a cause, as

well as to the direct lowering of surface tension by electrical

agency.

Our last illustration has led us back to the subject of a previous

chapter, namely to the visible configuration of the interior of the

cell; and in connection with this wide subject there are many
phenomena on which light is apparently thrown by our knowledge

of adsorption, and of which we took little or no account in our

former discussion. One of these phenomena is that visible or

concrete "polarity," which we have already seen to be in some way
associated with a dynamical polarity of the cell.

This morphological polarity may be of a very simple kind, as

when, in an epithelial cell, it is manifested by the outward shape

of the elongated or columnar cell itself, by the essential difference

between its free surface and its attached base, or by the presence

in the neighbourhood of the former of mucous or other products

of the cell's activity. But in a great many cases, this "polarised"

symmetry is supplemented by the presence of various fibrillae, or

of linear arrangements of particles, which in the elongated or

"monopolar" cell run parallel with its axis, and which tend to

a radial arrangement in the more or less rounded or spherical

cell. Of late years especially, an immense importance has been

attached to these various linear or fibrillar arrangements, as they

occur {after staining) in the cell-substance of intestinal epithelium,

of spermatocytes, of ganglion cells, and most abundantly and

most frequently of all in gland cells. Various functions, which

seem somewhat arbitrarily chosen, have been assigned, and many
hard names given to them ; for these structures now include your

mitochondria and your chondriokonts (both of these being varieties
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of chondriosomes), your Altmann's granules, your microsomes,

pseudo-chromosomes, epidermal fibrils and basal filaments, your

archeoplasm and ergastoplasm, and probably your idiozomes,

plasmosomes, and many other histological minutiae*.

The position of these bodies with regard to the other cell-

structures is carefully described. Sometimes they lie in the

neighbourhood of the nucleus itself, that is to say in proximity to

the fluid boundary surface which separates the nucleus from the

cytoplasm ; and in this position they often form a somewhat cloudy

sphere which constitutes the Nebenkern. In the majority of cases,

as in the epithelial cells, they form filamentous structures, and rows

.of granules, whose main direction is parallel to the axis of the

IfeiviSi
A B C .

Fig. 97. A, B, Cliondriosomes in kidney-cells, prior to and during secretory

activity (after Barratt); C, do. in pancreas of frog (after Mathews).

cell, and which may, in some cases, and in some forms, be con-

spicuous at the one end, and in some cases at the other end of

the cell. But I do not find that the histologists attempt to explain,

or to correlate with other phenomena, the tendency of these bodies

to lie parallel with the axis, and perpendicular to the extremities

of the cell ; it is merely noted as a peculiarity, or a specific character,

of these particular structures. Extraordinarily complicated and

diverse functions have been ascribed to them. Engelmann's
' Fibrillenkonus," which was almost certainly another aspect of

the same phenomenon, was held by him and by cytologists like

Breda and Heidenhain, to be an apparatus connected in some
* Cf. A. Gurwitsch, Morphologic und Biologie der Zelle, 1904, pp. 169-185;

Meves, Die Chondriosomen als Trager erblicher Anlagen, Arch. f. mikrosk. Anat.

1908, p. 72; J. O. W. Barratt, Changes in Chondriosomes, etc. Q.J.M.S. LViii,

pp. 553-566, 1913, etc. ; A. Mathews, Changes in Structure of the Pancreas

Cell, etc., J. of Morph. xv (Suppl.), pp. 171-222, 1899.
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unexplained way with the mechanism of cihary movement.

Meves looked upon the chondriosomes as the actual carriers or

transmitters of heredity*. Altmann invented a new aphorism,

Omne granulum e granulo, as a refinement of Virchow's omnis

cellula e cellula ; and many other histologists, more or less in accord,

accepted the chondriosomes as important entities, sui generis,

intermediate in grade between the cell itself and its ultimate

molecular components. The extreme cytologists of the Munich

school, Popoff, Goldachmidt and others, following Kichard Hertwig,

declaring these structures to be identical with "chromidia" (under

which name Hertwig ranked all extra-nuclear chromatin), would

assign them complex functions in maintaining the balance between,

nuclear and cytoplasmic material ; and the " chromidial hypo-

thesis," as every reader of recent cytological literature knows, has

become a very abstruse and complicated thing f. With the help

of the " binuclearity hypothesis'' of Schaudinn and his school, it

has given us the chromidial net, the chromidial apparatus, the

trophochromidia, idiochromidia, gametochroniidia, the protogono-

plasm, and many other novel and original conceptions. The

names are apt to vary somewhat in significance from one writer

to another.

The outstanding fact, as it seems to me, is that physiological

science has been heavily burdened in this matter, with a jargon

of names and a thick cloud of hypotheses ; while, from the physical

point of view we are tempted to see but little mystery in the

whole phenomenon, and to ascribe it, in all probability a'nd in

general terms, to the gathering or "clumping" together, under

surface tension, of various constituents of the heterogeneous cell-

content, and to the drawing out of these little clumps along the

axis of the cell towards one or other of its extremities, in relation

to osmotic currents, as these in turn are set up in direct relation

* The question whether chromosomes, chondriosomes or chromidia be the true

vehicles or transmitters of " heredity " is not without its analogy to the older problem

of whether the pineal gland or the pituitary body were the actual seat and domicile

of the soul.

f Of. C. C. Dobell, Chromidia and the Binuclearity Hypotheses ; a review and

a criticism, Q.J.M.S. una, 279-326, 1909; Prenant, A., Les Mitochondries et

I'Ergastoplasme, Journ. de VAnat. et de la Physiol. XLVi, pp. 217-285, 1910 (both

with copious bibUography).
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to the phenomena of surface energy and of adsorption*. And
all this implies that the study of these minute structures, if it

teach us nothing else, at least surely and certainly reveals to us

the presence of a definite "field of force," and a dynamical polarity

within the cell.

Our next and last illustration of the effects of adsorption,

which we owe to the investigations of Professor Macallum, is of

great importance ; for it introduces us to a series of phenomena

in regard to which we seem now to stand on firmer ground than

in some of the foregoing cases, though we cannot yet consider that

the whole story has been told. In our last chapter we were

restricted mainly, though not entirely, to a consideration of figures

of equilibrium, such as the sphere, the cylinder or the unduloid

;

and we began at once to find ourselves in difficulties when we were

confronted by departures from symmetry, as for instance in the

simple case of the ellipsoidal yeast-cell and the production of its

bud. We found the cylindrical cell of Spirogyra, with its plane

or spherical ends, a comparatively simple matter to understand;

but when this uniform cylinder puts out a lateral outgrowth, in

the act of conjugation, we have a new and very different system

of forces to explain. The analogy of the soap-bubble, or of the

simple liquid drop, was apt to lead us to suppose that the surface

tension ivas, on the whole, uniform over the surface of our cell;

and that its departures from symmetry of form were therefore

likely to be due to variations in external resistance. But if we
have been inclined to make such an assumption we must now

* Traube in particular has maintained that in differences of surface-tension

we have the origin of the active force productive of osmotic currents, and that

herein we find an explanation, or an approach to an explanation, of many phenomena
which were formerly deemed peculiarly "vital" in their character. "Die Differenz

der Oberflachenspannungen oder der Oberflachendruck eine Kraft darsteUt, welche

als treibende Kraft der Osmose, an die Stelle des nicht mit dem Oberflachendruck

identischen osmotischen Druckes, zu setzen ist, etc." (Oberflachendi-uck und
•seine Bedeutung im Organismus, Pfliiger's Archiv, cv, p. 559, 1904.) Cf. also

Hardy {Pr. Phys. Soc. xxvm, p. 116, 1916), "If the surface film of a colloid

membrane separating two masses of fluid were to change in such a way as to lower

the potential of the water in it, water would enter the region from both sides at

once. But if the change of state were to be propagated as a wave of change,

starting at one face and dying out at the other face, water would be carried along"

from one side of the membrane to the other. A succession of such waves would
maintain a flow of fluid."
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reconsider it, and be prepared to deal with important localised

variations in the surface tension of the cell. For, as a matter of

fact, the simple case of a perfectly symmetrical drop, with uniform

surface, at which adsorption takes place with similar uniformity,

is probably rare in physics, and rarer still (if it exist at all) in the

fluid or fluid-containing system which we call in biology a cell.

We have mostly to do with cells whose general heterogeneity of

substance leads to qualitative differences of surface, and hence to

varying distributions of surface tension. We must accordingly

investigate the case of a cell which displays some definite and

regular heterogeneity of its liquid surface, just as Amoeba displays

a heterogeneity w^hich is complex, irregular and continually

fluctuating in amount and distribution. Such heterogeneity as

we are speaking of must be essentially chemical, and the prelimin-

ary problem is to devise methods of "microchemical" analysis,

which shall reveal localised accumulations of particular substances

within the narrow limits of a cell, in the hope that, their normal

effect on surface tension being ascertained, we may then correlate

with their presence and distribution the actual indications of

varying surface tension which the form or movement of the cell

displays. In theory the method is all that we could wish, but in

practice we must be content with a very limited application of it

;

for the substances which may have such action as we are looking

for. and which are also actual ^r possible constituents of the cell,

are very numerous, while the means are very seldom at hand to

demonstrate their precise distribution and localisation. But in

one or two cases we have such means, and the most notable is in

connection with the element potassium. As Professor Macallum

has shewn, this element can be revealed, in very minute quantities,

by means of a certain salt, a nitrite of cobalt and sodium*. This

salt penetrates readily into the tissues and into the interior of the

cell; it combines with potassium to form a sparingly soluble

nitrite of cobalt, sodium and potassium ; and this, on subsequent

treatment with ammonium sulphide, is converted into a character-

istic black precipitate of cobaltic sulphide f.

* On the Distribution of Potassium in animal and vegetable Cells; Journ. of

Physiol. XXXII, p. 95, 1905.

f The reader will recognise that there is a fundamental difference, and contrast.
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By this means Macalluni demonstrated some years ago the

unexpected presence of accumulations of potassium (i.e. of chloride

or other salts of potassium) localised in particular parts of various

cells, both solitary cells and tissue cells ; and he arrived at the

conclusion that the localised accumulations in question were

simply evidences of concentration of the dissolved potassium salts,

formed and localised in accordance with the Gibbs-Thomson law.

In other words, these accumulations, occurring as they actually do

in connection with various boundary surfaces, are evidence, when

they appear irregularly distributed over such a surface, of in-

equalities in its surface tension* ; and we may safely take it that

our potassium salts, like inorganic substances in general, tend to

raise the surface tension, and will therefore be found concentrating

at a portion of the surface whose tension is weakf.

In Professor Macallum's figure (Fig. 98, 1) of the little green

alga Pleurocarpus, we see that one side of the cell is beginning to

bulge out ill a wide convexity. This bulge is, in the first place,

a sign of weakened surface tension on one side of the cell, which as

a whole had hitherto been a symmetrical cyhnder ; in the second

place, we see that the bulging area corresponds to the position of

a great concentration of the potassic salt ; while in the third place,

from the physiological point of view, we call the phenomenon

the first stage in the process of conjugation. In Fig. 98, 2, of

Mesocarpus (a close ally of Spirogyra), we see the same phenomenon

admirably exemplified in a later stage. From the adjacent cells

distinct outgrowths are being emitted, where the surface tension has

been weakened : just as the glass-blower warms and softens a small

part of his tube to blow out the softened area into a bubble or

diverticulum ; and in our Mesocarpus cells (besides a certain

amount of potassium rendered visible over the boundary which

between such experiments as these of Professor Macallum's and the ordinary

staining processes of the histologist. The latter are (as a general rule) purely-

empirical, while the former endeavour to reveal the true microchemistry of the

cell. "On pent dire que la microchimie n'est encore qu'a la periode d'essai, et

que I'avenir de I'histologie et specialement de la cytologie est tout entier dans la

microchimie" (Prenant, A., Methodes et resultats de la Microchimie, Jourti. de

VAnat. et de la Physiol, xlvi, pp. 343-404, 1910).

* Cf. Macallum, Presidential Address, Section I, Brit. Ass. Rep. (Sheffield),

1910, p. 744.

t In accordance with a simple corollary to the Gibbs-Thomson law.

T. G. 19
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separates the green protoplasm from the cell-sap), there is a very

large accumulation precisely at the point where the tension of the

originally cyUndrical cell is weakening to produce the bulge.

But in a still later stage, when the boundary between the two

conjugating cells is lost and the cytoplasm of the two cells becomes

fused together, then the signs of potassic concentration quickly

disappear, the salt becoming generally diffused through the now
symmetrical and spherical "zygospore."

i^^^

Fig. 98. Adsorptive concentration of potassium salts in (1) cell of Pleurocarpus

about to conjugate; (2) conjugating cells of Mesocarpus; (3) sprouting spores

oi Equisetum. (After Macallum.)

In a spore of Equisetum (Fig. 98, 3), while it is still a single cell,

no localised concentration of potassium is to be discerned ; but as

soon as the spore has divided, by an internal partition, into two

cells, the potassium salt is found to be concentrated in the smaller

one, and especially towards its outer wall, which is marked by a

pronounced convexity. And as this convexity (which corresponds

to one pole of the now asymmetrical, or quasi-ellipsoidal spore)

grows out into the root-hair, the potassium salt accompanies its

growth, and is concentrated under its wall. The concentration is.
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accordingly, a concomitant of the diminished surface tension which

is manifested in the altered configuration of the system.

In the case of ciliate or flagellate cells, there is to be found a

characteristic accumulation of potassium at and near the base of

the cilia. The relation of ciliary movement to surface tension

hes beyond our range, but the fact which we have just mentioned

throws hght upon the frequent or general presence of a little

protuberance of the cell-surface just where a flagellum is given

of£ (cf. p. 247), and of a little projecting ridge or fillet at the base

of an isolated row of cilia, such as we find in Vorticella.

Yet another of Professor Macallum's demonstrations, though

its interest is mainly physiological, will help us somewhat further

to comprehend what is implied in our phenomenon. In a normal

cell of Spirogyra, a concentration of potassium is revealed along

the whole surface of the spiral coil of chlorophyll-bearing, or

" chromatophoral," protoplasm, the rest of the cell being wholly

destitute of the former substance : the indication being that, at

this particular boundary, between chromatophore and cell-sap,

the surface tension is small in comparison with any other interfacial

surface within the system.

Now as Macallum points out, the presence of potassium is

known to be a factor, in connection with the chlorophyll-bearing

protoplasm, in the synthetic production of starch from COg under

the influence of sunlight. But we are left in some doubt as to

the consecutive order of the phenomena. For the lowered surface

tension, indicated by the presence of the potassium, may be

itself a cause of the carbohydrate synthesis ; while on the other

hand, this synthesis may be attended by the production of sub-

stances (e.g. formaldehyde) which lower the surface tension, and

so conduce to the concentration of potassium. All we know for

certain is that the several phenomena are associated with one

another, as apparently inseparable parts or ine\'itable concomitants

of a certain complex action.

And now to return, for a moment, to the question of cell-form.

When we assert that the form of a cell (in the absence of mechanical

pressure) is essentially dependent on surface tension, and even when
we make the preliminary assumption that protoplasm is essentially

19—2
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a fluid, we are resting our belief on a general consensus of evidence,

rather than on compliance with any one crucial definition. The

simple fact is that the agreement of cell-forms with the forms

which physical experiment and mathematical theory assign to

liquids under the influence of surface tension, is so frequently and

often so typically manifested, that we are led, or driven, to accept

the surface tension hypothesis as generally applicable and as

eqmvaient to a universal law. The occasional difficulties or

apparent exceptions are such as call for further enquiry, but fall

short of throwing doubt upon our hypothesis. Macallum's

researches introduce a new element of certainty, a "nail in a sure

place," wnen tliey demonstrate that, in certain movements or

changes of form which we should naturally attribute to weakened

surface tension, a chemical concentration which would naturally

accompany such weakening actually takes place. They further

teach us that in the cell a chemical heterogeneity may exist of

a very marked kind, certain substances being accumulated here

and absent there, within the narrow bounds of the system.

Such localised accumulations can as yet only be demonstrated

in the case of a very few substances, and of a single one in par-

ticular ; and these are substances whose presence does not produce,

but whose concentration tends to follow, a weakening of surface

tension. The physical cause of the localised inequalities of surface

tension remains unknown. We may assume, if we please, that it

is due to the prior accumulation, or local production, of chemical

bodies which would have this direct effect; though we are by

no means limited to this hypothesis.

But in spite of some remaining difficulties and uncertainties,

we have arrived at the conclusion, as regards unicellular organisms,

that not only their general configuration but also their departures

from symmetry may be correlated with the molecular forces

manifested in their fluid or semi-fluid surfaces.



CHAPTER VII

THE FORMS OF TISSUES OR CELL-AGGREGATES

We now pass from the consideration of the solitary cell to that

of cells in contact with one another,—to what we may call in

the first instance " cell-aggregates,"—through which we shall be led

ultimately to the study of complex tissues. In this part of our

subject, as in the preceding chapters, we shall have to give some

consideration to the efEects of various forces ; but, as in the case

of the conformation of the solitary cell, we shall probably find,

and we may at least begin by assuming, that the agency of surface

tension is especially manifest and important. The effect of this

surface tension will chiefly manifest itself in the production of

surfaces mmimae areae : where, as Plateau was always careful to

point out, we must understand by this expression not an absolute,

but a relative minimum, an area, that is to say, which approxi-

mates to an absolute minimum as nearly as circumstances and the

conditions of the case permit.

There are certain fundamental principles, or fundamental

•equations, besides those which we have already considered, which

we shall need in our enquiry. For instance the case which we
briefly touched upon (on p. 265) of the angle of contact between

the protoplasm and the axial filament in a Heliozoan we shall

now find to be but a particular case of a general and elementary

theorem.

Let us re-state as follows, in terms of Energij, the general

principle which underlies the theory of surface tension or capillarity.

When a fluid is in contact with another fluid, or with a solid

or a gas, a portion of the energy of the system (that, namely,

which we call surface energy), is proportional to the area of the

surface of contact : it is also proportional to a coefficient which

is specific for each particular pair of substances, and which is

constant for these, save only in so far as it may be modified by
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changes of temperature or of electric charge. The condition of

minimum potential energy in the system, which is the condition of

equihbrium, will accordingly be obtained by the utmost possible

diminution in the area of the surfaces in contact. When we have

three bodies in contact, the case becomes a little more complex.

Suppose for instance we have a drop of some fluid. A, floating on

another fluid, B, and exposed to air, C. The whole surface energy

of the system may now be considered as divided into two parts,

one at the surface of the drop, and the other outside of the same

;

the latter portion is inherent in the surface BC, between the mass

of fluid B and the superincumbent air, C ; but the former portion

consists of two parts, for it is divided between the two surfaces AB
and AC, that namely which separates the drop from the surrounding

fluid and that which separates it from the atmosphere. So far as

the drop is concerned, then, equihbrium depends on a proper

balance between the energy, per unit area, which is resident in

its own two surfaces, and that which is external thereto : that is

to say, if we call Ejjf. the energy at the surface between the two

fluids, and so on with the other two pairs of surface energies, the

condition of equilibrium, or of maintenance of the drop, is that

If, on the other hand, the fluid A happens to be oil and the fluid

B, water, then the energy per unit area of the water-air surface

is greater than that of the oil-air surface and that of the oil-water

surface together ; i.e.

E > E + E

Here there is no equilibrium, and in order to obtain it the water-air

surface must always tend to decrease and the other two interfacial

surfaces to increase ; which is as much as to say that the water

tends to become covered by a spreading film of oil, and the water-

air surface to be abolished.
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The surface energy of which we have here spoken is manifested

in that contractile force, or "tension," of which we have already

had so much to say*. In any part of the free water surface, for

instance, one surface particle attracts another surface particle, and

the resultant of these multitudinous attractions is an equilibrium

of tension throughout this particular surface. In the case of our

three bodies in contact with one another, and within a small area

very near to the point of contact, a water particle (for instance)

will be pulled outwards by another water particle; but on the

opposite side, so to speak, there will be no water surface, and no

water particle, to furnish the counterbalancing pull ; this counter-

Fig. 100.

Fig. 101.

pull, which is necessary for equilibrium, must therefore be provided

by the tensions existing in the other two surfaces of contact. In

short, if we could imagine a single particle placed at the very point

of contact, it would be drawn upon by three different forces,

whose directions would lie in the three surface planes, and whose

magnitude would be proportional to the specific tensions charac-

teristic of the two bodies which in each case combine to form the

"interfacial" surface. Now for three forces acting at a point to

be in equilibrium, they must be capable of representation, in

magnitude and direction, by the three sides of a triangle, taken in

order, in accordance with the elementary theorem of the Triangle

of Forces. So, if we know the form of our floating drop (Fig. 100),

then by drawing tangents from (the point of mutual contact),

* It can easily be proved (by equating the increase of energy stored in an
increased surface to the work done \.\ increasing that surface), that the tension

measured per unit breadth, T„,,, is equal to the energy per unit area, ^n,,.
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we determine the three angles of our triangle (Fig. 101), and we

therefore know the relative magnitudes of the three surface

tensions, which magnitudes are proportional to its sides; and

conversely, if we know the magnitudes, or relative magnitudes,

of the three sides of the triangle, we also know its angles, and these

determine the form of the section of the drop. It is scarcely-

necessary to mention that, since all points on the edge of the

drop are under similar conditions, one with another, the form of

the drop, as we look down upon it from above, must be circular,

and the whole drop must be a solid of revolution.

The principle of the Triangle of Forces is expanded, as follows,

by an old seventeenth-century theorem, called Lami's Theorem

:

"If three forces acting at a -point he in equilihrium, each force is

-proportional to the sine of the angle contained between the directions

of the other two.''^ That is to say

P:Q:R: = sm QOR : sin FOR : sin POQ,

P Q _ R^
®^

sin QOR ~
sin ROP ~

sin POQ
'

And from this, in turn, we derive the equivalent formulae, by

which each force is expressed in terms of the other two, and of the

angle between them

:

P2 = ^2 + 2^2 + 2QR cos [QOR), etc.

From this and the foregoing, we learn the following important

and useful deductions

:

(1) The three forces can only be in equilibrium when any one

of them is less than the sum of the other two : for otherwise, the

triangle is impossible. Now in the case of a drop of olive-oil

upon a clean water surface, the relative magnitudes of the three

tensions (at 15° C.) have been determined as follows:

Water-air surface ... ... 75

Oil-air surface ... ... ... 32

Oil-water surface ... ... 21

No triangle having sides of these relative magnitudes is possible

;

and no such drop therefore can remain in equilibrium.



VII] OF SACHS'S RULE 297

(2) The three surfaces may be all alike: as when a soap-

bubble floats upon soapy water, or when two soap-bubbles are

joined together, on either side of a partition-film. In this case,

the three tensions are all equal, and therefore the three angles

are all equal ; that is to say, when three similar liquid surfaces

meet together, they always do so at an angle of 120°. Whether

our two conjoined soap-bubbles be equal or unequal, this is still

the invariable rule ; because the specific tension of a particular

surface is unaffected by any changes of magnitude or form.

(3) If two only of the surfaces be ahke, then two of the

angles will be alike, and the other will be unlike; and this last

will be the difference between 360° and the sum of the other two.

A particular case is when a film is stretched between solid and

parallel walls, like a soap-film within a cylindrical tube. Here, so

long as there is no external pressure applied to either side, so long

as both ends of the tube are open or closed, the angles on either

side of the film will be equal, that is to say the film will set itself

at right angles to the sides.

Many years ago Sachs laid it down as a principle, which has

become celebrated in botany under the name of Sachs's Rule,

that one cell-wall always tends to set itself at right angles to another

cell-wall. This rule applies to the case which we have just illus-

trated; and such validity as the rule possesses is due to the fact

that among plant-tissues it very frequently happens that one

cell-wall has become solid and rigid before another and later

partition-wall is developed in connection with it.

(4) There is another important principle which arises not out

of our equations but out of the general considerations by which

we were led to them. We have seen that, at and near the point

of contact between our several surfaces, there is a continued

balance of forces, carried, so to speak, across the interval; in

other words, there is physical continuity between one surface and

another. It follows necessarily from this that the surfaces merge

one iiito another by a continuous curve. Whatever be the form

of our surfaces and whatever the angle between them, this small

intervening surface, approximately spherical, is always there to

bridge over the line of contact* ; and this little fillet, or " bourrelet,"

* The presence of this httle liquid '"bourrelet," drawn from tlie material of which
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as Plateau called it, is large enough to be a common and con-

spicuous feature in the microscopy of tissues (Fig. 102). For

instance, the so-called "splitting" of the cell-wall, which is con-

spicuous at the angles of the large "parenchymatous" cells in the

succulent tissues of all higher plants (Fig. 103), is nothing more

than a manifestation of Plateau's "bourrelet," or surface of

continuity*.

We may now illustrate some of the foregoing principles.,

before we proceed to the more complex cases in which more

bodies than three are in mutual contact. But in doing so, we
must constantly bear in mind the principles set forth in our

chapter on the forms of cells, and especially those relating to the

pressure exercised by a purved film.

Fig. 102. (After Berthold.) Fig. 103. Parenchyma of Maize.

Let us look for a moment at the case presented by the partition-

wall in a double soap-bubble. As we have just seen, the three

films in contact (viz. the outer walls of the two bubbles and the

partition-wall between) being all composed of the same substance

the partition-walls themselves are composed, is obviously tending to a reduction

of the internal surface-area. And it may be that it is as well, or better, accounted

for on this ground than on Plateau's assumption that it represents a "surface of

continuity."

* A similar "bourrelet" is admirably seen at the line of junction between a

floating bubble and the liquid on which it floats; in which case it constitutes a

"masse annulaire," whose mathematical properties and relation to the form of the

nearly hemispherical bubble, have been investigated by van der Mensbrugghe {cf.

Plateau, oj). cit., p. 386). The form of the superficial vacuoles in Actinophrys or

Actinosphaerium involves an identical problem.
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and all alike iu contact with air, the three surface tensions must

be equal ; and the three films must therefore, in all cases, meet

at an angle of 120°. But, unless the two bubbles be of precisely

equal size (and therefore of equal curvature) it is obvious that the

tangents to the spheres will not meet the plane of their circle

of contact at equal angles, and therefore that the partition-wall

must be a curved surface : it is only plane when it divides two

equal and symmetrical cells. It is also obvious, from the sym-

metry of the figure, that the centres of the spheres, the centre of

the partition, and the centres of the two spherical surfaces are

all on one and the same straight fine.

Now the surfaces of the two bubbles exert a pressure inwards

which is inversely proportional to their radii : that is to say

]) :
J)'

: : l/r' : 1/r ; and the partition wall must, for equilibrium,

exert a pressure (P) which is equal to the difference between these

Fig. 104.

two pressures, that is to say, P = l/R = l/r' — l/r = (r — r')/rr'. It

follows that the curvature of the partition wall must be just such

a curvature as is capable of exerting this pressure, that is to say,

R = rr'/{r — r'). The partition wall, then, is always a portion of

a spherical surface, whose radius is equal to the product, divided

by the difference, of the radii of the two vesicles. It follows at

once from this that if the two bubbles be equal, the radius of

curvature of the partition is infinitely great, that is to say the

partition is (as we have already seen) a plane surface.

The geometrical construction by which we obtain the position

of the centres of the two spheres and also of the partition surface

is very simple, always provided that the surface tensions are

uniform throughout the system. If ^ be a point of contact

between the two spheres, and cp be a radius of one of them, then

make the angle cpm = 60°, and mark off on pm, pc' equal to the
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radius of the other sphere ; in Uke manner, make the angle

c'jyn = 60°, cutting the Hne cc' in c" ; then c' will be the centre

of the second sphere, and c" that of the spherical partition.

Whether the partition be or be not a plane surface, it is obvious

that its line ofjunction with the rest of the system lies in a plane.

Fig. 105. Fig. 106.

and is at right angles to the axis of symmetry. The actual

curvature of the partition-wall is easily seen in optical section

;

but in surface view, the line of junction is projected as a plane

(Fig. 106), perpendicular to the axis, and this appearance has

also helped to lend support and authority to " Sachs's Rule."

B

oooocCJcco

ooooooo
;

OOCZ3CIDO.

Many spRerical cells, such as

Protococcus, divide into two equal

halves, which are therefore separ-

ated by a plane partition. Among
the other lower Algae, akin to

Protococcus, such as the Nostocs

and Oscillatoriae, in which the

cells are imbedded in a gelatinous

matrix, we find a series of forms

such as are represented in Fig. 107.

Sometimes the cells are solitary

or disunited; sometimes they run

in pairs or in rows, separated one

from another by flat partitions

;

and sometimes the conjoined cells

are approximately hemispherical, but at other times each half

is more than a hemisphere. These various conditions depend,

c QGoxECDaio:

Fig. 107. Filaments, or chains of

cells, in various lower Algae.

(A) NoHoc; (B) Anabaena; (C)

Rivularia; (D) Oscillatorin.
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according to what we have already learned, upon the relative

magnitudes of the tensions at the surface of the cells and at the

boundary between them*.

In the typical case of an equally divided cell, such as a double

and co-equal soap-bubble, where the partition-wall and the outer

walls are similar to one another and in contact with similar sub-

stances, we can easily determine the form of the system. For, at

any point of the boundary of the partition-wall, 0. the tensions

being equal, the angles QOP, ROP, QOR are all equal, and each

is, therefore, an angle of 120°. But OQ, OR being tangents, the

centres of the two spheres (or circular arcs in the figure) lie on

perpendiculars to them ; therefore the radii CO, CO meet at an

Fig. 108.

angle of 60°, and COC is an equilateral triangle. That is to say,

the centre of each circle hes on the circumference of the other;

the partition lies midway between the two centres ; and the

length (i.e. the diameter) of the partition-wall, PO, is

2 sin 60° - 1-732

times the radius, or -866 times the diameter, of each of the cells.

This gives us, then, the form of an aggregate of two equal cells

under uniform conditions.

As soon as the tensions become unequal, whether from changes

in their own substance or from differences in the substances with

which they are in contact, then the form alters. If the tension

* In an actual calculation we must of course always take account of the tensions

on both sides of each film or membrane.
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along the partition, P, diminishes, the partition itself enlarges,

and the angle QOR increases : until, when the tension P is very

small compared to Q or R, the whole figure becomes a circle, and

the partition-wall, dividing it into two hemispheres, stands at

right angles to the outer wall. This is the case when the outer

wall of the cell is practically solid. On the other hand, if P begins

to increase relatively to Q and R, then the partition-wall contracts,

and the two adjacent cells become larger and larger segments of

a sphere, until at length the system becomes divided into two

separate cells.

In the spores of Liverworts (such as Pellia), the first partition-

wall (the equatorial partition in Fig. 109, a) divides the spore into

two equal halves, and is therefore a plane surface, normal to the

surface of the cell ; but the next partitions arise near to either

Fig. 109. Spore of Pellia. (After Campbell.)

end of the original spherical or elliptical cell. Each of these latter

partitions \vill (like the first) tend to set itself normally to the

cell-wall; at least the angles on either side of the partition w^ll

be identical, and their magnitude will depend upon the tension

existing between the cell-wall and the surrounding medium.

They will only be right angles if the cell-wall is already practically

solid, and in all probability (rigidity of the cell-wall not being

quite attained) they will be somewhat greater. In either case

the partition itself will be a portion of a sphere, whose curvature

will now denote a difference of pressures in the two chambers or

cells, which it serves to separate. (The later stages of cell-division,

represented in the figures h and c, we are not yet in a position to

deal with.)

We have innumerable cases, near the tip of a growing filament,

where in like manner the partition-wall which cuts ofE the terminal
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cell constitutes a spherical lens-shaped surface, set normally to

the adjacent walls. At the tips of the branches of many Florideae,

for instance, we find such a lenticular partition. In Dictyota

dichotoma, as figured by Reinke, we have a succession of such

partitions ; and, by the way, in such cases as these, where the

tissues are very transparent, we have often in optical section a

puzzling confusion of lines ; one being the optical section of the

curved partition-wall, the other being the straight linear projection

of its outer edge to which we have already referred. In the

conical terminal cell of Chara, we have the same lens-shaped

curve, but a little lower down, where the sides of the shoot are

approximately parallel, we have flat transverse partitions, at the

edges of which, however, we recognise a convexity of the outer

cell-wall and a definite angle of contact, equal on the two sides

of the partition.

Fig. 110. Cells of Dictyota.

(After Reinke.)

Fig. HI. Terminal and other cells

of Chara.

In the young antheridia of Chara (Fig. 112), and in the not

dissimilar case of the sporangium (or conidiophore) of Mucor, we

easily recognise the hemispherical form of the septum which shuts

off the large spherical cell from the cylindrical

filament. Here, in the first phase of develop-

ment, we should have to take into consideration

the different pressures exerted by the single

curvature of the cylinder and the double

curvature of its spherical cap (p. 221) ; and

we should find that the partition would have

a somewhat low curvature, with a radius less

than the diameter of the cylinder; which it

would have exactly equalled but for the Fig- 112. Young
, ,. . , . , . , . . antheridium of

adaitionai pressure inwards which it receives Chara.
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from the curvature of the large surrounding sphere. But as the

latter continues to grow, its curvature decreases, and so likewise

does the inward pressure of its surface ; and accordingly the little

convex partition bulges out more and more.

In order to epitomise the foregoing facts let the annexed

diagrams (Fig. 113) represent a system of three films, of which

one is a partition-wall between the other two ; and let the tensions

at the three surfaces, or the tractions exercised upon a point at

their meeting-place, be proportional to T, T' and t. Let a, j3, y
be, as in the figure, the opposite angles. Then

:

(1) If T be equal to T', and t be relatively insignificant,

the angles a, j8 will be of 90°.

Fig. 113.

(2) If T = T', but be a little greater than t, then t will exert

an appreciable traction, and a, j8 will be more than 90°, say, for

instance, 100°.

(3) If T- T' = Athena, ,^,y will all equal 120°.

The more complicated cases, when t, T and T' are all unequal,

are already sufficiently explained.

The biological facts which the foregoing considerations go a

long way to explain and account for have been the subject of much
argument and discussion, especially on the part of the botanists.

Let me recapitulate, in a very few words, the history of this long

discussion.

Some fifty years ago, Hofmeister laid it down as a general law

that " The partition-wall stands always perpendicular to what was

previously the principal direction of growth in the cell,"—or, in

other words, perpendicular to the long axis of the cell*. Ten

* Hofmeister, Pringsheini's Jahrb. in, p. 272, 1863; Hdb. d.

1867, p. 129.

Bot. I,



VII] OF CELL-PARTITIONS 305

years later, Sachs formulated his rule, or principle, of " rectangular

section," declaring that in all tissues, however complex, the

cell-walls cut one another (at the time of their formation) at right

andes*. Years before, Schwendener had found, in the final

results of cell-division, a universal system of "orthogonal tra-

jectoriest"; and this idea Sachs further developed, introducing

complicated systems of confocal ellipses and hyperbolae, and

distinguishing between periclinal walls, whose curves approximate

to the peripheral contours, radial partitions, which cut these at

an angle of 90°, and finally antichnes, which stand at right angles

bo the other two.

Reinke, in 1880, was the first to throw some doubt upon this

explanation. He pointed out various cases where the angle was

not a right angle, but was very definitely an acute one; and

he saw, apparently, in the more common rectangular symmetry

merely what he calls a necessary, but secondary, result of growth J.

Within the next few years, a number of botanical writers were

content to point out further exceptions to Sachs's Ilule§; and in

some cases to show that the curvatures of the partition-walls,

especially such cases of lenticular curvature as we have described,

were by no means accounted for by either Hofmeister or Sachs

;

while within the same period, Sachs himself, and also Rauber,

attempted to extend the main generalisation to animal tissues ||.

While these writers regarded the form and arrangement of the

cell-walls as a biological phenomenon, with little if any direct

relation to ordinary physical laws, or with but a vague reference

to " mechanical conditions," the physical side of the case was

soon urged by others, with more or less force and cogency. Indeed

the general resemblance between a cellular tissue and a "froth"'

* Sachs, Ueber die Anordnung der Zellen in jiingsten Pflanzentheilen, Verh.

pkys. med. Ges. Wurzburg, xi, pp. 219-242, 1877 ; Uteber Zellenanordnung und
Wachsthiim, ibid, xii, 1878; Ueber die durch Wachsthum bedingte Verschiebung

kleinster Theilchen in trajectorischen Curven, Monatsber. k. Akad. Wiss. Berlin,

1880; Physiology of Plants, chap, xxvii, pp. 431-459, Oxford, 1887.

t Schwendener, Ueber den Bau und das Wachsthum des Flechtenthallus,

Naturf. Ges. Zurich, Febr. 1860, pp. 272-296.

f Reinke, Lehrbuch der Botanik, 1880, p. 519.

§ Cf. Leitgeb, Uriters. ilber die Lebermoose, ii, p. 4, Graz, 1881.

I!
Rauber, Neue Grundlegungen zur Kenntniss der Zelle, Marph. Jahrb. vnr,

pp. 279, 334, 1882.

T. G. 20
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had been pointed out long before, by Melsens, who had made an

"artificial tissue" by blowing into a solution of white of egg*.

In 1886, Berthold pubUshed his Protoplasmamechanik, in which

he definitely adopted the principle of "minimal areas," and,

following on the lines of Plateau, compared the forms of many
cell-surfaces and the arrangement of their partitions with those

assumed under surface tension by a system of " weightless films."

But, as Klebs| points out in reviewing Berthold's book, Berthold

was careful to stop short of attributing the biological phenomena

to a definite mechanical cause. They remained for him, as they

had done for Sachs, so many "phenomena of growth," or

"properties of protoplasm."

In the same year, but while still apparently unacquainted with

Berthold's work, ErreraJ published a short but very lucid article,

in which he definitely ascribed to the cell-wall (as Hofmeister had

already done) the properties of a semi-liquid film and drew from

this as a logical consequence the deduction that it must assume the

various configurations which the law of minimal areas imposes on

the soap-bubble. So what we may call Errerd's Law is formulated

as follows : A cellular membrane, at the moment of its formation,

tends to assume the form which would be assumed, under the

same conditions, by a liquid film destitute of weight.

Soon afterwards Chabry. in discussing the embryology of the

Ascidians, indicated many of the points in which the contacts

between cells repeat the surface-tension phenomena of the soap-

bubble, and came to the conclusion that part, at least, of the

embryological phenomena were purely physical §; and the same

line of investigation and thought were pursued and developed by

Robert, in connection with the embryology of the Mollusca||.

Driesch again, in a series of papers, continued to draw attention

to the presence of capillary phenomena in the segmenting cells

* C. R. Acad. 8c. xxxiii, p. 247, 1851; Ann. de chimie et de phys. (3), xxxm,

p. 170, 1851; Bull. R. Acad. Belg. xxiv, p. 531, 1857.

t Klebs, Biolog. Centralbl. vn, pp. 193-201, 1^87.

{ L. Errera, Sur une condition fondamentale d'equUibre des cellules vivantes,

C. R., cni, p. 822, 1886; Bull. Soc. Beige de Microscopie, xm, Oct. 1886; Recueil

fTcBUvres (Physiologie generale), 1910, pp. 201-205.

§ L. Chabry, Embryologie des Ascidiens, J. Anat. et Physiol, xxm, p. 266, 1887.

II
Robert, Embryologie des Troques, Arch, de Zool. exp. et gen. (3), X, 1892.
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of various embryos, and came to the conclusion that the mode of

segmentation was of httle importance as regards the final result*.

Lastly de Wildemanf, in a somewhat wider, but also vaguer

generalisation than Errera's, declared that "The form of the

celhilar framework of vegetables, and also of animals, in its

essential features, depends upon the forces of molecular physics."

Let us return to our problem of the arrangement of partition

films. When we have three bubbles in contact, instead of two as

in the case already considered, the phenomenon is strictly analogous

to our former case. The three bubbles will be separated by three

partition surfaces, whose curvature will depend upon the relative

Fisf. Hi.

size of the spheres, and which will be plane if the latter are all of

the same dimensions ; but whether plane or curved, the three

partitions will meet one another at an angle of 120°, in an axial

line. Various pretty geometrical corollaries accompany this ar-

rangement. For instance, if Fig. 114 represent the three associated

bubbles in a plane drawn through their centres, c, c' , c" (or what
is the same thing, if it represent the base of three bubbles resting

on a plane), then the Unes uc, uc" , or sc, sc' , etc., drawn to the

* "Dass der Furchungsmodus etwas fiir das Zukiinftige unwesentliches ist,"

Z. f. w. Z. Lv, 1893, p. 37. With this statement compare, or contrast, that of

Conkhn, quoted on p. 4; of. also pp. 157, 348 (footnotes).

t de Wildeman, Etudes sur I'attache des cloisons cellulaires, Mem. Couronn.

de VAcad. R. de Belgique, liii, 84 pp., 1893-4.

20—2
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centres from the points of intersection of the circular arcs, will

always enclose an angle of 60°. Again (Fig. 115), if we make the

angle c"uf equal to 60°, and produce uf to meet cc" in /,/ will be

the centre of the circular arc which constitutes the partition Ou
;

and further, the three points/,^, h, successively determined in this

I
Fig. 115.

manner, will lie on one and the same straight line. In the case

of coequal bubbles or cells (as in Fig. 114, B), it is obvious that

the lines joining their centres form an equilateral triangle; and

consequently, that the centre of each circle (or sphere) lies on the

circumference of the other two ; it is also obvious that uf is now
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parallel to cc" , and accordingly that the centre of curvature of

the partition is now infinitely distant, or (as we have already said),

that the partition itself is plane.

When we have four bubbles in conjunction, they would seem

to be capable of arrangement in two symmetrical ways : either,

as in Fig. 116 (A), with the four partition-walls meeting at right

angles, or, as in (B), with^ve partitions meeting, three and three,

at angles of 120°. This latter arrangement is strictly analogous

to the arrangement of three bubbles in Fig. 114. Now, though

both of these figures, from their symmetry, are apparently figures of

equilibrium, yet, physically, the former turns out to be of unstable

Fig. 116.

and the latter of stable equilibrium. If we try to bring our four

bubbles into the form of Fig. 116, A, such an arrangement endures

only for an instant ; the partitions glide upon each other, a median

wall springs into existence, and the system at once assumes the

form of our second figure (B). This is a direct consequence of the

law of minimal areas : for it can be shewn, by somewhat difficult

mathematics (as was first done by Lamarle), tbat, in dividing a

closed space into a given number of chambers by means of partition-

walls, the least possible area of these partition-walls, taken together,

can only be attained when they meet together in groups of three,

at equal angles, that is to say at angles of 120°.
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Wherever we have a true cellular complex, an arrangement of

cells in actual physical contact by means of a boundary film, we

find this general principle in force; we must only bear in mind

that, for its perfect recognition, we must be able to view the

object in a plane at right angles to the boundary walls. For

instance, in any ordinary section of a vegetable parenchyma, we

recognise the appearance of a "froth," precisely resembling that

which we can construct by imprisoning a mass of soap-bubbles in

a narrow vessel with flat sides of glass ; in both cases we see the

cell-walls everywhere meeting, by threes, at angles of 120°, irre-

spective of the size of the individual cells : whose relative size, on

the other hand, determines the curvature of the partition-walls.

On the surface of a honey-comb we have precisely the same

conjunction, between cell and cell, of three boundary walls,

meeting at 120°. In embryology, when we examine a segmenting

egg, of four (or more) segments, we find in like manner, in the great

majority of cases, if not in all, that the same principle is still

exemplified ; the four segments do not meet in a common centre,

but each cell is in contact with two others, and the three, and only

three, common boundary walls meet at the normal angle of 120°.

A so-called polar furrow*, the visible edge of a vertical partition-

wall, joins (or separates) the two triple contacts, precisely as in

Fig. 116, B.

In the four-celled stage of the frog's egg, Rauber (an exception-

ally careful observer) shews us three alternative modes in which

the four cells may be found to be conjoined (Fig. 117). In (A) we

have the commonest arrangement, which is that which we have

just studied and found to be the simplest theoretical one; that

namely where a straight "polar furrow" intervenes, and where,

at its extremities, the partition-walls are conjoined three by three.

In (B), we have again a polar furrow, which is now seen to be a

portion of the first "segmentation-furrow" (of. Fig. 155 etc.) by

which the egg was originally divided into two ; the four-celled

stage being reached by the appearance of the transverse furrows

* It was so termed by Conklin in 1897, in his paper on Crepidula (J. of Morph.

xm, 1897). It is the Querfurche of Rabl {Morph. Jahrb. v, 1879); the Polarfurche

of 0. Hertwig {Jen. Zeitschr. xrv, 1880); the Brechungslinie of Rauber (Neue

Grundlage zur K. der ZeUe, M. Jb. vin, 1882). It is carefully discussed by Robert,

Dev. des Troques, Arch, de Zool. Exp. et Gen. (3), x, 1892, p. 307 seq.
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and their corresponding partitions. In this case, the polar

furrow is seen to be sinuously curved, and Rauber tells us that

its curvature gradually alters : as a matter of fact, it (or rather

the partition-wall corresponding to it) is gradually setting itself

into a position of equilibrium, that is to say of equiangular contact

with its neighbours, which position of equihbrium is already

attained or nearly so in Fig. 117, A. In Fig. 117, C, we have a

very different condition, with which we shall deal in a moment.

According to the relative magnitude of the bodies in contact,

this "polar furrow" may be longer or shorter, and it may be so

minute as to be not easily discernible ; but it is quite certain that

no simple and homogeneous system of fluid films such as we
are deahng with is in equilibrium without its presence. In the

accounts given, however, by embryologists of the segmentation of

the egg. while the polar furrow is depicted in the great majority

A B C
Fig. 117. Various ways in which the four cells are co-arranged in

the four-celled stage of the frog's egg. (After Rauber.)

of cases, there are others in which it has not been seen and some

in which its absence is definitely asserted*. The cases where four

cells, lying in one plane, meet in a point, such as were frequently

figured by the older embryologists, are very difficult to verify,

and I have not come across a single clear case in recent literature.

Considering the physical stability of the other arrangement, the

great preponderance of cases in which it is known to occur, the

difficulty of recognising the polar furrow in cases where it is

very small and unless it be specially looked for, and the natural

tendency of the draughtsman to make an all but symmetrical

structure appear wholly so, I am much inclined to attribute to

* Thus Wilson (J. of Morph. vni, 1895) declared that in Amphioxus the polar

furrow was occasionally absent, and Driesch took occasion to criticise and to throw

doubt upon the statement {ArcJi. f. Entw. Mech. i, 1895, j). 418).
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error or imperfect observation all those cases where the junction-

lines of four cells are represented (after the manner of Fig. 116, A)

as a simple cross*

.

But while a true four-rayed intersection, or simple cross, is

theoretically impossible (save as a transitory and highly unstable

condition), there is another condition which may closely simulate

it, and which is common enough. There are plenty of repre-

sentations of segmenting eggs, in which, instead of the triple

junction and polar furrow, the four cells (and in Hke manner their

more numerous successors) are represented as rounded off, and

separated from one another by an empty space, or by a httle drop

of an extraneous fluid, evidently not directly miscible with the

fluid surfaces of the cells. Such is the case in the obviously

accurate figure which Ilauber gives (Fig. 117, C) of the third mode
of conjunction in the four-celled stage of the frog's egg. Here

Rauber is most careful to point out that the furrows do not simply

"cross," or meet in a point, but are separated by a little space,

which he calls the Polgrubchen, and asserts to be constantly present

whensoever the polar furrow, or Brechungslinie, is not to be

discerned. This little interposed space, with its contained drop

of fluid, materially alters the case, and implies a new condition

of theoretical and actual equihbrium. For, on the one hand, we
see that now the four intercellular partitions do not meet ove

another at all ; but really impinge upon four new and separate

partitions, which constitute interfacial contacts, not between cell

and cell, but between the respective cells and the intercalated

drop. And secondly, the angles at which these four little surfaces

will meet the four cell-partitions, will be determined, in the usual

way, by the balance between the respective tensions of these several

surfaces. In an extreme case (as in some pollen-grains) it may be

found that the cells under the observed circumstances are not truly

in surface contact : that they are so many drops which touch but

do not "wet" one another, and which are merely held together

by the pressure of the surrounding envelope. But even supposing,

* Precisely the same remark was made long ago by Driesch: "Das so oft

schematisch gezeichnete VierzeUenstadium mit zwei sich in zwei Punkten scheidende

Medianen kann man wohl getrost aus der Reihe des Existierenden streichen,"

Entw. mech. Studien, Z. f. w. Z. Lni, p. 106, 1892. Cf. also his Math, mechanische

Bedeutung morphologischer Probleme der Biologie, Jena, 59 pp. 1891.
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as is in all probability the actual case, that they are in actual fluid

contact, the case from the point of view of surface tension presents

no difficulty. In the case of the conjoined soap-bubbles, we were

dealing with similar contacts andwith equal surface tensions through-

out the system; but in the system of protoplasmic cells which

constitute the segmenting egg we must make allowance for an in-

equality of tensions, between the surfaces where cell meets cell, and

where on the other hand cell-surface is in contact with the sur-

rounding medium,—in this case generally water or one of the fluids

of the body. Remember that our general condition is that, in our

entire system, the sum^ of the surface energies is a minimum ; and,

while this is attained by the sum

of the surfaces being a minimum
in the case where the energy is

uniformly distributed, it is not

necessarily so under non-uniform

conditions. In the diagram (Fig.

118) if the energy per unit area

be greater along the contact

surface cc' , where cell meets cell,

than along ca or ch, where cell-

surface is in contact with the surrounding medium, these latter

surfaces will tend to increase and the surface of cell-contact

to diminish. In short there will be the usual balance of forces

between the tension along the surface cc', and the two opposing

tensions along ca and ch. If the former be greater than either

of the other two, the outside angle will be less than 120° ; and if

the tension along the surface cc' be as much or more than the

sum of the other two, then the drops will stand in contact only,

save for the possible effect of external pressure, at a point. This is

the explanation, in general terms, of the peculiar conditions

obtaining in Nostoc and its allies (p. 300), and it also leads us to

a consideration of the general properties and characters of an

"epidermal" layer.

While the inner cells of the honey-comb are symmetrically

situated, sharing with their neighbours in equally distributed

pressures or tensions, and therefore all tending with great accuracy
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to identity of form, the case is obviously different with the cells

at the borders of the system. So it is, in like manner, with our

froth of soaprbubbles. The bubbles, or cells, in the interior of

the mass are all alike in general character, and if they be equal

in size are alike in every respect: their sides are uniformly

flattened*, and tend to meet at equal angles of 120°. But the

bubbles which constitute the outer layer retain their spherical

surfaces, which however still tend to meet the partition-walls

connected with them at constant angles of 120°. This outer layer

of bubbles, which forms the surface of our froth, constitutes after

a fashion what we should call in botany an "epidermal" layer.

But in our froth of soap-bubbles we have, as a rule, the same kind

of contact (that is to say, contact with air) both within and without

the bubbles ; while in our living cell, the outer wall of the epidermal

cell is exposed to air on the one side, but is in contact with the

Fig. 119.

protoplasm of the cell on the other : and this involves a difference

of tensions, so that the outer walls and their adjacent partitions

are no longer likely to meet at equal angles of 120°. Moreover,

a chemical change, due for instance to oxidation or possibly also

to adsorption, is very likely to affect the external wall, and may
tend to its consolidation ; and this process, as we have seen, is

tantamount to a large increase, and at the same time an

equalisation, of tension in that outer wall, and will lead the

adjacent partitions to impinge upon it at angles more and

more nearly approximating to 90°
: the bubble-like, or spherical,

surfaces of the individual cells being more and more flattened

in consequence. Lastly, the chemical changes which affect the

outer walls of the superficial cells may extend, in greater or

less degree, to their inner walls also : with the result that these

* Compare, however, p. 299.
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cells will tend to become more or less rectangular throughout, and

will cease to dovetail into the interstices of the next subjacent

layer. These then are the general characters which we recognise

in an epidermis ; and we perceive that the fundamental character

of an epidermis simply is that it lies on the outside, and that its

main physical characteristics follow, as a matter of course, from

the position which it occupies and from the various consequences

which that situation entails. We have however by no means

exhausted the subject in this short account; for the botanist is

accustomed to draw a sharp distinction between a true epidermis

and what is called epidermal tissue. The latter, which is found in

such a sea-weed as Laminaria and in very many other cryptogamic

plants, consists, as in the hypothetical case we have described,

of a more or less simple and direct modification of the general or

fundamental tissue. But a " true epidermis," such as we have it

in the higher plants, is something with a long morphological history,

something which has been laid down or differentiated in an early

stage of the plant's growth, and which afterwards retains its

separate and independent character. We shall see presently that

a physical reason is again at hand to account, under certain

circumstances, for the early partitioning off, from a mass of

embryonic tissue, of an outer layer of cells which from their first

appearance are marked off from the rest by their rectangular and

flattened form.

We have hitherto considered our cells, or bubbles, as lying in

a plane of symmetry, and further, we have only considered the

appearance which they present as projected on that plane: in

simpler words, we have been considering their appearance in

surface or in sectional view. But we have further to consider

them as solids, whether they be still grouped in relation to a single

plane (like the four cells in Fig. 116) or heaped upon one another,

as for instance in a tetrahedral form like four cannon-balls ; and in

either case we have to pass from the problems of plane to those of

solid geometry. In short, the further development of our theme

must lead us along two paths of enquiry, which continually

intercross, namely (1) the study of more complex cases of partition

and of contact in a plane, and (2) the whole question of the surfaces
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and angles presented by solid figures in symmetrical juxtaposition.

Let us take a simple case of the latter kind, and again afterwards,

so far as possible, let us try to keep the two themes separate.

Where we have three spheres in contact, as in Fig. 114 or in

either half of Fig. 116, B, let us consider the point of contact

(0, Fig. 114) not as a point in the plane section of the diagram, but

as a point where three furrows meet on the surface of the system.

At this point, three cells meet ; but it is also obvious that there meet

here six surfaces, namely the outer, spherical walls of the three

bubbles, and the three partition-walls which divide them, two and

two. Also,/oMr lines or edges meet here ; viz. the three external arcs

which form the outer boundaries of the partition-walls (and which

correspond to what we commonly call the "furrows" in the seg-

menting egg) ; and as a fourth edge, the "arris" or junction of the

three partitions (perpendicular to the plane of the paper), where

they all three meet together, as we have seen, at equal angles of

120°. Lastly, there meet at the point four solid angles, each

bounded by three surfaces : to wit, within each bubble a solid

angle bounded by two partition-walls and by the surface wall

;

and (fourthly) an external solid angle bounded by the outer

surfaces of all three bubbles. Now in the case of the soap-bubbles

(whose surfaces are all in contact with air, both outside and in),

the six films meeting at the point, whether surface films or partition

films, are all similar, with similar tensions. In other words the

tensions, or forces, acting at the point are all similar and symmet-

rically arranged, and it at once follows from this that the angles,

solid as well as plane, are all equal. It is also obvious that, as

regards the point of contact, the system will still be symmetrical,

and its symmetry will be quite unchanged, if we add a fourth

bubble in contact with the other three : that is to say, if where

we had merely the outer air before, we now replace it by the air

in the interior of another bubble. The only difference will be that

the pressure exercised by the walls of this fourth bubble will alter

the curvature of the surfaces of the others, so far as it encloses

them ; and, if all four bubbles be identical in size, these surfaces

which formerly we called external and which have now come to

be internal partitions, will, like the others, be flattened by equal

and opposite pressure, into planes. We are now dealing, in short.
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with six planes, meeting symmetrically in a point, and constituting

there four equal solid angles.

If we make a wire cage, in the form of a regular tetrahedron,

and dip it into soap-solution, then when we withdraw it we see

that to each one of the six edges of the tetrahedron, i.e. to each

one of the six wires which constitute the little cage, a film has

attached itself ; and these six films meet internally at a point, and

constitute in every respect the symmetrical figure which we have

just been describing. In short, the system of films we have

hereby automatically produced is precisely the system of partition-

walls which exist in our tetrahedral aggregation of four spherical

bubbles :—precisely the same, that is to say, in the neighbourhood

of the meeting-point, and only differing in that we have made the

wires of our tetrahedron straight, instead of imitating the circular

arcs which actually form the intersections of our bubbles. This

detail we can easily introduce in our wire model if we please.

Let us look for a moment at the geometry of our figure. Let o

(Fig. 120) be the centre of the tetrahedron, i.e. the centre of sym-

metry where our films meet ; and let oa, oh, oc, od, be hues drawn to

the four corners of the tetrahedron. Produce ao to meet the base

in f, then a'pd is a right-angled triangle. It is not difficult to

prove that in such a figure, o (the centre of gravity of the system)
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lies just three-quarters of the way between an apex, a, and a point,

J),
which is the centre of gravity of the opposite base. Therefore

op = oa/3 = od/3.

Therefore cos dop = ^ , and cos aod = — ^

.

That is to say, the angle aod is just, as nearly as possible,

109° 28' 16". This angle, then, of 109° 28' 16", or very nearly

109 degrees and a half, is the angle at which, in this and every

other solid system of liquid films, the edges of the partition-walls

meet one another at a point. It is the fundamental angle in the

sohd geometry of our systems, just as 120° was the fundamental

angle of symmetry so long as we considered only the plane pro-

jection, or plane section, of three films meeting in an edge.

Out of these two angles, we may construct a great variety of

figures, plane and solid, which become all the more varied and

complex when, by considering the case of unequal as well as equal

cells, we admit curved (e.g. spherical) as well as plane boundary

surfaces. Let us consider some examples and illustrations of

these, beginning with those which we need only consider in reference

to a plane.

Let us imagine a system of equal cylinders, or equal spheres,

in contact with one another in a plane, and represented in section

by the equal and contiguous circles of Fig. 121. I borrow my
figure, by the way, from an old Italian naturalist, Bonanni (a

contemporary of BorelH, of Ray and Willoughby and of Martin

Lister), who dealt with this matter in a book chiefly devoted to

molluscan shells*.

It is obvious, as a simple geometrical fact, that each of these

equal circles is in contact with six surrounding circles. Imagine

now that the whole system comes under some uniform stress.

It may be of uniform surface tension at the boundaries of all the

cells ; it may be of pressure caused by uniform growth or expansion

within the cells; or it may be due to some uniformly applied

constricting pressure from without. In all of these cases the points

of contact between the circles in the diagram will be extended into

* Ricreatione delV occhio e delta mente, nelV Osservatione delle Chiocciole, Roma,
1681.
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lines of contact, representing surfaces of contact in the actual

spheres or cyUnders ; and the equal circles of our diagram will

be converted into regular and equal hexagons. The angles of

these hexagons, at each of which three hexagons meet, are of

course angles of 120°. So far as the form is concerned, so long as

we are concerned only with a morphological result and not with

a physiological process, the result is precisely the same whatever

be the force which brings the bodies together in symmetrical

apposition ; it is by no means necessary for us, in the first instance,

even to enquire whether it be surface tension or mechanical

Fig. 121. Diagram of hexagonal cells. (After Bonanni.)

pressure or some other physical force which is the cause, or the

main cause, of the phenomenon.

The production by mutual interaction of polyhedral cells,

which, under conditions of perfect symmetry, become regular

hexagons, is very beautifully illustrated by Prof. Benard's

" tourhillons cellulaires^^ (cf, p. 259), and also in some of Leduc's

diffusion experiments. A weak (5 per cent.) solution of gelatine

is allowed to set on a plate «f glass, and little drops of a 5 or

10 per cent, solution of ferrocyanide of potassium are then placed

at regular intervals upon the gelatine. Immediately each little

drop becomes the centre, or pole, of a system of diffusion currents.
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and the several systems conflict with and repel one another, so

that presently each little area becomes the seat of a double current

system, from its centre outwards and back again ; until at length

the concentration of the field becomes equalised and the currents

Fig. 122. An "artificial tissue," formed by coloured drops of sodium chloride

solution diffusing in a less dense solution of the same salt. (After Leduc.)

Fig. 123. An artificial cellular tissue, formed by the diffusion in gelatine of

drops of a solution of potassium ferrocyanide. (After Leduc.)
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cease. After equilibrium is attained, and when the gelatinous

mass is permitted to dry, we have an artificial tissue of more or

less regularly hexagonal "cells," which simulate in the closest way
an organic parenchyma. And by varying the experiment, in ways

which Leduc describes, we may simulate various forms of tissue,

and produce cells with thick walls or with thin, cells in close

contact or with wide intercellular spaces, cells with plane or with

curved partitions, and so forth.

The hexagonal pattern is illustrated among organisms in count-

less cases, but those in which the pattern is perfectly regular, by

reason of perfect uniformity of force and perfect equality of the

individual cells, are not so numerous. The hexagonal epithelium-

cells of the pigment layer of. the eye, external to the retina, are

a good example. Here we have a single layer of uniform cells,

reposing on the one hand upon a basement membrane, supported

Fig. 124. Epidermis of Girardia. (After Goebel.)

behind by the solid wall of the sclerotic, and exposed on the other

hand to the uniform fluid pressure of the vitreous humour. The

conditions all point, and lead, to a perfectly symmetrical result

:

that is to say, the cells, uniform in size, are flattened out to a

uniform thickness by the fluid pressure acting radially ; and their

reaction on each other converts the flattened discs into regular

hexagons. In an ordinary columnar epithelium, such as that of

the intestine, we see again that the columnar cells have been

compressed into hexagonal prisms ; but here as a rule the cells

are less uniform in size, small cells are apt to be intercalated

among the larger, and the perfect symmetry is accordingly lost.

The same is true of ordinary vegetable parenchyma ; the originally

spherical cells are approximately equal in size, but only approxi-

mately ; and there are accordingly all degrees in the regularity and

symmetry of the resulting tissue. But obviously, wherever we

T. G.
- 21
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have, in addition to the forces which tend to produce the regular

hexagonal symmetry, some other asymmetrical component arising

from growth or traction, then our regular hexagons will be dis-

torted in various simple ways. This condition is illustrated in

the accompanying diagram of the epidermis of Girardia ; it also

accounts for the more or less pointed or fusiform cells, each still

in contact (as a rule) with six others, which form the epithelial

lining of the blood-vessels : and other similar, or analogous,

instances are very common.

In a soap-froth imprisoned between two glass plates, we have

a symmetrical system of cells, which appear in optical section (as

Fig. 125. Soap-froth under pressure. (After Rhumbler.)

in Fig. 125, B) as regular hexagons ; but if we press the plates a

little closer together, the hexagons become deformed or flattened

(Fig. 125, A). In this case, however, if

we cease to apply further pressure, the

tension of the films throughout the

system soon adjusts itself again, and in a

short time the system has regained the

former symmetry of Fig. 125, B.

In the growth of an ordinary dicoty-

ledonous leaf, we once more see reflected in

the form of its epidermal cells the tractions,

irregular but on the whole longitudinal,

which growth has superposed on the ten-

sions of the partition-walls (Fig. 126). In

the narrow elongated leaf of a Monocoty-

ledon, such as a hyacinth, the elongated, apparently quadrangular

Fig. 126. From leaf of

Elodea canadensis. (After

Berthold.)
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cells of the epidermis appear as a necessary consequence of the

simpler laws of growth which gave its simple form to the leaf as

a whole. In this last case, however, as in all the others, the rule

still holds that only three partitions (in surface view) meet in a

point; and at their point of meeting the walls are for a short

distance manifestly curved, so as to permit the junction to take

place at or nearly at the normal angle of 120°.

Briefly speaking, wherever we have a system of cylinders or

spheres, associated together with sufficient mutual interaction to

bring them into complete surface contact, there, in section or in

surface view, we tend to get a pattern of hexagons.

While the formation of an hexagonal pattern on the basis of ready-formed

and symmetrically arranged material units is a very common, and indeed the

general way, it does not follow that there are not others by which such a

pattern can be obtained. For instance, if we take a little triangular dish of

mercury and set it vibrating (either by help of a tuning-fork, or by simply

tapping on the sides) we shall have a series of little waves or ripples starting

inwards from each of the three faces ; and the intercrossing, or interference

of these three sets of waves procUices crests and hollows, and intermediate

points of no disturbance, whose loci are seen as a beautiful pattern of minute

hexagons. It is possible that the very minute and astonishingly regular

pattern of hexagons which we see, for instance, on the surface of many diatoms,

may be a phenomenon of this order*. The same maybe the case also inArcella,

where an apparently hexagonal pattern is found not to consist of simple

hexagons, but of "straight lines in three sets of parallels, the lines of each

set making an angle of sixty degrees with those of the other two sets f." We
must also bear in mind, in the case of the minuter forms, the large possibilities

of optical illusion. For instance, in one of Abbe's "diffraction-plates," a

pattern of dots, set at equal interspaces, is reproduced on a very minute scale

by photography ; but under certain conditions of microscopic illumination

and focussing, these isolated dots appear as a pattern of hexagons.

A symmetrical arrangement of hexagons, such as we have just been

studying, suggests various simple geometrical corollaries, of which the following

may perhaps be a useful one.

We may sometimes desire to estimate the number of hexagonal areas or

facets in some structure where these are numerous, such for instance as the

* Cf. some of J. H. Vincent's photographs of ripples, in Phil. Mag. 1897-1899;

or those of F. R. Watson, in Phys. Review, 1897, 1901, 1916. The appearance will

depend on the rate of the wave, and in turn on the surface-tension; with a low

tension one would probably see only a moving "jabble." FitzGerald thought

diatom-patterns might be due to electromagnetic vibrations ( Wori.s, p. 503, 1902).

t Cushman, J. A. and Henderson, W. P., Amer. Nat. xl, pp. 797-802, 1906.

21 2
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cornea of an insect's eye, or in the minute pattern of hexagons on many diatoms.

An approximate enumeration is easily made as follows.

For the area of a hexagon (if we call 8 the short diameter, that namely

which bisects two of the opposite sides) is 8^ x ^3/2, the area of a circle

being d'^ . 7r/4. Then, if the diameter (d) of a circular area include n hexagons,

the area of that circle equals {n . 8)^ x 7r/4. And, dividing this number by
the area of a single hexagon, we obtain for the number of areas in the circle,

'

each equal to a hexagonal facet, the expression n^ x 7r/4 x 2/s^B — 0-907»^, or

9/10 . 71^, nearly.

This calculation deals, not only with the complete facets, but with the

areas of the broken hexagons at the periphery of the circle. If we neglect

these latter, and consider our whole field as consisting of successive rings of

hexagons about a central one, we may obtain a still simpler rule*. For

obviously, around our central hexagon there stands a zone of six, and around

these a zone of twelve, and around these a zone of eighteen, and so on. And
the total number, excluding the central hexagon, is accordingly:

^'or one zone
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'We have many varied examples of this principle among corals,

wherever the polypes are in close juxtaposition, with neither

empty space nor accumulations of matrix between their adjacent

walls. Favosites gothlandica, for instance, furnishes us with an

excellent example. In the great genus Lithostrotion we have some

species that are "massive" and others that are "fasciculate" ; in

other words in some the long cylindrical corallites are in close con-

tact with one another, and in others they are separate and loosely

bundled (Fig. 127). Accordingly in the former the corallites are

Fig. 127. Lithostrotion Martini.

(After Nicholson.)

Fig. 128. Cyathophyllum hexagonum.

(From Nicholson, after Zittel.)

squeezed into hexagonal prisms, while in the latter they retain their

cylindrical form. Where the polypes are comparatively few, and

so have room to spread, the mutual pressure ceases to work or

only tends to push them asunder, letting them remain circular in

outline (e.g. Thecosmiha). Where they vary gradually in size, as

for instance in Cyathophyllum hexagonum, they are more or less

hexagonal but are not regular hexagons ; and where there is greater

and more irregular variation in size, the cells will be on the

average hexagonal, but some will have fewer and some more sides

than six, as in the annexed figure of Arachnophyllum (Fig. 129).
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Where larger and smaller cells, corresponding to two different

kinds of zooids, are mixed together, we may get various results.

If the larger cells are numerous enough to be more or less in

contact with one another (e.g. various Monticuliporae) they will

be irregular hexagons, while the smaller cells between them will

be crushed into all manner of irregular angular forms. If on the

other hand the large cells are comparatively few and are large

and strong-walled compared with their smaller neighbours, then

the latter alone will be squeezed into hexagons, while the larger

ones will tend to retain their circular outline undisturbed (e.g.

Heliopora, Heliolites, etc.).

When, as happens in certain corals,, the peripheral walls or

Fig. 129. Amchnophylhnii pentagoyium.

(After Nicholson.)

"thecae" of the individual polypes remain undevelope'd but

the radiating septa are formed and calcified, then we obtain new

and beautiful mathematical configurations (Fig. 131). For the

radiating septa are no longer confined to the circular or hexagonal

bounds of a polypite, but tend to meet and become confluent

with their neighbours on every side; and, tending to assume

positions of equilibrium, or of minimal area, under the restraints

to which they are subject, they fall into congruent curves; and

these correspond, in a striking manner, to the lines of force running,

in a common field of force, between a number of secondary centres.

Similar patterns may be produced in various ways, by the play

of osmotic or magnetic forces ; and a particular and very curious

case is to be found in those complicated forms of nuclear division
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known as triasters, polyasters, etc., whose relation to a field of

force Hartog has explained*. It is obvious that, in our corals,

these curving septa are all orthogonal to the non-existent hexagonal

boundaries. As the phenomenon is wholly due to the imperfect

development or non-existence of a thecal wall, it is not surprising

that we find identical configurations among various corals, or

families of corals, not otherwise related to one another; we find

the same or very similar patterns displayed, for instance^ in

Synhelia (Oculinidae), in Phillipsastraea {Rugosa), in Thamnas-

traea {Fungida), and in many more.

The most famous of all hexagonal conformations and perhaps

the most beautiful is that of the bee's cell. Here we have, as in

Fig. 131. Surface-views of Corals with undeveloped thecae and confluent septa.

A, Thamnastraea ; B, Comoseris. (From Nicholson, after Zittel.)

our last examples, a series of equal cylinders, compressed by

symmetrical forces into regular hexagonal prisms. But in this

case we have two rows of such cylinders, set opposite to one

another, end to end; and we have accordingly to consider also

the conformation of their ends. We may suppose our original

cylindrical cells to have spherical ends, which is their normal and

symmetrical mode of termination ; and, for closest packing, it is

obvious that the end of any one cylinder will touch, and fit in

between, the ends of three cylinders in the opposite row. It is

just as when we pile round-shot in a heap; each sphere that we

* Cf. Hartog, The Dual Force of the Dividing Cell, Science Progress (n.s.), i,

Oct. 1907, and other papers. Also Baltzer, Ueber mehrpolige Mitosen bei Seeigel-

eiern, Inaug. Diss. 1908.
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set down fits into its nest between three others, and the four

form a regular tetrahedral arrangement. Just as it was obvious,

then, that by mutual pressure from the six laterally adjacent cells,

any one cell would be squeezed into a hexagonal prism, so is it also

obvious that, by mutual pressure against the three terminal

neighbours, the end of any one cell will be compressed into a solid

trihedral angle whose edges will meet, as in the analogous case

already described of a system of soap-bubbles, at a plane angle

of 109° and so many minutes and seconds. What we have to

comprehend, then, is how the six sides of the cell are to be combined

with its three terminal facets. This is done by bevelling off three

alternate angles of the prism, in a uniform manner, until we have

tapered the prism to a point; and by so doing, we evidently

produce three rhombic surfaces, each of which is double of the

triangle formed by joining the apex to the three untouched angles

of the prism. If we experiment, not with cylinders, but with

spheres, if for instance we pile together a mass of bread-pills (or

pills of plasticine), and then submit the whole to a uniform pressure,

it is obvious that each ball (like the seeds in a pomegranate, as

Kepler said), will be in contact with twelve others,—six in its own

plane, three below and three above, and in compression it will

therefore develop twelve plane surfaces. It will in short repeat,

above and below, the conditions to which the bee's cell is subject

at one end only; and, since the sphere is symmetrically situated

towards its neighbours on all sides, it follows that the twelve plane

sides to which its surface has been reduced will be all similar,

equal and similarly situated. Moreover, since we have produced

this result by squeezing our original spheres close together, it is

evident that the bodies so formed completely fill space. The

regular solid which fulfils all these conditions is the rhombic

dodecahedron. The bee's cell, then, is this figure incompletely

formed : it is a hexagonal prism with one open or unfinished end,

and one trihedral apex of a rhombic dodecahedron.

The geometrical form of the bee's cell must have attracted the

attention and excited the admiration of mathematicians from time

immemorial. Pappus the Alexandrine has left us (in the intro-

duction to the Fifth Book of his Collections) an account of its

hexagonal plan, and he drew from its mathematical symmetry the
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conclusion that the bees were endowed with reason: "There

being, then, three figures which of themselves can fill up the

space round a point, viz. the triangle, the square and the hexagon,

the bees have wisely selected for their structure that which contains

most angles, suspecting indeed that it could hold more honey than

either of the other two." Erasmus Barthohnus was apparently

the first to suggest that this hypothesis was not warranted, and

that the hexagonal form was no more than the necessary result

of equal pressures, each bee striving to make its own little circle

as large as possible.

The investigation of the ends of the cell was a more difficult

matter, and came later, than that of its sides. In general terms

this arrangement was doubtless often studied and described: as

for instance, in the Garden of Cyrus ' " And the Combes them-

selves so regularly contrived that their mutual intersections

make three Lozenges at the bottom of every Cell ; which severally

regarded make three Rows of neat Bhomboidall Figures, connected

at the angles, and so continue three several chains throughout the

whole comb." But Maraldi* (Cassini's nephew) was the first to

measure the terminal solid angle or determine the form of the

rhombs in the pyramidal ending of the cell. He tells us that the

angles of the rhomb are 110° and 70°: "Chaque base d'alveole

est formee par trois rhombes presque toujours egaux et semblables,

qui, suivant les mesures que nous avons prises, ont les deux angles

obtus chacun de 110 degres, et par consequent les deux aigus

chacun de 70°." He also stated that the angles of the trapeziums

which form the sides of the body of the cell were identical angles,

of 110° and 70° ; but in the same paper he speaks of the angles as

being, respectively, 109° 28' and 70° 32'. Here a singular con-

fusion at once arose, and has been perpetuated in the books f-

"Unfortunately Reaumur chose to look upon this second deter-

mination of Maraldi's as being, as well as the first, a direct result

of measurement, whereas it is in reality theoretical. He speaks of

it as Maraldi's more precise measurement, and this error has been

repeated in spite of its absurdity to the present day ; nobody

* Observations sur les Abeilles, Mem. Acad. Sc. Paris, 1712, p. 209.

t As explained by Leslie EUis, in his essay "On the Form of Bees' Cells,"

in Mathematical and other Writings, 1853, p. 353; cf. 0. Terquem, Nouv. Ann.

Math. 1856, p. 178.
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appears to have thought of the impossibility of measuring such a

thing as the end of a bee's cell to the nearest minute." At any

rate, it now occurred to Reaumur (as curiously enough, it had not

done to Maraldi) that, just as the closely packed hexagons gave

the minimal extent of boundary in a plane, so the actual solid

figure, as determined by Maraldi, might be that which, for a given

solid content, gives the minimum of surface : or which, in other

words, would hold the most honey for the least wax. He set this

problem before Koenig, and the geometer confirmed his conjecture,

the result of his calculations agreeing within two minutes (109° 26'

and 70° 34') with Maraldi's determination. But again, Maclaurin*

and LhuiUert, by different methods, obtained a result identical

with Maraldi's ; and were able to shew that the discrepancy of

2' was due to an error in^ Koenig's calculation (of tan 6 = \/2),

y —that is to say to the imper-

fection of his logarithmic tables,

—

not (as the books sayJ) "to a

mistake on the part of the Bee."

"Not to a mistake on the part of

Maraldi" is, of course, all that we

are entitled to say.

The theorem may be proved as

follows

:

ABCDEF, abcdef, is a right

prism upon a regularhexagonal base.

The corners BDF are cut ofE by

planes through the lines AC, CE,

EA, meeting in a point V on the

axis VN of the prism, and intersect-

ing Bh, Dd, Ff, at X, Y, Z. It is

evident that the volume of the figure

thus formed is the same as that of

the original prism with hexagonal
Fig. 132.

& r &
ends. For, if the axis cut the

hexagon ABCDEF in N, the volumes ACVN, ACBX are equal.

* Phil. Trans, xlu, 1743, pp. 5(55-571. t ^^em. de VAcad. de Beilin, 1781.

J Cf. Gregory, Examples, p. 106, Wood's Homes without Hands, 1865, p. 428,

Mach, Science of Mechanics, 1902, p. 453, etc., etc.
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It is required to find the inclination of the faces forming the

trihedral angle at V to the axis, such that the surface of the

figure may be a minimum.

Let the angle NVX, which is half the solid angle of the prism,

= 6 ; the side of the hexagon, as AB, = a ; and the height, as

Aa, = h.

Then, AC = 2a cos 30° = a^/3.

And VX = a/sin 6 (from inspection of the triangle LXB)
Therefore the area of the rhombus VAXC = a^\/3/2 sin 6.

And the area of AabX = a/2 {2h - |FZ cos d)

= a/2 {2Ji-al2.cotd).

Therefore the total area of the figure

= hexagon abcdef + 3a [ 2h — ^ cot ^ ) + 3 „ .

Therefore ^ (^""^^^ - ^""^
f ^-^

a/S^os^N
inereiore —^^ - ^ l^sin^ ^ '

sin^ ^ /

'

But this expression vanishes, that is to say, d (Area)/(^^ = 0,

when cos 6 - 1/^3, that is when d = 54° 44' 8"

= 1 (109° 28' 16").

This then is the condition under which the total area of the

figure has its minimal value.

That the beautiful regularity of the bee's architecture is due

to some automatic play of the physical forces, and that it were

fantastic to assume (with Pappus and Reaumur) that the bee

intentionally seeks for a method of economising wax, is certain,

but the precise manner of this automatic action is not so clear.

When the hive-bee builds a solitary cell, or a small cluster of cells,

as it does for those eggs which are to develop into queens, it makes

but a rude production. The queen-cells are lumps of coarse wax

hollowed out and roughly bitten into shape, bearing the marks of

the bee's jaws, like the marks of a blunt adze on a rough-hewn log.

Omitting the simplest of all cases, when (as among some humble-

bees) the old cocoons are used to hold honey, the cells built by

the "soHtary" wasps and bees are of various kinds. They may
be formed by partitioning off httle chambers in a hollow stem;
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they may be rounded or oval capsules, often very neatly con-

structed, out of mud, or vegetable^6re or little stones, agglutinated

together with a salivary glue; but they shew, except for their

rounded or tubular form, no mathematical symmetry. The social

wasps and many bees build, usually out of vegetable matter

chewed into a paste with saliva, very beautiful nests of ''combs'
;

and the close-set papery cells which constitute these combs are

just as regularly hexagonal as are the waxen cells of the hive-bee.

But in these cases (or nearly all of them) the cells are in a single

row ; their sides are regularly hexagonal, but their ends, from the

want of opponent forces, remain simply spherical. In Melipona

domestica (of which Darwin epitomises Pierre Huber's description)

"the large waxen honey-cells are nearly spherical, nearly equal in

size, and are aggregated into an irregular mass." But the spherical

form is only seen on the outside of the mass ; for inwardly each

cell is flattened into "two, three or more flat surfaces, according

as the cell adjoins two, three or more other cells. When one cell

rests on three other cells, which from the spheres being nearly

of the same size is very frequently and necessarily the case, the

three flat surfaces are united into a pyramid ; and this pyramid, as

Huber has remarked, is manifestly a gross imitation of the three-

sided pyramidal base of the cell of the hive-bee*." The question

is, to what particular force are we to ascribe the plane surfaces

and definite angles which define the sides of the cell in all these

cases, and the ends of the cell in cases where one row meets and

opposes another. We have seen that BarthoKn suggested, and it

is still commonly beheved, that this result is due to simple physical

pressure, each bee enlarging as much as it can the cell which it

is a-building, and nudging its wall outwards till it fills every

intervening gap and presses hard against the similar efforts of

its neighbour in the cell next door|. But it is very doubtful

* Origin of Species, ch. vni (6th ed., p. 221). The cells of various bees,

humble-bees and social wasps have been described and mathematically investigated

by K. Miillenhoijf, Pfliiger's Archiv xxxii, p. 589, 1883; but his many interesting

results are too complex to epitomise. For figures of various nests and combs see

(e.g.) von Biittel-Reepen, Biol. Centralbl. xxxiii, pp. 4, 89, 129, 183, 1903.

t Darwin had a somewhat similar idea, though he allowed more play to the

bee's instinct or conscious intention. Thus, when he noticed certain half-completed

cell-walls to be concave on one side and convex on the other, but to become perfectly

flat when restored for a short time to the hive, he says: "It was absolutely im-
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whether such physical or mechanical pressure, more or less inter-

mittently exercised, could produce the all but perfectly smooth,

plane surfaces and the all but perfectly definite and constant

angles which characterise the cell, whether it be constructed of

wax or papery pulp. It seems more likely that we have to do

with a true surface-tension efi'ect ; in other words, that the walls

assume their configuration when in a semi-fluid state, while the

papery pulp is still liquid, or while the wax is warm under the

high temperature of the crowded hive*. Under these circum-

stances, the direct efforts of the wasp or bee may be supposed

to be limited to the making of a tubular cell, as thin as the nature

of the material permits, and packing these little cells as close as

possible together. It is then easily conceivable that the sym-

metrical tensions of the adjacent films (though somewhat retarded

by viscosity) should suffice to bring the whole system into equi-

librium, that is to say into the precise configuration which the

comb actually presents. In short, the Maraldi pyramids which

terminate the bee's cell are precisely identical with the facets of

a rhombic dodecahedron, such as we have assumed to constitute

(and which doubtless under certain conditions do constitute) the

surfaces of contact in the interior of a mass of soap-bubbles or

of uniform parenchymatous cells ; and there is every reason to

believe that the physical explanation is identical, and not merely

mathematically analogous.

The remarkable passage in which Bufton discusses the bee's

cell and the hexagonal configuration in general is of such historical

importance, and tallies so closely with the whole trend of our

enquiry, that I will quote it in full: "Dirai-je encore un mot;

ces cellules des abeilles, tant vantees, tant admirees, me fournissent

une preuve de plus contre I'enthousiasme et I'admiration ; cette

figure, toute geometrique et toute reguliere qu'elle nous parait, et

qu'elle est en efEet dans la speculation, n'est ici qu'un resultat

mecanique et assez imparfait qui se trouve souvent dans la nature,

possible, from the extreme thinness of the Uttle plate, that they could have effected

this by gnawing away the convex side; and I suspect that the bees in such cases

stand on opposite sides and push and bend the ductile and warm wax (which as

I have tried is easily done) into its proper intermediate plane, and thus flatten it."

* Since writing the above, I see that MiillenhofE gives the same explanation,

and declares that the waxen wall is actually a Flussigkeitshdutchen, or liquid film.
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et que Ton remarque meme dans les productions les plus brutes

;

les cristaux et plusieurs autres pierres, quelques sels, etc., prennent

constamment cette figure dans leur formation. Qu'on observe les

petites ecailles de la peau d'une roussette, on verra qu'elles sont

hexagones, parce que chaque ecaille croissant en meme temps se

fait obstacle, et tend a occuper le plus d'espace qu'il est possible

dans un espace donne : on voit ces memes hexagones dans le

second estomac des animaux ruminans, on les trouve dans les

graines, dans leurs capsules, dans certaines fieurs, etc. Qu'on

remplisse un vaisseau de pois, ou plutot de quelque autre graine

cylindrique, et qu'on le ferme exactement apres y avoir verse

autant d'eau que les intervalles qui restent entre ces graines

peuvent en recevoir; qu'on fasse bouillir cette eau, tous ces

cylindres deviendront de colonnes a six pans*. On y voit claire-

ment la raison, qui est purement mecanique ; chaque graine, dont

la figure est cylindrique, tend par son renfiement a occuper le

plus d'espace possible dans un espace donne, elles deviennent done

toutes necessairement hexagones par la compression reciproque.

Chaque abeille cherche a occuper de meme le plus d'espace possible

dans un espace donne, il est done necessaire aussi, puisque le

corps des abeilles est cylindrique, que leurs cellules sont hexagones,

—par la meme raison des obstacles reciproques. On donne plus

d'esprit aux mouches dont les ouvrages sont les plus reguliers;

les abeilles sont, dit-on, plus ingenieuses que les guepes, que les

frelons, etc., qui savent aussi I'architecture, mais dont les con-

structions sont plus grossieres et plus irregulieres que celles des

abeilles : on ne veut pas voir, ou Ton ne se doute pas que cette

regularite, plus ou moins grande, depend uniquement du nombre

et de la figure, et nullement de I'intelligence de ces petites betes

;

plus elles sont nombreuses, plus il y a des forces qui agissent

egalement et s'opposent de meme, plus il y a par consequent de

contrainte mecanique, de regularite forcee, et de perfection

apparente dans leurs productions f."

* Bonnet criticised Buffon's explanation, on the ground that his description

was incomplete ; for Buffon took no account of the Maraldi pyramids.

t Buffon, Histoire Naturelle, rv, p. 99. Among many other papers on the

Bee's cell, see Barclay, Mem. Wernerian Soc. ir, p. 25!t (1812), 1818; Sharpe, Phil.

Mag. IV, 1828, pp. 19-21; L. Lalanne, Ann. Sci. Nat. (2) Zool. xm, pp. 358-374,

1840; Haughton, Ann. Mag. Nat Hist. (3), xi, pp. 415-429, 1863; A. R. Wallace,
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A very beautiful hexagonal symmetry, as seen in section, or

dodecahedral, as viewed in the solid, is presented by the cells

which form the pith of certain rushes (e.g. Juncus ejfusus), and

somewhat less diagrammatically by those' which make the pith

of the banana. These cells are stellate in form, and the tissue

presents in section the appearance of a network of six-rayed

stars (Fig. 133, c), linked together by the tips of the rays, and

separated by symmetrical, air-filled, intercellular spaces. In thick

sections, the solid twelve-rayed stars may be very beautifully seen

under the binocular microscope.

^^^M
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result will obviously be that the intercellular spaces will increase

;

the six equatorial attachments of each cell (Fig. 133, a) (or its twelve

attachments in all, to adjacent cells) will remain fixed, and the

portions of cell-wall between these points of attachment will be

withdrawn in a symmetrical fashion (b) towards the centre. As

the final result (c) we shall have a " dodecahedral star" or star-

polygon, which appears in section as a six-rayed figure. It is

obviously necessary that the pith-cells should not only be attached

to one another, but that the outermost layer should be firmly

attached to a boundary wall, so as to preserve the symmetry of

the system. What actually occurs in the rush is tantamount to

this, but not absolutely identical. Here it is not so much the

pith-cells which tend to shrivel within a boundary of constant

size, but rather the boundary wall (that is, the peripheral ring of

woody and other tissues) which continues to expand after the

pith-cells which it encloses have ceased to grow or to multiply.

The twelve points of attachment on the spherical surface of each

little pith-cell are uniformly drawn asunder ; but the content, or

volume, of the cell does not increase correspondingly; and the

remaining portions of the surface, accordingly, shrink inwards and

gradually constitute the complicated surface of a twelve-pointed

star, which is still a symmetrical figure and is still also a surface

of minimal area under the new conditions.

A few years after the publication of Plateau's book, Lord

Kelvin shewed, in a short but very beautiful paper *, that we must

not hastily assume from such arguments as the foregoing, that

a close-packed assemblage of rhombic dodecahedra will be the true

and general solution of the problem of dividing space with a

minimum partitional area, or will be present in a cellular liquid

"foam," in which it is manifest that the problem is actually and

automatically solved. The general mathematical solution of the

problem (as we have already indicated) is, that every interface or

partition-wall must have constant curvature throughout; that

where such partitions meet in an edge, they must intersect at

angles such that equal forces, in planes perpendicular to the line

* Sir W. Thomson, On the Division of Space with Minimum Partitional Area,

Phil. Mag. (5), xxrv, pp. 503-.514, Dec. 1887; cf. Baltimore Lectures, 1904, p. 615.
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of intersection, shall balance ; and finally, that no more than three

such interfaces may meet in a line or edge, whence it follows that

the angle of intersection of the film-surfaces must be exactly 120°.

An assemblage of equal and similar rhombic dodecahedra goes far

to meet the case : it completely fills up space ; all its surfaces or

interfaces are planes, that is to say, surfaces of constant curvature

throughout ; and these surfaces all meet together at angles of 120°.

Nevertheless, the proof that our rhombic dodecahedron (such as

we find exemplified in the bee's cell) is a surface of minimal area,

is not a comprehensive proof; it is limited to certain conditions,

and practically amounts to no more than this, that of the regular

solids, with all sides plane and similar, this one has the least surface

for its solid content.

The rhombic dodecahedron has six tetrahedral angles, and

eight trihedral angles ; and it is obvious, on consideration, that

at each of the former six dodecahedra meet in a point, and that,

where the four tetrahedral facets of each coalesce with their

neighbours, we have twelve plane films, or interfaces, meeting in

a point. In a precisely similar fashion, we may imagine twelve

plane films, drawn inwards from the twelve edges of a cube, to

meet at a point in the centre of the cube. But, as Plateau dis-

covered*, when we dip a cubical

wire skeleton into soap-solution and

take it out again, the twelve films

which are thus generated do not

meet in a point, but are grouped

around a small central, plane, quadri-

lateral film (Fig. 134). In other

words, twelve plane films, meeting in

a point, are essentially unstable. If

we blow upon our artificial film-

system, the little quadrilateral alters

its place, setting itself parallel now to one and now to another of

the paired faces of the cube ; but we never get rid of it. Moreover,

the size and shape of the quadrilateral, as of all the other films in the

system, are perfectly definite. Of the twelve films (which we had

* Also discovered independently by Sir David Brewster, Trans. R.S.E. xxiv,

p. 505, 1867, XXV, p. 115, 1869.

T. G. 22

Fig. 134.
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expected to find all plane and all similar) four afe plane isosceles

triangles, and eight are slightly curved quadrilateral figures. The
former have two curved sides, meeting at an angle of 109° 28',

and their apices coincide with the corners of the central quadri-

lateral, whose sides are also curved, and also meet at this identical

angle ;—which (as we observe) is likewise an angle which we have

been dealing with in the simpler case of the bee's cell, and indeed

in all the regular solids of which we have yet treated.

By completing the assemblage of polyhedra of which Plateau's

skeleton-cube gives a part. Lord Kelvin shewed that we should

obtain a set of equal and similar fourteen-sided figures, or " tetra-

kaidecahedra " ; and that by means of an assemblage of these

figures space is homogeneously partitioned—that is to say, into

equal, similar and similarly situated cells—with an economy of

surface in relation to area even greater than in an assemblage of

rhombic dodecahedra.

In the most generalised case, the tetrakaidecahedron is bounded

by three pairs of equal and parallel quadrilateral faces, and four

pairs of equal and parallel hexagonal faces, neither the quadri-

laterals nor the hexagons being necessarily plane. In a certain

particular case, the quadrilaterals are plane surfaces, but the

hexagons shghtly curved "anticlastic'' surfaces; and these latter

have at every point equal and opposite curvatures, and are

surfaces of minimal curvature for a boundary of six curved edges.

The figure has the remarkable property that, like the plane

rhombic dodecahedron, it so partitions space that three faces

meeting in an edge do so everywhere at equal angles of 120°*.

We may take it as certain that, in a system of perfectly fluid

films, like the interior of a mass of soap-bubbles, where the films

are perfectly free to glide or to rotate over one another, the mass

is actually divided into cells of this remarkable conformation.

* Von Fedorow had already described (in Russian) the same figure, under the

name of cubo-octahedron, or hejita-parallelohedron, Umited however to the case

where all the faces are plane. This figure, together with the cube, the hexagonal

prism, the rhombic dodecahedron and the "elongated dodecahedron," constituted

the five plane-faced, parallel-sided figures by which space is capable of being

completely filled and symmetrically partitioned ; the series so forming the founda-

tion of Von Fedorow's theory of crystaUine structure. The elongated dodecahedron

is, essentiaUj^ the figure of the bee's cell.
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And it is quite possible, also, that in the cells of a vegetable

parenchyma, by carefully macerating them apart, the same con-

formation may yet be demonstrated under suitable conditions

;

that is to say when the whole tissue is highly symmetrical, and the

individual cells are as nearly as possible equal in size. But in an

ordinary microscopic section, it would seem practically impossible

to distinguish the fourteen-sided figure from the twelve-sided.

Moreover, if we have anything whatsoever interposed so as to

prevent our twelve films meeting in a point, and (so to speak) to

take the place of our little central quadrilateral,—if we have, for

instance, a tiny bead or droplet in the centre of our artificial

system, or even a little thickening, or " bourrelet" as Plateau called

it, of the cell-wall, then it is no longer necessary that the

tetrakaidecahedron should be formed. Accordingly, it is very

probably the case that, in the parenchymatous tissue, under the

actual conditions of restraint and of very imperfect fluidity, it is

after all the rhombic dodecahedral configuration which, even under

perfectly symmetrical conditions, is generally assumed.

It follows from all that we have said, that the problems

connected with the conformation of cells, and with the manner in

which a given space is partitioned by them, soon become exceedingly

complex. And while this is so even when all our cells are equal

and symmetrically placed, it becomes vastly more so when cells

varying even slightly in size, in hardness, rigidity or other quahties,

are packed together. The mathematics of the case very soon

become too hard for us ; but in its essence, the phenomenon

remains the same. We have little reason to doubt, and no just

cause to disbeheve, that the whole configuration, for instancef of

an egg in the advanced stages of segmentation, is accurately

determined by simple physical laws, just as much as in the early

stages of two or four cells, during which early stages we are able to

recognise and demonstrate the forces and their resultant effects.

But when mathematical investigation has become too difiicult, it

often happens that physical experiment can reproduce for us the

phenomena which Nature exhibits to us, and which we are striving

to comprehend. For instance, in an admirable research, M. Robert

shewed, some years ago, not only that the early segmentation of

22—2
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the egg of Trochus (a marine univalve mollusc) proceeded in

accordance with the laws of surface tension, but he also succeeded

in imitating by means of soap-bubbles, several stages, one after

another, of the developing egg.

M. Robert carried his experiments as far as the stage of

sixteen cells, or bubbles. It is not easy to carry the artificial

system quite so far, but in the earlier stages the experiment is

easy ; we have merely to blow our bubbles in a little dish, adding

one to another, and adjusting their sizes to produce a symmetrical

system. One of the simplest and prettiest parts of his investigation

concerned t^ie "polar furrow" of which we have spoken on p. 310.

On blowing four little contiguous bubbles he found (as we may
all find with the greatest ease) that they form a symmetrical system,

two in contact with one another by a laminar film, and two,

which are elevated a little above the others, and which are separated

by the length of the aforesaid lamina. The bubbles are thus in

contact three by three, their partition-walls making with one

another equal angles of 120°. The upper and lower edges of the

intermediate lamina (the lower one visible through the transparent

system) constitute the two polar furrows of the embryologist

(Fig. 135, 1-3). The lamina itself is plane when the system is

symmetrical, but it responds by a corresponding curvature to

the least inequality of the bubbles on either side. In the

experiment, the upper polar furrow is usually a little shorter

than the lower, but parallel to it; that is to say, the lamina

is of trapezoidal form: this lack of perfect symmetry being

due (in the experimental case) to the lower portion of the

bubbles being somewhat drawn asunder by the tension of their

at|B.chments to the sides of the dish (Fig. 135, 4). A similar

phenomenon is usually found in Trochus, according to Robert,

and many other observers have likewise found the upper furrow

to be shorter than the one below. In the various species of the

genus Crepidula, Conklin asserts that the two furrows are equal

in C. convexa, that the upper one is the shorter in C. fornicata,

and that the upper one all but disappears in C. plana ; but we may
well be permitted to doubt, without the evidence of very special

investigations, whether these slight physical differences are

actually characteristic of, and constant in, particular allied species.
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Returning to the experimental case, Robert found that by with-

drawing a Uttle air from, and so diminishing the bulk of the two

terminal bubbles (i.e. those at the ends of the intermediate lamina),

the upper polar furrow was caused to elongate, till it became equal

in length to the lower; and by continuing the process it became

the longer in its turn. These two conditions have again been

Fig. 135. Aggregations of four soap-bubbles, to shew various arrangements of

the intermediate partition and polar furrows. (After Robert.)

described by investigators as characteristic of this embryo or that

;

for instance in Unio, Lillie has described the two furrows as

gradually altering their respective lengths* ; and Wilson (as Lillie

remarks) had already pointed out that "the reduction of the

apical cross-furrow, as compared with that at the vegetative pole

* F. R. Lillie, Embryology of the Unionidae, Journ. of Morphology, x, p. 12,

1895.
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in molluscs and annelids ' stands in obvious relation to the different

size of the cells produced at the two poles*.'"

When the two lateral bubbles are gradually reduced in size,

or the two terminal ones enlarged, the upper furrow becomes

shorter and shorter; and at the moment when it is about to

vanish, a new furrow makes its instantaneous appearance in a

direction perpendicular to the old one; but the inferior furrow,

constrained by its attachment to the base, remains unchanged,

and accordingly our two polar furrows, which were formerly

parallel, are now at right angles to one another. Instead of a

single plane quadrilateral partition, we have now two triangular

ones, meeting in the middle of the system by their apices, and

lying in planes at right angles to one another (Fig. 135, 5-7) f.

Two such polar furrows, equal in length and arranged in a cross,

have again been frequently described by the embryologists.

Robert himself found this condition in Trochus, as an occasional

or exceptional occurrence: it has been described as normal in

Asterina by Ludwig, in Branchipus by Spangenberg, and in

Podocoryne and Hydractinia by Bunting. It is evident that it

represents a state of unstable equilibrium, only to be maintained

under certain conditions of restraint within the system.

So, by sUght and delicate modifications in the relative size of

the cells, we may pass through all the possible arrangements of the

median partition, and of the "furrows" which correspond to its

upper and lower edges ; and every one of these arrangements has

been frequently observed in the four-celled stage of various embryos.

As the phases pass one into the other, they are accompanied by
changes in the curvature of the partition, which in like manner

correspond precisely to phenomena which the embryologists have

witnessed and described. And all these configurations belong to

that large class of phenomena whose distribution among embryos,

or among organisms in general, bears no relation to the boundaries

of zoological classification ; through molluscs, worms, coelenter-

* E. B. Wilson, The Cell-lineage of Nereis, Journ. of Morphology, vi, p. 452,

1892.

t It is highly probable, and we may reasonably assume, that the two little

triangles do not actually meet at an apical point, but merge into one another by
a twist, or minute surface of complex curvature, so as not to contravene the normal
conditions of equihbrium.
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ates, vertebrates and what not, we meet with now one and now
another, in a medley which defies classification. They are not

"vital phenomena," or "functions" of the organism, or special

characteristics of this or that organism, but purely physical

phenomena. The kindred but more complicated phenomena

which correspond to the polar furrow when a larger number of

cells than four are associated together, we shall deal with in the

next chapter.

Having shewn that the capillary phenomena are patent and

unmistakable during the earlier stages of embryonic development,

but soon become more obscure and incapable of experimental

reproduction in the later stages, when the cells have increased in

number, various writers including Robert himself have been

inclined to argue that the physical phenomena die away, and are

overpowered and cancelled by agencies of a very different order.

Here we pass into a region where direct observation and experi-

ment are not at hand to guide us, and where a man's trend of

thought, and way of judging the whole evidence in the case, must

shape his philosophy. We must remember that, even in a froth

of soap-bubbles, we can apply an exact analysis only to the simplest

cases and conditions of the phenomenon ; we cannot describe,

but can only imagine, the forces which in such a froth control the

respective sizes, positions and curvatures of the innumerable

bubbles and films of which it consists ; but our knowledge is

enough to leave us assured that what we have learned by in-

vestigation of the simplest cases includes the principles which

determine the most complex. In the case of the growing embryo

we know from the beginning that surface tension is only one of

the physical forces at work; and that other forces, including

those displayed within the interior of each living cell, play their

part in the determination of the system. But we have no evidence

whatsoever that at this point, or that point, or at any, the dominion

of the physical forces over the material system gives place to a

new condition where agencies at present unknown to the physicist

impose themselves on the living matter, and become responsible

for the conformation of its material fabric.

Before we leave for the present the subject of the segmenting
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egg, we must take brief note of two associated problems: viz.

(1) the formation and enlargement of the segmentation cavity, or

central interspace around which the cells tend to group themselves

in a single layer, and (2) the formation of the gastrula, that is to

say (in a typical case) the conversion "by invagination," of the

one-layered ball into a two-layered cup. Neither problem is free

from difficulty, and all we can do meanwhile is to state them in

general terms, introducing some more or less plausible assumptions.

The former problem is comparatively easy, as regards the

tendency of a segmentation cavity to enlarge, when once it has

been established. We may then assume that subdivision of the

cells is due to the appearance of a new-formed septum within each

cell, that this septum has a tendency to shrink under surface

tension, and that these changes will be accompanied on the whole

by a diminution of surface energy in the system. This being so,

it may be shewn that the volume of the divided cells must be less

than it was prior to division, or in other words that part of their

contents must exude during the process of segmentation*.

Accordingly, the case where the segmentation cavity enlarges and

the embryo developes into a hollow blastosphere may, under the

circumstances, be simply described as the case where that outflow

or exudation from the cells of the blastoderm is directed on the

whole inwards.

The physical forces involved in the invagination of the cell-

layer to form the gastrula have been repeatedly discussed f, but

the true explanation seems as yet to be by no means clear. The

case, however, is probably not a very difficult one, provided that

we may assume a difference of osmotic pressure at the two poles

of the blastosphere, that is to say between the cells which are

being differentiated into outer and inner, into epiblast and hypo-

blast. It is plain that a blastosphere, or hollow vesicle bounded

by a layer of vesicles, is under very different physical conditions

from a single, simple vesicle or bubble. The blastosphere has no

effective surface tension of its own, such as to exert pressure on

* Professor Peddie has given me this interesting and important result, but the

mathematical reasoning is too lengthy to be set forth here.

t Cf. Rhumbler, Arch. f. Entw. Mech. xrv, p. 401, 1902; Assheton, ibid, xxxi,

pp. 46-78, 1910.
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its contents or bring the whole into a spherical form ; nor will local

variations of surface energy be directly capable of affecting the

form of the system. But if the substance of our blastosphere be

sufficiently viscous, then osmotic forces may set up currents

which, reacting on the external fluid pressure, may easily cause

modifications of shape; and the particular case of invagination

itself will not be difficult to account for on this assumption of

non-uniform exudation and imbibition.



CHAPTER VIII

THE FORMS OF TISSUES OR CELL-AGGREGATES (continued)

The problems which we have been considering, and especially

that of the bee's cell, belong to a class of " isoperimetrical

"

problems, which deal with figures whose surface is a minimum for

a definite content or volume. Such problems soon become

difficult, but we may find many easy examples which lead us

towards the explanation of biological phenomena ; and the

particular subject which we shall find most easy of approach is

that of the division, in definite proportions, of some definite

portion of space, by a partition-wall of minimal area. The

theoretical principles so arrived at we shall then attempt to apply,

after the manner of Berthold and Errera, to the actual biological

phenomena of cell-division.

This investigation we may approach in two ways : by con-

sidering, namely, the partitioning ofi from some given space or

area of one-half (or some other fraction) of its content ; or again,

by dealing simultaneously with the partitions necessary for the

breaking up of a given space into a definite number of compart-

ments.

If we take, to begin with, the simple case of a cubical cell, it

is obvious that, to divide it into two halves, the smallest possible

partition-wall is one which runs parallel to, and midway between,

two of its opposite sides. If we call a the length of one of the

edges of the cube, then a^ is the area, alike of one of its sides, and

of the partition which we have interposed parallel, or normal,

thereto. But if we now consider the bisected cube, and wish to

divide the one-half of it again, it is obvious that another partition

parallel to the first, so far from being the smallest possible, is

precisely twice the size of a cross-partition perpendicular to it;
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for the area of this new partition is a x a/2. And again, for a

third bisection, our next partition must be perpendicular to the

other two, and it is obviously a little square, with an area of

From this we may draw the simple rule that, for a rectangular

body or parallelopiped to be divided equally by means of a

partition of minimal area, (1) the partition must cut across the

longest axis of the figure ; and (2) in the event of successive

bisections, each partition must run at right angles to its immediate

predecessor.

a

/\ ^^y%
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as the unequal segmentation of the frog's egg. It is true when the

dividing cell is homogeneous, and under the influence of symmetrical

forces
; but it ceases to be true when the field is no longer dynami-

cally symmetrical, for instance, when the parts difier in surface

tension or internal pressure. This latter condition, of asymmetry
of field, is frequent in segmenting eggs*, and is then equivalent

to the principle upon which Balfour laid stress, as leading to

"unequal" or to "partial" segmentation of the egg,—viz. the

unequal or asymmetrical distribution of protoplasm and of food-

yolk.

The second rule, which also has its exceptions, is true in a

large number of cases; and it owes its validity, as we may judge

from the illustration of the repeatedly bisected cube, solely to the

guiding principle of minimal areas. It is in short subordinate

to, and covers certain cases included under, a much more important

and fundamental rule, due not to Sachs but to Errera ; that (3) the

incipient partition-wall of a dividing cell tends to be such that its

area is the least possible by which the given space-content can be

enclosed.

Let us return to the case of our cube, and let us suppose that,

instead of bisecting it, we desire to shut off some small portion

only of its volume. It is found in the course of experiments upon

soap-films, that if we try to bring a partition-film too near to one

side of a cubical (or rectangular) space, it becomes unstable ; and

is easily shifted to a totally new position, in which it constitutes

a curved cylindrical wall, cutting off one corner of the cube.

It meets the sides of the cube at right angles (for reasons which we
have already considered) ; and, as we may see from the symmetry

* M. Robert {I. c. p. 305) has compiled a long list of cases among the molluscs

and the worms, where the initial segmentation of the egg proceeds by equal or

unequal division. The two cases are about equally numerous. But like many
other writers, he would ascribe this equaUty or inequahty rather to a provision

for the future than to a direct effect of immediate physical causation :
" li semble

assez probable, comm-3 on I'a dit souvent, que la plus grande taille d'un blastomere

est liee a I'importance et au developpement precoce des parties du corps qui doivent

en naitre : il y aurait la une sorte de reflet des stades posterieures du developpement

sur les premieres phenomenes, ce que M. Ray Lankester appelle precocious segrega-

tion. II faut avouer pourtant qu'on est parfois assez embarrasse pour assignor une

cause a pareilles differences."
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of the case, it constitutes precisely one-quarter of a cylinder.

Our plane transverse partition, wherever it was placed, had always

the same area, viz. a^; and it is obvious that a cylindrical wall,

if it cut ofE a small corner, may be much less than this. We want,

accordingly, to determine what is the particular volume which

might be partitioned off with equal economy of wall-space in one

way as the other, that is to say, what area of cylindrical wall

would be neither more nor less than the area a^. The calculation

is very easy.

The surface-area of a cylinder of length a is 277r . a, and that

of our quarter-cylinder is, therefore, a . 7rr/2 ; and this being, by

hypothesis, = a'^, we have a = 7Tr/2, or r = 2a/7r.

The volume of a cylinder, of length a, is a-Trr^, and that of our

quarter-cylinder is a . -n-r^ji, which (by substituting the value of r)

is equal to a^/Tr.

Now precisely this same volume is, obviously, shut off by a

transverse partition of area a^, if the third side of the rectangular

space be equal to a/ir. And this fraction, if we take a = 1, is

equal to 0-318... , or rather less than one-third. And, as we have

just seen, the radius, or side, of the corresponding quarter-cylinder

will be twice that fraction, or equal to -636 times the side of the

cubical cell.

If then, in the process of division

of a cubical cell, it so divide that the

two portions be not equal in volume

but that one portion by anything less

than about three-tenths of the whole,

or three-sevenths of the other portion,

there will be a tendency for the cell

to divide, not by means of a plane

transverse partition, but by means of

a curved, cylindrical wall cutting off

one corner of the original cell ; and

the part so cut off will be one-quarter of a cylinder.

By a similar calculation we can shew that a spherical wall,

cutting off one solid angle of the cube, and constituting an octant

of a sphere, would likewise be of less area than a plane partition

as soon as the volume to be enclosed was not greater than about

Fig. 137.
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one-quarter of the original cell*. But while both the cyhndrical

wall and the spherical wall would be of less area than the plane

transverse partition after that limit (of one-quarter volume) was

passed, the cyhndrical would still be the better of the two up to

a further limit. It is only when the volume to be partitioned ofE

* The principle is well illustrated in an experiment of Sir David Brewster's

{Trans. R.8.E. xxv, p. Ill, 1869). A soap-film is drawn over the rim of a wine-

glass, and then covered by a watch-glass. The film is inclined or shaken tiU it

becomes attached to the glass covering, and it then immediately changes place,

leaving its transverse position to take up that of a spherical segment extending

from one side of the wine-glass to its cover, and so enclosing the same volume of

air as formerly but with a great economy of surface, precisely as in the case of our

spherical partition cutting off one corner of a cube.
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is no greater than about 0-15, or somewhere about one-seventh,

of the whole/that the spherical cell-wall in an angle of the cubical

cell, that is to say the octant of a sphere, is definitely of less area

than the quarter-cylinder. In the accompanying diagram (Fig. 138)

the relative areas of the three partitions are shewn for all fractions,

less than one-half, of the divided cell.

In this figure, we see that the plane transverse partition, whatever fraction

of the cube it cut off, is always of the same dimensions, that is to say is

always equal to a^, or = 1. If one-half of the cube have to be cut off, this

plane transverse partition is much the best, for we see by the diagram that a

cylindrical partition cutting off an equal volume would have an area about

25%, and a spherical partition would have an area about 50% greater.

The point A in the diagram corresponds to the point where the cyhndrical

partition would begin to have an advantage over the plane, that is to say

(as we have seen) when the fraction to be cut off is about one-thiixl, or -318

of the whole. In like manner, at B the spherical octant begins to have an
advantage over the plane ; and it is not till we reach the point C that the

spherical octant becomes of less area than the quarter- cylinder.

The case we have dealt with is of little practical importance to

the biologist, because the cases in which

a cubical, or rectangular, cell divides

unequally, and unsymmetrically, are

apparently few; but we can find, as

Berthold pointed out, a few examples,

for instance in the hairs within the

reproductive "conceptacles" of certain

Fuci (Sphacelaria, etc.. Fig. 139), or in

the "paraphyses" of mosses (Fig. 142).

But it is of great theoretical importance ; as serving to introduce

us to a large class of cases, in which the shape and the relative

dimensions of the original cavity lead, according to the principle

of minimal areas, to cell-division in very definite and sometimes

unexpected ways. It is not easy, nor indeed possible, to give a

generalised account of these cases, for the limiting conditions

are somewhat complex, and the mathematical treatment soon

becomes difficult. But it is easy to comprehend a few simple

cases, which of themselves will carry us a good long way; and

which will go far to convince the student that, in other cases
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which we cannot fully master, the same guiding principle is at

the root of the matter.

The bisection of a solid (or the subdivision of its volume in

other definite proportions) soon leads us into a geometry which,

if not necessarily difficult, is apt to be unfamiliar; but in such

problems we can go a long way, and often far enough for our

particular purpose, if we merely consider the plane geometry of

a side or section of our figure. For instance, in the case of the

cube which we have been just considering, and in the case of the

plane and cyHndrical partitions by which it has been divided, it

is obvious that, since these two partitions extend symmetrically

from top to bottom of our cube, that we need only consider (so

far as they are concerned) the manner in which they subdivide

the base of the cube. The whole problem of the solid, up to a

certain point, is contained in our plane diagram of Fig. 138. And
when our particular sohd is a solid of revolution, then it is obvious

that a study of its plane of symmetry (that is to say any plane

passing through its axis of rotation) gives us the solution of the

whole problem. The right cone is a case in point, for here the

investigation of its modes of symmetrical subdivision is completely

met by an examination of the isosceles triangle which constitutes

its plane of symmetry.

The bisection of an isosceles triangle by a line which shall

be the shortest possible is a very easy problem. Let ABC be

such a triangle of which A is the apex ; it may be shewn that,

for its shortest line of bisection, we are limited to three cases

:

viz. to a vertical line AD, bisecting the angle at A and the side

BC ; to a transverse line parallel to the base BC ; or to an oblique

line parallel to AB or to AC. The respective magnitudes, or

lengths, of these partition lines follow at once from the magnitudes

of the angles of our triangle. For we know, to begin with, since

the areas of similar figures vary as the squares of their linear

dimensions, that, in order to bisect the area, a line parallel to one

side of our triangle must always have a length equal to l/v2
of that side. If then, we take our base, BC, in all cases of

a length = 2, the transverse partition drawn parallel to it will

always have a length equal to 2/-\/2, or = y/'I. The vertical
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partition, AD, since BD = 1, will always equal tan^ (/3 being

the angle ABC). And the oblique partition, GH, being equal to

AB/\/'2=^ l/-V2co& ^. If then we call our vertical, transverse

and oblique partitions, V, T, and 0, we have F = tan j8

;

T = V2 ; and = 1/a/2 cos j8, or

V -.T :0 = tan^/V2 : 1 : 1/2 cos ^.

And, working out these equations for various values of ^, we
very soon see that the vertical partition (F) is the least of the

three until j8 = 45°, at which limit F and are each equal to

1/V2 = -707 ; and that again, when ^ = 60°, and T are each

= 1, after which T (whose value always = 1) is the shortest of

the three partitions. And, as we have seen, these results are at

once appHcable, not only to the case of the plane triangle, but

also to that of the conical cell.

Fig. 141.

In like manner, if we have a spheroidal body, less than

a hemisphere, such for instance as a low, watch-glass shaped

cell (Fig. 141, a), it is obvious that the smallest possible

partition by which we can divide it into two equal halves

T. G. 23
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is (as in our flattened disc) a median vertical one. And
likewise, the hemisphere itself can be bisected by no smaller

partition meeting the walls at right angles than that median

one which divides it into two similar quadrants of a sphere.

But if we produce our hemisphere into a more elevated, conical

body, or into a cylinder with spherical cap, it is obvious that there

comes a point where a transverse, horizontal partition will bisect

the figure with less area of partition-wall than a median vertical

one (c). And furthermore, there will be an intermediate region,

a region where height and base have their relative dimensions

nearly equal (as in b), where an obhque partition will be better

than either the vertical or the transverse, though here the analogy

of our triangle does not suffice to give us the precise limiting

values. We need not examine these limitations in detail, but we

must look at the curvatures which accompany the several con-

ditions. We have seen that a film tends to set itself at equal

angles to the surface which it meets, and therefore, when that

surface is a solid, to meet it (or its tangent if it be a curved surface)

at right angles. Our vertical partition is, therefore, everywhere

normal to the original cell-walls, and constitutes a plane surface.

But in the taller, conical cell with transverse partition, the

latter still meets the opposite sides of the cell at right angles, and

it follows that it must itself be curved; moreover, since the

tension, and therefore the curvature, of the partition is every-

where uniform, it follows that its curved surface must be a portion

of a sphere, concave towards the apex of the original, now divided,

cell. In the intermediate case, where we have an oblique partition,

meeting both the base and the curved sides of the mother- cell,

the contact must still be everywhere at right angles : provided

we continue to suppose that the walls of the mother-cell (like those

of our diagrammatic cube) have become practically rigid before

the partition appears, and are therefore not affected and deformed

by the tension of the latter. In such a case, and especially when

the cell is elhptical in cross-section, or is still more compHcated

in form, it is evident that the partition, in adapting itself to

circumstances and in maintaining itself as a surface of minimal

area subject to all the conditions of the case, may have to assume

a complex curvature.
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While in very many cases the partitions (hke the walls of the

original cell) will be either plane or spherical, a more complex

curvature will be assumed under a variety of conditions. It will

be apt to occur, for instance, when the mother-cell is irregular in

shape, and one particular case of such asymmetry will be that in

which (as in Fig. 143) the cell has begun to brahch, or give ofE a

diverticulum, before division takes place. A very complicated

case of a different kind, though not without its analogies to the

cases we are considering, will occur in the partitions of minimal

area which subdivide the spiral tube of a nautilus, as we shall

C D
Fig. 142. S-shaped partitions: A, from Taonia atomaria (after Reinke); B, from

paraphyses of Fucus; C, from rhizoids of Mossj D, from paraphyses of

Polytrichum.

presently see. And again, whenever we have a marked internal

asymmetry of the cell, leading to irregular and anomalous modes

of division, in which the cell is not necessarily divided into two

equal halves and in which the partition-wall may assume an

oblique position, then apparently anomalous curvatures will tend

to make their appearance*.

Suppose that a more or less oblong cell have a tendency to

divide by means of an oblique partition (as may happen through

various causes or conditions of asymmetry), such a partition will

still have a tendency to set itself at right angles to the rigid walls

* Cf. Wildeman, Attache des Clo sons, etc., pis. 1, 2.

23—2
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of the mother-cell : and it will at once follow that our oblique

partition, throughout its whole extent, will assume the form of

a complex, saddle-shaped or anticlastic surface.

Many such cases of partitions with complex or double curvature

exist, but they are not always easy of recognition, nor is the

particular case where they appear in a terminal cell a common
one. We may see them, for instance, in the roots (or rhizoids)

of Mosses, especially at the point of development of a hew rootlet

(Fig. 142, C) ; and again among Mosses, in the "paraphyses" of

the male prothalli (e.g. in Polytrichum), we find more or less

similar partitions (D). They are frequent also among many Fuci,

as in the hairs or paraphyses of Fucus itself (B). In Taonia

"

A B CD
Fig. 143. Diagrammatic explanation of S-shaped partition.

atomaria, as figured in Reinke's memoir on the Dictyotaceae of

the Gulf of Naples*, we see, in like manner, oblique partitions,

which on more careful examination are seen to be curves of

double curvature (Fig. 142, A).

The physical cause and origin of these S-shaped partitions is

somewhat obscure, but we may attempt a tentative explanation.

When we assert a tendency for the cell to divide transversely to

its long axis, we are not only stating empirically that the partition

tends to appear in a small, rather than a large cross-section of the

cell : but we are also implicitly ascribing to the cell a longitudinal

polarity (Fig. 143, A), and implicitly asserting that it tends to

* Nova Acta K. Leop. Akad. si, 1, pi. iv.



VIII] OF SIGMOID OR S-SHAPED PARTITIONS 357

divide (just as the segmenting egg does), by a partition transverse

to its polar axis. Such a polarity may conceivably be due to

a chemical asvmmetry, or anisotropy, such as we have learned

of (from Professor Macallum's experiments) in our chapter on

Adsorption. Now if the chemical concentration, on which this

anisotropy or polarity (by hypothesis) depends, be unsymmetrical,

one of its poles being as it were deflected to one side, where a little

branch or bud is being (or about to be) given off,—all in precise

accordance with the adsorption phenomena described on p. 289,

—

then our "polar axis" would necessarily be a curved axis, and the

partition, being constrained (again ex hyjpoihesi) to arise transversely

to the polar axis, would lie obliquely to the apparent axis of the

cell (Fig. 143, B, C). And if the obhque partition be so situated

that it has to meet the opposite walls (as in C), then, in order to

do so symmetrically (i.e. either perpendicularly, as when the

cell-wall is already sohdified, or at least at equal angles on either

side), it is evident that the partition, in its course from one side

of the cell to the other, must necessarily assume a more or less

S-shaped curvature (Fig. 143, D).

As a matter of fact, while we have abundant simple illustrations

of the principles which we have now begun to study, apparent

exceptions to this simplicity, due to an asymmetry of the cell

itself, or of the system of which the single cell is but a part, are

by no means rare. For example, we know that in cambium-cells,

division frequently takes place parallel to the long axis of the

cell, when a partition of much less area would suffice if it were

set cross-ways : and it is only when a considerable disproportion

has been set up between the length and breadth of the cell, that

the balance is in part redressed by the appearance of a transverse

partition. It was owing to such exceptions that Berthold was

led to qualify and even to depreciate the importance of the law

of minimal areas as a factor in cell-division, after he himself had

done so much to demonstrate and elucidate it*. He was deeply

and rightly impressed by the fact that other forces besides surface

* Cf. Protoplasmamechanik, p. 229: "Insofern liegen also die Verhaltnisse hier

wesentlich anders als bei der Zertheiluno; hohler Korperformen durch fliissige

Lamellen. Wenn die Membran bei der Zelltheilung die von dem Prinzip der

kleinsten Flachen geforderte Lage und Kriimmung annimmt, so werden wir den

Grund dafiir in andrer Weise abzuleiten haben."
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tension^ both external and internal to the cell, play their part

in the determination of its partitions, and that the answer to

our problem is not to be given in a word. How fundamentally

important it is, however, in spite of all conflicting tendencies and

apparent exceptions, we shall see better and better as we proceed.

But let us leave the exceptions and return to a consideration

of the simpler and more general phenomena. And in so doing,

let us leave the case of the cubical, quadrangular or cylindrical

cell, and examine the case of a spherical cell and of its successive

divisions, or the still simpler case of a circular, discoidal cell.

When we attempt to investigate mathematically the position

and form of a partition of minimal area, it is plain that we shall

be dealing with comparatively simple cases wherever even one

dimension of the cell is much less than the other two. Where two

dimensions are small compared with the third, as in a thin cylin-

drical filament Uke that of Spirogyra, we have the problem at its

simplest; for it is at once obvious, then, that the partition must

lie transversely to the long axis of the thread. But even where

one dimension only is relatively small, as for instance in a flattened

plate, our problem is so far simplified that we see at once that the

partition cannot be parallel to the extended plane, but must cut

the cell, somehow, at right angles to that plane. In short, the

problem of dividing a much flattened solid becomes identical with

that of dividing a simple surface of the same form.

There are a number of small Algae, growing in the form of

small flattened discs, consisting (for a time at any rate) of but a

single layer of cells, which, as Berthold shewed, exemplify this

comparatively simple problem; and we shall find presently that

it is also admirably illustrated in the cell-divisions which occur in

the egg of a frog or a sea-urchin, when the egg for the sake of

experiment is flattened out under artificial pressure.

Fig. 144 (taken from Berthold's Monograph of the Naples

Bangiaciae) represents younger and older discs of the little alga

Erythrotrichia discigera ; and it will be seen that, in all stages save

the first, we have an arrangement of cell-partitions which looks

somewhat complex, but into which we must attempt to throw some

light and order. Starting with the original single, and flattened.
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cell, we have no difficulty with the first two cell-divisions; for

we know that no bisecting partitions can possibly be shorter than

the two diameters, which divide the cell into halves and into

Fig. 144. Development of Erythrotrichia. (After Berthold.

quarters. We have only to remember that, for the sum total of

partitions to be a minimum, three only must meet in a point;

and therefore, the 'four quadrantal walls must shift a httle, pro-

ducing the usual httle median partition, or cross-furrow, instead

of one common, central point of junction. This little inter-

mediate wall, however, will be very small, and to all intents and

purposes we may deal with the

case as though we had now to do

with four ec[ual cells, each one of

them a perfect quadrant. And
so our problem is, to find the

shortest line which shall divide the

quadrant of a circle into two

halves of equal area. A radial

partition (Fig. 145, a), starting

from the apex of the quadrant, is

at once excluded, for a reason

similar to that just referred to;

our choice must lie therefore between two modes of division such

as are illustrated in Fig. 145, where the partition is either (as in b)

Fig. 14.5.
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concentric with the outer border of the cell, or else (as in c) cuts

that outer border; in other words, our partition may (b) cut both

radial walls, or (c) may cut one radial wall and the periphery.

These are the two methods of division which Sachs called, respec-

tively, (b) periclinal, and (c) anticlinal*. We may either treat the

walls of the dividing quadrant as already solidified, or at least as

having a tension compared with which that of the incipient

partition film is inconsiderable. In either case the partition must

meet the cell-wall, on either side, at right angles, and (its own
tension and curvature being everywhere uniform) it must take the

form of a circular arc.

Now we find that a flattened cell which is approximately a

quadrant of a circle invariably divides after the manner of

Fig. 145, c, that is to say, by an approximately circular, anticlinal

wall, such as we now recognise in the eight-celled stage of

Erythrotrichia (Fig. 144) ; let us then consider that Nature has

solved our problem for us, and let us work out the actual

geometric conditions.

Let the quadrant OAB {in Fig. 146) be divided into two

parts of equal area, by the circular arc MP. It is required to

determine (1) the position of P upon the arc of the quadrant,

that is to say the angle BOP
; (2) the position of the point M

on the side OA ; and (3) the length of the arc MP in terms of a

radius of the quadrant.

(1) Draw OP; also PC a tangent, meeting OA in C; and

PN, perpendicular to OA. Let us call a a radius ; and 6 the angle

at C, which is obviously equal to OPN, or POB. Then

CP = a cot d; PN = a cos 6; NC = CP cos 6 = a . cos^ ^/sin d.

The area of the portion PMN
= \CP'- e - IPN . NC
= \a^ cot^ 6 — la cos d . a cos^ 6/sin 6

= \a^ (cot2 d - cos3 djsm 6).

* There is, I tliink, some ambiguity or disagreement among botanists as to the

use of this latter term : the sense in which I am using it, viz. for any partition

which meets the outer or peripheral wall at right angles (the strictly radial partition

being for the present excluded), is, however, clear.
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And the area of the portion PNA
= 1^2 (77/2 -6)- ION . NP
= ^a^ {ttI2 — 6) — |a sin ^ . a cos 6

= |a2 (77/2 - d-&me . cos 9).

Therefore the area of the whole portion PMA
= a2/2 (7r/2 -6+6 cot^ 6 - cos^ dj&m 6 - sin 6 . cos 6)

= a''/2 (7r/2 -6+6 cot^ 6 - cot 6),

and also, by hypothesis, = f . area of the quadrant, = Tra^/S.

Fig. 14(3.

Hence 6 is defined by the equation

a^/2 (77/2 - ^ + cot2 6 - cot 0) = 77a2/8,

or TTJi- 6 + 6 cot^ ^ - cot 6* = 0.

We may solve this equation by constructing a table (of which

the following is a small portion) for various values of 6.

e
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We see accordingly that the equation is solved (as accurately

as need be) when 6 is an angle somewhat over 34° 38'^ or say

34° 38|'. That is to say, a quadrant of a circle is bisected by a

circular arc cutting the side and the periphery of the quadrant

at right angles, when the arc is such as to include (90° — 34° 38'),

i.e. 55° 22' of the quadrantal arc.

This determination of ours is practically identical with that

which Berthold arrived at by a rough and ready method, without

the use of mathematics. He simply tried various ways of dividing

a quadrant of paper by means of a circular arc, and went on doing

so till he got the weights of his two pieces of paper approximately

equal. The angle, as he thus determined it, was 34-6°, or say

34° 36'.

(2) The position of M on the side of the quadrant OA is

given by the equation OM = a cosec 6 — a cot 6 ; the value of

which expression, for the angle which we have just discovered,

is -3028. That is to say, the radius (or side) of the quadrant will

be divided by the new partition into two parts, in the proportions

of nearly three to seven.

(3) The length of the arc MP is equal to ad cot 6 ; and the

value of this for the given angle is •8751. This is as much as to

say that the curved partition-wall which we are considering is

shorter than a radial partition in the proportion of 8f to 10, or

seven-eights almost exactly.

But we must also compare the length of this curved " antichnal

"

partition-wall {MP) with that of the con-

centric, or periclinal, one {RS, Fig. 147) by

which the quadrant might also be bisected.

The length of this partition is obviously

equal to the arc of the quadrant (i.e. the

peripheral wall of the cell) divided by v'2

;

or, in terms of the radius, = 7r/2V2 = 1-111.

^^* So that, not only is the anticlinal partition

(such as we actually find in nature) notably the best, but the

periclinal one, when it comes to dividing an entire quadrant, is

very considerably larger even than a radial partition.

The two cells into which our original quadrant is now divided,

while they are equal in volume, are of very different shapes ; the
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one is a triangle (MAP) with two sides formed of circular arcs,

and the other is a four-sided figure (MOBP), which we may call

approximately oblong. We cannot say as yet how the triangular

portion ought to divide ; but it is obvious that the least possible

partition-wall which shall bisect the other must run across the

long axis of the oblong, that is to say periclinally. This, also, is

precisely what tends actually to take place. In the following

diagrams (Fig. 148) of a frog's egg dividing under pressure, that

is to say when reduced to the form of a flattened plate, we see,

firstly, the division into four quadrants (by the partitions 1, 2)

;

secondly, the division of each quadrant by means of an anti-

clinal circular arc (3, 3), cutting the peripheral wall of the quadrant

approximately in the proportions of three to seven ; and thirdly.

Fig. 148. Segmentation of frog's egg, under artificial compression.

(After Roux.)

we see that of the eight cells (four triangular and four oblong)

into which the whole egg is now divided, the four which we have

called oblong now proceed to divide by partitions transverse to

their long axes, or roughly parallel to the periphery of the egg.

The question how the other, or triangular, portion of the divided

qudarant will next divide leads us to another well-defined problem,

which is only a slight extension, making allowance for the circular

arcs, of that elementary problem of the triangle we have already

considered. We know now that an entire quadrant must divide

(so that its bisecting wall shall have the least possible area) by

means of an antichnal partition, but how about any smaller

sectors of circles? It is obvious in the case of a small prismatic
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sector, such as that shewn in Fig. 149, that a periclinal partition

is the smallest by which we can possibly bisect the cell ; we want,

accordingly, to know the limits below which the perichnal partition

is always the best, and above which the anticlinal arc, as in the

case of the whole quadrant, has the advantage in regard to small-

ness of surface area.

This may be easily determined ; for the preceding investigation

is a perfectly general one, and the results hold good for sectors

of any other arc, as well as for the quadrant, or arc of 90°. That

is to say, the length of the partition-wall MP is always determined

by the angle 6, according to our equation MP = ad cot 6 ; and

the angle 6 has a definite relation to a, the angle of arc.

OA-yfO.

Fig. 149.

Moreover, in the case of the periclinal boundary, RS (Fig. 147)

{or ab, Fig. 149), we know that, if it bisect the cell,

RS = a . a/V2.

Accordingly, the arc RS will be just equal to the arc MP when

d cot 6 = a/V2.

When ^ cot ^ > a/V2, or MP > RS,

then division will take place as in RS.

When 6 cot 6 < a/V2, or MP < RS,

then division will take place as in MP.
In the accompanying diagram (Fig. 150), I have plotted the

various magnitudes with which we are concerned, in order to

exhibit the several limiting values. Here we see, in the first

place, the curve marked a, which shews on the (left-hand) vertical

scale the various possible magnitudes of that angle (viz. the angle



VIIl] THE BISECTION OF A QUADRANT 365

of arc of the whole sector which we wish to di\dde), and on the

horizontal scale the corresponding values of 6, or the angle which

Angle (6) determining the intersection of the partition -wall with the outer border

of the cell.
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dealing with arcs no greater than a quadrant; and (2), the point

{B) where the angle 6 comes to equal the angle a, for after that

point the construction becomes impossible, since an anticlinal

bisecting partition-wall would be partly outside the cell. The only

partition which, after the point, can possibly exist, is a periclinal

one. This point, as our diagram shews us, occurs when the angles

(a and 6) are each rather under 52°.

Next I have plotted, on the same diagram, and in relation to

the same scales of angles, the corresponding lengths of the two

partitions, viz. RS and MP, their lengths being expressed (on

the right-hand side of the diagram) in relation to the radius of

the circle (a), that is to say the side wall, OA, of our cell.

The limiting values here are (1), C, C , where the angle of arc

is 90°, and where, as we have already seen, the two partition-walls

have the relative magnitudes of MP : RS = 0-875 : 1-111
; (2) the

point D, where RS equals unity, that is to say where the periclinal

partition has the same length as a radial one; this occurs when

a is rather under 82° (cf. the points Z), D'); (3) the point E, where

RS and MP intersect ; that is to say the point at which the two

partitions, periclinal and anticHnal, are of the same magnitude;

this is the case, according to our diagram, when the angle of arc

is just over 62|°. We see from this, then, that what we have

called an anticlinal partition, as MP, is only hkely to occur in

a triangular or prismatic cell whose angle of arc lies between

90° and 62|°. In all narrower or more tapering cells, the periclinal

partition will be of less area, and will therefore be more and more

likely to occur.

The case {F) where the angle a is just 60° is of some interest.

Here, owing to the curvature of the peripheral border, and the

consequent fact that the peripheral angles are somewhat greater

than the apical angle a, the perichnal partition has a very shght

and almost imperceptible advantage over the anticlinal, the

relative proportions being about as MP : RS = 0-73 : 0-72? But if

the equilateral triangle be a plane spherical triangle, i.e. a plane

triangle bounded by circular arcs, then we see that there is no

longer any distinction at all between our two partitions; MP
and RS are now identical.

On the same diagram, I have inserted the curve for values of
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cosec 6 — cot 6 = OM, that is to say the distances from the centre,

along the side of the cell, of the starting-point (M) of the anticlinal

partition. The point C" represents its position in the case of

a quadrant, and shews it to be (as we have already said) about

3/10 of the length of the radius from the centre. If, on the other

hand, our cell be an equilateral triangle, then we have to read off

the point on this curve corresponding to a = 60°, and we find it

at the point F'" (vertically under F), which tells us that the

partition now starts 4-5/10, or nearly halfway, along the radial

wall.

The foregoing considerations carry us a long way in our

investigations of many of the simpler forms of cell-division.

Strictly speaking they are limited to the case of flattened cells,

in which we can treat the problem as though we were simply

partitioning a plane surface. But it is obvious that, though they

do not teach us the whole conformation of the partition which

divides a more compUcated solid into two halves, yet they do, even

in such a case, enlighten us so far, that they tell us the appearance

presented in one plane of the actual solid. And as this is all that

we see in a microscopic section, it follows that the results we have

arrived at will greatly help us in the interpretation of microscopic

appearances, even in comparatively complex cases of cell-division.

Let us now return to our

quadrant cell {OAPB), which we
have found to be divided into

a triangular and a quadrilateral

portion, as in Fig. 147 or Fig. 151

;

and let us now suppose the whole

system to grow, in a uniform

fashion, as a prelude to further

subdivision. The whole quadrant,

growing uniformly (or with equal

radial increments), will still re-

main a quadrant, and it is

obvious, therefore, that for every -^ j^j

new increment of size, more will

be added to the margin of its triangular portion than to the
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narrower margin of its quadrilateral portion; and these incre-

ments will be in proportion to the angles of arc, viz. 55° 22'
:
34° 38',

or as '96 : -60, i.e. as 8 : 5. And accordingly, if we may assume

(and the assumption is a very plausible one), that, just as the

quadrant itself divided into two halves after it got to a certain

size, so each of its two halves will reach the same size before

again dividing, it is obvious that the triangular portion will be

doubled in size, and therefore ready to divide, a considerable

time before the quadrilateral part. To work out the problem in

detail would lead us into troublesome mathematics ; but if

we simply assume that the increments are proportional to the

increasing radii of the circle, we have the following equations :-

—

Let us call the triangular cell T, and the quadrilateral, Q
(Fig. 151) ; let the radius, OA, of the original quadrantal cell

= a = 1 ; and let the increment which is required to add on a

portion equal to T (such as PP'A'A) be called x, and let that

required, similarly, for the doubling of Q be called x'.

Then we see that the area of the original quadrant

^T +Q = l7ra2 = .7854a^

while the area of T ^Q= •S927a^.

The area of the enlarged sector, p'OA',

= {a + xY X (55^ 22') -^ 2 = -4831 (a + xf,

and the area OPA
= a2 X (55° 22') -^ 2 = •4831a2.

Therefore the area of the added portion, T',

= -4831{(a + a;)2-a2}.

And this, by hypothesis,

= T = •3927a2.

We get, accordingly, since a = 1,

a:2 + 2a; - •3927/-4831 = -810,

and, solving,

a; + 1 = VbSi = 1-345, or a; - 0-345.

Working out x' in the same way, we arrive at the approximate

value, a;' + 1 = 1-517.
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This is as much as to say that, supposing each cell tends to

divide into two halves when (and not before) its original size is

doubled, then, in our flattened disc, the triangular cell T will tend

to divide when the radius of the disc has increased by about a

third (from 1 to 1-345), but the quadrilateral cell, Q, will not tend

to divide until the linear dimensions of the disc have increased

by about a half (from 1 to 1-517).

The case here illustrated is of no small general importance.

For it shews us that a uniform and symmetrical growth of the

organism (symmetrical, that is to say, under the limitations of a

plane surface, or plane section) by no means involves a uniform

or symmetrical growth of the individual cells, but may, under

certain conditions, actually lead to inequality among these; and

this inequality may be further emphasised by differences which

arise out of it, in regard to the order of frequency of further

subdivision. This phenomenon (or to be quite candid, this

hypothesis, which is due to Berthold) is entirely independent of

any change or variation in individual surface tensions ; and

accordingly it is essentially different from the phenomenon of

unequal segmentation (as studied by Balfour), to which we have

referred on p. 348.

In this fashion, we might go on to consider the manner, and

the order of succession, in which the subsequent cell-divisions

would tend to take place, as governed by the principle of minimal

areas. But the calculations would grow more diSicult, or the

results got by simple methods would grow less and less exact.

At the same time, some of these results would be of great interest,

and well worth the trouble of obtaining. For instance, the precise

manner in which our triangular cell, T, would next divide would

be interesting to know, and a general solution of this problem is

certainly troublesome to calculate. But in this particular case

we can see that the width of the triangular cell near P is so

obviously less than that near either of the other two angles, that

a circular arc cutting off that angle is bound to be the shortest

possible bisecting line; and that, in short, our triangular cell

will tend to subdivide, just like the original quadrant, into a

triangular and a quadrilateral portion.

But the case will be different next time, because in this new

T. G. 24
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triangle, PRQ, the least width is near the innermost angle, that

at Q ; and the bisecting circular arc will therefore be opposite to Q,

or (approximately) parallel to PR. The importance of this fact is

at once evident; for it means to say that there soon comes a

time when, whether by the division of triangles or of quadrilaterals,

we find only quadrilateral cells adjoining the periphery of our

circular disc. In the subsequent division of these quadrilaterals,

the partitions will arise transversely to their long axes, that is to

say, radially (as U , V) ; and we shall consequently have a super-

ficial or peripheral layer of quadrilateral cells, with sides approxi-

mately parallel, that is to say what we are accustomed to call an

epidermis. And this epidermis or superficial layer will be* in clear

contrast with the more irregularly shaped cells, the products of

triangles and quadrilaterals, which make up the deeper, underlying

layers of tissue.

Fig. 152.

In following out these theoretic principles and others like to

them, in the actual division of living cells, we must always bear

in mind certain conditions and qualifications. In the first place,

the law of minimal area and the other rules which we have arrived

at are not absolute but relative : they are links, and very important

links, in a chain of physical causation ; they are always at work,

but their effects may be overridden and concealed by the operation

of other forces. Secondly, we must remember that, in the great

majority of cases, the cell-system which we have in view is con-

stantly increasing in magnitude by active growth ; and by this

means the form and also the proportions of the cells are continually

liable to alteration, of which phenomenon we have already had

an example. Thirdly, we must carefully remember that, until

our cell-walls become absolutely solid and rigid, they are always

apt to be modified in form owing to the tension of the adjacent
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walls ; and again, that so long as our partition films are fluid or

semifluid, their points and lines of contact with one another may
shift, hke the shifting outhnes of a system of soap-bubbles. This

is the physical cause of the movements frequently seen among

segmenting cells, like those to which Kauber called attention in

the segmenting ovum of the frog, and like those more striking

movements or accommodations which give rise to a so-called

''spiral" type of segmentation.

Bearing in mind, then, these considerations, let us see what

our flattened disc is likely to look Hke, after a few successive

Fig. 153. Diagram of flattened or discoid cell dividing into octants : to shew

gradual tendency towards a position of equilibrium.

divisions into component cells. In Fig. 153, a, we have a diagram-

matic representation of our disc, after it has divided into four

quadrants, and each of these in turn into a triangular and a

quadrilateral portion; but as yet, this figure scarcely suggests

to us anything hke the normal look of an aggregate of living cells.

But let us go a httle further, still limiting ourselves, however,

to the consideration of the eight-celled stage. Wherever one of

our radiating partitions meets the peripheral wall, there will (as

we know) be a mutual tension between the three convergent films,

which will tend to set their edges at equal angles to one another,

angles that is to say of 120°. In consequence of this, the outer

wall of each individual cell will (in this surface view of our disc)

24—2
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be an arc of a circle of which we can determine the centre by the

method used on p. 307 ; and, furthermore, the narrower cells,

that is to say the quadrilaterals, will have this outer border

somewhat more curved than their broader neighbours. We arrive,

then, at the condition shewn in Fig. 153, b. Within the cell,

also, wherever wall meets wall, the angle of contact must tend,

in every case, to be an angle of 120° ; and in no case may more

than three films (as seen in section) meet in a point (c) ; and

this condition, of the partitions meeting three by three, and at

co-equal angles, will obviously involve the curvature of some, if

not all, of the partitions (d) which in our preliminary investigation

we treated as plane. To solve this problem in a general way is

no easy matter; but it is a problem which Nature solves in

every case where, as in the case we are considering, eight bubbles,

or eight cells, meet together in a (plane or curved) surface. An
approximate solution has been given in Fig. 153, d ; and it will now
at once be recognised that this figure has vastly more resemblance

to an aggregate of living cells than had the diagram of Fig. 153, a

with which we began.

Just as we have constructed in this case a series of purely

diagrammatic or schematic figures, so it will be as a rule possible^

to diagrammatise, with but little alteration, the

complicated appearances presented by any ordinary

aggregate of cells. The accompanying little figure

(Fig. 154), of a germinating spore of a Liverwort

(Riccia), after a drawing of Professor Campbell's,
^' "^ ' scarcely needs further explanation : for it is well-nigh a

typical diagram of the method of space-partitioning which we are

now considering. Let us look again at our figures (on p. 359) of the

disc of Erythrotrichia, from Berthold's Monograph of the Bangiaceae

and redraw the earlier stages in diagrammatic fashion. In the

following series of diagrams the new partitions, or those just about

to form, are in each case outhned ; and in the next succeeding

stage they are shewn after setthng down into position, and after

exercising their respective tractions on the walls previously laid

down. It is clear, I think, that these four diagrammatic figures

represent all that is shewn in the first five stages drawn by

Berthold from the plant itself; but the correspondence cannot
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in this case be precisely accurate, for the simple reason that

Berthold's figures are taken from different individuals, and aie

therefore only approximately consecutive and not strictly con-

tinuous. The last of the six drawings in Fig. 144 is already too

bod
Fig. 155. Theoretical arrangement of successive partitions in a discoid

cell; for comparison with Fig. 144.

complicated for diagrammatisation, that is to say it is too com-

plicated for us to decipher with certainty the precise order of

appearance of the numerous partitions which it contains. But

in Fig. 156 I shew one more diagrammatic figure, of a disc which

3 .
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bring about, increasing in complexity with each succeeding stage,

we can see, even at this advanced and complicated stage, a very

considerable resemblance between the actual picture (Fig. 144)

and the diagram which we have here constructed in obedience to

a few simple rules.

In like manner, in the annexed figures, representing sections

through a young embryo of a Moss, we have very little difficulty

in discerning the successive stages that must have intervened

between the two stages shewn : so as to lead from the just divided

quadrants (one of which, by the way, has not yet divided in our

figure (a)) to the stage (b) in which a well-marked epidermal

layer surrounds an at first sight irregular agglomeration of

"fundamental" tissue.

a b

Fig. 157. Sections of embryo of a moss. (After Kienitz-Gerloff.)

In the last paragraph but one, I have spoken of the difficulty

of so arranging the meeting-places of a number of cells that at

each junction only three cell-walls shall meet in a line, and all

three shall meet it at equal angles of 120°. As a matter of fact, the

problem is soluble in a number of ways ; that is to say, when we
have a number of cells, say eight as in the case considered, enclosed

in a common boundary, there are various ways in which their

walls can be made to meet internally, three by three, at equal

angles; and these differences will entail differences also in the

curvature of the walls, and consequently in the shape of the cells.

The question is somewhat complex; it has been dealt with by

Plateau, and treated mathematically by M. Van Kees*.

If within our boundary we have three cells all meeting

* Cit. Plateau, Statiquedes Liquides, i, p. 358.
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internally, they must meet in a point ; furthermore, they tend to

do so at equal angles of 120°, and there is an end of the matter.

If we have four cells, then, as we have already seen, the conditions

are satisfied by interposing a little intermediate wall, the two

extremities of which constitute the meeting-points of three cells

each, and the upper edge of which marks the "polar furrow."

Similarly, in the case of five cells, we require two little intermediate

walls, and two polar furrows ; and we soon arrive at the rule that,

for n cells, we require w — 3 little longitudinal partitions (and

corresponding polar furrows), connecting the triple junctions of

8 CeJ/s \Tvpe

Fig. 158. Various possible arrangements of intermediate partitions, in

groups of 4, 5, 6, 7 or 8 cells.

the cells ; and these little walls, like all the rest within the system,

must be inchned to one another at angles of 120°. Where we

have only one such wall (as in the case of four cells), or only two

(as in the case of five cells), there is no room for ambiguity. But

where we have three little connecting-walls, as in the case of six

cells, it is obvious that we can arrange them in three different

ways, as in the annexed Fig. 159. In the system of seven cells,

the four partitions can be arranged in four ways; and the five

partitions required in the case of eight cells can be arranged in no

less than thirteen different ways, of which Fig. 158 shews some

half-dozen only. It does not follow that, so to speak, these various
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arrangements are all equally good; some are known to be much
more stable than others, and some have never yet been realised

in actual experiment.

The conditions which lead to the presence of any one of them,

in preference to another, are as yet, so far as I am aware, un-

determined, but to this point we shall return.

Examples of these various arrangements meet us at every

turn, and not only in cell-aggregates, but in various cases where

non-rigid and semi-fluid partitions (or partitions that were so to

begin with) meet together. And it is a necessary consequence of

this physical phenomenon, and of the limited and very small

number of possible arrangements, that we get similar appearances,

capable of representation by the same diagram, in the most

diverse fields of biology*.

Fig. 159.

Among the published figures of embryonic stages and other

cell aggregates, we only discern these little intermediate partitions

in cases where the investigator has drawn carefully just what lay

before him, without any preconceived notions as to radial or other

symmetry; but even in other cases we can generally recognise,

without much difficulty, what the actual arrangement was whereby

the cell-walls met together in equilibrium. I have a strong sus-

picion that a leaning towards Sachs's Rule, that one cell-wall tends

to set itself at right angles to another cell-wall (a rule whose strict

limitations, and narrow range of application, we have already

* Even in a Protozoon (Euglena viridis), when kept alive under artificial com-

pression, Ryder found a process of cell-division to occur which he compares to

the segmenting blastoderm of a fish's egg, and which corresponds in its essential

features with that here described. Confrib. Zool. Lab. Univ. Pennsylvania, i,

jDp. 37-50, 1893.
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considered) is responsible for many inaccurate or incomplete

representations of the mutual arrangement of aggregated cells.

In the accompanying series of figures (Figs. 160-167) I have

Fig. 160. Segmenting egg

of Trochus. (After Robert.

)

Fig. 161. Two views of segmenting egg of Cynthia

partita. (After Conklin.)

Fig. 162. (a) Section of apical cone of Salvinia. (After Pringslieim*.)

(b) Diagram of probable actual arrangement.

163. Egg of Pyrosoma.

(After Korotneff).

Fig. 164. Egg of Echinufi, segmenting

under pressure. (After Driesch.)

* Tliis, like many similar figures, is manifestly drawn under the influence of

Sachs's theoretical views, or assumptions, regarding orthogonal trajectories, coaxial

circles, confocal eUipses, etc.
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set forth a few aggregates of eight cells, mostly from drawings of

segmenting eggs. In some cases they shew clearly the manner
in which the cells meet one another, always at angles of 120°,

Fig. 165. (a) Part of segmenting egg of Cephalopod (after Watase);

(6) probable actual arrangement.

Fig. 166. (a) Egg of Echinus; (b) do. of Nereis, under pressure. (After

Driesch).

Fig. 167. (a) Egg of frog, under pressure (after Roux); (6) probable

actual arrangement.

and always with the help of five intermediate boundary walls

within the eight-cell«d system; in other cases I have added a

slightly altered drawing, so as to shew, with as little change as
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possible, the arrangement of boundaries which probably actually

existed, and gave rise to the appearance which the observer drew.

These drawings may be compared with the various diagrams of

Fig. 158, in which some seven out of the possible thirteen arrange-

ments of five intermediate partitions (for a system of eight cells)

have been already set forth.

It will be seen that M. Robert-Tornow's figure of the segmenting

egg of Trochus (Fig. 160) clearly shews the cells grouped after the

fashion of Fig. 158, a. In like manner, Mr Conklin's figure of the

ascidian egg {Cynthia) shews equally clearly the arrangement g.

A sea-urchin egg, segmenting under pressure, as figured by

Driesch, scarcely requires any modification of the drawing to

appear as a diagram of the type d. Turning for a moment to a

botanical illustration, we have a figure of Pringsheim's shewing an

eight-celled stage in the apex of the young cone of Salvinia ; it

is in all probability referable, as in my modified diagram, to type

c. Beside it is figured a very different object, a segmenting egg

of the Ascidian Pyrosoma, after Korotneff ; it may be that this

also is to be referred to type c, but I think it is more easily referable

to type b. For there is a difference between this diagram and

that of Salvinia, in that here apparently, of the pairs of lateral

cells, the upper and the lower cell are alternately the larger, while

in the diagram of Salvinia the lower lateral cells both appear much
larger than the upper ones ; and this difference tallies with the

appearance produced if we fill in the eight cells according to the

type 6 or the type c. In the segmenting cuttlefish egg, there

is again a slight dubiety as to which type it should be referred to,

but it is in all probability referable, like Driesch's Echinus egg,

to d. Lastly, I have copied from Roux a curious figure of the

egg of Rana esculenta, viewed from the animal pole, which appears

to me referable, in all probabiHty, to type g. Of type/, in which

the five partitions form a figure with four re-entrant angles, that

is to say a figure representing the five sides of a hexagon, I have

found no examples among segmenting eggs, and that arrange-

ment in all probability is a very unstable one.

It is obvious enough, without more ado, that these phenomena

are in the strictest and completest way commoii to both plants
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and animals. In other words they tally with, and they further

extend, the general and fundamental conclusions laid down by

Schwann, in his MikrosJiopische Untersuchungen iiher die Ueherein-

stimmung in der Struktur und deni Wachsthuni der Thiere und

Pflansen.

But now that we have seen how a certain limited number of

types of eight-celled segmentation (or of arrangements of eight

cell-partitions) appear and reappear, here and there, throughout

the whole world of organisms, there still remains the very important

question, whether in each particular organism the conditions are

such as to lead to one particular arrangement being predominant,

characteristic, or even invariable. In short, is a particular arrange-

ment of cell-partitions to be looked upon (as the pubUshed figures

of the embryologist are apt to suggest) as a specific character, or

at least a constant or normal character, of the particular organism ?

The answer to this question is a direct negative, but it is only in

the work of the most careful and accurate observers that we find

it revealed. Rauber (whom we have more than once had occasion

to quote) was one of those embryologists who recorded just what

he saw, without prejudice or preconception; as Boerhaave said

of Swammerdam, quod vidit id asseruit. Now Rauber has put on

record a considerable number of variations in the arrangement of

the first eight cells, which form a discoid surface about the dorsal

(or "animal") pole of the frog's egg. In a certain number of

cases these figures are identical with one another in type, identical

(that is to say) save for slight differences in magnitude, relative

proportions, or orientation. But I have selected (Fig. 168) six

diagrammatic figures, which are all essentially different, and these

diagrams seem to me to bear intrinsic evidence of their accuracy

:

the curvatures of the partition-walls, and the angles at which

they meet agree closely with the requirements of theory, and when
they depart from theoretical symmetry they do so only to the

slight extent which we should naturally expect in a material and

imperfectly homogeneous system*.

* Such preconceptions as Rauber entertained were all in a direction likely to

lead him away from such phenomena as he has faithfully depicted. Rauber had
no idea whatsoever of the principles by which we are guided in this discussion,

nor does he introduce at aU the analogy of surface-tension, or any other purely

physical concept. But he was deeply under the influence of Sachs's rule of rect-
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Of these six illustrations, two are exceptional. In Fig. 168, 5,

we observe that one of the eight cells is surrounded on all sides

by the other seven. This is a perfectly natural condition, and

represents, like the rest, a phase of partial or conditional equili-

brium. But it is not included in the series we are now considering,

which is restricted to the case of eight cells extending outwards

to a common boundary. The condition shewn in Fig. 168, 6, is

again peculiar, and is probably rare ; but it is included under the

cases considered on p. 312, in which the cells are not in complete

4 — 5

Fig. 168. Various modes of grouping of eight cells, at the dorsal or

epiblastic pole of the frog's egg. (After Rauber.)

fluid contact, but are separated by little droplets of extraneous

matter; it needs no further comment. But the other four cases

are beautiful diagrams of space-partitioning, similar to those we

have just been considering, but so exquisitely clear that they need

no modification, no "touching-up," to exhibit their mathematical

regularity. It will easily be recognised that in Fig. 168, 1 and 2,

we have the arrangements corresponding to a and d of our diagram

(Fig. 158) : but the other two (i.e. 3 and 4) represent other of the

thirteen possible arrangements, which are not included in that

angular intersection ; and he was accordingly disposed to look upon the configura-

tion represented above in Fig. 168, 6, as the most typical or most primitive.
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diagram. It would be a curious and interesting investigation to

ascertain, in a large number of frogs' eggs, all at this stage of

development, the percentage of cases in which these various

arrangements occur, with a view of correlating their frequency

with the theoretical conditions (so far as they are known, or can

be ascertained) of relative stability. One thing stands out as

very certain indeed : that the elementary diagram of the frog's

egg commonly given in text-books of embryology,—in which the

cells are depicted as uniformly symmetrical quadrangular bodies,

—

is entirely inaccurate and grossly misleading*.

We now begin to realise the remarkable fact, which paay even

appear a startling one to the biologist, that all possible groupings

or arrangements whatsoever of eight cells (where all take part in

the surface of the group, none being submerged or wholly enveloped

by the rest) are referable to some one or other of thirteen types or

forms. And that all the thousands and thousands of drawings

which diligent observers have made of such eight-celled structures,

animal or vegetable, anatomical, histological or embryological, are

one and all representations of some one or another of these thirteen

types :—or rather indeed of somewhat less than the whole thirteen,

for there is reason to believe that, out of the total number of

possible groupings, a certain small number are essentially unstable,

and have at best, in the concrete, but a transitory and evanescent

existence.

Before we leave this subject, on which a vast deal more might

be said, there are one or two points which we must not omit to

consider. Let us note, in the first place, that the appearance

which our plane diagrams suggest of inequality of the several

cells is apt to be deceptive ; for the differences of magnitude

apparent in one plane may well be, and probably generally are,

balanced by equal and opposite differences in another. Secondly,

let us remark that the rule which we are considering refers only

* Cf. Rauber,NeueGrundlagez.K. der Zelle, Morph. Jahrb. vin, 1883, pp. 273.

274

:

"Ich betone noch, dass unter meinen Figuren diejenige gar nicht enthalten ist,

welche zum Typus der Batrachierfurchung gehorig am meisten bekannt ist....Es

haben so ausgezeichnete Beobachter sie als vorhanden beschrieben, dass es mir

nicht einfalien kann, sie iiberhaupt nicht anzuerkennen."
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to angles, and to the number, not to the length of the intermediate

partitions ; it is to a great extent by variations in the length of these

that the magnitudes of the cells may be equalised, or otherwise

balanced, and the whole system brought into equilibrium. Lastly,

there is a curious point to consider, in regard to the number of

actual contacts, in the various cases, between cell and cell. If we

inspect the diagrams in Fig. 169 (which represent three out of our

thirteen possible arrangements of eight cells) we shall see that, in

the case of type b, two cells are each in contact with two others,

two cells with three others, and four cells each with four other cells.

In type a four cells are each in contact with two, two with four,

and two with five. In type/, two are in contact with two, four

with three, and one with no less than seven. In all cases the

Fig. 169.

number of contacts is twenty-six in all ; or, in other words, there

are thirteen internal partitions, besides the eight peripheral walls.

For it is easy to see that, in all cases of n cells with a common
external boundary, the number of internal partitions is 2n — 3

;

or the number of what we call the internal or interfacial contacts

is 2 (2n — 3). But it would appear that the most stable arrange-

ments are those in which the total number of contacts is most

evenly divided, and the least stable are those in which some one

cell has, as in type /, a predominant number of contacts. In a

well-known series of experiments, Roux has shewn how, by means
of oil-drops, various arrangements, or aggregations, of cells can

be simulated ; and in Fig. 170 I shew a number of Roux's figures,

and have ascribed them to what seem to be their appropriate

"types" among those which we have just been considering; but



384 THE FOKMS OF TISSUES [CH.

it will be observed that in these figures of Roux's the drops are not

always in complete contact, a little air-bubble often keeping them

apart at their apical junctions, so that we see the configuration

towards which the system is tending rather than that which it has

fully attained*. The type which we have called/ was found by

Roux to be unstable, the large (or apparently large) drop a"

quickly passing into the centre of the system, and here taking up

a position of equilibrium in which, as usual, three cells meet

throughout in a point, at equal angles, and in which, in this case,

all the cells have an equal number of " interfacial " contacts.

Fig. 170. Aggregations of oil-drops. (After Roux.) Figs. 4—6 represent

successive changes in a single system.

We need by no means be surprised to find that, in such arrange-

ments, the commonest and most stable distributions are those in

which the cell-contacts are distributed as uniformly as possible

between the several cells. We always expect to find some such

tendency to equality in cases where we have to do with small

oscillations on either side of a symmetrical condition.

* Roux's experiments were performed with drops of paraffin suspended in

dilute alcohol, to which a little calcium acetate was added to form a soapy pellicle

over the drops and prevent them from reuniting with one another.
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The rules and principles which we have arrived at from the

point of view of surface tension have a much wider bearing than is

at once suggested by the problems to which we have applied them

;

for in this elementary study of the cell-boundaries in a segmenting

egg or tissue we are on the verge of a difficult and important

subject in pure mathematics. It is a subject adumbrated by

Leibniz, studied somewhat more deeply by Euler, and greatly

developed of recent years. It is the Geometria Situs of Gauss, the

Analysis Situs of Riemann. the Theory of Partitions of Cayley,

and of Spatial Complexes of Listing*. The crucial point for the

biologist to comprehend is, that in a closed surface divided into

a number of faces, the arrangement of all the faces, lines and

points in the system is capable of analysis, and that, when the

number of faces or areas is small, the number of possible arrange-

ments is small also. This is the simple reason why we meet in

such a case as we have been discussing (viz. the arrangement of

a group or system of eight cells) with the same few types recurring

again and again in all sorts of organisms, plants as well as animals,

and with no relation to the lines of biological classification : and

w^hy, further, we find similar configurations occurring to mark
the symmetry, not of cells merely, but of the parts and organs of

entire animals. The phenomena are not " functions," or specific

characters, of this or that tissue or organism, but involve general

principles which lie within the province of the mathematician.

The theory of space-partitioning, to which the segmentation

of the egg gives us an easy practical introduction, is illustrated in

much more complex ways in other fields of natural history. A
very beautiful but immensely comphcated case is furnished by
the "venation" of the wings of insects. Here we have sometimes

(as in the dragon-flies), a general reticulum of small, more or less

hexagonal "cells" : but in most other cases, in flies, bees, butter-

flies, etc., we have a moderate number of cells, whose partitions

always impinge upon one another three by three, and whose

arrangement, therefore, includes of necessity a number of small

intermediate partitions, analogous to our polar furrows. I think

* Cf. (e.g.) Clerk Maxwell, On Reciprocal Figures, etc., Trans. R. 8. E. xxvr,

p. 9, 1870.

T. G. 25
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that a mathematical study of these, including an investigation of

the "deformation" of the wing (that is to say, of the changes in

shape and changes in the form of its "cells" which it undergoes

during the hfe of the individual, and from one species to another)

would be of great interest. In very many cases, the entomologist

relies upon this venation, and upon the occurrence of this or that

intermediate vein, for his classification, and therefore for his

hypothetical phylogeny of particular groups; which latter pro-

cedure hardly commends itself to the physicist or the mathe-

matician.

Another case, geometrically akin but biologically very

different, is to be found in the httle diatoms of the genus Astero-

lampra, and their immediate congeners*. In Asterolampra we

A B c

Pig. 171. (A) Asterolampra inarylandica, Ehr.
;

(B, C) A. variabilis, Grev.

(After Greville.)

have a little disc, in which we see (as it were) radiating spokes of

one material, alternating with intervals occupied on the flattened

wheel-like disc by another (Fig. 171). The spokes vary in number,

but the general appearance is in a high degree suggestive of the

Chladni figures produced by the vibration of a circular plate.

The spokes broaden out towards the centre, and interlock by

visible junctions, which obey the rule of triple intersection, and

accordingly exemplify the partition-figures with which we are

dealing. But whereas we have found the particular arrangement

in which one cell is in contact with all the rest to be unstable,

according to Roux's oil-drop experiments, and to be conspicuous

* See Greville, K. R., Monograph of the Genus Asterolampra, Q.J.M.S. vin,

(Trans.), pp. 102-124, 1860; of. ibid, (n.s.), ii, pp. 41-55, 1862.
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by its absence from our diagrams of segmenting eggs^ here in

Asterolampra, on the other hand, it occurs frequently, and is

indeed the commonest arrangement* (Fig. 171, B). In all proba-

bility, we are entitled to consider this marked difference natural

enough. For we may suppose that in Asterolampra (unlike the

case of the segmenting egg) the tendency is to perfect radial

symmetry, all the spokes emanating from a point in the centre:

such a condition would be eminently unstable, and would break

down under the least asymmetry. A very simple, perhaps the

simplest case, would be that one single spoke should differ slightly

from the rest, and should so tend to be drawn in amid the others,

these latter remaining similar and symmetrical among themselves.

Such a configuration would be vastly less unstable than the

original one in which all the boundaries meet in a point ; and the

fact that further progress is not made towards other configurations

of still greater stability may be sufficiently accounted for by

viscosity, rapid solidification, or other conditions of restraint.

A perfectly stable condition would of course be obtained if, as in

the case of Roux's oil-drop (Fig. 170, 6), one of the cellular spaces

passed into the centre of the system, the other partitions radiating

outwards from its circular wall to the periphery of the whole

system. Precisely such a condition occurs among our diatoms;

but when it does so, it is looked

upon as the mark and characterisa-

tion of the allied genus Arachnoid-

iscus.

In a diagrammatic section of

an Alcyonarian polype (Fig. 172),

we have eight chambers set, sym-

metrically, about a ninth, which

constitutes the "stomach." In this

arrangement there is no difficulty,... Fig. 172. Section of Alcyonarian
tor it IS obvious that, throughout polype.

the system, three boundaries meet

(in plane section) in a point. In many corals we have as

* The same is true of the insect's wing; but in this case I do not hazard a

conjectural explanation.

25—2
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simple, or even simpler conditions, for the radiating calcified

partitions either converge upon a central chamber, or fail to

meet it and end freely. But in a few cases, the partitions or

"septa" converge to meet one another, there being no central

chamber on which they may impinge; and here the manner in

which contact is effected becomes comphcated, and involves

problems identical with those which we are now studying.

In the great majority of corals we have as simple or even

simpler conditions than those of Alcyonium ; for as a rule the

calcified partitions or septa of the coral

either converge upon a central chamber

(or central "columella"), or else fail to

meet it and end freely. In the latter

case the problem of space-partitioning

does not arise ; in the former, however

numerous the septa be, their separate

contacts with the wall of the central

Fig. 173. Heterophyllia angu- chamber comply with our fundamental
lata. (After Nicholson.)

j,^|g according to which three lines and

no more meet in a point, and from this simple and symmetrical

arrangement there is little tendency to variation. But in a few

cases, the septal partitions converge to^ meet one another, there

being no central chamber on which they may impinge ; and here

the manner in which contact is effected becomes comphcated, and

involves problems of space-partitioning identical with those which

we are now studying. In the genus Heterophylha and in a few

alUed forms we have such conditions, and students of the Coelen-

terata have found them very puzzling. McCoy*, their first

discoverer, pronounced these corals to be "totally unlike" any

other group, recent or fossil; and Professor Martin Duncan,

writing a memoir on Heterophyllia and its allies f, described them

as "paradoxical in their anatomy."

The simplest or youngest Heterophylliae known have six septa

(as in Fig. 174, a) ; in the case figured, four of these septa are

conjoined two and two, thus forming the usual triple junctions

together with their intermediate partition-walls : and in the

* Ann. Mag. N. H. (2), m, p. 126, 1849.

t Phil. Trans. CLvn, pp. 643-656, 1867.
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case of the other two we may fairly assume that their proper

and original arrangement was that of our type 6 b (Fig. 158),

though the central intermediate partition has been crowded out

by partial coalescence. When with increasing age the septa

become more numerous, their arrangement becomes exceedingly

variable ; for the simple reason that, from the mathematical

point of view, the number of possible arrangements, of 10, 12

or more cellular partitions in triple contact, tends to increase

with great rapidity, and there is little to choose between many

Fig. 174. Heterophyllia sp. (After Martin Duncan.)

of them in regard to symmetry and equilibrium. But while,

mathematically speaking, each particular case among the multi-

tude of possible cases is an orderly and definite arrangement,

from the purely biological point of view on the other hand no

law or order is recognisable ; and so McCoy described the genus

as being characterised by the possession of septa " destitute of any

order of arrangement, but irregularly branching and coalescing in

their passage from the solid external walls towards some indefinite

point near the centre where the few main lamellae irregularly

anastomose."
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In the two examples figured (Fig. 174), both comparatively

simple ones, it will be seen that, of the main chambers, one is in

each case an unsymmetrical one ; that is to say, there is one

chamber which is in contact with a greater number of its neighbours

than any other, and which at an earlier stage must have had

contact with them all ; this was the case of our type /, in the

eight-celled system (Fig. 158). Such an asymmetrical chamber

(which may occur in a system of any number of cells greater than

six), constitutes what is known to students of the Coelenterata as

a "fossula"; and we may recognise it not only here, but also in

Zaphrentis and its allies, and in a good many other corals besides.

Moreover certain corals are described as having more than one

fossula : this appearance being naturally produced under certain

of the other asymmetrical variations of normal space-partitioning.

Where a single fossula occurs, we are usually told that it is a

symptom of " bilaterality " ; and this is in turn interpreted as

an indication of a higher grade of organisation than is implied

in the purely "radial symmetry" of the commoner types of coral.

The mathematical aspect of the case gives no warrant for this

interpretation.

Let us carefully notice (lest we run the risk of confusing two

distinct problems) that the space-partitioning of Heterophyllia

by no means agrees with the details of that which we have studied

in (for instance) the case of the developing disc of Erythrotrichia

:

the difference simply being that Heterophylha illustrates the

general case of cell-partitioning as Plateau and Van Rees studied

it, while in Erythrotrichia, and in our other embryological and

histological instances, we have found ourselves justified in making

the additional assumption that each new partition divided a cell

into co-equal parts. No such law holds in Heterophylha, whose

case is essentially different from the others : inasmuch as the

chambers whose partition we are discussing in the coral are mere

empty spaces (empty save for the mere access of sea-water) ; while

in our histological and embryological instances, we were speaking

of the division of a cellular unit of living protoplasm. Accordingly,

among other differences, the "transverse" or "periclinal" parti-

tions, which w^ere bound to appear at regular intervals and in

definite positions, when co-equal bisection was a feature of the
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case, are comparatively few and irregular in the earlier stages of

Heterophyllia, though they begin to appear in numbers after the

main, more or less radial, partitions have become numerous, and

when accordingly these radiating partitions come to bound narrow

and almost parallel-sided interspaces ; then it is that the transverse

or periclinal partitions begin to come in, and form what the student

of the Coelenterata calls the "dissepiments" of the coral. We
need go no further into the configuration and anatomy of the

corals ; but it seems to me beyond a doubt that the whole question

of the complicated arrangement of septa and dissepiments through-

out the group (including the curious vesicular or bubble-like

tissue of the Cyathophyllidae and the general structural plan of

Diagrammatic section of a Ctenophore {Eucharis).

the Tetracoralla, such as Streptoplasma and its allies) is well

worth investigation from the physical and mathematical point of

view, after the fashion which is here slightly adumbrated.

The method of dividing a circular, or spherical, system into

eight parts, equal as to their areas but unequal in their peripheral

boundaries, is probably of wide biological application ; that is to

say, without necessarily supposing it to be rigorously followed, the

typical configuration which it yields seems to recur again and

again, with more or less approximation to precision, and under

widely different circumstances. I am inclined to think, for instance,

that the unequal division of the surface of a Ctenophore by its



392 THE FORMS OF TISSUES [CH.

meridian-like ciliated bands is a case in point (Fig. 175). Here, if we

imagine each Quadrant to be twice bisected by a curved anticline,

we shall get what is apparently a close approximation to the actual

position of the cihated bands. The case however is comphcated

by the fact that the sectional plan of the organism is never quite

circular, but always more or less elliptical. One point, at least,

is clearly seen in the symmetry of the Ctenophores; and that is

that the radiating canals which pass outwards to correspond in

position with the ciliated bands, have no common centre, but

diverge from one another by repeated bifurcations, in a manner

comparable to the conjunctions of our cell-walls.

In hke manner I am inclined to suggest that the same principle

may help us to understand the apparently complex arrangement

Fig. 176. Diagrammatic arrangement of partitions, represented by skeletal

rods, in larval Echinoderm (Ophiura).

of the skeletal rods of a larval Echinoderm, and the very complex

conformation of the larva which is brought about by the presence

of these long, slender skeletal radii.

In Fig. 176 I have divided a circle into its four quadrants, and

have bisected each quadrant by a circular arc (BC), passing from

radius to periphery, as in the foregoing cases of cell-division ; and

I have again bisected, in a similar way, the triangular halves of

each quadrant {DD). I have also inserted a small circle in the

middle of the figure, concentric with the large one. If now we

imagine those Unes in the figure which I have drawn black to be

replaced by solid rods we shall have at once the frame-work of an

Ophiurid (Pluteus) larva. Let us imagine all these arms to be
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bent symmetrically downwards, so that the plane of the paper i?

transformed into a spheroidal surface, such as that of a hemisphere,

or that of a tall conical figure with curved sides ; let a membrane

be spread, umbrella-hke, between the outstretched skeletal rods,

and let its margin loop from rod to rod in curves which are possibly

catenaries, but are more probably portions of an "elastic curve,"

and the outward resemblance to a Pluteus larva is now complete.

By various slight modifications, by altering the relative lengths

of the rods, by modifying their curvature or by replacing the curved

rod by a tangent to itself, we can ring the changes which lead us

from one known type of Pluteus to another. The case of the

Bipinnaria larvae of Echinids is certainly analogous, but it be-

comes very much more complicated ; we have to do with a more

Fig. 177. Pluteus-larva of Ophiurid.

complex partitioning of space, and I confess that I am not yet

able to represent the more compUcated forms in so simple a way.

There are a few notable exceptions (besides the various un-

equally segmenting eggs) to the general rule that in cell-division

the mother-cell tends to divide into equal halves ; and one of these

exceptional cases is to be found in connection with the develop-

ment of "stomata" in the leaves of plants. The epidermal cells

by which the leaf is covered may be of various shapes ; sometimes,

as in a hyacinth, they are oblong, but more often they have an

irregular shape in which we can recognise, more or less clearly,

a distorted or imperfect hexagon. In the case of the oblong cells,

a transverse partition will be the least possible, whether the cell

be equally or unequally divided, unless (as we have already seen
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the space to be cut off be a very small one, not more than about

three-tenths the area of a square based on the short side of the

original rectangular cell. As the portion usually cut off is not

nearly so small as this, we get the form of partition shewn in

Fig. 178. Diagrammatic development of Stomata in Sedum. (Cf. fig. in

Sachs's Botany, 1882, p. 103.)

Fig. 179, and the cell so cut off is next bisected by a partition at

right angles to the first; this latter partition splits, and the two

last-formed cells constitute the so-called "guard-cells" of the

stoma. In other cases, as in Fig. 178, there will come a point

where the minimal partition necessary to cut off the required

fraction of the cell-content is no longer a transverse one, but is

a portion of a cylindrical wall (2) cutting off one corner of the

mother-cell. The cell so cut off

is now a certain segment of a

circle, with an arc of approxi-

mately 120° : and its next division

will be by means of a curved wall

cutting it into a triangular and

a quadrangular portion (3). The

triangular portion will continue to

divide in a similar way (4, 5),

>-

Fig. 179. Diagrammatic development ^nd at length (for a reason which

of stomata in Hyacinth. is not yet clear) the partition wall
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between the new-formed cells splits, and again we have the

phenomenon of a "stoma" with its attendant guard-cells. In

Fig. 179 are shewn the successive stages of division, and the

changing curvatures of the various walls which ensue as each

subsequent partition appears, introducing a new tension into the

system.

It is obvious that in the case of the oblong cells of the epidermis

in the hyacinth the stomata will be found arranged in regular rows,

while they will be irregularly distributed over the surface of the

leaf in such a case as we have depicted in Sedum.

While, as I have said, the mechanical cause of the split which

constitutes the orifice of the stoma is not quite clear, yet there

can be little or no doubt that it, like the rest of the phenomenon,

is related to surface tension. It might well be that it is directly

due to the presence underneath this portion of epidermis of the

hollow air-space which the stoma is apparently developed "for

the purpose" of communicating with; this air-surface on both-

sides of the delicate epidermis might well cause such an alteration

of tensions that the two halves of the dividing cell would tend to

part company. In short, if the surface-energy in a cell-air contact

were half or less than half that in a contact between cell and cell,

then it is obvious that our partition would tend to split, and give

us a two-fold surface in contact with air, instead of the original

boundary or interface between one cell and the other. In Professor

•Macallum's experiments, which we have briefly discussed in our

short chapter on Adsorption, it was found that large quantities

of potassium gathered together along the outer walls of the guard-

cells of the stoma, thereby indicating a low surface-tension along

these outer walls. The tendency of the guard-cells to bulge

outwards is so far explained, and it is possible that, under the

existing conditions of restraint, we may have here a force tending,

or helping, to split the two cells asunder. It is clear enough,

however, that the last stage in the development of a stoma, is,

from the physical point of view, not yet properly understood.

In all our foregoing examples of the development of a "tissue'"

we have seen that the process consists in the successive division

of cells, each act of division being accompanied by the formation
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of a boundary-surface, which, whether it become at once a solid

or semi-soHd partition or whether it remain semi-fluid, exercises

in all cases an efiect on the position and the form of the boundary

which comes into being with the next act of division. In contrast

to this general process stands the phenomenon known as "free

cell-formation," in which, out of a common mass of protoplasm,

a number of separate cells are simultaneously, or all but simul-

taneously, differentiated. In a number of cases it happens that,

to begin with, a number of "mother-cells" are formed simul-

taneously, and each of these divides, by two successive divisions.

Fig. 180. Various pollen-grains and spores (after Berthold, Campbell, Goebel

and others). (1) Epilobium; (2) Passiflora; (3) Neottia; (4) Periploca

graeca; (5) Apocynum; (6) Erica; (7) Spore of Osmunda; (8) Tetraspore of

Callithamnion.

into four "daughter-cells." These daughter-cells will tend to group

themselves, just as would four soap-bubbles, into a "tetrad," the

four cells corresponding to the angles of a regular tetrahedron.

For the system of four bodies is evidently here in perfect symmetry

;

the partition-walls and their respective edges meet at equal

angles : three walls everywhere meeting in an edge, and the four

edges converging to a point in the geometrical centre of the

system. This is the typical mode of development of pollen-

grains, common among Monocotyledons and all but universal

among Dicotyledonous plants. By a loosening of the surrounding

tissue and an expansion of the cavity, or anther-cell, in which
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they lie, the pollen-grains afterwards fall apart, and their in-

dividual form will depend upon whether or no their walls have

solidified before this hberation takes place.

For if not, then the separate grains will be

free to assume a spherical form as a con-

sequence of their own individual and un-

restricted growth ; but if they become solid

or rigid prior to the separation of the

tetrad, then they will conserve more or less

completely the plane interfaces and sharp Fig. 18 1. Dividing spore

angles of the elements of the tetrahedron. gi^pbdlT''
^^^*'''

The latter is the case, for instance, in

the pollen-grains of Epilobium (Fig. 180, 1) and in many
others. In the Passion-flower (2) we have an intermediate

condition: where w^e can still see an indication of the facets

where the grains abutted on one another in the tetrad, but

the plane faces have been swollen by growth into spheroidal or

spherical surfaces. It is obvious that there may easily be cases

where the tetrads of daughter-cells are prevented from assuming

the tetrahedral form : cases, that is to say, where the four cells

are forced and crushed into one plane. The figures given by

Goebel of the development of the pollen of Neottia (3, a-e : all

the figures referring to grains taken from a single anther), illustrate

this to perfection; and it will be seen that, when the four cells

lie in a plane, they conform exactly to our typical diagram of the

first four cells in a segmenting ovum. Occasionally, though the

four cells lie in a plane, the diagram seems to fail us, for the cells

appear to meet in a simple cross (as in 5) ; but here we soon

perceive that the cells are not in complete interfacial contact,

but are kept apart by a httle intervening drop of fluid or bubble

of air. The spores of ferns (7) develop in very much the same

way as pollen-grains ; and they also very often retain traces of

the shape which they assumed as members of a tetrahedral figure.

Among the " tetraspores " (8) of the Florideae, or Red Seaweeds,

we have a phenomenon which is in every respect analogous.

Here again it is obvious that, apart from differences in actual

magnitude, and apart from superficial or "accidental" differences

(referable to other physical phenomena) in the way of colour.
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texture and minute sculpture or pattern, it comes to pass, through

the laws of surface-tension and the principles of the geometry of

position, that a very small number of diagrammatic figures will

sufficiently represent the outward forms of all the tetraspores,

four-celled pollen-grains, and other four-celled aggregates which

are known or are even capable of existence.

We have been dealing hitherto (save for some slight exceptions)

with the partitioning of cells on the assumption that the system

either remains unaltered in size or else that growth has proceeded

uniformly in all directions. But we extend the scope of our

enquiry very greatly when we begin to deal with unequal growth,

with growth, that is to say, which produces a greater extension

along some one axis than another. And here we come close in

touch with that great and still (as I think) insufficiently appreciated

generahsation of Sachs, that the manner in which the cells divide

is the result, and not the cause, of the form of the dividing

structure : that the form of the mass is caused by its growth

as a whole, and is not a resultant of the growth of the

cells individually considered*. Such asymmetry of growth

may be easily imagined, and may conceivably arise from a

variety of causes. In any individual cell, for instance, it may
arise from molecular asymmetry of the structure of the cell-wall,

giving it greater rigidity in one direction than another, while all

the while the hydrostatic pressure within the cell remains constant

and uniform. In an aggregate of cells, it may very well arise

from a greater chemical, or osmotic, activity in one than another,

leading to a locahsed increase in the fluid pressure, and to a

corresponding bulge over a certain area of the external surface.

It might conceivably occur as a direct result of the preceding

cell-divisions, when these are such as to produce many peripheral

or concentric walls in one part and few or none in another, with

the obvious result of strengthening the common boundary wall

and resisting the outward pressure of growth in parts where the

former is the case; that is to say, in our dividing quadrant, if

* Sa,chs,Pflanzenphysiologie{Vorlesiingxxiv),'lSS2; cf. Rauber, NeueGrundlage

zui- Kenntniss der Zelle, Morphol. Jahrb. vin, p. 303 seq., 1883; E. B. Wilson,

Cell-lineage of Nereis, Joiirn. of Morphology, vi, p. 448, 1892, etc.
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its quadrangular portion subdivide by periclines, and the triangular

portion by oblique anticlines (as we have seen to be the natural

tendency), then we might expect that external growth would be

more manifest over the latter than over the former areas. As
a direct and immediate consequence of this we might expect a

tendency for special outgrowths, or "buds," to arise from the

triangular rather than from the quadrangular cells; and this

turns out to be not merely a tendency towards which theoretical

considerations point, but a widespread and important factor in the

morphology of the cryptogams. But meanwhile, without en-

quiring further into this compUcated question, let us simply take

it that, if we start from such a simple case as a round cell which

has divided into two halves, or four quarters (as the case may be),

we shall at once get bilateral symmetry about a main axis, and

other secondary results arising therefrom, as soon as one of the

halves, or one of the quarters, begins to shew a rate of growth in

advance of the others ; for the more rapidly growing cell, or the

peripheral wall common to two or more such rapidly growing cells,

will bulge out into an ellipsoid form, and may finally extend

into a cylinder with rounded or ellipsoid end.

This latter very simple case is illustrated in the development

of a pollen-tube, where the rapidly growing cell develops into the

elongated cylindrical tube, and the slow-growing or quiescent part

remains behind as the so-called "vegetative" cell or cells.

Just as we have found it easier to study the segmentation of

a circular disc than that of a spherical cell, so let us begin in the

same way, by enquiring into the divisions which will ensue if the

disc tend to grow, or elongate, in some one particular direction,

instead of in radial symmetry. The figures which we shall then

obtain will not only apply to the disc, but will also represent, in

all essential features, a projection or longitudinal section of a solid

body, spherical to begin with, preserving its symmetry as a solid

of revolution, and subject to the same general laws as we have

studied in the disc*.

* In the following account I follow closely on the lines laid down by Berthold

;

Protojtlasmamechanik, cap. vii. Many botanical phenomena identical and similar

to those here dealt with, are elaborately discussed by Sachs in his Physiology of
Plants (chap, xxvii, pp. 431-459, Oxford, 1887) ; and in his earher papers, Ueber
die Anordnung der Zellen in jiingsten Pflanzentheilen, and Ueber Zellenanordnung
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(1) Suppose, in the first place, that the axis of growth hes

symmetrically in one of the original quadrantal cells of a segmenting

disc ; and let this growing cell elongate with comparative rapidity

before it subdivides. When it does divide, it will necessarily do

so by a transverse partition, concave towards the apex of the

cell : and, as further elongation takes place, the cyUndrical

structure which will be developed thereby will tend to be again

and again subdivided by similar concave transverse partitions.

If at any time, through this process of concurrent elongation and

subdivision, the apical cell become equivalent to, or less than,

a hemisphere, it will next divide by means of a longitudinal, or

Fig. 182.

vertical partition ; and similar longitudinal partitions will arise in

the other segments of the cylinder, as soon as it comes about that

their length (in the direction of the axis) is less than their breadth.

But when we think of this structure in the solid, we at once

perceive that each of these flattened segments of the cylinder,

into which our cylinder has divided, is equivalent to a flattened

circular disc ; and its further division will accordingly tend to

proceed like any other flattened disc, namely into four quadrants,

and afterwards by anticlines and periclines in the usual way.

und Wachsthum (Arb. d. botan. Inst. Wicrzburg, 1878, 1879). But Sachs's treat-

ment differs entirely from that which I adopt and advocate here : his explanations

being based on his "law" of rectangular succession, and involving compUcated

systems of confocal conies, with their orthogonally intersecting elhpses and hyper-

bolas.
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A section across the cylinder, then, will tend to shew us precisely

the same arrangements as we have already so fully studied in

connection with the typical division of a circular cell into quadrants,

and of these quadrants into triangular and quadrangular portions,

and so on.

But there are other possibilities to be considered, in regard to

the mode of division of the elongating quasi-cyhndrical portion, as

it gradually develops out of the growing and bulging quadrantal

cell; for the manner in which this latter cell divides will simply

depend upon the form it has assumed before each successive act

of division takes place, that is to say upon the ratio between its

rate of growth and the frequency of its successive divisions. For,

as we have already seen, if the growing cell attain a markedly

oblong or cylindrical form before division ensues, then the partition

will arise transversely to the long axis ; if it be but a little more

than a hemisphere, it will divide by an obhque partition ; and if

it be less than a hemisphere (as it may come to be after successive

transverse divisions) it will divide by a vertical partition, that is

to say by one coinciding with its axis of growth. An immense

number of permutations and combinations may arise in this way,

and we must confine our illustrations to a small number of cases.

The important thing is not so much to trace out the various

conformations which may arise, but to grasp the fundamental

principle : which is, that the forces which dominate the form of

each cell regulate the manner of its subdivision, that is to say

the form of the new cells into which it subdivides; or in other

words, the form of the growing organism regulates the form and

number of the cells which eventually constitute it. The complex

cell-network is not the cause but the result of the general configura-

tion, which latter has its essential cause in whatsoever physical

and chemical processes have led to a varying velocity of growth

in one direction as compared with another.

In the annexed figure of an embryo of Sphagnum we see a

mode of development almost precisely corresponding to the

hypothetical case which we have just described,—the case, that

is to say, where one of the four original quadrants of the mother-

cell is the chief agent in future growth and development. We
see at the base of our first figure {a), the three stationary, or

T f- 26
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undivided quadrants, one of which has further slowly divided

in the stage 6. The active quadrant

has grown quickly into a cylindrical

structure, which inevitably divides, in

the next place, into a series of trans-

verse partitions ; and accordingly, this

mode of development carries with it

the presence of a single "apical cell,"

whose lower wall is a spherical surface

with its convexity downwards. Each

cell of the subdivided cylinder now ap-

pears as a more or less flattened disc,

whose mode of further sub-division

we may prognosticate according to

our former investigation, to which

subject we shall presently return.

(2) In the next place, still keeping to the case where only one

of the original quadrant-cells continues to grow and develop, let

us suppose that this growing cell falls to be divided when by

growth it has become just a little greater than a hemisphere; it

Fig. 183.

Sphagnum.
Development of

(After Campbell.)

Fig. 184.

will then divide, as in Fig. 184, 2, by an oblique partition, in the

usual way, whose precise position and incHnation to the base will

depend entirely on the configuration of the cell itself, save only,

of course, that we may have also to take into account the possibiUty

of the division being into two unequal halves. By our hypothesis.
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the growth of the whole system is mainly in a vertical direction,

which is as much as to say that the more actively growing proto-

plasm, or at least the strongest osmotic force, will be found

near the apex; where indeed there is obviously more external

surface for osmotic action. It will therefore be that one of

the two cells which contains, or constitutes, the apex which

will grow more rapidly than the other, and which therefore will

be the first to divide, and indeed in any case, it will usually be

this one of the two which will tend to divide first, inasmuch

as the triangular and not the quadrangular half is bound to

constitute the apex*. It is obvious that (unless the act of division

be so long postponed that the cell has become quasi-cylindrical)

it will divide by another oblique partition, starting from, and

running at right angles to, the first. And so division will proceed,

by oblique alternate partitions, each one tending to

be, at first, perpendicular to that on which it is based

and also to the peripheral wall ; but all these points of

contact soon tending, by reason of the equal tensions

of the three films or surfaces which meet there, to form

angles of 120°. There will always be, in such a case,

a single apical cell, of a more or less distinctly

triangular form. The annexed figure of the developing

antheridium of a Liverwort (Riccia) is a typical example

of such a case. In Fia;. 185 which represents a
. . Fio-. 185.

"gemma" of a Moss, we see just the same thing; Gemma of

with this addition, that here the lower of the two ^^^- {^^^^^^
Campbell.)

original cells has grown even more quickly than the

other, constituting a long cylindrical stalk, and dividing in ac-

cordance with its shape, by means of transverse septa.

In all such cases as these, the cells whose development we have

studied will in turn tend to subdivide, and the manner in which

they will do so must depend upon their own proportions ; and in

all cases, as we have already seen, there will sooner or later be

a tendency to the formation of periclinal walls, cutting off an

"epidermal layer of cells," as Fig. 186 illustrates very well.

The method of division by means of oblique partitions is a

common one in the case of ' growing points
'

; for it evidently

* Cf. p. 369.

26—2
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includes all cases in which the act of cell-division does not lag

far behind that elongation which is determined by the specific rate

of growth. And it is also obvious that, under a common type.

Fig. 186. Development of antheridium of Riccia. (After Campbell.)

there must here be included a variety of cases which will, at first

sight, present a very different appearance one from another.

For instance, in Fig. 187 which represents a growing shoot of

Selaginella, and somewhat less diagrammatically in the young

Fig. 187. Section of growing shoot

of Selaginella, diagrammatic.

Fig. 188. Embryo of Jungermannia.

(After Kienitz-Gerloff.)

embryo of Jungermannia (Fig. 188), we have the appearance of

an almost straight vertical partition running up in the axis of the

system, and the primary cell-walls are set almost at right angles

to it,—almost transversely, that is to say to the outer walls and
to the long axis of the structure. We soon recognise, however.
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that the difference is merely a difference of degree. The more

remote the partitions are, that is to say the greater the velocity

of growth relatively to division, the less abrupt will be the

alternate kinks or curvatures of the portions which lie in the

neighbourhood of the axis, and the more will these portions

appear to constitute a single unbroken wall.

(3) But an appearance nearly, if not quite, indistinguishable

from this may be got in another way, namely, when the original

growing cell is so nearly hemispherical that it is actually divided

by a vertical partition, into two quadrants ; and from this vertical

partition, as it elongates, lateral partition-walls will arise on either

side. And by the tensions exercised by these, the vertical partition

will be bent into little portions set at 120° one to another, and the

Fig, 189.

whole will come to look just like that which, in the former case,

was made up of portions of many successive obHque partitions.

Let us now, in one or two cases, follow out a httle further the

stages of cell-division whose beginning we have studied in the last

paragraphs. In the antheridium of Riccia, after the successive

oblique partitions have produced the longitudinal series of cells

shewn in Fig. 186, it is plain that the next partitions will arise

periclinally, that is to say parallel to the outer wall, which in

this particular case represents the short axis of the oblong cells.

The effect is at once to produce an epidermal layer, whose cells

will tend to subdivide further by means of partitions perpendicular

to the free surface, that is to say crossing the flattened cells by

their shortest diameter. The inner mass, beneath the epidermis,

consists of cells which are still more or less oblong, or which become
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definitely so in process of growth ; and these again divide, parallel

to their short axes, into squarish cells, which as usual, by the

mutual tension of their walls, become hexagonal, as seen in a plane

section. There is a clear distinction, then, in form as well as in

position, between the outer covering-cells and those which lie

within this envelope ; the latter are reduced to a condition which

merely fulfils the mechanical function of a protective coat, while

the former undergo less modification, and give rise to the actively

living, reproductive elements.

In Fig. 190 is shewn the development of the sporangium of a

fern (Osmunda). We may trace here the common phenomenon
of a series of oblique partitions, built alternately on one another.

Fig. 190. Development of sporangium of Osmunda. (After Bower.)

and cutting off a conspicuous triangular apical cell. Over the

whole system an epidermal layer has been formed, in the manner

we have described ; and in this case it covers the apical cell also,

owing to the fact that it was of such dimensions that, at one stage

of growth, a perichnal partition wall, cutting off its outer end,

was indicated as of less area than an antichnal one. This periclinal

wall cuts down the apical cell to the proportions, very nearly,

of an equilateral triangle, but the sohd form of the cell is obviously

that of a tetrahedron with curved faces ; and accordingly, the

least possible partitions by which further subdivision can be

effected will run successively parallel to its four sides (or its three

sides when we confine ourselves to the appearances as seen in
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section). The effect, as seen in section, is to cut off on each side

a characteristically flattened cell, oblong as seen in section, still

leaving a triangular (or strictly speaking, a tetrahedral) one in

the centre. The former cells, which constitute no specific structure

or perform no specific physiological function, but which merely

represent certain directions in space towards which the whole

system of partitioning has gradually led, are called by botanists

the "tapetum." The active growing tetrahedral cell which lies

between them, and from which' in a sense every other cell in the

system has been either directly or indirectly segmented off, still

manifests, as it were, its vigour and activity, and now, by

internal subdivision, becomes the mother-cell of the spores.

In all these cases, for simplicity's sake, we have merely con-

sidered the appearances presented in a single, longitudinal, plane

of optical section. But it is not difficult to interpret from these

appearances what would be seen in another plane, for instance

in a transverse section. In our first example, for instance, that

of the developing embryo of Sphagnum (Fig. 183), we can see that,

at appropriate levels, the cells of the original cylindrical row have

divided into transverse rows of four, and then of eight cells. We
may be sure that the four cells represent, approximately, quadrants

of a cyhndrical disc, the four cells, as usual, not meeting in a point,

but intercepted by a small intermediate partition. Again, where

we have a plate of eight cells, we may well imagine that the eight

octants are arranged in what we have found to be the way
naturally resulting from the division of four quadrants, that is to

say into alternately triangular and quadrangular portions ; and

this is found by means of sections to be the case. The accompany-

ing figure is precisely comparable to our previous diagrams of the

arrangement of an aggregate of eight cells in a dividing disc, save

only that, in two cases, the cells have already undergone a further

subdivision.

It follows in like manner, that in a host of cases we meet with

this characteristic figure, in one or other of its possible, and

strictly limited, variations,—in the cross sections of growing

embryonic structures, just as we have already seen that it appears

in a host of cases where the entire system (or a portion of its
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surface) consists of eight cells only. For example, in Fig. 191,

Fig. 191. (A, B,) Sections of younger and older embryos of Phascum;

(C) do. of Adiantmn. (After Kienitz-Gerloff.

)

we have it again, in a section of a young embryo of a moss (Phas-

cum), and in a section of an embryo of a fern (Adiantum). In

Fig. 192 shewing a section through

a growing frond of a sea-weed

(Girardia) we have a case where

the partitions forming the eight

octants have conformed to the

usual type ; but instead of the

usual division by periclines of the

four quadrangular spaces, these

latter are dividing by means of

oblique septa, apparently owing

to the fact that the cell is not

dividing into two equal, but into

two unequal portions. In this last

figure we have a peculiar look of

stiffness or formality, such that it appears at first to bear little

resemblance to the rest. The explanation is of the simplest.

The mode of partitioning differs little (except to some slight

extent in the way already mentioned) from the normal type;

but in this case the partition walls are so thick and become

so quickly comparatively solid and rigid, that the secondary

curvatures due to their successive mutual tractions are here

imperceptible.

A curious and beautiful case, apparently aberrant but which

would doubtless be found conforming strictly to physical laws, if

Fig. 192. Section through frond
of Girardia sphacehria. (After
Goebel.)
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only we clearly understood the actual conditions, is indicated in

the development of the antheridium

of a fern, as described by Strasbiirger.

Here the antheridium develops from

a single cell, whose form has grown

to be something more than a hemi-

sphere ; and the first partition, instead

of stretching transversely across the

cell, as we should expect it to do if

the cell were actually spherical, has

as it were sagged down to come in Kg. 193. Development of anthe-

contact with the base, and so to develop ridium of Pteris. (After

.
Strasbiirger.)

into an annular partition, running

round the lower margin of the cell. The phenomenon is akin to that

cutting off of the corner of a cubical cell by a spherical partition,

of which we have spoken on p. 349, and the annular film is very

easy to reproduce by means of a soap-bubble in the bottom of

a cylindrical dish or beaker. The next partition is a perichnal

one, concentric with the outer surface of the young antheridium

;

and this in turn is followed by a concave partition which cuts off

the apex of the original cell : but which becomes connected with

the second, or periclinal partition in precisely the same annular

fashion as the first partition did with the base of the little

antheridium. The result is that, at this stage, we have four

cell-cavities in the little antheridium: (1) a central cavity;

(2) an annular space around the lower margin
; (3) a narrow annular

or cylindrical space around the sides of the antheridium ; and

(4) a small terminal or apical cell. It is evident that the tendency,

in the next place, will be to subdivide the flattened external cells

by means of anticlinal partitions, and so to convert the whole

structure into a single layer of epidermal cells, surrounding a

central cell within which, in course of time, the antherozoids are

developed.

The foregoing account deals only with a few elementary pheno-

mena, and may seem to fall far short of an attempt to deal in general

with "the forms of tissues." But it is the principle involved,

and not its ultimate and very complex results, that we can alone
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attempt to grapple with. The stock-in-trade of mathematical

physics, in all the subjects with which that science deals, is for the

most part made up of simple, or simplified, cases of phenomena

which in their actual and concrete manifestations are usually too

complex for mathematical analysis ; and when we attempt to

apply its methods to our biological and histological phenomena,

in a prehminary and elementary way, we need not wonder if we

be limited to illustrations which are obviously of a simple kind,

and which cover but a small part of the phenomena with which

the histologist has become familiar. But it is only relatively that

these phenomena to which we have found the method applicable

are to be deemed simple and few. They go already far beyond

the simplest phenomena of all, such as we see in the dividing

Protococcus, and in the first stages, two-celled or four-celled, of

the segmenting egg. They carry us into stages where the cells

are already numerous, and where the whole conformation has

become by no means easy to depict or visualise, without the help

and guidance which the phenomena of surface-tension, the laws

of equilibrium and the principle of minimal areas are at hand

to supply. And so far as we have gone, and so far as we can

discern, we see no sign of the guiding principles failing us, or of

the simple laws ceasing to hold good.



CHAPTER IX

ON CONCRETIONS, SPICULES, AND SPICULAR SKELETONS

The deposition of inorganic material in the Hving body, usually

in the form of calcium salts or of sihca, is a very common and

wide-spread phenomenon. It begins in simple ways, by the

appearance of small isolated particles, crystalline or non-

crystalline, whose form has little relation or sometimes none to

the structure of the organism ; it culminates in the complex

skeletons of the vertebrate animals, in the massive skeletons of

the corals, or in the polished, sculptured and mathematically

regular molluscan shells. Even among many very simple organ-

isms, such as the Diatoms, the Radiolarians, the Foraminifera,

or the Sponges, the skeleton displays extraordinary variety and

beauty, whether by reason of the intrinsic form of its elementary

constituents or the geometric symmetry with which these are

arranged and interconnected.

With regard to the form of these various structures (and this

is all that immediately concerns us here), it is plain that we have

to do with two distinct problems, which however, though

theoretically distinct, may merge with one another. For the

form of the spicule or other skeletal element may depend simply

upon its chemical nature, as for instance, to take a simple but

not the only case, when the form is purely crystalline; or the

inorganic solid material may be laid down in conformity with the

shapes assumed by the cells, tissues or organs, and so be, as it

were, moulded to the shape of the living organism ; and again,

there may well be intermediate stages in which both phenomena

may be simultaneously recognised, the molecular forces playing

their part in conjunction with, and under the restraint of, the

other forces inherent in the system.
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So far as the problem is a purely chemical one, we must deal

with it very briefly indeed; and all the more because special

investigations regarding it have as yet been few, and even the

main facts of the case are very imperfectly known. This at least

is evident, that the whole series of phenomena with which we are

about to deal go deep into the subject of colloid chemistry, and

especially with that branch of the science which deals with the

properties of colloids in connection with capillary or surface

phenomena. It is to the special student of colloid chemistry that

we must ultimately and chiefly look for the elucidation of our

problem*.

In the first and simplest part of our subject, the essential

problem is the problem of crystalhsation in presence of colloids.

In the cells of plants, true crystals are found in comparative

abundance, and they consist, in the great majority of cases, of

calcium oxalate. In the stem and root of the rhubarb, for instance,

in the leaf-stalk of Begonia, and in countless other cases, sometimes

within the cell, sometimes in the substance of the cell-wall, we
find large and well-formed crystals of this salt ; their varieties of

form, which are extremely numerous, are simply the crystalHne

forms proper to the salt itself, and belong to the two systems,

cubic and monoclinic, in one or other of which, according to

the amount of water of crystalhsation, this salt is known to

crystallise. When calcium oxalate crystallises according to the

latter system (as it does when its molecule is combined with two

molecules of water of crystalhsation), the microscopic crystals

have the form of fine needles, or "raphides," such as are very

common in plants ; and it has been found that these are artificially

produced when the salt is crystallised out in presence of glucose

or of dextrin f.

Calcium carbonate, on the other hand, when it occurs in plant-

cells (as it does abundantly, for instance in the "cystoliths" of the

Urticaceae and Acanthaceae, and in great quantities in Melobesia

* There is much information regarding the chemical composition and minera-

logical structure of shells and other organic products in H. C. Sorby's Presidential

Address to the Geological Society (Proc. Geol. Soc. 1879, pp. 56-93); but Sorby
failed to recognise that association with "organic" matter, or with colloid matter

whether living or dead, introduced a new series of purely physical phenomena.

t Vesque, Ann. des Sc. Nat. (Bot.) (5), xix, p. 310, 1874.
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and the other calcareous or "stony" algae), appears in the form

of fine rounded granules, whose inherent crystalline structure

is not outwardly visible, but is only revealed (like that of a

molluscan shell) under polarised light. Among animals, a skeleton

of carbonate of lime occurs under a multitude of forms, of which

we need only mention now a very few of the most conspicuous.

The spicules of the calcareous sponges are triradiate, occasionally

quadriradiate, bodies, with pointed rays, not crystalline in outward

form but with a definitely crystalline internal structure. We shall

Fig. 194. Alcyonarian spicules: Siphonogorgia and Anthogorgia. (After Studer.)

return again to these, and find for them what would seem to be

a satisfactory explanation of their form. Among the Alcyonarian

zoophytes we have a great variety of spicules*, which are some-

times straight and slender rods, sometimes flattened and more or

less striated plates, and still more often rounded or branched

concretions with rough or knobby surfaces (Figs. 194, 200). A
third type, presented by several very different things, such as

a pearl, or the ear-bone of a bony fish, consists of a more or less

* Cf. Kolliker, Icones Histiologicae, 1864, pp. 119, etc.
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rounded body, sometimes spherical, sometimes flattened, in which

the calcareous matter is laid down in concentric zones, denser

and clearer layers alternating with one another. In the develop-

ment of the molluscan shell and in the calcification of a bird's

egg or the shell of a crab, for instance, spheroidal bodies with

similar concentric striation make their appearance ; but instead of

remaining separate they become crowded together, and as they

coalesce they combine to form a pattern of hexagons. In some

cases, the carbonate of lime on being dissolved away by acid

leaves behind it a certain small amount of organic residue ; in

most cases other salts, such as phosphates of lime, ammonia or

magnesia are present in small quantities ; and in most cases if

not all the developing spicule or concretion is somehow or other

so associated with Uving cells that we are apt to take it for granted

that it owes its peculiarities of form to the constructive or plastic

agency of these.

The appearance of direct association with living cells, however,

is apt to be fallacious ; for the actual precipitation takes place,

as a rule, not in actively living, but in dead or at least inactive

tissue* : that is to say in the "formed material" or matrix which

(as for instance in cartilage) accumulates round the living cells,

in the interspaces between these latter, or at least, as often happens,

in connection with the cell-wall or cell-membrane rather than

within the substance of the protoplasm itself. We need not go

the length of asserting that this is a rule without exception ; but,

so far as it goes, it is of great importance and to its consideration

we shall presently return f.

Cognate with this is the fact that it is known, at least in some

cases, that the organism can go on living and multiplying with

apparently unimpaired health, when stinted or even wholly

deprived of the material of w^hich it is wont to make its spicules

* In an interesting paper by Irvine and 8ims Woodhead on the "Secretion of

Carbonate of Lime by Animals" (Proc. E. S. E. xvi, 1889, p. 351) it is asserted

that "lime salts, of whatever form, are deposited only in vitally inactive tissue."

t The tube of Teredo shews no trace of organic matter, but consists of irregular

prismatic crystals : the whole structure •' being identical with that of small veins

of calcite, such as are seen in thin sections of rocks" (Sorby, Proc. Geol. Soc. 1879,

p. 58). This, then, would seem to be a somewhat exceptional case of a shell laid

down completely outside of the animal's external layer of organic or colloid sub-

stance.
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or its shell. Thus, Pouchet and Chabry* have shown that the

eggs of sea-urchins reared in lime-free water develop in apparent

health, into larvae entirely destitute of the usual skeleton of

calcareous rods, and in which, accordingly, the long arms of the

Pluteus larva, which the rods support and distend, are entirely

suppressed. And again, when Foraminifera are kept for genera-

tions in water from which they gradually exhaust the lime, their

shells grow hyaline and transparent, and seem to consist only of

chitinous material. On the other hand, in the presence of excess

of hme, the shells become much altered, strengthened with various

"ornaments," and assuming characters described as proper to

other varieties and even species f.

The crucial experiment, then, is to attempt the formation of

similar structures or forms, apart from the living organism : but,

however feasible the attempt may be in theory, we shall be prepared

from the first to encounter difficulties, and to realise that, though

the actions involved may be wholly within the range of chemistry

and physics, yet the actual conditions of the case may be so

complex, subtle and delicate, that only now and then, and in the

simplest of cases, shall Ave find ourselves in a position to imitate

them completely and successfully. Such an investigation is only

part of that much wider field of enquiry through which Stephane

Leduc and many other workers J have sought to produce, by

synthetic means, forms similar to those of living things ; but it

is a well-defined and circumscribed part of that wider investigation.

When by chemical or physical experiment we obtain configurations

similar, for instance, to the phenomena of nuclear division, or

conformations similar to a pattern of hexagonal cells, or a group

of vesicles which resemble some particular tissue or cell-aggregate,

we indeed prove what it is the main object of this book to illustrate,

namely, that the physical forces are capable of producing particular

organic forms. But it is by no means always that we can feel

perfectly assured that the physical forces which we deal with in

our experiment are identical with, and not merely analogous to,

* C. R. Soc. Biol. Paris (9), i, pp. 17-20, 1889; C. i?. Ac. 8c. cvm, pp. 196-8,

1889.

t Cf. Heron-Allen, Phil. Trans. (B), vol. ccvi, p. 262, 1915

J Sec Leduc, Mechanism of Life (1911), oh. x, for copious references to other

works on the artificial production of "organic" forms.
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the physical forces which, at work in nature, are bringing about

the result which we have succeeded in imitating. In the present

case, however, our enquiry is restricted and apparently simplified

;

we are seeking in the first instance to obtain by purely chemical

means a purely chemical result, and there is little room for

ambiguity in our interpretation of the experiment.

When we find ourselves investigating the forms assumed by

chemical compounds under the peculiar circumstances of associa-

tion with a living body, and when we find these forms to be

characteristic or recognisable, and fomehow different from those

which, under other circumstances, the same substance is wont

to assume, an analogy presents itself to our minds, captivating

though perhaps somewhat remote, between this subject of ours

and certain synthetic problems of the organic chemist. There is

doubtless an essential difference, as well as a difference of scale,

between the visible form of a spicule or concretion and the hypo-

thetical form of an individual molecule; but molecular form is

a very important concept ; and the chemist has not only succeeded,

since the days of Wohler, in synthesising many substances which

are characteristically associated with living matter, but his task

has included the attempt to account for the molecular forms of

certain "asymmetric" substances, glucose, mahc acid and many
more, as they occur in nature. These are bodies which, when
artificially synthesised, have no optical activity, but which, as we
actually find them in organisms, turn (when in solution) the plane

of polarised light in one direction or the other; thus dextro-

glucose and laevomahc acid are common products of plant

metabolism ; but dextromalic acid and laevo-glucose do not occur

in nature at all. The optical activity of these bodies depends,

as Pasteur shewed more than fifty years ago*, upon the form,

right-handed or left-handed, of their molecules, which molecular

asymmetry further gives rise to a corresponding right or left-

handedness (or enantiomorphism) in the crystalline aggregates.

It is a distinct problem in organic or* physiological chemistry,

* Lectures on the Molecular Asymmetry of Natural Organic Compounds,

Chemical Soc. of Paris, 1860, and also in Ostwald's Klassiker d. ex. Wiss. No. 28,

and in Alembic Club Reprints, No. 14, Edinburgh, 1897; of. Richardson, G. M.,

Foundations of Stereochemistry, N. Y. 1901.
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and by no means without its interest for the morphoJogist, to

discover how it is that nature, for each particular substance,

habitually builds up, or at least selects, its molecules in a one-

sided fashion, right-handed or left-handed as the case may be.

It will serve us no better to assert that this phenomenon has its

origin in "fortuity," than to repeat the Abbe Galiani's saying,

"Zes des de la nature sont pipes."

The problem is not so closely related to our immediate subject

that we need discuss it at length ; but at the same time it has its

clear relation to the general question of form in relation to vital

phenomena, and moreover it has acquired interest as a theme

of long-continued discussion and new importance from some

comparatively recent discoveries.

According to Pasteur, there lay in the molecular asymmetry

of the natural bodies and the symmetry of the artificial products,

one of the most deep-seated differences between vital and non-

vital phenomena: he went further, and declared that "this was

perhaps the only w^ell-marked line of demarcation that can at

present [1860] be drawn between the chemistry of dead and of

hving matter." Nearly forty years afterwards the same theme

was pursued and elaborated by Japp in a celebrated lecture*,

and the distinction still has its weight, I believe, in the minds of

many if not most chemists.

"We arrive at the conclusion," said Professor Japp, "that the

production of single asymmetric compounds, or their isolation

from the mixture of their enantiomorphs, is, as Pasteur firmly

held, the prerogative of life. Only the living organism, or the

living intelligence with its conception of asymmetry, can produce

this result. Only asymmetry can beget asymmetry." In these

last words (which, so far as the chemist and the biologist are

concerned, we may acknowledge to be perfectly truef) lies the

* Japp, Stereometrj^ and Vitalism, Brit. Ass. Rep. (Bristol), p. 813, 1898;

cf. also a voluminous discussion in Nature, 1898-9.

f They represent the general theorem of which particular cases are found, for

instance, in the asymmetry of the ferments (or enzymes) which act upon

asymmetrical bodies, the one fitting the other, according to Emil Fischer's well-

known phrase, as lock and key. Cf. his Bedeutung der Stereochemie fiir die

Physiologie, Z. f. physiol. Chemie, v, p. 60, 1899, and various papers in the Ber.

d. d. chem. Ges. from 1894.

T fi 27
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crux of the difficulty ; for they at once bid us enquire whether in

nature, external to and antecedent to life, there be not some
asymmetry to which we may refer the further propagation or

"begetting" of the new asymmetries: or whether in default

thereof, we be rigorously confined to the conclusion, from which

Japp "saw no escape," that "at the moment when life first arose,

a directive force came into play,—a force of precisely the same

character as that which enables the intelligent operator, by the

exercise of his will, to select one crystallised enantiomorph and

reject its asymmetric opposite*."

Observe that it is only the first beginnings of chemical

asymmetry that we need to discover ; for when asymmetry is once

manifested, it is not disputed that it will continue "to beget

asymmetry." A plausible suggestion is now at hand, which if it

be confirmed and extended will supply or at least sufficiently

illustrate the kind of explanation which is required f.

We know in the first place that in cases where ordinary non-

polarised light acts upon a chemical substance, the amount of

chemical action is proportionate to the amount of light absorbed.

We know in the second place J, in certain cases, that light circularly

polarised is absorbed in different amounts by the right-handed or

left-handed varieties, as the case may be, of an asymmetric

substance. And thirdly, we know that a portion of the hght

which comes to us from the sun is already plane-polarised hght,

which becomes in part circularly polarised, by reflection (according

to Jamin) at the surface of the sea, and then rotated in a

particular direction under the influence of terrestrial magnetism.

We only require to be assured that the relation between ab-

sorption of light and chemical activity will continue to hold

good in the case of circularly polarised light; that is to say

* In accordance with Emil Fischer's conception of "asymmetric synthesis,"

it is now held to be more likely that the process is synthetic than analytic : more
likely, that is to sa}% that the plant builds up from the first one asymmetric body

to the exclusion of the other, than that it "selects" or "picks out" (as Japp sup-

posed) the right-handed or the left-handed molecules from an original, optically

inactive, mixture of the two; cf. A. McKenzie, Studies in Asymmetric Synthesis,

Journ. Chem. Soc. (Trans.), Lxxxv, p. 1249, 1904.

f See for a fuller discussion, Hans Przibram, Vitalitdt, 1913, Kap. iv, Stoff-

wechsel (Assimilation und Katalyse).

X Cf. Cotton, ^Jiw. de Chim. et de Phijs. (7), viii, pp. 347-432 (cf. p. 373), 1896.
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that the formation of some new substance or other, under the

influence of light so polarised, will proceed asymmetrically in

consonance with the asymmetry of the light itself ; or conversely,

that the asymmetrically polarised light will tend to more rapid

decomposition of those molecules by which it is chiefly absorbed.

This latter proof is now said to be furnished by Byk*, who asserts

that certain tartrates become unsymmetrical under the continued

influence of the asymmetric rays. Here then we seem to have

an example, of a particular kind and in a particular instance, an

example limited but yet crucial {if confirmed), of an asymmetric-

force, non-vital in its origin, which might conceivably be the

starting-point of that asymmetry which is characteristic of so

many organic products.

The mysteries of organic chemistry are great, and the differences

between its processes or reactions as they are carried out in the

organism and in the laboratory are many f. The actions, catalytic

and other, which go on in the living cell are of extraordinary

complexity. But the contention that they are different in kind

from what we term ordinary chemical operations, or that in the

production of single asymmetric compounds there is actually to

be witnessed, as Pasteur maintained, a "prerogative of life,"

would seem to be no longer safely tenable. And furthermore, it

behoves us to remember that, even though failure continued to

attend all artificial attempts to originate the asymmetric or

optically active compounds which organic nature produces in

abundance, this would only prove that a certain 'physical force, or

mode of physical action, is at work among hving things though

unknown elsewhere. It is a mode of action which we can easily

imagine, though the actual mechanism we cannot set agoing when

we please. And it follows that such a difference between hving

matter and dead would carry us but a little way, for it would still

be confined strictly to the physical or mechanical plane.

Our historic interest in the whole question is increased by the

* Byk, A., Zur Frage der Spaltbarkeit von Razemverbindungen durch Zirkulai-

polarisiertes Licht, ein Beitrag zur primaren Entstehung optisch-activer Substanzen,

Zeitsch.f. j)hysikal. Chemie. xlix, p. 641, 1904. It must be admitted that further

positive evidence on these Unes is still awanting.

t Cf. (int. al.) Emil Fischer, Uniersuchungen ilber Aminosduren, Proteine, etc.

Berlin, 1906.

27—2



420 ON CONCRETIONS, SPICULES, ETC. [ch.

fact, or the great probability, that "the tenacity with which

Pasteur fought against the doctrine of spontaneous generation was

not unconnected with his behef that chemical compounds of one-

sided symmetry could not arise save under the influence of life*."

But the question whether spontaneous generation be a fact or not

does not depend upon theoretical considerations : our negative

response is based, and is so far soundly based, on repeated failures

to demonstrate its occurrence. Many a great law of physical

science, not excepting gravitation itself, has no higher claim on

our acceptance.

Let us return then, after this digression, to the general subject

of the forms assumed by certain chemical bodies when deposited

or precipitated \N^thin the organism, and to the question of how

far these forms may be artificially imitated or theoretically

explained.

Mr George Rainey, of St Bartholomew's Hospital (to whom
we have already referred), and Professor P. Harting, of Utrecht,

were the first to deal A\ith this specific problem. Mr Rainey

pubHshed, between 1857 and 1861, a series of valuable and

thoughtful papers to shew that shell and bone and certain other

organic structures were formed "by a process of molecular

coalescence, demonstrable in certain artificially-formed products f."

Professor Harting, after thirty years of experimental work,

pubHshed in 1872 a paper, which has become classical, entitled

Recherches de MorpJwlogie Synthetique, sur la prodtiction artificielle

de quelqties formations calcaires brganiques ; his aim was to pave

the way for a "morphologic synthetique," as Wohler had laid the

foundations of a "chimie synthetique," by his classical discovery

forty years before.

* Japp, I. c. p. 828.

f Rainey, G., On the Elementary Formation of the Skeletons of Animals, and

other Hard Structures formed in connection with Living Tissue, Brit. For. Med.

Ch. Rev. XX, pp. 4.51—i76, 1857 ; published separately with additions, 8vo. London,

1858. For other papers by Rainey on kindred subjects see Q. J. M. S. vi {Tr.

Microsc. Soc), pp. 41-50, 1858, vn, pp. 212-225, 1859, \Tn, pp. 1-10, 1860.

I (n. s.), pp. 23-32, 1801. Cf. also Ord, W. M., On Molecular Coalescence, and on

the influence exercised by Colloids upon the Forms of Inorganic Matter, Q. J. M. S.

XII, pp. 219-239, 1872; and also the early but still interesting observations of

Mr Charles Hatchett, Chemical Experiments on Zoophytes; with some observa-

tions on the component parts of Membrane, PhiJ. Trans. 1800. pp. 327-402.
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Rainey and Harting used similar methods, and these were

such as many other workers have continued to employ,—partly

with the direct object of explaining the genesis of organic forms

and partly as an integral part of what is now known as Colloid

Chemistry. The whole gist of the method was to bring some soluble

salt of lime, such as the chloride or nitrate, into solution within a

colloid medium, such as gum, gelatine or albumin ; and then to

precipitate it out in the form of some insoluble compound, such

as the carbonate or oxalate. Harting found that, when he added

a little sodium or potassium carbonate to a concentrated solution

of calcium chloride in albumin, he got at first a gelatinous mass,

or "colloid precipitate": which slowly transformed by the

Fig. 195. Calcospherites, or concretions

of calcium carbonate, deposited in

white of egg. (After Harting.)

Fig. 196. A single calco-

spherite, witli central

"nucleus," and striated,

iridescent border. (After

Harting.)

appearance of tiny microscopic particles, at first motionless, but

afterwards as they grew larger shewing the typical Brownian

movement. So far, very much the same phenomena were wit-

nessed whether the solution were albuminous or not, and similar

appearances indeed had been witnessed and recorded by Gustav

Rose, so far back as 1837 * ; but in the later stages the presence

of albuminoid matter made a great difference. Now, after a few

days, the calcium carbonate was seen to be deposited in the form

of large rounded concretions, with a more or less distinct central

nucleus, and with a surrounding structure at once radiate and

* Cf. Quincke, Ueber unsichtbare Fliissigkeitsscliichten, Amt. der Physilc, 1902.
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concentric ; the presence of concentric zones or lamellae, alter-

nately dark and clear, was especially characteristic. These

round " calcospherites " shewed a tendency to aggregate together

Fig. 197. Later stages in the same experiment.

in layers, and then to assume polyhedral, or often regularly

hexagonal, outlines. In this latter condition they closely resemble

Fig. 198, A. Section of shell of Mya; B. Section of hinge-

tooth of do. (After Carpenter.)

the early stages of calcification in a molluscan (Fig. 198), or still

more in a crustacean shell * ; while in their isolated condition

* See for instance other excellent illustrations in Carpenter's article "Shell," in

Todd's Cyclopaedia, vol. iv. pp. 556-571, 1847-49. According to Carpenter, the

shells of the moUusca (and also of the crustacea) are "essentially composed of

cells, consolidated by a deposit of carbonate of lime in their interior." That is

to say, Carpenter supposed that the spherulites, or calcospherites of Harting, were,

to begin with, just so many living protoplasmic cells. Soon afterwards .however.
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they very closely resemble the little calcareous bodies in the

tissues of a trematode or a cestode worm, or in the oesophageal

glands of an earthworm*.

When the albumin was somewhat scanty, or when it was mixed
with gelatine, and especially when a little phosphate of lime was

Fig. 199. Large irregular calcareous concretions, or spicules, deposited in a piece

of dead cartilage, in presence of calcium phosphate, (After Harting.)

Huxley pointed out that the mode of formation, while at first sight "irresistibly

suggesting a cellular structure,... is in reality nothing of the kind," but ^'is simply

the result of the concretionary manner in which the calcareous matter is deposited "
;

ibid. art. "Tegumentary Organs," vol. v, p. 487, 1859.
.
Quekett (Lecttires on

Histology, vol. n, p. 393, 1854, and Q. J. M. S. xi, pp. 95-104. 1863) supported

Carpenter; but Williamson (Histological Features in the Shells of the Crustacea,

Q. J. M. S. VIII, pp. 35-47, 1860) amply confirmed Huxley's view, which in the

end Carpenter himself adopted (The Microsccpe, 1862, p. 604). A like controversy

arose later in regard to corals. Mrs Gordon (M. M. Ogilvie) asserted that the coral

was built up "'of successive layers of calcified cells, which hang together at first by
their cell-walls, and ultimately, as crystalline changes continue, form the individual

laminae of the skeletal structures" {Phil. Trans, clxxxvii, p. 102, 1896): whereas

V. Koch had figured the coral as formed out of a mass of "Kalkconcremente"

or "crystalline spheroids," laid down outside the ectoderm, and precisely similar

both in their early rounded and later polygonal stages (though von Koch was not

aware of the fact) to the calcospherites of Harting (Entw. d. Kalkskelettes von

Asteroides, Mitth. Zool. St. Neapel, in, pp. 284-290, pi. xx. 1882). Lastly Duerden

shewed that external to, and apparently secreted by the ectoderm lies a homo-

geneous organic matrix or membrane, "in which the minute calcareous crystals

forming the skeleton are laid down" (The Coral Sidernstraea radians, etc.. Carnegie

Iii.st. Washington, 1904, p. 34). Cf. also M. M. Ogilvie-Gordon, Q. J. 31. S. xlix.

p. 203. 1905, etc.

* Cf. Claparede. Z. f. w. Z. xix, p. 604. ISfiO.
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added to the mixture, the spheroidal globules tended to become

rough, by an outgrowth of spinous or digitiform projections; and

in some cases, but not without the presence of the phosphate, the

result was an irregularly shaped knobby spicule, precisely similar

to those which are characteristic of the Alcyonaria*.

The rough spicules of the Alcyonaria are extraordinarily variable in shape

and size, as, looking at them from the chemist's or the physicist's point of

view, we should expect them to be. Partly upon the form of these spicules,

and partly on the general form or mode of branching of the entire colony of

Fig. 200. Additional illustrations of Alcyonarian spicules : Eunicea. (After

Studer.)

polypes, a vast number of separate "species" have been based by systematic

zoologists. But it is now admitted that even in specimens of a single species,

from one and the same locahty, the spicules may vary immensely in shape

and size: and Professor Hickson declares (in a paper published while these

sheets are passing through the press) that after many years of laborious work

in striving to determine species of these animal colonies, he feels "quite con-

vinced that we have been engaged in a more or less fruitless taskf".

The formation of a tooth has very lately been shown to be a phenomenon

of the same order. That is to say, " calcification in both dentine and enamel

* .Spicules extremely like those of the Alcyonaria occur also in a few sponges

;

of. (e.g.), Vaughan Jennings, Journ. Linn.. Soc. xxni, p. 531, pi. 13, fig. 8, 1891.

t Mem. Manchester Lit. and Phil. Soc. lx, p. 11, 1916.
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is in great part a physical phenomenon; the actual deposit in both tissues

occurs in the form of calcospherites, and the process in mammalian tissue

is identical in every point with the same process occiu-ring in lower organisms*."

The ossification of bone, we may be sure, is in the same sense and to the same

extent a physical phenomenon.

The typical structure of a calcospherite is no other than that

of a pearl, nor does it differ essentially from that of the otolith

of a mollusc or of a bony fish. (The otohths, by the way, of the

elasmobranch fishes, like those of reptiles and birds, are not

developed after this fashion, but are true crystals of calc-spar.)

Throughout these phenomena, the effect of surface-tension is

manifest. It is by surface-tension that ultra-microscopic particles

are brought together in the first floccular precipitate or coagulum

;

f^

O
Fig. 201. A '"crust" of close-packed

calcareous concretions, precipitated
-r-i- , —. . 11

at the surface of an albuminous Fig. 202. Aggregated calco-

solution. (After Harting.) sphentes. (After Harting.)

by the same agency, the coarser particles are in turn agglutinated

into visible lumps ; and the form of the calcospherites, whether

it be that of the solitary spheres or that assumed in various stages

of aggregation (e.g. Fig. 202) f, is likewise due to the same agency.

From the point of view of colloid chemistry the whole phe-

nomenon is very important and significant; and not the least

significant part is this tendency of the solidified deposits to assume

the form of " spherulites," and other rounded contours. In the

phraseology of that science, we are dealing with a ttvo-phase

system, which finally consists of sohd particles in suspension in

a liquid (the former being styled the dis'perse phase, the latter the

* Mummery, J. H., On Calcification in Enamel and Dentine. Phil. Trans, ccv

(B), pp. 95-lli, 1914.

t The artificial concretion represented in Fig. 202 is identical in appearance

with the concretions found in the kidney of Nautilus, as figured by Willey [Zoological

Results, p. Ixxvi, Fig. 2, 1902).
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dispersion medium). In accordance with a rule first recognised

by Ostwald*, when a substance begins to separate out from a

solution, so making its appearance as a new phase, it always

makes its appearance first as a liquid |. Here is a case in point.

The minute quantities of material, on their way from a state of

solution to a state of "suspension," pass through a liquid to a

solid form ; and their temporary sojourn in the former leaves its

impress in the rounded contours which surface-tension brought

about while the little aggregate was still labile or fluid : while

coincidently with this surface-tension effect upon the surface,

crystallisation tended to take place throughout the little liquid

mass, or in such portion of it as had not yet consolidated and

crystallised.

(After Harting.)

Where we have simple aggregates of two or three calcospherites,

the resulting figure is precisely that of so many contiguous soap-

bubbles. In other cases, composite forms result which are not

so easily explained, but which, if we could only account for them,

would be of very great interest to the biologist. For instance,

when smaller calcospheres seem, as it were, to invade the substance

of a larger one, we get curious conformations which in the closest

possible way resemble the outlines of certain of the Diatoms

(Fig. 203). Another very curious formation, which Harting calls

a "conostat," is of frequent occurrence, and in it we see at least

a suggestion of analogy with the configuration which, in a proto-

plasmic structure, we have spoken of as a "collar-cell." The

* Of. Taylor's Chemistry of Colloids, p. 18, etc., 191.5.

•j- This rule, undreamed of by Errera, supports and justifies the cardinal

assumption (of which we have had so much to «ay in discussing the forms of cells

and tissues) that the incipient cell-wall behaves as, and indeed actually is, a liquid

film (cf. p. 306).
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conostats, which are formed in the surface layer of the solution,

consist of a portion of a spheroidal calcospherite, whose upper

part is continued into a thin spheroidal collar, of somewhat larger

radius than the solid sphere ; but the precise manner in which

the collar is formed, possibly around a bubble of gas, possibly

about a vortex-like difiusion-current* is not obvious.

Among these various phenomena, the concentric striation

observed in the calcospherite has acquired a special interest and

importance f. It is part of a phenomenon now widely known, and

recognised as an important factor in colloid chemistry, under the

name of "Liesegang's Rings J."

Fig. 204. Conostats. (After Harting.)

If we dissolve, for instance, a little bichromate of potash in

gelatine, pour it on to a glass plate, and after it is set place upon

it a drop of silver nitrate solution, there appears in the course

of a few hours the phenomenon of Liesegang's rings. At first the

silver forms a central patch of abundant reddish brown chromate

precipitate ; but around this, as the silver nitrate diffuses slowly

through th'e gelatine, the precipitate no longer comes down in

a continuous, uniform layer, but forms a series of zones, beautifully

regular, which alternate with clear interspaces of jelly, and which

stand farther and farther apart, in logarithmic ratio, as they

recede from the centre. For a discussion of the raison d'etre of

* Cf. p. 254.

f Cf. Harting, op. cit., pp. 22, 50: "J'avais cm d'abord qne ces couches

concentriques etaient produites par I'alternance de la chaleur ou de la lumiere,

pendant le jour et la nuit. Mais I'experience, expressement instituee pour

examiner cette question, y a repondu negativement."

X Liesegang, R. E., Ueber die Schichtungen bei Diffusionen, Leipzig, 1907, and

other earlier papers.
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this phenomenon, still somewhat problematic, the student must

consult the text-books of physical and colloid chemistry*.

But, speaking very generally, we may say the appearance of

Liesegang's rings is but a particular and striking case of a more

general phenomenon, namely the influence on crystallisation of

the presence of foreign bodies or "impurities," represented in this

case by the "gel" or colloid matrix |. Faraday shewed long ago

that to the presence of slight impurities might be ascribed the

banded structure of ice, of banded quartz or agate, onyx, etc.

;

and Quincke and Tomlinson have added to our scanty knowledge

of the same phenomenon {.

Fig. 205. Liesegang's Rings. (After Leduc.)

Besides the tendency to rhythmic action, as manifested in

Liesegang's rings, the association of colloid matter with a crystal-

loid in solution may lead to other well-marked effects. These,

according to Professor J. H. Bowman §, may be grouped somewhat

as follows : (1) total prevention of crystallisation
; (2) suppression of

certain of the lines of crystalline growth
; (3) extension of the crystal

to abnormal proportions, with a tendency for it to become a com-

pound crystal
; (4) a curving or gyrating of the crystal or its parts.

* Cf. Taylor's Chemistry of Colloids, pp. 146-148, 1915.

t Cf. S. C. Bradford, The Liesegang Phenonemon and Concretionary Structure

in Rocks. Nature, xcvii, p. 80. 1916; cf. Sci. Progress, x, p. 369, 1916.

X Cf. Faraday, On Ice of Irregular Fusibility, Phil. Trans., 1858, p. 228;

Researches in Chemistry, etc., 1859, p. 374; Tyndall, Forms of Water, p. 178,

1872; Tomlinson. C, On some effects of small Quantities of Foreign Matter on
Crystallisation, Phil. Mag. (5) xxxi, p. 393, 1891, and other papers.

§ A Study in Crystallisation, /. of Soc. of Chem. Industry, xxv, p. 143, 1906.
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For instance, it would seem that, if the supply of -material to

the growing crystal be not forthcoming in sufficient quantity (as

may well happen in a colloid medium, for lack of convection-

currents), then growth will follow only the strongest lines of

crystallising force, and will be suppressed or partially suppressed

along other axes. The crystal will have a tendency to become
fihform, or "fibrous"; and the raphides of our plant-cells are

a case in point. Again, the long slender crystal so formed, pushing

its way into new material, may initiate a new centre of crystallisa-

tion: we get the phenomenon known as a "relay," along the

Fig. 20H. Relay-crystals of common salt. (After Bowman.)

principal lines of force, and sometimes along subordinate axes as

well. This phenomenon is illustrated in the accompanying figure

of crystallisation -in a colloid medium of common salt; and

it may possibly be that we have here an explanation, or

part of an explanation, of the

compound siliceous spicules of

the Hexactinellid sponges.

Lastly, w^hen the crystallising

force is nearly equalled by

the resistance of the viscous

medium, the crystal takes the

line of least resistance, with

'

very various results. One of

these results would seem to be

a gyratory course, giving to

the crystal a curious wheel-like

shape, as in Fig. 207 ; and other results are the feathery, fern-like

207. Wheel-like crystals in a
colloid. (After Bowman.)
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or arborescent shapes so frequently seen in microscopic crys-

tallisation.

To return to Liesegang's rings, the typical appearance of

concentric rings upon a gelatinous plate may be modified in

various experimental ways. For instance, our gelatinous medium
may be placed in a capillary tube immersed in a solution of the

precipitating salt, and in this case we shall obtain a vertical

succession of bands or zones regularly interspaced : the result being

very closely comparable to the banded pigmentation which we see

in the hair of a rabbit or a rat. In the ordinary plate preparation,

the free surface of the gelatine is under different conditions to the

lower layers and especially to the lowest layer in contact with

the glass ; and therefore it often happens that we obtain a double

series of rings, one deep and the other superficial, which by

occasional blending or interlacing, may produce a netted pattern.

In some cases, as when only the inner surface of our capillary

tube is covered with a layer of gelatine, there is a tendency for

the deposit to take place in a continuous spiral line, rather than

in concentric and separate zones. By such means, according to

Kiister * various forms of annular, spiral and reticulated thickenings

in the vascular tissue of plants may be closely imitated ; and he

and certain other writers have of late been incUned to carry the

same chemico-physical phenomenon a very long way, in the

explanation of various banded, striped, and other rhythmically

successional types of structure or pigmentation. For example,

the striped pigmentation of the leaves in many plants (such as

Eulalia japonina), the striped or clouded colouring of many
feathers or of a cat's skin, the patterns of many fishes, such for

instance as the brightly coloured tropical Chaetodonts and the like,

are all regarded by him as so many instances of "diffusion-figures"

closely related to the typical Liesegang phenomenon. Gebhardt

has made a particular study of the same subject in the case of

•insects t- He declares, for instance, that the banded wings of

Papilio podalirius are precisely imitated in Liesegang's experi-

ments ; that the finer markings on the wings of the Goatmoth

{Cossus Ugni/perda) shew the double arrangement of larger and of

* Ue.ber Zonenbildung in kolloidalen Mediev, Jena, 1913.

t Vcrh. d. d. Zool. Gesellsch. p. 179, 1912.
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smaller intermediate rhythms, likewise manifested in certain cases

of the same kind ; that the alternate banding of the antennae

(for instance in Sesia spheciforniis), a pigmentation not concurrent

with the segmented structure of the antenna, is explicable in the

same way; and that the "ocelli," for instance of the Emperor

moth, are typical illustrations of the common concentric type.

Darwin's well-known disquisition* on the ocellar pattern of the

feathers of the Argus Pheasant, as a result of sexual selection,

will occur to the reader's mind, in striking contrast to this or

to any other direct physical explanation! . To turn from the dis-

tribution of pigment to more deeply seated structural characters,

Leduc has shewn how, for instance, the laminar structure of the

cornea or the lens is again, apparently, a similar phenomenon.

In the lens of the fish's eye, we have a very curious appearance,

the consecutive lamellae being roughened or notched by close-set,

interlocking sinuosities ; and precisely the same appearance, save

that it is not quite so regular, is presented in one of K lister's

figures as the effect of precipitating a little sodium phosphate in

a gelatinous medium. Biedermann has studied, from the sanje

point of view, the structure and development of the molluscan

shell, the problem which Rainey had first attacked more than

fifty years before J ; and Liesegang himself has applied his results

to the formation of pearls, and to the development of bone§.

* Descent of Man, ii, pp. 132-153, 1871.

t As a matter of fact, the phenomena associated with the development of an
"ocellus" are or may be of great complexity, inasmuch as they involve not only

a graded distribution of pigment, but also, in "optical" coloration, a symmetrica]

distribution of structure or form. The subject therefore deserves very careful

disciission, such as Bateson gives to it
(
Variation, chap. xii). This, by the way,

is one of the very rare cases in which Bateson appears inclined to suggest a purely

physical explanation of an organic phenomenon: "The suggestion is strong that

the whole series of rings (in Morpho) may have been formed by some one central

disturbance, somewhat as a series of concentric waves may be formed by the

splash of a stone thrown into a pool, etc."

% Cf. also Sir D. Brewster, On optical properties of Mother of Pearl, Phil. Ti-ans.

1814, p. 397.

§ Biedermann. W., Ueber die Bedeutung von KristaUisationsprozessen der

Skelette wirbelloser Thiere, namentlich der MoUuskenschalen, Z. /. allg. Physiol.

I, p. 154, 1902; Ueber Bau und Entstehung der MoUuskenschale, Jen. Zeitschr.

xxxvi, pp. 1-164, 1902. Cf. also Steinmann, Ueber Schale mid KalkstembUdungen,

Ber. Naturf. Ges. Freiburg i. Br iv, 1889; Liesegang, Naturw. Wochenschr. p. 641,

1910.
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Among all the many cases where this phenomenon of Liese-

gang's comes to the naturalist's aid in explanation of rhythmic or

zonary configurations in organic forms, it has a special interest

where the presence of concentric zones or rings appears, at

first sight, as a sure and certain sign of periodicity of growth,

depending on the seasons, and capable therefore of serving as

a mark and record of the creature's age. This is the case, for

instance, with the scales, bones and otohths of fishes ; and a

kindred phenomena in starch-grains has given rise, in like manner,

to the behef that they indicate a diurnal and nocturnal periodicity

of activity and rest*.

That this is actually the case in growing starch-grains is

generally believed, on the authority of Meyer f ; but while under

certain circumstances a marked alternation of growing and resting

periods may occur, and may leave its impress on the structure

of the grain, there is now great reason to believe that, apart from

such external influences, the internal phenomena of

diffusion may, just as in the typical Liesegang

experiment, produce the well-known concentric

rings. The spherocrystals of inulin, in like manner,

shew, like the " calcospherites " of Harting (Fig.

208), a concentric structure which in all hkehhood

has had no causative impulse save from within,

striation, or concentric lamellation, of the scales and

otoliths of fishes has been much
employed of recent years as a

trustworthy and uninistakeable

mark of the fish's age. There

are difficulties in the way of

accepting this hypothesis, not the

least of which is the fact that

the otolith-zones, for instance,

are extremely well marked even

in the case of some fishes which

spend their lives in deep water.

Fig. 208.

The

Fig. 209. Otoliths of Plaice, showing

four zones or "age-rings." (After

Wallace.

)

* Cf. Biitschli, Ueber die Herstellung kiinstlicher Starkekorner oder von

Spharokrystallen der Starke, Verh. nat.wed. Ver. Heidelberg, \, pp. 457-472, 1896.

f Untersuchungen ilber die Starkekorner, Jena, 1905.
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where the temperature and other physical conditions shew httle

or no appreciable fluctuation with the seasons of the year.

There are, on the other hand, phenomena which seem strongly

confirmatory of the hypothesis : for instance the fact (if it

be fully estabhshed) that in such a fish as the cod, zones of

growth, identical in mimher, are found both on the scales and

in the otoliths*. The subject has become a much debated one,

and this is not the place for its discussion; but it is at least

obvious, with the Liesegang phenomenon in view, that we have

no right to assume that an appearance of rhythm and periodicity

in structure and growth is necessarily bound up with, and

indubitably brought about by, a periodic recurrence of particular

external conditions.

But while in the Liesegang phenomenon we have rhythmic

precipitation which depends only on forces intrinsic to the system,

and is independent of any corresponding rhythmic changes in

temperature or other external conditions, we have not far to seek

for instances of chemico-physical phenomena where rhythmic

alternations of appearance or strvicture are produced in close

relation to periodic fluctuations of temperature. A well-known

instance is that of the Stassfurt deposits, where the rock-salt

alternates regularly with thin layers of " anhydrite," or (in

another series of beds) with " polyhalite f " : and where these

zones are commonly regarded as marking years, and their

alternate bands as having been formed in connection with the

seasons. A discussion, however, of this remarkable and significant

phenomenon, and of how the chemist explains it, by help of the

"phase-rule," in connection with temperature conditions, would

lead us far beyond our scope J.

We now see that the methods by which we attempt to study

the chemical or chemico-physical phenomena which accompany

the development of an inorganic concretion or spicule within the

* Gf. Winge, Me.ddel. fra Komm. for Havundersogelse (Fiskeri), iv, p. 20, Copen-

hagen, 1915.

.f The anhydrite is sulphate of lime (CaS04) ; the polyhalite is a triple sulphate

of lime, magnesia and potash (2CaS04 . MgS04 . K2SO44- 2H2O).

t Cf. van't Hoff, Physical Chemistry in the. Service of the Sciences, p. 99 seq.

Chicago, 1903.

T. a. 28
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body of an organism soon introduce us to a multitude of kindred

phenomena, of which our knowledge is still scanty, and which we
must not attempt to discuss at greater length. As regards our

main point, namely the formation of spicules and other elementary

skeletal forms, we have seen that certain of them may be safely

ascribed to simple precipitation or crystalhsation of inorganic

materials, in ways more or less modified by the presence of

albuminous or other colloid substances. The effect of these

latter is found to be much greater in the case of some crystallisable

bodies than in others. For instance, Harting, and Rainey also,

found as a rule that calcium oxalate was much less affected by

a colloid medium than was calcium carbonate; it shewed in

their hands no tendency to form rounded concretions or "calco-

spherites" in presence of a colloid, but continued to crystalhse,

either normally, or with a tendency to form needles or raphides.

It is doubtless for this reason that, as we have seen, crystals of

calcium oxalate are so common in the tissues of plants, while

those of other calcium salts are rare. But true calcospherites,

or spherocrystals, of the oxalate are occasionally found, for

instance in certain Cacti, and Biitschli* has succeeded in making

them artificially in Harting's usual way, that is to say by crystal-

lisation in a colloid medium.

There link on to these latter observations, and to the statement

already quoted that calcareous deposits are associated with the

dead products rather than with the living cells of the organism,

certain very interesting facts in regard to the solubility of salts

in colloid media, which have been made known to us of late, and

which go far to account for the presence (apart from the form)

of calcareous precipitates mthin the organism f. It has been

shewn, in the first place, that the presence of albumin has a notable

effect on the solubility in a watery solution of calcium salts,

increasing the solubility of the phosphate in a marked degree,

and that of the carbonate in still greater proportion ; but the

* Spharocrystalle von Kalkoxalat bei Kakteen, Ber. d. d. Bot. Gesellsch.

p. 178, 1885.

f Pauli, W. u. Samec, M., Ueber Loslichkeitsbeeinfliissung von Elektrolyten

durch Eiweisskorper, Biochem. Zeitschr. xvii, p. 235, 1910. Some of these results

were known much earUer; cf. Fokker in Pfluger's Archiv, vn, p. 274, 1873; also

Irvine and Sims Woodhead, op. cit. p. 347.
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sulphate is only very little more soluble in presence of albumin

than in pure water, and the rarity of its occurrence within the

organism is so far accounted for. On the other hand, the bodies

derived from the breaking down of the albumins, their "catabolic"

products, such as the peptones, etc., dissolve the calcium salts to

a much less degree than albumin itself; and in the case of the

phosphate, its solubility in them is scarcely greater than in water.

The probabihty is, therefore, that the actual precipitation of the

calcium salts is not due to the direct action of carbonic acid, etc.

on a more soluble" salt (as was at one time believed) ; but to cata-

bolic changes in the proteids of the organism, which tend to throw

down the salts already formed, which had remained hitherto in

albuminous solution. The very slight solubility of calcium phos-

phate under such circumstances accounts for its predominance

in, for instance, mammalian bone*; and wherever, in short, the

supply of this salt has been available to the organism.

To sum up, we see that, whether from food or from sea-water,

calcium sulphate mil tend to pass but little into solution in the

albuminoid substances of the body : calcium carbonate will enter

more freely, but a considerable part of it will tend to remain in

solution : while calcium phosphate will pass into solution in

considerable amount, but will be almost wholly precipitated

again, as the albumin becomes broken down in the normal process

of metabolism.

We have still to wait for a similar and equally illuminating

study of the solution and precipitation of silica, in presence of

organic colloids.

From the comparatively small group of inorganic formations

which, arising within living organisms, owe their form solely to

precipitation or to crystallisation, that is to say to chemical or other

molecular forces, we shall presently pass to that other and larger

group which appear to be conformed in direct relation to the forms

and the arrangement of the cells or other protoplasmic elements |.

* Which, ill 1000 parts of ash, contains about 840 parts of phosphate and

76 parts of calcium carbonate.

T Cf. Dreyer, Fr., Die Principien der Geriistbildung bei Rhizopoden, Spongien

nnd Echinodermen, Jen. Zeitschr. xxvi, pp. 204-468, 1892.

28—2
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The two principles of conformation are both illustrated in the

spicular skeletons of the Sponges.

In a considerable number, but withal a minority of cases, the

form of the sponge-spicule may be deemed sufficiently explained

on the lines of Harting's and Rainey's experiments, that is to say

as the direct result of chemical or physical phenomena associated

with the deposition of lime or of silica in presence of colloids*.

This is the case, for instance, with various small spicules of a

globular or spheroidal form, formed of amorphous silica, con-

^NiW^lf

Fig. 210. Close-packed calcospherites, or so-called "spicules,"

of Astrosclera. (After Lister.)

centrically striated within, and often developing irregular knobs

or tiny tubercles over their surfaces. In the aberrant sponge

Astrosclera'l , we have, to begin with, rounded, striated discs or

globules, which in like manner are nothing more or less than the

* In an anomalous and very remarkable Australian sponge, just described by

Professor Dendy (Nature, May 18, 1916, p. 253) under the name of Collosclerojyhora,

the spicules are "gelatinous," consisting of a gel of coUoid silica with a high

percentage of water. It is not stated whether an organic colloid is present together

with the silica. These gelatinous spicules arise as exudations on the outer surface

of cells, and come to lie in intercellular spaces or vesicles.

•j- Lister, in Willey's Zoological Results, pt iv, p. 459, 1900.
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'calcospherites"' of Harting's experiments; and as these grow

they become closely aggregated together (Fig. 210), and assume an

angular, polyhedral form, once more in complete accordance with

the results of experiment*. Again, in many Monaxonid sponges,

we have irregularly shaped, or branched spicules, roughened or

tuberculated by secondary superficial deposits, and reminding one

of the spicules of some Alcyonaria. These also must be looked

upon as the simple result of chemical deposition, the form of the

deposit being somewhat modified in conformity with the surround-

ing tissues, just as in the simple experiment the form of the con-

cretionary precipitate is affected by the heterogeneity, visible or

invisible, of the matrix. Lastly, the simple needles of amorphous

silica, w^hich constitute one of the commonest types of spicule,

call for little in the w^ay of explanation ; they are accretions or

deposits about a linear axis, or fine thread of organic material,

just as the ordinary rounded calcospherite is deposited about

some minute point or centre of crystallisation, and as ordinary

crystalhsation is often started by a particle of atmospheric dust

;

in some cases they also, like the others, are apt to be roughened

by more irregular secondary deposits, which probably, as in

Harting's experiments, appear irt this irregular form when the

supply of material has become relatively scanty.

Our few foregoing examples, diverse as they are in look and

kind and ranging from the spicules of Astrosclera or Alcyonium

to the otoliths of a fish, seem all to have their free origin in some

larger or smaller fluid-containing space, or cavity of the body

:

pretty much as Harting's calcospheres made their appearance in

the albuminous content of a dish. But we now come at last to

a much larger class of spicular and skeletal structures, for whose

regular and often complex forms some other explanation than the

intrinsic forces of crystallisation or molecular adhesion is mani-

festly necessary. As we enter on this subject, which is certainly

no small or easy one, it may conduce to simplicity, and to brevity.

* The peculiar spicules of Astrosclera are now said to consist of spherules, or

calcospherites, of aragonite, spores of a certain red seaweed forming the nuclei,

or starting-points, of the concretions (R. Kirkpatrick, Proc. R. S. Lxxxiv (B),

p. -u9, 1911.
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if we try to make a rough classification, by way of forecast, of

the chief conditions which we are Ukely to meet with.

Just as we look upon animals as constituted, some of a vast

number of cells, and others of a single cell or of a very few, and

just as the shape of the former has no longer a visible relation to

the individual shapes of its constituent cells, while in the latter

it is cell-form which dominates or is actually equivalent to the

form of the organism, so shall we find it to be, with more or less

exact analogy, in the case of the skeleton. For example, our own
skeleton consists of bones, in the formation of each of which a

vast number of minute living cellular elements are necessarily

concerned ; but the form and even the arrangement of these

bone-forming cells or corpuscles are monotonously simple, and we

cannot find in these a physical explanation of the outward and

visible configuration of the bone. It is as part of a far larger

field of force,—in which we must consider gravity, the action of

various muscles, the compressions, tensions and bending moments

due to variously distributed loads, the whole interaction of a very

complex mechanical system,—that we must explain (if we are to

explain at all) the configuration of a bone.

In contrast to these massive skeletons, or constituents of a

skeleton, we have other skeletal elements whose whole magnitude,

or whose magnitude in some dimension or another, is commensurate

with the magnitude of a single living cell, or (as comes to very

much the same thing) is comparable to the range of action of the

molecular forces. Such is the case with the ordinary spicules of

a sponge, with the delicate skeleton of a Radiolarian, or with the

denser and robuster shells of the Foraminifera. The effect of

scale, then, of which we had so much to say in our introductory

chapter on Magnitude, is bound to be apparent in the study of

skeletal fabrics, and to lead to essential differences between the

big and the little, the massive and the minute, in regard to their

controlling forces and their resultant forms. And if all this be

so, and if the raijge of action of the molecular forces be in truth

the important and fundamental thing, then we may somewhat

extend our statement of the case, and include in it not only

association with the living cellular elements of the body, but also

association with any bubbles, drops, vacuoles or vesicles which
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may be comprised within the bounds of the organism, and which

are (as their names and characters connote) of the order of

magnitude of which we are speaking.

Proceeding a little farther in our classification, we may conceive

each little skeletal element to be associated, in one case, with

a single cell or vesicle, and in another with a cluster or "system"

of consociated cells. In either case there are various possibilities.

For instance, the calcified or other skeletal material may tend

to overspread the entire outer surface of the cell or cluster of cells,

and so tend accordingly to assume some configuration comparable

to that of a fluid drop or of an aggregation of drops ; this, in brief,

is the gist and essence of our story of the foraminiferal shell.

Another common, but very different condition will arise if, in the

case of the cell-aggregates, the skeletal material tends to accumulate

in the interstices between the cells, in the partition-walls which

separate them, or in the still more restricted distribution indicated

by the lines of junction between these partition-walls. Conditions

such as these will go a very long way to help us in our under-

standing of many sponge-spicules and of an immense variety of

radiolarian skeletons. And lastly (for the present), there is a

possible and very interesting case of a skeletal element associated

with the surface of a cell, not so as to cover it like a shell, but

only so as to pursue a course of its own within it, and subject to

the restraints imposed by such confinement to a curved and

limited surface. With this curious condition we shall deal

immediately.

This preliminary and much simplified classification of skeletal

forms (as is evident enough) does not pretend to completeness.

It leaves out of account some kinds of conformation and con-

figuration with which we shall attempt to deal, and others which

we must perforce omit. But nevertheless it may help to clear

or to mark our way towards the subjects which this chapter has

to consider, and the conditions by which they are at least partially

defined.

Among the several possible, or conceivable, types of microscopic

skeletons let us choose, to begin with, the case of a spicule, more

or less simply linear as far as its intrinsic powers of growth are
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concerned, but which owes its now somewhat comphcated form

to a restraint imposed by the individual cell to which it is confined,

and within whose bounds it is generated. The conception of a

spicule developed under such conditions we owe to a distinguished

physicist, the late Professor G. F. FitzGerald.

Many years ago, Sollas pointed out that if a spicule begin to

grow in some particular way, presumably under the control or

constraint imposed by the organism, it continues to grow by

further chemical deposition in the same form or direction even

after it has got beyond the boundaries of the organism or its

cells. This phenomenon is what we see in. and this imperfect

explanation goes so far to account for, the continued growth in

straight lines of the long calcareous spines of Globigerina or

Hastigerina, or the similarly radiating but siliceous spicules of

many Radiolaria. In physical language, if our crystalUne

structure has once begun to be laid down in a definite orientation,

further additions tend to accrue in a like regular fashion and in

an identical direction ; and this corresponds to the phenomenon

of so-called "orientirte Adsorption," as described by Lehmann.

In Globigerina or in Acanthocystis the long needles grow out

freely into the surrounding medium, with nothing to impede their

rectilinear growth and their approximately radiate distribution.

But let us consider some simple cases to illustrate the forms which

a spicule will tend to assume when, striving (as it were) to grow

straight, it comes under the influence of some simple and constant

restraint or compulsion.

If we take any two points on some curved surface, such as

that of a sphere or an ellipsoid, and imagine a string stretched

between them, we obtain what is known in mathematics as a

"geodetic" curve. It is the shortest line which can be traced

between the two points, upon the surface itself; and the most

familiar of all cases, from which the name is derived, is that curve

upon the earth's surface which the navigator learns to follow in

the practice of "great-circle sailing." Where the surface is

spherical, the geodetic is always literally a "great circle," a circle,

that is to say, whose centre is the centre of the sphere. If instead

of a sphere we be dealing with an ellipsoid, the geodetic becomes

a variable figure, according to the position of our two points.
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For obviously, if they lie in a line perpendicular to the long axis

of the ellipsoid, the geodetic which connects them is a circle, also

perpendicular to that axis ; and if they lie in a line parallel to

the axis, their geodetic is a portion of that ellipse about which

the whole figure is a solid of revolution. But if our two points

lie, relatively to one another, in any other direction, then their

geodetic is part of a spiral curve in space, winding over the surface

of the ellipsoid.

To say, as we have done, that the geodetic is the shortest line

between two points upon the surface, is as much as to say that

it is a projection of some particular straight line upon the surface

in question ; and it follows that, if any linear body be confined

to that surface, while retaining a tendency to grow by successive

increments always (save only for its confinement to that surface)

in a straight line, the resultant form which it will assume will be

that of a geodetic. In mathematical language, it is a property

of a geodetic that the plane of any two consecutive elements is

a plane perpendicular to that in which the geodetic lies; or, in

simpler words, any two consecutive elements lie in a straight line

in the plane of the surface, and only diverge from a straight line

in space by the actual curvature of the surface to which they are

restrained.

Let us now imagine a spicule, whose natural tendency is to

grow into a straight linear element, either by reason of its own

molecular anisotropy, or because it is deposited about a thread-

hke axis ; and let us suppose that it is confined either within a

cell-wall or in adhesion thereto ; it at once follows that its line

of growth will be simply a geodetic to the surface of the cell.

And if the cell be an imperfect sphere, or a more or less regular

elhpsoid, the spicule will tend to grow into one or other of three

forms : either a plane curve of circular arc ; or, more commonly,

a plane curve which is a portion of an ellipse ; or, most commonly

of all. a curve which is a portion of a spiral in space. In the

latter case, the number of turns of the spiral will depend, not only

on the length of the spicule, but on the relative dimensions of

the ellipsoidal cell, as well as upon the angle by which the spicule

is inclined to the ellipsoid axes ; but a very common case will

probably be that in which the spicule looks at first sight to be
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a plane C-shaped figure, but is discovered, on more careful inspec-

tion, to lie not in one plane but in a more complicated spiral twist.

Fig. 212.

Fig. 211. Sponge and Holothurian spicules.

This investigation includes a series of forms which are abundantly

represented among actual sponge-spicules, as illustrated in

Figs. 211 and 212. If the spicule be not restricted

to Unear growth, but have a tendency to ex-

pand, or to branch out from a main axis, we shall

obtain a series of more complex figures, all related

to the geodetic system of curves. A very simple

case will arise where the spicule occupies, in the

first instance, the axis of the containing cell,

and then, on reaching its boundary, tends to branch or

spread outwards. We shall now get various figures, in some

of which the spicule will appear as an axis

expanding into a disc or wheel at either

end; and in other cases, the terminal disc

will be replaced, or represented, by a series

of rays or spokes, with a reflex curvature,

corresponding to the spherical or ellipsoid

curvature of the surface of the cell. Such

spicules as these are again exceedingly

common among various sponges (Fig. 213).

Furthermore, if these mechanical methods

of conformation, and others like to these,

be the true cause of the shapes which the

spicules assume, it is plain that the pro-

duction of these spicular shapes is not a specific function of

sponges or of any particular sponge, but that we should expect

Fig. 213. All " ampliidisc "

of Hyalonema.
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the same or very similar phenomena to occur in other organisms,

wherever the conditions of inorganic secretion within closed cells

was very much the same. As a matter of fact, in the group of

Holothuroidea, where the formation of intracellular spicules is a

characteristic feature of the group, all the principal types of

conformation which we have just described can be closely

paralleled. Indeed in many cases, the forms of the Holothurian

spicules are identical and indistinguishable from those of the

sponges*. But the Holothurian spicules are composed of calcium

carbonate while those which we have just described in the case

of sponges are usually, if not always, siliceous : this being just

another proof of the fact that in such cases the form of the

spicule is not due to its chemical nature or molecular structure,

but to the external forces to which, during its growth, the

spicule is submitted.

So much for that comparatively limited class of sponge-

spicules whose forms seem capable of explanation on the hypothesis

that they are developed within, or under the restraint imposed by,

the surface of a cell or vesicle. Such spicules are usually of small

size, as well as of comparatively simple form ; and they are greatly

outstripped in number, in size, and in supposed importance as

guides to zoological classification, by another class of spicules.

This new class includes such as we have supposed to be capable

of explanation on the assumption that they develop in association

(of some sort or another) with the lines of junction of contiguous

cells. They include the triradiate spicules of the calcareous

sponges, the quadriradiate or " tetractinellid " spicules which occur

in the same group, but more characteristically in certain siliceous

sponges known as the Tetractinellidae, and lastly perhaps (though

these last are admittedly somewhat harder to understand) the

six-rayed spicules of the Hexactinellids.

The spicules of the calcareous sponges are commonly tri-

radiate, and the three radii are usually inchned to one another

at equal, or nearly equal angles ; in certain cases, two of the

three rays are nearly in a straight line, and at right angles to the

* See for instance the plates in Theel's Monograph of the Challenger Holo-

thuroidea; also Sollas's Tetractinellida, p. Ixi.
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third*. They are seldom in a plane, but are usually inclined to

one another in a solid, trihedral angle, not easy of precise measure-

ment under the microscope. The three rays are very often

supplemented by a fourth, which is set tetrahedrally, making, that

is to say, coequal angles with the other three. The calcareous

spicule consists mainly of carbonate of lime, in the form of calcite,

with (according to von Ebner) some admixture of soda and*

magnesia, of sulphates and of water. According to the same

writer (but the fact, though it would seem easy to test, is still

disputed) there is no organic matter in the spicule, either in the

form of an axial filament or otherwise, and the appearance of

stratification, often simulating the presence of an axial fibre, is

due to ''mixed crystallisation" of the various constituents. The

spicule is a true crystal, and therefore its existence and its form

are 'primarily due to the molecular forces of crystallisation ; more-

over it is a single crystal and not a group of crystals, as is at once

seen by its behaviour in polarised light. But its axes are not

crystalline axes, and its form neither agrees with, nor in any way
resembles, any one of the many polymorphic forms in which

calcite is capable of crystallising. It is as though it were carved

out of a solid crj^stal ; it is, in fact, a crystal under restraint,

a crystal growing, as it were, in an artificial mould; and this

mould is constituted by the siirrounding cells, or structural

vesicles of the sponge.

We have already studied in an elementary way, but amply

for our present purpose, the manner in which three or more cells,

or bubbles, tend to meet together under the influence of surface-

tension, and also the outwardly similar phenomena which may be

brought about by a uniform distribution of mechanical pressure.

We have seen that when we confine ourselves to a plane assemblage

of such bodies, we find them meeting one another in threes ; that

in a section or plane projection of such an assemblage we see the

partition-walls meeting one another at equal angles of 120° ; that

when the bodies are uniform in size, the partitions are straight

lines, which combine to form regular hexagons ; and that when

* For very numerous illustrations of the triradiate and quadriradiate spicules

of the calcareous sponges, see {int. al.), papers by Dendy [Q. J. M. 8. xxxv, 1893),

Minchin [P. Z. S. 1904), Jenkin (P. Z. S. 1908), etc.
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the bodies are unequal in size, the partitions are curved, and

combine to form other and less regular polygons. It is plain,

accordingly, that in any flattened or stratified assemblage of such

cells, a solidified skeletal deposit which originates or accumulates

either between the cells or within the thickness of their mutual

partitions, will tend to take the form of triradiate bodies, whose

rays (in a typical case) will be set at equal angles of ] 20° (Fig. 214. F).

And this latter condition of equality will be open to modification

Fig. 214. Spicules of Grantia and other calcareous sponges.

(After Haeckel.)

in various ways. It will be modified by any inequality in the

specific tensions of adjacent cells ; as a special case, it will be apt

to be greatly modified at the surface of the system, where a spicule

happens to be formed in a plane perpendicular to the cell-layer,

so that one of its three rays hes between two adjacent cells and

the other two are associated with the surface of contact between

the cells and the surrounding medium ; in such a case (as in the

cases considered in connection with the forms of the cells themselves
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on p. 314)^ we shall tend to obtain a spicule with two equal angles

and one unequal (Fig. 214, .4, C). In the last case, the two outer,

or superficial rays, will tend to be markedly curved. Again, the

equiangular condition will be departed from, and more or less

curvature will be imparted to the rays, wherever the cells of the

system cease to be uniform in size, and when the hexagonal

symmetry of the system is lost accordingly. Lastly, although we
speak of the rays as meeting at certain definite angles, this state-

ment applies to their axes, rather than to the rays themselves.

For, if the triradiate spicule be developed in the interspace between

three juxtaposed cells, it is obvious that its sides will tend to be

concave, for the interspace between our three contiguous equal

circles is an equilateral, curvihnear triangle; and even if our

spicule be deposited, not in the space between our three cells,

but in the thickness of the intervening wall, then«we may recollect

(from p. 297) that the several partitions never actually meet at

sharp angles, but the angle of contact is always bridged over by

a small accumulation of material (varying in amount according

to its fluidity) whose boundary takes the form of a circular arc,

and which constitutes the "bourrelet" of Plateau.

In any sample of the triradiate spicules of Grantia, or in any

series of careful drawings, such as those of Haeckel among others,

we shall find that all these various configurations are precisely

and completely illustrated.

The tetrahedral, or rather tetractinellid, spicule needs no

explanation in detail (Fig. 214, D, E). For just as a triradiate

spicule corresponds to the case of three cells in mutual contact,

so does the four-rayed spicule to that of a solid aggregate of four

cells : these latter tending to meet one another in a tetrahedral

system, shewing four edges, at each of which four surfaces meet,

the edges being inchned to one another at equal angles of about

109°. And even in the case of a single layer, or superficial layer,

of cells, if the skeleton originate in connection with all the edges

of mutual contact, we shall, in complete and typical cases, have

a four- rayed spicule, of which one straight limb will correspond

to the line of junction between the three cells, and the other three

limbs (which will then be curved limbs) will correspond to the edges

where two cells meet one another on the surface of the system.
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But if such a physical explanation of the forms of our spicules

is to be accepted, we must seek at once for some physical agency

by which we may explain the presence of the solid material just

at the junctions or interfaces of the cells, and for the forces by

which it is confined to, and moulded to the form of, these inter-

cellular or interfacial contacts. It is to Dreyer that we chiefly

owe the physical or mechanical theory of spicular conformation

which I have just described,—a theory which ultimately rests

on the form assumed, under surface-tension, by an aggregation

of cells or vesicles. But this fundamental point being granted,

we have still several possible alternatives by which to explain the

details of the phenomenon.

Dreyer, if I understand him aright, was content to assume that

the solid material, secreted or excreted by the organism, accumu-

lated in the interstices between the cells, and was there subjected

to mechanical pressure or constraint as the cells got more and

more crowded together by their own growth and that of the

system generally. As far as the general form of the spicules goes,

such explanation is not inadequate, though under it we may have

to renounce some of our assumptions as to what takes place at

the outer surface of the system.

But 'in all (or most) cases where, but a few years ago, the

concepts of secretion or excretion seemed precise enough, we are

now-a-days inchned to turn to the phenomenon of adsorption as

a further stage towards the elucidation of our facts. Here we
have a case in point. In the tissues of our sponge, wherever two

cells meet, there we have a definite surface of contact, and there

accordingly we have a manifestation of surface-energy ; and the

concentration of surface-energy will tend to be a maximum at

the lines or edges whereby the three, or four, such surfaces are

conjoined. Of the micro-chemistry of the sponge-cells our

ignorance is great; but (without venturing on any hypothesis

involving the chemical details of the process) we may safely assert

that there is an inherent probabihty that certain substances will

tend to be concentrated and ultimately deposited just in these lines

of intercellular contact and conjunction. In other words, adsorp-

tive concentration, under osmotic pressure, at and in the surface-

film which constitutes the mutual boundary between contiguous
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cells^ emerges as an alternative (and, as it seems to me, a highly

preferable alternative) to Dreyer's conception of an accumulation

under mechanical pressure in the vacant spaces left between one

cell and another.

But a purely chemical, or purely molecular adsorptioD, is not

the only form of the hypothesis on which we may rely. For

from the purely physical point of view^ angles and edges of contact

between adjacent cells will be loci in the field of distribution of

surface-energy, and any material particles whatsoever will tend

to undergo a diminution of freedom on entering one of those

boundary regions. In a very simple case, let us imagine a couple

of soap bubbles in contact with one another. Over the surface

of each bubble there glide in every direction, as usual, a multitude

of tiny bubbles and droplets ; but as soon as these find their way
into the groove or re-entrant angle between the two bubbles,

there their freedom of movement is so far restrained, and out of

that groove they have httle or no tendency to emerge. A cognate

phenomenon is to be witnessed in microscopic sections of steel or

other metals. Here, amid the "crystalline" structure of the

metal (where in cooling its imperfectly homogeneous material has

developed a cellular structure, shewing (in section) hexagonal or

polygonal contours), we can easily observe, as Professor Peddie

has shewn me, that the little particles of graphite and other

foreign bodies common in the matrix, have tended to aggregate

themselves in the walls and at the angles of the polygonal

cells—this being a direct result of the diminished freedom

which the particles undergo on entering one of these boundary

regions*.

It is by a combination of these two principles, chemical adsorp-

tion on the one hand, and physical quasi-adsorption or concentration

of grosser particles on the other, that I conceive the substance

of the sponge-spicule to be concentrated and aggregated at the

cell boundaries; and the forms of the triradiate and tetractinellid

spicules are in precise conformity with this hypothesis. A few

general matters, and a few particular cases, remain to be con-

sidered.

It matters little or not at all, for the phenomenon in question,

* Cf. again Benard's Tourhillons ceUulaires, Ann. de Chimie, 1901, p. S-l.
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what is the histological nature or " grade " of the vesicular structures

on which it depends. In soi;ne cases (apart from sponges), they

may be no more than the little alveoli of the intracellular proto-

plasmic network, and this would seem to be the case at least in

one known case, that of the protozoan Entosolenia aspera, in which,

within the vesicular protoplasm of the single cell, Mobius has

described tiny spicules in the shape of httle tetrahedra with

concave sides. It is probably also the case in the small beginnings

of the Echinoderm spicules, which are likewise intracellular, and

are of similar shape. In the case of our sponges we have many
varying conditions, which we need not attempt to examine in

detail. In some cases there is evidence for believing that the

spicule is formed at the boundaries of true cells or histological

units. But in the case of the larger triradiate or tetractinellid

spicules of the sponge-body, they far surpass in size the actual

"cells"; we find them lying, regularly and symmetrically

arranged, between the "pore-canals" or "cihated chambers,"

and it is in conformity with the shape and arrangement of these

rounded or spheroidal structures that their shape is assumed.

Again, it is not necessarily at variance with our hypothesis

to find that, in the adult sponge, the larger spicules may greatly

outgrow the bounds not only of actual cells but also of the

ciliated chambers, and may even appear to project freely from the

surface of th6 sponge. For we have already seen that the spicule

is capable of growing, without marked change of form, by further

deposition, or crystallisation, of layer upon layer of calcareous

molecules, even in an artificial solution; and we are entitled to

believe that the same process may be carried on in the tissues of

the sponge, without greatly altering the symmetry of the spicule,

long after it has established its characteristic form of a system of

slender trihedral or tetrahedral rays.

Neither is it of great importance to our hypothesis whether

the rayed spicule necessarily arises as a single structure, or does

so from separate minute centres of aggregation. Minchin has

shewn that, in some cases at least, the latter is the case ; the

spicule begins, he tells us, as three tiny rods, separate from one

another, each developed in the interspace between two sister-

cells, which are themselves the results of the division of one of a

T. G. 29
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little trio of cells ; and the little rods meet and fuse together while

still very minute, when the whole spicule is only about ^^ of a

millimetre long. At this stage, it is interesting to learn that the

spicule is non-crystalline ; but the new accretions of calcareous

matter are soon deposited in crystalline form.

This observation threw considerable difficulties in the way of

former mechanical theories of the conformation of the spicule, and

was quite at variance with Dreyer's theory, according to which

the spicule was bound to begin from a central nucleus coinciding

with the meeting-place of the three contiguous cells, or rather the

interspace between them. But the difficulty is removed when we
import the concept of adsorption ; for by this agency it is natural

enough, or conceivable enough, that the process of deposition

should go on at separate parts of a common system of surfaces

;

and if the cells tend to meet one another by their interfaces before

these interfaces extend to the angles and so complete the polygonal

cell, it is again conceivable and natural that the spicule should

first arise in the form of separate and detached limbs or rays.

Among the tetractinellid sponges,

whose spicules are composed of amor-

phous silica or opal, all or most of the

above-described main types of spicule

occur, and, as the name of the group

implies, the four-rayed, tetrahedral

spicules are especially represented. A
somewhat frequent type of spicule is

one in which one of the four rays is

greatly developed, and the other three

constitute small prongs diverging at

V J t, equal angles from the main or axial

V^
I ^ j

ray. In all probability, as Dreyer

^^ ^
suggests, we have here had to do with

^ M a group of four vesicles, of which

I I three were large and co-equal, while a
"

fourth and very much smaller one lay

Pig. 215. Spicules of tetracti- above and between the other three,
nellid sponges (after Sollas). x . • ^ i i-i

, . J f In certain cases where we nave nke-
a-e, anatnaenes; a-j, pro-

triaenes. wise one large and three much smaller
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rays, the latter are recurved, as in Fig. 215. This type, save for

the constancy of the number of rays, and the Umitation of the

terminal ones to three, and save also for the more important

difference that they occur only at one and not at both ends of

the long axis, is similar to the type of spicule illustrated in

Fig. 213, which we have explained as being probably developed

within an oval cell, by whose walls its branches have been con-

formed to geodetic curves. But it is much more probable that

we have here to do with a spicule developed in the midst of a

group of three coequal and more or less elongated or cylindrical

cells or vesicles, the long axial ray corresponding to their common

2/^
9

Fig. 21(i. Various holothurian spicules. (After Theel.)

line of contact, and the three short rays having each lain in the

surface furrow between two out of the three adjacent cells.

Just as in the case of the little curved or S-shaped spicules,

formed apparently within the bounds of a single cell, so also in

the case of the larger tetractinellid and analogous types do we

find among the Holothuroidea the same configurations reproduced

as we have dealt with in the sponges. The holothurian spicules

are a little less neatly formed, a little rougher, than the sponge-

spicules ; and certain forms occur among the former group which

do not present themselves among the latter; but for the most

part a community of type is obvious and striking (Fig. 216).

A curious and, physically speaking, strictly analogous forma-

tion to the tetrahedral spicules of the sponges is found in the

29—2
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spores of a certain little group of parasitic protozoa^ the Actino-

myxidia. These spores are formed from clusters of six cells,

of which three come to constitute the capsule of the spore; and

this capsule, always triradiate in its symmetry, is in some species

drawn out into long rays, of which one constitutes a straight

central axis, while the others, coming off from it at equal angles,

are recurved in wide circular arcs. The account given of the

development of this structure by its discoverers* is somewhat

obscure to me, but I think that, on physical grounds, there can

be no doubt whatever that the quadriradiate capsule has been

somehow modelled upon a group of three surrounding cells, its

axis lying between the three, and its three radial arcs occupying

the furrows between adjacent pairs.

Pig. 217. Spicules of hexactinellicl sponges. (After F. E. Schultze.)

The typically six-rayed siHceous spicules of the hexactinellid

sponges, while they are perhaps the most regular and beautifully

formed spicules to be found within the entire group, have been

found very difl&cult to explain, and Dreyer has confessed his

complete inability to account for their conformation. But,

though it is doubtless only throwing the difl&culty a little further

back, we may so far account for them by considering that the

cells or vesicles by which they are conformed are not arranged in

* Leger, Stole and others, in Doflein's Lehrbuch d. Protozoenkunde, 1911,

p. 912.
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what is known as " closest packing," but in linear series ; so that in

their arrangement, and by their mutual compression, we tend to

get a pattern, not of hexagons, but of squares : or, looking to

the solid, not of dodecahedra but of cubes or parallelopipeda.

This indeed appears to be the case, not with the individual cells

(in the histological sense), but with the larger units or vesicles

which make up the body of the hexactinellid. And this being

so, the spicules formed between the linear, or cubical series of

vesicles, will have the same tendency towards a "hexactinellid"

shape, corresponding to the angles and adjacent edges of a system

of cubes, as in our former case they had to a triradiate or a

tetractinellid form, when developed in connection with the angles

and edges of a system of hexagons, or a system of dodecahedra.

Histologically, the case is illustrated by a well-known pheno-

menon in embryology. In the segmenting ovum, there is a

tendency for the cells to be budded off in linear series ; and so

they often remain, in rows side by side, at least for a considerable

time and during the course of several consecutive cell divisions.

Such an arrangement constitutes what the embryologists call the

"radial type" of segmentation*. But in what is described as the

"spiral type" of segmentation, it is stated that, as soon as the

first horizontal furrow has divided the cells into an upper and

a lower layer, those of "the upper layer are shifted in respect

to the lower layer, by means of a rotation about the vertical

axisf." It is, of course, evident that the whole process is

merely that which is familiar to physicists as "close packing."

It is a very simple case of what Lord Kelvin used to call

"a problem in tactics." It is a mere question of the rigidity

of the system, of the freedom of movement on the part of

its constituent cells, whether or at what stage this tendency

to slip into the closest propinquity, or position of minimum
potential, will be found to manifest itself.

However the hexactinellid spicules be arranged (and this is

* Se^, for instance, the figures of the segmenting egg of Synapta (after Selenka),

in Korschelt and Heider's Vergleichende Entwicklutigsgescliichte (AUgem. Th., 3*<^

Lief.), p. 19, 1909. On the spiral type of segmentation as a secondary derivative,

due to mechanical causes, of the "radial" type of segmentation, see E. B. Wilson,

CeU-Uneage of Nereis, Journ. of Morphology, vi, p. 450, 1892. •

•f
Korschelt and Heider, p. 16.
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not at all easy to determine) in relation to the tissues and chambers

of the sponge, it is at least clear that, whether they be separate

or be fused together (as often happens) in a composite skeleton,

they effect a symmetrical partitioning of space according to the

cubical system, in contrast to that closer packing which is repre-

sented and effected by the tetrahedral system*.

This question of the origin and causation of the forms of

sponge-spicules, with which we have noAv briefly dealt, is all the

more important and all the more interesting because it has been

discussed time and again, from points of view which are charac-

teristic of very different schools of thought in biology. Haeckel

found in the form of the sponge-spicule a typical illustration of

his theory of "bio-crystalhsation"' ; he considered that these

" biocrystals " represented "something midway

—

ein Mittelding—
between an inorganic crystal and an organic secretion"; that

there was a "compromise between the crystallising efforts of the

calcium carbonate and the formative activity of the fused cells

of the syncytium"; and that the semi-crystalline secretions of

calcium carbonate " were utihsed by natural selection as ' spicules

'

for building up a skeleton, and afterwards, by the interaction of

adaptation and heredity, became modified in form and differen-

tiated in a vast variety of ways in the struggle for existence f."

What Haeckel precisely signified by these words is not clear to me.

F. E. Schultze. perceiving that identical forms of spicule were

developed whether the material were crystalline or non-crystalline,

abandoned all theories based upon crystallisation ; he simply saw

in the form and arrangement of the spicules something which

was "best fitted" for its purpose, that is to say for the support

and strengthening of the porous walls of the sponge, and found

clear evidence of "utiUty" in the specific structure of these

skeletal elements.

* Cliall. Rej). Heractinellida, pis. xvi, liii, Ixxvi, Ixxxviii.

f "Hierbei nahm der kolilensaure Kalk eine halb-krystallinische Beschaffen-

heit an, und gestaltete sich unter Aufnahme von Krystallwasser luid in Verbindung

mit einer geringen Quantitat von organischer Substanz zu jenen individuellen,

festen Korpern, welche durch die natiirliche Ziichtung als Spicula zur Skeletbildung

beniitzt, und spaterhin durch die Wecliselwirkung von Anpassung und Vererbung

im Kampfe urns Dasein auf das Vielfaltigste umgebildet und differenziert wurden."

Die Kalkschwdmme, i, p. 377, 1872 ; cf. also pp. 482, 483.
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Sollas and Dreyer, as we have seen, introduced in various

ways the conception of physical causation,—as indeed Haeckel

himself had done in regard to one particular^ when he supposed

the position of the spicules to be due to the constant passage of

the water-currents. Though even here, by the way, if I under-

stand Haeckel aright, he was thinking not merely of a direct or im-

mediate physical causation , but of one manifesting itself through

the agency of natural selection *. Sollas laid stress upon the " path

of least resistance"' as determining the direction of growth;

while Dreyer dealt in greater detail with the various tensions

and pressures to which the growing spicule was exposed, amid

the alveolar or vesicular structure which was represented alike

by the chambers of the sponge, by the reticulum of constituent

cells, or by the minute structure of the intracellular protoplasm.

But neither of these writers, so far as I can discover, was inclined

to doubt for a moment the received canon of biology, which sees

in such structures as these the characteristics of true organic

species, and the indications of an hereditary affinity by which

blood-relationship and the succession of evolutionary descent

throughout geologic time can be ultimately deduced.

Lastly, Minchin, in a well-known paper f, took sides with

Schultze, and gave reasons for dissenting from such mechanical

theories as those of Sollas and of Dreyer. For example, after

pointing out that all protoplasm contains a number of "granules"

or microsomes, contained in the alveolar framework and lodged

at the nodes of the reticulum, he argued that these also ought to

acquire a form such as the spicules possess, if it were the case that

these latter owed their form to their very similar or identical

position. "If vesicular tension cannot in any other instance cause

the granules at the nodes to assume a tetraxon form, why should

it do so for the sclerites ? " In all probability the answer to this

question is not far to seek. If the force which the "mechanical"

hypothesis has in view were simply that of mechanical pressure,

* Op. cif. p. 483. " Die geordnete, oft so sehr regelmassige imd zierliche Zusam-

mensetzung des Skeletsystems ist zum grossten Theile luimittelbares Product

der Wasserstromung ; die characteristische Lagerung der Spicula ist von der

constanten Richtung des Wasserstroms hervorgebracht ; zum kleinsten Theile ist

sie die Folge von Anpassungen an untergeordnete aussere Existenzbedingungen."

t Materials for a Monograph of the Ascones, Q. J. M. S. XL, pp. 469-587, 1898.
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as between solid bodies, then indeed we should expect that any

substances whatsoever, lying between the impinging spheres,

would tend (unless they were infinitely hard) to assume the

quadriradiate or "tetraxon" form; but this conclusion does not

follow at all, in so far as it is to surface-energy that we ascribe the

phenomenon. Here the specific nature of the substances involved

makes all the difference. We cannot argue from one substance

to another ; adsorptive attraction shews its effect on one and not

on another; and we have not the least reason to be surprised if

we find that the little granules of protoplasmic material, which

as they lie bathed in the more fluid protoplasm have (presumably,

and as their shape indicates) a strong surface-tension of their

own, behave towards the adjacent vesicles in a very different

fashion to the incipient aggregations of calcareous or siliceous

matter in a colloid medium. "The ontogeny of the spicules," says

Professor Minchin, "points clearly to their regular form being a

phylogetiefic adaptation, ivhicJi has become fixed and handed on by

heredity, appearing in the ontogeny as a prophetic adaptation.''^

And again, " The forms of the spicules are the result of adaptation

to the requirements of the sponge as a whole, produced by the

action of natural selection upon variation in every direction^ It

would scarcely be possible to illustrate more briefly and more

cogently than by these few w^ords (or the similar words of Haeckel

quoted on p. 454), the fundamental difference between the

Darwinian conception of the causation and determination of

Form, and that which is characteristic of the physical sciences.

If I have dealt comparatively briefly with the inorganic

skeleton of sponges, in spite of the obvious importance of this

part of our subject from the physical or mechanical point of view,

it has been owing to several reasons. In the first place, though

the general trend of the phenomena is clear, it must be at once

admitted that many points are obscure, and could only be discussed

at the cost of a long argument. In the second place, the physical

theory is (as I have shewn) in manifest conflict with the accounts

given by various embryologists of the development of the spicules,

and of the current biological theories which their descriptions

embody; it is beyond our scope to deal with such descriptions
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in detail. Lastly, we find ourselves able to illustrate the same

physical principles with greater clearness and greater certitude in

another group of animals, namely the Radiolaria. In our descrip-

tion of the skeletons occurring within this group we shall by no

means abandon the preliminary classification of microscopic

skeletons which we have laid down ; but we shall have occasion

to blend with it the consideration of certain other more or less

correlated phenomena.

The group of microscopic organisms known as the Radiolaria

is extraordinarily rich in diverse forms, or "species." I do not

know how many of such species have been described and defined

by naturalists, but some thirty years ago the number was said

to be over four thousand, arranged in more than seven hundred

genera*. Of late years there has been a tendency to reduce the

number, it being found that some of the earlier species and even

genera are but growth-stages of one and the same form, sometimes

mere fragments or "fission-products" common to several species,

or sometimes forms so similar and so interconnected by inter-

mediate forms that the naturalist denominates them not "species"

but "varieties." It has to be admitted, in short, that the con-

ception of species among the Radiolaria has not hitherto been,

and is not yet, on the same footing as that among most other

groups of animals. But apart from the extraordinary multiplicity

of forms among the Radiolaria, there are certain other features

in this multiplicity which arrest our attention. For instance,

the distribution of species in space is curious and vague ; many

species are found all over the world, or at least every here and

there, with no evidence of specific limitations of geographical

habitat ; others occur in the neighbourhood of the two poles

;

some are confined to warm and others to cold currents of the

ocean. In time also their distribution is not less vague : so much

so that it has been asserted of them that "from the Cambrian

age downwards, the families and even genera appear identical

with those now living." Lastly, except perhaps in the case of

a few large "colonial forms," we seldom if ever find, as is usual

* Haeckel, in his Challenger Monograph, p. clxxxviii (1887) estimated the

number of known forms at 4314 species, included in 739 genera. Of these, 3508

.species were described for the first time in that work.
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in most animals, a local predominance of one particular species.

On the contrary, in a little pinch of deep-sea mud or of some fossil

" Radiolarian earth," we shall probably find scores, and it may be

even hundreds, of different forms. Moreover, the radiolarian

skeletons are of quite extraordinary delicacy and complexity, in

spite of their minuteness and the comparative simphcity of the

"unicellular" organisms within which they grow; and these

complex conformations have a wonderful and unusual appearance

of geometric regularity. All these general considerations seem

such as to prepare us for the special need of some physical

hypothesis of causation. The little skeletal fabrics remind us of

such objects as snow-crystals (themselves almost endless in their

diversity), rather than of a collection of distinct animals, con-

structed in apparent accordance with functional needs, and dis-

tributed in accordance with their fitness for particular situations.

Nevertheless great efforts have been made of recent years to

attach "a biological meaning" to these elaborate structures;

and "to justify the hope that in time the utilitarian character

[of the skeleton] will be more completely recognised*."

In the majority of cases, the skeleton of the Radiolaria is

composed, like that of so many sponges, of silica ; in one large

family, the Acantharia (and perhaps in some others), it is composed,

in great part at least, of a very unusual constituent, namely

strontium sulphate f. There is no fundamental or important

morphological character in which the shells formed of these two

constituents differ from one another; and in no case can the

chemical properties of these inorganic materials be said to influence

the form of the complex skeleton or shell, save only in this general

way that, by their rigidity and toughness, they may give rise to

a fabric far more delicate and slender than we find developed

among calcareous organisms.

A slight exception to this rule is found in the presence of true

crystals, which occur within the central capsules of certain Radio-

* Cf. Gamble, Radiolaria (Lankester's Treatise on Zoology), vol. i, p. 131, 1909.

Cf. also papers by V Hacker, in Jen. Zeitschr. xxxix, p. 581, 1905, Z. f. wiss.

Zool. Lxxxra, p. 336, 1905, Arch. f. Protistenkunde, ix, p. 139, 1907, etc.

f Biitschli, Ueber die chemische Natur der Skeletsubstanz der Acantharia,

Zool. Anz. »xx, p. 784, 1906.
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laria, for instance the genus Collosphaera*. Johannes Miiller

(whose knowledge and insight never fail to astonish us) remarked

that these were identical in form wdtli crystals of celestine, a

sulphate of strontium and barium ; and Biitschli's discovery of

sulphates of strontium and of barium in kindred forms render it

all but certain that they are actually true crystals of celestinef.

In its typical form, the Radiolarian body consists of a spherical

mass of protoplasm, around which, and separated from it by some

sort of porous "capsule/' lies a frothy mass, composed of proto-

plasm honeycombed into a multitude of alveoli or vacuoles, filled

with a fluid which can scarcely differ much from sea-water J.

According to their surface-tension conditions, these vacuoles may
appear more or less isolated and spherical, or joining together in

a "froth" of polygonal cells; and in the latter, which is the

commoner condition, the cells tend to be of equal size, and the

resulting polygonal meshwork beautifully regular. In many cases,

a large number of such simple individual organisms are associated

together, forming a floating colony, and it is highly probable that

many other forms, with whose scattered skeletons we are alone

acquainted, had in life formed part likewise of a colonial organism.

In contradistinction to the sponges, in which the skeleton

always begins as a loose mass of isolated spicules, which only in

a few exceptional cases (such as Euplectella and Farrea) fuse into

a continuous network, the characteristic feature of the Radiolarians

lies in the possession of a continuous skeleton, in the form of a

netted mesh or perforated lacework, sometimes however replaced

by and often associated with minute independent spicules. Before

we proceed to treat of the more complex skeletons, we may begin,

then, by dealing with these comparatively simple cases where

either the entire skeleton or a considerable part of it is represented,

not by a continuous fabric, but by a quantity of loose, separate

spicules, or aciculae, which seem, like the spicules of Alcyonium,

* For figures of these crystals see Brandt, F. u. Fl. d. Golfes von NeajKl, xrrr.

Radiolaria, 1885, pi. v. Cf. J. Miiller, Ueber die Thalassieollen, etc. Ahh. K.

Akad. Wiss. Berlin, 1858.

j- Celestine. or celestite, is SrS04 with some BaO replacing SrO.

% With the colloid chemists, we may adopt (as Rhumbler has done) the terms

spumoid or emulsoid to denote an agglomeration of fluid-filled vesicles, restricting

the name froth to such vesicles when filled with air or some other gas.
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to be developed as free and isolated formations or deposits,

precipitated in the colloid matrix, with no relation of form to

the cellular or vesicular boundaries. These simple acicular spicules

occupy a definite position in the organism. Sometimes, as for

instance among the fresh-water Hehozoa (e.g. Raphidiophrys), they

lie on the outer surface of the organism, and not infrequently

(when the spicules are few in number) they tend to collect round

the bases of the pseudopodia, or around the large radiating

spicules, or axial rays, in the cases where these latter are present.

When the spicules are thus localised around some prominent centre,

they tend to take up a position of symmetry in regard to it ; instead

of forming a tangled or felted layer, they come to lie side by side,

in a radiating cluster round the focus. In other cases (as for

instance in the well-known Radiolarian Aulacantha scolymantha)

the felted layer of aciculae lies at some depth below the surface,

forming a sphere concentric with the entire spherical organism.

In either case, whether the layer of spicules be deep or be super-

ficial, it tends to mark a "surface of discontinuity," a meeting

place between two distinct layers of protoplasm or between the

protoplasm and the w^ater around ; and it is obvious that, in either

case, there are manifestations of surface-energy at the boundary,

which cause the spicules to be retained there, and to take up their

position in its plane. The case is somewhat, though not directly,

I ,

analogous to that of a cirrus cloud,

which marks the place of a surface

of discontinuity in a stratified at-

mosphere.

We have, then, to enquire what

are the conditions which shall, apart

from gravity, confine an extraneous

body to a surface-film ; and we may
do this very simply, by considering

the surface-energy of the entire

system. In Fig. 218 we have two

fluids in contact with one another

(let us call them water and proto-

plasm), and a body (b) which may
be immersed in either, or mav be restricted to the boundary

Fiff. 218.
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between. We have here three possible "interfacial contacts/'

each with its own specific surface-energy, per unit of surface

area : namely, that between our particle and the water (let us

call it a), that between the particle and the protoplasm (,8), and

that between water and protoplasm (y). When the body lies

in the boundary of the two fluids, let us say half in one

and half in the other, the surface-energies concerned are

equivalent to {S/2)a + (aS/2)/3; but we must also remember that,

by the presence of the particle, a small portion (equal to its

sectional area s) of the original contact-surface between water

and protoplasm has been obliterated, and with it a proportionate

quantity of energy, eqviivalent to sy, has been set free. When,
on the other hand, the body lies entirely within one or other

fluid, the surface-energies of the system (so far as we are concerned)

are equivalent to Sa -f sy, or S^ -f sy, as the case may be.

According as a be less or greater than j8, the particle will have

a tendency to remain immersed in the water or in the protoplasm
;

but if {S/2) (a -f- j8) — sy be less than either Sa or S^, then the

condition of minimal potential will be found when the particle

lies, as we have said, in the boundary zone, half in one fluid and

half in the other ; and, if we were to attempt a more general

solution of the problem, we should evidently have to deal with

possible conditions of equilibrium under which the necessary

balance of energies would be attained by the particle rising or

sinking in the boundary zone, so as to adjust the relative magni-

tudes of the surface-areas concerned. It is obvious that this

principle may, in certain cases, help us to explain the position

even of a radial spicule, which is just a case where the surface of

the solid spicule is distributed between the fluids with a minimal

disturbance, or minimal replacement, of the original surface of

contact between the one fluid and the other.

In like manner we may provide for the case (a common and

an important one) where the protoplasm "creeps up" the spicule,

covering it with a delicate film. In Acanthocystis we have

yet another special case, where the radial spicules plunge only

a certain distance into the protoplasm of the cell, being arrested

at a boundary-surface between an inner and an outer layer of

cytoplasm ; here we have only to assume that there is a tension
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at this surface, between the two layers of protoplasm, sufficient

to balance the tensions which act directly on the spicule*.

In various Acanthometridae, besides such typical characters

as the radial symmetry, the concentric layers of protoplasm, and

the capillary surfaces in which the outer, vacuolated protoplasm

is festooned upon the projecting radii, we have another curious

feature. On the surface of the protoplasm where it creeps up

the sides of the long radial spicules, we find a number of elongated

bodies, forming in each case one or several little groups, and

lying neatly arranged in parallel bundles. A Russian naturaUst,

Schewakoff, whose views have been accepted in the text-books,

tells us that these are muscular structures, serving to raise or

lower the conical masses of protoplasm about the radial spicules,

which latter serve as so many "tent-poles" or masts, on which

the protoplasmic membranes are hoisted up; and the little

elongated bodies are dignified with various names, such as

"myonemes" or " myophriscs," in allusion to their supposed

muscular naturef . This explanation is by no means convincing.

To begin with, we have precisely similar festoons of protoplasm

ill a multitude of other cases where the "myonemes" are lacking;

from their minute size (•006--012 mm.) and the amount of con-

traction they are said to be capable of, the myonemes can hardly

be very efficient instruments of traction ; and further, for them

to act (as is alleged) for a specific purpose, namely the " hydrostatic

regulation" of the organism giving it power to sink or to swim,

would seem to imply a mechanism of action and of coordination

which is difficult to conceive in these minute and simple organisms.

The fact is (as it seems to me), that the whole method of explana-

tion is unnecessary. Just as the supposed "hauhng up" of the

protoplasmic festoons is at once explained by capillary phenomena,

so also, in all probability, is the position and arrangement of

the little elongated bodies. Whatever the actual nature of these

bodies may be, whether they are truly portions of differentiated

protoplasm, or whether they are foreign bodies or spicular

structures (as bodies occupying a similar position in other cases

undoubtedly are), we can explain their situation on the surface

* Cf. Koltzoff, Ziir Frage der Zellgestalt, Anat. Anzeiger, xli, p. 190, 1912.

I Hem. (Ic VAcnd. des Sci., St. Pdlershourg, xii, Nr. 10; 1902.
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of the protoplasm, and their arrangement around the radial

spicules, all on the principles of surface-tension*.

This last case is not of the simplest ; and I do not forget that

my explanation of it, which is wholly theoretical, implies a doubt

of Schewiakoff's statements, which are founded on direct personal

observation. This I am none too willing to do ; but whether it

be justly done in this case or not, I hold that it is in principle

justifiable to look with great suspicion upon a number of kindred

statements where it is obvious that the observer has left out of

account the purely physical aspect of the phenomenon, and all

the opportunities of simple explanation which the consideration

of that aspect might afford.

Whether it be wholly applicable to this particular and complex

case or no, our general theorem of the localisation and arrestment

of solid particles in a surface-film is of very great biological

importance ; for on it depends the power displayed by many
little naked protoplasmic organisms of covering themselves with

an "agglutinated" shell. Sometimes, as in Difflugia, Astrorhiza

(Fig. 219) and others, this covering consists of sand-grains picked

up from the surrounding medium, and sometimes, on the other

hand, as in Quadrula, it consists of solid particles which are said

to arise, as inorganic deposits or concretions, within the protoplasm

itself, and which find their way outwards to a position of equilibrium

in the surface-layer; and in both cases, the mutual capillary

attractions between the particles, confined to the boundary-layer

but enjoying a certain measure of freedom therein, tends to the

orderly arrangement of the particles one with another, and even

to the appearance of a regular "pattern'' as the result of this

arrangement.

The "picking up" by the protoplasmic organism of a solid

particle with which "to build its house" (for it is hard to avoid

this customary use of anthropomorphic figures of speech, misleading

though they be), is a physical phenomenon kindred to that by which

an Amoeba "swallows" a particle of food. This latter process

has been reproduced or imitated in various pretty experimental

* The manner in which the minute spicules of Raphidophrys arrange themselves

round the bases of the pseudopodial rays is a similar phenomenon.



Fig, 219. Arenaceous Foraminifera ; Astrorhiza limicola and arenaria.

(From Brady's Challenger Monogirrph.)
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ways. For instance, Rhumbler has shewn that if a thread of

glass be covered with shellac and brought near a drop of

chloroform suspended in water, the drop takes in the spicule,

robs it of its shellac covering, and then passes it out again*.

It is all a question of relative surface-energies, leading to different

degrees of "adhesion" between the chloroform and the glass or

its covering. Thus it is that the Amoeba takes in the diatom,

dissolves off its proteid covering, and casts out the shell.

Furthermore, as the whole phenomenon depends on a distribu-

tion of surface-energy, the amount of which is specific to certain

particular substances in contact with one another, we have no

difficulty in understanding the selective action, which is very often

a conspicuous feature in the phenomenon f. Just as some caddis-

worms make their houses of twigs, and others of shells and again

others of stones, so some Rhizopods construct their agglutinated

"test" out of stray sponge-spicules, or frustules of diatoms, or

again of tiny mud particles or of larger grains of sand. In all

these cases, we have apparently to deal with differences in specific

* Rhumbler, Physikalische Analyse von Lebenserscheinuiigen der Zelle, Arclw

f. Entw. Mech. vn, p. 103, 1898.

f The whole phenomenon is described by biologists as a "surprising exhibition

of constructive and selective activity," and is ascribed, in varying phraseology, to

intelligence, skill, purpose, psychical actiArity, or "microscopic mentality": that is

to say, to Galen's rex^i-Kr) 0i'>ais, or " artistic creativeness " (cf. Brock's Galen, 1916,

p. xxix). Ci. CaTY>en.teT, Mental Physiology, 1874, p. 41; Norman, Architectural

achievements of Little Masons, etc., Ann. Mag. Nat. Hist. (5), i, p. 284, 1878; Heron-

AUen, Contributions...to the Study of the Forammifera, Phil. Trans. (B), ccvi,

pp. 227-279, 1915 ; Theory and Phenomena of Purpose and Intelligence exhibited by

the Protozoa, as illustrated by selection and behaviour in the Foraminifera, Journ. R.

Microscop. Sac. pp. 547-557, 1915; ibid., pp. 137-140, 1916. Prof. J. A. Thomson

(New Statesman, Oct. 23, 1915) describes a certam little foraminifer, whose proto-

plasmic body is overlaid by a crust of sponge-spicules, as "a psycho-physical

individuality whose experiments in self-expression include a masterly treatment of

sponge-spicides, and illustrate that organic skill which came before the dawn of Art."

Sir Ray Lankester finds it "not difficult to conceive of the existence of a mechanism

in the protoplasm of the Protozoa which selects and rejects building-material, and

determines the shapes of the structures built, comparable to that mechanism which

is assumed to exist in the nervous system of insects and other animals which

'automatically' go through wonderfully elaborate series of complicated actions."

And he agrees with "Darwin and others [who] have attributed the building up of

these inherited mechanisms to the age-long action of Natural Selection, and the

survival of those individuals possessing quaUties or 'tricks' of life-saving value,"

J. R. Microsc. Soc. April, 1916, p. 136.

T. a. 30
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surface-energies, and also doubtless with difEerences in the total

available amount of surface-energy in relation to gravity or other

extraneous forces. In my early student days, Wyville Thomson
used to tell us that certain deep-sea "Difflugias," after constructing

a shell out of particles of the black volcanic sand common in parts

of the North Atlantic, finished it off with "a clean white collar"

of little grains of quartz. Even this phenomenon may be accounted

for on surface-tension principles, if we assume that the surface-

energy ratios have tended to change, either with the growth of

the protoplasm or by reason of external variation of temperature

or the like; and we are by no means obliged to attribute the

phenomenon to a manifestation of voUtion, or taste, or aesthetic

skill, on the part of the microscopic organism. Nor, when certain

Radiolaria tend more than others to attract into their own sub-

stance diatoms and such-like foreign bodies, is it scientifically

correct to speak, as some text-books do, of species "in which

diatom selection has become a regular habit.'''' To do so is an

exaggerated misuse of anthropomorphic phraseology.

The formation of an "agglutinated" shell is thus seen to be

a purely physical phenomenon, and indeed a special case of a

more general physical phenomenon which has many other

important consequences in biology. For the shell to assume the

solid and permanent character which it acquires, for instance, in

Difflugia, we have only to make the additional assumption that

some small quantities of a cementing substance are secreted by

the animal, and that this substance flows or creeps by capillary

attraction between all the interstices of the little quartz grains,

and ends by binding them all firmly together. Rhumbler* has

shewn us how these agglutinated tests, of spicules or of sand-

grains, can be precisely imitated, and how they are formed with

greater or less ease, and greater or less rapidity, according to the

nature of the materials employed, that is to say, according to

the specific surface-tensions which are involved. For instance if

we mix up a little powdered glass with chloroform, and set a drop

of the mixture in water, the glass particles gather neatly round

the surface of the drop so quickly that the eye cannot follow the

* Rhumbler, Das Protoplasma als physikalisches System, Jena, p. 591, 1914;

also in Arch. f. Entwickelungsmech. vn, pp. 279-335, 1898.
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operation. Ifwe perform the same experiment with oil and fine sand,

dropped into 70 per cent, alcohol, a still more beautiful artificial

Rhizopod shell is formed, but it takes some three hours to do.

It is curious that, just at the very time when Rhumbler was

thus demonstrating the purely physical nature of the Difflu-

gian shell, Verworn was studying the same and kindred organisms

from the older standpoint of an incipient psychology*. But, as

Rhumbler himself admits, Verworn was very careful not to over-

estimate the apparent signs of volition, or selective choice, in the

little organism's use of the material of its dwelling.

This long parenthesis has led us away, for the time being,

from the subject of the Radiolarian skeleton, and to that subject

we must now^ return. Leaving aside, then, the loose and scattered

spicules, which we have sufficiently discussed, the more perfect

Radiolarian skeletons consist of a continuous and regular structure

;

and the siliceous (or other inorganic) material of which this frame-

work is composed tends to be deposited in one or other of two

ways or in both combined: (1) in the form of long spicular axes,

usually conjoined at, or emanating from, the centre of the proto-

•plasmic body, and forming a symmetric radial system
; (2) in the

form of a crust, developed in various ways, either on the outer

surface of the organism or in relation to the various internal

surfaces which separate its concentric layers or its component

vesicles. Not unfrequently, this superficial skeleton comes to

constitute a spherical shell, or a system of concentric or otherwise

associated spheres.

We have already learned that a great part of the body of the

Radiolarian, and especially that outer portion to which Haeckel

has given the name of the "calymma," is built up of a great mass

of "vesicles," forming a sort of stifE froth, and equivalent in the

physical sense (though not necessarily in the biological sense) to

"cells," inasmuch as the httle vesicles have their own well-defined

boundaries, and their own surface phenomena. In short, all that

we have said of cell-surfaces, and cell conformations, in our

discussion of cells and of tissues, will apply in hke manner, and

under appropriate conditions, to these. In certain cases, even in

* Verworn, Psycho-physiologische Protlsten-Studien, Jena, 1889 (219 pp.).

30—2
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SO common and simple a one as the vacuolated substance of an

Actinosphaerium, we may see a very close resemblance, or formal

analogy, to an ordinary cellular or " parenchymatous" tissue, in the

close-packed arrangement and consequent configuration of these

vesicles, and even at times in a slight membranous hardening of

their walls. Leidy has figured*

some curious little bodies, like

small masses of consohdated

froth, which seem to be nothing

else than the dead and empty

husks, or filmy skeletons, of

Actinosphaerium. And Carnoyj

has demonstrated in certain

cell-nuclei an all but precisely

similar framework, of extreme

delicacy and minuteness, as the

result of partial solidification

of interstitial matter in a close-

packed system of alveoli (Fig.

220).

Let us now suppose that,

in our Radiolarian, the outer

surface of the animal is covered by a layer of froth-like vesicles,

uniform or nearly so in size. We know that their tensions will

tend to conform them into a " honeycomb," or regular meshwork

of hexagons, and that the free end of each hexagonal prism will

be a little spherical cap. Suppose now that it be at the outer

surface of the protoplasm (that namely which is in contact with

the surrounding sea-water), that the siliceous particles have a

tendency to be secreted or adsorbed; it will at once follow that

they will show a tendency to aggregate in the grooves which

separate the vesicles, and the result will be the development of

a most delicate sphere composed of tiny rods arranged in a regular

hexagonal network (e.g. Aulonid). Such a conformation is

Fig. 220. "Reticulum plasmatique.

(After Carnoy.)

* Leidy, J., Fresh-water Bhizopods of N. America, 1879, p. 262, pi. xU,

figs. 11, 12.

f Carnoy, Biologie Cellulaire, p. 244, fig. 108; cf. Dreyer, op. cit. 1892,

fis;. 185.
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extremely common, and among its many variants may be found

cases in which (e.g. Actinomma), the vesicles have been less

Fig. 221. Aulonia hexagoim, Hkl.

Fig 222. Actinomma arcadophorum, Hkl.

regular in size, and some in which the hexagonal meshwork has

been developed not only on one outer surface, but at successive
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surfaces, producing a system of concentric spheres. If the siliceous

material be not limited to the linear junctions of the cells, but

spread over a portion of the outer spherical surfaces or caps, then

we shall have the condition represented in Fig. 223 {Ethmosphaera),

where the shell appears perforated by circular instead of hexagonal

apertures, and the circular pores are set on slight spheroidal

eminences ; and, interconnected with such types as this, we have

others in which the accumulating pellicles of skeletal matter have

extended from the edges into the substance of the boundary walls

Fig. 22.3. Ethmosphaera conosiphonia,

Hkl.

Fig. 224. Portions of shells

of two "species" of

Cenosphaera : upper

figure, C. favosa, lower,

C. vesparia, Hkl.

and have so produced a system of films, normal to the surface of

the sphere, constituting a very perfect honeycomb, as in Ceno-

sphaera favosa and vesparia*.

In one or two very simple forms, such as the fresh-water

Clathrulina, just such a spherical perforated shell is produced out

of some organic, acanthin-like substance ; and in some examples

of Clathrulina the chitinous lattice-work of the shell is just as

* In all these latter cases we recognise a relation to, or extension of, the principle

of Plateau's bourrelet, or van der Mensbrugghe's masse annulaire, of which we have

already spoken (p. 297).
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regular and delicate, with the meshes just as beautifully hexagonal,

as in the siliceous shells of the oceanic Radiolaria. This is only

another proof (if proof be needed) that the peculiar conformation

of these little skeletons is not due to the material of which they

are composed, but to the moulding of that material upon an under-

lying vesicular structure.

Let us next suppose that, upon some such lattice-work as has

just been described, another and external layer of cells or vesicles

is developed, and that instead of (or perhaps only in addition to)

a second hexagonal lattice-work, which might develop concen-

Fig. 225. Aulastrum trlceros, Hkl.

trically to the first in the boundary-furrows of this new layer of

cells, the siliceous matter now tends to be deposited radially,

or normally to the surface of the sphere, just in the lines where

the external layer of vesicles meet one another, three by three.

The result will be that, when the vesicles themselves are removed,

a series of radiating spicules will be revealed, directed outwards

from each of the angles of the original hexagon; as is seen

in Fig. 225. And it may further happen that these radiating

skeletal rods are continued at their distal ends into divergent

rays, forming a triple fork, and corresponding (after a fashion
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which we have already described as occurring in certain sponge-

spicules) to the three superficial furrows between the adjacent

cells. This last is, as it were, an intermediate stage between the

simple rods and the complete formation of another concentric

sphere of latticed hexagons. Another possible case is when the

large and uniform vesicles of the outer protoplasm are mixed

with, or replaced by, much smaller vesicles, piled on one another

in more or less concentric layers ; in this case the radiating rods

r^vAy

Fig. 226. Fig. 227. A Nassellarian skeleton, Callimitra carolotae, Hkl.

will no longer be straight, but will be bent into a zig-zag pattern,

with angles in three vertical planes, corresponding to the suc-

cessive contacts of the groups of cells around the axis (Fig. 226).

Among a certain group called the Nassellaria, we find geome-

trical forms of peculiar simpUcity and beauty,—such for instance

as that which I have represented in Fig. 227. It is obvious at

a glance that this is such a skeleton as may have been formed
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(I think we may go so far as to say tnust have been formed) at

the interfaces of a little tetrahedral group of cells, the four equal

cells o the tetrahedron being in this particular case supplemented

by a little one in the centre of the system. We see, precisely as

in the internal boundary-system of an artificial group of four

soap-bubbles, the plane surfaces of contact, six in number ; the

relation to one another of each triple set of interfacial planes,

meeting one another at equal angles of 120'^ ; and finally the

relation of the four lines or edges of triple contact, which tend

(but for the little central vesicle) to meet at co-equal solid angles

in the centre of the system, all as we have described on p. 318.

In short, each triple-walled re-entrant angle of the little shell has

essentially the configuration (or a part thereof) of what we have

called a "Maraldi pyramid" in our account of the architecture of

the honeycomb, on p. 329*.

There are still two or three remarkable or peculiar features in

this all but mathematically perfect shell, and they are in part easy

and in part they seem more difficult of interpretation.

We notice that the amount of solid matter deposited in the

plane interfacial boundaries is greatly increased at the outer

margin of each boundary wall, where it merges or coincides with

the superficial furrow which separates the free, spherical surfaces

of the bubbles from one another ; and we may sometimes find that,

along these edges, the skeleton remains complete and strong,

while it shows signs of imperfect development or of breaking

away over great part of the rest of the interfacial surfaces. In

this there is nothing anomalous, for we have already recognised

that it is at the edges or margins of the interfacial partition -walls

that the manifestation of surface-energy will tend to reach its

maximum. And just as we have seen that, in certain of our

''multicellular" spherical Radiol arians, it is at the superficial

* Apart from the fact that the apex of each pyramid is interrupted, or truncated,

by the presence of the little central cell, it is also possible that the soUd angles

are not precisely equivalent to those of Maraldi's pyramids, owing to the fact that

there is a certain amount of distortion, or axial asymmetry, in the Nassellarian

system. In other words (to judge from Haeckel's figm'es), the tetrahedral symmetry
in Nassellaria is not absolutely regular, but has a main axis about which three of

the trihedral pyramids are symmetrical, the fourth having its solid angle somewhat
diminished.
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edges or borders of the partitions, and here only, that skeletal

formation occurs (giving rise to the

netted shell with its hexagonal meshes

of Fig. 221), so also at times, in the

case of such little aggregates of cells

or vesicles as the four-celled system

of Callimitra, it may happen that

about the external hoinidary-lines,

and not in the interior boundary-

planes, the whole of the skeletal
Fig. 228. An isolated portion of matter is aggregated. In Fig. 228 we

the skeleton of Dictyocha.
. .

see a curious little skeletal struc-

ture or complex spicule, whose conformation is easily accounted

for after this fashion. Little spicules such as this form

isolated portions of the skeleton in the genus Dictyocha, and

occur scattered over the spherical surface of the organism

Fig. 229. Dictyocha stapedia, Hkl.

(Fig. 229). The more or less basket-shaped spicule has evidently

been developed about a little cluster of four cells or vesicles,

lying in or on the plane of the surface of the organism, and there-

fore arranged, not in the tetrahedral form of Callimitra, but in

the manner in which four contiguous cells lying side by side

normally set themselves, like the four cells of a segmenting egg:

that is to say with an intervening " polar furrow," whose ends mark

the meeting place, at equal angles, of the cells in groups of three.

The little projecting spokes, or spikes, which are set normally

to the main basket-work, seem to be incompleted portions of

a larger basket, or in other words imperfectly formed elements

corresponding to the interfacial contacts in the surrounding parts
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of the system. Similar but more complex formations, all explicable

as basket-like frameworks developed around a cluster of cells, are

known in great variety.

In our Nassellarian itself, and in many other cases where the

plane interfacial boundary-walls are skeletonised, we see that the

siliceous matter is not deposited in an even and continuous layer,

like the waxen walls of a bee's cell, but constitutes a meshwork

of fine curvilinear threads; and the curves seem to run. on the

whole, isogonally, and to form three main series, one approxi-

mately parallel to, or concentric with, the outer or free edge of

the partition, and the other two related severally to its two edges

of attachment. Sometimes (as may also be seen in our figure),

the system is still further complicated by a fourth series of linear

elements, which tend to run radially from the centre of the system

to the free edge of each partition. As regards the former, their

arrangement is such as would result if deposition or solidification

had proceeded in waves, starting independently from each of the

three boundaries of the little partition-wall ; and something of

this kind is doubtless what has happened. We are reminded at

once of the wave-like periodicity of the Liesegang phenomenon.

But apart from this we might conceive of other explanations.

For instance, the liquid film which originally constitutes the

partition must easily be thrown into vibrations, and (like the dust

upon a Chladni's plate) minute particles of matter in contact with

the film would tend to take up their position in a symmetrical

arrangement, in direct relation to the nodal points or lines of the

vibrating surface*. Some such explanation as this (to my thinking)

must be invoked to account for the minute and varied and very

beautiful patterns upon man}^ diatoms, the resemblance of which

patterns (in certain of their simpler cases) to the Chladni figures

is sometimes striking and obvious. But the many special pro-

blems which the diatom skeleton suggests I have not attempted

to consider.

The last peculiarity of our Nassellarian lies in an apparent

departure from what we should at first expect in the way of its

* Cf. Faraday's beautiful experiments, On the Moving Groups of Particles

found on Vibrating Elastic Surfaces, etc., Phil. Trans. 1831, p. 299; Besefircke-s

in Chem. and PJiys. 1859, pp. 314-358.
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external symmetry. Were the system actually composed of four

spherical vesicles in mutual contact, the outer margin of each of

the six interfacial planes would obviously be a circular arc; and

accordingly, at each angle of the tetrahedron^ we should expect

to have a depressed, or re-entrant angle, instead of a prominent

cusp. This is all doubtless due to some simple balance of tensions,

whose precise nature and distribution is meanwhile a matter of

conjecture. But it seems as though an extremely sim.ple explana-

tion would go a long way, and possibly the whole way, to meet

this particular case. In our ordinary plane diagram of three cells,

or soap-bubbles, in contact, we know (and we have just said)

that the tensions of the three partitions draw inwards the outer

walls of the system, till at each point of triple contact (P) we tend

to get a triradiate, equiangular junction. But if we introduce

another bubble into the centre of the system (Fig. 230). then, as

Plateau shewed, the tensions of its walls and those of the three

partitions by which it is now suspended, again balance one

another, and the central bubble appears (in plane projection) as

a curvilinear, equilateral triangle. We have only got to convert

this plane diagram into that of a tetrahedral solid to obtain almost

precisely the configuration which we are seeking to explain.

Now we observe that, so far as our figure of Callimitra informs

us, this is just the shape of the little bubble which occupies the

centre of the tetrahedral system in that Radiolarian skeleton.

And I conceive, accordingly, that the entire organism was not

limited to the four cells or vesicles (together with the httle central
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fifth) which we have hitherto been imagining, but there must have

been an outer tetrahedral system, enclosing the cells which fabri-

cated the skeleton, just as these latter enclosed, and deformed,

the little bubble in the centre of all. We have only to suppose

that this hypothetical tetrahedral series, forming the outer layer or

surface of the whole system, was for some chemico-physical reason

incapable of secreting at its interfacial contacts a skeletal fabric*.

In this hypothetical case, the edges of the skeletal system would

be circular arcs, meeting one another at an angle of 120°, or, in the

solid pyramid, of 109°
: and this latter is very nearly the condition

which our little skeleton actually displays. But we observe in

Fig. 227 that, in the immediate neighbourhood of the tetrahedral

angle, the circular arcs are shghtly drawn out into projecting

cusps (cf. Fig. 230, B). There is no S-shaped curvature of the

tetrahedral edges as a whole, but a very slight one, a very shght

change of curvature; close to the apex. This, I conceive, is

nothing more than what, in a material system, we are bound to

have, to represent a "surface of continuity." It is a phenomenon
precisely analogous to Plateau's "bourrelet," which we have

already seen to be a constant feature of all cellular systems.

rounding off the sharp angular contacts by which (in our more
elementary treatment) we expect one film to make its junction

with another f.

In the foregoing examples of Radiolaria, the symmetry which

the organism displays would seem to be identical with that

symmetry of forces which is due to the assemblage of surface-

tensions in the whole system ; this symmetry being displayed, in

one class of cases, in a complex spherical mass of froth, and in

* We need not go so far as to suppose that the external layer of cells wholly
lacked the power of secreting a skeleton. In many of the NasseUariae figured by
Haeckel (for there are many variant forms or species besides that represented here),

the skeleton of the partition-walls is very shghtly and scantily developed. In
such a case, if we imagine its few and scanty strands to be broken away, the central

tetrahedral figure would be set free, and would have all the appearance of a complete
and independent structure.

f The "bourrelet" is not only, as Plateau expresses it, a "surface of continuitv,"

but we also recognise that it tends (so far as material is available for its production)

to further lessen the free surface-area. On its relation to vapour-pressure and to

the stability of foam, see FitzGerald's interesting note in Nature, Feb. 1, 1894
{Works, p. 309).
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another class in a simpler aggregate of a few, otherwise isolated,

vesicles. But among the vast number of other known Radiolaria,

there are certain forms (especially among the Phaeodaria and

Acantharia) which display a still more remarkable symmetry, the

origin of which is by no means clear, though surface-tension

doubtless plays a part in its causation. These are cases in which

(as in some of those already described) the skeleton consists

(1) of radiating spicular rods, definite in number and position,

and (2) of interconnecting rods or plates, tangential to the more

or less spherical body of the organism, whose form becomes,

accordingly, that of a geometric, polyhedral solid. It may be

that there is no mathematical difference, save one of degree,

between such a hexagonal polyhedron as we have seen in Aula-

caniha, and those which we are about to describe ; but the greater

regularity, the numerical symmetry, and the apparent simpHcity

of these latter, makes of them a class apart, and suggests problems

which have not been solved nor even investigated.

The matter is sufficiently illustrated by the accompanying

figures, all drawn from Haeckel's Monograph of the Challenger

Radiolaria*. In one of these we see a regular octahedron, in

another a regular, or pentagonal dodecahedron, in a third a regular

icosahedron. In all cases the figure appears to be perfectly

symmetrical, though neither the triangular facets of the octahedron

and icosahedron, nor the pentagonal facets of the dodecahedron,

are necessarily plane surfaces. In all of these cases, the radial

spicules correspond to the solid angles of the figure ; and they are,

accordingly, six in number in the octahedron, twenty in the

dodecahedron, and twelve in the icosahedron. If we add to these

three figures the regular tetrahedron, which we have had frequent

occasion to study, and the cube (which is represented, at least

in outline, in the skeleton of the hexactinellid sponges), we have

completed the series of the five regular polyhedra known to

oleometers, the Platonic bodies f of the older mathematicians. It

is at first sight all the more remarkable that we should here meet

* Of the many thousand figures in the hundred and forty plates of this beautifully

illustrated book, there is scarcely one which does not depict, now patently, now
in pregnant suggestion, some subtle and elegant geometrical configuration.

"f
They were known (of course) long before Plato: nXdrui' 8i Kai kv toijtois

TTudayopl^ei.
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Fig. 231. Skeletons of various Radiolarians, after Haeckel. 1. Circoponis spx-

furcus ; 2. C. octaliedrus ; 3. Circogonia icosahedra ; 4. Circospathis novena ;

5. Circorrhegma dodecahedra.
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with the whole five regular polyhedra, when we remember that,

among the vast variety of crystalUne forms known among minerals,

the regular dodecahedron and icosahedron, simple as they are

from the mathematical point of view, never occur. Not only do

these latter never occur in Crystallography, but (as is explained

in text-books of that science) it has been shewn that they cannot

occur, owing to the fact that their indices (or numbers expressing

the relation of the faces to the three primary axes) involve an

irrational quantity : whereas it is a fundamental law of crystallo-

graphy, involved in the whole theory of space-partitioning, that

"the indices of any and every face of a crystal are small whole

numbers*." At the same time, an imperfect pentagonal dodeca-

hedron, whose pentagonal sides are non-equilateral, is common
among crystals. If we may safely judge from Haeckel's figures,

the pentagonal dodecahedron of the Radiolarian is perfectly

regular, and we must presume, accordingly, that it is not brought

about by principles of space-partitioning similar to those which

manifest themselves in the phenomenon of crystalUsation. It

wall be observed that in all these radiolarian polyhedral shells,

the surface of each external facet is formed of a minute hexa-

gonal network, whose probable origin, in relation to a vesicular

structure, is such as we have alreadv discussed.

In certain alhed Radiolaria (Fig. 232), which, hke the dodeca-

hedral form figured in Fig. 231, 5, have twenty radial spines, these

latter are commonly described as being arranged in a certain very

singular way. It is stated that their arrangement may be referred

* If the equation of any plane face of a crystal be written in the form

hx + hy + lz= 1, then h, k, I are the indices of which we are speaking. They are

the reciprocals of the parameters, or reciprocals of the distances from the origin

at which the plane meets the several axes. In the case of the regular or pentagonal

dodecahedron these indices are 2, 1 + ^5, 0. Kepler described as foUows, briefly

but adequately, the common characteristics of the dodecahedron and icosahedron

:

"Duo sunt corpora regularia, dodecaedron et icosaedron, quorum illud quin-

quanguUs figuratur expresse, hoc trianguUs quidem sed in quinquanguU formam
coaptatis. Utriusque horum corporum ipsiusque adeo quinquanguli structura

perfici non potest sine proportione ilia, quam hodierni geometrae divinam appellant^'

{De nive sezangula (1611), Opera, ed. Frisch, vn, p. 723). Here Kepler was dealing,

somewhat after the manner of Sir Thomas Browne, with the mysteries of the

quincuns, and also of the hexagon; and was seeking for an explanation of the

mysterious or even mystical beauty of the 5-petalled or 3-petalled flower,

—

pulchri-

tudinis aut proprietatis figurae, quae animam harum plantarum characterisavit.
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to a serii^s of five parallel circles on the sphere, corresponding to the

equator (c), the tropics (6, d) and the polar circles {a, e) ; and that

beginning with four equidistant spines in the equator, we have

alternating whorls of four, radiating outwards from the sphere in

each of the other parallel zones. This rule was laid down by the

celebrated Johannes Miiller, and has ever since been used and

quoted as Miiller's law. The chief point in this alleged arrange-

ment which strikes us at first sight as very curious, is that there

is said to be no spine at either pole ; and when we come to examine

carefully the figure of the organism, we find that the received

Fig. 232. Dorataspis sp. ; diagrammatic.

description does not do justice to the facts. We see, in the first

place, from such figures as Figs. 232, 234, that here, unhke our

former cases, the radial spines issue through the facets (and through

all the facets) of the polyhedron, instead of through its solid angles

;

and accordingly, that our twenty spines correspond (not, as before,

to a dodecahedron) but to some sort of an icosahedron. We see

in the next place, that this icosahedron is composed of faces, or

plates, of two different kinds, some hexagonal and some penta-

gonal; and when we look closer, we discover that the whole

figure is that of a hexagonal prism, whose twelve solid angles are

replaced by pentagonal facets. Both hexagons and pentagons

T. G. 31
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appear to be perfectly equilateral, but if we try to construct a

plane-sided polyhedron of this kind, we soon find that it is

impossible ; for into the angles between the six equatorial hexagons

those of the six united pentagons will not fit. The figure however

can be easily constructed if we replace the straight edges (or some

of them) by curves, and the plane facets by corresponding, sHghtly

curved, surfaces. The true symmetry of this figure, then, is

hexagonal, with a polar axis, produced into two polar spicules

;

with six equatorial spicules, or rays; and with two sets of six

spicular rays, interposed between the polar axis and the equatorial

rays, and alternating in position with the latter.

Miiller's description was emended by Brandt, and what is now known as

"Brandt's law," viz. that the symmetry consists of two polar rays, and three

whorls of six each, coincides with the above description so far as the spicular

axes go: save only that Brandt specifically states that the intermediate

whorls stand equidistant between the equator and the poles, i.e. in latitude 45°.

While not far from the truth, this statement is not exact; for according to

the geometry of the figure, the intermediate cycles obviously stand in a shghtly

higher latitude, but this latitude I have not attempted to determine; for

the calculation seems to be a little troublesome owing to the curvature of

the sides of the figure, and the enquiring mathematician will perform it more
easily than I. Brandt, if I understand him rightly, did not propose his

"law" as a substitute for Miiller's law, but as a second law applicable to a few

particular cases. I on the other hand can find no case to which Miiller's law

properly applies.

If we construct such a polyhedron, and set it in the position

of Fig. 232, B, we shall easily see that it is capable of explanation

(though improperly) in accordance with Miiller's law; for the

four equatorial rays of Miiller (c) now correspond to the two polar

and to two opposite equatorial facets of our polyhedron : the

four "polar" rays of Miiller (a or e) correspond to two adjacent

hexagons and two intermediate pentagons of the figure: and

Miiller's "tropical" rays (6 or d) are those which emanate from the

remaining four pentagonal facets, in each half of the figure. In

some cases, such as Haeckel's Phatnaspis cristata (Fig. 233), we

have an elUpsoidal body, from which the spines emerge in the

order described, but which is not obviously divided by facets.

In Fig. 234 I have indicated the facets corresponding to the rays,

and dividing the surface in the usual symmetrical way.



Fig. 233. Phatnaspis cri-siata, Hkl.

ic d

Fig. 234. The same, diagrammatic.

31—2
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Within any polyhedron we may always inscribe another

polyhedron, Avhose corners correspond in number to the sides or

facets of the original figure, or (in alternative cases) to a certain

number of these sides ; and a similar result is obtained by bevelling

ofi the corners of the original polyhedron. We may obtain a

prec'isely similar symmetrical result if (in such a case as these

Radiolarians which we are describing), we imagine the radial

spines to be interconnected by tangential rods, instead of by the

complete facets which we have just been dealing with. In our

complicated polyhedron with its twenty radial spines arranged in

the manner described there are various symmetrical ways in which

we may imagine these interconnecting bars to be arranged. The

most symmetrical of these is one in which the whole surface is

divided into eighteen rhomboidal areas, obtained by systematically

connecting each group of four adjacent radii. This figure has

eighteen faces (F), twenty corners (C), and therefore thirty-six

edges (E), in conformity with Euler's theorem, F + C = E + 2.

Another symmetrical arrange-

ment will divide the surface

into fourteen rhombs and eight

triangles. This latter arrange-

ment is obtained by linking up

the radial rods as follows : aaaa,

aba, abcb, bcdc, etc. Here we
have again twenty corners, but

we have twenty-two faces; the

number of edges, or tangential

spicular bars, will be found,

therefore, by the above formula,

to be forty. In Haeckel's figure

of Phractaspis prototypus we
have a spicular skeleton which

appears to be constructed precisely upon this plan, and to

be derivable from the faceted polyhedron precisely after this

manner.

In all these latter cases it is the arrangement of the axial

rods, or in other words the "polar symmetry" of the entire

organism, which lies at the root of the matter, and which, if only

Fig. 235. Phractaspis prototypus, Hkl.
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we could account for it, would make it comparatively easy to

explain the superficial configuration. But there are no obvious

mechanical forces by which we can so explain this peculiar

polarity. This at least is evident, that it arises in the central

mass of protoplasm, which is the essential living portion of the

organism as distinguished from that frothy peripheral mass whose

structure has helped us to explain so many phenomena of the

superficial or external skeleton. To say that the arrangement

depends upon a specific polarisation of the cell is merely to refer

the problem to other terms, and to set it aside for future solution.

But it is possible that we may learn something about the hues in

which to seek for such a solution by considering the case of

Lehmann's "fluid crystals," and the light which they throw upon

the phenomena of molecular aggregation.

The phenomenon of "fluid crystalhsation " is found in a

number of chemical bodies ; it is exhibited at a specific temperature

for each substance; and it would seem to be limited to bodies

in which there is a more or less elongated, or "chain-like" arrange-

ment of the atoms in the molecule. Such bodies, at the appropriate

temperature, tend to aggregate themselves into masses, which are

sometimes spherical drops or globules (the so-called "spherulites"),

and sometimes have the definite form of needle-like or prismatic

crystals. In either case they remain liquid, and are also doubly

refractive, polarising light in brilliant colours. Together with

them are formed ordinary solid crystals, also with characteristic

polarisation, and into such solid crystals all the fluid material

ultimately turns. It is evident that in these liquid crystals,

though the molecules are freely mobile, just as are those of water,

they are yet subject to, or endowed with, a "directive force,"

a force which confers upon them a definite configuration or

"polarity," the Gestaltungskraft of Lehmann.

Such an hypothesis as this had been gradually extruded from

the theories of mathematical crystallography*; and it had come

to be beheved that the symmetrical conformation of a homo-

geneous crystalhne structure was sufficiently explained by the

mere mechanical fitting together of appropriate structural units

along the easiest and simplest fines of "close packing": just as

* Cf. Tutton, Crystallography, p. 932, 1911.
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a pile of oranges becomes definite, both in outward form and

inward structural arrangement, without the play of any specific

directive force. But while our conceptions of the tactical arrange-

ment of crystalline molecules remain the same as before, and our

hypotheses of "modes of packing" or of "space-lattices" remain

as useful as ever for the definition and explanation of the

molecular arrangements, an entirely new theoretical conception

is introduced when we find such space- lattices maintained in

what has hitherto been considered the molecular freedom of a

hquid field ; and we are constrained, accordingly, to postulate

a specific molecular force, or " Gestaltungskraft " (not unlike

Kepler's " facultas formatrix "), to account for the phenomenon.

Now just as some sort of specific "Gestaltungskraft" had

been of old the deus ex machina accounting for all crystalline

phenomena {gnara totius geometrice, et in ea exercita, as Kepler

said), and as such an hypothesis, after being dethroned and

repudiated, has now fought its way back and has made good its

right to be heard, so it may be also in biology. We begin by an

easy and general assumption of specific properties, by which each

organism assumes its own specific form; we learn later (as it is

the purpose of this book to shew) that throughout the whole

range of organic morphology there are innumerable phenomena of

form which are not peculiar to living things, but which are more

or less simple manifestations of ordinary physical law. But every

now and then we come to certain deep-seated signs of proto-

plasmic symmetry or polarisation, which seem to lie beyond the

reach of the ordinary physical forces. It by no means follows

that the forces in question are not essentially physical forces, more

obscure and less famihar to us than the rest ; and this would seem

to be the crucial lesson for us to draw from Lehmann's surprising

and most beautiful discovery. For Lehmann seems actually to

have demonstrated, in non-hving, chemical bodies, the existence

of just such a determinant, just such a "Gestaltungskraft," as

would be of infinite help to us if we might postulate it for the

explanation (for instance) of our Radiolarian's axial symmetry.

But further than this we cannot go ; for such analogy as we seem

to see in the Lehmann phenomenon soon evades us, and refuses

to be pressed home. Not only is it the case, as we have already
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seen, that certain of the geometric forms assumed by the symme-
trical Radiolarian shells are just such as the "space-lattice"

theory would seem to be inappUcable to, but it is in other ways

obvious that symmetry of crystallisation, whether liquid or solid,

has no close parallel, but only a series of analogies, in the proto-

plasmic symmetry of the living cell.



CHAPTER X

A PARENTHETIC NOTE ON GEODETICS

We have made use in the last chapter of the mathematical

principle of Geodetics (or Geodesies) in order to explain the con-

formation of a certain class of sponge-spicules ; but the principle

is of much wider apphcation in morphology, and would seem to

deserve attention which it has not yet received.

Defining, meanwhile, our geodetic line (as we have already

done) as the shortest distance between two points on the surface

of a solid of revolution, we find that the geodetics of the cylinder

give us one of the simplest of

cases. Here it is plain that the

geodetics are of three kinds: (1)

a series of annuh around the

cyhnder, that is to say, a system

of circles, in planes parallel to

one another and at right angles

to the axis of the cyhnder (Fig.

236, a); (2) a series of straight

lines parallel to the axis; and

(3) a series of spiral curves wind-

ing round the wall of the cyhnder

(6, c). These three systems are

all of frequent occurrence, and

are all illustrated in the local

thickenings of the wall of the

cyhndrical cells or vessels of plants.

The spiral, or rather helicoid, geodetic is particularly common
in cylindrical structures, and is beautifully shewn for instance in

the spiral coil which stiffens the tracheal tubes of an insect, or

the so-called "tracheides" of a woody stem. A similar pheno-

B C
Fig. 236. Annular and .spiral thick-

enings in the walls of plant-cells.
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menon is often witnessed in the splitting of a glass tube. If a

crack appear in a thin tube, such as a test-tube, it has a tendency

to be prolonged in its own direction, and the more perfectly

homogeneous and isotropic be the glass the more evenly will the

split tend to follow the straight course in which it began. As

a result, the crack in our test-tube is often seen to continue till

the tube is spht into a continuous spiral ribbon.

In a right cone, the spiral geodetic falls into closer and closer

coils as the diameter of the cone narrows ; and a very beautiful

geodetic of this kind is exempUfied in the sutural line of a spiral

shell, such as Turritella, or in the striations which run parallel

with the spiral suture. Similarly, in an elUpsoidal surface, we
have a spiral geodetic, whose coils get closer together as we
approach the ends of the long axis of the elhpse ; in the sphtting

of the integument of- an Equisetum-spore, by which are formed

the spiral "elaters" of the spore, we have a case of this kind,

though the spiral is not sufficiently prolonged to shew all its

features in detail.

We have seen in these various cases, that our original definition

of a geodetic requires to be modified; for it is only subject to

conditions that it is "the shortest distance between two points

on the surface of the sohd," and one of the commonest of these

restricting conditions is that our geodetic may be constrained to

go twice, or many times, round the surface on its way. In short,

we must redefine our geodetic, as a curve drawn upon a surface,

such that, if we take any two adjacent points on the curve,

the curve gives the shortest distance between them. Again,

in the geodetic systems which we meet with in morphology, it

sometimes happens that we have two opposite systems of geodetic

spirals separate and distinct from one another, as in Fig. 236, c

;

and it is also common to find the two systems interfering with

one another, and forming a criss-cross, or reticulated arrangement.

This is a very common source of reticulated patterns.

Among the cihated Infusoria, we have in the spiral lines along

which their ciha are arranged a great variety of beautiful geodetic

curves; though it is probable enough that in some complicated

cases these are not simple geodetics, but projections of curves

other than a straight line upon the surface of the solid.
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Lastly, a very instructive case is furnished by the arrangement

of the muscular fibres on the surface of a hollow organ, such as

the heart or the stomach. Here we may consider the phenomenon

from the point of view of mechanical efficiency, as well as from

that of purely descriptive or objective anatomy. In fact we have

an a 'priori right to expect that the muscular fibres covering such

hollow or tubular organs will coincide with geodetic lines, in the

sense in which we are now using the term. For if we imagine a

contractile fibre, or elastic band, to be fixed by its two ends upon

a curved surface, it is obvious that its first effort of contraction

will tend to expend itself in accommodating the band to the

form of the surface, in "stretching it tight," or in other words

in causing it to assume a direction which is the shortest possible

line wpon the surface between the two extremes : and it is only

then that further contraction will have the effect of constricting

the tube and so exercising pressure on its contents. Thus the

muscular fibres, as they wind over the curved surface of an organ,

arrange themselves automatically in geodesic curves : in precisely

the same manner as we also automatically construct complex

systems of geodesies whenever we wind a ball of wool or a spindle

of tow, or when the skilful surgeon bandages a limb. In these

latter cases we see the production of those " figures-of-eight," to

which, in the case for instance of the heart-muscles, Pettigrew

and other anatomists have ascribed pecuhar importance. In the

case of both heart and stomach we must look upon these organs

as developed from a simple cylindrical tube, after the fashion of

the glass-blower, as is further discussed on p. 737 of this book,

the modification of the simple cyhnder consisting of various degrees

of dilatation and of twisting. In the primitive undistorted

cyhnder, as in an artery or in the intestine, the muscular fibres

run in geodetic lines, which as a rule are not spiral, but are merely

either annular or longitudinal ; these are the ordinary " circular

and longitudinal coats," which form the normal musculature of

all tubular organs, or of the body-wall of a cyUndrical worm*. If

we consider each muscular fibre as an elastic strand, imbedded in

the elastic membrane which constitutes the wall of the organ, it

* However, we can often recognise, in a small artery for instance, that the so-

called "circular" fibres tend to take a slightly oblique, or spiral, course.
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is evident that, whatever be the distortion suffered by the entire

organ, the individual fibre will follow the same course, which wil)

still, in a sense, be a geodetic. But if the distortion be consider-

able, as for instance if the tube become bent upon itself, or if at

some point its walls bulge outwards in a diverticulum or pouch,

it is obvious that the old system of geodetics will only mark the

shortest distance between two points more or less approximate to

one another, and that new systems of geodetics will tend to

appear, pecuhar to the new surface, and linking up points more

remote from one another. This is evidently the case in the

human stomach. We still have the systems, or their unobliterated

remains, of circular and longitudinal muscles; but we also see

two new systems of fibres, both obviously geodetic (or rather,

when we look more closely, both parts of one and the same

geodetic system), in the form of annuli encircling the pouch or

diverticulum at the cardiac end of the stomach, and of oblique

fibres taking a spiral course from the neighbourhood of the

oesophagus over the sides of the organ.

In the heart we have a similar, but more complicated

phenomenon. Its musculature consists, in great part, of the

original simple system of circular and longitudinal muscles

which enveloped the original arterial tubes, which tubes, after

a process of local thickening, expansion, and especially twisting,

came together to constitute the composite, or double, mammalian

heart; and these systems of muscular fibres, geodetic to begin

with, remain geodetic (in the sense in which we are using the

word) after all the twisting to which the primitive cylindrical tube

or tubes have been subjected. That is to say, these fibres still

run their shortest possible course, from start to finish, over the

complicated curved surface of the organ; and it is only because

they do so that their contraction, or longitudinal shortening, is

able to produce its direct effect, as Borelli well understood, in

the contraction or systole of the heart*. ,

* The spiral fibres, or a large portion of them, constitute what Searle called

"the rope of the heart" (Todd's Cyclopaedia, n, p. 621, 1836). The "twisted

sinews of the heart " were known to early anatomists, and have been frequently

and elaborately studied : for instance, by Gerdy (Bull. Fac. Med. Paris, 1820,
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As a parenthetic corollary to the case of the spiral pattern

upon the wall of a cylindrical cell, we may consider for a

moment the spiral line which many small organisms tend to

follow in their path of locomotion*. The helicoid spiral, traced

around the wall of our cylinder, may be explained as a composition

of two velocities, one a uniform velocity in the direction of the

axis of the cylinder, the other a uniform velocity in a circle

perpendicular to the axis. In a somewhat analogous fashion, the

smaller cihated organisms, such as the ciliate and flagellate

Infusoria, the Rotifers, the swarm-spores of various Protists, and

so forth, have a tendency to combine a direct with a revolving

path in their ordinary locomotion. The means of locomotion

which they possess in their cilia are at best somewhat primitive

and inefficient; they have no apparent means of steering, or

modifying their direction; and, if their course tended to swerve

ever so little to one side, the result would be to bring them round

and round again in an approximately circular path (such as a man
astray on the prairie is said to follow), with httle or no progress

in a definite longitudinal direction. But as a matter of fact,

either through the direct action of their cilia or by reason of a

more or less unsymmetrical form of the body, all these creatures

tend more or less to rotate about their long axis while they swim.

And this axial rotation, just as in the case of a rifle-bullet, causes

their natural swerve, which is always in the same direction as

regards their own bodies, to be in a continually changing direction

as regards space : in short, to make a spiral course around, and

more or less approximate to, a straight axial line.

pp. 4()-148), and by Pettigrew [Phil. Trans. 1864), and of late by J. B. Macallum

{Johm Hopkins Hospital Report, ix, 1900) and by Franklin P. Mall {Amer. J. of

Anat. XI, 1911).

* Cf. Butsckli, "Protozoa," in Bronn's Thierreich, ii, p. 848, iii, p. 1785, etc.,

1883-87; Jennings, Amer. Nat. xxxv, p. 369, 1901; Piitter, Thigmotaxie bei

Protisten, Arch. f. Anat. v. Phys. {Phys. Abth. SuppL), pp. 243-302, 1900.
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THE LOGARITHMIC SPIRAL

The very numerous examples of spiral conformation which we
meet with in our studies of organic form are peculiarly adapted

to mathematical methods of investigation. But ere we begin to

study them, we must take care to define our terms, and we had

better also attempt some rough preliminary classification of the

objects with which we shall have to deal.

In general terms, a Spiral Curve is a hue which, starting from

a point of origin, continually diminishes in curvature as it recedes

from that point; or, in other words, whose radius of curvature

continually increases. This definition is wide enough to include

a number of different curves, but on the other hand it excludes

at least one which in popular speech we are apt to confuse with

a true spiral. This latter curve is the simple Screw, or cyhndrical

HeUx, which curve, as is very evident, neither starts from a definite

origin, nor varies in its curvature as it proceeds. The "spiral"'

thickening of a woody plant-cell, the "spiral" thread within an

insect's tracheal tube, or the "spiral" twist and twine of a cHmbing

stem are not, mathematically speaking, spirals at all, but screivs

or helices. They belong to a distinct, though by no means verv

remote, family of curves. Some of these helical forms we have

just now treated of, briefly and parenthetically, under the subject

of Geodetics.

Of true organic spirals we have no lack*. We think at once

of the beautiful spiral curves of the horns of ruminants, and of

the still more varied, if not more beautiful, spirals of molluscan

shells. Closely related spirals may be traced in the arrangement

* A great number of spiral forms, both organic and artificial, are described

and beautifully illustrated in Sir T. A. Cook's Curves of Life, 1914, and Spirals in

Nature and Art, 1903.
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of the florets in the sunflower; a true spiral, though not, by the

way, so easy of investigation, is presented to us by the outUne

Fig. 237. The shell of Nmitilus jmm/pilius, from a radiograph : to shew the

logarithmic spk-al of the shell, together with the arrangement of the internal

septa. (From Messrs Green and Gardiner, in Proc Malacol. Soc. ii, 1897.)

of a cordate leaf ; and yet again, we can recognise typical though

transitory spirals in the coil of an elephant's trunk, in the " circling
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spires " of a snake, in the coils of a cuttle-fish's arm, or of a monkey's

or a chameleon's tail.

Among such forms as these, and the many others which we
might easily add to them, it is obvious that we have to do with

things which, though mathematically similar, are biologically

speaking fundamentally different. And not only are they bio-

logically remote, but they are also physically different, in regard

to the nature of the forces to which they are severally due. For

in the first place, the spiral coil of the elephant's trunk or of the

chameleon's tail is, as we have said, but a transitory configuration,

and is plainly the result of certain muscular forces acting upon

a structure of a definite, and normally an essentially different,

form. It is rather a position, or an athfude, than a form, in the

Fig. 238. A Foraminiferal shell (Globigerma).

sense in which we have been using this latter term ; and, unlike

most of the forms which we have been studying, it has little or no

direct relation to the phenomenon of Growth.

Again, there is a manifest and not unimportant difference

between such a spiral conformation as is built up by the separate

and successive florets in the sunflower, and that which, in the

snail or Nautilus shell, is apparently a single and indivisible unit.

And a similar, if not identical difference is apparent between the

Nautilus shell and the minute shells of the Foraminifera, which

so closely simulate it ; inasmuch as the spiral shells of these latter

are essentially composite structures, combined out of successive

and separate chambers, while the molluscan shell, though it may
(as in Nautilus) become secondarily subdivided, has grown as

one continuous tube. It follows from all this that there cannot
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possibly be a physical or dynamical, though there may well be

a mathematical Law of Growth, which is common to, and which

defines, the spiral form in the Nautilus, in the Globigerina, in the

rani's horn, and in the disc of the sunflower.

Of the spiral forms which we have now mentioned, every one

(with the single exception of the outhne of the cordate leaf) is an

example of the remarkable curve known as the Logarithmic Spiral.

But before we enter upon the mathematics of the logarithmic

spiral, let us carefully observe that the whole of the organic forms

in which it is clearly and permanently exhibited, however different

they may be from one another in outward appearance, in nature

and in origin, nevertheless all belong, in a certain sense, to one

particular class of conformations. In the great majority of cases,

when we consider an organism in part or whole, when we look (for

instance) at our own hand or foot, or contemplate an insect or

a worm, we have no reason (or very little) to consider one part

of the existing structure as older than another; through and

through, the newer particles have been merged and commingled,

by intussusception, among the old; the whole outhne, such as it

is, is due to forces which for the most part are still at work to

shape it, ami which in shaping it have shaped it as a whole. But

the horn, or the snail-shell, is curiously different; for in each of

these, the presently existing structure is, so to speak, partly old

and partly new; it has been conformed by successive and con-

tinuous increments ; and each successive stage of growth, starting

from the origin, remains as an integral and unchanging portion

of the still growing structure, and so continues to represent what

at some earlier epoch constituted for the time being the structure

in its entirety.

In a slightly different, but closely cognate way, the same is

true of the spirally arranged florets of the sunflower. For here

again we are regarding serially arranged portions of a composite

structure, which portions, similar to one another in form, differ

in age ; and they differ also in magnitude in a strict ratio according

to their age. Somehow or other, in the logarithmic spiral the

time-element always enters in ; and to this important fact, full of

curious biological as well as mathematical significance, \v^e shall

afterwards return.



XI] ITS GENERAL PROPERTIES 497

It is, as we have so often seen, an essential part of our whole

problem, to try to understand what distribution of forces is capable

of producing this or that organic form,^to give, in short, a

dynamical expression to our descriptive morphology. Now the

general distribution of forces which lead to the formation of a

spiral (whether logarithmic or other) is very easily understood;

and need not carry us beyond the use of very elementary mathe-

matics.

If we imagine growth to act in a perpendicular direction, as for

example the upward force of growth in a growing stem {OA), then.

Fig. 239.

in the absence of other forces, elongation will as a matter of course

proceed in an unchanging direction, that is to say the stem will

grow straight upwards. Suppose now that there be some constant

external force, such as the wind, impinging on the growing stem;

and suppose (for simplicity's sake) that this external force be in a

constant direction (^5) perpendicular to theintrinsic force of growth.

The direction of actual growth will be in the line of the resultant

of the two forces : and, since the external force is (by hypothesis)

constant in direction, while the internal force tends always to act in

the line of actual growth, it is obvious that our growing organism

will tend to be bent into a curve, to which, for the time being,

T. G. 32
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the actual force of growth will be acting at a tangent. So long

as the two forces continue to act, the curve will approach, but

will never attain, the direction of AB, perpendicular to the original

direction OA. If the external force be constant in amount the

curve will approximate to the form of a hyperbola ; and, at any

rate, it is obvious that it will never tend to assume a spiral

form.

In Uke manner, if we consider a horizontal beam, fixed at one

end, the imposition of a weight at the other will bend the beam
into a curve, which, as the beam elongates or the weight increases,

will bring the weighted end nearer and nearer to the vertical.

But such a force, constant in direction, will obviously never curve

the beam into a spiral,—a fact so patent and obvious that it would

be superfluous to state it, were it not that some naturahsts have

been in the habit of invoking gravity as the force to which may be

attributed the spiral flexure of the shell.

But if, on the other hand, the deflecting force be inherent in

the growing body, or so connected with it in a system that its

direction (instead of being constant, as in the former case) changes

with the direction of growth, and is perpendicular (or inclined at

some constant angle) to this changing direction of the growing

force, then it is plain that there is no such limit to the deflection

from the normal, but the growing curve will tend to wind round

and round its point of origin. In the typical case of the snail-

shell, such an intrinsic force is manifestly present in the action

of the columellar muscle.

Many other simple illustrations can be given of a spiral course

being impressed upon what is primarily rectilinear motion, by

any steady deflecting force which the moving body carries, so

to speak, along with it, and which continually gives a lop-sided

tendency to its forward movement. For instance, we have been told

that a man or a horse, travelling over a great prairie, is very apt

to find himself, after a long day's journey, back again near to his

starting point. Here some small and imperceptible bias, such as

might for instance be caused by one leg being in a minute degree

longer or stronger than the other, has steadily deflected the forward

movement to one side; and has gradually brought the traveller

back, perhaps in a circle to the very point from which he set out.
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or else by a spiral curve, somewhere within reach and recognition

of it.

We come to a similar result when we consider, for instance,

a cyHndrical body in which forces of growth are at work tending

to its elongation, but these forces are unsymmetrically distributed.

Let the tendency to elongation along AB be of a magnitude pro-

portional to BB', and that along CD be of a magnitude proportional

to DD' ; and in each element parallel to AB and CD, let a parallel

force of growth, proportionately intermediate in magnitude, be at

work : and let EFF' be the middle line. Then at any cross-

section BFD, if we deduct the mean force FF', we have a certain

positive force at B, equal to Bb, and an equal and opposite force

at D, equal to Dd. But AB and CD are not separate structures.

F

"F

Fig. 240.

but are connected together, either by a solid core, or by the walls

of a tubular shell; and the forces which tend to separate B and

D are opposed, accordingly, by a tension in BD. It follows there-

fore, that there will be a resultant force BG, acting in a direction

intermediate between Bb and BD, and also a resultant, DH,
acting at D in an opposite direction; and accordingly, after a

small increment of grpwth, the growing end of the cyUnder will

come to lie, not in the direction" BD, but in the direction GH,
The problem is therefore analogous to that of a beam to which

we apply a bending moment; and it is plain that the unequal

force of growth is equivalent to a '''couple" which will impart to

our structure a curved form. For, if we regard the part ABDC
as practically rigid, and the part BB'D'D as pliable, this couple

32—2
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will tend to turn strips such as B'U about an axis perpendicular

to the plane of the diagram, and passing through an intermediate

point F' . It is plain, also, since all the forces under consideration

are intrinsic to the system, that this tendency will be continuous,

and that as growth proceeds the curving body will assume either

a circular or a spiral form. But the tension which we have here

assumed to exist in the direction BD will obviously disappear if

we suppose a sufficiently rapid rate of growth in that direction.

For if we may regard the mouth of our tubular shell as perfectly

extensible in its own plane, so that it exerts no traction whatsoever

on the sides, then it will be drawn out into more and more elongated

elhpses, forming the more and more oblique orifices of a straight

tube. In other words, in such a structure as we have presupposed.

the existence or maintenance of a constant ratio between the

rates of extension or growth in the vertical and transverse directions

will lead, in general, to the development of a logarithmic spiral;

the magnitude of that ratio will determine the character (that is

to say, the constant angle) of the spiral; and the spirals so pro-

duced will include, as special or limiting cases, the circle and the

straight hne.

We may dispense with the hypothesis of bending moments,

if we simply presuppose that the increments of growth take place

at a constant angle to the growing surface (as AB), but more

rapidly at A (which we shall call the "outer edge") than at B,

and that this difference of velocity maintains a constant ratio.

Let us also assume that the whole structure is rigid, the new

accretions solidifying as soon as they are laid on. For example,
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let Fig. 242 represent in section the early growth of a Nautilus-

shell, and let the part ARB represent the earUest stage of all,

which in Nautilus is nearly semicircular. We have to find a law

governing the growth of the shell, such that each edge shall

develope into an equiangular spiral; and this law, accordingly,

must be the same for each edge, namely that at each instant the

direction of growth makes a constant angle with a Hne drawn from

a fixed point (called the pole of the spiral) to the point at which

growth is taking place. This growth, we now find, may be

considered as effected by the continuous addition of similar

quadrilaterals. Thus, in Fig. 241, AEDB is a quadrilateral with

AE, DB parallel, and with the angle EAB of a certain definite

Fig. 242.

magnitude, = y. Let AB and ED meet, when produced, in C

;

and call the angle ACE (or xCy) = j8. Make the angle yCz = angle

xCy, = j8. Draw EG, so that the angle yEG = y, meeting Cz in

G\ and draw BE parallel to EG. It is then easy to show that

AEDB and EGFD are similar quadrilaterals. And, when we
consider the quadrilateral AEDB as having infinitesimal sides,

AE and BD, the angle y tends to a, the constant angle of an equi-

angular spiral which passes through the points AEG, and of a

similar spiral which passes through the points BDF ; and the point

C is the pole of both of these spirals. In a particular hmiting case,

when our quadrilaterals are all equal as well as similar,—which

will be the case when the angle y (or the angles EAC, etc.) is a
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right angle,—the "spiral" curve will be a circular are, C being the

centre of the circle.

Another, and a very simple illustration may be drawn from the "cymose
inflorescences" of the botanists, though the actual mode of development of

some of these structures is open to dispute, and their nomenclature is involved

in extraordinary historical confusion*.

In Fig. 243 B (which represents the Gicinnus of Schimper, or cyme unipare

scorpioide of Bravais, as seen in the Borage), we begin with a primary shoot

from which is given off, at a certain definite

angle, a secondary shoot : and from that in turn,

on the same side and at the same angle, another

shoot, and so on. The deflection, or curvature,

is continuous and progressive, for it is caused by
no external force but only by causes intrinsic in

the system. And the whole system is sym-

metrical: the angles at which the successive

shoots are given off being aU equal, and the

lengths of the shoots diminishing in constant

ratio. The result is that the successive shoots,

or successive increments of growth, are tangents

to a curve, and this curve is a true logarith-

mic spiral. But while, in this simple case,

the successive shoots are depicted as lying in

a, plane, it may also happen that, in addition to their successive angular

divergence from one another within that plane, they also tend to diverge

by successive equal angles from that plane of reference; and by this

means, there will be superposed upon the logarithmic spiral a helicoid twist

or screw. And, in the particular case where this latter angle of divergence

is just equal to 180°, or two right angles, the successive shoots will once more

come to he in a plane, but they will appear to come off from one another on

alternate sides, as in Fig. 243 A.' This is the Schravbel or Bosiryx of Schimper,

the cyme unipare he'licoide of Bravais. The logarithmic spu-al is still latent

in it, as in the other ; but is concealed from view by the deformation resulting

from the hehcoid. The confusion of nomenclature would seem to have arisen

from the fact that many botanists did not recognise (as the brothers Bravais did)

the mathematical significance of the latter case; but were led, by the snail-

like spiral of the scorpioid cyme, to transfer the name "hehcoid" to it.

Fig. 243. A, a helicoid, B,

a scorpioid cyme.

In the study of such curves as these, then, we speak of the

point of origin as the pole (0) ; a straight hne having its extremity

in the pole and revolving about it, is called the radius vector;

* Cf. Vines, The History of the Scorpioid Cyme, Journ. of Botany (n.s.), x,

pp. 3-9, 1881.
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and a point (P) which is conceived as travelhng along the radius

vector under definite conditions of velocity, will then describe our

spiral curve.

Of several mathematical curves whose form and development

may be so conceived, the two most important (and the only two

with which we need deal), are those which are known as (1) the

equable spiral, or spiral of Archimedes, and (2) the logarithmic,

or equiangular spiral.

The former may be illustrated by the spiral coil in which a

sailor coils a rope upon the deck ; as the rope is of uniform thick-

ness, so in the whole spiral coil is each whorl of the same breadth

Fig. 244.

as that which precedes and as that which follows it. Using

its ancient definition, we may define it by saying, that "If a

straight line revolve uniformly about its extremity, a point which

likewise travels uniformly along it will describe the equable

spiral*." Or, putting the same thing into our more modern

words, "If, while the radius vector revolve uniformly about the

pole, a point (P) travel with uniform velocity along it, the curve

described will be that called the equable spiral, or spiral of

Archimedes."

* Leslie's Geometry of Curved Lines, p. 417, 1821. This is practically identical

with Archimedes' own definition (ed. Torelli, p. 219); cf. Cantor, Geschichte der

Mathematik, i, p. 262, 1880.
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It is plain that the spiral of Archimedes may be compared to

a cylinder coiled up. And it is plain also that a radius (r = OP),

made up of the successive and equal whorls, will increase in

arithmetical progression: and will equal a certain constant

quantity {a) multiphed by the whole number of whorls, or (more

strictly speaking) multiplied by the whole angle {d) through

which it has revolved : so that r = aQ.

But, in contrast to this, in the logarithmic spiral of the Nau-

tilus or the snail-shell, the whorls gradually increase in breadth,

and do so in a steady and unchanging ratio. Our definition is

as follows: "If, instead of travelUng with a uniform velocity,

our point move along the radius vector with a velocity increasing

as its distance from the pole, then the path described is called a

logarithmic spiral." Each whorl which the radius vector inter-

sects will be broader than its predecessor in a definite ratio ; the

radius vector will increase in length in geometrical progression,

as it sweeps through successive equal angles; and the equation

to the spiral will be r = a^. As the spiral of Archimedes, in our

example of the coiled rope, might be looked upon as a coiled

cylinder, so may the logafrithmic spiral, in the case of the shell,

be pictured as a cone coiled upon itself.

Now it is obvious that if the whorls increase very slowly indeed,

the logarithmic spiral will come to look Hke a spiral of Archimedes,

with which however it never becomes identical ; for it is incorrect

to say, as is sometimes done, that the Archimedean spiral is a

"Umiting case" of the logarithmic spiral. The Nummuhte is a

case in point. Here we have a large number of whorls, very

narrow, very close together, and apparently of equal breadth,

which give rise to an appearance similar to that of our coiled

rope. And, in a case of this kind, we might actually find that

the whorls were of equal breadth, being produced (as is apparently

the case in the Nummulite) not by any very slow and gradual

growth in thickness of a continuous tube, but by a succession of

similar cells or chambers laid on, round and round, determined as

to their size by constant surface-tension conditions and there-

fore of unvarjdng dimensions. But even in this case we should

have no Archimedean spiral, but only a logarithmic spiral in

which the constant angle approximated to 90°.
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For, in the logarithmic spii'al, when a tends to 90°, the expression r = a^^°^"'

tends to r = a (1 4- ^ cot «); while the equation to the Archimedean spiral is

r = bd. The nummulite must always have a central core, or initial cell,

around which the coil is not only wrapped, but out of which it springs ; and

this initial chamber corresponds to our a' in the expression r = a' + a6 cot a.

The outer whorls resemble those of an Archimedean spiral, because of the

other term a6 cot a in the same expression. It follows from this that in all

such cases the whorls must be of excessively small breadth.

There are many other specific properties of the logarithmic

spiral, so interrelated to one another that we may choose pretty

well any one of them as the basis of our definition, and deduce the

others from it either by analytical methods or by the methods of

elementary geometry. For instance, the equation r — a^ may be

written in the form log r = 6 log a, or ^ = log r/log a, or (since a is

a constant), 6 = k log r. Which is as much as to say that the

vector angles about the pole are proportional to the logarithms

of the successive radii ; from which circumstance the name of the

"logarithmic spiral" is derived.

Let us next regard our logarithmic spiral from the dynamical

point of view, as when we consider the forces concerned in the

growth of a material, concrete spiral.

In a growing structure, let the forces of

growth exerted at any point P be a

force F acting along the fine joining P
to a pole and a force T acting in a

direction perpendicular to OP; and let

the magnitude of these forces be in the

same constant ratio at all points. It

follows that the resultant of the forces

F and T (as PQ) makes a constant

angle with the radius vector. But the

constancy of the angle between tangent

and radius vector at any point is a

fundamental property of the logarithmic spiral, and may be

shewn to follow from our definition of the curve : it gives to the

curve its alternative name of equiangular spiral. Hence in a

structure growing under the above conditions the form of the

boundary will be a logarithmic spiral.
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Mg. 246.

In such a spiral, radial growth and growth in the direction of

the curve bear a constant ratio to one another. For, if we consider

a consecutive radius s^ector, OP' , whose increment

as compared with OP is dr, while ds is the small

arc PP' , then

drjds = cos a = constant.

In the concrete case of the shell, the distribution

of forces will be, originally, a little more compli-

cated than this, though by resolving the forces in

question, the system may be reduced to this

simple form. And furthermore, the actual distri-

bution of forces will not always be identical;

for example, there is a distinct difference between the cases (as

in the snail) where a columellar muscle exerts a definite traction

in the direction of the pole, and those (such as Nautilus) where

there is no columellar muscle, and where some other force must

be discovered, or postulated, to account for the flexure. In the

most frequent case, we have, as

in Fig. 247, three forces to deal

with, acting at a point, p

:

L, acting in the direction of

the tangent to the curve, and

representing the force of longi-

tudinal growth ; T, perpen-

dicular to L, and representing

the organisna's tendency to grow

in breadth ; and P, the traction

exercised, in the direction of the

pole, by the columellar muscle.

Let us resolve L and T into

components along P (namely

A' , B'), and perpendicular to P (namely A, B) ; we have now only

two forces to consider, viz. P — A' — B' , and A — B. And these

two latter we can again resolve, if we please, so as to deal only

with forces in the direction of P and T. Now, the ratio of these

forces remaining constant, the locus of the point 'p is an equiangular

spiral.
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Furthermore we see how any slight change in any one of the

forces P, T, L will tend to modify the angle a, and produce a slight

departure from the absolute regularity of the logarithmic spiral.

Such slight departures from the absolute simplicity and uniformity

of the theoretic law we shall not be surprised to find, more or less

frequently, in Nature, in the complex system of forces presented

by the living organism.

In the growth of a shell, we can conceive no simpler law than

this, namely, that it shall widen and lengthen in the same unvarying

proportions : and this simplest of law^s is that which Nature tends

to follow. The shell, like the creature within it, grows in size

hut does not change its shape ; and the existence of this constant

relativity of growth, or constant similarity of form, is of the essence,

and may be made the basis of a definition, of the logarithmic

spiral.

Such a definition, though not commonly used by mathe-

maticians, has been occasionally employed ; and it is one from

which the other properties of the curve can be deduced with

great ease and simplicity. In mathematical language it would run

as follows :
" Any [plane] curve proceeding from a fixed point

(which is called the pole), and such that the arc intercepted between

this point and any other whatsoever on the curve is always similar

to itself, is called an equiangular, or logarithmic, spiral*."

In this definition, we have what is probably the most funda-

mental and "intrinsic" property of the curve,.namely the property

of continual similarity : and this is indeed the very property by

reason of which it is peculiarly associated with organic growth in

such structures as the horn or the shell, or the scorpioid cyme

which is described on p. 502. For it is peculiarly characteristic

of the spiral of a shell, for instance, that (under all normal circum-

stances) it does not alter its shape as it grows ; each increment is

geometrically similar to its predecessor, and the whole, at any

epoch, is similar to what constituted the whole at another and an

earUer epoch. We feel no surprise when the animal which secretes

the shell, or any other animal whatsoever, grows by such sym-

* See an interesting paper by Whitworth, W. A., "The Equiangular Spiral,

its chief properties proved geometrically," in the Messenger of Mathematics (1),

I, p. 5, 1862.
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metrical expansion as to preserve its form unchanged; though

even there, as we have already seen, the unchanging form denotes

a nice balance between the rates of growth in various directions,

which is but seldom accurately maintained for long. But the

shell retains its unchanging form in spite of its asymmetrical

growth; it grows at one end only, and so does the horn. And
this remarkable property of increasing by terminal growth, but

nevertheless retaining unchanged the form of the entire figure, is

characteristic of the logarithmic spiral, and of no other mathe-

matical curve.

We may at once illustrate this curious phenomenon by drawing

the outhne of a Uttle Nautilus shell within a big one. We know,

or we may see at once, that they are of precisely the same shape

;

so that, if we look at the little shell through a magnifying glass,

it becomes identical with the big one. But we know, on the other

Fig. 248.

hand, that the httle Nautilus shell grows into the big one, not by

uniform growth or magnification in all directions, as is (though

only approximately) the case when the boy grows into the man,

but by growing at one end only.

Though of all curves, this property of continued similarity is

found only in the logarithmic spiral, there are very many rectilinear

figures in which it may be observed. For instance, as we may
easily see, it holds good of any right cone ; for evidently, in Fig. 248,

the Httle inner cone (represented in its triangular section) may
become identical with the larger one either by magnification all

round (as in a), or simply by an increment at one end (as in b):

indeed, in the case of the cone, we have yet a third possibihty,

for the same result is attained when it increases all round, save

only at the base, that is to say when the triangular section increases
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on two of its sides, as in c. All this is closely associated with the

fact, which we have already noted, that the Nautilus shell is but

a cone rolled up; in other words, the cone is but a particular

variety, or "limiting case," of the spiral shell.

This property, which we so easily recognise in the cone, would

seem to have engaged the particular attention of the most ancient

mathematicians even from the days of Pythagoras, and so, with

little doubt, from the more ancient days of that Egyptian school

whence he derived the foundations of his learning* ; and its bearing

on our biological problem of the shell, though apparently indirect,

is yet so close that it deserves our further consideration.

If, as in Fig. 249, we add to two sides of a square a symmetrical

L-shaped portion, similar in shape to what we call a " carpenter's

square," the resulting figure is still a square; and the portion

Fig. 249. Fig. 250.

which we have added is called, by Aristotle {Phys. iii, 4), a

"gnomon." Euclid extends the term to include the case of any
parallelogram f, whether rectangular or not (Fig. 250); and Hero
of Alexandria specifically defines a "gnomon" (as indeed Aristotle

impHcitly defines it), as any figure which, being added to any
figure whatsoever, leaves the resultant figure similar to the

original. Included in this important definition is the case of

numbers, considered geometrically; that is to say, the elSrjTiKol

dptO/uLol, which can be translated into form, by means of rows of

dots or other signs (cf. Arist. Metaph. 1092 b 12), or in the

pattern of a tiled floor: all according to "the mystical w^ay of

* I am well aware that the debt of Greek science to Egypt and the East is

vigorously denied by many scholars, some of whom go so far as to believe that the

Egyptians never had any science, save only some "rough rules of thumb for measur-

iiig fields and pyramids "-(Burnet's Greek Philosojihy, 1914, p. 5).

t Euclid (n, def. 2).
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Pythagoras, and the secret magick of numbers." Thus for

example, the odd numbers are "gnomonic numbers," because

+ 1 = 1-,

12 + 3 = 22,

22 + 5-32,
32 + 7 = 42 etc.,

which relation we may illustrate graphically {(T)(^r)ijLaToypa<f>€iv)

by the successive numbers of dots which keep the annexed figure

a perfect square *
: as follows :

\

There are other gnomonic figures more curious still. For

instance, if we make a rectangle (Fig. 251) such that the two

D
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each half of the figure, accordingly, is now a gnomon to the other.

Another elegant example is when we start with a rectangle (A)

whose sides are in the proportion of 1 : ^(V5 — 1), or, approxi-

mately, 1 : 0-618. The gnomon to this figure is a square (B) erected

on its longer side, and so on successively (Fig. 252).

In any triangle, as Aristotle tells us, one part is always a

gnomon to the other part. For instance, in the triangle ABC
(Fig. 253), let us draw CD, so as to make the angle BCD equal to

the angle A. Then the part BCD is a triangle similar to the

whole triangle ABC, and ADC is a gnomon to BCD. A very

elegant case is when the original triangle ABC is an isosceles

triangle having one angle of 36°, and the other two angles, there-

fore, each equal to 72° (Fig. 254). Then, by bisecting one of the

Fig. 254,

angles of the base, we subdivide the large isosceles triangle into

two isosceles triangles, of which one is similar to the whole figure

and the other is its gnomon*. There is good reason to believe

that this triangle was especially studied by the Pythagoreans

;

for it lies at the root of many interesting geometrical constructions,

such as the regular pentagon, and the mystical "pentalpha," and

a whole range of other curious figures beloved of the ancient

mathematicians f.

* This is the so-called Dreifachgleichschenkelige Dreieck; cf. Naber, op. infra

(it. The ratio 1 : 0-618 is again not hard to find in this construction.

f See, on the mathematical history of the Gnomon, Heath's Euclid, i, passim,

1908; Zeuthen, Theoreme de Pythagore, Geneve, 1904; also a curious and

interesting book, Das Theorem des Pythagoras, by Dr H. A. Naber, Haarlem, 1908.
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If we take any one of these figures, for instance the isosceles

triangle which we have just described,

and add to it (or subtract from it) in

succession a series of gnomons, so con-

verting it into larger and larger (or smaller

and smaller) triangles all similar to the

first, we find that the apices (or other

corresponding points) of all these triangles

have their locus upon a logarithmic spiral

:

a result which follows directly from that

alternative definition of the logarithmic

spiral which I have quoted from Whit-

worth (p. 507).

Again, we may build up a series of

right-angled triangles, each of which is a

gnomon to the preceding figure; and here again, a logarithmic

spiral is the locus of corresponding points in these successive

triangles. And lastly, whensoever we fill up space with a

Fig. 255.

/
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collection of either equal or similar figures, similarly situated,

as in Figs. 256, 257, there we can always discover a series of

inscribed or escribed logarithmic spirals.

Once more, then, we may modify our definition, and say that

:

"Any plane curve proceeding from a fixed point (or pole), and such

that the vectorial area of any sector is always a gnomon to the

whole preceding figure, is called an equiangular, or logarithmic,

spiral." And we may now introduce this new concept and

nomenclature into our description of the Nautilus shell and

other related organic forms, by saying that: (1) if a growing

Fig. 257. The same in a system of hexagons.

structure be built up of successive parts, similar and similarly

situated, we can always trace through corresponding points

a series of logarithmic spirals (Figs. 258, 259, etc.)
; (2) it is

characteristic of the growth of the horn, of the shell, and of

all other organic forms in which a logarithmic spiral can be

recognised, that each successive increment of growth is a gnomon

to the entire pre-existing structure. And conversely (3) it follows

obviously, that in the logarithmic spiral outline of the shell

or of the horn we can always inscribe an endless variety of

other gnomonic figures, having no necessary relation, save as a

T. G. 33
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mathematical accident, to the nature or mode of development

of the actual structure*.

Fig. 258. A shell of Haliotis, with two of the many lines of growth, or generating

curves, marked out in black : the areas bounded by these hnes of growth being

in all cases "gnomons" to the pre-existing shell.

Fig. 259. A spiral foraminifer {PulvinvUna), to show how each successive chamber

continues the symmetry of, or constitutes a gnomon to, the rest of the structure.

* For many beautiful geometrical constructions based on the molluscan shell,

see Colman, S. and Coan, C. A., Nature's Harmonic Unify (ch. ix, Conchology),

New York, 1912.
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Of these three propositions, the second is of very great use

and advantage for our easy understanding and simple description

of the molluscan shell, and of a great variety of other structures

whose mode of growth is analogous, and whose mathematical

properties are therefore identical. We see at once that the

successive chambers of a spiral Nautilus (Fig. 237) or of a straight

Orthoceras (Fig. 300), each whorl or part of a whorl of a peri-

winkle or other gastropod (Fig. 258), each new increment of the

operculum of a gastropod (Fig. 263), each additional increment of

an elephant's tusk, or each new

chamber of a spiral foraminifer

(Figs. 259 and 260), has its leading

characteristic at once described and

its form so far explained by the

simple statement that it constitutes

a gnomon to the whole previously

existing structure. And herein lies

the explanation of that "time-

element" in the development of

organic spirals of which we have

spoken already, in a prehminary

and empirical way. For it follows

as a simple corollary to this

theorem of gnomons that we must not expect to find the

logarithmic spiral manifested in a structure whose parts are

simultaneously produced, as for instance in the margin of a

leaf, or among the many curves that make the contour of a

fish. But we must rather look for it wherever the organism

retains for us, and still presents to us at a single view, the successive

phases of preceding growth, the successive magnitudes attained,

the successive outhnes occupied, as the organism or a part thereof

pursued the even tenour of its growth, year by year and day by

day. And it easily follows from this, that it is in the hard parts

of organisms, and not the soft, fleshy, actively growing parts,

that this spiral is commonly and characteristically found; not

in the fresh mobile tissues whose form is constrained merely by

the active forces of the moment ; but in things hke shell and tusk,

and horn and claw, where the object is visibly composed of parts

33—2

Fig. 260. Another spiral fora-

minifer, Cristellaria.
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successively, and permanently, laid down. In the main, the

logarithmic spiral is characteristic, not of the Uving tissues, but

of the dead. And for the same reason, it will always or nearly

always be accompanied, and adorned, by a pattern formed of

"hues of growth," the lasting record of earlier and successive

stages of form and magnitude.

It is evident that the spiral curve of the shell is, in a sense,

a vector diagram of its own growth ; for it shews at each instant

of time, the direction, radial and tangential, of growth, and the

unchanging ratio of velocities in these directions. Regarding the

actual velocity of growth in the shell, we know very little (or

practically nothing), by way of experimental measurement; but

if we make a certain simple assumption, then we may go a good

deal further in our description of the logarithmic spiral as it appears

in this concrete case.

Let us make the assumption that similar increments are added

to the shell in equal times ; that is to say, that the amount of

growth in unit time is measured by the areas subtended by equal

angles. Thus, in the outer whorl of a spiral shell a definite area

marked out by ridges, tubercles, etc., has very different linear

dimensions to the corresponding areas of the inner whorl, but the

symmetry of the figure imphes that it subtends an equal angle

with these; and it is reasonable to suppose that the successive

regions, marked out in this way by successive natural boundaries

or patterns, are produced in equal intervals of time.

If this be so, the radii measured from the pole to the boundary

of the shell will in each case be proportional to the velocity of

growth at this point upon the circumference, and at the time when

it corresponded with the outer hp, or region of active growth;

and while the direction of the radius vector corresponds with the

direction of growth in thickness of the animal, so does the tangent

to the curve correspond with the direction, for the time being, of

the animal's growth in length. The successive radii are a measure

of the acceleration of growth, and the spiral curve of the shell

itself is no other than the hodograph of the growth of the contained

organism.
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So far as we have now gone, we have studied the elementary

properties of the logarithmic spiral, including its fundamental

property of continued similarity ; and we have accordingly learned

that the shell or the horn tends necessarily to assume the form

of this mathematical figure, because in these structures growth

proceeds by successive increments, which are always similar in

form, similarly situated, and of constant relative magnitude one

to another. Our chief objects in enquiring further into the

mathematical properties of the logarithmic spiral will be: (1) to

iind means of confirming and verifying the fact that the shell (or

other organic curve) is actually a logarithmic spiral
; (2) to learn

how, by the properties of the curve, we may further extend our

knowledge or simplify our descriptions of the shell ; and (3) to

understand the factors by which the characteristic form of any

particular logarithmic spiral is determined, and so to comprehend

the nature of the specific or generic characters by which one spiral

shell is found to differ from another.

Of the elementary properties of the logarithmic spiral, so far as

we have now enumerated them, the following are those which we
may most easily investigate in the concrete case, such as we have

to do with in the molluscan shell : (1) that the polar radii of points

whose vectorial angles are in arithmetical progression, are them-

selves in geometrical progression ; and (2) that the tangent at any

point of a logarithmic spiral makes a constant

angle (called the angle of the spiral) with the

polar radius vector.

The former of these two propositions may be

written in what is, perhaps, a simpler form, as

follows : radii which form equal angles about the

pole of the logarithmic spiral, are themselves

continued proportionals. That is to say, in

Fig. 261, when the angle ROQ is equal to the

angle QOP, then OR : OQ : : OQ : OP.

A particular case of this proposition is when

the equal angles are each angles of 360° : that is

to say when in each case the radius vector makes

a complete revolution, and when, therefore P, Q
and R all lie upon the same radius.
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It was by observing, with the help of very careful measure-

ment, this continued proportionahty, that Moseley was enabled

to verify his first assumption, based on the general appearance of

the shell, that the shell of Nautilus was actually a logarithmic

spiral, and this demonstration he was immediately afterwards

in a position to generalise by extending it to all the spiral

Ammonitoid and Gastropod mollusca*.

For, taking a median transverse section of a Nautilus pompilius,

and carefully measuring the successive breadths of the whorls

(from the dark hne which marks what was originally the outer

surface, before it was covered up by fresh deposits on the part

of the growing and advancing shell), Moseley found that "the

distance of any two of its whorls measured upon a radius vector

is one-third that of the two next whorls measured upon the same

radius vector f. Thus (in Fig. 262), ab is one-third of be, de of

e/, gh of hi, and M of Im. The curve is therefore a logarithmic

spiral."

The numerical ratio in the case of the Nautilus happens to

be one of unusual simplicity. Let us take, with Moseley, a

somewhat more complicated example.

From the apex of a large specimen of Turbo duplicatus% a

* The Rev. H. Moseley, On the Geometrical Forms of Turbinated and Discoid

Shells, Phil. Trans, pp. 351-370. 1838.

f It will be observed that here Moseley, speaking as a mathematician and
considering the linear spiral, speaks of whorls when he means the linear bomidaries,

or lines traced by the revolving radius vector; while the conchologist usually

applies the term whorl to the whole space between the two boundaries. As con-

chologists, therefore, we call the breadth of a whorl what Moseley looked upon as

the distance between two consecutive whorls. But this latter nomenclature Moseley

himself often uses.

J In the case of Turbo, and all other "turbinate" shells, we are dealing not with

a plane logarithmic spiral, as in Nautilus, but with a " gauche " spiral, such

that the radius vector no longer revolves in a plane perpendicular to the axis of

the system, but is inclined to that axis at some constant angle (6). The figure

still preserves its continued similarity, and may with sti-ict accuracy be called a

logarithmic spiral in space. It is evident that its envelope will be a right circular

cone ; and ind sed it is commonly spoken of as a logarithmic spiral wrapped upon

a cone, its pole coinciding with the apex of the cone. It follows that the distances

of successive whorls of the spiral measured on the same straight lin" passing through

the apex of the cone, are in geometrical progression, and conversely just as in

the former case. But the ratio between any two consecutive interspaces {i.e.

i?3 - B^/R^ - Bj) is now equal to e
"^'^ ^"^ ^ ^^^ ", 6 being the semi-angle of the enveloping

cone. "(Of. Moseley, Phil. Mag. xxi, p. 300, 1842.)
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line was drawn across its whorls, and their widths were measured

upon it in succession, beginning with the last but one. The

measurements were, as before, made with a fine pair of compasses

and a diagonal scale. The sight was assisted by a magnifying

glass. In a parallel column to the following admeasurements

are the terms of a geometric progression, whose j&rst term is the

width of the widest whorl measured, and whose common ratio is

M804.

Fig. 262.

Widths of successive

whorls measured in inches

and parts of an inch

1-31

112
•94

•80

•67

•57

•48

•41

Terms of a geometrical progression,

whose first term is the width of

the widest whorl, and whose
common ratio is 1-1804

1-31

1-1098

•94018

•79651

•67476

•57164

•48427

•41026

The close coincidence between the observed and the calculated

figures is very remarkable, and is amply sufficient to justify the

conclusion that we are here dealing with a true logarithmic

spiral.

Nevertheless, in order to verify his conclusion still further,

and to get partially rid of the inaccuracies due to successive small
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measurements, Moseley proceeded to investigate the same shell,

measuring not single whorls, but groups of whorls, taken several

at a time : making use of the following property of a geometrical

progression, that "if fx represent the ratio of the sum of every

even number (m) of its terms to the sum of half that number of

terms, then the common ratio (r) of the series is represented by

the formula

r = (^ - ir."

Accordingly, Moseley made the following measurements,

beginning from the second and third whorls respectively:

Width of
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Turbo dwplicatus.

Relative widths of

successive whorls

131
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(Fig. 264, 1), which traces have the form of curved Unes in

Turbo, and of straight hnes in (e.g.) Nerita (Fig. 264, 2) ; that

is to say, apart from the side constituting the outer edge of the

operculum (which side is always and of necessity curved) the

successive increments constitute curvilinear triangles in the one

case, and rectilinear triangles in the other. The sides of these

triangles are tangents to the spiral hne of the operculum, and

may be supposed to generate it by their consecutive intersections.

In a number of such opercula, Moseley measured the breadths

of the successive whorls along a radius vector*, just in the same

Fig. 264. Opercula of (1) Turbo, (2) Nerita. (After Moseley.)

way as he did with the entire shell in the foregoing cases; and

here is one example of his results.

Operculum of Turbo sp. ; breadth {in inches) of successive

whorls, measured from the pole.

Distance
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The ratio is approximately constant, and this spiral also is,

therefore, a logarithmic spiral.

But here comes in a very beautiful illustration of that property

of the logarithmic spiral which causes its whole shape to remain

unchanged, in spite of its apparently unsymmetrical, or unilateral,

mode of growth. For the mouth of the tubular shell, into which

the operculum has to fit, is growing or widening on all sides

:

while the operculum is increasing, not by additions made at the

same time all round its margin, but by additions made only on

one side of it at each successive stage. One edge of the operculum

thus remains unaltered as it is advanced into each new position,

and as it is placed in a newly formed section of the tube, similar

to but greater than the last. Nevertheless, the two apposed

structures, the chamber and its plug, at all times fit one another

to perfection. The mechanical problem (by no means an easy

one), is thus solved :
" How to shape a tube of a variable section,

so that a piston driven along it shall, by one side of its margin,

coincide continually with its surface as it advances, provided only

that the piston be made at the same time continually to revolve

in its own plane."

As Moseley puts it :
" That the same edge which fitted a portion

of the first less section should be capable of adjustment, so as to

fit a portion of the next similar but greater section, supposes

a geometrical provision in the curved form of the chamber of

great apparent complication and difficulty. But God hath

bestowed upon this humble architect the practical skill of a

learned geometrician, and he makes this provision with admirable

precision in that curvature of the logarithmic spiral which he

gives to the section of {he shell. This curvature obtaining, he

has only to turn his operculum sHghtly round in its own plane as

he advances it into each newly formed portion of his chamber,

to adapt one margin of it to a new and larger surface and a different

curvature, leaving the space to be filled up by increasing the

operculum wholly on the other margin."

But in many, and indeed more numerous Gastropod mollusca,

the operculum does not grow in this remarkable spiral fashion,

but by the apparently much simpler process of accretion by

concentric rings. This suggests to us another mathematical
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feature of the logarithmic spiral. We have alreadj' seen that the

logarithmic spiral has a number of "limiting cases," apparently

very diverse from one another. Thus the right cone is a logarith-

mic spiral in which the revolution of the radius vector is infinitely

slow ; and, in the same sense, the straight Hne itself is a limiting

case of the logarithmic spiral. The spiral of Archimedes, though

not a limiting case of the logarithmic spiral, closely resembles

one in which the angle of the spiral is very near to 90°, and the

spiral is coiled around a central core. But if the angle of the

spiral were actually 90°, the radius vector would describe a circle,

identical with the "core" of which we have just spoken; and

accordingly it may be said that the circle is, in this sense, a true

limiting case of the logarithmic spiral. In this sense, then, the

circular concentric operculum, for instance of Turritella or

Littorina, does not represent a breach of continuity, but a " limiting

case "' of the spiral operculum of Turbo ; the successive " gnomons "

are now not lateral or terminal additions, but complete concentric

rings.

Viewed in regard to its own fundamental properties and to

those of its limiting cases, the logarithmic spiral is the simplest

of all known curves ; and the rigid uniformity of the simple laws,

or forces, by which it is developed sufficiently account for its

frequent manifestation in the structures built up by the slow and

steady growth of organisms.

In order to translate into precise terms the whole form and

growth of a spiral shell, we should have to employ a mathematical

notation, considerably more complicated than any that I have

attempted to make use of in this book. But, in the most ele-

mentary language, we may now at least attempt to describe the

general method, and some of the variations, of the mathematical

development of the shell.

Let us imagine a closed curve in space, whether circular or

elhptical or of some other and more complex specific form, not

necessarily in a plane : such a curve as we see before us when we

consider the mouth, or terminal orifice, of our tubular shell ; and

let us imagine some one characteristic point within this closed

curve, such as its centre of gravity. Then, starting from a fixed



XI] OF THE MOLLUSCAN SHELL 525

origin, let this centre of gravity describe an equiangular spiral in

space, about a fixed axis (namely the axis of the shell), while at

the same time the generating curve grows, with each angular

increment of rotation, in such a way as to preserve the symmetry

of the entire figure, with or without a simultaneous movement
of translation along the axis.

It is plain that the entire resulting shell may now be looked

upon in either of two ways. It is, on the one hand, an ensemble

Fig. 1^5. Melo ethiopicue, L.

of similar closed curves spirally arranged in space, gradually in-

creasing in dimensions, in proportion to the increase of their

vectorial angle from the pole. In other words, we can imagine

our shell cut up into a system of rings, following one another in

continuous spiral succession from that terminal and largest one,

which constitutes the lip of the orifice of the shell. Or, on the

other hand, we may figure to ourselves the whole shell as made

up of an ensemble of spiral lines in space, each spiral having been
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traced out by the gradual growth and revolution of a radius

vector from the pole to a given point of the generating curve.

Both systems of lines, the generating spirals (as these latter

may be called), and the closed generating curves corresponding

to successive margins or lips of the shell, may be easily traced

in a great variety of cases. Thus, for example, in Dolium,

Eburnea, and a host of others, the generating spirals are beautifully

Fig. 266. 1, Harpa; 2, Dolium. The ridges on the shell correspond

in (1) to generating curves, in (2) to generating spirals.

marked out by ridges, tubercles or bands of colour. In Trophon,

Scalaria, and (among countless others) in the Ammonites, it is

the successive generating curves which more conspicuously leave

their impress on the shell. And in not a few cases, as in

Harpa, Dolium perdix, etc., both alike are conspicuous, ridges

and colour-bands intersecting one another in a beautiful isogonal

system.
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In the complete mathematical formula (such as 1 have not

ventured to set forth*) for any given turbinate shell, we should

have, accordingly, to include factors for at least the following

elements: (1) for the specific form of the section of the tube,

which we have called the generating curve; (2) for the specific

rate of growth of this generating curve
; (3) for its specific rate

of angular rotation about the pole, perpendicular to the axis

;

(4) in turbinate (as opposed to nautiloid) shells, for its rate of

shear, or screw-translation parallel to the axis. There are also

other factors of which we should have to take account, and which

would help to make our whole expression a very complicated one.

We should find, for instance, (5) that in very many cases our

generating curve was not a plane curve, but a sinuous curve in

three dimensions ; and we should also have to take account

(6) of the inclination of the plane of this generating curve to the

axis, a factor which will have a very important influence on the

form and appearance of the shell. For instance in Haliotis it is

obvious that the generating curve lies in a plane very oblique to

the axis of the shell. Lastly, we at once perceive that the ratios

which happen to exist between these various factors, the ratio

for instance between the growth-factor and the rate of angular

revolution, will give us endless possibilities of permutation of

form. For instance (7) with a given velocity of vectorial rotation,

a certain rate of growth in the generating curve will give us a

spiral shell of which each successive whorl will just touch its

predecessor and no more ; with a slower growth-factor, the whorls

will stand asunder, as in a ram's horn; with a quicker growth-

factor, each whorl will cut or intersect its predecessor, as in an

Ammonite or the majority of gastropods, and so on (cf. p. 541).

In like manner (8) the ratio between the growth-factor and

the rate of screw-translation parallel to the axis will determine

the apical angle of the resulting conical structure : will give us

the difference, for example, between the sharp, pointed cone of

Turritella, the less acute one of Fusus or Buccinum, and the

* The equation to the surface of a turbinate shell is discussed by Moseley

[Phil. Trans, torn. cit. p. 370), both in terms of polar coordinates and of the rect-

angular coordinates .r. y, z. A more elegant representation can be given in vector

notation, by the method of quaternions.
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obtuse one of Harpa or Dolium. In short it is obvious that all

the difEerences of form which we observe between one shell and

another are referable to matters of degree, depending, one and all,

upon the relative magnitudes of the various factors in the complex

equation to the curve.

The paper in which, nearly eighty years ago. Canon Moseley

thus gave a simple mathematical expression to the spiral forms of

univalve shells, is one of the classics of Natural History. But

other students before him had come very near to recognising

this mathematical simplicity of form and structure. About the

year 1818, Reinecke had suggested that the relative breadths of

the adjacent whorls in an Ammonite formed a constant and

diagnostic character ; and Leopold von Buch accepted and

developed the idea*. But long before, Swammerdam, with a

deeper insight, had grasped the root of the whole matter : for,

taking a few diverse examples, such as Helix and Spirula, he

shewed that they and all other spiral shells whatsoever were

referable to one common type, namely to that of a simple tube,

variously curved according to definite mathematical laws; that

all manner of ornamentation, in the way of spines, tuberosities,

colour-bands and so forth, might be superposed upon them, but

the type was one throughout, and specific difEerences were of a

geometrical kind. "Omnis enim quae inter eas animadvertitur

differentia ex sola nascitur diversitate gyrationum: quibus si

insuper externa quaedam adjunguntur ornamenta pinnarum,

sinuum, anfractuum, planitierum, eminentiarum, profunditatum,

extensionum, impressionum, circumvolutionum, colorumque : . . .

tunc deinceps facile est, quarumcumque Cochlearum figuras

geometricas, curvosque, obliquos atque rectos angulos, ad unicam

omnes speciem redigere: ad oblongum videUcet tubulum, qui

vario modo curvatus, crispatus, extrorsum et introrsum flexus,

ita concrevitf."

* J. C. M. Reinecke, Maris protogaei Nautilos, etc., Coburg, 1818. Leopold

von Buch, Ueber die Ammoniten in den alteren Gebirgsschichten, Abh. Berlin.

Ahad., Phtjs. Kl. pp. 135-158, 1830; Ann. Sc. Nat. xxvin, pp. 5-43, 1833; of.

Elie de Beaumont, Sur I'enroulement des Ammonites, Soc. Philom., Pr. verb.

pp. 45-48, 1841.

•j- Biblia Naturae sive Historia Insectorum, Leydae, 1737, p. 152.
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For some years after the appearance of Moseley's paper, a

number of writers followed in his

footsteps, and attempted, in various

ways, to put his conclusions to

practical use. For instance, D'Orbigny

devised a very simple protractor, which

he called a Helicometer*, and which

is represented in Fig. 267. By means

of this little instrument, the apical

angle of the turbinate shell was im-

mediately read off, and could then

be used as a specific and diagnostic

character. By keeping one limb of

the protractor parallel to the side of

the cone while the other was brought

into line with the suture between two

adjacent whorls, another specific angle,

the "sutural angle," could in like

manner be recorded. And, by the

linear scale upon the instrument, the

relative breadths of the consecutive

whorls, and that of the terminal

chamber to the rest of the shell,

might also, though somewhat roughly,

be determined. For instance, in

Terebra dimidiata, the apical angle

was found to be 13°, the sutural

angle 109°, and so forth.

It was at once obvious that, in

such a shell as is represented in

Fig. 267 the entire outline of the

shell (always excepting that of the immediate neighbourhood of

* Alcide D'Orbigny, Bull, de la soc. geol. Fr. xin, p. 200, 1842; Cours dem.

de PaUontologie, n, p. 5, 1851. A somewhat similar instrument was described by

Boubee. in Bvll. soc. geol. i, p. 232, 1831. Naumann's Conchyliometer {Poggevd.

Anil. Liv, p. 544, 1845) was an application of the screw-micrometer ; it was provided

also with a rotating stage, for angular measurement. It was adapted for the

^udy of a discoid or ammonitoid shell, while D'Orbigny's instrument was meant

for the study of a turbinate shell.

T r- 34

Fig. 267. D'Orbigny's

Helicometer.
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the mouth) could be restored from a broken fragment. For if we
draw our tangents to the cone, it follows from the symmetry
of the figure that we can continue the projection of the sutural

line, and so mark off the successive whorls, by simply drawing

a series of consecutive parallels, and by then filling into the

quadrilaterals so marked off a series of curves similar to one

another, and to the whorls which are still intact in the broken

shell.

But the use of the helicometer soon shewed that it was by no

means universally the case that one and the same right cone was

tangent to all the turbinate whorls ; in other words, there was not

always one specific apical angle which held good for the entire

system. In the great majority of cases, it is true, the same

tangent touches all the whorls, and is a straight line. But in

others, as in the large Cerithium nodosum, such a line is slightly

convex to the axis of the shell ; and in the short spire of Dolium,

for instance, the convexity is marked, and the apex of the spire

is a distinct cusp. On the other hand, in Pupa and Clausilia, the

common tangent is concave to the axis of the shell.

So also is it, as we shall presently see, among the Ammonites:

where there are some species in which the ratio of whorl to whorl

remains, to all appearance, perfectly constant; others in which

it gradually, though only slightly increases ; and others again in

which it slightly and gradually falls away. It is obvious that,

among the manifold possibilities of growth, such conditions as

these are very easily conceivable. It is much more remarkable

that, among these shells, the relative velocities of growth in various

dimensions should be as constant as it is, than that there should

be an occasional departure from perfect regularity. In such cases

as these latter, the logarithmic law of growth is only approximately

true. The shell is no longer to be represented as a right cone

which has been rolled up, but as a cone which had grown trumpet-

shaped, or conversely whose mouth had narrowed in, and which

in section is a curvilinear instead of a rectilinear triangle. But

all that has happened is that a new factor, usually of small or all

but imperceptible magnitude, has been introduced into the case;

so that the ratio, log r = d log a, is no longer constant, but varies;

sUghtly, and in accordance with some simple law.
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Some writers, such as Naumann and Grabau, maintained that

the molluscan spiral was no true logarithmic spiral, but differed

from it specifically, and they gave to it the name of Conchospiral.

They pointed out that the logarithmic spiral originates in a

mathematical point, while the molluscan shell starts with a little

embryonic shell, or central chamber (the "protoconch" of the

conchologists), around which the spiral is subsequently wrapped.

It is plain that this undoubted and obvious- fact need not

affect the logarithmic law of the shell as a whole; we have

only to add a small constant to our equation, which becomes

r = m + a^.

There would seem, by the way, to be considerable confusion

in the books with regard to the so-called "protoconch." In many
cases it is a definite fitructure, of simple form, representing the

more or less globular embryonic shell before it began to elongate

into its conical or spiral form. But in many cases what is described

as the "protoconch" is merely an empty space in the middle of

the spiral coil, resulting from the fact that the actual spiral shell

has a definite magnitude to begin with, and that we cannot follow

it down to its vanishing point in infinity. For instance, in the

accompanying figure, the large space a

is styled the protoconch, but it is the

little bulbous or hemispherical chamber

within it, at the end of the spire,

which is the real beginning of the

tubular shell. The form and magni-

tude of the space a are determined by

the "angle of retardation," or ratio of

rate of growth between the inner and

outer curves of the spiral shell. They

are independent of the shape and size of

the embryo, and depend only (as we shall

see better presently) on the direction and relative rate of growth

of the double contour of the shell.

Fig. 268.

Now that we have dealt, in a very general way, with some of

the more obvious properties of the logarithmic spiral, let us

consider certain of them a little more particularly, keeping in

34—2
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view as our chief object the investigation (on elementary hnes)

of the possible manner and range of variation of the molluscan

shell.

There is yet another equation to the logarithmic spiral,

very commonly employed, and without the

help of which we shall find that we cannot

dr get far. It is as follows

:

"^^
^ _ ^ecota

This follows directly from the fact that

the angle a (the angle between the radius

vector and the tangent to the curve) is

constant.

For, then,

Fig. 269.

and, integrating,

tan a (= tan ^) = rddjdr,

therefore drlr = dd cot a,

log r

or r = €

6 cot a,

Scot a.

As we have seen throughout our prehminary discussion, the

two most important constants (or chief "specific characters," as

the naturalist would say) in any given logarithmic spiral, are

(1) the magnitude of the angle of the spiral, or "constant angle,"

a, and (2) the rate of increase of the radius vector for any given

angle of revolution, 6. Of this latter, the simplest case is when
6 = 277, or 360° ; that is to say when we compare the breadths,

along the same radius vector, of two successive whorls. As our

two magnitudes, that of the constant angle, and that of the ratio

of the radii or breadths of whorl, are related to one another, we

may determine either of them by actual measurement and proceed

to calculate the other.

In any complete spiral, such as that of Nautilus, it is (as we

have seen) easy to measure any two radii (r), or the breadths in
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a radial direction of any two whorls {W). We have then merely

to apply the formula

9 cot a-

which we may simply write r = e^^^^"^, etc. ; since our first radius

or whorl is regarded, for the purpose of comparison, as being equal

to unity.

Thus, in the diagram, OCIOE, or EF/BD, or DC/EF, being

in each case radii, or diameters, at right angles to one another,

are all equal to e^^° ". While in like manner, EO/OF, EG/FH,

or GO/HO, all equal e'^^°*^ and BC/BA, or CO/OB = e^''''''^\

Fig. 270.

As soon, then, as we have prepared tables for these values,

the determination of the constant angle a in a particular shell

becomes a very sirhple matter.

A complete table would be cumbrous, and it will be sufficient

to deal with the simple case of the ratio between the breadths of

adjacent, or immediately succeeding, whorls.

Here we have r = e27rcota^ ^j. j^^g ,^. = log e x 27r x cot a, from

which we obtain the following figures *

:

* It is obvious that the ratios of opposite whorls, or of radii 180° apart, are

represented by the square roots of these values ; and the ratios of whorls or radii

90° apart, by the squaie roots of these again.



534 THE LOGARITHMIC SPIRAL [CH.

Ratio of breadth of each
liorl to the next precedmg

r/1
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next whorl would (as we have just seen) be about three inches

broad ; if it were 70°, the next whorl would be nearly ten inches,

and if it "were 60°, the next whorl would be nearly four feet

broad. If the angle were 28°, the next whorl would be a mile

and a half in breadth; and if it were 17°, the next would be

some 15,000 miles broad.

Fig. 272.

In other words, the spiral shells of gentle curvature, or of

small constant angle, such as Dentalium or Nodosaria, are true

logarithmic spirals, just as are those of Nautilus or Rotalia:

from which they differ only in degree, in the magnitude of an

angular constant. But this diminished magnitude of the angle

causes the spiral to dilate with such immense rapidity that, so

to speak, "it never comes round"; and so, in such a shell as

Dentalium, we never see but a small portion of the initial whorl.

Fio^. 273.

We might perhaps be incUned to suppose that, in such a shell as Dentalium,

the lack of a visible spiral convolution was only clue to our seeing but a small

portion of the curve, at a distance from the pole, and when, therefore, its
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curvature had already greatly diminished. That is to say we might suppose

that, however small the angle a, and however rapidly the whorls accordingly

increased, there would nevertheless be a manifest spu'al convolution in the

immediate neighbourhood of the pole, as the starting point of the curve.

But it may be shewn that this is not so.

For, taking the formula r = ae^*'"'*^",

this, for any given spiral, is equivalent to ae .

Therefore log {r/a) = kd,

or, Ik = . --—.

.

log (r/a)

Then, if 6 increase by 27r, while r increases to r^,

1_ 6 + 27r

k~ log {rja)'

which leads, by subtraction to

1 X^ . log (rjr) = 277.

Now, as a tends to 0, k (i.e. cot a) tends to oo , and therefore, as k ^ go ,

log (rjr) > GO and also r-^/r > oo

.

Therefore if one whorl exists, the radius vector of the other is infinite;

in other words, there is nowhere, even in the near neighbourhood of the

pole, a complete revolution of the spire. Our spiral shells of small constant

angle, such as Dentalium, may accordingly be considered to represent suf-

ficiently well the true commencement of then- respective spirals.

Let us return to the problem of how to ascertain, by direct

measurement, the spiral angle of any particular shell. The

method already employed is only applicable to complete spirals,

that is to say to those in which the angle of the spiral is large,

and furthermore it is inapplicable to portions, or broken fragments,

of a shell. In the case of the broken fragment, it is plain that the

determination of the angle is not merely of theoretic interest,

but may be of great practical use to the conchologist as being the

one and only way by which he may restore the outline of the

missing portions. We have a considerable choice of methods,

which have been summarised by, and are partly due to, a very

careful student of the Cephalopoda, the late Rev. J. F. Blake*.

* On the Measurement of the Curves formed by Cephalopods and other Mollusks

Phil. Mag. (5), vi, pp. 241-263, 1878.
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(1) The following method is useful and easy when we have

a portion of a single whorl, such as to shew both its inner and its

outer edge. A broken whorl of an Ammonite, a

curved shell such as Dentahum, or a horn of

similar form to the latter, will fall under this

head. We have merely to draw a tangent,

GEH, to the outer whorl at any point E ; then

draw to the inner whorl a tangent parallel to

GEH, touching the curve in some point F. The

straight line joining the points of contact, EF

,

must evidently pass through the pole: and,

accordingly, the angle GEF is the angle re-

quired. In shells which bear longitudinal striae

or other ornaments, any pair of these Mall

suffice for our purpose, instead of the actual

boundaries of the whorl. But it is obvious that

this method will be apt to fail us when the angle a is very small

;

and when, consequently, the points E and F are very remote.

(2) In shells (or horns) shewing rings, or other transverse

ornamentation, we may take it that these ornaments' are set at

a constant angle to the spire, and therefore to the radii. The angle

{6) between two of them, as AC, BD, is therefore equal to the

Fig. 274.

Fig. 275. An Ammonite, to

shew corrugated surface-

pattern.

angle 6 between the polar radii from A and B, or from C and D
;

and therefore BD/AC = g^*'"*", which gives us the angle a in terms

of known quantities.
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(3) If only the outer edge be available, we have the ordinary

geometrical problem,—given an arc of an equiangular spiral, to

find its pole and spiral angle. The methods we may employ

depend (1) on determining directly the position of the pole, and

(2) on determining the radius of curvature.

The first method is theoreti-

cally simple, but di£&cult in

practice; for it requires great

accuracy in determining the

points. Let AD, DB, be two

tangents drawn to the curve.

Then a circle drawn through the

points ABD will pass through

the pole ; since the angles OAD,
OBE (the supplement of OBD),

are equal. The point ,0 may be

determined by the intersection of two such circles ; and the angle

DBO is then the angle, a, required.

Or we may determine, graphically, at two points, the radii of

curvature, p^p^. Then, if,s be the length of the arc between them

(which may be determined with fair accuracy by rolhng the margin

of the shell along a ruler)

cot a = (pi - p^)ls.

The following method*, given by Blake, will save actual determination of

the radii of curvature.

Measure along a tangent to the curve, the distance, AC, at which a certain

small offset, CD, is made by the curve; and from another point B, measure

the distance at which the curve makes an equal ofEset. Then, calhng t^e

'offset /x; the arc AB, s; and AC, BE, respectively Xj , Xo, we have

\ O
Fig. 277.

and

Pi
= —--

, approximately,

J (x.^-x,^)
cot a — jr .

Of all these methods by which the mathematical constants,

or specific characters, of a given spiral shell may be determined,

the only one of which much use has been made is that which

Moseley first employed, namely, the simple method of determining

* For an example of this method, see Blake, I.e. p. 251.
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the relative breadths of the whorl at distances separated by some

convenient vectorial angle (such as 90°, 180°, or 360°).

Very elaborate measurements of a number of Ammonites have

been made by Naumann*, by Sandbergerf, and by GrabauJ,

among which we may choose a couple of cases for consideration.

In the following table I have taken a portion of Grabau's deter-

minations of the breadth of the whorls in Ammonites (Arcesles)

Am monltes iiifuslabiatus.

Ratio of breadth of

idth of whorls
(180° apart)

0-30 mm.
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intuslabiatus ; these measurements Grabaii gives for every 45° of

arc, but I have only set forth one quarter of these measurements,

that is to say, the breadths of successive whorls measured along

one diameter on both sides of the pole. The ratio between

alternate measurements is therefore the same ratio as Moseley

adopted, namely the ratio of breadth between contiguous whorls

along a radius vector. I have then added to these observed

values the corresponding calculated values of the angle a, as

obtained from our usual formula.

There is considerable irregularity in the ratios derived from

these measurements, but it will be seen that this irregularity only

imphes a variation of the angle of the spiral between about 85°

and 87° ; and the values fluctuate pretty regularly about the

mean, which is 86° 15'. Considering the difficulty of measuring

the whorls, especially towards the centre, and in particular the

difl&culty of determining with precise accuracy the position of the

pole, it is clear that in such a case as this we are scarcely justified

in asserting that the law of the logarithmic spiral is departed from.

In some cases, however, it is undoubtedly departed from.

Here for instance is another table from Grabau, shewing the

corresponding ratios in an Ammonite of the group of Arcestes

tornatus. In this case we see a distinct tendency of the ratios to

Ammonites tornatus.

Breadth of whorls
(180" apart)

0-25 mm,
0-30

0-35

0-50

0-70

100
1-40

210
3-05

4-70

7-60

12-10

19-35

Ratio of breadth of

successive whorls
(3fi0° apart)

1-400

1-667

2-000

2-000

2-000

2-100

2-179

2-238

2-492

2-574

2-546

The spiral

angle (a) as

calculated

86° 56'

85 21

83 42

83 42

83 42

83 16

82 56

82 42

81 44

81 27

81 33

Mean 83° 22'
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increase as we pass from the centre of the coil outwards, and
consequently for the values of the angle a to diminish. The case

is precisely comparable to that of a cone with slightly curving

sides : in which, that is to say, there is a slight acceleration

of growth in a transverse as compared with the longitudinal

direction.

In a tubular spiral, whether plane or hehcoid, the consecutive

whorls may either be (1) isolated and remote from one another;

or (2) they may precisely meet, so that the outer border of one

and the inner border of the next just coincide; or (3) they may
overlap, the vector plane of each outer whorl cutting that of its

immediate predecessor or predecessors.

Looking, as we have done, upon the spiral shell as being

essentially a cone rolled up, it is plain that, for a given spiral

angle, intersection or non-intersection of the successive whorls

will depend upon the apical angle of the original cone. For the

wider the cone, the more rapidly will its inner border tend to

encroach on the outer border of the preceding whorl.

But it is also plain that the greater be the apical angle of the

cone, and the broader, consequently, the cone itself be, the greater

difference will there be between the total lengths of its inner and

outer border, under given conditions of flexure. And, since the

inner and outer borders are describing precisely the same spiral

about the pole, it is plain that we may consider the inner border

as being retarded in growth as compared with the outer, and as

being always identical with a smaller and earlier part of the

latter.

If A be the ratio of growth between the outer and the inner

curve, then, the outer curve being represented by

the equation to the inner one will be

or r' = fle(^-^)cota^

and j8 may then be called the angle of retardation, to which the

inner curve is subject by virtue of its slower rate of growth.
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Dispensing with mathematical formulae, the several conditions

may be illustrated as follows

:

In the diagrams (Fig. 278), OPiP^Ps, etc. represents a radius,

on which P^, P2, P3, are the points attained by the outer border

of the tubular shell after as many entire consecutive revolutions.

And Pi, P2, P3', are the points similarly intersected by the inner

border ; OP/OP' being always = A, which is the ratio of growth,

or "cutting-down factor." Then, obviously, when OPi is less

than OP2 the whorls will be separated by an interspace {a);

(2) when OP^ = OP2 they will be in contact (6), and (3) when

OPi is greater than OP2 there will a greater or less extent of

Pa- («)

Fig. 278.

overlapping, that. is to say of concealment of the surfaces of the

earlier by the later whorls (c). And as a further case (4), it is

plain that if A be very large, that is to say if OP^ be greater, not

only than OP2 but also than OP^', OP^' , etc., we shall have

complete, or all but complete concealment by the last formed

whorl, of the whole of its predecessors. This latter condition

is completely attained in Nautilus pompilius, and approached,

though not quite attained, in N. mnbilicatus ; and the difference

between these two forms, or "species," is constituted accordingly

by a difference in the value of A. (5) There is also a final case,

not easily distinguishable externally from (4), where P' hes on
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the opposite side of the radius vector to P, and is therefore

imaginary. This final condition is exhibited in Argonauta.

The Umiting values of A are easily ascertained.

In Fig. 279 we have portions

of two successive whorls, whose

corresponding points on the same

radius vector (as R and R') are,

therefore, at a distance apart

corresponding to 27r. Let r and
>•' refer to the inner, and R, R' to

"'"

the outer sides of the two whorls. Then, if we consider

it follows that R' = ae(^+2-)cota^

and / = Aae(' + 2.)cOta _ ^^(e+ 2:r-^)C0ta^

Now in the three cases {a, b, c) represented in Fig. 278, it is

plain that r' = R, respectively. That is to say,

and Ae2'^«ot«|L

The case in which Ae'^"
*^'**^

" = 1, or — log A = 27t cot a log e, is

the case represented in Fig. 278, b : that is to say/the particular

case, for each value of a, where the consecutive whorls just

touch, without interspace or overlap. For such cases, then, we
may tabulate the values of A, as follows

:

C'onstaDt angle a
of spiral

89°
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We see, accordingly, that in plane spirals whose constant angle

lies, say, between 65° and 70°, we can only obtain contact between

consecutive whorls if the rate of growth of the inner border of the

tube be a small fraction,—a tenth or a twentieth—of that of the

outer border. In spirals whose constant angle is 80°, contact is

attained when the respective rates of growth are, approximately,

as 3 to 1 ; while in spirals of constant angle from about 85° to

89°, contact is attained when the rates of growth are in the ratio

of from about f to y%.

Fig. 280.

If on the other hand we have, for any given value of a, a value

of A greater or less than the value given in the above table, then

we have, respectively, the conditions of separation or of overlap

which are exemplified in Fig. 278, a and c. And, just as we

have constructed this table of values -of A for the particular case

of simple contact between the whorls, so we could construct

similar tables for various degrees of separation, or degrees of

overlap.

For instance, a case which admits of simple solution is that

in which the interspace between the whorls is everywhere a

mean proportional between the breadths of the whorls them-

selves (Fig. 280).
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lu this case, let us call OA = R, OC = Ri, and OB = t.

We then have

R, = OA = ae^'P^t'^^

And r2=(l/A)2.e'^'^°*%

whence, equating, 1/A = e"*^°*".

The corresponding values of A are as follows

:

Ratio (A) of rates of growth of outer and .inner
border, sucli as to produce a spiral witli interspaces

between the whorls, the breadth of which
interspaces is a mean proportional between the

Constant angle (a) breadths of the whorls themselves

90° 1-00 (imaginary)

89 -95

88 -89

87 -85

86 -81

85 '76

80 -57

76 . -43

70 -32

65 -23

60 . -18

55 . -13

50 -090

45 063

40 -042

35 026

30 -016

As regards the angle of retardation, j8, in the formula

r' = Ae'*^°t% or / = e(»-«cofca^

and in the case

/ = e<2.-^)cota^ Qj. - log A = (277 - ^) cot a,

* It has been pointed out to me that it does not follow at once and obviously
that, because the interspace AB is a mean proportional between the breadths of

the adjacent whorls, therefore the whole distance OB is a mean proportional

between OA and OC. This is a corollary which requires to be proved; but the

proof is easy.

T. G. * ' 35
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it is evident that when j3 = 2tt, that will mean that A = 1. In

other words, the outer and inner borders of the tube are identical,

and the tube is constituted by one continuous hne.

When A is a very small fraction, that is to say when the rates

of growth of the two borders of the tube are very diverse, then

j8 will tend towards infinity—tend that is to say towards a con-

dition in which the inner border of the tube never grows at all.

This condition is not infrequently approached in nature. The

nearly parallel-sided cone of DentaUum, or the widely separated

whorls of Lituites, are evidently cases where A nearly approaches

unity in the one case, and is still large in the other, jS being

correspondingly small; while we can easily find cases where j8 is

very large, and A is a small fraction, for instance in Hahotis, or

in Gryphaea.

For the purposes of the morphologist, then, the main result

of this last general investigation is to shew that all the various

types of "open" and "closed" spirals, all the various degrees of

separation or overlap of the successive whorls, are simply the

outward expression of a varying ratio in the rate of growth of the

outer as compared with the inner border of the tubular shell.

The foregoing problem of contact, or intersection, of the suc-

cessive whorls, is a very simple one in the case of the discoid shell

but a more complex one in the turbinate. For in the discoid shell

contact will evidently take place when the retardation of the

inner as compared with the outer whorl is just 360°, and the

shape of the whorls need not be considered.

As the angle of retardation diminishes from 360°, the whorls

will stand further and further apart in an open coil ; as it increases

beyond 360°, they will more and more overlap; and when the

angle of retardation is infinite, that is to say when the true inner

edge of the whorl does not grow at all, then the shell is said to

be completely involute. Of this latter condition we have a

striking example in Argonauta, and one a little more obscure in

Nautilus pompilius.

In the turbinate shell, the problem of contact is twofold, for

we have to deal with the possibilities of contact on the same side

of the axis (which is what we have dealt with in the discoid) and
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also with the new possibihty of contact or intersection on the

02)posite side; it is this latter case which will determine the

presence or absence of an umbilicus, and whether, if present, it

will be an open conical space or a twisted cone. It is further

obvious that, in the case of the turbinate, the question of contact

or no contact will depend on the shape of the generating curve;

and if we take the simple case where this generating curve may
be considered as an ellipse, then contact will be found to depend

on the angle which the major axis of this ellipse makes with the

axis of the shell. The question becomes a complicated one, and

the student will find it treated in Blake's paper already referred to.

When one whorl overlaps another, so that the generating

curve cuts its predecessor (at a distance of 27r) on the same radius

vector, the locus of intersection will follow a spiral line upon the

shell, which is called the " suture " by conchologists. It is evidently

one of that ensemble of spiral lines in space of which, as we have

seen, the whole shell may be conceived to be constituted; and we

might call it a "contact-spiral," or "spiral of intersection." In

discoid shells, such as an Ammonite or a Planorbis, or in Nautilus

umbilicatus, there are obviously two such contact-spirals, one on

each side of the shell, that is to say one on each side of a plane

perpendicular to the axis. In turbinate shells such a condition

is also possible, but is somewhat rare. We have it for instance,

in Solarium 'persjpectivum, where the one contact-spiral is visible

on the exterior of the cone, and the other lies internally,

winding round the open cone of the umbilicus*; but this second

contact-spiral is usually imaginary, or concealed within the

whorls of the turbinated shell. Again, in Haliotis, one of the

contact-spirals is non-existent, because of the extreme obliquity

of the plane of the generating curve. In Scalaria fretiusa and

in Spirula there is no contact-spiral, because the growth of the

generating curve has been too slow, in comparison with the vector

rotation of its plane. In Argonauta and in Cypraea, there is no

contact-spiral, because the growth of the generating curve has

been too quick. Nor, of course, is there any contact-spiral in

Patella or in Dentalium, because the angle a is too small ever to

give us a complete revolution of the spire.

* A beautiful construction: stupendum Naturae artificium, Linnaeus.

35—2
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The various forms of straight or spiral shells among the

Cephalopods, which we have seen to be capable of complete

definition by the help of elementary mathematics, have received

a very complicated descriptive nomenclature from the palaeon-

tologists. For instance, the straight cones are spoken of as

orthoceracones or hactriticones, the loosely coiled forms as gyrocera-

cones or mimoceracones, the more closely coiled shells, in which

one whorl overlaps the other, as nautilicones or ammoniticones,

and so forth. In such a succession of forms the biologist sees

undoubted and unquestioned evidence of ancestral descent. For

instance we read in Zittel's Palaeontology'^ : "The bactriticone

obviously represents the primitive or primary radical of the

Ammonoidea, and the mimoceracone the next or secondary radical

of this order" ; while precisely the opposite conclusion was drawn

by Owen, who supposed that the straight chambered shells of

such fossil cephalopods as Orthoceras had been produced by the

gradual unwinding of a coiled nautiloid shell |. To such phylogenetic

hypotheses the mathematical or dynamical study of the forms of

shells lends no valid support. If we have two shells in which the

constant angle of the spire be respectively 80° and 60°, that fact

in itself does not at all justify an assertion that the one is more

primitive, more ancient, or more "ancestral" than the other.

Nor, if we find a third in which the angle happens to be 70°,

does that fact entitle us to say that this shell is intermediate

between the other two, in time, or in blood relationship, or in

any other sense whatsoever save only the strictly formal and

mathematical one. For it is evident that, though these particular

arithmetical constants manifest themselves in visible and recog-

nisable differences of form, yet they are not necessarily more

deep-seated or significant than are those which manifest them-

selves only in difference of magnitude; and the student of

phylogeny scarcely ventures to draw conclusions as to the relative

antiquity of two allied organisms on the ground that one happens

to be bigger or less, or longer or shorter, than the other.

* English edition, p. 537, 1900. The chapter is revised by Prof. Alpheus

Hyatt, to whom the nomenclature is largely due. For a more copious terminology,

see Hyatt, Phylogeny of an Acquired Characteristic, p. 422 seq., 1894.

f This latter conclusion is adopted by Willey, Zoological Results, p. 747, 1902.
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At the same time, while it is obviously unsafe to rest conclusions

upon such features as these, unless they be strongly supported

and corroborated in other ways,—for the simple reason that there

is unlimited room for coincidence, or separate and independent

attainment of this or that magnitude or numerical ratio,—yet on

the other hand it is certain that, in particular cases, the evolution

of a race has actually involved gradual increase or decrease in

some one or more numerical factors, magnitude itself included,

—

that is to say increase or decrease in some one or more of the

actual and relative velocities of growth. When we do meet with

a clear and unmistakable series of such progressive magnitudes or

ratios, manifesting themselves in a progressive series of "allied"

forms, then we have the phenomenon of ^'orthogenesis.^'' For

orthogenesis is simply that phenomenon of continuous Hnes or

series of form (and also of functional or physiological capacity),

which was the foundation of the Theory of Evolution, alike to

Lamarck and to Darwin and Wallace ; and which we see to exist

whatever be our ideas of the "origin of species," or of the nature

and origin of "functional adaptations." And to my mind, the

mathematical (as distinguished from the purely physical) study

of morphology bids fair to help us to recognise this phenomenon

of orthogenesis in many cases where it is not at once patent to

the eye ; and also, on the other hand, to warn us, in many other

cases, that even strong and apparently complex resemblances in

form may be capable of arising independently, and may sometimes

signify no more than the equally accidental numerical coincidences

which are manifested in identity of length or weight, or any other

simple magnitudes.

I have already referred to the fact that, while in general a

very great and remarkable regularity of form is characteristic of

the molluscan shell, that complete regularity is apt to be departed

from. We have clear cases of such a departure in Pupa, Clausiha,

and various Buhmi, where the enveloping cone of the spire is

not a right cone but a cone whose sides are curved. It is plain

that this condition may arise in two ways: either by a gradual

change in the ratio of growth of the whorls, that is to say in

the logarithmic spiral itself, or by a change in the velocity of
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translation along the axis, that is to say in the helicoid which,

in all turbinate shells, is superposed upon the spiral. Very careful

measurements will be necessary to determine to which of these

factors, or in what proportions to each, the phenomenon is due.

But in many Ammonitoidea where the helicoid factor does not

enter into the case, we have a clear illustration of gradual and

marked changes in the spiral angle itself, that is to say of the ratio

of growth corresponding to increase of vectorial angle. We have

seen from some of Naumann's and Grabau's measurements that

such a tendency to vary, such an acceleration or retardation,

may be detected even in Ammonites which present nothing

abnormal to the eye. But let us suppose that the spiral angle

increases somewhat rapidly ; we shall then get a spiral with

gradually narrowing whorls, and this condition is characteristic

Fig. 281. An ammonitoid shell (Macroscaphites) to shew change of

curvature.

of Oekotraustes, a subgenus of Ammonites. If on the other hand,

the angle a gradually diminishes, and even falls away to zero, we

shall have the spiral curve opening out, as it does in Scaphites,

Ancyloceras and Lituites, until the spiral coil is replaced by a spiral

curve so gentle as to seem all but straight. Lastly, there are a

few cases, such as Bellero'jjJion expansus and some Goniatites,

where the outer spiral does not perceptibly change, but the whorls

become more "embracing" or the whole shell more involute.

Here it is the angle of retardation, the ratio of growth between

the outer and inner parts of the whorl, which undergoes a gradual

change.

In order to understand the relation of a close-coiled shell to

one of its straighter congeners, to compare (for example) an



XI] OF VARIOUS CEPHALOPODS 551

Ammonite with an Orthoceras, it is necessary to estimate the

length of the right cone which has, so to speak, been coiled up
into the spiral shell. Our problem then is. To find the length of

a plane logarithmic spiral, in terms of the radius and the constant

angle a. In the annexed diagram, if OP be a radius vector, OQ
a line of reference perpendicular to OP, and PQ a tangent to the

curve, PQ, or sec a, is equal in length to the spiral arc OP. And
this is practically obvious : for PP'/PR' = dsjdr = sec a, and

therefore sec a = s/r, or the ratio of arc to radius vector.

Accordingly, the ratio of I, the total length, to r, the radius

Fig. 282.

vector up to which the total length is to be measured, is expressed

by a simple table of secants; as follows:

a
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length in whole numbers, in terms of the radius, we have as

follows

:

Total length (in terms
of the radius)
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determining the constant angle of the .spiral would not in these

cases be accurate enough to enable us to measure the length of

the coil: we should have to devise a new method, based on the

measurement of radii or diameters over a large number of whorls.

The geometrical form of the shell involves many other beautiful

properties, of great interest to the mathematician, but which it

is not possible to reduce to such simple expressions as we have

been content to use. For instance, we may obtain an equation

which shall express completely the surface of any shell, in terms

of polar or of rectangular coordinates (as has been done by Moseley

and by Blake), or in Hamiltonian vector notation. It is likewise

possible (though of little interest to the naturalist) to determine

the area of a conchoidal surface, or the volume of a conchoidal

solid, and to find the centre of gravity of either surface or solid*.

And Blake has further shewn, with considerable elaboration, how
we may deal with the symmetrical distortion, due to pressure,

which fossil shells are often found to have undergone, and how
we may reconstitute by calculation their original undistorted

form,—a problem which, were the available methods only a little

easier, ^yould be very helpful to the palaeontologist; for, as

Blake himself has shewn, it is easy to mistake a symmetrically

distorted specimen of (for instance) an Ammonite, for a new and

distinct species of the same genus. But it is evident that to deal

fully with the mathematical problems contained in, or suggested

by, the spiral shell, would require a whole treatise, rather than

a single chapter of this elementary book. Let us then, leaving

mathematics aside, attempt to summarise, and perhaps to extend,

what has been said about the general possibilities of form in this

class of organisms.
»

The Univalve Shell: a summanj.

The surface of any shell, whether discoid or turbinate, may be

imagined to be generated by the revolution about a fixed axis of

a closed curve, which, remaining always geometrically similar to

itself, increases continually its dimensions : and, since the rate of

grow^th of the generating curve and its velocity of rotation follow

the same law, the curve traced in space by corresponding points

* See Moseley, op. cit. pp. 361 seq.
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in the generating curve is, in all cases, a logarithmic spiral. In

discoid shells, the generating figure revolves in a plane perpendicular

to the axis, as in Nautilus, the Argonaut and the Ammonite.

In turbinate shells, it slides continually along the axis of revolu-

tion, and the curve in space generated by any given point partakes,

therefore, of the character of a helix, as well as of a logarithmic

spiral ; it may be strictly entitled a helico-spiral. Such turbinate

or helico-spiral shells include the snail, the periwinkle and all the

common typical Gastropods.

The generating figure, as represented by the mouth of the

shell, is sometimes a plane curve, of simple form; in other and

more numerous cases, it becomes more complicated in form and

its boundaries do not lie in one plane : but in such cases as these

we may replace it by its "trace/' on a

plane at some definite angle to the direction

of growth, for instance by its form as it

appears in a section through the axis of

the hehcoid shell. The generating curve

is of very various shapes. It is circular

in Scalaria or Cyclostoma, and in Spirula;

it may be considered as a segment of a

circle in Natica or in Planorbis. It is

approximately triangular in Conus, and

rhomboidal in Solarium or Potamides. It

is very commonly more or less elliptical

:

the long axis of the ellipse being parallel

to the axis of the shell in Oliva and Cypraea

;

all but perpendicular to it in many Trochi

;

and obhque to it in many w-ell-marked

cases, such as Stomatella, Lamellaria,

Sigaretus haliotoides (Fig. 284) and HaUotis.

In Nautilus pompilius it is approximately

a semi-ellipse, and in N. umbilicatus rather

more than a semi-ellipse, the long axis

Jying in both cases perpendicular to the axis of the shell*. Its

Fig. 283. Section of a spiral,

or turbinate, univalve,

Triton corrugatus. Lam.

(From Woodward.)

* In Nautilus, the "hood" has somewhat different dimensions in the two

sexes, and these differences are impressed upon the shell, that is to say upon its

"generating curve." The latter constitutes a somewhat broader ellipse in the



XI] OF VARIOUS UNIVALVES 555

form is seldom open to easy mathematical expression, save when

it is an actual circle or ellipse ; but an exception to this rule may-

be found in certain Ammonites, forming the group "Cordati.'"

where (as Blake points out) the curve is very nearly represented

by a cardioid, whose equation is r = a (1 + cos 6).

The generating curve may grow slowly or quickly ; its growth-

factor is very slow in Dentalium or Turritella, very rapid in Nerita,

or Pileopsis, or Haliotis or the Limpet. It may contain the axis

in its plane, as in Nautilus ; it may be parallel to the axis, as in

the majority of Gastropods ; or it may be inclined to the axis, as

it is in a very marked degree in Hahotis. In fact, in Hahotis

the generating curve is so obhque to the axis of the shell that

the latter appears to grow by additions to one margin only (cf.

Fig. 258), as in the case of the opercula of Turbo and Nerita

referred to on p. 522 ; and this is what Moseley supposed it to do.

A

Fig. 284. A, Lamellaria perspicua; B, Sigaretus lialiotoides.

(After Woodward.)

The general appearance of the entire shell is determined (apart

from the form of its generating curve) by the magnitude of three

angles ; and these in turn are determined, as has been sufficiently

explained, by the ratios of certain velocities of growth. These

angles are (1) the constant angle of the logarithmic spiral (a);

(2) in turbinate shells, the enveloping angle of the cone, or (taking

half that angle) the angle {d) which a tangent to the whorls makes

with the axis of the shell; and (3) an angle called the "angle of

retardation" (j8), which expresses the retardation in growth of

male than in the female. But this difference is not to be detected in the young;

in other words, the form of the generating curve perceptibly alters with advancing

age. Somewhat similar differences in the shells of Ammonites were long ago

suspected, by D'Orbigny, to be due to sexual differences. (Cf. Willey, Natural

Science, vi, p. 411, 1895; Zoological Results, p. 742, 1902.)
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the inner as compared with the outer part of each whorl, and

therefore measures the extent to which one whorl overlaps, or the

extent to which it is separated from, another.

The spiral angle (a) is very small in a limpet, where it is usually

taken as = 0° ; but it is evidently of a significant amount, though

obscured by the shortness of the tubular shell. In Dentalium

it is still small, but sufficient to give the appearance of a regular

curve ; it amounts here probably to about 30° to 40°. In Haliotis

it is from about 70° to 75° ; in Nautilus about 80° ; and it lies

between 80° and 85°, or even more, in the majority of Gastropods.

The case of Fissurella is curious. Here we have, apparently,

a conical shell with no trace of spiral curvature, or (in other

words) with a spiral angle which approximates to 0° ; but in the

minute embryonic shell (as in that of the limpet) a spiral convolution

is distinctly to be seen. It would seem, then, that what we have

to do with here is an unusually large growth-factor in the generating

curve, which causes the shell to dilate into a cone of very wide

angle, the apical portion of which has become lost or absorbed,

and the remaining part of which is too short to show clearly its

intrinsic curvature. In the closely allied Emarginula, there is

likewise a well-marked spiral in the embryo, which however is

still manifested in the curvature of the adult, nearly conical, shell.

In both cases we have to do with a very wide-angled cone, and

with a high retardation-factor for its inner, or posterior, border.

The series is continued, from the apparently simple cone to the

complete spiral, through such forms as Calyptraea.

The angle a, as we have seen, is not always, nor rigorously,

a constant angle. In some Ammonites it may increase with age,

the whorls becoming closer and closer ; in others it may decrease

rapidly, and even fall to zero, the coiled shell then straightening

out, as in Lituites and similar forms. It diminishes somewhat,

also, in many Orthocerata, which are sHghtly curved in youth,

but straight in age. It tends to increase notably in some common
land-shells, the Pupae and Bulimi ; and it decreases in Succinea.

Directly related to the angle a is the ratio which subsists

between the breadths of successive whorls. The following table

gives a few illustrations of this ratio in particular cases, in addition

to those which we have already studied.
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Ratio of breadth of consecutive whorU

Pointed Turbinates

Telescopium fiiscnm ... 1-14

Acus siibulatus ... ... 1-16

*Turritella terebellata ... 1-18

*Ttirritella imbricata ... 1'20

Cerithium palustre ... 1-22

Turritella duplicata ... 1-23

Melanopsis terebralis ... 1-23

Cerithium nodulosum ... 1-24

*Turritella carinata ... 1-25

Acus crenulatus ... ... 1-25

Terebra maculata (Fig. 285) 1-25

*Cerithium lignitarum ... 1-26

Acus dimidiatus ... ... 1-28

Cerithium sulcatum ... 1-32

Fustis longissimus ... 1-34

*Pleurotomaria conoidea ... 1'34

Trochus niloticus (Fig. 286) 1-41

Mitra episcopalis ... ... 1-43

Fusus antiquus ... ... 1*50

Scalaria pretiosa ... ... 1*56

Fusus colosseus ... ... 1-71

Phasianella bulloides ... 1-80

Helicostyla polychroa ... 2-00

Those marked * from Naumann; the rest from Macalisterf.

In the case of turbinate shells, we require to take into account

the angle 9, in order to determine the spiral angle a from the

ratio of the breadths of consecutive whorls ; for the short table

given on p. 534 is only applicable to discoid shells, in which

the angle 6 is an. angle of 90°. Our formula, as mentioned on

p. 518 now becomes

Obtuse Turbinates and Discoids

Conus virgo ... ... 1-25

Conus litteratv.s 1-40

Conus betulina ... ... 1-43

*Helix nemoralis ... ... 1-50

*8olarium pers2jectivtnii ... 1-50

Solarium trochleare ... 1-62

Solarium, magnificum ... l-To

*Natica aperta ... ... 2-00

Euomphalus jientangidatus 2-00

Planorbis corneus ... 2-00

Solaropsis pellis-serjientis 2-00

Dolium zonatum ... ... 2-10

*Natica glaucina ... ... 3-00

Nautilus pompilius ... 3-00

Haliotis excavatus ... 4-20

Haliotis parvus ... ... 6-00

Delphinula atrata ... 6-00

Haliotis rugoso-plicata ... 9-30

Haliotis viridis ... ... 10-00

R = In sin 6 cot a

For this formula I have worked out the following table.

t Macalister, Alex., Observations on the Mode of Growth of Discoid and
Turbinated Shells, P. R, S. xviii, pp. 529-532, 1870.
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From this table, by interpolation, we may easily fill in the

approximate values of a, as soon as we have determined the

apical angle d and measured the ratio R ; as follows

:
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great treasures of the conchologist, differs from its congeners in

no important particular save in the somewhat "produced" spire,

that is to say in the comparatively low value of the angle d.

A variation with advancing age of 6 is common, but (as Blake

points out) it is often not to be distinguished or disentangled from

an alteration of a. Whether alone, or combined with a change in

a, we find it in all those many Gastropods whose whorls cannot

all be touched by the same enveloping cone, and whose spire is

accordingly described as concave or convex. The former condition,

as we have it in Cerithium, and in the cusp-like spire of Cassis,

Fig. 286. Trochus niloticus, L.

Dolium and some Cones, is much the commoner of the two.

And such tendency to decrease may lead to 6 becoming a negative

angle; in which case we have a depressed gpire, as in the

Cypraeae.

When we find a "reversed shell," a whelk or a snail for instance

whose spire winds to the left instead of to the right, we may
describe it mathematically by the simple statement that the angle

9 has changed sign. In the genus Ampullaria, or Apple-snails,

inhabiting tropical or sub-tropical rivers, we have a remarkable

condition; for in certain "species" the spiral turns to the right,

in others to the left, and in others again we have a flattened
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"discoid" shell ; and furthermore we have numerous intermediate

stages, on either side, shewing right and left-handed spirals of

varying degrees of acuteness*. In this case, the angle 6 may be

said to vary, within the limits of a genus, from somewhere about
35° to somewhere about 125°.

The angle of retardation (jS) is very small in Dentalium and

Patella ; it is very large in Haliotis. It becomes infinite in

Argonauta and in Cypraea. Connected w^ith the angle of retarda-

tion are the various possibilities of contact or separation, in various

degrees, between adjacent whorls in the discoid, and between

both adjacent and opposite whorls in the turbinated shell. But

with, these phenomena we have already dealt sufl&ciently.

Of Bivalve Shells.

Hitherto we have dealt only with univalve shells, and it is in

these that all the mathematical problems connected with the

spiral, or helico-spiral, are best illustrated. But the case of the

bivalve shell, of Lamelhbranchs or of Brachiopods, presents no

essential difference, save only that we have here to do with two

conjugate spirals, whose two axes have a definite relation to one

another, and some freedom of rotatory movement relatively to

one another.

The generating curve is particularly well seen in the bivalve,

where it simply constitutes what we call "the outline of the shell."

It is for the most part a plane curve, but not always ; for there

are forms, such as Hippopus, Tridacna and many Cockles, or

Rhynchonella and Spirifer among the Brachiopods, in which the

edges of the two valves interlock, and others, such as Pholas,

Mya, etc., where in part they fail to meet. In such cases as these

the generating curves are conjugate, having a similar relation, but

of opposite sign, to a median plane of reference. A great variety

of form is exhibited by these generating curves among the bivalves.

In a good many cases the curve is approximately circular, as in

Anomia, Cyclas, Artemis, Isocardia ; it is nearly semi-circular in

Argiope. It is approximately elliptical in Orthis and in Anodon

;

it may be called semi-elliptical in Spirifer. It is a nearly rectilinear

* See figures in Arnold Lang's Comparative Anatomy (English translation), n,

p. 161, 1902.

T. G. 36
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triangle in Lithocardium, and a curvilinear triangle in Mactra.

Many apparently diverse but more or less related forms may be

shewn to be deformations of a common type, by a simple applica-

tion of the mathematical theory of "Transformations/' which we
shall have to study in a later chapter. In such a series as is

furnished, for instance, by Gervillea, Perna, Avicula, Modiola,

Mytilus, etc., a "simple shear" accounts for most, if not all, of

the apparent differences.

Upon the surface of the bivalve shell we usually see with great

clearness the "lines of growth" which represent the successive

margins of the shell, or in other words the successive positions

assumed during growth by the growing generating curve ; and

we have a good illustration, accordingly, of how it is characteristic

of the generating curve that it should constantly increase, while

never altering its geometric similarity.

Underlying these "Hues of growth," which are so characteristic

of a molluscan shell (and of not a few other organic formations),

there is, then, a " law of growth " which we may attempt to enquire

into and which may be illustrated in various ways. The simplest

cases are those in which we can study the lines of growth on a

more or less flattened shell, such as the one valve of an oyster,

a Pecten or a Tellina, or some such bivalve mollusc. Here around

an origin, the so-called "umbo" of the shell, we have a series of

curves, sometimes nearly circular, sometimes elliptical, and often

asymmetrical; and such curves are obviously not "concentric,"

though we are often apt to call them so, but are always " co-axial."

This manner of arrangement may be illustrated by various

analogies. We might for instance compare it to a series of waves,

radiating outwards from a point, through a medium which offered

a resistance increasing, with the angle of divergence, according to

some simple law. We may find another, and perhaps a simpler

illustration as follows

:

In a very simple and beautiful theorem, Galileo shewed that,

if we imagine a number of inclined planes, or gutters, sloping

downwards (in a vertical plane) at various angles from a common
starting-point, and if we imagine a number of balls rolling each

down its own gutter under the influence of gravity (and without

hindrance from friction), then, at any given instant, the locus of
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all these moving bodies is a circle passing through the point of

origin. For the acceleration along any one of the sloping paths,

for instance AB (Fig. 287), is such

that

AB = \g cos e . t'^

= Ig . ABjAC . f\

Therefore

•

e- = 2lg.AC.

That is to say, all the balls

reach the circumference of the

circle at the same moment as the

ball which drops vertically from

A to C.

Where, then, as often happens, the generating curve of the

shell is approximately a circle passing through the point of origin,

we may consider the acceleration of growth along various radiants

to be governed by a simple mathematical law, closely akin to

that simple law of acceleration which governs the movements of

a falling body. And, mutatis mutandis, a similar definite law

underlies the cases where the generating curve is continually

elhptical, or where it assumes some more complex, but still regular

and constant form.

It is easy to extend the proposition to the particular case where

the lines of growth may be considered elliptical. In such a case

we have x^la- + y'^jh^ = 1, where a and h are the major and minor

axes of the ellipse.

Or, changing the origin to the vertex of the figure

2x

giving

r

t
62

= 0,

= 1.

Then, transferring to polar coordinates, where r . cos d = x,

r . sin 6 = y, we have

r . cos^ d 2 cos dr. sin

a^ a ' h^
= 0,

36—2
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which is equivalent to

r =
2ab'^ cos 6

or, ehminating the sine-function,

_ 2ab'^ cos 6
*' ^ (62-a2)cos2^^ a2

'

Obviously, in the case when a = b, this gives us the circular

system which we have already considered. For other values, or

ratios, of a and b, and for all values of 6, we can easily construct

a table, of which the following is a sample:

Chords of an elli'pse, tvhose major and minor axes {a, b)

are in certain given ratios.
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formulate a law of acceleration according to which points starting

from the origin 0, and moving along radial hnes, would all He, at

any future epoch, on an elhpse passing through 0; and this

calculation we need not enter into.

All that we are immediately concerned with is the simple fact

that where a velocity, such as our rate of growth, varies with its

direction,—varies that is to say as a function of the angular

divergence from a certain axis,—then, in a certain simple case,

we get lines of growth laid down as a system of coaxial circles,

and, when the function is a more complex one, as a system of

ellipses or of other more complicated coaxial figures, which figures

may or may not be symmetrical on either side of the axis. Among

Fig. 289.

our bivalve mollusca we shall find the lines of growth to be

approximately circular in, for instance, Anomia ; in Lima (e.g.

L. suhauriculata) we have a system of nearly symmetrical ellipses

with the vertical axis about twice the transverse ; in Solen pellu-

cidus, we have again a system of lines of growth which are not far

from being symmetrical ellipses, in which however the transverse

is between three and four times as great as the vertical axis. In

the great majority of cases, we have a similar phenomenon with

the further comphcation of slight, but occasionally very consider-

able, lateral asymmetry.

In certain little Crustacea (of the genus Estheria) the carapace

takes the form of a bivalve- shell, closely simulating that of a
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lamellibranchiate mollusc, and bearing lines of growth in all

respects analogous to or even identical with those of the latter.

The explanation is very curious and interesting. In ordinary

Crustacea the carapace, like the rest of the chitinised and calcified

integument, is shed of? in successive moults, and is restored again

as a whole. But in Estheria (and one or two other small Crustacea)

the moult is incomplete : the old carapace is retained, and the

new, growing up underneath it, adheres to it like a lining, and

projects beyond its edge: so that in course of time the margins

of successive old carapaces appear as "lines of growth" upon the

surface of the shell. In this mode of formation, then (but not

in the usual one), we obtain a structure which "is partly old and

partly new," and whose successive increments are all similar,

similarly situated, and enlarged in a continued progression. We
have, in short, all the conditions appropria,te and necessary for

the development of a logarithmic spiral ; and this logarithmic

spiral (though it is one of small angle) gives its own character to

the structure, and causes the little carapace to partake of the

characteristic conformation of the molluscan shell.

The essential simplicity, as well as the great regularity of the

"curves of growth" which result in the familiar configurations of

our bivalve shells, sufficiently explain, in a general way, the ease

with which they may be imitated, as for instance in the so-called

"artificial shells" which Kappers has produced from the conchoidal

form and lamination of lumps of melted and quickly cooled

parafiin*.

In the above account of the mathematical form of the bivalve shell, we
have supposed, for simplicity's sake, that the pole or origin of the system is

at a point where all the successive curves touch one another. But such an

arrangement is neither theoretically probable, nor is it actually the case;

for it would mean that in a certain direction growth fell, not merely to a

minimum, but to zero. As a matter of fact, the centre of the system (the

"umbo" of the conchologists) Ues not at the edge of the system, but very

near to it; in other words, there is a certain amount of growth all round.

But to take account of this condition would involve more troublesome mathe-

matics, and it is obvious that the foregoing illustrations are a sufficiently near

approximation to the actual case.

* Kappers, C. U. A., Die Bildung kiinstlicher Molluskenschalen, Zeitschr. f.

allg. Physiol, vn, p. 166, 1908.
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Among the bivalves the spiral angle (a) is very small in the

flattened shells, such as Orthis, Lingula or Anomia. It is larger,

as a rule, in the Lamellibranchs than in the Brachiopods, but in

the latter it is of considerable magnitude among the Pentameri.

Among the Lamelhbranchs it is largest in such forms as Isocardia

and Diceras, and in the very curious genus Caprinella ; in all of

these last-named genera its magnitude leads to the production of

a spiral shell of several whorls, precisely as in the univalves. The

angle is usually equal, but of opposite sign, in the two valves of

the Lamellibranch, and usually of opposite sign but unequal in

Fig. 290. Caprinella adversa.

(After Woodward.)
Fig. 291. Section of Productus

(Stroj}home)ia) sp. (From
Woods.)

the two valves of the Brachiopod. It is very unequal in many
Ostreidae, and especially in such forms as Gryphaea, or in Capri-

nella, which is a kind of exaggerated Gryphaea. Occasionally it

is of the same sign in both valves (that is to say, both valves curve

the same way) as we see sometimes in Anomia, and much better

in Productus or Strophomena.

Owing to the large growth-factor of the generating curve, and

the comparatively small angle of the spiral, the whole shell seldom

assumes a spiral form so conspicuous as to manifest in a typical

way the helical twist or shear which is so conspicuous in the
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majority of univalves, or to let us measure or estimate the

magnitude of the apical angle (6) of the enveloping cone. This

however we can do in forms like Isocardia and Diceras ; while in

Caprinella we see that the whorls lie in a plane perpendicular to

the axis, forming a discoidal spire. As in the latter shell, so also

universally among the Brachiopods, there is no lateral asymmetry

in the plane of the generating curve such as to lead to the develop-

ment of a helix; but in the majority of the Lamellibranchiata

it is obvious, from the obhquity of the lines of growth, that the

angle 6 is significant in amount.

The so-called "spiral arms" of Spirifer and many other

Brachiopods are not difficult to explain. They begin as a single

structure, in the form of a loop of

shelly substance, attached to the

dorsal valve of the shell, in the

neighbourhood of the hinge. This

loop has a curvature of its own, similar

to but not necessarily identical with

that of the valve to which it is

attached ; and this curvature will tend

to be developed, by continuous and

symmetrical growth, into a fully

formed logarithmic spiral, so far as

it is permitted to do so under the

constraint of the shell in which it is

contained. In various Terebratulae we see the spiral growth of

the loop, -more or less flattened and distorted by the restraining

pressure of the ventral valve. In a number of cases the loop

remains small, but gives off two nearly parallel branches or off-

shoots, which continue to grow. And these, starting with just

such a sHght curvature as the loop itself possessed, grow on and

on till they may form close-wound spirals, always provided that

the "spiral angle" of the curve is such that the resulting spire

can be freely contained within the cavity of the shell. Owing to

the bilateral symmetry of the whole system, the case will be rare,

and unlikely to occur, in which each separate arm will coil strictly

in a plane, so as to constitute a discoid spiral ; for the original

Fig. 292. Skeletal loop of

Terehratula. (From Woods.)
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direction of each of the two branches, parallel to the valve (or

nearly so) and outwards from the middle line, will tend to con-

stitute a curve of double curvature, and so, on further growth,

to develop into a helicoid. This is what actually occurs, in the

great majority of cases. But the curvature may be such that

the heUcoid grows outwards from the middle line, or inwards

towards the middle line, a very slight difference in the initial

curvature being sufficient to direct the spire the one way or the

other; the middle course of an undeviating discoid spire will be

rare, from the usual lack of any obvious controlling force to prevent

its deviation. The cases in which the helicoid spires point towards,

or point away from, the middle line are ascribed, in zoological

classification, to particular "famihes" of Brachiopods, the former

Fig. 293. Spiral arms of

Spirifer. (From Woods.)

Fig. 294. Inwardly dii-ected

spiral arms of Atrypa.

condition defining (or helping to define) the Atrypidae and the

latter the Spiriferidae and Athyridae. It is obvious that the

incipient curvature of the arms, and consequently the form and

direction of the spirals, will be influenced by the surrounding

pressures, and these in turn by the general shape of the shell.

We shall expect, accordingly, to find the long outwardly directed

spirals associated with shells which are transversely elongated, as

Spirifer is ; while the more rounded Atrypas will tend to the

opposite condition. In a few cases, as in Cyrtina or Reticularia,

where the shell is comparatively narrow but long, and where the

uncoiled basal support of the arms is long also, the spiral coils

into w^hich the latter grow are turned backwards, in the direction

where there is room for them. And in the few cases where the

shell is very considerably flattened, the spirals (if they find room
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to grow at all) will be constrained to do so in a discoid or nearly

discoid fashion, and this is actually the case in such flattened

forms as Koninckina or Thecidium.

The Shells of Pterojjods.

While mathematically speaking we are entitled to look upon

the bivalve shell of the Lamellibranch as consisting of two distinct

elements, each comparable to the entire shell of the univalve, we
have no biological grounds for such a statement ; for the shell

arises from a single embryonic origin, and afterwards becomes split

into portions which constitute the two separate valves. We can

perhaps throw some indirect light upon this phenomenon, and

upon several other phenomena connected with shell-growth, by

a consideration of the simple conical or tubular shells of the

Pteropods. The shells of the latter are in few cases suitable for

simple mathematical investigation, but nevertheless they are of

very considerable interest in connection with our general problem.

The morphology of the Pteropods is by no

means well understood, and in speaking of

them I will assume that there are still

grounds for believing (in spite of Boas'

and Pelseneer's arguments) that they are

directly related to, or may at least be

directly compared with, the Cephalopoda*.

The simplest shells among the Pteropods

have the form of a tube, more or less

cylindrical (Cuvierina), more often conical

(Creseis, Clio) ; and this tubular shell (as

we have already had occasion to remark,

on p. 258), frequently tends, when it is

very small and delicate, to assume the

Fig. 295. Pteropod shells: character of an unduloid. (In such a case

(1) Cuvierina columnella; it is more than hkelv that the tiny shell,

(2) Cleodora chierchiac;
^^ ^^^^ ^^^-^^^ ^f it which Constitutes the

(3) C. pygmaea. (After .

'

Boas.) unduloid, has not grown by successive

* We need not assume a close relationship, nor indeed any more than such a

one as permits us to compare the shell of a Nautilus with that of a Gastropod.



XI] THE SHELLS OF PTEROPODS 571

increments or '"rings of growth," but has developed as a whole.)

A thickened "rib" is often, perhaps generally, present on the

dorsal side of the little conical shell. In a few cases (Limacina,

Fig. 29(i. Diagrammatic tran.sverse sections, or outlines of the mouth, in certain

Pteropod shells : A, B, Cleodora austrdlis ; C. C. pymviirlalis ; D, C. bahintinni

;

E, C. rnsjjifldld. (After Boas.)

Fig. 297. Shells of thecosome Pteropods (after Boas). (1) Cleodora

czispidata; (2) Hyalaea trispinosa: (3) H. globulosa : (4) H. uncinata

;

(5) //. inflexa.

Peraclis) the tube becomes spirally coiled, in a normal logarithmic

spiral or helico-spiral.

In certain cases (e.g. Cleodora, Hyalaea) the tube or cone is

curiously modified. In the first place, its cross-section, originally
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circular or nearly so, becomes flattened or compressed dorso-

ventrally ; and the angle, or rather edge, where dorsal and ventral

walls meet, becomes more and more drawn out into a ridge or

keel. Along the free margin, both of the dorsal and the ventral

portion of the shell, growth proceeds with a regularly varying

velocity, so that these margins, or lips, of the shell become regularly

curved or markedly sinuous. At the same time, growth in a

transverse direction proceeds with an acceleration which manifests

itself in a curvature of the sides, replacing the straight borders of

the original cone. In other words, the cross-section of the cone,

or what we have been calhng the generating curve, increases its

dimensions more rapidly than its distance from the pole.

Fig. 298. Cleodora cuspidata.

In the above figures, for instance in that of Cleodora cuspidata,

the markings of the shell which represent the successive edges of

the lip at former stages of growth, furnish us at once with a

"graph" of the varying velocities of growth as measured, radially,

from the apex. We can reveal more clearly the nature of these

variations in the following way which is simply tantamount to

converting our radial into rectangular coordinates. Neglecting

curvature (if any) of the sides and treating the shell (for simplicity's

sake) as a right cone, we lay ofl equal angles from the apex 0,

along the radii Oa, Oh, etc. If we then plot, as vertical equi-

distant ordinates, the magnitudes Oa, Oh ... OY , and again on to

Oa' , we obtain a diagram such as the following (Fig. 299) ; by
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help of which we not only see more clearly the way in which the

growth-rate varies from point to point, but we also recognise

much better than before, the similar nature of the law which

governs this variation in the different species.

b c d e f g ^

X O X

Fig. 299. Curves obtained by transforming radial ordinates, as in Fig. 298, into

vertical equidistant ordinates. 1, Hyalaea trispinosa; 2, Cleodora cuspidata.

Furthermore, the young shell having become differentiated into a

dorsal and a ventral part, marked off from one another by a lateral

edge or keel, and the inequality of growth being such as to cause

Fig. 300. Development of the shell of Hyalaea (Cavolinia) tridentata, Forskal:

the earlier stages being the ^^ Pleuroj)us lo7igifilis" of Troschel. (After Tesch.)

each portion to increase most rapidly in the median line, it follows

that the entire shell will appear to have been split into a dorsal

and a ventral plate, both connected with, and projecting from.
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what remains of the original undivided cone. Putting the same

thing in other words, we may say that the generating figure, which

lay at first in a plane perpendicular to the axis of the cone, has

now, by unequal growth, been sharply bent or folded, so as to

lie approximately in two planes, parallel to the anterior and

posterior faces of the cone. We have only to imagine the apical

connecting portion to be further reduced, and finally to disappear

or rupture, and we should have a bivalve shell developed out of

the original simple cone.

In its outer and growing portion, the shell of our Pteropod

now consists of two parts which, though still connected together

at the apex, may be treated as growing practically independently.

The shell is no longer a simple tube, or simple cone, in which

regular inequalities of growth will lead to the development of a

spiral ; and this for the simple reason that we have now two

opposite maxima of growth, instead of a maximum on the one side

and a minimum on the other side of our tubular shell. As a matter

of fact, the dorsal and the ventral plate tend to curve in opposite

directions, towards the middle line, the dorsal curving ventrally

and the ventral curving towards the dorsal side.

In the case of the Lamellibranch or the Brachiopod, it is quite

possible for both valves to grow into more or less pronounced

spirals, for the simple reason that they are hinged upon one another

;

and each growing edge, instead of being brought to a standstill

by the growth of its opposite neighbour, is free to move out of

the way, by the rotation about the hinge of the plane in which

it lies.

But where, as in the Pteropod, there is no such hinge, the

dorsal and ventral halves of the shell (or dorsal and ventral

valves, if we may call them so), if they curved towards one

another (as they do in a cockle), would soon interfere with

one another's progress, and the development of a pair of

conjugate spirals would become impossible. Nevertheless, there

is obviously, in both dorsal and ventral valve, a tendency to

the development of a spiral curve, that of the ventral valve

being more marked than that of the larger and overlapping

dorsal one, exactly as in the two unequal valves of Terebratula.

In many cases (e.g. Cleodora cuspidata), the dorsal valve or plate.
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strengthened and stiiTened by its midrib, is nearly straight, while

the curvature of the other is well displayed. But the case will

be materially altered and simplified if growth be arrested or

retarded in either half of the shell. Suppose for instance that

the dorsal valve grew so slowly that after a while, in comparison

with the other, we might speak of it as being absent altogether

:

or suppose that it merely became so reduced in relative size as to

form no impediment to the continued growth of the ventral one

;

the latter would continue to grow in the direction of its natural

curvature, and would end by forming a complete and coiled

logarithmic spiral. It would be precisely analogous to the spiral

shell of Nautilus, and, in regard to its ventral position, concave

towards the dorsal side, it would even deserve to be called directly

Fig. 301. Pteropod shells, from the side: (1) Cleodora ciispidala; (2) Hyalaea

longirostris ; (3) H. trispinosa. (After Boas.)

homologous with it. Suppose, on the other hand, that the ventral

valve were to be greatly reduced, and even to disappear, the

dorsal valve would then pursue its unopposed growth ; and, were

it to be markedly curved, it would come to form a logarithmic

spiral, concave towards the ventral side, as is the case in the shell

of Spirula*. Were the dorsal valve to be destitute of any marked

curvature (or in other words, to have but a low spiral angle), it

would form a simple plate, as in the shells of Sepia or Loligo. In-

deed, in the shells of these latter, and especially in that of Sepia,

we seem to recognise a manifest resemblance to the dorsal plate of

the Pteropod shell, as we have it (e.g.) in Cleodora or Hyalaea

;

* Cf. Owen, "These shells [Nautilus and Ammonites] are revolutely spiral or

coiled over the back of the animal, not involute like Spirula": Palneontolcgy,

1861, p. 97; cf. Mem. on the Pearly Nautilvs, 1832; also P.Z.S. 1878, p. 955.
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the little "rostrum" of Sepia is but the apex of the primitive cone,

and the rounded anterior extremity has grown according to a law

precisely such as that which has produced the curved margin of

the dorsal valve in the Pteropod. - The ventral portion of the

original cone is nearly, but not wholly, wanting. It is represented

by the so-called posterior wall of the "siphuncular space." In

many decapod cuttle-fishes also (e.g. Todarodes, Illex, etc.) we
still see at the posterior end of the " pen," a vestige of the primitive

cone, whose dorsal margin only has continued to grow ; and the

same phenomenon, on an exaggerated scale, is represented in the

Belemnites.

It is not at all impossible that we may explain on the same

lines the development of the curious "operculum" of the Ammon-
ites. This consists of a single horny plate {Anaptychus), or of

a thicker, more calcified plate divided into two symmetrical

halves {Aptychi), often found inside the terminal chamber of the

Ammonite, and occasionally to be seen lying in situ, as an

operculum which partially closes the mouth of the shell; this

structure is known to exist even in connection with the early

embryonic shell. In form the Anaptychus, or the pair of con-

joined Aptychi, shew an upper and a lower border, the latter

strongly convex, the former sometimes slightly concave, sometimes

slightly convex, and usually shewing a median projection or

slightly developed rostrum. From this "rostral" border the

curves of growth start, and course round parallel to, finally

constituting, the convex border. It is this convex border which

fits into the free margin of the mouth of the Ammonite's shell,

while the other is applied to and overlaps the preceding whorl of

the spire. Now this relationship is precisely what we should

expect, were we to imagine as our starting-point a shell similar

to that of Hyalaea, in which however the dorsal part of the spht

cone had become separate from the ventral half, had remained

11 at, and had grown comparatively slowly, while at the same time

it kept slipping forward over the growing and coifing spire into

which the ventral half of the original shell develops*. In short,

I think there is reason to believe, or at least to suspect, that we

* The case of Terebratula or of Gryphaea would be closely analogous, if the

smaller valve were less closely connected and co-articulated with the larger.
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have in the shell and Aptychus of the Ammonites, two portions

of a once united structure; of which other Cephalopoda retain

not both parts but only one or other, one as the ventrally

situated shell of Nautilus, the other as the dorsally placed shell

for example of Sepia or of Spirula.

In the case of the bivalve shells of the Lamellibranchs or of

the Brachiopods, we have to deal with a phenomenon precisely

analogous to the split and flattened cone of our Pteropods, save

only that the primitive cone has been split into two portions, not

incompletely as in the Pteropod (Hyalaea), but completely, so

as to form two separate valves. Though somewhat greater

freedom is given to growth now that the two valves are separate

and hinged, yet still the two valves oppose and hamper one

another, so that in the longitudinal direction each is capable of

only a moderate curvature. This curvature, as we have seen, is

recognisable as a logarithmic spiral, but only now and then does

the growth of the spiral continue so far as to develop successive

coils : as it does in a few symmetrical forms such as Isocardia cor
;

and as it does still more conspicuously in a few others, such as

Gryphaea and Caprinella, where one of the two valves is stunted,

and the growth of the other is (relatively speaking) unopposed.

Of Septa.

Before we leave the subject of the molluscan shell, we have

still another problem to deal with, in regard to the form and

arrangement of the septa which divide up the tubular shell into

chambers, in the Nautilus, the Ammonite and their alHes (Fig.

304, etc.).

The existence of septa in a Nautiloid shell may probably be

accounted for as follows. We have seen that it is a property of

a cone that, while growing by increments at one end only, it

conserves its original shape: therefore the animal .within, which

(though growing by a different law) also conserves its shape, will

continue to fill the shell if it actually fills it to begin with: as

does a snail or other Gastropod. But suppose that our mollusc

fills a part only of a conical shell (as it does in the case of Nautilus)

;

then, unless it alter its shape, it must move upward as it grows in

the growing cone, until it come to occupy a space similar in form

T G. 37
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to that which it occupied before: just, indeed, as a httle ball

drops far down into the cone, but a big one must stay farther up.

Then, when the animal after a period of growth has moved farther

up in the shell, the mantle-surface continues its normal secretory

activity, and that portion which had been in contact with the

former septum secretes a septum anew. In short, at any given

epoch, the creature is not secreting a tube and a septum by
separate operations, but is secreting a shelly case about its rounded

body, of which case one part appears to us as the continuation

of the tube, and the other part, merging with it by indistinguishable

boundaries, appears to us as the septum*.

The various forms assumed by the septa in spiral shells'}"

present us with a number of problems of great beauty, simple in

their essence, but whose full investigation would soon lead us

into mathematics of a very high order.

We do not know in great detail how these septa are laid down

;

but the essential facts are clear J. The septum begins as a very

thin cuticular membrane (composed apparently of a substance

called conchyolin), which is secreted by the skin, or mantle-

surface, of the animal ; and upon this membrane nacreous matter

is gradually laid down on the mantle-side (that is to say between

the animal's body and the cuticular membrane which has been

thrown off from it), so that the membrane remains as a thin pellicle

over the hinder surface of the septum, and so that, to begin with,

the membranous septum is moulded on the flexible and elastic

surface of the animal, within which the fluids of the body must

exercise a uniform, or nearly uniform pressure.

Let us think, then, of the septa as they would appear in their

uncalcified condition, formed of, or at least superposed upon, an

* "It has been suggested, and I think in some quarters adopted as a dogma,

that the formation of successive septa [in Nautilus] is correlated with the recurrence

of reproductive periods. This is not the case, since, according to my observations,

propagation only takes place after the last septum is formed;" WiUey, Zoological

Results, p. 746, 1902.

f Cf. Woodward, Henry, On the Structure of Camerated Shells, Pop. Set. Rev.

XI, pp. 113-120, 1872.

X See WiUey, Contributions to the Natural History of the Pearly Nautilus,

Zoological Results, etc. p. 749, 1902. Cf. also Bather, Shell-growth in Cephalopoda,

A7m. Mag. N. H. (6), i, pp 298-310^ 1888; ibid. pp. 421-427, and other papers by
Blake, Riefstahl, etc. quoted therein.
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elastic membrane. They must then follow the general law,

applicable to all elastic membranes under uniform pressure, that

the tension varies inversely as the radius of curvature; and we
come back once more to our old equation of Laplace, that

'1

P = T
r'J'

Moreover, since the cavity below the septum is practically

closed, and is filled either with air or with

water, P will be constant over the whole

area of the septum. And further, we must

assume, at least to begin with, that the

membrane constituting the incipient septum

is homogeneous or isotropic.

Let us take first the case of a straight

cone, of circular section, more or less like an

Orthoceras ; and let us suppose that the

septum is attached to the shell in a plane

perpendicular to its axis. The septum itself

must then obviously be spherical. Moreover

the extent of the spherical surface is constant,

and easily determined. For obviously, in

Fig. 302, the angle LCL' equals the sup-

plement of the angle [LOL') of the cone; that is to say, the

circle of contact subtends an angle at the

centre of the spherical surface, which is con-

stant, and which is equal to tt — 26. The

case is not excluded where, owing to an asym-

metry of tensions, the septum meets the side

walls of the cone at other than a right angle, as

in Fig. 303 ; and here, while the septa still

remain portions of spheres, the geometrical

construction for the position of their centres is

equally easy.

If, on the other hand, the attachment of the

septum to the inner walls of the cone be in a

plane oblique to the axis, then it is evident that

the outline of the septum will be an ellipse, and its surface an

37—2

Fig. 303.
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ellipsoid. If the attachment of the septum be not in one

plane, but form a sinuous line of contact with the cone, then

the septum will be a saddle-shaped surface, of great complexity

and beauty. In all cases, provided only that the membrane be

isotropic, the form assumed will be precisely that of a soap-bubble

under similar conditions of attachment : that is to say, it will be

(with the usual limitations or conditions) a surface of minimal

area.

If our cone be no longer straight, but curved, then the septa

will be symmetrically deformed in consequence. A beautiful and

interesting case is afforded us by Nautilus itself. Here the

outline of the septum, referred to a plane, is approximately

bounded by two elhptic curves, similar and similarly situated,

whose areas are to one another in a definite ratio, namelv as

A.2, r^r'

- in cot a

and a similar ratio exists in Ammonites and all other close-whorled

spirals, in which however we cannot always make the simple

assumption of elhptical form. In a median section of Nautilus,

we see each septum forming a tangent to the inner and to the

outer wall, just as it did in a section of the straight Orthoceras

;

but the curvatures in the neighbourhood of these two points of

contact are not identical, for they now vary inversely as the radii,

drawn from the pole of the spiral shell. The contour of the septum

in this median plane is a spiral curve identical with the original

logarithmic spiral. Of this it is the "invert," and the fact that

the original curve and its invert are .both identical is one of the

most beautiful properties of the logarithmic spiral*.

But while the outline of the septum in median section is simple

and easy to determine, the curved surface of the septum in its

entirety is a very complicated matter, even in Nautilus which is

one of the simplest of actual cases. For, in the first place, since

the form of the septum, as seen in median section, is that of a

logarithmic spiral, and as therefore its curvature is constantly

altering, it follows that, in successive transverse sections, the

* It was this that led James Bernoulli, in imitation of Archimedes, to have

the logarithmic spiral graven on his tomb, with the pious motto, Eadem muhita

resurgam. On Goodsir's grave the same symbol is reinscribed.
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curvature is also constantly altering. But in the case of Nautilus,

there are other aspects of the phenomenon, which we can illustrate,

but onlv in part, in the following simple manner. Let us imagine

Fig. 304. Section of Nautilus, shewing the contour of the septa in the median

plane: the septa being (in this plane) logarithmic spirals, of which the shell-

spiral is the evolute.

a pack of cards, in which we have cut out of each card a similar

concave arc of a logarithmic spiral, such as we actually see in the

median section of the septum of a Nautilus. Then, while we hold

the cards together, foursquare, in the ordinary position of the
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pack, we have a simple "ruled" surface, which in any longitudinal

section has the form of a logarithmic spiral but in any transverse

section is a straight horizontal line. If we shear or shde the

cards upon one another, thrusting the middle cards of the pack

forward in advance of the others, till the one end of the pack is

a convex, and the other a concave, ellipse, the cut edges which

combine to represent our septum will now form a curved surface

Fig. 305. Cast of the interior of Nautilus : to shew the contours of

the septa at their junction with the shell -wall.

of much greater complexity; and this is part, but not by any

means all, of the deformation produced as a direct consequence

of the form in Nautilus of the section of the tube within which

the septum has to lie. And the complex curvature of the surface

mil be manifested in a sinuous outline of the edge, or line of

attachment of the septum to the tube, and will vary according

to the configuration of the latter. In the case of Nautilus, it is

easy to shew empirically (though not perhaps easy to demonstrate
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mathematically) that the sinuous or saddle-shaped form of the

"suture" (or line of attachment of the septum to the tube) is

such as can be precisely accounted for in this manner. It is also

easy to see that, when the section of the tube (or "generating

curve") is more complicated in form, when it is flattened, grooved,

or otherwise ornamented, the curvature of the septum and the

outhne of its sutural attachment will become very comphcated

indeed*; but it will be comparatively simple in the case of the

first few sutures of the young shell, laid down before any overlapping

of whorls has taken place, and this comparative simphcity of the

first-formed sutures is a marked feature among Ammonites f.

We have other sources of comphcation, besides those which

are at once introduced by the sectional form of the tube. For

instance, the siphuncle, or httle inner tube which perforates the

septa, exercises a certain amount of tension, sometimes evidently

considerable, upon the latter; so that we can no longer consider

each septum as an isotropic surface, under uniform pressure ; and

there may be other structural modifications, or inequahties, in

that portion of the animal's body with which the septum is in

contact, and by which it is conformed. It is hardly hkely, for

all these reasons, that we shall ever attain to a full and particular

explanation of the septal surfaces and their sutural outlines

throughout the whole range of Cephalopod shells ; but in general

terms, the problem is probably not beyond the reach of mathe-

matical analysis. The problem might be approached experi-

mentally, after the manner of Plateau's experiments, by bending

* The "lobes" and "saddles" which arise in this manner, and on whose arrange-

ment the modem classification of the nautiloid and ammonitoid shells largely

depends, were first recognised and named by Leopold von Buch, Ann. Sci. Nat.

xxvn, xxvra, 1829.

f Blake has remarked upon the fact {op. cit. p. 248) that in some Cyrtocerata

we may have a curved shell in which the ornaments approximately run at a constant

angular distance from the pole, while the septa approximate to a radial direction

;

and that "thus one law of growth is illustrated by the inside, and another by the

outside." In this there is nothing at which we need wonder. It is merely a case

where the generating curve is set very obliquely to the axis of the shell ; but where

the septa, which have no necessary relation to the mouth of the shell, take their

places, as usual, at a certain definite angle to the walls of the tube. This relation

of the septa to the walls of the tube arises after the tube itself is fuUy formed,

and the obliquity of growth of the open end of the tube has no relation to the

matter.
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a wire into the complicated form of the sutiire-hne, and studying

the form of the Uquid fihn which constitutes the corresponding

surface minimae areae.

Fig. 306. Ammonites (Sonninia) Sowerbyi. (From Zittel, after

Steinmann and Doderlein.)

In certain Ammonites the septal outline is further compUcated

in another way. Superposed upon the usual sinuous outline, with

its "lobes" and "saddles," we have here a minutely ramified, or

arborescent outline, in which all the branches terminate in wavy.

Fig. 307. Suture-line of a Tiiassic Ammonite (Pinacoccras).

(From Zittel, after Hauer.)

more or less circular arcs,—looking just Uke the 'landscape

marble ' from the Bristol Rhaetic. We have no difficulty in

recognising in this a surface-tension phenomenon. The figures

are precisely such as we can imitate (for instance) by pouring a
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few drops of milk upon a greasy plate, or of oil upon an alkaline

solution.

We have very far from exhausted, we have perhaps little

more than begun, the study of the logarithmic spiral and the

associated curves which find exemplification in the multitudinous

diversities of molluscan shells. But, with a closing word or two,

we must now bring this chapter to an end.

In the spiral shell we have a problem, or a phenomenon, of

growth, immensely simplified by the fact that each successive

increment is irrevocably fixed in regard to magnitude and position,

instead of remaining in a state of flux and sharing in the further

changes which the organism undergoes. In such a structure, then,

we have certain primary phenomena of growth manifested in their

original simplicity, undisturbed by secondary and conflicting

phenomena. What actually grotvs is merely the lip of an orifice,

w^here there is produced a ring of solid material, whose form we

have treated of under the name of the generating curve ; and

this generating curve grows in magnitude without alteration of

its form. Besides its increase in areal magnitude, the growing

curve has certain strictly limited degrees of freedom, which define

its motions in space : that is to say, it has a vector motion at

right angles to the axis of the shell ; and it has a sliding motion

along that axis. And, though we may know nothing whatsoever

about the actual velocities of any of these motions, we do know
that they are so correlated together that their relative velocities

remain constant, and accordingly the form and symmetry of the

whole system remain in general unchanged.

But there is a vast range of possibilities in regard to every

one of these factors : the generating curve may be of various

forms, and even when of simple form, such as an ellipse, its axes

may be set at various angles to the system ; the plane also in

which it lies may vary, almost indefinitely, in its angle relatively

to that of any plane of reference in the system ; and in the several

velocities of growth, of rotation and of translation, and therefore

in the ratios between all these, we have again a vast range of

possibihties. We have then a certain definite type, or group of

forms, mathematically isomorphous, but presenting infinite diver-

sities of outward appearance : which diversities, as Swammerdam
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said, ex sola nascuntur diversitate gyrationum ; and which accord-

ingly are seen to have their origin in differences of rate, or of

magnitude, and so to be, essentially, neither more nor less than

differences of degree.

In nature, we find these forms presenting themselves with

but little relation to the character of the creature by which they

are produced. Spiral forms of certain particular kinds are common
to Gastropods and to Cephalopods, and to diverse families of

each; while outside the class of molluscs altogether, among the

Foraminifera and among the worms (as in Spirorbis, Spirographs,

and in the Dentalium-like shell of Ditrupa), we again meet with

/similar and corresponding forms.

Again, we find the same forms, or forms which (save for external

ornament) are mathematically identical, repeating themselves in

all periods of the world's geological history ; and, irrespective of

climate or local conditions, we see them mixed up, one with

another, in the depths and on the shores of every sea. It is hard

indeed (to my mind) to see where Natural Selection necessarily

enters in, or to admit that it has had any share whatsoever in the

production of these varied conformations. Unless indeed we use

the term Natural Selection in a sense so wide as to deprive it of

any purely biological significance; and so recognise as a sort of

natural selection whatsoever nexus of causes sufiices to differ-

entiate between the likely and the unlikely, the scarce and the

frequent, the easy and the hard : and leads accordingly, under

the pecuUar conditions, limitations and restraints which we call

"ordinary circumstances," one type of crystal, one form of cloud,

one chemical compound, to be of frequent occurrence and another

to be rare.



CHAPTER XII

THE SPIRAL SHELLS OF THE FORAMINIFERA

We have already dealt in a few simple cases with the shells of

the Foraminifera * ; and we have seen that wherever the shell is

but a single unit or single chamber, its form may be explained

in general by the laws of surface tension: the assumption being

that the httle mass of protoplasm which makes the simple shell

behaves as a fluid drop, the form of which is perpetuated when

the protoplasm acquires its solid covering. Thus the spherical

Orbuhnae and the flask-shaped Lagenae represent drops in

equihbrium, under various conditions of freedom or constraint;

while the irregular, amoeboid body of Astrorhiza is a manifestation

not of equihbrium, but of a varying and fluctuating distribution

of surface energy. When the foraminiferal shell becomes multi-

locular, the same general principles continue to hold ; the growing

protoplasm increases drop by drop, and each successive drop has

its particular phenomena of surface energy, manifested at its fluid

surface, and tending to confer upon it a certain place in the system

and a certain shape of its own.

It is characteristic and even diagnostic of this particular

group of Protozoa (1) that development proceeds by a well-marked

alternation of rest and of activity—of activity during which the

protoplasm increases, and of rest during which the shell is formed

;

(2) that the shell is formed at the outer surface of the protoplasmic

organism, and tends to constitute a continuous or all but continuous

covering ; and it follows (3) from these two factors taken together

that each successive increment is added on outside of and distinct

from its predecessors, that the successive parts or chambers of

* Cf. pp. 255, 463, etc.
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the shell are of different and successive ages, that one part of the

shell is always relatively new, and the rest old in various grades

of seniority.

The forms which we set together in the sister-group of Radio-

laria are very differently characterised. Here the cells or vesicles

of which each little composite organism is made up are but little

separated, and in no way walled off, from one another ; the hard

skeletal matter tends to be deposited in the form of isolated

spicules or of httle connected rods or plates, at the angles, the

edges or the interfaces of the vesicles ; the cells or vesicles form

a coordinated and cotemporaneous rather than a successive series.

Fig. 308. Hastigerina sp. ; to shew the '"mouth."

In a word, the whole quasi-fluid protoplasmic body may be

Ukened to a little mass of froth or foam : that is to say, to an

aggregation of simultaneously formed drops or bubbles, whose

physical properties and geometrical relations are very different

from those of a system of drops or bubbles which are formed one

after another, each soUdifying before the next is formed.

With the actual origin or mode of development of the fora-

miniferal shell we are now but little concerned. The main factor

is the adsorption, and subsequent precipitation at the surface of

the organism, of calcium carbonate,—-the shell so formed being

interrupted by pores or by some larger interspace or "mouth"
(Fig. 308), which interruptions we may doubtless interpret as

being due to unequal distributions of surface energy. In many
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cases the fluid protoplasm "picks up" sand-grains and other

foreign particles, after a fashion which we have already described

(p. 463) ; and it cements these together with more or less of

calcareous material. The calcareous shell is a crystalline structure,

and the micro-crystals of calcium carbonate are so set that their

little prisms radiate outwards in each chamber through the thick-

ness of the wall:—which symmetry is subject to corresponding

modification when the spherical chambers are more or less sym-

metrically deformed*.

In various ways the rounded, drop-like shells of the Fora-

minifera, both simple and compound, have been artificially

imitated. Thus, if small globules of mercury be immersed in

water in which a little chromic acid is allowed to dissolve, as the

httle beads of quicksilver become slowly covered with a crystalline

coat of mercuric chromate they assume various forms reminiscent

of the monothalamic Foraminifera. The mercuric chromate has

a higher atomic volume than the mercury which it replaces, and

therefore the fluid contents of the drop are under pressure, which

increases with the thickness of the pelhcle; hence at some weak
spot in the latter the contents will presently burst forth, so forming

a mouth to the httle shell. Sometimes a long thread is formed,

just as in RJiabdamniina linearis; and sometimes unduloid

swelhngs make their appearance on such a thread, just as in

R. discreta. And again, by appropriate modifications of the

experimental conditions, it is possible (as Rhumbler has shewn)

to build up a chambered shell f.

In a few forms, such as Globigerina and its close allies, the

shell is beset during life with excessively long and dehcate

calcareous spines or needles. It is only in oceanic forms that

these are present, because only when poised in water can such

* In a few cases, according to Awerinzew and Rhumbler, where the chambers are

added on in concentric series, as in Orbitolites, we have the crystalline structure

arranged radially in the radial walls but tangentially in the concentric ones:

whereby we tend to obtain, on a miniite scale, a system of orthogonal trajectories,

comparable to that which we shall presently studj- in connection with the structure

of bone. Cf. S. Awerinzew, Kalkschale der Rhizopoden, Z. f. w. Z. lxxiv,

pp. 478^90. 1903.

f Rhumbler, L., Die Doppelschalen von Orbitolites und anderer Foraminiferen,

etc., Arch. J. Protistenkuxde, i, pp. 193-296, 1902; and other papers. Also Die

Foraminiferen der Planktoiiex'pedition, i, 1911, pp. 50-56.



590 THE SPIRAL SHELLS [ch.

delicate structures endure; in dead shells, such as we are much
more famihar with, every trace of them is broken and rubbed

away. The growth of these long needles is explained (as we have

already briefly mentioned, on p. 440) by the phenomenon which

Lehmann calls orientirte Adsorption—the tendency for a crystalUne

structure to grow by accretion, not necessarily in the outward form

of a "crystal," but continuing in any direction or orientation

which has once been impressed upon it : in this case the spicular

growth is simply in direct continuation of the radial symmetry

of the micro-crystalhne elements of the shell-wall. Over the

surface of the shell the radiating spicules tend to occur in a

hexagonal pattern, symmetrically grouped around the pores which

perforate the shell. Rhumbler has suggested that this arrange-

ment is due to difEusion-currents, forming little eddies about the

base of the pseudopodia issuing from the pores: the idea being

borrowed from Benard, to whom is due the discovery of this type

or order of vortices*. In one of Benard's experiments a thin

layer of parafiin is strewn with particles of graphite, then warmed

to melting, whereupon each httle soMd granule becomes the centre

of a vortex ; by the interaction of these vortices the particles tend

to be repelled to equal distances from one another, and in the

end they are found to be arranged in a hexagonal pattern f. The

analogy is plain between this experiment and those diffusion

experiments by which Leduc produces his beautiful hexagonal

systems of artificial cells, with which we have dealt in a previous

chapter (p. 320).

But let us come back to the shell itself, and consider particu-

larly its spiral form. That the shell in the Foraminifera should

tend towards a spiral form need not surprise us ; for we have

learned that one of the fundamental conditions of the production

of a concrete spiral is just precisely what we have here, namely

the gradual development of a structure by means of successive

increments superadded to its exterior, which then form part,

successively, of a permanent and rigid structure. This condition

* Benard, H , Les tourbillons cellulaires.. Ann. de Chim'e (8), xxiv. 1901. Cf

also the pattern of cilia on an Infusorian, as figured by BiitschH in Bronn's

Protozoa, m, p. 1281, 1887.

j- A similar hexagonal pattern is obtained by the mutual repulsion of floating

magnets in Mr R. W. AVood's experiments, Phil. Mag. XLVi, pp. 162-164, 1898.
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is obviously forthcoming in the foraminiferal, but not at all in

the i;adiolarian, shell. Our second fundamental condition of the

production of a logarithmic spiral is that each successive increment

shall be so posited and so conformed that its addition to the

system leaves the form of the whole system unchanged. We
have now to enquire into this latter condition ; and to determine

whether the successive increments, or successive chambers, of the

foraminiferal shell actually constitute gnomons to the entire

structure.

It is obvious enough that the spiral shells of the Foraminifera

closely resemble true logarithmic spirals. Indeed so precisely do

the minute shells of many Foraminifera repeat or simulate the

spiral shells of Nautilus and its allies that to the naturalists of the

early nineteenth century they were known as the Cephalopodes

7nicroscopiques* , until Dujardin shewed that their httle bodies

comprised no complex anatomy of organs, but consisted merely

of that slime-like organic matter which he taught us to call,

"sarcode," and which we learned afterwards from Schwann to

speak of as "protoplasm."

Fig. 309. Nummulina antiquior, R. and V. (After V. von Moller.)

One striking difierence, however, is apparent between the shell

of Nautilus and the httle nautiloid or rotaUne shells of the Fora-

minifera : namely that the septa in these latter, and in all other
* Cf. D'Orbigny, Ale, Tableau methodique de la classe des Cephalopodes, Ann.

des Sci. Nat. (1), vn, pp. 245-315, 1826; Dujardin, Felix, Observations nouvelles
sur les pretendus Cephalopodes microscopiques, ibid. (2), in, pp. 108, 109, 312-315,
1835; Recherches sur les organismes inferieurs, ibid, iv, pp. 343-377, 1835, etc.
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chambered Foraminifera, are convex outwards (Fig. 308), whereas

they are concave outwards in Nautilus (Fig. 304) and in the rest

of the chambered molluscan shells. The reason is perfectly

simple. In both cases the curvature of the septum was deter-

mined before it became rigid, and at a time when it had the

properties either of a fluid film or an elastic membrane. In both

cases the actual curvature is determined by the tensions of the

membrane and the pressures to which it was exposed. Now it

is obvious that the extrinsic pressure which the tension of the

membrane has to withstand is on opposite sides in the two cases.

In Nautilus, the pressure to be resisted is that produced by the

growing body of the animal, lying to the outer side of the septum,

in the outer, wider portion of the tubular shell. In the Foraminifer

the septum at the time of its formation was no septum at all;

it was but a portion of the convex surface of a drop—that portion

namely which afterwards became overlapped and enclosed by the

succeeding drop; and the curvature of the septum is concave

towards the pressure to be resisted, which latter is inside the

septum, being simply the hydrostatic pressure of the fluid contents

of the drop. The one septum is, speaking generally, the reverse

of the other; the organism, so to speak, is outside the one and

inside the other; and in both cases ahke, the septum tends to

assume the form of a surface of minimal area, as permitted, or as

defined, by all the circumstances of the case.

The logarithmic spiral is easily recognisable in typical cases*

(and especially where the spire makes more than one visible

revolution about the pole), by its fundamental property of con-

tinued similarity : that is to say, by reason of the fact that the

big many-chambered shell is of just the same shape as the smaller

and younger shell—which phenomenon is apparent and even

obvious in the nautiloid Foraminifera, as in Nautilus itself: but

nevertheless the nature of the curve must be verified by careful

measurement, just as Moseley determined or verified it in his

* Tt is obvious that the actual outline of a foraminiferal, just as of a molluscan

shell, may depart \videl3'^ from a logarithmic spiral. When we say here, for short,

that the shell is a logarithmic spiral, we merely mean that it is essentially related

to one: that it can be inscribed in such a spiral, or that corresponding points

(such, for instance, as the centres of gravity of successive chambers, or the

extremities of successive septa) will always be found to lie upon such a spiral.
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original study of nautilus (cf. p. 518). This has accordingly been

done, by various writers : and in the first instance by Valerian

von Moller, in an elaborate study of Fusuhna—a palaeozoic genus

whose little shells have built up vast tracts of carboniferous

limestone over great part of European Russia*.

In this genus a growing surface of protoplasm may be con-

ceived as wrapping round and round a small initial chamber, in

such a way as to produce a fusiform or ellipsoidal shell—a trans-

verse section of which reveals the close-wound spiral coil. The

following are examples of measurements of the successive whorls

in a couple of species of this genus.
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86°, or just such a spiral as we commonly meet with in the

Ammonites* (cf. p. 539).

In Fusuhna, and in some few other Foraminifera (cf. Fig.

310, a), the spire seems to wind evenly on, with httle or no

external sign of the successive periods of growth, or successive

chambers of the shell. The septa which mark oif the chambers,

and correspond to retardations or cessations in the periodicity of

growth, are still to be found in sections of the shell of FusuUna;

but they are somewhat irregular and comparatively inconspicuous

;

the measurements we have just spoken of are taken without

A B

Fig. 310. A, Cornusjiira foliacea, PliiL : B, Operciilinri coin phi luiia, Defr.

reference to the segments or chambers, but only with reference

to the whorls, or in other words with direct reference to the

vectorial angle.

The hnear dimensions of successive chambers have been

* As von Moller is careful to explain, Naumann's formula for the "cyclo-

centric conchospiral " is appropriate to this and other spkal Foraminifera, since

we have in all these cases a central or initial chamber, approximately spherical,

about which the logarithmic spiral is coiled (cf. Fig. 309). In species where the

central chamber is especially large, Naumann's formula is all the more advan-

tageous. But it is plain that it is only required when we are dealing with

diameters, or with radii; so long as we are merely comparing the breadths of

successive whorls, the two formulae come to the same thing.
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measured in a number of cases. Van Iterson* has done so in

various Miliolinidae, with such results as the following:

Triloculina rotunda, d'Orb.

No. of chamber 12 3 4 5 6 7 8 9 10

Breadth of chamber in /^ — 34 45 61 84 114 142 182 246 319

Breadth of chamber m /x,

calculated — 34 45 60 79 105 140 187 243 319

Here the mean ratio of breadth of consecutive chambers may
be taken as 1-323 (that is to say, the eighth root of 319/34) ; and

the calculated values, as given above, are based on this deter-

mination.

Again, Rhumbler has measured the linear dimensions of a

number of rotahne forms, for instance Pulvinulina menardi

(Fig. 259) : in which common species he finds the mean hnear

ratio of consecutive chambers to be about 1-187. In both cases,

and especially in the latter, the ratio is not strictly constant from

chamber to chamber, but is subject to a small secondary fluctua-

tion f.

When the linear dimensions of successive chambers are in

continued proportion, then, in order that the whole shell may
constitute a logarithmic spiral, it is necessary that the several

chambers should subtend equal angles of revolulion at the pole.

In the case of the Miliolidae this is obviously the case (Fig. 311);

for in this family the chambers lie in two rows (Bilocuhna), or

three rows (Triloculina), or in some other small number of series :

so that the angles subtended by them are large, simple fractions

of the circular arc, such as 180° or 120°. In many of the nautiloid

forms, such as Cyclammina (Fig. 312), the angles subtended,

though of less magnitude, are still remarkably constant, as we

* Van Iterson, G., Mathem. u, mikrosk.-anat. Studien iiber Blattstellungen, nebst

Befrachtungen iiber den Sckalenbau der Miliolinen, 331 pp., Jena, 1907.

•f
Hans Przibram asserts that the linear ratio of successive chambers tends in

many Foraminifera to approximate to 1-26, which =^2-, in oth^r words, that

the volumes of successive chambers tend to double. This Przibram would bring

into relation with another law, viz. that insects and other arthropods tend to

moult, or to metamorphose, just when they double their weights, or increase their

linear dimensions in the ratio of 1 : ^2. (Die Kammerprogression der Foraminiferen
als ParaUele zm Hautungsprogression der Mantiden, Arch. f. Entw. Mech. xxsiv
p. 680, 1813.) Neither rule seems to me to be well grounded.

38—2
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Fig. 3]1. 1, 2, MiUolina pulchella, d'Orb. ; "8-5, M. Unnueana, d'Orb.

(After Bradv.)

Fig. 312. Gyclammina cancellata, Brady.
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may see by Fig. 313 ; where the angle subtended by each chamber

is made equal to 20°, and this diagrammatic figure is not per-

ceptibly different from the other. In some cases the subtended

angle is less constant ; and in these it would be necessary to equate

the several linear dimensions with the corresponding vector angles,

according to our equation r = e^^ota j^ ^^ probable that, by so

taking account of variations of d, such variations of r as (according

to Rhumbler's measurements) Pulvinulina and other genera

appear to shew, would be found to diminish or even to disappear.

Fig. 313. Cyclammina sp. (Diaurammatic.)

The law of increase by which each chamber bears a constant

ratio of magnitude to the next may be looked upon as a simple

consequence of the structural uniformity or homogeneity of the

organism ; we have merely to suppose (as this uniformity would

naturally lead us to do) that the rate of increase is at each instant

proportional to the whole existing mass. For if Vq, F^, etc., be

the volumes of the successive chambers, let Fj bear a constant

proportion to Vq, so that V-^ = qVQ, and let V^ bear the same
proportion to the whole pre-existing volume : then

^2 = q (Fo +V,)^q (Fo + qV,) ^ qV, (1 + q) and V^jV^ = l + q.
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This ratio of 1/(1 + q) is easily shewn to be the constant ratio

running through the whole series^ from chamber to chamber;

and if this ratio of volumes be constant, so also are the ratios

of corresponding surfaces, and of corresponding linear dimensions,

provided always that the successive increments, or successive

chambers, are similar in form.

We have still to discuss the similarity of form and the symmetry

of position which characterise the successive chambers, and which,

together with the law of continued proportionality of size, are the

distinctive characters and the indispensable conditions of a series

of "gnomons."

The minute size of the foraminiferal shell or at least of each

successive increment thereof, taken in connection with the fluid

Fig. 314. Orbulinn universa, d'Orb.

or semi-fluid nature of the protoplasmic substance, is enough to

suggest that the molecular forces, and especially the force of

surface-tension, must exercise a controlling influence over the form

of the whole structure ; and this suggestion, or behef, is already

implied in our statement that each successive increment of growing

protoplasm constitutes a separate drop. These "drops," partially

concealed by their successors, but still shewing in part their

rounded outlines, are easily recognisable in the various fora-

miniferal shells which are illustrated in this chapter.

The accompanying figure represents, to begin with, the spherical

shell characteristic of the common, floating, oceanic Orbuhna.

In the specimen illustrated, a second chamber, superadded to the
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first, has arisen as a drop of protoplasm which exuded through the

pores of the first chamber, accumulated on its surface, and spread

over the latter till it came to rest in a position of equihbrium.

We may take it that this position of equilibrium is determined,

at least in the first instance, by the "law of the constant angle,"

which holds, or tends to hold, in all cases where the free surface

of a given liquid is in contact with a given solid, in presence of

another liquid or a gas. The corresponding equations are pre-

cisely the same as those which we have used in discussing the

form of a drop (on p. 294) ; though some slight modification must

be made in our definitions, inasmuch as the consideration of

snrisice-tension is no longer appropriate at the solid surfaces, and

the concept of suvisice-energy must take its place. Be that as it

may, it is enough for us to observe that, in such a case as ours,

when a given fluid (namely protoplasm) is in surface contact with

a solid (viz. a calcareous shell), in presence of another fluid (sea-

water), then the angle of contact, or angle by which the common
surface (or interface) of the two liquids abuts against the sohd wall,

tends to be constant: and that being so, the drop will have a

certain definite form, depending {inter alia) on the form of the

surface with which it is in contact. After a period of rest, during

which the surface of our second drop becomes rigid by calcification,

a new period of growth will recur and a new drop of protoplasm

be accumulated. Circumstances remaining the same, this new
drop will meet the solid surface of the shell at the same angle as

did the former one; and, the other forces at work on the system

remaining the same, the form of the whole drop, or chamber, will

be the same as before.

According to Rhumbler, this "law of the constant angle" is

the fundamental principle in the mechanical conformation of the

foraminiferal shell, and provides for the symmetry of form as

well as of position in each succeeding drop of protoplasm : which

form and position, once acquired, become rigid and fixed with the

onset of calcification. But Rhumbler's explanation brings with

it its own difficulties. It is by no means easy of verification, for

on the very comphcated curved surfaces of the shell it seems to

me extraordinarily difficult to measure, or even to recognise, the

actual angle of contact: of which angle of contact, by the way.
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but little is known, save only in the particular case where one of

the three bodies is air, as when a surface of water is exposed to

air and in contact with glass. It is easy moreover to see that in

many of our Eoraminifera the angle of contact, though it may be

constant in homologous positions from chamber to chamber, is

by no means constant at all points along the boundary of each

chamber. In Cristellaria, for instance (Fig. 315), it would seem

to be (and Rhumbler asserts that it actually is) about 90° on the

outer side and only about 50° on the inner side of each septal

partition ; in Pulvinuhna (Fig. 259), according to Rhumbler, the

angles adjacent to the mouth are of 90°, and the opposite angles

Fig. 315. Cristellaria ^reniform is, d'Orb.

are of 60°, in each chamber. For these and other similar discre-

pancies Rhumbler would account by simply invoking the hetero-

geneity of the protoplasmic drop : that is to say, by assuming that

the protoplasm has a different composition and different properties

(including a very different distribution of surface-energy), at

points near to and remote from the mouth of the shell. Whether

the differences in angle of contact be as great as Rhumbler takes

them to be, whether marked heterogeneities of the protoplasm

occur, and whether these be enough to account for the differences

of angle, I cannot tell. But it seems to me that we had better

rest content with a general statement, and that Rhumbler has

taken too precise and narrow a view.
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In the molecular growth of a crystal, although we must of

necessity assume that each molecule settles down in a position of

minimum potential energy, we find it very hard indeed to explain

precisely, even in simple cases and after all the labours of modern

crystallographers, why this or that position is actually a place of

minimum potential. In the case of our little Foraminifer (just

as in the case of the crystal), let us then be content to assert that

each drop or bead of protoplasm takes up a position of minimum
potential energy, in relation to all the circumstances of the case;

and let us not attempt, in the present state of our knowledge, to

define that position of minimum potential by reference to angle

of contact or any other particular condition of equiUbrium. In

most cases the whole exposed surface, on some portion of which

the drop must come to rest, is an extremely complicated one, and

the forces involved constitute a system which, in its entirety, is

more complicated still; but from the symmetry of the case and

the continuity of the whole phenomenon, we are entitled to believe

that the conditions are just the same, or very nearly the same,

time after time, from one chamber to another : as the one chamber

is conformed so will the next tend to be, and as the one is situated

relatively to the system so will its successor tend to be situated in

turn. The physical law of minimum potential (including also the

law of minimal area) is all that we need in order to explain, in

general terms, the continued similarity of one chamber to another

;

and the physiological law of growth, by which a continued pro-

portionality of size tends to run through the series of successive

chambers, impresses upon this series of similar increments the

form of a logarithmic spiral.

In each particular case the nature of the logarithmic spiral,

as defined by its constant angle, will be chiefly determined by

the rate of growth ; that is to say by the particular ratio in which

each new chamber exceeds its predecessor in magnitude. But

shells having the same constant angle. (a) may still differ from one

another in many ways—in the general form and relative position

of the chambers, in their extent of overlap, and hence in the actual

contour and appearance of the shell; and these variations must

correspond to particular distributions of energy within the system,

which is governed as a whole by the law of minimum potential.
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Our problem, then, becomes reduced to that of investigating

the possible configurations which may be derived from the succes-

sive symmetrical apposition of similar bodies whose magnitudes

are in continued proportion ; and it is obvious, mathematically

speaking, that the various possible arrangements all come under

the head of the logarithmic spiral, together with the limiting cases

which it includes. Since the difference between one such form

and another depends upon the numerical value of certain

coefiicients of magnitude, it is plain that any one must tend to

pass into any other by small and continuous gradations ; in

other words, that a classification of these forms must (like any

classification whatsoever of logarithmic spirals or of any other

mathematical curves), be theoretic or "artificial." But we may
easily make such an artificial classification, and shall probably

find it to agree, more or less, with the usual methods of classification

recognised by biological students of the Foraminifera.

Firstly we have the typically spiral shells, which occur in

great variety, and which (for our present purpose) we need hardly

describe further. We may merely notice how in certain cases,

for instance Globigerina, the individual chambers are httle removed

from spheres; in other words, the area of contact between the

adjacent chambers is small. In such forms as Cyclammina and

Pulvinuhna, on the other hand, each chamber is greatly over-

lapped by its successor, and the spherical form of each is lost in

a marked asymmetry. Furthermore, in Globigerina and some

others we have a tendency to the development of a helicoid spiral

in space, as in so many of our univalve molluscan shells. The

mathematical problem of how a shell should grow, under the

assumptions which we have made, would probably find its most

general statement in such a case as that of Globigerina, where the

whole organism fives and grows freely poised in a medium whose

density is little different from its own.

The majority of spiral forms, on the other hand, are plane

or discoid spirals, and we may take it that in these cases some

force has exercised a controlUng influence, so as to keep all the

chambers in a plane. This is especially the case in forms like

Rotaha or Discorbina (Fig. 316), where the organism lives attached

to a rock or a frond of sea-weed ; for here (just as in the case of
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the coiled tubes which httle worms such as Serpula and Spirorbis

make^ under similar conditions) the spiral disc is itself asymmetrical,

its whorls being markedly flattened on their attached surfaces.

Fiff. 31G. Discorhitia bertheloti, d'Orb.

We may also conceive, among other conditions, the very

curious case in which the protoplasm may entirely overspread the

surface of the shell without reaching a position of equihbrium;

in which case a new shell will be formed enclosing the old one,
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whether the old one be in the form of a single, solitary chamber,

or have already attained to the form of a chambered or spiral

shell. This is precisely what often happens in the case of Orbuhna,

when within the spherical shell we find a small, but perfectly

formed, spiral "Globigerina*."

The various Miholidae (Fig. 311), only differ from the typical

spiral, or rotaline forms, in the large angle subtended by each

chamber, and the consequent abruptness of their inchnation to

each other. In these cases the outward appearance of a spiral

tends to be lost ; and it behoves us to recollect, all the more,

that our spiral curve is not necessarily identical with the outline

A B

Fig. 317. A, Tertularia trochus, d'Orb. B, T. concava, Karrer.

of the shell, but is always a line drawn through corresponding

points in the successive chambers of the latter.

We reach a limiting case of the logarithmic spiral when the

chambers are arranged in a straight line; and the eye will tend

to associate with this hmiting case the much more numerous forms

in which the spiral angle is small, and the shell only exhibits a

gentle curve with no succession of enveloping whorls. This

constitutes the Nodosarian type (Fig. 87, p. 262) ; and here again,

we must postulate some force which has tended to keep the

chambers in a rectihnear series : such for instance as gravity,

acting on a system of "hanging drops."

* Cf. Schacko, G., Ueber Globigerina -Einsohluss bei "Orbiilina, Wiegmaniv's

Archio, XLix, p. 428, 1883; Brady, Chall. Rep., p. 607, 1884.



xiij OF THE FORAMINIFERA 605

In Textularia and its allies (Fig. 317), we have a precise

parallel to the hehcoid cj-me of the botanists (cf. p. 502): that

is to say we have a screw translation, perpendicular to the plane

of the underlying logarithmic spiral. In other words, in tracing

a genetic spiral through the whole succession of chambers, we do

so by a continuous vector rotation, through successive angles of

180° (or 120° in some cases), while the pole moves along an axis

perpendicular to the original plane of the spiral.

Another type is furnished by the "cyclic" shells of the

Orbitolitidae, where small and numerous chambers tend to be

added on round and round the system, so building up a circular

flattened disc. This again we perceive to be, mathematically, a

limiting case of the logarithmic spiral, where the spiral has become

a circle and the constant angle is now an angle of 90°.

Lastly there are a certain number of Foraminifera in which,

without more ado, we may simply say that the arrangement of

the chambers is irregular, neither the law of constant ratio of

magnitude nor that of constant form being obeyed. The chambers

are heaped pell-mell upon one another, and such forms are known
to naturaUsts as the Acervularidae.

While in these last w^e have an extreme lack of regularity, we
must not exaggerate the regularity or constancy which the more
ordinary forms display. We may think it hard to beheve that

the simple causes, or simple laws, which we have described should

operate, and operate again and again, in millions of individuals to

produce the same delicate and complex conformations. But we
are taking a good deal for granted if we assert that they do so,

and in particular we are assuming, with very httle proof, the

"constancy of species" in this group of animals. Just as Verworn
has shewn that the typical Amoeba proteus, when a trace of alkah

is added to the water in which it lives, tends, by alteration of

surface tensions, to protrude the more dehcate pseudopodia

characteristic of A. radiosa,—and again when the water is rendered

a httle more alkahne, to turn apparently into the so-called A.

Umax,—so it is evident that a very slight modification in ,the

surface-energies concerned, might tend to turn one so-called

species into another among the Foraminifera. To what extent

this process actually occurs, we do not know.
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But that this, or something of the kind, does actually occur

we can scarcely doubt. For example in the genus Penerophs, the

first portion of the shell consists of a series of chambers arranged

in a spiral or nautiloid series; but as age advances the spiral is

apt to be modified in various ways*. Sometimes the successive

chambers grow rapidly broader, the whole shell becoming fan-

shaped. Sometimes the chambers become narrower, till they no

longer enfold the earher chambers but only come in contact each

with its immediate predecessor: the result being that the shell

straightens out, and (taking into account the earher spiral portion)

may be described as crozier-shaped. Between these extremes of

shape, and in regard to other variations of thickness or thinness,

roughness or smoothness, and so on, there are innumerable

gradations passing one into another and intermixed without regard

to geographical distribution :
—

" wherever Penerophdes abound

this wide variation exists, and nothing can be more easy than to

pick out a number of striking specimens and give to each a dis-

tinctive name, but in no other way can they be divided into

' species.^ "f'^ Some writers have wondered at the pecuhar

variabihty of this particular shell % ; but for all we know of the

hfe-history of the Foraminifera, it may well be that a great

number of the other forms which we distinguish as separate species

and even genera are no more than temporary manifestations of

the same variability §

.

* Cf. Brady, H. B., Chollenger Rep., Foraminifera, 1884, p. 20.3, pi. xm.
t Brady, op. cit., p. 20G; Batsch, one of the earliest writers on Foraminifera,

had already noticed that this whole series of ear-shaped and crozier-shaped shells

was filled in by gradational forms; Conchylien des Seesamles, 1791, p. 4, pi. vi,

fig. 15 a-f. See also, in particular, Dreyer, Peneroplis; eine Studie zur biologischen

Morphologic und zur Speciesfrage, Leipzig, 1898 ; also Eimer und Fickert, Artbildung

und Verwandschaft bei den Foraminiferen, Tnbinger tool. Arbeiten, ni, j). .35,

1899.

J Doflein, Profozoenhnide, 1911. p. 263; "Was diese Art veranlasst in dieser

Weise gelegentlich zu variiren, ist voi'laufig nocli ganz rathselhaft."

§ In the case of Globigerina, some fourteen species (out of a very much larger

number of described forms) were allowed by Brady (in 1884) to be distinct; and

this list has been, I believe, leather added to than diminished. But these so-called

species depend for the most part on slight differences of degree, differences in the

angle of the spiral, in the ratio of magnitude of the segments, or in their area of

contact one with another. Moreover with the exception of one or two "dwarf"

forms, said to be limited to Arctic and Antarctic waters, there is no principle of

geographical distribution to be discerned amongst them. A species foimd fossil
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Conclusion.

If we can comprehend and interpret on some such lines as

these the form and mode of growth of the foraminiferal shell, we
may also begin to understand two striking features of the group,

namely, on the one hand the large number of diverse types or

families which exist and the large number of species and varieties

within each, and on the other the persistence of forms which in

many cases seem to have undergone Uttle change or none at all

from the Cretaceous or even from earlier periods to the present

day. In few^ other groups, perhaps only among the Radiolaria,

do we seem to possess so nearly complete a picture of all possible

transitions between form and form, and of the whole branching

system of the evolutionary tree : as though little or nothing of it

had ever perished, and the whole web of life, past and present,

were as complete as ever. It leads one to imagine that these

shells have grown according to laws so simple, so much in h9,rmony

with their material, with their environment, and with all the

forces internal and external to which they are exposed, that none

is better than another and none fitter or less fit to survive. It

invites one also to contemplate the possibility of the lines of

possible variation being here so narrow and determinate that

identical forms may have come independently into being again

and again. .

While we can trace in the most complete and beautiful manner

the passage of one form into another among these Uttle shells,

and ascribe them all at last (if we please) to a series which starts

with the simple sphere of Orbulina or with the amoeboid body of

Astrorhiza, the question stares us in the face whether this be an

"evolution" which we have any right to correlate with historic

time. The mathematician can trace one conic section into

another, and "evolve" for example, through innumerable graded

ellipses, the circle from the straight line: which tracing of con-

tinuous steps is a true "evolution," though time has no part

therein. It was after this fashion that Hegel, and for that matter

Aristotle himself, was an evolutionist—to whom evolution was

in New Britain turns up in the North Atlantic : a species described from the West
Indies is rediscovered at the ice-barrier- of the Antarctic.
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a mental concept, involving order and continuity in thought, but

not an actual sequence of events in time. Such a conception of

evolution is not easy for the modern biologist to grasp, and harder

still to appreciate. And so it is that even those who, like Dreyer*

and like Rhumbler, study the foraminiferal shell as a physical

system, who recognise that its whole plan and mode of growth is

closely akin to the phenomena exhibited by fluid drops under

particular conditions, and who explain the conformation of the

shell by help of the same physical principles and mathematical

laws—yet all the while abate no jot or tittle of the ordinary

postulates of modern biology, nor doubt the validity and universal

applicability of the concepts of Darwinian evolution. For these

writers the biogenetisches Grundgesetz remains impregnable. The

Foraminifera remain for them a great family tree, whose actual

pedigree is traceable to the remotest ages ; in which historical

evolution has coincided with progressive change; and in which

structi^ral fitness for a particular function (or functions) has

exercised its selective action and ensured "the survival of the

fittest." By successive stages of historic evolution we are supposed

to pass from the irregular Astrorhiza to a Rhabdammina with its

more concentrated disc ; to the forms of the same genus which

consist of but a single tube with central chamber ; to those where

this chamber is more and more distinctly segmented; so to the

typical many-chambered Nodosariae; and from these, by another

definite advance and later evolution to the spiral Trochamminae.

After this fashion, throughout the whole varied series of the

Foraminifera, Dreyer and Rhumbler (following Neumayr) recog-

nise so many successions of related forms, one passing into another,

and standing towards it in a definite relationship of ancestry or

descent. Each evolution of form, from simpler to more complex,

is deemed to have been attended by an advantage to the

organism, an enhancement of its chances of survival or perpetua-

tion; hence the historically older forms are, on the whole,

structurally the simpler; or conversely the simpler forms, such

as the simple sphere, were the first to come into being in prim-

eval seas; and finally, the gradual development and increasing

* Dreyer, F., Principien der Geriistbildung bei Rhizojioden, etc., Je7i. Zcihchr.

xxvT, pp. 204-468, 1892.



XII] OF THE FORAMINIFERA 609

complication of the individual within its own Ufetime is held to

be at least a partial recapitulation of the unknown history of

its race and dynasty*.

We encounter many difficulties when we try to extend such

concepts as these to the Foraminifera. We are led for instance

to assert, as Ehumbler does, that the increasing complexity of the

shell, and of the manner in which one chamber is fitted on another,

makes for advantage; and the particular advantage on which

Rhumbler rests his argument is strength. Increase of strength, die

Festigkeitssteigerung, is according to him the guiding principle in

foraminiferal evolution, and marks the historic stages of their

development in geologic time. But in days gone by I used to

see the beach of a little Connemara bay bestrewn with milhons

upon milhons of foraminiferal shells, simple Lagenae, less simple

Nodosariae, more complex Rotahae: all drifted by wave and

gentle current from their sea-cradle to their sandy grave: all

lying bleached and dead : one more delicate than another, but all

(or vast multitudes of them) perfect and unbroken. And so I

am not inchned to beheve that niceties of form affect the case

very much : nor in general that foraminiferal life involves a

struggle for existence wherein breakage is a constant danger to

be averted, and increased strength an advantage to be ensured f.

In the course of the same argument Rhumbler remarks that

Foraminifera are absent from the coarse sands and gravels J, as

Williamson indeed had observed many years ago : so averting, or

* A difficulty arises in the case oi forms (like Peneroplis) where the young shell

appears to be more complex than the old, the first formed portion being closely

coiled while the later additions become straight and simple: "die biformen Arten

verhalten sich, km:z gesagt, gerade umgekehrt als man nach dem biogenetischen

Grundgesetz erwarten sollte," Rhumbler, op. ciL, p. 3.3 etc.

t "Das Festigkeitaprinzip als Movens der Weiterentwicklung ist zu interessant

und fiir die Aufstellung meines Systems zu wichtig um die Frage unerortert zu
lassen, warum diese Bevorziigimg der Festigkeit stattgefunden hat. Meiner

Ansicht nach lautet die Antwort auf diese Frage einfach, weil die Foraminiferen

meistens unter Verhaltnissen leben, die ihre Schalen in hohem Grade der Gefahr

des Zerbrechens aussetzen; es muss also eine fortwahrende Auslese des Festeren

stattfinden," Rhumbler, op. cit., p. 22.

J "Die Foraminiferen kiesige oder grobsandige Gebiete des Meeresbodens

nicht lieben, u.s.w. ": where the last two words have no particular meaning, save

only that (as M. Aurelius says) "of things that use to be, we say commonly that

they love to be.'.'

T. G. 39
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at least escaping, the dangers of concussion. But this is after

all a very simple matter of mechanical analysis. The coarseness

or fineness of the sediment on the sea-bottom is a measure of the

current : where the current is strong the larger stones are washed

clean, where there is perfect stillness the finest mud settles down

;

and the hght, fragile shells of the Foraminifera find their appro-

priate place, hke every other graded sediment, in this spontaneous

order of hxiviation.

The theorem of Organic Evolution is one thing; the problem

of deciphering the fines of evolution, the order of phylogeny, the

degrees of relationship and consanguinity, is quite another. Among
the higher organisms we arrive at conclusions regarding these

things by weighing much circumstantial evidence, by dealing with

the resultant of many variations, and by considering the probabifity

or improbabihty of many coincidences of cause and effect; but

even then our conclusions are at best uncertain, our judgments

are continually open to revision and subject to appeal, and all

the proof and confirmation we can ever have is that which comes

from the direct, but fragmentary evidence of palaeontology*.

But in so far as forms can be shewn to depend on the play of

physical forces, and the variations of form to be directly due to

simple quantitative variations in these, just so far are we thrown

back on our guard before the biological conception of consan-

guinity, and compelled to revise the vague canons which connect

classification with phylogeny.

The physicist explains in terms of the properties of matter,

and classifies according to a mathematical analysis, all the drops

and forms of drops and associations of drops, all the kinds of

froth and foam, which he may discover among inanimate things

;

and his task ends there. But when such forms, such conformations

and configurations, occur among living things, then at once the

biologist introduces his concepts of heredity, of historical evolution,

of succession in time, of recapitulation of remote ancestry in

individual growth, of common origin (unless contradicted by

direct evidence) of similar forms remotely separated by geo-

graphic space or geologic time, of fitness for a function, of

* In regard to the Foraminifera, "die Paiaeontologie lasst uns leider an Anfang

dej Stammesgeschichte fast ganzlich im Stiche," Rhumbler, op. cii., p. 14.
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adaptation to an environment, of higher and lower, of "better"

and "worse." This is the fundamental difference between the
" ex;planations " of the physicist and those of the biologist.

In the order of physical and mathematical complexity there is

no question of the sequence of historic time. The forces that

bring about the sphere, the cylinder or the elhpsoid are the same

yesterday and to-morrow. A snow-crystal is the same to-day as

when the first snows fell. The physical forces which mould the

forms of Orbuhna, of Astrorhiza, of Lagena or of Nodosaria to-day

were still the same, and for aught we have reason to beheve the

physical conditions under which they worked were not appreciably

different, in that yesterday which we call the Cretaceous epoch;

or, for aught we know, throughout all that duration of time which

is marked, but not measured, by the geological record.

In a word, the minuteness of our organism brings its conforma-

tion as a whole within the range of the molecular forces; the

laws of its growth and form appear to he on simple lines ; what

Bergson calls* the "ideal kinship" is plain and certain, but the

"material affihation" is problematic and obscure; and, in the

end and upshot, it seems to me by no means certain that the

biologist's usual mode of reasoning is appropriate to the case, or

that the concept of continuous historical evolution must necessarily,

or may safely and legitimately, be employed.

* The evolutionist theory, as Bergson puts it, "consists above all in establishing

relations of ideal kinship, and in maintaining that wherever there is this relation of,

so to speak, logical affiliation between forms, there is also a relation of chronological

succession between the species in which these forms are materialised'" : Creative

Evolution, 1911, p. 26. Cf. supra, p. 251.

39—2



CHAPTER XIII

THE SHAPES OF HORNS, AND OF TEETH OR TUSKS:

WITH A NOTE ON TORSION

We have had so much to say on the subject of shell-spirals

that we must deal briefly with the analogous problems which are

presented by the horns of sheep, goats, antelopes and other

horned quadrupeds; and all the more, because these horn-spirals

are on the whole less symmetrical, less easy of measurement than

those of the shell, and in other ways also are less easy of investi-

gation. Let us dispense altogether in this case with mathematics

;

and be content with a very simple account of the configuration

of a horn.

There are three types of horn which deserve separate con-

sideration: firstly, the horn of the rhinoceros; secondly the

horns of the sheep, the goat, the ox or the antelope, that is to say,

of the so-called hollow-horned ruminants; and thirdly, the solid

bony horns, or "antlers," which are characteristic of the deer.

The horn of the rhinoceros presents no difficulty. It is

physiologically equivalent to a mass of consolidated hairs, and,

like ordinary hair, it consists of non-living or "formed" material,

continually added to by the living tissues at its base. In section,

that is to say in the form of its "generating curve," the horn is

approximately elliptical, with the long axis fore-and-aft, or, in

some species, nearly circular. Its longitudinal growth proceeds

with a maximum velocity anteriorly, and a minimum posteriorly

;

and the ratio of these velocities being constant, the horn curves

into the form of a logarithmic spiral in the manner that we have

already studied. The spiral is of small angle, but in the longer-

horned species, such as the great white rhinoceros (Ceratorhinus),

the spiral form is distinctly to be recognised. As the horn
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occupies a median position on the head,—a position, that is to say,

of symmetry in respect to the field of force on either side,—there

is no tendency towards a lateral twist, and the horn accordingly

develops as a flane logarithmic spiral. When two horns coexist,

the hinder one is much the smaller of the two : which is as much

as to say that the force, or rate, of growth diminishes as we pass

backwards, just as it does within the limits of the single horn.

And accordingly, while both horns have essentially the same

shape, the spiral curvature is less manifest in the second one,

simply by reason of its comparative shortness.

The paired horns of the ordinary hollow-horned ruminants,

such as the sheep or the goat, grow under conditions which are

in some respects similar, but which differ in other and important

respects from the conditions under which the horn grows in the

rhinoceros. As regards its structure, the entire horn now consists

of a bony core with a covering of skin; the inner, or dermal,

layer of the latter is richly supplied with nutrient blood-vessels,

while the outer layer, or epidermis, develops the fibrous or

chitinous material, chemically and morphologically akin to a

mass of cemented or consolidated hairs, which constitutes the

"sheath" of the horn. A zone of active growth at the base of

the horn keeps adding to this sheath, ring by ring, and the specific

form of this annular zone is, accordingly, that of the "generating

curve" of the horn. Each horn no longer lies, as it does in the

rhinoceros, in the plane of symmetry of the animal of which it

forms a part; and the limited field of force concerned in the

genesis and growth of the horn is bound, accordingly, to be more

or less laterally asymmetrical. But the two horns are in sym-

metry one with another; they form "conjugate" spirals, one

being the "mirror-image" of the other. Just as in the hairy coat

of the animal each hair, on either side of the median "parting,"

tends to have a certain definite direction of its own axis, inclined

away from the median axial plane of the whole system, so is it

both with the bony core of the horn and with the consolidated

mass of hairs or hair-like substance which constitutes its sheath;

the primary axis of the horn is more or less inclined to, and may
even be nearly perpendicular to, the axial plane of the animal.

The growth of the hornv sheath is not continuous, but more or
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less definitely periodic : sometimes, as in the sheep, this periodicity

is particularly well-marked, and causes the horny sheath to be

composed of a series of all but separate rings, which are supposed

to be formed year by year, and so to record the age of the animal*.

Just as we sought for the true generating curve in the orifice,

or "lip," of the molluscan shell, so we might be apt to assume

that in the spiral horn the generating curve corresponded to the

lip or margin of one of the horny rings or annuli. This annular

margin, or boundary of the ring, is usually a sinuous curve, not

lying in a plane, but such as would form the boundary of an

anticlastic surface of great complexity : to the meaning and origin

of which phenomenon we shall return presently. But, as we have

already seen in the case of the molluscan shell, the complexities

of the lip itself, or of the corresponding lines of growth upon the

shell, need not concern us in our study of the development of the

spiral : inasmuch as we may substitute for these actual boundary

lines, their "trace," or projection on a plane perpendicular to the

axis—in other words the simple outline of a transverse section

of the whorl. In the horn, this transverse section is often circular

or nearly so, as in the oxen and many antelopes : it now and then

becomes of somewhat complicated polygonal outline, as in a

highland ram ; but in many antelopes, and in most of the sheep,

the outline is that of an isosceles, or sometimes nearly equilateral

triangle, a form which is typically displayed, for instance, in

Ovis Amnion. The horn in this latter case is a trihedral prism,

whose three faces are, (1) an upper, or frontal face, in continuation

of the plane of the frontal bone
; (2) an outer, or orbital, starting

from the upper margin of the orbit ; and (3) an inner, or "nuchal,"

abutting on the parietal bonef. Along these three faces, and

their corresponding angles or edges, we can trace in the fibrous

substance of the horn a series of homologous spirals, such as we

* In the case of the ram's horn, the assumption that the rings are annual is

probably justified. In cattle they are much less conspicuous, but are sometimes

well-marked in the cow; and in Sweden they are then called "caK-rings," from

a belief that they record the number of offspring. That is to say, the growth of

the horn is supposed to be retarded during gestation, and to be accelerated after

parturition, when superfluous nourishment seeks a new outlet. (Cf. Lonnberg,

P.Z.S., p. 689, 1900.)

t Cf. Sir V. Brooke, On the Large Sheep of the Thian Shan, P.Z.8., p. 511, 1875.
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have called in a preceding chapter the ^'ensemble of generating

spirals" which constitute the surface.

In some few cases, of which the male musk ox is one of the

most notable, the horn is not developed in a continuous spiral

curve. It changes its shape as growth proceeds; and this, as

we have seen, is enough to show that it does not constitute a

logarithmic spiral. The reason is that the bony exostoses, or

horn-cores, about which the horny sheath is shaped and moulded,

neither grow continuously nor even remain of constant size after

attaining their full growth. But as the horns grow heavy the

bony core is bent downwards by their weight, and so guides the

Fig. 318. Diagram of Ram's horns. (After Sir Vincent Brooke, from

P.Z.S.) a, frontal; b, orbital; c, nuchal surface.

growth of the horn in a new direction. Moreover as age advances,

the horn-core is further weakened and to a great extent absorbed

:

and the horny sheath or horn proper, deprived of its support,

continues to grow, but in a flattened curve very different from

its original spiral*. The chamois is a somewhat analogous case.

Here the terminal, or oldest, part of the horn is curved ; it tends

to assume a spiral form, though from its comparative shortness

it seems merely to be bent into a hook. But later on, the bony

core within, as it grows and strengthens, stiffens the horn, and

guides it into a straighter course or form. The same phenomenon

* Cf. Lonnberg, E., On the Structure of the Musk Ox, P.Z.S. , pp. 686-718,

1900.
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of change of curvature, manifesting itself at the time when, or

the place where, the horn is freed from the support of the internal

core, is seen in a good many other antelopes (such as the hartebeest)

and in many buffaloes; and the cases where it is most manifest

appear to be those where the bony core is relatively short, or

relatively weak.

Fig. 319. Head of Arabian Wild Goat, Ca.'pra sinaitica. (After

Sclater, from P.Z.S.)

But in the great majority of horns, we have -no difficulty in

recognising a continuous logarithmic spiral, nor in referring it, as

before, to an unequal rate of growth (parallel to the axis) on two

opposite sides of the horn, the inequality maintaining a constant

ratio as long as growth proceeds. In certain antelopes, such as

the gemsbok, the spiral angle is very small, or in other words

the horn is very nearly straight; in other species of the same

genus Oryx, such as the Beisa antelope and the Leucoryx, a gentle
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curve (not unlike though generally less than that of a Dentalium

shell) is evident; and the spiral angle, according to the few

measurements I have made, is found to measure from about

20° to nearly 40°. In some of the large wild goats, such as the

Scinde wild goat, we have a beautiful logarithmic spiral, with a

constant angle of rather less than 70°
; and we may easily arrange

a series of forms, such for example as the Siberian ibex, the

moufflon. Ovis Ammon, etc., and ending with the long-horned

Highland ram : in which, as we pass from one to another, we

recognise precisely homologous spirals, with an increasing angular

constant, the spiral angle being, for instance, about 75° or rather

less in Ovis Ammon, and in the Highland ram a very little more.

We have already seen that in the neighbourhood of 70° or 80°

a small change of angle makes a marked difference in the appear-

ance of the spire ; and we know also that the actual length of the

horn makes a very striking difference, for the spiral becomes

especially conspicuous to the eye when a horn or shell is long

enough to shew several whorls, or at least a considerable part of

one entire whorl.

Even in the simplest cases, such as the wild goats, the spiral

is never (strictly speaking) a plane or discoid spiral : but in

greater or less degree there is always superposed upon the plane

logarithmic spiral a helical spiral in space. Sometimes the latter

is scarcely apparent, for the helical curvature is comparatively

small, and the horn (though long, as in the said wild goats) is not

nearly long enough to shew a complete convolution : at other

times, as in the ram, and still better in many antelopes, such as

the koodoo, the helicoid or corkscrew curve of the horn is its

most characteristic feature.

Accordingly we may study, as in the molluscan shell, the

helicoid component of the spire—in other words the variation in

what we have called (on p. 555) the angle 6. This factor it is

which, more than the constant angle of the logarithmic spiral,

imparts a characteristic appearance to the various species of

sheep, for instance to the various closely allied species of Asiatic

wild sheep, or Argali. In all of these the constant angle of the

logarithmic spiral is very much the same, but the shearing com-

ponent differs greatly. And thus the long drawn out horns of
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Ovis Poll, four feet or more from tip to tip, differ conspicuously

from those of Ovis Amnion or 0. hodgsoni, in which a very similar

logarithmic spiral is wound (as it were) round a much blunter cone.

The ram's horn then, like the snail's shell, is a curve of double

curvature, in which one component has imposed upon the structure

a plane logarithmic spiral, and the other has produced a continuous

displacement, or "shear," proportionate in magnitude to, and

perpendicular or otherwise inclined in direction to, the axis of

the former spiral curvature. The result is precisely analogous to

that which we have studied in the snail and other spiral univalves

;

but while the form, and therefore the resultant forces, are similar,

the original distribution of force is not the same : for we have not

here, as we had in the snail-shell, a "columellar" muscle, to

introduce the component acting in the direction of the axis. We
have, it is true, the central bony core, which in part performs an

analogous function ; but the main phenomenon here is apparently

a complex distribution of rates of growth, perpendicular to the

plane of the generating curve.

Let us continue to dispense with mathematics, for the mathe-

matical treatment of a curve of double curvature is never very

simple, and let us deal with the matter by experiment. We have

seen that the generating curve, or transverse section, of a typical

ram's horn is triangular in form. Measuring (along the curve of

the horn) the length of the three edges of the trihedral structure

in a specimen of Ovis Ammon, and calling them respectively the

outer, inner, and hinder edges (from their position at the base of

the horn, relatively to the skull), I find the outer edge to measure

80 cm., the inner 74 cm., and the posterior 45 cm. ; let us say

that, roughly, they are in the ratio of 9 : 8 : 5. Then, if we make

a number of little cardboard triangles, equip each with three little

legs (I make them of cork), whose relative lengths are as 9 : 8 : 5,

and pile them up and stick them all together, we straightway

build up a curve of double curvature precisely analogous to the

ram's horn : except only that, in this first approximation, we have

not allowed for the gradual increment (or decrement) of the

triangular surfaces, that is to say, for the tapering of the horn

due to the growth in its own plane of the generating curve.
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In this case then, and in most other trihedral or three-sided

horns, one of the three components, or three unequal velocities of

growth, is of relatively small magnitude, but the other two are

nearly equal one to the other. It would involve but little change

for these latter to become precisely equal ; and again but little to

turn the balance of inequality the other way. But the immediate

consequence of this altered ratio of growth would be that the

horn would appear to wind the other way, as it does in the

antelopes, and also in certain goats, e.g. the markhor, Gapm
falconeri.

For these two opposite directions of twist Dr Wherry has introduced a

convenient nomenclature. When the horn winds so that we follow it frem

base to apex in the direction of the hands of a watch, it is customary to call

it a "'left-handed" spiral. Such a spiral we have in the horn on the left-hand

side of a ram's ?iead. Accordingly, Dr Wherry calls the condition homonymovs,

where, as in the sheep, a right-handed spiral is on the right side of the head,

and a left-handed spiral on the left side ; while he calls the opposite condition

heteronymous, as we have it in the antelopes, where the right-handed twist

is on the left side of the head, and the left-handed twist on the right-hand side.

Among the goats, we may have either condition. Thus the domestic and

most of the wild goats agree with the sheep ; but in the markhor the twisted

horns are heteronymous, as in the antelopes. The difference, as we have

seen, is easily explained ; and (very much as in the case of our opposite spirals

in the apple-snail, referred to on p. 560), it has no very deep importance.

Summarised then, in a very few words, the argument by which

we account for the spiral conformation of the horn is as follows

:

The horn elongates by dint of continual growth within a narrow

zone, or annulus, at its base. If the rate of growth be identical

on all sides of this zone, the horn will grow straight; if it be

greater on one side than on the other, the horn will become curved :

and it probably ivill be greater on one side than on the other,

because each single horn occupies an unsymmetrical field with

reference to the plane of symmetry of the animal. If the maximal

and minimal velocities of growth be precisely at opposite sides

of the zone of growth, the resultant spiral will be a plane spiral

;

but if they be not precisely or diametrically opposite, then the

spiral will be a spiral in space, with a winding or hehcal com-

ponent; and it is by no means hkely that the maximum and

minimum will occur at precisely opposite ends of a diameter, for
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no such plane of symmetry is manifested in the field of force to

which the growdng annulus corresponds or appertains.

Now we must carefully remember that the rates of growth of

which we are here speaking are the net rates of longitudinal

increment, in which increment the activity of the living cells in

the zone of growth at the base of the horn is only one (though it

is the fundamental) factor. In other words, if the horny sheath

were continually being added to with equal rapidity all round its

zone of active growth, but at the same time had its elongation

more retarded on one side than the other (prior to its complete

solidification) by varying degrees of adhesion or membranous

attachment to the bone core within, then the net result would be

a spiral curve precisely such as would have arisen from initial

inequalities in the rate of growth itself. It seems highly probable

that this is a very important factor, and sometimes even the

chief factor in the case. The same phenomenon of attachment to

the bony core, and the consequent friction or retardation with

which the sheath slides over its surface, will lead to various

subsidiary phenomena : among others to the presence of transverse

folds or corrugations upon the horn, and to their unequal distribu-

tion upon its several faces or edges. And while it is perfectly true

that nearly all the characters of the horn can be accounted

for by unequal velocities of longitudinal growth upon its different

sides, it is also plain that the actual field of force is a very compli-

cated one indeed. For example, we can easily see that (at least

in the great majority of cases) the direction of growth of the

horny fibres of the sheath is by no means parallel to the axis of

the core within; accordingly these fibres will tend to wind in a

system of helicoid curves around the core, and not only this

helicoid twist but any other tendency to spiral curvature on the

part of the sheath will tend to be opposed or modified by the

resistance of the core within. But on the other hand living bone

is a very plastic structure, and yields easily though slowly to any

forces tending to its deformation ; and so, to a considerable

extent, the bony cpre itself will tend to be modelled by the curva-

ture which the growing sheath assumes, and the final result will

be determined by an equilibrium between these two systems of

forces.
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While it is not very safe, perhaps, to lay down any general

rule as to what horns are more, and what are less spirally curved,

I think it may be said that, on the whole, the thicker the horn,

the greater is its spiral curvature. It is the slender horns, of such

forms as the Beisa antelope, which are gently curved, and it is

the robust horns of goats or of sheep in which the curvature is

more pronounced. Other things being the same, this is what we

should expect to find; for it is where the transverse section of

the horn is large that we may expect to find the more marked

differences in the intensity of the field of force, whether of active

growth or of retardation, on opposite sides or in different sectors

thereof.

Fig. 320. Head of Ovis Ammon, shewing St Venant's curves.

But there is yet another and a very remarkable phenomenon
which we may discern in the growth of a horn, when it takes the

form of a curve of double curvature, namely, an effect of torsional

strain; and this it is which gives rise to the sinuous "lines of

growth," or sinuous boundaries of the separate horny rings, of

which we have already spoken. It is not at first sight obvious

that a mechanical strain of torsion is necessarily involved in the

growth of the horn. In our experimental illustration (p. 618), we
built up a twisted coil of separate elements, and no torsional

strain attended the development of the system. So would it

be if the horny sheath grew by successive annular increments,

free save for their relation to one another, and having no attach-

ment to the solid core within. But as a matter of fact there is
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such an attachment, by subcutaneous connective tissue, to the

bony core; and accordingly a torsional strain will be set up in

the growing horny sheath, again provided that the forces of growth

therein be directed more or less obliquely to the axis of the core

;

for a "couple" is thus introduced, giving rise to a strain which

the sheath would not experience were it free (so to speak) to slip

along, impelled only by the pressure of its own growth from below.

And furthermore, the successive small increments of the growing

horn (that is to say, of the horny sheath) are not instantaneously

converted from living to solid and rigid substance; but there is

an intermediate stage, probably long-continued, during which

the new-formed horny substance in the neighbourhood of the zone

of active growth is still plastic and capable of deformation.

Now we know, from the celebrated experiments of St Venant*,

that in the torsion of an elastic body, other than a cylinder of

circular section, a very remarkable state of strain is introduced.

If the body be thus cylindrical (whether solid or hollow), then a

twist leaves each circular section unchanged, in dimensions and

in figure. But in all other cases, such as an elliptic rod or a

prism of any particular sectional form, forces are introduced which

act parallel to the axis of the structure, and which warp each

section into a complex anticlastic surface. Thus in the case of a

triangular and equilateral prism, such as is shewn in section in

Fig. 321, if the part of the rod represented in the section be twisted

by a force acting in the direction of the arrow, then the originally

plane section will be warped as indicated in the diagram :—where

the full contour-lines represent elevation above, and the dotted

lines represent depression below, the original level. On the

external surface of the prism, then, contour-lines which were

originally parallel and horizontal, will be found warped into sinuous

curves, such that, on each of the three faces, the curve will be

convex upwards on one half, and concave upwards on the other

half of the face. The ram's horn, and still better that of Ovis

Ammon, is comparable to such a prism, save that in section it

is not quite equilateral, and that its three faces are not plane.

The warping is therefore not precisely identical on the three faces

* St Venant, De la torsion des prismes, avec des considerations sur leiir flexion,

etc., Mp'm. des Savants Strangers, Paris, xrv, pp. 233-560, 1856.
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of the horn; but, in the general distribution of the curves, it is

in complete accordance with theory. Similar anticlastic curves

are well seen in many antelopes; but they are conspicuous by
their absence in the cylindrical horns of oxen.

The better to illustrate this phenomenon, the nature of which

is indeed obvious enough from a superficial examination of the

horn, I made a plaster cast of one of the horny rings in a horn of

Ovis Animon, so as to get an accurate pattern of its sinuous edge :

and then, filling the mould up with wet clay, I modelled an anti-

clastic surface, such as to correspond as nearly as possible with

the sinuous outline*. Finally, after making a plaster cast of this

sectional surface, I drew its contour-lines (as shewn in Fig. 322),

with the help of a simple form of spherometer. It will be seen

that in great part this diagram is precisely similar to St Venant's

^-^

Fk. 321. Fig. 322.

diagram of the cross-section of a twisted triangular prism; and

this is especially the case in the neighbourhood of the sharp angle

of our prismatic section. That in parts the diagram is somewhat

asymmetrical is not to be wondered at: and (apart from inac-

curacies due to the somewhat rough means by which it was made)

this asymmetry can be sufficiently accounted for by anisotropy

of the material, by inequalities in thickness of different parts of

the horny sheath, and especially (I think) by unequal distributions

of rigidity due to the presence of the smaller corrugations of the

* This is not difficult to do, with considerable accuracy, if the clay be kept

well wetted, or semi-fluid, and the smoothing be done with a large wet brush.
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horn. It is apparently on account of these minor corrugations

that, in such horns as the Highland ram's, where they are strongly

marked, the main St Venant effect is not nearly so well shewn as

in the smoother horns such as those of 0. Amnion and its immediate

congeners*.

A further Note upon Torsion.

The phenomenon of torsion, to ,which we have been thus

introduced, opens up many wide questions in connection with

form. Some of the associated phenomena are admirably illustrated

in the case of climbing plants; but we can only deal with these

still more briefly and parenthetically.

The subject of climbing plants has been elaborately dealt

with not only in Darwin's books f, but also by a very large number
of earlier and later writers. In " twining" plants, which constitute

the greater number of "climbers," the essential phenomenon is a

tendency of the growing shoot to revolve about a vertical axis

—

a tendency long ago discussed and investigated by such writers

as Palm, H. von Mohl and DutrochetJ. This tendency to revolu-

tion
—

"circumvolution," as Darwin calls it, "revolving nutation,"

as Sachs puts it—is very closely comparable to the process by which

an antelope's horn (such as the koodoo's) grows into its spiral

or rather helicoid form ; and it is simply due, in like manner, to

inequalities in the rate of growth on different sides of the growing

stem. There is only this difference between the two cases, that

in the antelope's horn the zone of active growth is confined to

the base of the horn, while in the climbing stem the same

phenomenon is at work throughout the whole length of the growing

structure. This growth is in the main due to "turgescence,"

that is to the extension, or elongation, of ready-formed cells

through the imbibition of water; it is a phenomenon due to

osmotic pressure. The particular stimuli to which these move-

ments (that is to say, these inequalities of growth) have been

* The curves are well shewn in most of Sir V. Brooke's figures of the various

species of Argali, in the paper quoted on p. 614.

t Climbing Plants, 1865 (2nd edit. 1875); Power of Movement in Plants, 1880.

J Palm, Ueber das Winden der Pflanzen, 1827; von Mohl, Ban iind Winden

der Banken, etc., 1827; Dutrochet, Mouvements revolutifs spontanes, C.B. 1843,

etc.
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ascribed, such as contact (thigmotaxis), exposure to light

(heliotropism), and so forth, need not be discussed here*.

A simple stem growing upright in the dark, or in uniformly

diffused light, would be in a position of equilibrium to a iield of

force radially symmetrical about its vertical axis. But this

complete radial symmetry will not often occur; and the radial

anomalies may be such as arise intrinsically from structural

peculiarities in the stem itself, or externally to it by reason of

unequal illumination or through various other localised forces.

The essential fact, so far as we are concerned, is that in twining

plants we have a very marked tendency to inequalities in longi-

tudinal growth on different aspects of the stem—a tendency which

is but an exaggerated manifestation of one which is more or less

present, under certain conditions, in all plants whatsoever. Just

as in the case of the ruminants' horns so we find here, that this

inequality may be, so to speak, positive or negative, the maximum
lying to the one side or the other of the twining stem ; and so it

comes to pass that some climbers twine to the one side and some

to the other: the hop and the honeysuckle following the sun,

and the field-convolvulus twining in the reverse direction ; there

are also some, like the woody nightshade {Solanum Dulcamara)

which twine indifferently either way.

Together with this circumnutatory movement, there is very

generally to be seen an actual torsion of the twining stem—

a

twist, that is to say, about its own axis; and Mohl made the

curious observation, confirmed by Darwin, that when a stem

twines around a smooth cylindrical stick the torsion does not take

place, save "only in that degree which follows as a mechanical

necessity from the spiral winding": but that stems Avhich had

climbed around a rough stick were all more or less, and generally

much, twisted. Here Darwin did not refrain from introducing

that teleological argument which pervades his whole train of

reasoning: "The stem," he says, "probably gains rigidity by

being twisted (on the same principle that a much twisted rope

* Cf. (e.g.) Lepeschkin, Zur Kenntnis des Mechanisinus der Variationsbewe-

gungen, Ber. d. d. Bot. Gesellsch. xxvi A, pp. 724-735, 1908 ; also A. Trondle, Der

Einfluss des Lichtes auf die Permeabilitat des Plasmahaut, Jahrb. iviss. Bot.

XLvni, pp 171-282, 1910.

T. G. 40
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is stiffer than a slackly twisted one), and is thus indirectly

benefited so as to be able to pass over inequalities in its spiral

ascent, and to carry its own weight when allowed to revolve

freely." The mechanical explanation would appear to be very

simple, and such as to render the teleological hypothesis un-

necessary. In the case of the roughened support, there is a

temporary adhesion or "clinging" between it and the growing

stem which twines around it; and a system of forces is thus set

up, producing a "couple," just as it was in the case of the ram's

or antelope's horn through direct adhesion of the bony core to

the surrounding sheath. The twist is the direct result of this

couple, and it disappears when the support is so smooth that no

such force comes to be exerted.

Another important class of climbers includes the so-called

"leaf-climbers." In these, some portion of the leaf, generally the

petiole, sometimes (as in the fumitory) the elongated midrib,

curls round a support; and a phenomenon of like nature occurs

in many, though not all, of the so-called " tendril-bearers."

Except that a different part of the plant, leaf or tendril instead of

stem, is concerned in the twining process, the phenomenon here

is strictly analogous to our former case; but in the resulting

helix there is, as a rule, this obvious difference, that, while the

twining stem, for instance of the hop, makes a slow revolution

about its support, the typical leaf-climber makes a close, firm

coil : the axis of the latter is nearly perpendicular and parallel

to the axis of its support, while in the twining stem the angle

between the two axes is comparatively small. Mathematically

speaking, the difference merely amounts to this, that the com-

ponent in the direction of the vertical axis is large in the one

case, and the corresponding component is small, if not absent,

in the other; in other words, we have in the climbing stem a

considerable vertical component, due to its own tendency to grow

in height, while this longitudinal or vertical extension of the

whole system is not apparent, or little apparent, in the other

cases. But from the fact that the twining stem tends to run

obliquely to its support, and the coiling petiole of the leaf-climber

tends to run transversely to the axis of its support, there

immediately follows this marked difference, that the phenomenon
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of torsion, so manifest in the former case, will be absent in the

latter.

There is one other phenomenon which meets us in the twining

and twisted stem, and which is doubtless illustrated also, though

not so well, in the antelope's horn ; it is a phenomenon which

forms the subject of a second chapter of St Venant's researches on

the effects of torsional strain in elastic bodies. We have already

seen how, one effect of torsion, in for instance a prism, is to

produce strains parallel to the axis, elevating parts and depressing

other parts of each transverse section. But in addition to this,

the same torsion has the effect of materially altering the form of

the section itself, as we may easily see by twisting a square or

oblong piece of india-rubber. If we start with a cylinder, such as

a round piece of catapult india-rubber, and twist it on its own
long axis, we have already seen that it suffers no other distortion

;

it still remains a cylinder, that is to say, it is still in section every-

where circular. But if it be of any other shape than cylindrical

the case is quite different, for now the sectional shape tends to

alter under the strain of torsion. Thus, if our rod be elliptical

in section to begin with, it will, under torsion, become a more

elongated ellipse; if it be square, its angles will become more

prominent, and its sides will curve inwards, till at length the

square assumes the appearance of a four-pointed star, with

rounded angles. Furthermore, looking at the results of this

process of modification, we find experimentally that the resultant

figures are more easily twisted, less resistant to torsion, than

were those from which we evolved them; and this is a very

curious physical or mathematical fact. So a cylinder, which is

especially resistant to torsion, is very easily bent or flexed ; while

projecting ribs or angles, such as an engineer makes in a bar or

pillar of iron for the purpose of greatly increasing its strength in

the way of resistance to bending, actually make it much weaker

than before (for the same amount of metal per unit length) in the

way of resistance to torsion.

In the hop itself, and in a very considerable number of other

twining and twisting stems, the ribbed or channelled form of the

stem is a conspicuous feature. We may safely take it, (1) that

40—2
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such stems are especially susceptible of torsion ; and (2) that the

effect of torsion will be to intensify any such peculiarities of

sectional outline which they may possess, though not to initiate

them in an originally cylindrical structure. In the leaf-climbers

the case does not present itself, for there, as w^e have seen, torsion

itself is not, or is very slightly, manifested. There are very

distinct traces of the phenomenon in the horns of certain antelopes,

but the reason why it is not a more conspicuous feature of the

antelope's horn or of the ram's is apparently a very simple one

:

namely, that the presence of the bony core within tends to check

that deformation which is perpendicular, while it permits that

which is parallel, to the axis of the horn.

Of Deer^s Antlers.

Bulrlet us return to our subject of the shapes of horns, and

consider briefly our last class of these structures, namely the bony

antlers of the various species of elk and deer*. The problems

which these present to us are very different from those which we
have had to do with in the antelope or the sheep.

With regard to its structure, it is plain that the bony antler

corresponds, upon the whole, to the bony core of the antelope's

horn ; while in place of the hard horny sheath of the latter, we
have the soft "velvet," which every season covers the new growing

antler, and protects the large nutrient blood-vessels by help of

which the antler grows f. The main difference lies in the fact

that, in the one case, the bony core, imprisoned within its sheath,

is rendered incapable of branching and incapable also of lateral

expansion, and the whole horn is only permitted to grow^ in length,

while retaining a sectional contour that is identical with (or but

little altered from) that which it possesses at its growing base

:

* For an elaborate study of antlers, see Rorig, A., Arch. f. Entw. Mech. x,

pp. 525-644, 1900, xi, pp. 65-148, 225-309, 1901; Hoffmann, C, Zur Morphologie

der rezenten Hirschen, 75 pp., 23 pis., 1901 : also Sir Victor Brooke, On the

Classification of the Cervidae, P.Z.S., pp. 883-928, 1878. For a discussion of the

development of horns and antlers, see Gadow, H., P.Z.S., pp. 206-222, 1902, and
works quoted therein.

f Cf. Rhumbler, L., Ucber die Abhangigkeit des Geweihwachstums der Hu'sche,

speziell des Edelhirsches, vom Verlauf der Blutgefasse im Kolbengeweih, Zeitschr.

/. Forst. mid Jagdwesen, 1911, pp. 295-314.
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but in the antler, on the other hand, no such restraint is imposed,

and the living, growing fabric of bone may expand into a broad

flattened plate over which the blood-vessels run. In the immediate

neighbourhood of the main blood-vessels growth will be most

active : in the interspaces between, it may wholly fail : with the

result that we may have great notches cut out of the flattened

plate, or may at length find it reduced to the form of a simple

branching structure. The main point, as it seems to me, is that

the "horn" is essentially an axial rod, while the "antler" is

essentially an outspread surface"^. In other words, I believe that

Fig. 323. Antlers of Swedish Elk. (After Lonnberg, from P.Z.S.

the whole configuration of an antler is more easily understood by

conceiving it as a plate or a surface, more and more notched and

scolloped till but a slender skeleton may remain, than to look

upon it the other way, namely as an axial stem (or beam) giving

* The fact that in one very small deer, the little South American Coassus, the

antler is reduced to a simple short spike, does not preclude the general distinction

which I have drawn. In Coassus we have the beginnings of an antler, which has

not yet manifested its tendency to expand ; and in the many alUed species of the

American genus Cariacus, we find the expansion manifested in various simple

modes of ramification or bifurcation. (Cf. Sir V. Brooke, Classification of the

Cervidae, p. 897.)
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off branches (or tines), the interspaces between which latter may
sometimes be filled up to form a continuous plate.

In a sense it matters very little whether we regard the broad

plate-like antlers of the elk or the slender branching antlers of the

stag as the more primitive type; for we are not concerned here

with the question of hypothetical phylogeny. And even from the

mathematical point of view it makes little or no difference whether

we describe the plate as constituted by the interconnection of

Fig. 324. Head and antlers of a Stag {Cervus Duvauceli). (After

Lydekker, from P.Z.S.)

the branches, or the branches derived by a process of notching

or incision from the plate. The important point for us is to

recognise that (save for occasional slight irregularities) the

branching system in the one conforms essentially to the curved

plate or surface which we see plainly in the other. In short the

arrangement of the branches is more or less comparable to that

of the veins in a leaf, or to that of the blood-vessels as they course

over the curved surface of an organ. It is a process of ramifica-

tion, not, like that of a tree, in various planes, but strictly limited
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to a single surface. And just as the veins within a leaf are not

necessarily confined (as they happen to be in most ordinary

leaves) to a plane surface, but, as in the petal of a tulip or the

capsule of a poppy, may have to run their course within a curved

surface, so does the analogy of the leaf lead us directly to the

mode of branching which is characteristic of the antler. The

surface to which the branches of the antler tend to be confined

is a more or less spheroidal, or occasionally an ellipsoidal one;

and furthermore, when we inspect any well-developed pair of

antlers, such as those of a red deer, a sambur or a wapiti, we have

no difficulty in seeing that the two antlers make up between them

a single surface, and constitute a symmetrical figure, each half

being the mirror-image of the other.

To put the case in another way, a pair of antlers (apart from

occasional slight irregularities) tends to constitute a figure such

that we could conceive an elastic sheet stretched over or round

the entire system, so as to form one continuous and even surface

;

and not only would the surface curvature be on the whole smooth

and even, but the boundary of the surface would also tend to be

an even curve : that is to say the tips of all the tines would

approximately have .their locus in a continuous, curve.

It follows from this that if we want to make a simple model of

a set of antlers, we shall be very greatly helped by taking some

appropriate spheroidal surface as our groundwork or scaffolding.

The best form of surface is a matter for trial and investigation in

each particular case ; but even in a sphere, by selecting appropriate

areas thereof, we can obtain sufficient varieties of surface to meet

all ordinary cases. With merely a bit of sculptor's clay or plas-

ticine, we should be put hard to it to model the horns of a wapiti

or a reindeer : but if we start with an orange (or a round florence

flask) and lay our little tapered rolls of plasticine upon it, in simple

natural curves, it is surprising to see how quickly and successfully

we can imitate one type of antler after another. In doing so,

we shall be struck by the fact that our model may vary in its

mode of branching within very considerable limits, and yet look

perfectly natural. For the same wide range of variation is charac-

teristic of the natural antlers themselves. As Sir V. Brooke says

(op. cit. p. 892), "No two antlers are ever exactly alike; and the
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variation to which the antlers are subject is so great that in the

absence of a large series they would be held to be indicative of

several distinct species*." But all these many variations lie

within a limited range, for they are all subject to our general

rule that the entire structure is essentially confined to a single

curved surface.

It is plain that in the curvatures both of the beam and of its

tines, in the angles by w^hich these latter meet the beam, and in

the contours of the entire system, there are involved many elegant

mathematical problems with which we cannot at present attempt

to deal. Nor must we attempt meanwhile to enquire into the

physical meaning or origin of these phenomena, for as yet the clue

seems to be lacking and we should only heap one hypothesis upon

another. That there is a complete contrast of mathematical

])roperties between the horn and the antler is the main lesson with

which, in the meantime, we must rest content.

Of Teeth, and of Beak and Claw.

In a fashion similar to that manifested in the shell or the

horn, we find the logarithmic spiral to be implicit in a great many
other organic structures where the phenomena of growth proceed

in a similar way : that is to say, where about an axis there is some

asymmetry leading to unequal rates of longitudinal growth, and

where the structure is of such a kind that each new increment is

added on as a permanent and unchanging part of the entire

conformation. Nail and claw, beak and tooth, all come under

this category. The logarithmic spiral always tends to manifest

itself in such structures as these, though it usually only attracts

our attention in elongated structures, where (that is to say) the

radius vector has described a considerable angle. When the

canary-bird's claws grow long from lack of use, or when the

incisor tooth of a rabbit or a rat grows long by reason of an injury

to the opponent tooth against which it was wont to bite, we know
that the tooth or claw tends to grow into a spiral curve, and we

speak of it as a malformation. But there has been no funda-

mental change of form, save only an abnormal increase in length

;

* Cf. also the immense range of variation in elks' horns, as described by
Lonnberg, P.Z.S. ii, pp. 352-360, 1902.
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the elongated tooth or claw has the selfsame curvature that it had

when it was short, but the spiral curvature becomes more and more

manifest the longer it grows. A curious analogous case is that

of the New Zealand huia bird, in which the beak of the female

is described as being comparatively short and straight, while that

of the male is long and curved; it is easy to see that there is a

slight curvature also in the beak of the female, and that the beak

of the male shows nothing but the same curve produced. In the

case of the more curved beaks, such as those of an eagle or a parrot,

we may, if we please, determine the constant angle of the loga-

rithmic spiral, just as we have done in the case of the Nautilus

shell ; and here again, as the bird grows older or the beak longer,

the spiral nature of the curve becomes more and more apparent,

as in the hooked beak of an old eagle, or as in the great beak of

some large parrot such as a hyacinthine macaw.

Let us glance at one or two instances to illustrate the spiral

curvature of teeth.

A dentist knows that every tooth has a curvature of its own,

and that in pulling the tooth he must follow the direction of the

curve ; but in an ordinary tooth this curvature is scarcely visible,

and is least so when the diameter of the tooth is large compared

with its length.

In the simply formed, more or less conical teeth, such as are

those of the dolphin, and in the more or less similarly shaped canines

and incisors of mammals in general, the curvature of the tooth

is particularly well seen. We see it in the little teeth of a hedge-

hog, and in the canines of a dog or a cat it is very obvious indeed.

When the great canine of the carnivore becomes still further

enlarged or elongated, as in Machairodus, it grows into the

strongly curved sabre-tooth of that great extinct tiger. In rodents,

it "is the incisors which undergo a great elongation; their rate of

growth differs, though but slightly, on the two sides, anterior and

posterior, of the axis, and by summation of these slight differences

in the rapid growth of the tooth an unmistakeable logarithmic

spiral is gradually built up. We see it admirably in the beaver,

or in the great ground-rat, Geomys. The elephant is a similar

case, save that the tooth, or tusk, remains, owing to comparative

lack of wear, in a more perfect condition. In the rodent (save

only in those abnormal cases mentioned on the last page) the
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anterior, first-formed, part of the tooth wears away as fast as it

is added to from behind ; and in the grown animal, all those

portions of the tooth near to the pole of the logarithmic spiral

have long disappeared. In the elephant, on the other hand, we

see, practically speaking, the whole unworn tooth, from point to

root; and its actual tip nearly coincides with the pole of the

spiral. If we assume (as with no great inaccuracy we may do)

that the tip actually coincides with the pole, then we may very

easily construct the continuous spiral of which the existing tusk

constitutes a part; and by so doing, we see the short, gently

curved tusk of our ordinary elephant growing gradually into the

spiral tusk of the mammoth. No doubt, just as in the case of

our molluscan shells, we have a tendency to variation, both

individual and specific, in the constant angle of the spiral ; some

elephants, and some species of elephant, undoubtedly have a

higher spiral angle than others. But in most cases, the angle

would seem to be such that a spiral configuration would become

very manifest indeed if only the tusk pursued its steady growth,

unchanged otherwise in form, till it attained the dimensions

which we meet with in the mammoth. In a species such as

Mastodon angustidens, or M. arvernensis, the specific angle is

low and the tusk comparatively straight; but the American

mastodons and the existing species of elephant have tusks which

do not differ appreciably, except in size, from the great spiral

tusks of the mammoth, though from their comparative shortness

the spiral is little developed and only appears to the eye as a

gentle curve. Wherever the tooth is very long indeed, as in the

mammoth or the beaver, the efiect of some slight and all but

inevitable lateral asymmetry in the rate of growth begins to shew

itself: in other words, the spiral is seen to lie not absolutely in

a plane, but to be a curve of double curvature, like a twisted

horn. We see this condition very well in the huge canine tusks

of the Babirussa; it is a conspicuous feature in the mammoth,

and it is more or less perceptible in any large tusk of the ordinary

elephants.

The form of a molar tooth, which is essentially a branching or

budding system, and in which such longitudinal growth as gives

rise to a spiral curve is but little manifest, constitutes an entirely

different problem with which I shall not at present attempt to deal.



CHAPTER XIV

ON LEAF-ARRANGEMENT, OR PHYLLOTAXIS

The beautiful configurations produced by the orderly arrange-

ment of leaves or florets on a stem have long been an object of

admiration and curiosity. Leonardo da Vinci would seem, as Sir

Theodore Cook tells us, to have been the first to record his thoughts

upon this subject; but the old Greek and Egyptian geometers

are not likely to have left unstudied or unobserved the spiral

traces of the leaves upon a palm-stem, or the spiral curves of the

petals of a lotus or the florets in a sunflower.

The spiral leaf-order has been regarded by many learned

botanists as involving a fundamental law of growth, of the deepest

and most far-reaching importance; while others, such as Sachs,

have looked upon the whole doctrine of " phyllotaxis " as " a sort

of geometrical or arithmetical playing with ideas," and "the

spiral theory as a mode of view gratuitously introduced into the

plant." Sachs even goes so far as to declare this doctrine "in

direct opposition to scientific investigation, and based upon the

idealistic direction of the Naturphilosophie,"—the mystical biology

of Oken and his school.

The essential facts of the case are not difficult to understand

;

but the theories built upon them are so varied, so conflicting, and

sometimes so obscure, that we must not attempt to submit them

to detailed analysis and criticism. There are two chief ways by

which we may approach the question, according to whether we
regard, as the more fundamental and typical, one or other of the

two chief modes in which the phenomenon presents itself. That

is to say, we may hold that the phenomenon is displayed in its

essential simplicity by the corkscrew spirals, or helices, which

mark the position of the leaves upon a cylindrical stem or on an
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elongated fir-cone ; or, on the other hand, we may be more

attracted by, and regard as of greater importance, the logarithmic

spirals which we trace in the curving rows of florets in the discoidal

mflorescence of a sunflower. Whether one way or the other be

the better, or even whether one be not positively correct and the

other radically wrong, has been vehemently debated. In my
judgment they are, both mathematically and biologically, to be

regarded as inseparable and correlative phenomena.

The helical arrangement (as in the fir-cone) was carefully

studied in the middle of the eighteenth century by the celebrated

Bonnet, with the help of Calandrini, the mathematician. Memoirs

published about 1835, by Schimper and Braun, greatly amplified

Bonnet's investigations, and introduced a nomenclature which

still holds its own in botanical textbooks. Naumann and the

brothers Bravais are among those who continued the investigation

in the years immediately following, and Hofmeister, in 1868, gave

an admirable account and summary of the work of these and

many other writers*.

Starting from some given level and proceeding upwards, let

us mark the position of some one leaf {A) upon a cylindrical stem.

Another, and a younger leaf (B) will be found standing at a certain

distance around the stem, and a certain distance (dong the stem,

* Besides papers referred to below, and many others quoted in Sach's Botany

and elsewhere, the following are important: Braun, Alex., Vergl. Untersuchung

Tiber die Ordnung der Schuppen an den Tannenzapfen, etc., Verh. Car. Leop.

Akad. XV, pp. 199-401, 1831; Dr C. Schimper's Vortrage iiber die Moghchkeit

eines wissenschafthchen Verstandnisses der BlattsteUung, etc., Flora, xvm, pp. 145

-191, 737-756, 1835; Schimper, C. F., Geometrische Anordnung der um eine Axe
peripherische Blattgebilde, Verhandl. Schweiz. Ges., pp. 113-117, 1836; Bravais,

L. and A., Essai sur la disposition des feuilles curviseriees, A^ui. Sci. Nat. (2),

vn, pp. 42-110, 1837; Sur la disposition symmetrique des inflorescences, ibid.,

pp. 193-221, 291-348, vm, pp. 11^2, 1838; Sur la disposition generale des feuilles

rectiseriees, ibid, xii, pp. 5-41, 65-77, 1839; Zeising, Normalverlidltniss der

chemischen und morphologischen Proportionen, Leipzig, 1856; Naumann, C. F.,

Ueber den Quincunx als Gesetz der BlattsteUung bei Sigillaria, etc., Neue-s Jahrb.

f. Miner. 1842, pp. 410-417; Lestiboudois, T., Phyllota.rie anatomique, Paris, 1848;

Henslow, G., Phyllotaxis, London, 1871; Wiesner, Bemerkungen iiber rationale

nnd irrationale Divergenzen, Flora, Lvni, pp. 113-115, 139-143, 1875; Airy, H.,

On Leaf Arrangement, Proc. R. S. xxi, p. 176, 1873; Schwendener, S., Mechanische

Theorie der BlattsteUungen, Leipzig, 1878; Delpino, F., Causa meccanica della

filotassi quincunciale, Genova, 1880; de Candolle, C., Etude de Phyllotaxie, Geneve,

1881.
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from the first. The former distance may be expressed as a

fractio*ial "divergence" (such as two-fifths of the circumference

of the stem) as the botanists describe it, or by an "angle of

azimuth" (such as ^ = 144°) as the mathematician would be more

likely to state it. The position of B relatively to A must be

determined, not only by this angle ^, in the horizontal plane, but

also by an angle (6) in the vertical plane ; for the height of B above

the level of A, in comparison with the diameter of the cylinder,

will obviously make a great difference in the appearance of the

whole system, in short the position of each leaf must be expressed

by F{<^ . sin 6). But this matter botanical students have not

concerned themselves with; in other words, their studies have

been limited (or mainly limited) to the relation of the leaves to

one another in azimuth.

Whatever relation we have found between A and B, let

precisely the same relation subsist between B and C : and so on.

Let the growth of the system, that is to say, be continuous and

uniform ; it is then evident that we have the elementary conditions

for the development of a simple cylindrical helix ; and this

"primary helix" or "genetic spiral" we can now trace, winding

round and round the stem, through A, B, C, etc. But if we can

trace such a helix through A, B, C, it follows from the symmetry
of the system, that we have only to join A to some other leaf to

trace another spiral helix, such, for instance, as A, C, E, etc.

;

parallel to which will run another and similar one, namely in this

case B, D, F, etc. And these spirals will run in the opposite

direction to the spiral ABC.
In short, the existence of one helical arrangement of points

implies and involves the existence of another and then another

helical pattern, just as, in the pattern of a wall-paper, our eye

travels from one linear series to another.

A modification of the helical system will be introduced when,

instead of the leaves appearing, or standing, in singular succession,

we get two or more appearing simultaneously upon the same level.

If there be two such, then we shall have two generating spirals

precisely equivalent to one another; and we may call them
A, B, C, etc., and A', B', C, and so on. These are the cases

which we call "whorled" leaves, or in the simplest case, where
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the whorl consists of two opposite leaves only, we call them
decussate.

Among the phenomena of phyllotaxis, two points in particular

have been found difficult of explanation, and have aroused dis-

cussion. These are (1), the presence of the logarithmic spirals

such as we have already spoken of in the sunflower; and (2) the

fact that, as regards the number of the helical or spiral rows,

certain numerical coincidences are apt to recur again and again,

to the exclusion of others, and so to become characteristic features

of the phenomenon.

The first of these appears to me to present no diflEiculty. It

is a mere matter of strictly mathematical "deformation." The

stem which we have begun to speak of as a cylinder is not strictly

so, inasmuch as it tapers off towards its summit. The curve

which Avinds evenly around this stem is, accordingly, not a true

helix, for that term is confined to the curve which winds evenly

around the cylinder: it is a curve in space which (like the spiral

curve we have studied in our turbinate shells) partakes of the

characters of a helix and of a logarithmic spiral, and which is in

fact a logarithmic spiral with its pole drawn out of its original

plane by a force acting in the direction of the axis. If we imagine

a tapering cylinder, or cone, projected, by vertical projection, on

a plane, it becomes a circular disc ; and a helix described about

the cone necessarily becomes in the disc a logarithmic spiral

described about a focus which corresponds to the apex of our cone.

In like manner we may project an identical spiral in space upon

such surfaces as (for instance) a portion of a sphere or of an ellipsoid

;

and in all these cases we preserve the spiral configuration, which

is the more clearly brought into view the more we reduce the

vertical component by which it was accompanied. The converse

is, of course, equally true, and equally obvious, namely that any

logarithmic spiral traced upon a circular disc or spheroidal surface

will be transformed into a corresponding spiral helix when the

plane or spheroidal disc is extended into an elongated cone

approximating to a cylinder. This mathematical conception is

translated, in botany, into actual fact. The fir-cone may be

looked upon as a cylindrical axis contracted at both ends, until
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it becomes approximately an ellipsoidal solid of revolution,

generated about the long axis of the ellipse ; and the semi- ellip-

soidal capitulum of the teasel, the more or less hemispherical one

of the thistle, and the flattened but still convex one of the sun-

flower, are all beautiful and successive deformations of what is

typically a long, conical, and all but cylindrical stem. On the

other hand, every stem as it grows out into its long cylindrical

shape is but a deformation of the little spheroidal or ellipsoidal

surface, or cone, which was its forerunner in the bud.

This identity of the helical spirals around the stem with spirals

projected on a plane was clearly recognised by Hofmeister, who

was accustomed to represent his diagrams of leaf-arrangement

either in one way or the other, though not in a strictly geometrical

projection*.

According to Mr A. H. Churchf, who has dealt very carefully

and elaborately with the whole question of phyllotaxis, the

logarithmic spirals such as we see in the disc of the sunflower have

a far greater importance and a far deeper meaning than this brief

treatment of mine would accord to them : and Sir Theodore Cook,

in his book on the Curves of Life, has adopted and has helped to

expound and popularise Mr Church's investigations.

Mr Church, regarding the problem as one of "uniform growth,"

easily arrives at the conclusion that, i/this growth can be conceived

as taking place symmetrically about a central point or "pole,"

the uniform growth would then manifest itself in logarithmic

spirals, including of course the limiting cases of the circle and

straight line. With this statement I have little fault to find; it

is in essence identical with much that I have said in a previous

chapter. But other statements of Mr Church's, and many theories

woven about them by Sir T, Cook and himself, I am less able to

follow. Mr Church tells us that the essential phenomenon in the

sunflower disc is a series of orthogonally intersecting logarithmic

spirals. Unless I w^holly misapprehend Mr Church's meaning, I

should say that this is very far from essential. The spirals

* Allgemeine Morphologic der Gewdchse, p. 442, etc. 1868.

f Relation of Phyllotaxis to Mechanical Laivs, Oxford, 1901-1903; cf. Ann.

of Botany, xv, p. 481, 1901.
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intersect isogonally, but orthogonal intersection would be only

one particular case, and in all probability a very infrequent .one,

in the intersection of logarithmic spirals developed about a

common pole. Again on the analogy of the hydrodynamic lines

of force in certain vortex movements, and of similar lines of

force in certain magnetic phenomena, Mr Church proceeds to

argue that the energies of life follow lines comparable to those of

electric energy, and that the logarithmic spirals of the sunflower

are, so to speak, lines of equipotential*. And Sir T. Cook

remarks that this "theory, if correct, would be fundamental for

all forms of growth, though it would be more easily observed in

plant construction than in animals." The parallel I am not able

to follow.

Mr Church sees in phyllotaxis an organic mystery, a something

for which we are unable to suggest any precise cause : a phenomenon

which is to be referred, somehow, to waves of growth emanating

from a centre, but on the other hand not to be explained by the

division of an apical cell, or any other histological factor. As

Sir T. Cook puts it, "at the growing point of a plant where the

new members are being formed, there is simply nothing to see."

But it is impossible to deal satisfactorily, in brief space, eithei'

with Mr Church's theories, or my own objections to themf. Let

it suffice to say that I, for my part, see no subtle mystery in the

matter, other than what lies in the steady production of similar

growing parts, similarly situated, at similar successive intervals

of time. If such be the case, then we are bound to have in

* "The proiiosition is that the genetic spiral is a logarithmic sjjiral, homologous

with the line of cui'rent-flow in a spiral vortex ; and that in such a system the

action of orthogonal forces will be mapped out by other orthogonally intersecting

logarithmic spirals—the 'parastichies'" ; Church, op. cit. i, p. 42.

\ Mr Church's whole theory, if it be not based upon, is interwoven with, Sachs's

theory of the orthogonal intersection of cell-walls, and the elaborate theories of

the symmetry of a growing point or apical cell which are connected therewith.

According to Mr Church, "the law of the orthogonal intersection of ceU-walls at

a growing apex may be taken as generally accepted" (p. 32): but I have taken a

very different view of Sachs's law, in the eighth chapter of the present book.

With regard to his own and Sachs's hypotheses, Mr Chiuch makes the following

curious remark (p. 42) :
" Nor are the hypotheses here put forward more imaginative

than that of the j)araboloid apex of Sachs which remains incapable of proof, or his

construction for the apical cell of Pteris which does not satisfy the evidence of his

own drawings."
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consequence a series of symmetrical patterns, whose nature will

depend upon the form of the entire surface. If the surface be

that of a cylinder we shall have a system, or systems, of spiral

helices : if it be a plane, with an infinitely distant focus, such as

we obtain by "unwrapping" our cylindrical surface, we shall

have straight lines; if it be a plane containing the focus within

itself, or if it be any other symmetrical surface containing the

focus, then we shall have a system of logarithmic spirals. The

appearance of these spirals is sometimes spoken of as a " subjective
"

phenomenon, but the description is inaccurate : it is a purely

mathematical phenomenon, an inseparable secondary result of

other arrangements which we, for the time being, regard as primary.

When the bricklayer builds a factory chimney, he lays his bricks

in a certain steady, orderly way, with no thought of the spiral

patterns to which this orderly sequence inevitably leads, and which

spiral patterns are by no means "subjective" The designer of

a wall-paper not only has no intention of producing a pattern

of criss-cross lines, but on the contrary he does his best to avoid

them ; nevertheless, so long as his design is a symmetrical one,

the criss-cross intersections inevitably come.

Let us, however, leave this discussion, and return to the facts

of the case.

Our second question, which relates to the numerical coincidences

so familiar to all students of phyllotaxis, is not to be set and

answered in a word.

Let us, for simplicity's sake, avoid consideration of simultaneous

or whorled leaf origins, and consider only the more frequent

cases where a single "genetic spiral" can be traced throughout

the entire system.

It is seldom that this primary, genetic spiral catches the eye,

for the leaves which immediately succeed one another in this

genetic order are usually far apart on the circumference of the

stem, and it is only in close-packed arrangements that the eye

readily apprehends the continuous series. Accordingly in such

a case as a fir-cone, for instance, it is certain of the secondary

spirals or " parastichies " which catch the eye; and among
fir-cones, we can easily count these, and we find them to be

T. G. 41
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on the whole very constant in number, according to the

species.

Thus in many cones, such as those of the Norway spruce, we
can trace five rows of scales winding steeply up the cone in one

direction, and three rows winding less steeply the other way; in

certain other species, such as the common larch, the normal

number is eight rows in the one direction and five in the other

;

while in the American larch we have again three in the one direction

and five in the other. It not seldom happens that two arrange-

ments grade into one another on different parts of one and the

same cone. Among other cases in which such spiral series are

readily visible wye have, for instance, the crowded leaves of the

stone-crops and mesembryanthemums, and (as we have said) the

crowded florets of the composites. Among these we may find

plenty of examples in w^hich the numbers of the serial rows are

similar to those of the fir-cones ; but in some cases, as in the daisy

and others of the smaller composites, we shall be able to trace

thirteen rows in one direction and twenty-one in the other, or

perhaps twenty-one and thirty-four ; while in a great big sunflower

we may find (in one and the same species) thirty-four and fifty-five,

fifty-five and eighty-nine, or even as many as eighty-nine and

one hundred and forty-four. On the other hand, in an ordinary
" pentamerous " flower, such as a ranunculus, we may be able to

trace, in the arrangement of its sepals, petals and stamens, shorter

spiral series, three in one direction and two in the other. It will

be at once observed that these arrangements manifest themselves

in connection with very different things, in the orderly interspacing

of single leaves and of entire florets, and among all kinds of leaf-like

structures, foliage-leaves, bracts, cone-scales, and the various

parts or members of the flower. Again we must be careful to

note that, while the above numerical characters are by much the

most common, so much so as to be deemed "normal," many
other combinations are known to occur.

The arrangement, as we have seen, is apt to vary when the

entire structure varies greatly in size, as in the disc of the sun-

flow^er. It is also subject to less regular variation within one and

the same species, as can always be discovered when we examine

a sufficiently large sample of fir-cones. For instance, out of 505
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cones of the Norway spruce, Beal* found 92 per cent, in which

the spirals were in five and eight rows; in 6 per cent, the rows

were four and seven, and in 4 per cent, they were four and six.

In each case they were nearly equally divided as regards direction

;

for instance of the 467 cones shewing the five-eight arrangement,

the five-series ran in right-handed spirals in 224 cases, and in

left-handed spirals in 243.

Omitting the "abnormal" cases, such as we have seen to occur

in a small percentage of our cones of the spruce, the arrangements

which we have just mentioned may be set forth as follows, (the

fractional number used being simply an abbreviated symbol for

the number of associated helices or parastichies which we can

count running in the opposite directions): 2/3, 3/5, 5/8, 8/13,

13/21, 21/34, 34/55, 55/89, 89/144. Now these numbers form a

very interesting series, which happens to have a number of curious

mathematical properties f. We see, for instance, that the denomi-

nator of each fraction is the numerator of the next ; and further,

that each successive numerator, or denominator, is the sum of

the preceding two. Our immediate problem, then, is to determine,

if possible, how these numerical coincidences come about, and

why these particular numbers should be so commonly met with

* Amer. Naturalist, vn, p. 449, 1873.
1

j This celebrated series, which appears in the continued fraction 1 -i- 1 etc.

1 +
and is closely connected with the Sectio au.rea or Golden Mean, is commonly called

the Fibonacci series, after a very learned twelfth century arithmetician (known also

as Leonardo of Pisa), who has some claims to be considered the introducer of

Arabic numerals into cluristian Europe. It is called Lami's series by some, after

Father Bernard Lami, a contemporary of Newton's, and one of the co-discoverers

of the parallelogram of forces. It was well-known to Kepler, who, in his paper

De nive se.rangula (cf. supra, p. 480), discussed it in connection with the form of

the dodecahedron and icosahedron, and with the ternary or quinary symmetry of

the flower. (Cf. Ludwig, F., Kepler iiber das Vorkommen der Fibonaccireihe im

Pflanzenreich, Bot. Centralhl. lxviii, p. 7, 1896). Professor William AUman,
Professor of Botany in Dublin (father of the historian of Greek geometry),

speculating on the same facts, put forward the curious suggestion that the cellular

tissue of the dicotyledons, or exogens, would be found to consist of dodecahedra,

and that of the monocotyledons or endogens of icosahedra [On the mathematical

connexion between the parts of Vegetables: abstract of a Memoir read before the

Royal Society in the year 1811 (privately printed, n.d.). Cf. De Candolle,

Organogenic ve'ge'tale, i, p. 534).

41—2
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as to be considered "normal" and characteristic features of the

general phenomenon of phyllotaxis. The following account is

based on a short paper by Professor P. G. Tait*.

Of the two following diagrams, Fig. 325 represents the general

case, and Fig. 326 a particular one,

for the sake of possibly greater

simplicity. Both diagrams re-

present a portion of a branch, or

fir-cone, regarded as cylindrical,

and unwrapped to form a plane

surface. A, a, at the two ends

of the base-line, represent the

^^ ggg same initial leaf or scale : is a

leaf which can be reached from

A by m steps in a right-hand spiral (developed into the straight

line AO), and by n steps from a in a left-handed spiral aO. Now
it is obvious in our fir-cone, that we can include all the scales

upon the cone by taking so many spirals in the one direction,

and again include them all by so many in the other. Accordingly,

in our diagrammatic construction, the spirals AO and aO must,

and always can, be so taken that m spirals parallel to aO, and n

spirals parallel to AO, shall separately include all the leaves upon

the stem or cone.

If m and n have a common factor, I, it can easily be shewn that

the arrangement is composite, and that there are I fundamental,

or genetic spirals, and I leaves (including A) which are situated

exactly on the line Aa. That is to say, we have here a whorled

arrangement, which we have agreed to leave unconsidered in

favour of the simpler case. We restrict ourselves, accordingly,

to the cases where there is but one genetic spiral, and when

therefore m and n are prime to one another.

Our fundamental, or genetic, spiral, as we have seen, is that

which passes from A (or a) to the leaf which is situated nearest to

the base-line Aa. The fundamental spiral will thus be right-

handed {A, P, etc.) if P, which is nearer to A than to a, be this

leaf—left-handed if it be p. That is to say, we make it a con-

vention that we shall always, for our fundamental spiral, run
* Proc. Roy. Soc. Edin. vn, p. 391, 1872.
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round the system, from one leaf to the next, by the shortest

tvay.

Now it is obvious, from the symmetry of the figure (as further

shewn in Fig. 326), that, besides the spirals running along AO and

aO, we have a series running /rom the steps on aO to the steps on

AO. In other words we can find a leaf (S) upon AO, which, like

the leaf 0, is reached directly by a spiral series from A and from

a, such that aS includes n steps, and AS (being part of the old

Fig. 326.

spiral line AO) now includes m—n steps. And, since m and n

are prime to one another (for otherwise the system would have

been a composite or whorled one), it is evident that we can

continue this process of convergence until we come down to a

1, 1 arrangement, that is to say to a leaf which is reached by a

single step, in opposite directions from A and from a, which leaf

is therefore the first leaf, next to A, of the fundamental or

generating spiral.
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If our original lines along AO and aO contain, for instance,

13 and 8 steps respectively (i.e. m =13, n = 8), then our next

series, observable in the same cone, will be 8 and (13 — 8) or 5;

the next 5 and (8 — 5) or 3 ; the next 3, 2 ; and the next 2, 1

;

leading to the ultimate condition of 1, 1. These are the very

series which we have found to be common, or normal; and so

far as our investigation has yet gone, it has proved to us that, if

one of these exists, it entails, ipso facto, the presence of the rest.

In following down our series, according to the above con-

struction, we have seen that at every step we have changed

direction, the longer and the shorter sides of our triangle changing

places every time. Let us stop for a moment, when we come to

the 1, 2 series, or AT, aT of Fig. 326. It is obvious that there is

nothing to prevent us making a new 1, 3 series if we please, by

continuing the generating spiral through three leaves, and con-

necting the leaf so reached directly with our initial one. But in

the case represented in Fig. 326, it is obvious that these two

series {A, 1, 2, 3, etc., and a, 3, 6, etc.) will be running in the same

direction ; i.e. they will both be right-handed, or both left-handed

spirals. The simple meaning of this is that the third leaf of the

generating spiral was distant from our initial leaf by more than the

circumference of the cylindrical stem ; in other words, that there

were more than two, but less than three leaves in a single turn of

the fundamental spiral.

Less than two there can obviously never be. When there are

exactly two, we have the simplest of all possible arrangements,

namely that in which the leaves are placed alternately on opposite

sides of the stem. When there are more than two, but less than

three, we have the elementary condition for the production of the

series which we have been considering, namely 1, 2; 2, 3; 3, 5,

etc. To put the latter part of this argument in more precise

language, let us say that : If, in our descending series, we come to

steps 1 and t, where t is determined by the condition that 1 and

t + 1 would give spirals both right-handed, or both left-handed

;

it follows that there are less than t + 1 leaves in a single turn of

the fundamental spiral. And, determined in this manner, it is

found in the great majority of cases, in fir-cones and a host of

other examples of phyllotaxis, that t = 2. In other words, in the
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great majority of cases, we have what corresponds to an arrange-

ment next in order of simplicity to the simplest case of all : next,

that is to say, to the arrangement which consists of opposite and

alternate leaves.

"These simple considerations," as Tait says, "explain com-

pletely the so-called mysterious appearance of terms of the

recurring series 1, 2, 3, 5, 8, 13, etc.* The other natural series,

usually but misleadingly represented by convergents to an infinitely

extended continuous fraction, are easily explained, as above, by

taking ^ = 3, 4, 5, etc., etc." Many examples of these latter series

have been given by Dickson f and other writers.

We have now learned, among other elementary facts, that

wherever any one system of helical spirals is present, certain

others invariably and of necessity accompany it, and are definitely

related to it. In any diagram, such as Fig. 326, in which we
represent our leaf-arrangement by means of uniform and regularly

interspaced dots, we can draw one series of spirals after another,

and one as easily as another. But in our fir-cone, for instance,

one particular series, or rather two conjugate series, are always

conspicuous, while the others are sought and found with com-

parative difficulty.

The phenomenon is illustrated by Fig. 327, a—d. The ground-

plan of all these diagrams is identically the same. The generating

spiral in each case represents a divergence of 3/8, or 135° of

azimuth ; and the points succeed one another at the same succes-

sional distances parallel to the axis. The rectangular outlines,

which correspond to the exposed surface of the leaves or cone-

scales, are of equal area, and of equal number. Nevertheless

the appearances presented by these diagrams are very different;

for in one the eye catches a 5/8 arrangement, in another a 3/5

;

and so on, down to an arrangement of 1/1. The mathematical

side of this very curious phenomenon I have not attempted to

investigate. But it is quite obvious that, in a system within

* The necessary existence of these recurring spirals is also proved, in a

somewhat different way, by Leslie Ellis, On the Theory of Vegetable Spirals, in

Mathematical and other Writings, 1853, pp. 358-372.

t Proc. Roy. Soc. Edin. vn, p. 397, 1872; Trans. Roy. Soc. Edin. xxvi,

p. 505, 1870-71.
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which various spirals are implicitly contained, the conspicuousness

of one set or another does not depend upon angular divergence.

It depends on the relative proportions in length and breadth of

the leaves themselves ; or, more strictly speaking, on the ratio of

Fig. 327.

the diagonals of the rhomboidal figure by which each leaf-area is

circumscribed. When, as in the fir-cone, the scales by mutual

compression conform to these rhomboidal outlines, their inclined

edges at once guide the eye in the direction of some one particular

spiral ; and we shall not fail to notice that in such cases the usual
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result is to give us arrangements corresponding to the middle

diagrams in Fig. 327, which are the configurations in which the

quadrilateral outlines approach most nearly to a rectangular

form, and give us accordingly the least possible ratio (under the

given conditions) of sectional boundary-wall to surface area.

The manner in which one system of spirals may be caused to

slide, so to speak, into another, has been ingeniously demonstrated

by Schwendener on a mechanical model, consisting essentially

of a framework which can be opened or closed to correspond

with one after another of the above series of diagrams*.

The determination of the precise angle of divergence of two

consecutive leaves of the generating spiral does not enter into the

above general investigation (though Tait gives, in the same paper,

a method by which it may be easily determined) ; and the very fact

that it does not so enter shews it to be essentially unimportant.

The determination of so-called "orthostichies," or precisely

vertical successions of leaves, is also unimportant. We have no

means, other than observation, of determining that one leaf is

vertically above another, and spiral series such as we have been

dealing with will appear, whether such orthostichies exist, whether

they be near or remote, or whether the angle of divergence be

such that no precise vertical superposition ever occurs. And
lastly, the fact that the successional numbers, expressed as

fractions, 1/2, 2/3, 3/5, represent a convergent series, whose final

term is equal to 0-61803..., the sectio aurea or "golden mean" of

unity, is seen to be a mathematical coincidence, devoid of

biological significance ; it is but a particular case of Lagrange's

theorem that the roots of every numerical equation of the second

degree can be expressed by a periodic continued fraction. The

same number has a multitude of curious arithmetical properties.

It is the final term of all similar series to that with which we have

been dealing, ,such for instance as 1/3, 3/4, 4/7, etc., or 1/4, 4/5,

5/9, etc. It is a number beloved of the circle-squarer, and of all

those who seek to find, and then to penetrate, the secrets of the

Great
^
Pyramid. It is deep-set in Pythagorean as well as in

Euclidean geometry. It enters (as the chord of an angle of 36°),

* A common form of pail-shaped waste-paper basket, with wide rhomboidal

meshes of cane, is well-nigh as good a model as is required.
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into the thrice-isosceles triangle of which we have spoken on

p. 511 ; it is a number which becomes (by the addition of unity)

its own reciprocal; its properties never end. To Kepler (as

Naber tells us) it was a symbol of Creation, or Generation. Its

recent application to biology and art-criticism by Sir Theodore

Cook and others is not new. Naber's book, already quoted, is

full of it. Zeising, in 1854, found in it the key to all morphology,

and the same writer, later on*, declared it to dominate both archi-

tecture and music. But indeed, to use Sir Thomas Browne's

words (though it was of another number that he spoke) :
" To

enlarge this contemplation into all the mysteries and secrets ac-

commodable unto this number, were inexcusable Pythagorisme."

If this number has any serious claim at all to enter into the

biological question of phyllotaxis, this must depend on the fact,

first emphasized by Chauncey Wright f, that, if the successive

leaves of the fundamental spiral be placed at . the particular

azimuth which divides the circle in this "sectio aurea," then no

two leaves will ever be superposed ; and thus we are said to have
" the most thorough and rapid distribution of the leaves round the

stem, each new or higher leaf falling over the angular space

between the two older ones which are nearest in direction, so as

to divide it in the same ratio (/i), in which the first two or any

two successive ones divide the circumference. Now o/S and all

successive fractions differ inappreciably from /i." To this view

there are many simple objections. In the first place, even 5/8,

or -625, is but a moderately close approximation to the "golden

mean" ; in the second place the arrangements by which a better

approximation is got, such as 8/13, 13/21, and the very close

approximations such as 34/55, 55/89, 89/144, etc., are compara-

tively rare, while the much less close approximations of 3/5 or

2/3, or even 1/2, are extremely common. Again, the general

type of argument such as that which asserts that the plant is

"aiming at" something which we may call an "ideal angle" is

one that cannot commend itself to a plain student of physical

science: nor is the hypothesis rendered more acceptable^ when

Sir T. Cook qualifies it by telling us that " all that a plant can do

* Deutsche Vierteljahrsschrift, p. 261, 1868.

t Memoirs of Amer. Acad, ix, p. 389.
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is to vary, to make blind shots at constructions, or to 'mutate

as it is now termed ; and the most suitable of these constructions

will in the long run be isolated by the action of Natural Selection.'

Finally, and this is the most concrete objection of all, the supposed

isolation of the leaves, or their most complete "distribution to

the action of the surrounding atmosphere" is manifestly very little

affected by any conditions which are confined to the angle of

azimuth. If we could imagine a case in which all the leaves of

the stem, or all the scales of a fir-cone, were crushed down to one

and the same level, into a simple ring or whorl of leaves, then

indeed they would have their most equable distribution under

the condition of the "ideal angle," that is to say of the "golden

mean." But if it be (so to speak) Nature's object to set them

further apart than they actually are, to give them freer exposure

to the air than they actually have, then it is surely manifest that

the simple way to do so is to elongate the axis, and to set the

leaves further apart, lengthways on the stem. This has at once

a far more potent effect than any nice manipulation of the "angle

of divergence." For it is obvious that in i^(^ . sin 6) we have a

greater range of variation by altering 6 than by altering 4>. We
come then, without more ado, to the conclusion that the "Fibon-

acci series," and its supposed usefulness, and the hypothesis of

its introduction into plant-structure through natural selection,

are all matters which deserve no place in the plain study ol

botanical phenomena. As Sachs shrewdly recognised years ago.

all such speculations as these hark back to a school of mystical

idealism.



CHAPTER XV

ox THE SHAPES OF EGGS, AND OF CERTAIN OTHER
HOLLOW STRUCTURES

The eggs of birds and all other hard-shelled eggs, such as those

of the tortoise and the crocodile, are simple solids of revolution;

but they differ greatly in form, according to the configuration of

the plane curve by the revolution of which the egg is, in a mathe-

matical, sense, generated. Some few eggs, such as those of the

owl, the penguin, or the tortoise, are spherical or very nearly so ; a

few more, such as the grebe's, the cormorant's or the pelican's, are

approximately elhpsoidal, with symmetrical or nearly symmetrical

ends, and somewhat similar are the so-called "cyhndrical" eggs

of the megapodes and the sand-grouse; the great majority, hke

the hen's egg, are ovoid, a Httle blunter at one end than the other

;

and some, by an exaggeration of this lack of antero-posterior

symmetry, are blunt at one end but characteristically pointed at

the other, as is the case with the eggs of the guillemot and puffin,

the sandpiper, plover and curlew. It is an obvious but by no

means negligible fact that the egg, while often pointed, is never

flattened or discoidal ; it is a prolate, but never an oblate, spheroid.

The careful study and collection of birds' eggs would seem to

have begmi with the Count de Marsigh*, the same celebrated

naturahst who first studied the "flowers" of the coral, and who
wrote the Histoire physique de la mer; and the specific form, as

well as the colour and other attributes of the egg have been

again and again discussed, and not least by the many dilettanti

naturahsts of the eighteenth century who soon followed in

Marsigli's footsteps f.

* De avibus circa aquas Danuhii vagantibus et de ipsarum Nidis (Vol. v of

the Danuhius Pannonico-mysicus), Hagae Com., 1726.

^ Sir Thomas Browne had a collection of eggs at Norwich, according to Evelyn,

in 1671.



CH. XV] ON THE SHAPES OF EGGS, ETC. 653

We need do no more than mention Aristotle's belief, doubtless

old in his time, that the more pointed egg produces the male

chicken, and the blunter egg the hen ; though this theory survived

into modern times* and perhaps still hngers on. Several natural-

ists, such as Giinther (1772) and Biihle (1818), have taken the

trouble to disprove it by experiment. A more modern and more

generally accepted explanation has been that the form of the egg

is in direct relation to that of the bird which has to be hatched

within—a view that would seem to have been first set forth by

Naumann and Biihle, in their great treatise on eggs f, and gCdopted

by Des MursJ and many other well-known writers.

In a treatise by de Lafresnaye§, an elaborate comparison is

made between the skeleton and the egg of the various birds, to

shew, for instance, how those birds with a deep-keeled sternum

laid rounded eggs, which alone could accommodate the form of the

young. According to this view, that "Nature had foreseen||"'

the form adapted to and necessary for the growing embryo, it

was easy to correlate the owl with its spherical egg, the diver

\vith its elliptical one, and in like manner the round egg of the

tortoise and the elongated one of the crocodile with the shape of

the creatures which had afterwards to be hatched therein. A few

writers, such as Thienemann^, looked at the same facts the other

way, and asserted that the form of the egg was determined by

that of the bird by which it was laid, and in whose body it had

been conformed.

In more recent times, other theories, based upon the principles

of Natural Selection, have been current and very generally accepted,

to account for these diversities of form. The pointed, conical

egg of the guillemot is generally supposed to be an adaptation,

* Cf. Lapierre, in Buffon's Histoire Naturelle, ed. Sonnini, 1800.

t Eier 4er Vogel Deutschlands, 1818-28 (cit. des Murs, p. 36).

t Traite d'Oologie, 1860,

§ Lafresnaye, F. de, Comparaison des cBufs des Oiseaux avec leurs squelettes,

comme seul moven de reconnaitre la cause de leurs differentes formes, Bev. ZooL,

1845, pp. lSO-187, 239-244.

II
a. Des Murs, p. 67: "EUe devait encore penser au moment ou ce germe

aurait besoin de I'espace necessaire a son accroissement, a, ce moment ou...il devra

remplir exactement I'intervalle circonscrit par sa fragile prison, etc."

^ Thienemann, F. A. L., Syst. Darstellung der Fortpflanzung der Vogel Europas,

Leipzig, 1825-38.
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advantageous to the species in the circumstances under which

the egg is laid ; the pointed egg is less apt than a spherical one to

roll off the narrow ledge of rock on which this bird is said to lay

its sohtary egg, and the more pointed the egg, so much the fitter

and UkeUer is it to survive. The fact that the plover or the

sandpiper, breeding in very different situations, lay eggs that are

also conical, ehcits another explanation, to the effect that here

the conical form permits the many large eggs to be packed closely

under the mother bird *
. Whatever truth there be in these apparent

adaptations to existing circumstances, it is only by a very hasty

logic that we can accept them as a vera causa, or adequate

explanation of the facts ; and it is obvious that, in the bird's egg,

we have an admirable case for the direct investigation of the

mechanical or physical significance of its formf.

Of all the man}^ naturahsts of the eighteenth and nineteenth

centuries who wrote on the subject of eggs, one alone (so far as

I am aware) ascribed the form of the egg to direct mechanical

causes. Glinther J, in 1772, declared that the more or less rounded

or pointed form of the egg is a mechanical consequence of the

pressure of the oviduct at a time when the shell is yet unformed

or unsohdified ; and that accordingly, to explain the round egg of

the owl or the kingfisher, we have only to admit that the oviduct

of these birds is somewhat larger than that of most others, or

less subject to violent contractions. This statement contains, in

essence, the whole story of the mechanical conformation of the egg.

Let us consider, very briefly, the conditions to which the egg

is subject in its passage down the oviduct§.

(1) The "egg," as it enters the oviduct, consists of the yolk

onlv, enclosed in its vitelhne membrane. As it passes down the

first portion of the oviduct, the white is gradually superadded,

* Cf. Newton's Dictionary of Birds, 1893, p. 191; Szielasko, Gestalt der

Vogeleier, J. f. Ornith. Lm, pp. 273-297, 1905.

t Jacob Steiner suggested a Cartesian oval, r + mr' = c, as a general formula

for all eggs (cf. Fechner, Ber. sacks. Ges., 1849, p. 57); but this formula (which

fails in such a case as the guillemot), is purely empirical, and has no mechanical

foundation.

J Giinther, F. C, Sammlung von Nestern und Eyern vertchiedener Vogd,

Niirnb. 1772. Cf. also Raymond Pearl. Morphogenetic Activity of the Oviduct,

J. Exp. Zool. VI, pp. 339-359, 1909.

§ The following account is in part reprinted from Nature, June 4, 1908.
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and becomes in turn surrounded by the "shell-membrane."

About this latter the shell is secreted, rapidly and at a late period

;

the egg having meanwhile passed on into a wider portion of the

oviducal tube, called (by loose analogy, as Owen says) the " uterus."

Here the egg assumes its permanent form, here it becomes rigid,

and it is to this portion of the "oviduct" that our argument

principally refers.

(2) Both the yolk and the entire egg tend to fill completely

their respective membranes, and, whether this be due to growth

or imbibition on the part of the contents or to contraction on the

part of the surrounding membranes, the resulting tendency is for

both yolk and egg to be, in the first instance, spherical, unless

otherwise distorted by external pressure.

(3) The egg is subject to pressure within the oviduct, which

is an elastic, muscular tube, along the walls of which pass peri-

staltic waves of contraction. These muscular contractions may
be described as the contraction of successive annuli of muscle,

gi\ang annular (or radial) pressure to successive portions of the

egg; they drive the egg forward against the frictional resistance

of the tube, while tending at the same time to distort its form.

While nothing is known, so far as I am aware, of the muscular

physiology of the oviduct, it is well known in the case of the

intestine that the presence of an obstruction leads to the develop-

ment of violent contractions in its rear, which waves of contraction

die away, and are scarcely if at all propagated in advance of the

obstruction.

(4) It is known by observation that a hen's egg is always

laid blunt end foremost.

(5) It can be shown, at least as a vpry common rule, that

those eggs which are most unsymmetrical, or most tapered off

posteriorly, are also eggs of a large size relatively to the parent

bird. The guillemot is a notable case in point, and so also are

the curlews, sandpipers, phaleropes and terns. We may accord-

ingly presume that the more pointed eggs are those that are large

relatively to the tube or oviduct through which they have to pass,

or, in other words, are those which are subject to the greatest

pressure while being forced along. So general is this relation

that we may go still further, and presume with great plausibihty
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in the few exceptional cases (of which the apteryx is the most

conspicuous) where the egg is relatively large though not markedly

unsymmetrical, that in these cases the oviduct itself is in all

probabihty large (as Giinther had suggested) in proportion to the

size of the bird. In the case of the common fowl we can trace a

direct relation between the size and shape of the egg, for the first

eggs laid by a young pullet are usually smaller, and at the same

time are much more nearly spherical than the later ones; and,

moreover, some breeds of fowls lay proportionately smaller eggs

than others, and on the whole the former eggs tend to be rounder

than the latter*.

We may now proceed to inquire more particularly how the form

of the egg is controlled by the pressures to which it is subjected.

The egg, just prior to the formation of the shell, is, as we have

seen, a fluid body, tending to a spherical shape and enclosed within

a membrane.

Our problem, then, is : Given a practically incompressible

fluid, contained in a deformable capsule, which is either (a) entirely

inextensible, or (b) shghtly extensible, and which is placed in a

long elastic tube the walls of which are radially contractile, to

determine the shape under pressure.

If the capsule be spherical, inextensible, and completely filled

with the fluid, absolutely no deformation can take place. The

few eggs that are actually or approximately spherical, such as

those of the tortoise or the owl, may thus be alternatively explained

as cases where httle or no deforming pressure has been apphed

prior to the solidification of the shell, or else as cases where the

capsule was so httle capable of extension and so completely filled

as to preclude the possibihty of deformation.

If the capsule be not spherical, but be inextensible, then

deformation can take place under the external radial compression,

* In so far as our explanation involves a shaping or moulding of the egg by

the uterus or "oviduct" (an agency supplemented by the proper tensions of the

egg), it is curioxxs to note that this is very much the same as that old view of

Telesius regarding the formation of the embryo {De rerum natura, vi, co. 4 and 10),

which he had inherited from Galen, and of which Bacon speaks {Nov. Org. cap. 50;

of. Ellis's note). Bacon expressly remarks thit "Telesius should have been able

to shew the like formation in the shells of eggs." This old theory of embryonic,

modelling survives only in our usage of the term "matrix" for a "mould."
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only provided that the pressure tends to make the shape more

nearly spherical, and then only on the further supposition that

the capsule is also not entirely filled as the deformation proceeds.

In other words, an incompressible fluid contained in an inexten-

sible envelope cannot be deformed without puckering of the

envelope taking place.

Let us next assume, as the conditions by which this result

may be avoided, (a) that the envelope is to some extent extensible,

or (6) that the whole structure grows under relatively fixed

conditions. The two suppositions are practically identical with

one another in effect. It is obvious that, on the presumption

that the envelope is only moderately extensible, the whole structure

can only be distorted to a moderate degree away from the spherical

or spheroidal form.

At all points the shape is determined by the law of the

distribution of radial pressure within the given region of the tube,

surface friction helping to maintain the egg in position. If

the egg be under pressure from the oviduct, but without any

marked component either in a forward or backward direction,

the egg will be compressed in the middle, and will tend more or

less to the form of a cylinder with spherical ends. The eggs of

the grebe, cormorant, or crocodile may be supposed to receive

their shape in such circumstances.

When the egg is subject to the peristaltic contraction of the

oviduct during its formation, then from the nature and direction

of motion of the peristaltic wave the pressure will be greatest

somewhere behind the middle of the egg ; in other words, the tube

is converted for the time being into a more conical form, and the

simple result follows that the anterior end of the egg becomes the

broader and the posterior end the narrower.

With a given shape and size of body, equihbrium in the tube

may be maintained under greater radial pressure towards one end
than towards the other. For example, a cyhnder having conical

ends, of semi-angles 6 and 6' respectively, remains in equihbrium,

apart from friction, if |> cos^^ -= ^ cos'-^', so that at the more
tapered end where 6 is small p is small. Therefore the whole

structure might assume such a configuration, or grow under such

conditions, finally becoming rigid by sohdification of the envelope.

T. G. 42
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According to the preceding paragraph, we must assume some

initial distribution of pressure, some squeeze applied to the

posterior part of the egg, in order to give it its tapering form. But,

that form once acquired, the egg may remain in equilibrium both

as regards form and position within the tube, even after that

excess of pressure on the posterior part is reheved. Moreover,

the above equation shews that a normal pressure no greater and

(within certain hmits) actually less acting upon the posterior part

than on the anterior part of the egg after the shell is formed will

be sufficient to communicate to it a forward motion. This is an

important consideration, for it shews that the ordinary form of

an egg, and even the conical form of an extreme case such as the

guillemot's, is directly favourable to the movement of the egg

within the oviduct, blunt end foremost.

The mathematical statement of the whole case is as follows

:

In our egg, consisting of an extensible membrane filled with an

incompressible fluid and under external pressure, the equation of

the envelope is p^-^ T {Ijr -rljr') ^ P, where 'p^^ is the normal

component of external pressure at a point where r and r' are the

radii of curvature, T is' the tension of the envelope, and P the

internal fluid pressure. This is simply the equation of an elastic

surface where T represents the coefficient of elasticity ; in other

words, a flexible elastic shell has the same mathematical properties

as our fluid, membrane-covered egg. And this is the identical

equation which we have already had so frequent occasion to employ

in our discussion of the forms of cells ; save only that in these

latter we had chiefly to study the tension T (i.e. the surface-tension

of the semi-fluid cell) and had httle or nothing to do with the

factor of external pressure (p„), which in the case of the egg becomes

of chief importance.

The above equation is the equation of equilibrium, so that it

must be assumed either that the whole body is at rest or that its

motion while under pressure is not such as to affect the result.

Tangential forces, which have been neglected, could modify the

form by alteration of T. In our case we must, and may very

reasonably, assume that any movement of the egg down the

oviduct during the period when its form is being impressed upon

it is very slow, being possibly balanced by the advance of the
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peristaltic wave which causes the movement, as well as by

friction.

The quantity T is the tension of the enclosing capsule—the

surrounding membrane. If T be constant or symmetrical about

the axis of the body, the body is symmetrical. But the abnormal

eggs that a hen sometimes lays, cylindrical, annulated, or quite

irregular, are due to local weakening of the membrane, in other

words, to asymmetry of T. Not only asymmetry of T , but also

asymmetry of p^, will render the body subject to deformation,

and this factor, the unknown but regularly varying, largely

radial, pressure applied by successive annuli of the oviduct, is the

essential cause of the form, and variations of form, of the egg.

In fact, in so far as the postulates correspond near enough to

actuaUties, the above equation is the equation of all eggs in the

universe. At least this is so if we generahse it in the form

fn + Tjr + T'jr' = P in recognition of a possible difference between

the principal tensions.

In the case of the spherical egg it is obvious that j9„ is every-

where equal. The simplest case is where p^ = 0, in other words,

where the egg is so small as practically to escape deforming

pressure from the tube. But we may also conceive the tube to

be so thin-walled and extensible as to press with practically

equal force upon all parts of the contained sphere. If while our

egg be in process of conformation the envelope be free at any

part from external pressure (that is to say, if p^ = 0), then it is

obvious that that part (if of circular section) will be a portion of

a sphere. This is not unlikely to be the case actually or approxi-

mately at one or both poles of the egg, and is evidently the case

over a considerable portion of the anterior end of the plover's

egg-

In the case of the conical egg with spherical ends, as is nfore

or less the case in the plover's and the guillemot's, then at either

end of the egg r and r' are identical, and they are greater at the

blunt anterior end than at the other. If we may assume that jt?„

vanishes at the poles of the egg, then it is plain that T varies in

the neighbourhood of these poles, and, further, that the tension

T is greatest at and near the small end of the egg. It is here,

in short, that the egg is most likely to be irregularly distorted or

42—2
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even to burst, and it is here that we most commonly find irregu-

larities of shape in abnormal eggs.

If one portion of the envelope were to become practically stifi

before jp ceases to vary, that would be tantamount to a sudden

variation of T, and would introduce asymmetry by the imposition

of a boundary condition in addition to the above equation.

Within the egg lies the yolk, and the yolk is invariably spherical

or very nearly so, whatever be the form of the entire egg. The

reason is simple, and lies in the fact that the yolk is itself enclosed

in another membrane, between which and the outer membrane

lies a fluid the presence of which makes jo„ for the inner membrane

practically constant. The smallness of friction is indicated by

the well-known fact that the "germinal spot" on the surface of

the yolk is always found uppermost, however we may place and

wherever we may open the egg; that is to say, the yolk easily

rotates within the egg, bringing its lighter pole uppermost. So,

owing to this lack of friction in the outer fluid, or white, whatever

shear is produced within the egg will not be easily transmitted

to the yolk, and, moreover, owing to the same fluidity, the yolk

will easily recover its normal sphericity after the egg-shell is

formed and the unequal pressure relieved.

These, then, are the general principles involved in, and illus-

trated by, the configuration of an egg; and they take us as far

as we can safely go without actual quantitative determinations,

in each particular case, of the forces concerned.

In certain cases among the invertebrates, we again find

instances of hard-shelled eggs which have obviously been

moulded by the oviduct, or so-called "ootype," in which they

have lain : and not merely in such a way as to shew the effects

of peristaltic pressure upon a uniform elastic envelope, but so

as to impress upon the egg the more or less irregular form

of the cavity, within which it had been for a time contained

and compressed. After this fashion Dr Looss* of Cairo has

* Journal of Tropical Medicine, 15th June, 1911. I leave this paragraph as it

was written, though it is now once more asserted that the terminal and lateral-

spined eggs belong to separate and distinct species of Bilharzia (Leiper, Brit. Med.

Journ., 18th March, 1916, p. 411).
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explained the curious form of the egg in Bilharzia (Schistosotna)

haematobium, a formidable parasitic worm to which is due a disease

wide-spread in Africa and Arabia, and an especial scourge of the

Mecca pilgrims. The egg in this worm is provided at one end

with a httle spine, which now and then is found to be placed not

terminally but laterally or ventrally, and which when so placed

has been looked upon as the mark of a supposed new species,

S. Mansoni. As Looss has now shewn, the little spine must be

explained as having been moulded within a little funnel-shaped

expansion of the uterus, just where it communicates with the

common duct leading from the ovary and yolk-gland; by the

accumulation of eggs in the ootype, the one last formed is crowded

into a sideways position, and then, where the side-wall of the egg

bulges in the funnel-shaped orifice of the duct, a little lateral

"spine" is formed. In another species, S. japonicum, the egg is

described as bulging into a so-called "calotte," or bubble-like

convexity at the end opposite to the spine. This, I think, may,

with very little doubt, be ascribed to hardening of the egg-shell

having taken place just at the period when partial relief from

pressure was being experienced by the egg in the neighbourhood

of the dilated orifice of the oviduct.

This case of Bilharzia is not, from our present point of view^ a

very important one, but nevertheless it is interesting. It ascribes

to a mechanical cause a curious pecuharity of form ; it shews, by

reference to this mechanical principle, that two conditions which

were very different to the systematic naturalist's eye, were really

only two simple mechanical modifications of the same thing;

and it destroys the chief evidence for the existence of a supposed

new species of worm, a continued behef in which, among worms

of such great pathogenic importance, might lead to gravely

erroneous pathological deductions.

On the Form of Sea-urchins

As a corollary to the problem of the bird's egg, we may consider

for a moment the forms assumed by the shells of the sea-urchins.

These latter are commonly divided into two classes, the Regular

and the Irregular Echinids. The regular sea-urchins, save in
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slight details which do not aft'ect our problem, have a complete

radial symmetry. The axis of the animal's body is vertical,

with mouth below and the intestinal outlet above; and around

this axis the shell is built as a symmetrical system. It follows

that in horizontal section the shell is everywhere circular, and we

shall have only to consider its form as seen in vertical section or

projection. The irregular urchins (very inaccurately so-called)

have the anal extremity of the body removed from its central,

dorsal situation ; and it follows that they have now a single plane

of symmetry, about which the organism, shell and all, is bilaterally

symmetrical. We need not concern ourselves in detail with the

shapes of their shells, which may be very simply interpreted, by

the help of radial co-ordinates, as deformations of the circular or

"regular" type.

The sea-urchin shell consists of a membrane, stiffened into

rigidity by calcareous deposits, which constitute a beautiful

skeleton of separate, neatly fitting "ossicles." The rigidity of

the shell is more apparent than real, for the entire structure is,

in a sluggish way, plastic; inasmuch as each httle ossicle is

capable of growth, and the entire shell grows by increments to

each and all of these multitudinous elements, whose individual

growth involves a certain amount of freedom to move relatively

to one another ; in a few cases the ossicles are so little developed

that the whole shell appears soft and flexible. The viscera of the

animal occupy but a small part of the space within the shell, the

cavity being mainly filled by a large quantity of watery fluid,

whose density must be very near to that of the external sea-water.

Apart from the fact that the sea-urchin continues to grow, it

is plain that we have here the same general conditions as in the

egg-shell, and that the form of the sea-urchin is subject to a similar

equilibrium of forces. * But there is this important difference, that

an external muscular pressure (such as the oviduct administers

during the consoUdation of egg-shell), is now lacking. In its

place we have the steady continuous influence of gravity, and

there is yet another force which in all probabihty we require to

take into consideration.

While the sea-urchin is alive, an immense number of delicate

" tube-feet," mth suckers at their tips, pass through minute pores
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in the shell, and, hke so many long cables, moor the animal to

the ground. They constitute a symmetrical system of forces,

with one resultant downwards, in the direction of gravity, and

another outwards in a radial direction; and if we look upon the

shell as originally spherical, both will tend to depress the sphere

into a flattened cake. We need not consider the radial component,

but may treat the case as that of a spherical shell symmetrically

depressed under the influence of gravity. This is precisely the

condition which we have to deal with in a drop of liquid lying on

a plate; the form of which is determined by its own -uniform

surface-tension, plus gravity, acting against the uniform internal

hydrostatic pressure. Simple as this system is, the full mathe-

matical investigation of the form of a drop is not easy, and we
can scarcely hope that the systematic study of the Echinodermata

will ever be conducted by methods based on Laplace's differential

equation * ; but we have no difficulty in seeing that the various

forms represented in a series of sea-urchin shells are no other than

those which we may easily and perfectly imitate in drops.

In the case of the drop of water (or of any other particular

liquid) the specific surface-tension is always constant, and the

pressure varies inversely as the radius of curvature; therefore

the smaller the drop the more nearly is it able to conserve the

spherical form, and the larger the drop the more does it become

flattened under gravity. We can represent the phenomenon by

using india-rubber balls filled with water, of different sizes ; the

little ones will remain very nearly spherical, but the larger will

fall down "of their own weight," into the form of more and more

flattened cakes ; and we see the same thing w^hen we let drops of

heavy oil (such as the orthotoluidene spoken of on p. 219), fall

through a tall column of water, the httle ones remaining round,

and the big ones getting more and more flattened as they sink.

In the case of the sea-urchin, the same series of forms may be

assumed to occur, irrespective of size, through variations in T

,

the specific tension, or "strength," of the enveloping shell.

Accordingly we may study, entirely from this point of view,

such a series as the following (Fig. 328). In a very few cases,

such as the fossil Palaeechinus, we have an approximately spherical

* Cf. Bashforth and Adams, Theoretical Forms of Drops, etc., Cambridge, 1883.
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shell, that is to say a shell so strong that the influence of gravity

becomes negligible as a cause of deformation. The ordinary

species of Echinus begin to display a pronounced depression, and

this reaches its maximum in such soft-shelled flexible forms as

Phormosoma. On the general question I took the opportunity

of consulting Mr C, R. Darhng, who is an acknowledged expert

in drops, and he at once agreed with me that such forms as are

represented in Fig. 328 are no other than diagrammatic illustrations

of various kinds of drops, " most of which can easily be reproduced

Fig. 328. Diagrammatic vertical outlines of various Sea-urchins : A, Palaeecliinus

;

B, Echinus acutus; C, Cidaris; D, D' Coelopleurus ; E, E' Genicopatagus; F,

Phormosoma luculenter; G, P. tenuis; H. Asthenosoma : I, Urechinus.

in outUne by the aid of liquids of approximately equal density to

water, although some of them are fugitive." He found a difficulty

in the case of the outhne which represents Asthenosoma, but the

reason for the anomaly is obvious ; the flexible shell has flattened

down until it has come in contact with the hard skeleton of the

jaws, or "Aristotle's lantern," within, and the curvature of the

outhne is accordingly disturbed. The elevated, conical shells

such as those of Urechinus and Coelopleurus evidently call for

some further explanation ; for there is here some cause at work
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to elevate, rather than to depress the shell. Mr Darling tells me
that these forms "are nearly identical in shape with globules I

have frequently obtained, in which, on standing, bubbles of gas

rose to the summit and pressed the skin upwards, without being

able to escape." The same condition may be at work in the

sea-urchin; but a similar tendency would also be manifested by

the presence in the upper part of the shell of any accuniulation

of substance lighter than water, such as is actually present in the

masses of fatty, oily eggs.

On the Form and Branching of Blood-vessels

Passing to what may seem a very different subject, we may
investigate a number of interesting points in connection with the

form and structure of the blood-vessels, on the same principle

and by help of the same equations as those we have used, for

instance, in studying the egg-shell.

We know that the fluid pressure (P) within the vessel is

balanced by (1) the tension (T) of the wall, divided by the radius

of curvature, and (2) the external pressure {pn)> normal to the

wall; according to our formula

P = p,, + T{l/r+l/r').

If we neglect the external pressure, that is to say any support

which may be given to the vessel by the surrounding tissues, and

if we deal only with a cyhndrical vein or artery, this formula

becomes simplified to the form P = T/R. That is to say, under

constant pressure, the tension varies as the radius. But the

tension, per unit area of the vessel, depends upon the thickness

of the wall, that is to say on the amount of membranous and

especially of muscular tissue of which it is composed.

Therefore, so long as the pressure is constant, the thickness

of the wall should vary as the radius, or as the diameter, of the

blood-vessel. But it is not the case that the pressure is constant,

for it gradually falls off, by loss through friction, as we pass from

the large arteries to the small ; and accordingly we find that while,

for a time, the cross-sections of the larger and smaller vessels are

symmetrical figures, with the wall-thickness proportional to the

size of the tube, this proportion is gradually lost, and the walls
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of the small arteries, and still more of the capillaries, become

exceedingly thin, and more so than in strict proportion to the

narrowing of the tube.

In the case of the heart we have, within each of its cavities, a

pressure which, at any given moment, is constant over the whole

wall-area, but the thickness of the wall varies very considerably.

For instance, in the left ventricle, the apex is by much the thinnest

portion, as it is also that with the greatest curvature. We may
assume, therefore (or at least suspect), that the formula,

t{l/r + 1/r') = C, holds good; that is to say, that the thickness (t)

of the wall varies inversely as the mean curvature. This may be

tested experimentally, by dilating a heart with alcohol under a

known pressure, and then measuring the thickness of the walls

in various parts after the whole organ has become hardened.

By this means it is found that, for each of the cavities, the law

holds good with great accuracy*. Moreover, if we begin by

dilating the right ventricle and then dilate the left in like manner,

until the whole heart is equally and symmetrically dilated, we

find (1) that we have had to use a pressure in the left ventricle

from six to seven times as great as in the right ventricle, and

(2) that the thickness of the walls is just in the same proportion j*.

A great many other problems of a mechanical or hydro-

dynamical kind arise in connection with the blood-vessels J, and

while these are chiefly interesting to the physiologist they have

also their interest for the morphologist in so far as they bear upon

structure and form. As an example of such mechanical problems

* Woods, R. H., On a Physical Theorem applied to tense Membranes, Jotirn.

of Anat. and Phys. xxvi, pp. 362-371, 1892. A similar investigation of the

tensions in the uterine wall, and of the varying thickness of its muscles, was
attempted by Haughton in his Animal Mechanics, pp. 151-158, 1873.

f This corresponds with a determination of the normal pressures (in systole)

by Krohl, as being in the ratio of 1 : 6*8.

X Cf. Schwalbe, G., Ueber Wechselbeziehungen imd ihr Einfluss auf die

Gestaltung des Arteriensystem, Jen. Zeitschr. xn, p. 267, 1878 , Roux, Ueber die

Verzweigungen der Blutgefassen des Menschen, ibid, xn, p. 205, 1878; Ueber die

Bedeutung der Ablenkung des Arterienstammen bei der Astaufgabe, ibid, xm,
p. 301, 1879; Hess, Walter, Eine mechanisch bedingte Gesetzmassigkeit im Bau
des Blutgefasssystems, A. f. Entw. Me.ch. xvi, p. 632, 1903; Thoma, R., Ueber die

Histogenese und Histomechanik des Blutgefasssystems, 1893.
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we may take the conditions which determine or help to determine

the manner of branching of an artery, or the angle at which its

branches are given of?; for, as John Hunter said*, "To keep up a

circulation sufficient for the part, and no more. Nature has varied

the angle of the origin of the arteries accordingly." The general

principle is that the form and arrangement of the blood-vessels is

such that the circulation proceeds with a minimum of effort, and

with a minimum of wall-surface, the latter condition leading to a

minimum of friction and being therefore included in the first.

What, then, should be the angle of branching, such that there

shall be the least possible loss of energy in the course of the

circulation? In order to solve this problem in any particular

case we should obviously require to know (1) how the loss of

energy depends upon the distance travelled, and (2) how the loss

of energy varies with the diameter of the vessel. The loss of

energy is evidently greater in a narrow tube than in a wide one,

and greater, obviously, in a long journey than a short. If the

large artery, AB, give off a comparatively

narrow branch leading to P (such as CP,

or DP), the route ACP is evidently

shorter than ADP, but on the other

hand, by the latter path, the blood has

tarried longer in the wide vessel AB,
and has had a shorter course in the

narrow branch. The relative advantage

of the two paths will depend on the loss

of energv in the portion CD, as com-

pared with that in the alternative portion

CD' , the latter being short and narrow, the former long and wide.

If we ask, then, which factor is the more important, length or

width, we may safely take it that the question is one of degree

:

and that the factor of width will become much the more important

wherever the artery and its branch are markedly unequal in size.

In other words, it would seem that for small branches a large

angle of bifurcation, and for large branches a small one, is always

the better. Roux has laid down certain rules in regard to the

branching of arteries, which correspond with the general con-

* Essays, etc., edited by Owen, i, p. 134, 1861.
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elusions which we have just arrived at. The most important of

these are as follows: (1) If an artery bifurcate into two equal

branches, these branches come off at equal angles to the main

stem. (2) If one of the two branches be smaller than the other,

then the main branch, or continuation of the original artery,

makes with the latter a smaller angle than does the smaller or

'"lateral" branch. And (3) all branches which are so small that

they scarcely seem to weaken or diminish the main stem come off

from it at a large angle, from about 70° to 90°.

We may follow Hess in a further investigation of this pheno-

menon. Let AB be an artery, from which a branch has to be

given off so as to reach P, and let ACP, ABP, etc., be alternative

courses which the branch may follow

:

CD, DE, etc., in the diagram, being

equal distances (= I) along AB. Let

us call the angles PCD, PCE, x^, x^,

etc. : and the distances CD', DE', by

which each branch exceeds the next in

length, we shall call Z^, Zg, etc. Now it

is evident that, of the courses shewn,

ACP is the shortest which the blood

can take, but it is also that by which

its transit through the narrow branch

is the longest. We may reduce its

transit through the narrow branch more

and more, till we come to CGP, or

rather to a point where the branch

comes off at right angles to the main

stem; but in so doing we very con-

siderably increase the whole distance

travelled. We may take it that there will be some intermediate

point which will strike the balance of advantage.

Now it is easy to shew that if, in Fig. 330, the route ADP and

AEP (two contiguous routes) be equally favourable, then any

other route on either side of these, such as ACP or AFP, must

be less favourable than either. Let ADP and AEP, then, be

equally favourable; that is to say, let the loss of energy which

the blood suffers in its passage along these two routes be equal.

Fig. 330.



XV] OF BLOOD VESSELS 669

Then, if we make the distance DE very small, the angles iCo and

iCg are nearly equal, and may be so treated. And again, if DE
be very small, then DE'E becomes a right angle, and L (or

DE') =- 1 cos x^.

But if L be the loss of energy per unit distance in the wide

tube AB, and L' be the corresponding loss of energy in the narrow

tube DP, etc., then IL = LL' , because, as we have assumed, the

loss of e;aergy on the route DP is equal to that on the whole

route DEP. Therefore IL = IL' cos iCg, and cos x^ ^ LjU . That

is to say, the most favourable angle of branching will be such

that the cosine of the angle is equal to the ratio of the loss of

energy which the blood undergoes, per unit of length, in the main

vessel, as compared with that which it undergoes in the branch.

While these statements are so far true, and while they

undoubtedly cover a great number of observed facts, yet it is

plain that, as in all such cases, we must regard them not as a

complete explanation, but a& factors in a complicated phenomenon

:

not forgetting that (as the most learned of all students of the

heart and arteries, Dr Thomas Young, said in his Croonian

lecture*) all such questions as these, and all matters connected

with the muscular and elastic powers of the blood-vessels,

"belong to the most refined departments of hydraulics." Some
other explanation must be sought in order to account for a

phenomenon which particularly impressed John Hunter's mind,

namely the gradually altering angle at which the successive inter-

costal arteries are given off from the thoracic aorta : the special

interest of this case arising from the regularity and symmetry of

the series, for "there is not another set of arteries in the body
whose origins are so much the same, whose offices are so much
the same, whose distances from their origin to the place of use,

and whose uses [? sizes] | are so much the same."
* On the Functions of the Heart and Arteries. Phil. Trans. 1809^ pp. 1-31,

of. 1808, pp. 164-186; Collected Works, i, pp. 511-534, 1855. The same lesson is

conveyed by aU such work as that of Volkmann, E H. Weber and PoiseuiUe.

Cf. Stephen Hales' Statical Essay.", n, Introduction: "Especially considering

that they [i.e. animal Bodies] are in a manner framed of one continued Maze of

innumerable Canals, in which Fiuid^'are incessantly circulating, some with great

Force and Rapidity, others with very different Degrees of rebated Velocity:

Hence, etc."

j- "Sizes" is Owen's editorial emendation, which seems amply justified.



CHAPTER XVI

ON FORM AND MECHANICAL EFFICIENCY

There is a certain large class of morphological problems of

which we have not yet spoken, and of which we shall be able to

say but httle. Nevertheless they are so important, so full of

deep theoretical significance, and are so bound up with the general

question of form and of its determination as a result of growth,

that ^n essay on growth and form is bound to take account of

them, however imperfectly and briefly. The phenomena which

I have in mind are just those many cases where adaptation, in the

strictest sense, is obviously present, in the clearly demonstrable

form of mechanical fitness for the exercise of some particular

function or action which has become inseparable from the life

and well-being of the organism.

When we discuss certain so-called "adaptations" to outward

circumstance, in the way of form, colour and so forth, we are often

apt to use illustrations convincing enough to certain minds but

unsatisfying to others—in other words, incapable of demon-

stration. With regard to colouration, for instance, it is by colours

''cryptic," "warning," "signalhng," "mimetic," and so on*,

that we prosaically expound, and slavishly profess to justify, the

vast AristoteUan synthesis that Nature makes all things with a

purpose and "does nothing in vain." Only for a moment let us

glance at some few instances by which the modern teleologist

accounts for this or that manifestation of colour, and is led on

and on to beliefs and doctrines to which it becomes more and more

difficult to subscribe.

* For a more elaborate classification, into colours cryptic, procryptic, anti-

crjrptic, apatetic, epigamic, sematic, episematic, aposematic, etc., see Poulton's

Colours of Animals (Int. Scientific Series.. Lxvrn), 1890; cf. also Meldola, R.,

Variable Protective Colouring in Insects, P.Z.S. 1873, pp. 153-162, etc.
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Some dangerous and malignant animals are said (in sober

earnest) to wear a perpetual war-paint, in order to "remind their

enemies that they had better leave them alone*." The wasp and

the hornet, in gallant black and gold, are terrible as an army
with banners ; and the Gila Monster (the poison-hzard of the

Arizona desert) is splashed with scarlet-—its dread and black

complexion stained With heraldry more dismal. But the wasp-

like hvery of the noisy, idle hover-flies and drone-flies is but

stage armour, and in their tinsel suits the little counterfeit cowardly

knaves mimic the -fighting crew.

The jewelled splendour of the peacock and the humming-bird,

and the less effulgent glory of the lyre-bird and the Argus pheasant,

are ascribed to the unquestioned prevalence of vanity in the one

sex and wantonness in the other")".

The zebra is striped that it may graze unnoticed on the plain,

the tiger that it may lurk undiscovered in the jungle ; the banded

Chaetodont and Pomacentrid fishes are further bedizened to the

hues of the coral-reefs in which they dwell t. The tawny hon is

yellow as the desert sand ; but the leopard wears its dappled hide

to blend, as it crouches on the branch, with the sun-flecks peeping

through the leaves.

The ptarmigan and the snowy owl, the arctic fox and the polar

bear, are white among the snows ; but go he north or go he south,

the raven (hke the jackdaw) is boldly and impudently black.

The rabbit has his white scut, and sundry antelopes their

piebald flanks, that one timorous fugitive may hie after another,

spying the warning signal. The primeval terrier or collie-dog

* Dendy, Evolutionary Biology, p. 336, 1912.

I Delight in beauty is one of the pleasui'es of the imagination; there is no
limit to its indulgence, and no end to the results which we may ascribe to its

exercise. But as for the particular "standard of beauty" which the bird (for

instance) admires and selects (as Darwin says in the Origin, p. 70, edit. 1884),

«'e are very much in the dark, and we run the risk of arguing in a circle : for wellnigh

all we can safely say is what Addison says (in the 4 12th Spectator)—that each different

species "is most affected with the beauties of its own kind. ...Hinc merula in nigro

se oblectat nigra marito;...hinc noctua tetram Canitiem alarum et glaucos miratur
ocellos."

% Cf. Bridge, T. W., Cambridge Natural History (Fishes), vii, p. 173, 1904;
also Frisch, K. v., Ueber farbige Anpassung bei Fische, Zool. Jahrb. (Abt. Allg. Zool.),

xxxii, pp. 171-230, 1914.
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had brown spots over his eyes that he might seem awake when he

was sleeping *
: so that an enemy might let the sleeping dog lie,

for the singular reason that he imagined him to be awake. And
a flock of flamingos, wearing on rosy breast and crimson wings

a garment of invisibihty, fades away into the sky at dawn or

sunset Uke a cloud incarnadine f.

To buttress the theory of natural selection the same instances

of "adaptation" (and many more) are used, which in an earher

but not distant age testified to the wisdom of the Creator and

revealed to simple piety the high purpose of God. In the words

of a certain learned theologian J, "The free use of final causes to

explain what seems obscure was temptingly easy....Hence the

finahst was often the man who made a liberal use of the ignava

ratio, or lazy argument: when you failed to explain a thing by

the ordinary process of causahty, you could "explain" it by

reference to some purpose of nature or of its Creator. This method

lent itself with dangerous facihty to the well-meant endeavours

of the older theologians to expound and emphasise the beneficence

of the divine purpose." Mutatis mutandis, the passage carries

its plain message to the uaturahst.

The fate of such arguments or illustrations is always the same.

They attract and captivate for awhile; they go to the building

of a creed, which contemporary orthodoxy defends under its

severest penalties : but the time comes when they lose their

fascination, they somehow cease to satisfy and to convince, their

foundations are discovered to be insecure, and in the end no man
troubles to controvert them.

But of a very different order from all such "adaptations" as

these, are those very perfect adaptations of form which, for

instance, fit a fish for swimming or a bird for flight. Here we are

* Nature, l, p. 572; li, pp. 33, 57, 533, 1894-95.

f They are "wonderfully fitted for 'vanishment' against the flushed, rich-

coloured skies of early morning and evening....their chief feeding-times"; and

"look like a real sunset or dawn, repeated on the opposite side of the heavens,

—

either east or west as the case may be": Thayer, Concealing-coloration in the

Animal Kingdom, New York, 1909, pp. 154-155. This hypothesis, like the rest,

is not free from difficulty. Twilight is apt to be short in the homes of the flamingo

:

and moreover. Mr Abel Chapman, who watched them on the Guadalquivir, tells

us that they feed by day.

% Principal Galloway, Philosophy of Religion, p. 344, 1914.
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far above the region of mere hypothesis, for we have to deal with

questions of mechanical efficiency where statical and dynamical

considerations can be applied and established in detail. The

naval architect learns a great part of his lesson from the investi-

gation of the stream-lines of a fish ; and the mathematical study

of the stream-lines of a bird, and of the principles underlying the

areas and curvatures of its wings and tail, has helped to lay the

very foundations of the modern science of aeronautics. When,

after attempting to comprehend the exquisite adaptation of the

swallow or the albatross to the navigation of the air, we try to

pass beyond the empirical study and contemplation of such

perfection of mechanical fitness, and to ask how such fitness came

to be, then indeed we may be excused if we stand wrapt in wonder-

ment, and if our minds be occupied and even satisfied with the

conception of a final cause. And yet all the while, with no loss

of wonderment nor lack of reverence, do we find ourselves con-

strained to believe that somehow or other, in dynamical principles

and natural law, there lie hidden the steps and stages of physical

causation by which the material structure was so shapen to its

ends*.

But the problems associated with these phenomena are

difficult at every stage, even long before we approach to the

unsolved secrets of causation ; and for my part I readily confess

that I lack the requisite knowledge for even an elementary

discussion of the form of a fish or of a bird. But in the form of

a bone we have a problem of the same kind and order, so far

simplified and particularised that we may to some extent deal

with it, and may possibly even find, in our partial comprehension

of it, a partial clue to the principles of causation underlying this

whole class of problems.

Before Ave speak of the form of a bone, let us say a word about,

the mechanical properties of the material of which it is built f, in

* Cf. Professor Flint, in his Preface to Affleck's translation of Janet's Cau-ies

finales: "We are, no doubt, still a long way from a mechanical theory of organic

growth, but it may be said to be the quaesitmn of modern science, and no one

can say that it is a chimaera."

t Cf. Sir Donald MacAlister, How a Bone is Built, Emjl. III. Mag. 1884.

T. G. 43
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relation to the strength it has to manifest or the forces it has to

resist : understanding always that we mean thereby the properties

of fresh or living bone, with all its organic as well as inorganic

constituents, for dead, dry bone is a very different thing. In all

the structures raised by the engineer, in beams, pillars and girders

of every kind, provision has to be made, somehow or other, for

strength of two kinds, strength to resist compression or crushing,

and strength to resist tension or pulling asunder. The evenly

loaded column is designed with a view to supporting a downward

pressure, the wire-rope, hke the tendon of a muscle, is adapted

only to resist a tensile stress ; but in many or most cases the two

functions are very closely inter-related and combined. The case

of a loaded beam is a famihar one; though, by the way, we are

now told that it is by no means so simple as it looks, and indeed

that " the stresses and strains in this log of timber are so complex

that the problem has not yet been solved in a manner that reason-

ably accords with the known strength of the beam as found by

actual experiment*." However, be that as it may, we know,

roughly, that when the beam is

loaded in the middle and supported

at both ends, it tends to be

bent into an arc, in which con-

dition its lower fibres are being

stretched, or are undergoing a

tensile stress, while its upper

-pia. 331. fibres are undergoing compres-

sion. It follows that in some

intermediate layer there is a "neutral zone," where the

fibres of the wood are subject to no stress of either kind.

In hke manner, a vertical pillar if unevenly loaded (as, for

instance, the shaft of our thigh-bone normally is) will tend to

bend, and so to endure compression on its concave, and tensile

stress upon its convex side. In many cases it is the business of

the engineer to separate out, as far as possible, the pressure-hnes

from the tension-hnes, in order to use separate modes of con-

struction, or even different materials for each. In a suspension-

* Professor Claxton Fidler, On Bridge Construction, p. 22 (4th ed.), 1909; cf.

{int. al.) Love's Elasticity, p. 20 {Historical Introduction), 2nd ed., 1906.
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bridge, for instance, a great part of the fabric is subject to tensile

strain only, and is built throughout of ropes or wires; but the

massive piers at either end of the bridge carry the weight of the

whole structure and of its load, and endure all the " compression-

strains" which are inherent in the system. Very much the

same is the case in that wonderful arrangement of struts and ties

which constitute, or complete, the skeleton of an animal. The

"skeleton," as we see it in a Museum, is a poor and even a mis-

leading picture of mechanical efficiency*. From the engineer's

point of view, it is a diagram showing all the compression -hues,

but by no means all of the tension-hnes of the construction; it

shews all the struts, but few of the ties, and perhaps we might

even say 7ione of the principal ones ; it falls all to pieces unless

we clamp it together, as best we can, in a more or less clumsy and

immobihsed way. But in hfe, that fabric of struts is surrounded

and interwoven with a compUcated system of ties : hgament and

membrane, muscle and tendon, run between bone and bone;

and the beauty and strength of the mechanical construction he

not in one part or in another, but in the complete fabric which

all the parts, soft and hard, rigid and flexible, tension-bearing

and pressure-bearing, make up together f.

However much we may find a tendency, whether in nature or

art, to separate these two constituent factors of tension and

compression, we cannot do so completely; and accordingly the

engineer seeks for a material which shall, as nearly as possible,

offer equal resistance to both kinds of strain. In the following

table—1 borrow it from Sir Donald MacAlister—we see approxi-

mately the relative breaking (or tearing) hmit and crushing Hmit

in a few substances.

* In preparing or "macerating" a skeleton, tlie naturalist nowadays carries

on the process till nothing is left but the whitened bones. But the old anatomists,

whose object was not the study of "comparative" morphology but the wider

theme of comparative physiology, were wont to macerate by easy stages; and in

many of their most instructive preparations, the ligaments were intentionally left

in connection with the bones, and as part of the "skeleton."

t In a few anatomical diagrams, for instance in some of the drawings in

Schmaltz's Atlas der Anatomie des Pferdes, we may see the system of "ties"

diagrammaticaUy inserted in the figure of the skeleton. Cf. Gregory, On the

principles of Quadrupedal Locomotion, Ann. N. Y. Acad, of Sciences, xxn, p. 289,

1912.

43—2
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Average Strength of Materials {in kg. per sq. mm.).

Steel
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The I or the H-girder or rail is designed to resist bending in one

particular direction, but if, as in a tall pillar, it be necessary to

resist bending in all directions alike, it is obvious that the tubular

or cylindrical construction best meets the case ; for it is plain

that this hollow tubular pillar is but the I-girder turned round

every way, in a "solid of revolution," so that on any two opposite

sides compression and tension are equally met and resisted, and

there is now no need for any substance at all in the way of web
or " filling" within the hollow core of the tube. And it is not only

in the supporting pillar that such a construction is useful ; it is

appropriate in every case where stiffness is required, where bending

has to be resisted. The long bone of a bird's wing has little or

no weight to carry, but it has to withstand powerful bending

moments ; and in the arm-bone of a long-winged bird, such as

an albatross, we see the tubular construction manifested in its

perfection, the bony substance being reduced to a thin, perfectly

cylindrical, and almost empty shell. The quill of the bird's

feather, the hollow shaft of a reed, the thin tube of the wheat-

straw bearing its heavy burden in the ear, are all illustrations

which Galileo used in his account of this mechanical principle*.

Two points, both of considerable importance, present themselves

here, and we may deal with them before we go further. In the

first place, it is not difficult to see that, in our bending beam, the

strain is greatest at its middle ; if we press our walking-stick hard

against the ground, it will tend to snap midway. Hence, if our

cyHndrical column be exposed to strong bending stresses, it will

be prudent and economical to make its walls thickest in the middle

and thinning off gradually towards the ends; and if we look at

a longitudinal section of a thigh-bone, we shall see that this is

just what nature has done. The thickness of the walls is nothing

less than a diagram, or "graph," of the " bending-moments

"

from one point to another along the length of the bone.

'

The second point requires a little more explanation. If we

* Galileo, Dialogues concerning Two Netv Sciences (1638), Crew and Salvio's

translation, New York, 1914, p. 150; Opere, ed. Favaro, viii, p. 186. Cf. Borelli,

De Motu Animalium, i, prop. CLXXX, 1685. Cf. also Camper, P., La structure des

OS dans les oiseaux, 0pp. iii, p. 459, ed. 1803; Rauber, A., Galileo iiber Knochen-

formen, Morphol. Jahrb. vii, pp. 327. 328, 1881 ; Paolo Enriques, Delia economia

di sostanza nelle esse cave, Arch. f. Ent. Mech. xx, pp. 427-465, 1906.
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imagine our loaded beam to be supported at one end only (for

instance, by being built into a wall), so as to form what is called

a "bracket" or "cantilever/' then we can

see, without much difficulty, that the lines

of stress in the beam run somewhat as in

the accompanying diagram. Immediately

under the load, the " compression-Unes

"

tend to run vertically downward; but

Pig. 332. where the bracket is fastened to the

wall, there is pressure directed horizon-

tally against the wall in the lower part of the surface of

attachment; and the vertical beginning and the horizontal end

of these pressure-hnes must be continued into one another in the

form of some even mathematical curve—which, as it happens,

is part of a parabola. The tension-hnes are identical in form

with the compression-hnes, of which they constitute the "mirror-

image"; and where the two systems intercross, they do so at

right angles, or "orthogonally" to one another. Such systems

of stress-hnes as these we shall deal with again ; but let us take

note here of the important, though well-nigh obvious fact, that

while in the beam they both unite to carry the load, yet it is

always possible to weaken one set of hnes at the expense of the

other, and in some cases to do altogether away with one set or

the other. For example, when we replace our end-supported

beam by a curved bracket, bent upwards or downwards as the

case may be, we have evidently cut away in the one case the

greater part of the tension-lines, and in the other the greater part

of the compression-hnes. And if instead of bridging a stream

with our beam of wood we bridge it with a rope, it is evident that

this new construction contains all the tension-hnes, but none of

the compression-Unes of the old. The biological interest connected

with this principle hes chiefly in the mechanical construction of

the rush or the straw, or any other typically cyhndrical stem.

The material of which the stalk is constructed is very weak to

withstand compression, but parts of it have a very great tensile

strength. Schwendener, who was both botanist and engineer,

has elaborately investigated the factor of strength in the

cyhndrical stem, which Gahleo was the first to call attention to.
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Schwendener* shewed that the strength was concentrated in the

Httle bundles of "bast-tissue," but that these bast-fibres had a

tensile strength per square mm. of section, up to the hmit of

elasticity, not less than that of steel-wire of such quality as was

in use in his day.

For instance, we see in the following table the load which

various fibres, and various wires, were found capable of sustaining,

not up to the breaking-point, but up to the "elastic Hmit," or

point beyond which complete recovery to the original length took

place no longer after release of the load.

Stress,
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stronger bundles ; sometimes with these bundles further strength-

ened by radial balks or ridges ; sometimes with all the fibres set

close together in a continuous hollow

cylinder. In the case figured in Fig.

333 Schwendener calculated that the

resistance to bending was at least

twenty-five times as great as it would

have been had the six main bundles

been brought close together in a solid

core. In many cases the centre of

the stem is altogether empty; in all

other cases it is filled with soft tissue,

« ^^^'
suitable for the ascent of sap or other

functions, but never such as to confer mechanical rigidity. In a

tall conical stem, such as that of a palm-tree, we can see not only

these principles in the construction of the cylindrical trunk, but

we can observe, towards the apex, the bundles of fibre curving

over and intercrossing orthogonally with one another, exactly

after the fashion of our stress-fines in Fig. 332 ; but of course, in

this case, we are still deafing with tensile members, the opposite

bundles taking on in turn, as the tree sw^ays, the alternate
.

function of resisting tensile strain*.

Let us now" come, at last, to the mechanical structure of bone,

of which we find a well-known and classical illustration in the

various bones of the human leg. In the case of the tibia, the bone

is somewhat widened out above, and its hollow shaft is capped

by an almost flattened roof, on which the weight of the body

directly rest. It is obvious that, under these circumstances, the

engineer would find it necessary to devise means for supporting

this flat roof, and for distributing the vertical pressures which

impinge upon it to the cyhndrical walls of the shaft.

* For further botanical illustrations, see (int. al.) Hegler, Einfluss der Zug-

kraften auf die Festigkeit und die Ausbildung mechanischer Gewebe in Pfianzen,

SB. sacks. Ges. d. Wiss. p. 638, 1891 ; Kny, L , Einfluss von Zug und Druck auf

die Richtung der Scheidewande in sich teilenden Pflanzenzellen, Ber. d. hot.

Gesellsch. xiv, 1896; Sachs, Mechanomorphose und Phylogenie, Flora, Lxxvm,
1894; cf. also Pfliiger, Einwirkung der Schwerkraft, etc., iiber die Richtung der

Zelltheilung, Archiv, xxxiv, 1884.
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In the case of the bird's wing-bone, the hollow of the bone is

practically empty, as we have already said, being filled only with

air save for a thin layer of living tissue immediately within the

cylinder of bone; but in our own bones, and all weight-carrying

bones in general, the hollow space is filled with marrow, blood-

vessels and other tissues ; and among these living tissues hes a

fine lattice-work of httle interlaced "trabeculae" of bone, forming

Fig. 334. Head of the human femur in section. (After .Schiifer, from

a photo by Prof. A. Robinson.)

the so-called "cancellous tissue." The older anatomists were

content to describe this cancellous tissue as a sort of "spongy

network," or irregular honeycomb, until, some fifty years ago, a

remarkable discovery was made regarding it. It was found by

Hermann Meyer (and afterwards shewn in greater detail by

Juhus WolfE and others) that the trabeculae, as seen in a longi-

tudinal section of a long bone, were arranged in a very definite

and orderly way ; in the femur, they spread in beautiful curving
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lines from the head to the tubular shaft of the bone, and these

bundles of Hues were crossed by others, with so nice a regu-

larity of arrangement that each intercrossing was as nearly as

possible an orthogonal one: that is to say, the one set of fibres

crossed the other everywhere at right angles. A great engineer.

Professor Culmann of Zurich (to whom, by the way, we owe the

whole modern method of "graphic statics"), happened to see

some of Meyer's drawings and preparations, and he recognised

in a moment that in the arrangement of the trabeculae we had

Fig. 335. Crane-head and femur. (After Culmann and H. Meyer.)

nothing more nor less than a diagram of the lines of stress, or

directions of compression and tension, in the loaded structure :

in short, that nature was strengthening the bone in precisely the

manner and direction ih which strength was needed. In the

accompanying diagram of a crane-head, by Culmann, we recognise

a slight modification (caused entirely by the curved shape of the

structure) of the still simpler lines of tension and compression

which we have already seen in our end-supported beam as

represented in Fig. 332. In the shaft of the crane, the concave
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or inner side, overhung by the loaded head, is the " compression-

member"; the outer side is the "tension-member"; and the

pressure-lines, starting from the loaded surface, gather themselves

together, always in the direction of the resultant pressure, till

they form a close bundle running down the compressed side

of the shaft : while the tension-lines, running upwards ^long the

opposite side of the shaft, spread out through the head, ortho-

gonally to, and linking together, the system of compression-lines.

The head of the femur (Fig. 335) is a little more comphcated in

form and a httle less symmetrical than Culmann's diagrammatic

crane, from which it chiefly differs in the fact that the load is

divided into two parts, that namely which is borne by the head

of the bone, and that smaller portion which rests upon the great

trochanter ; but this merely amounts to saying that a notch has

been cut out of the curved upper surface of the structure, and we

have no difficulty in seeing that the anatomical arrangement of

the trabeculae follows precisely the mechanical distribution of

compressive and tensile stress or, in other words, accords perfectly

with the theoretical stress-diagram of the crane. The lines of

stress are bundled close together along the sides of the shaft, and

lost or concealed there in the substance of the sohd wall of bone

;

but in and near the head of the bone, a peripheral shell of bone

does not suffice to contain them, and they spread out through the

central mass in the actual concrete form of bony trabeculae*.

* Among other works on the mechanical construction of bone see : Bourgery,

Traite de Vanatomie (I. Osteologie), 1832 (with admirable illustrations of trabecular

structure); Tick, L., Die Ursachen der Knochenformen, Gottingen, 1857; Meyer, H.,

Die Architektur der Spongiosa, Archiv f. Anat. und Physiol. XLvn, pp. 615-628,

1867 ; Statilc ii. Mechanik des menschlichen Knochengeriistes, Leipzig, 1873 ;

Wolff, J., Die innere Architektm- der Knochen, Arch. f. Anat. und Phys. L, 1870;

Das Oesetz der Transformation bei Knochen, 1892; von Ebner, V., Der feinere Bau
der Knochensubstanz, Wiener Bericht, Lxxii, 1875; Rauber, Anton, Elastizitdt und

Festigkeit der Knochen, Leipzig, 1876; 0. Meserer, Elast. u. Festigk. d. mensch-

lichen Knochen, Stuttgart, 1880; MacAlister, Sir Donald, How a Bone is Built,

English Illustr. Mag. pp. 640-649, 1884; Rasumowsky, Architektonik des Fuss-

skelets. Int. Monatsschr. f. Anat. p. 197, 1889; Zschokke, Weitere Unters. liber das

Verhdltniss der Knochenbildung zur Statik und Mechanik des Vertebrate nskelets,

Ziirich, 1892; Roux, W., Ges. Abhandlungen iiber Entwicklungsmechanik der

Organismen, Bd. I, Fuyiktionelle Anpassung, Leipzig, 1895; Triepel, H., Die

Stossfestigkeit der Knochen, Arch. f. Anat. u. Phys. 1900; Gebhardt, FunktioneU

wichtige Anordnungsweisen der feineren und groberen Bauelemente des Wirbel-

thierknochens, etc.. Arch. f. Entw. Mech. 1900-1910; Kirchner. A., Architektur



684 ON FORM AND MECHANICAL EFFICIENCY [ch.

Mutatis mutandis, the same phenomenon may be traced in any

other bone which carries weight and is hable to flexure; and in

the OS calcis and the tibia, and more or less in all the bones of the

lower hmb, the arrangement is found to be very simple and

clear.

Thus,, in the os calcis, the weight resting on the head of the

bone has to be transmitted partly through the backward-projecting

heel to the ground, and partly forwards through its articulation

with the cuboid bone, to the arch of the foot. We thus have,

very much as in a triangular roof-tree, two compression-members,

sloping apart from one another; and these have to be bound

Fig. 336. Diagram of stress-lines in the human foot. (From Sir

D. MacAlister, after H. Meyer.)

together by a "tie" or tension-member, corresponding to the

third, horizontal member of the truss.

So far, dealing wholly with the stresses and strains due to

tension and compression, we have altogether omitted to speak

of a third very important factor in the engineer's calculations,

namely what is known as "shearing stress." A shearing force is

one which produces "angular distortion" in a figure, or (what

comes to the same thing) which tends to cause its particles to

der Metatarsalien, A. f. E. M. xxiv, 1907; Triepel, Harm., Die trajectorielle

Structuren (in Einf. in die Physikalische Anatomie, 1908); Dixon, A. F.,

Architecture of the Cancellous Tissue forming the Upper End of the Femur,

Journ. of Anat. and Phys. (3) xliv, pp. 223-230, 1910.
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slide over one another. A shearing stress is a somewhat com-

pUcated thing, and we must try to illustrate it (however

imperfectly) in the simplest possible way. If we build up a pillar,

for instance, of a pile of flat horizontal slates, or of a pack of

cards, a vertical load placed upon it will produce compression, but

will have no tendency to cause one card to slide, or shear, upon

another; and in like manner, if we make up a cable of parallel

wires and, letting it hang vertically, load it evenly with a weight,

again the tensile stress produced has no tendency to cause one

wire to slip or shear upon another. But the case would have

Fig. .3.37. Trabecular structure of the os ealcis. (From MacAlister.)

been very different if we had built up our pillar of cards or slates

lying obliquely to the lines of pressure, for then at once there

would have been a tendency for the elements of the pile to slip

and slide asunder, and to produce what the geologists call "a
fault" in the structure.

Somewhat more generally, if AB be a bar, or pillar, of cross-section a

under a direct load P, giving a stress per unit area = p, then the whole

pressure P = pa. Let CD be an oblique section, inchned at an angle 6 to the

cross-section; the pressure on CD will evidently be =^acos 0. But at any
point in CD, the pressure P may be resolved into the force Q acting along

CD, and N perpendicular to it : where N = P cos 6, and Q= P sin 6 = pa sin 6.

The whole force Q upon CD = q . area of CD, which is = q . a/cos, 6.
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Fig. 338.

Therefore ^a/cos = pa sin 6, therefore q = p sin 6 cos 6, = ^p sin 26.

Therefore when sin 2^ = 1, that is, when d = 45°, g- is a maximum, and

=p/2; and when sin 2^ = 0, that is when ^ = 0°

or 90°, then q vanishes altogether.

This is as much as to say, that a

shearing stress vanishes altogether along

the hnes of maximum compression or

tension ; it has a definite value in all

other positions, and a maximum value

when it is incUned at 45° to either, or

half-way between the two. This may be

further illustrated in various simple ways.

When we submit a cubical block of iron

to compression in the testing machine, "it

does not tend to give way by crumbling

all to pieces; but as a rule it disrupts by shearing, and along

some plane approximately at 45° to the axis of compression.

Again, in the beam which we have already considered under a

bending moment, we know that if we substitute for it a pack of

cards, they will be strongly sheared on one another; and the

shearing stress is greatest in the "neutral zone," where neither

tension nor compression is manifested : that is to say in the line

which cuts at equal angles of 45° the orthogonally intersecting

lines of pressure and tension.

In short we see that, while shearing stresses can by no means

be got rid of, the danger of rupture or breaking-down under

shearing stress is completely got rid of when we arrange the

materials of our construction wholly along the pressure-lines and

tension-lines of the system ; for along these lines there is no shear.

To apply these principles to the growth and development of

our bone, we have only to imagine a little trabecula (or group of

trabeculae) being secreted and laid down fortuitously in any

direction within the substance of the bone. If it lie in the

direction of one of the pressure-Hnes, for instance, it will be in

a position of comparative equihbrium, or minimal disturbance;

but if it be incHned obUquely to the pressure-lines, the shearing

force will at once tend to act upon it and move it away. This

is neither more nor less than what happens when we comb our
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hair, or card a lock of wool: filaments lying in the direction of

the comb's path remain where they were; but the others, under

the influence of an obhque component of pressure, are sheared

out of their places till they too come into coincidence with the

lines of force. So straws show how the wind blows—or rather

how it has been blowing. For every straw that Ues askew to the

wind's path tends to be sheared into it; but as soon as it has

come to lie the way of the wind it tends to be disturbed no

more, save (of course) by a violence such as to hurl it bodily

away.

In the biological aspect of the case, we must always re-

member that our bone is not only a living, but a highly plastic

structure; the little trabeculae are constantly being formed and

deformed, demolished and formed anew. Here, for once, it is

safe to say that "heredity" need not and cannot be invoked to

account for the configuration and arrangement of the trabeculae

:

for we can see them, at any time of life, in the making, under the

direct action and control of the forces to which the system is

exposed. If a bone be broken and so repaired that its parts lie

somewhat out of their former place, so that the pressure- and

tension-hnes have now a new distribution, before many weeks are

over the trabecular system will be found to have been entirely

remodelled, so as to fall into line with the new system of forces.

And as Wolff pointed out, this process of reconstruction extends

a long way off from the seat of injury, and so cannot be looked

upon as a mere accident of the physiological process of healing

and repair; for instance, it may happen that, after a fracture of

the shaft of a long bone, the trabecular meshwork is wholly altered

and reconstructed within the distant extremities of the bone.

Moreover, in cases of transplantation of bone, for example when
a diseased metacarpal is repaired by means of a portion taken

from the lower end of the ulna, with astonishing quickness the

plastic capabilities of the bony tissue are so manifested that

neither in outward form nor inward structure can the old portion

be distinguished from the new.

Herein then lies, so far as we can discern it, a great part at

least of the physical causation of what at first sight strikes us as

a purely functional adaptation : as a phenomenon, in other words.
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whose physical cause is as obscure as its final cause or end is,

apparently, manifest.

Partly associated with the same phenomenon, and partly to

be looked upon (meanwhile at least) as a fact apart, is the very

important physiological truth that a condition of strain, the

result of a stress, is a direct stimulus to growth itself. This indeed

is no less than one of the cardinal facts of theoretical biology.

The soles of our boots wear thin, but the soles of our feet grow-

thick, the more we walk upon them : for it would seem that the

living cells are "stimulated" by pressure, or by what we call

" exercise," to increase and multiply. The surgeon knows, when

he bandages a broken hmb, that his bandage is doing something

more than merely keeping the parts together : and that the even,

constant pressure which he skilfully apphes is a direct encourage-

ment of growth and an active agent in the process of repair. In the

classical experiments of Sedillot*, the greater part of the shaft of the

tibia was excised in some young puppies, leaving the whole weight

of the body to rest upon the fibula. The latter bone is normally

about one-fifth or sixth of the diameter of the tibia; but under

the new conditions, and under the "stimulus" of the increased

load, it grew till it was as thick or even thicker than the normal

bulk of the larger bone. Among plant tissues this phenomenon

is very apparent, and in a somewhat remarkable way ; for a strain

caused by a constant or increasing weight (such as that in the

stalk of a pear while the pear is growing and ripening) produces

a very marked increase of strength without any necessary increase

of bulk, but rather by some histological, or molecular, alteration

of the tissues. Hegler, and also Pfeffer, have investigated this

subject, by loading the young shoolj of a plant nearly to its

breaking point, and then redetermining the breaking-strength

after a few days. Some young shoots of the sunflower were found

to break with a strain of 160 gms. ; but when loaded with 150 gms.,

and retested after two days, they were able to support 250 gms.

;

and being again loaded Avith something short of this, by next day

they sustained 300 gms., and a few days later even 400 gms.

* Sedillot, De I'influence des fonctions sur la structure et la forme des organes;

C. R. Lix, p. 539, 1864; cf. lx, p. 97, 1865, Lxvm. p. 1444. 1869.
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Such experiments have been amply confirmed, but so far as

I am aware, we do not know much more about the matter: we

do not know, for instance, how far the change is accompanied by

increase in number of the bast-fibres, through transformation of

other tissues; or how far it is due to increase in size of these

fibres; or whether it be not simply due to strengthening of the

original fibres by some molecular change. But I should be much

inclined to suspect that the latter had a good deal to do with the

phenomenon. We know nowadays that a railway axle, or any

other piece of steel, is weakened by a constant succession of

frequently interrupted strains; it is said to be ''fatigued," and

its strength is restored by a period of rest. The converse effect

of continued strain in a uniform direction may be illustrated by

a homely example. The confectioner takes a mass of boiled

sugar or treacle (in a particular molecular condition determined

by the temperature to which it has been exposed), and draws the

soft sticky mass out into a rope ; and then, folding it up lengthways,

he repeats the process again and again. At first the rope is pulled

out of the ductile mass without difficulty; but as the work goes

on it gets harder to do, until all the man's force is used to stretch

the rope. Here we have the phenomenon of increasing strength,

following mechanically on a rearrangement of molecules, as the

original isotropic condition is transmuted more and more into

molecular asymmetry or anisotropy ; and the rope apparently

"adapts itself" to the increased strain which it is called on to bear,

all after a fashion which at least suggests a parallel to the increasing

strength of the stretched and weighted fibre in the plant. For

increase of strength by rearrangement of the particles we have

already a rough illustration in our lock of wool or hank of tow.

The piece of tow will carry but little weight while its fibres are

tangled and awry : but as soon as we have carded it out, and

brought all its long fibres parallel and side by side, we may at once

make of it a strong and useful cord.

In some such ways as these, then, it would seem that we may
co-ordinate, or hope to co-ordinate, the phenomenon of growth

with certain of the beautiful structural phenomena which present

themselves to our eyes as "provisions," or mechanical adaptations,

for the display of strength where strength is most required.

T. G. 44
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That is to say, the origin, or causation, of the phenomenon would

seem to lie, partly in the tendency of growth to be accelerated

under stram : and partly in the automatic effect of shearing

strain, by which it tends to displace parts which grow obliquely

to the direct lines of tension and of pressure, while leaving those

in place which happen to lie parallel or perpendicular to those

lines : an automatic effect which we can probably trace as working

on all scales of magnitude, and as accounting therefore for the

rearrangement of minute particles in the metal or the fibre, as

well as for the bringing into line of the fibres themselves within

the plant, or of the little trabeculae within the bone.

But we may now attempt to pass from the study of the

individual bone to the much wider and not less beautiful problems

of mechanical construction which are presented to us by the

skeleton as a whole. Certain problems of this class are by no

means neglected by writers on anatomy, and many have been

handed down from Borelli, and even from older writers. For

instance, it is an old tradition of anatomical teaching to point

out in the human body examples of the three orders of levers*;

again, the principle that the limb-bones tend to be shortened in

order to support the weight of a very heavy animal is well under-

stood by comparative anatomists, in accordance with Euler's law,

that the weight which a column liable to flexure is capable of

supporting varies inversely as the square of its length ; and again,

the statical equilibrium of the body, in relation for instance to

the erect posture of man, has long been a favourite theme of the

philosophical anatomist. But the general method, based upon

that of graphic statics, to which we have been introduced in our

study of a bone, has not, so far as I know, been applied to the

general fabric of the skeleton. Yet it is plain that each bone plays

* E.g. (1) the head, noddmg backwards and forwards on a fulcrum, represented

by the atlas vertebra, lying between the weight and the power; (2) the foot, raising

on tip-toe the weight of the body against the fulcrum of the ground, where the

weight is between the fulcrum and the power, the latter being represented by the

tendo Achillis; (3) the arm, lifting a weight in the hand, with the power (i.e. the

biceps muscle) between the fulcrum and the weight. (The second case, by the way,

has been much disputed; cf. Haycraft in Schafer's Textbook of Physiology, p. 251,

1900.)
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a part in relation to the whole body, analogous to that which a

little trabecula, or a little group of trabeculae, plays within the

bone itself: that is to say, in the normal distribution of forces

in the body, the bones tend to follow the lines of stress, and

especially the pressure-lines. To demonstrate this in a compre-

hensive way would doubtless be difficult ; for we should be dealing

with a framework of very great complexity, and should have to

take account of a great variety of conditions*. This framework

is complicated as we see it in the skeleton, where (as we have said)

it is only, or chiefly, the struts of the whole fabric which are

represented ; but to understand the mechanical structure in

detail, we should have to follow out the still more complex

arrangement of the ties, as represented by the muscles and

ligaments, and we should also require much detailed information

as to the weights of the various parts and as to the other forces

concerned. Without these latter data we can only treat the

question in a preliminary and imperfect way. But, to take once

again a small and simplified part of a big problem, let us think

of a quadruped (for instance, a horse) in a standing posture, and

see whether the methods and terminology of the engineer may not

help us, as they did in regard to the minute structure of the single

bone.

Standing four-square upon its forelegs and hindlegs, with the

weight of the body suspended between, the quadruped at once

suggests to us the analogy of a bridge, carried by its two piers.

And if it occurs to us, as naturalists, that we never look at a

standing quadruped without contemplating a bridge, so, con-

versely, a similar idea has occurred to the engineer ; for Professor

Fidler, in this Treatise on Bridge-Construction, deals with the chief

descriptive part of his subject under the heading of "The Com-

parative Anatomy of Bridges." The designation is most just, for

in studying the various types of bridges we are studying a series

of well-planned skeletons
"f

; and (at the cost of a little pedantry)

* Oui' problem is analogous to Dr Thomas Young's problem of the best disposi-

tion of the timbers in a wooden ship {Phil. Trans. 1814, p. 303). He was not long

of finding that the forces which may act upon the fabric are very numerous and

very variable, and that the best mode of resisting them, or best structural arrange-

ment for ultimate strength, becomes an immensely complicated problem.

j In like manner, Clerk Maxwell could not help employing the term "skeleton "

44—2
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we might go even further, and study (after the fashion of the

anatomist) the "osteology" and "desmology" of the structure,

that is to say the bones which are represented by "struts," and

the ligaments, etc., which are represented by "ties." Further-

more after the methods of the comparative anatomist, we may
classify tlie families, genera and species of bridges according to

their distinctive mechanical features, which correspond to certain

definite conditions and functions.

In more ways than one, the quadrupedal bridge is a remarkable

one; and perhaps its most remarkable peculiarity is that it is a

jointed and flexible bridge, remaining iii equilibrium under

considerable and sometimes great modifications of its curvature,

such as we see, for instance, when a cat humps or flattens her

back. The fact that flexibility is an essential feature in the

quadrupedal bridge, while it is the. last thing which an engineer

desires and the first which he seeks to provide against, will impose

certain important limiting conditions upon the design of the

skeletal fabric ; but to this matter we shall afterwards return.

Let us begin by considering the quadruped at rest, when he stands

upright and motionless upon his feet, and when his legs exercise

no function save only to carry the weight of the whole body. So

far as that function is concerned, we might now perhaps compare

the horse's legs with the tall and slender piers of some railway

bridge; but it is obvious that these jointed legs are ill-adapted

to receive the horizontal thrust of any arch that may be placed

atop of them. Hence it follows that the curved backbone of the

horse, which appears to cross like an arch the span between his

shoulders and his flanks, cannot be regarded as an arch, in the

in defining the mathematical conception of a "frame," constituted by points and

their interconnecting lines : in studying the equilibrium of which, we consider its

different points as mutually acting on each other with forces whose directions are

those of the lines joinmg each pair of points. Hence (says Maxwell), "in order to

exhibit the mechanical action of the frame in the most elementary manner, we may
draw it as a skeleton, in which the different points are joined by straight lines,

and we may indicate by numbers attached to these lines the tensions or com-

pressions in the corresponding pieces of the frame" (Trails. R. S. E. xxvi, p. 1,

1870). It follows that the diagram so constructed represents a "diagram of

forces," in this limited sense that it is geometrical as regards the position and

direction of the forces, but arithmetical as regards their magnitude. It is to just

such a diagram that the animal's skeleton tends to approximate.
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engineer's sense of the word. It resembles an arch m form, but

not in function, for it cannot act as an arch unless it be held back

at each end (as every arch is held back) by abutments capable of

resisting the horizontal thrust; and these necessary abutments

are not present in the structure. But in various ways the

engineer can modify his superstructure so as to supply the place

of these external reactions, which in the simple arch are obviously

indispensable. Thus, for example, we may begin by inserting a

straight steel tie, AB (Fig. 339), uniting the ends of the curved rib

AaB ; and this tie will supply the place of the external reactions,

converting the structure into a "tied arch," such as we may see

in the roofs of many railway-stations. Or we may go on to fill

in the space between arch and tie by a "web-system," converting

it into what the engineer describes as a "parabolic bowstring

girder" (Fig. 339 h). In either case, the structure becomes an

independent "detached girder," supported at each end but not

otherwise fixed, and consisting essentially of an upper compression-

member, AaB, and a lower tension-member, AB. But again, in

the skeleton of the quadruped, the necessary tie, AB, is not to he

found; and it follows that these comparatively simple types of

bridge do not correspond to, nor do they help us to understand,

the type of bridge which nature has designed in the skeleton of

the quadruped. Nevertheless if we try to look, as an engineer

would look, at the actual design of the animal skeleton and the

actual distribution of its load, we find that the one is most admir-

ably adapted to the other, according to the strict principles of

engineering construction. The structure is not an arch, nor a

tied arch, nor a bowstring girder : but it is strictly and beautifully
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comparable to the main girder of a double-armed cantilever

bridge.

Obviously, in our quadrupedal bridge, the superstructure does

not terminate (as it did in our former diagram) at the two points

of support, but it extends beyond them at each end, carrying the

head at one end and the tail at the other, upon a pair of projecting

arms or "cantilevers" (Fig. 346).

In a typical cantilever bridge, such as the Forth Bridge

(Fig. 345), a certain simplification is introduced. For each pier

carries, in this case, its own double-armed cantilever, linked by

a short connecting girder to the next, but so jointed to it that no

weight is transmitted from one cantilever to another. The bridge

in short is cut into separate sections, practically independent of

one another; at the joints a certain amount of bending is not

precluded, but shearing strain is evaded ; and each pier carries

only its own load. By this arrangement the engineer finds that

design and construction are alike simplified and facilitated. In

the case of the horse, it is obvious that the two piers of the bridge,

that is to say the fore-legs and the hind-legs, do not bear (as they

do in the Forth Bridge) separate and independent loads, but the

whole system forms a continuous structure. In this case, the

calculation of the loads will be a little more difficult and the

corresponding design of the structure a little more complicated.

We shall accordingly simplify our problem very considerably if,

to begin with, we look upon the quadrupedal skeleton as con-

stituted of two separate systems, that is to say of two balanced

cantilevers, one supported on the fore-legs and the other on the

hind ; and we may deal afterwards with the fact that these two

cantilevers are not independent, but are bound up in one common

field of force and plan of construction.

In the horse it is plain that the two cantilever systems into

which we may thus analyse the quadrupedal bridge are unequal

in magnitude and importance. The fore-part of the animal is

much bulkier than its hind quarters, and the fact that the fore-legs

carry, as they so evidently do, a greater weight than the hind-legs

has long been known and is easily proved ; we have only to walk

a horse onto a weigh-bridge, weigh first his fore-legs and then his

hind-legs, to discover that what we may call his front half weighs
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a good deal more than what is carried on his hind feet, say about

three-fifths of the whole weight of the animal.

The great (or anterior) cantilever then, in the horse, is con-

stituted by the heavy head and still heavier neck on one side of

the pier which is represented by the fore-legs, and by the dorsal

vertebrae carrying a large part of the weight of the trunk upon

the other side; and this weight is so balanced over the fore-legs

that the cantilever, while "anchored" to -the other parts of the

structure, transmits but little of its weight to the hind-legs, and

the amount so transmitted will vary with the position of the

head and with the position of any artificial load*. Under certain

conditions, as when the head is thrust well forward, it is evident

that the hind-legs will be actually relieved of a portion of the

comparatively small load which is their normal share.

Our problem now is to discover, in a rough and approximate

way, some of the structural details which the balanced load upon

the double cantilever will impress upon the fabric.

Working by the methods of graphic statics, the engineer's

task is, in theory, one of great simplicity. He begins by drawing

in outline the structure which he desires to erect; he calculates

the stresses and bending-moments necessitated by the dimensions

and load on the structure ; he draws a new diagram representing

these forces, and he designs and builds his fabric on the lines of this

statical diagram. He does, in short, precisely what we have seen

nature doing in the case of the bone. For if we had begun, as

it were, by blocking out the femur roughly, and considering its

position and dimensions, its means of support and the load which

it has to bear, we could have proceeded at once to draw the system

of stress-lines which must occupy the field of force: and to

precisely these stress-lines has nature kept in the building of the

bone, down to the minute arrangement of its trabeculae.

The essential function of a bridge is to stretch across a certain

span, and carry a certain definite load ; and this being so, the

* When the jockey crouches over the neck of his rac'e-horse, and when Tod
Sloan introduced the "American seat," the object m both cases is to reUeve the

hind-legs of weight, and so leave them free for the work of propulsion. Never-

theless, we must not exaggerate the share taken by the hind-limbs in this latter

duty; cf. Stillman, The Horse in Motion, p. 69, 188?.
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chief problem in the designing of a bridge is to provide due

resistance to the " bending-moments " which result from the load.

These bending-moments will vary from point to point along the

girder, and taking the simplest case of a uniform load supported

at both ends, they will be represented by points on a parabola.

If the girder be of uniform depth, that is to say if its two flanges,

Fig. 340. A, Span of proposed bridge. B, Stress diagram, or diagram

of bending-moments*.

respectively under tension and compression, be parallel to one

another, then the stress upon these flanges will vary as the bending-

moments, and will accordingly be very severe in the middle and

will dwindle towards the ends. But if we make the deph of the

girder everywhere proportional to the bending-moments, that is

Fig. 341. The bridge constructed, as a parabolic girder.

to say if we copy in the girder the outlines of the bending-moment

diagram, then our design will automatically meet the circum-

stances of the case, for the horizontal stress in each flange will

now be uniform throughout the length of the girder. In short, in

* This and the following diagrams are borrowed and adapted from Professor

Fidler's Bridge Constrnction.
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W

Fis. 342.

Professor Fidler's words, "Every diagram of moments represents

the outline of a framed structure which will carry the given load

with a uniform horizontal stress in the principal members."

In the following diagrams (Fig. 342, a, b) (which are taken

from the original ones of Cul-

mann), we see at once that the

loaded beam or bracket (a) has

a '"danger-point"' close to its

fixed base, that is to say at the

point remotest from its load.

But in the parabolic bracket

(b) there is no danger-point at

all, for the dimensions of the

structure are made to increase pari passu w^ith the bending-

moments : stress and resistance vary together. Again in Fig. 340,

we have a simple span (A), with its stress diagram (B) ; and in

Fig. 341 we have the corresponding parabolic girder, whose

stresses are now uniform throughout. In fact we see that, by a

process of conversion, the stress diagram in each case becomes

the structural diagram in the other*. Now all this is but the

modern rendering of one of Gahleo's most famous propositions.

In the Dialogue which we have already quoted more than oncef,

Sagredo says "It would be a fine thing if one could discover the

proper shape to give a soUd in order to make it equally resistant

at every point, in which case a load placed at the middle would

not produce fracture more easily than if placed at any other

point." And Gahleo (in the person of Salviati) first puts the

problem into its more general form ; and then shews us how, by

giving a parabolic outline to our beam, we have its simple and

comprehensive solution.

In the case of our cantilever bridge, we shew the primitive girder

* The method of constructing recijnocal diagrams, in which one should represent

the outlines of a frame, and the other the system of forces necessary to keep it

in equilibrium, was first indicated in Culmann's Graphische Statik; it was greatly

developed soon afterwards by Macquom Rankine {Phil. Mag. Feb. 1864, and

Applied Mechanics, passim), to whom is mainly due the general application of the

principle to engineering practice.

j Dialogues concerning Two New Sciences (1638) : Crew and Salvio's transljition,

p. 140 seq.
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in Fig. 343, A, with its beuding-moment diagram (B) ; and it is

evident that, if we turn this diagram upside down, it will still be

illustrative, just as before, of the bending-moments from point

to point: for as yet it is merely a diagram, or graph, of relative

magnitudes.

To either of these two stress diagrams, direct or inverted, we
may fit the design of the construction, as in Figs. 343, C and 344.

nc T]

Fi.o. 343.

Fig. 344

Now in different animals the amount and distribution of the

load differs so greatly that we can expect no single diagram,

drawn from the comparative anatomy of bridges, to apply equally

well to all the cases met with in the comparative anatomy of

quadrupeds; but nevertheless we have already gained an insight

into the general principles of "structural design" in the quad-

rupedal bridge.

In our last diagram the upper member of the cantilever is under
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tension ; it is represented in the quadruped by the ligamentum

nuchae on the one side of the cantilever, and by the supraspinous

ligaments of the dorsal vertebrae on the other. The compression

member is similarly represented, on both sides of the cantilever,

by the vertebral column, or rather by the bodies of the vertebrae

;

while the web, or "filling," of the girders, that is to say the upright

or sloping members which extend from one flange to the other, is

represented on the one hand by the spines of the vertebrae, and

on the other hand, by the oblique interspinous ligaments and

muscles. The high spines over the quadruped's withers are no

other than the high struts which rise over the supporting piers

in the parabolic girder, and correspond to the position of the

maximal bending-moments. The fact that these tall vertebrae

of the withers usually slope backwards, sometimes steeply, in

a quadruped, is easily and obviously explained*. For each

vertebra tends to act as a "hinged lever," and its spine, acted

on by the tensions transmitted by the ligaments on either side,

takes up its position as the diagonal of the parallelogram of

forces to which it is exposed.

It happens that in these comparatively simple types of

cantilever bridge the whole of the parabolic curvature is trans-

ferred to one or other of the principal members, either the

tension-member or the compression-member as the case may be.

But it is of course equally permissible to have both members

curved, in opposite directions. This, though not exactly the case

in the Forth Bridge, is approximately so ; for here the main

compression-member is curved or arched, and the main tension-

member slopes downwards on either side from its maximal height

above the piers. In short, the Forth Bridge is a nearer approach

than either of the other cantilever bridges which we have

* The form and direction of the vertebral spines have been frequently and
elaborately described ; cf. (e.g.) Gottlieb, H., Die Anticluaie der Wirbelsaule der

Saugethiere, Morphol. Jahrb. Lxix, pp. 179-220, 1915, and many works quoted

therein. According to Morita, Ueber die Ursachen der Richtung und Gestalt der

thoracalen Dornfortsatze der Saugethierwirbelsaule (ibi cit. p. 201), various changes

take place in the direction or inclination of these processes in rabbits, after section

of the interspinous ligaments and muscles. These changes seem to be very much
what we should expect, on simple mechanical grounds. See also Fischer, 0.,

Theoretische Grundlagen, fur eine Mechanik der lebenden Korper, Leipzig, pp. x.

372, 1906.
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illustrated to the plan of the quadrupedal skeleton ; for the main

compression-member almost exactly recalls the form of the verte-

bral column, while the main tension-member, though not so

closely similar to the supraspinous and nuchal ligaments, corre-

sponds to the plan of these in a somewhat simplified form.

Fig. 345. A two-armed cantilever of the Forth Bridge. Thick lines, com-

pression-members (bones); thin lines, tension-members (ligaments).

We may now pass without difficulty from the two-armed

cantilever supported on a single pier, as it is in each separate

section of the Forth Bridge, or as we have imagined it to be in

the forequarters of a horse, to the condition which actually exists

in that quadruped, where a two-armed cantilever has its load

distributed over two separate piers. This is not precisely what

an engineer calls a "continuous" girder, for that term is applied

to a girder which, as a continuous structure, crosses two or more

spans, while here there is only one. But nevertheless, this girder

c

Fig. .346.

is effectively continuous from the head to the tip of the tail ; and

at each point of support {A and B) it is subjected to the negative

bending-moment due to the overhanging load on each of the

projecting cantilever arms AH and BT. The diagram of bending-

moments will (according to the ordinary conventions) lie below
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the base line (because the moments are negative), and must take

some such form as that shown in the diagram : for the girder

must suffer its greatest bending stress not at the centre, but at

the two points of support A and B, where the moments are

measured by the vertical ordinates. It is plain that this figure

only differs from a representation of two independent two-armed

cantilevers in the fact that there is no point midway in the span

where the bending-moment vanishes, but only a region between

the two piers in which its magnitude tends to diminish.

The diagram effects a graphic summation of the positive and

negative moments, but its form may assume various modifications

according to the method of graphic summation which we may
choose to adopt; and it is obvious also that the form of the

diagram may assume many modifications of detail according to

the actual distribution of the load. In all cases the essential

points to be observed are these : firstly that the girder which is

Tail Head

Fig. 347. Stress-diagram of horse's backbone.

to resist the bending-moments induced by the load must possess

its two principal members—an upper tension-member or tie,

represented by ligament, and a lower compression-member

represented by bone : these members being united by a web
represented by the vertebral spines with their interspinous Uga-

ments, and being placed one above the other in the order named
because the moments are negative; secondly we observe that the

depth of the web, or distance apart of the principal members,

—

that is to say the height of the vertebral spines,—must be pro-

portional to the bending-moment at each point along the length

of the girder.

In the case of an animal carrying two-thirds of his weight

upon his fore-legs and only one-third upon his hind-legs, the

bending-moment diagram will be unsymmetrical, after the fashion

of Fig. 347, the vertical ordinate at A being thrice the height of

that a,t B.
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On the other hand the Dinosaur, with his Hght head and

enormous tail would give us a moment-diagram with the opposite

kind of asymmetry, the greatest bending stress being now found

oyer the haunches, at B (Fig. 348). A glance at the skeleton of

Diplodocus Carnegii will shew us the high vertebral spine3 over

the loins, in precise correspondence with the requirements of this

diagram: just as in the horse, under the opposite conditions of

load, the highest vertebral spines are those of the withers, that

is to say those of the posterior cervical and anterior dorsal

vertebrae.

We have now not only dealt with the general resemblance,

both in structure and in function, of the quadrupedal backbone

with its associated ligaments to a double-armed cantilever girder,

but we have begun to see how the characters of the vertebral

system must differ in different quadrupeds, according to the

Tail Head

Fig. 348. Stress-diagram of backbone of Dinosaur.

conditions imposed by the varying distribution of the load : and

in particular how the height of the vertebral spines which con-

stitute the web will be in a definite relation, as regards magnitude

and position, to the bending-moments induced thereby. We
should require much detailed information as to the actual weights

of the several parts of the body before we could follow out

quantitatively the mechanical efficiency of each type of skeleton;

but in an approximate way what we have already learnt will

enable us to trace many interesting correspondences between

structure and function in this particular part of comparative

anatomy. We must, however, be careful to note that the great

cantilever system is not of necessity constituted by the vertical

column and its ligaments alone, but that the pelvis, firmly united

as it is to the sacral vertebrae, and stretching backwards far

beyond the acetabulum, becomes an intrinsic part of the system

;

and helping (as it does) to carry the load of the abdominal viscera,
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constitutes a great portion of the posterior cantilever arm, or

even its chief portion in cases where the size and weight of the

tail are insignificant, as is the case in the majority of terrestrial

mammals.

We may also note here, that just as a bridge is often a

"combined" or composite structure, exhibiting a combination of

principles in its construction, so in the quadruped we have, as

it were, another girder supported by the same piers to carry the

viscera ; and consisting of an inverted parabolic girder, whose

compression-member is again constituted by the backbone, its

tension-member by the line of the sternum and the abdominal

muscles, while the ribs and intercostal muscles play the part of

the web or filling.

A very iew instances must suffice to illustrate the chief

variations in the load, and therefore in the bending-moment

diagram, and therefore also in the plan of construction, of various

quadrupeds. But let us begin by setting forth, in a few cases,

the actual weights which are borne by the fore-limbs and the

hind-limbs, in our quadrupedal bridge*.
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require to weigh the total load, not in two portions, but in many

;

and we should also have to take close account of the general form

of the animal, of the relation between that form and the distribu-

tion of the load, and of the actual directions of each bone and

ligament by which the forces of compression and tension were

transmitted. All this lies beyond us for the present; but never-

theless we may consider, very briefly, the principal cases involved

in our enquiry, of which the above animals form only a partial

and preliminary illustration.

(1) Wherever we have a heavily loaded anterior cantilever

arm, that is to say whenever the head and neck represent a

considerable fraction of the whole weight of the body, we tend

to have large bending-moments over the fore-legs, and corre-

spondingly high spines over the vertebrae of the withers. This

Tail Head

Fig. 349. Stress-diagram of Titanotherium.

is the case in the great majority of four-footed, terrestrial animals,

the chief exceptions being found in animals with comparatively

small heads but large and heavy tails, such as the anteaters or

the Dinosaurian reptiles, and also (very naturally) in animals

such as the crocodile, where the "bridge" can scarcely be said

to be developed, for the long heavy body sags down to rest upon

the ground. The case is sufficiently exemplified by the horse,

and still more notably by the stag, the ox, or the pig. It is

illustrated in the accompanying diagram of the conditions in the

great extinct Titanotherium.

(2) In the elephant and the camel we have similar conditions,

but slightly modified. In both cases, and especially in the latter,

the weight on the fore-quarters is relatively large; and in both

cases the bending-moments are all the larger, by reason of the

length and forward extension of the camel's neck, and the forward
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position of the heavy tusks of the elephant. In both eases the

dorsal spines are large, but they do not strike us as exceptionally

so; but in both cases, and especially in the elephant, they slope

backwards in a marked degree. Each spine, as already explained,

must in all cases assume the position of the diagonal in the

parallelogram of forces defined by the tensions acting on it at

its extremity; for it constitutes a "hinged lever," by which the

bending-moments on either side are automatically balanced ; and

it is plain that the more the spine slopes backwards the more it

indicates a relatively large strain thrown upon the great ligament

of the neck, and a relief of strain upon the more directly acting,

but weaker, ligaments of the back and loins. In both cases, the

bending-moments would seem to be more evenly distributed over

the region of the back than, for instance, in the stag, with its

light hind-quarters and heavy load of antlers: and in both cases

the high "girder" is considerably prolonged, by an extension of

the tall spines backwards in the direction of the loins. When
we come to such a case as the mammoth, with its immensely

heavy and immensely elongated tusks, we perceive at once that

the bending-moments over the fore-legs are now very severe;

and we see also that the dorsal spines in this region are much
more conspicuously elevated than in the ordinary elephant.

(3) In the case of the giraffe we have, without doubt, a veiy

heavy load upon the fore-legs, though no weighings are at hand

to define the ratio ; but as far as possible this disproportionate

load would seem to be relieved, by help of a downward as well

as backward thrust, through the sloping back, to the unusually

low hind-quarters. The dorsal spines of the vertebrae are verjr

high and strong, and the whole girder-system very perfectly

formed. The elevated, rather than protruding position of the

head lessens the anterior bending-moment as far as possible ; but

it leads to a strong compressional stress transmitted almost

directly downwards through the neck : in correlation with which

we observe that the bodies of the cervical vertebrae are excepr

tionally large and strong and steadily increase in size and strength

from the head downwards.

(4) In the kangaroo, the fore-limbs are entirely relieved of

their load, and accordingly the tall spines over the withers, which

T. G. 45
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were so conspicuous in all heavy-headed quadrupeds, have now
completely vanished. The creature has become bipedal, and body
and tail form the extremities of a single balanced cantilever,

whose maximal bending-moments are marked by strong, high

lumbar and sacral vertebrae, and by iliac bones of peculiar form

and exceptional strength.

Precisely the same condition is illustrated in the Iguanodon,

and better still by reason of the great bulk of the creature, and of

the heavy load which falls to be supported by the great cantilever

and by the hind-legs which form its piers. The long and heavy

body and neck require a balance-weight (as in the kangaroo) in

the form of a long heavy tail. And the double-armed cantilever,

so constituted, shews a beautiful parabolic curvature in the graded

heights of the whole series of vertebral spines, which rise to a

maximum over the haunches and die away slowly towards the

neck and the tip of the tail.

(5) In the case of some of the great American fossil reptiles,

such as Diplodocus, it has always been a more or less disputed

question whether or not they assumed, like Iguanodon, an erect,

bipedal attitude. In all of these we see an elongated pelvis, and,

in still more marked degree, we see elevated spinous processes of

the vertebrae over the hind-limbs ; in all of them we have a long

heavy tail, and in most of them we have a marked reduction in

size and weight both of the fore-limb and of the head itself. The

great size of these animals is not of itself a proof against the erect

attitude; because it might well have been accompanied by an

aquatic or partially submerged habitat, and the crushing stress of

the creature's huge bulk proportionately relieved. But we must

consider each such case in the whole light of its own evidence;

and it is easy to see that, just as the quadrupedal mammal may
carry the greater part but not all of its weight upon its fore-limbs,

so a heavy-tailed reptile may carry the greater part upon its hind-

limbs, without this process going so far as to relieve its fore-limbs

of all weight whatsoever. This would seem to be the case in such

a form as Diplodocus, and also in Stegosaurus, whose restoration

by Marsh is doubtless substantially correct*. The fore-limbs,

* This pose of Diplodocus, and of other Sauropodous reptiles, has been much
discussed. Cf. (int. al.) Abel, 0., Abh. k. k. zool. hot. Ges. Wien, v. 1909-10 (60 pp.)

;
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though comparatively small, are obviously fashioned for support,

but the weight which they have to carry is far less than that

which the hind-limbs bear. The head is small and the neck

short, while on the other hand the hind-quarters and the tail are

big and massive. The backbone bends into a great, double-armed

cantilever, culminating over the pelvis and the hind-limbs, and

here furnished with its highest and strongest spines to separate

the tension-member from the compression-member of the girder.

The fore-legs form a secondary supporting pier to this great

cantilever, the greater part of whose weight is poised upon the

hind-limbs alone.

Fig. 350. Diagram of Stegosaurus.

(6) In a bird, such as an ostrich or a common fowl, the

bipedal habit necessitates the balancing of the load upon a single

double-armed cantilever-girder, just as in the Iguanodon and the

kangaroo, but the construction is effected in a somewhat different

way. The great heavy tail has entirely disappeared ; but, though

from the skeleton alone it would seem that nearly all the bulk of

the animal lay in front of the hind-limbs, yet in the living bird

we can easily perceive that the great weight of the abdominal

organs lies suspended behind the socket for the thigh-bone, and

so hangs from the posterior lever-arm of the cantilever, balancing

the head and neck and thorax whose combined weight hangs from

Tornier, SB. Ges. Naturf. Fr. Berlin, pp. 193-209, 1909; Hay, 0. P., Amer. Nat.

Oct. 1908; Tr. Wash. Acad. Sci. xlii, pp. 1-25, 1910; Holland, Anj,er. Nai. May,

1910, pp. 259-283; Matthew, ibid. pp. 547-560; Gilmore, C. W. (Restoration of

Stegosaurus). Pr. U.S. Nat. Museum, 1915.

45—2
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the anterior arm. The great cantilever girder appears, accordingly,

balanced over the hind-legs. It is now constituted in part by

the posterior dorsal or lumbar vertebrae, all traces of special

elevation having disappeared from the anterior dorsals; but the

greater part of the girder is made up of the great iliac bones,

placed side by side, and gripping firmly the sacral vertebrae, often

almost to the extinction of these latter. In the form of these

iliac bones, the arched curvature of their upper border, in their

elongation fore-and-aft to overhang both ways their supporting

pier, and in the coincidence of their greatest height with the

median line of support over the centre of gravity, we recognise

all the characteristic properties of the typical balanced canti-

lever*.

(7) We find a highly important corollary in the case of

aquatic animals. For here the effect of gravity is neutralised

;

we have neither piers nor cantilevers; and we find accordingly

in all aquatic mammals of whatsoever group—whales, seals or

sea-cows—that the high arched vertebral spines over the withers,

or corresponding structures over the hind-limbs, have both

entirely disappeared.

Just as the cantilever girder tended to become obsolete in the

aquatic mammal so does it tend to weaken and disappear in the

aquatic bird. There is a very marked contrast between the high-

arched strongly-built pelvis in the ostrich or the hen, and the

long, thin, comparatively straight and weakly bone which repre-

sents it in a diver, a grebe or a penguin.

But in the aquatic mammal, such as a whale or a dolphin (and

not less so in the aquatic bird), stiffness must be ensured in order

to enable the muscles to act against the resistance of the water

in the act of swimming; and accordingly nature must provide

against bending-moments irrespective of gravity. In the dolphin,

at any rate as regards its tail end, the conditions will be not very

different from those of a column or beam with fixed ends, in

which, under deflexion, there will be two points of contrary

flexure, as at C, D, in Fig. 351.

* The form of the cantilever is much less typical in the small flying birds,

where the strength of the pelvic region is insured in another way, with which we
need not here stop to deal.
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Here, between C and D we have a varying bending-moment,

represented by a continuous curve with its maximal elevation

midway between the points of inflexion. And correspondingl}'-,

in our dolphin, we have a con-

tinuous series of high dorsal

spines, rising to a maximum
about the middle of the animal's

body, and falling to nil at some
'''

distance from the end of the tail. It is their business (as

usual) to keep the tension-member, represented by the strong

supraspinous ligaments, wide apart from the compression-member,

which is as usual represented by the backbone itself. But in

our diagram we see that on the further side of C and D we
have a negative curve of bending-moments, or bending-moments

in a contrary direction. Without inquiring how these stresses

are precisely met towards the dolphin's head (where the coalesced

cervical vertebrae suggest themselves as a partial explanation),

we see at once that towards the tail they are met by the strong

series of chevron-bones, which in the caudal region, where tall

dorsal spines are no longer needed, take their place beloiv the

vertebrae, in precise correspondence with the bending-moment

diagram. In many cases other than these aquatic ones, when
we have to deal with animals with long and heavy tails (like the

Iguanodon and the kangaroo of which we have already spoken),

we are apt to meet with similar, though usually shorter chevron-

bones ; and in all these cases we may see without difficulty that

a negative bending-moment is there to be resisted.

In the dolphin we may find a good illustration of the fact

that not only is it necessary to provide for rigidity in the vertical

direction, but also in the horizontal, where a tendency to bending

must be resisted on either side. This function is effected in part

by the ribs with their associated muscles, but they extend but a

little way and their efficacy for this purpose can be but small.

We have, however, behind the region of the ribs and on either side

of the backbone a strong series of elongated and flattened trans-

verse processes, forming a web for the support of a tension-member

in the usual form of ligament, and so playing a part precisely

analogous to that performed by the dorsal spines in the same
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animal. In an ordinary fish, such as a cod or a haddock, we see

precisely the same thing: the backbone is stiffened by the indis-

pensable help of its three series of ligament-connected processes,

the dorsal and the two transverse series. And here we see (as

we see partly also among the whales), that these three series of

processes, or struts, tend to be arranged well-nigh at equal angles,

of 120°, with one another, giving the greatest and most uniform

strength of which such a system is capable. On the other hand,

in a flat fish, such as a plaice, where from the natural mode of

progression it is necessary that the backbone should be flexible

in one direction while stiffened in another, we find the whole

outline of the fish comparable to that of a double bowstring

girder, the compression-member being (as usual) the backbone,

the tension-member on either side being constituted by the inter-

spinous ligaments and muscles, while the web or filling is very

beautifully represented by the long and evenly graded spines,

which spring symmetrically from opposite sides of each individual

vertebra.

The main result at which we have now arrived, in regard to

the construction of the vertebral column and its associated parts,

is that we may look upon it as a certain type of girder, whose depth,

as we cannot help seeing, is everywhere very nearly proportional

to the height of the corresponding ordinate in the diagram of

moments: just as it is in the girder of a cantilever bridge as

designed by a modern engineer. In short, after the nineteenth

or twentieth century engineer has done his best in framing the

design of a big cantilever, he may find that some of his best ideas

had, so to speak, been anticipated ages ago in the fabric of the

great saurians and the larger mammals.

But it is possible that the modern engineer might be disposed

to criticise the skeleton girder at two or three points; and in

particular he might think the girder, as we see it for instance in

Diplodocus or Stegosaurus, not deep enough for carrying the

animal's enormous weight of some twenty tons. If we adopt a

much greater depth (or ratio of depth to length) as in the modern

cantilever, we shall greatly increase the strength of the structure

;

but at the same time we should greatly increase its rigidity, and
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this is precisely what, in the circumstances of the case, it would

seem that nature is bound to avoid. We need not suppose that

the great saurian was by any means active and limber; but a

certain amount of activity and flexibility he was bound to have,

and in a thousand ways he would find the need of a backbone

that should be flexible as well as strong. Now this opens up a

new aspect of the matter and is the beginning of a long, long story,

for in every direction this double requirement of strength and

flexibility imposes new conditions upon our design. To represent

all the correlated quantities we should have to construct not only

a diagram of moments but also a diagram of elastic deflexion and

its so-called "curvature" ; and the engineer would want to know
something more about the 7naterial of the ligamentous tension-

member—its modulus of elasticity in direct tension, its elastic

limit, and its safe working stress.

In various ways our structural problem is beset by "limiting

conditions." Not only must rigidity be associated with flexibility,

but also stability must be ensured in various positions and

attitudes ; and the primary function of support or weight-carrying

must be combined with the provision of points (Vappui for the

muscles concerned in locomotion. We cannot hope to arrive at

a numerical or quantitative solution of this complicate problem,

but we have found it possible to trace it out in part towards a

qualitative solution. And speaking broadly we may certainly

say that in each case the problem has been solved by nature

herself, very much as she solves the difficult problems of minimal

areas in a system of soap-bubbles; so that each animal is fitted

with a backbone adapted to his own individual needs, or (in

other words) corresponding exactly to the mean resultant of the

stresses to which as a mechanical system it is exposed.

Throughout this short discussion of the principles of con-

struction, limited to one part of the skeleton, we see the same

general principles at work which we recognise in the plan and

construction of an individual bone. That is to say, we see a

tendency for material to be laid down just in the lines of stress,

and so as to evade thereby the distortions and disruptions due to

shear. In these phenomena there lies a definite law of growth,
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whatever its ultimate expression or explanation may come to be.

Let us not press either argument or hypothesis too far: but be

content to see that skeletal form, as brought about by growth,

is to a very large extent determined by mechanical considerations,

and tends to manifest itself as a diagram, or reflected image, of

mechanical stress. If we fail, owing to the immense complexity

of the case, to unravel all the mathematical principles involved

in the construction of the skeleton, we yet gain something, and

not a little, by applying this method to the familiar objects of our

anatomical study: obvia conspicimus, nubem pellente mathesi*.

Before we leave this subject of mechanical adaptation, let us

dwell once more for a moment upon the considerations which

arise from our conception of a field of force, or field of stress, in

which tension and compression (for instance) are inevitably

combined, and are met by the materials naturally fitted to resist

them. It has been remarked over and over again how harmoni-

ously the whole organism hangs together, and how throughout

its fabric one part is related and fitted to another in strictly

functional correlation. But this conception, though never denied,

is sometimes apt to be forgotten in the course of that process of

more and more minute analysis by which, for simplicity's sake,

we seek to unravel the intricacies of a complex organism.

We tend, as we analyse a thing into its parts or into its

properties, to magnify these, to exaggerate their apparent

independence, and to hide from ourselves (at least for a time) the

essential integrity and individuality of the composite whole. We
divide the body into its organs, the skeleton into its bones, as

in very much the same fashion we make a subjective analysis of

the mind, according to the teachings of psychology, into component

factors: but we know very well that judgment and knowledge,

courage or gentleness, love or fear, have no separate existence,

but are somehow mere manifestations, or imaginary co-efficients,

of a most complex integral. And likewise, as biologists, we may
go so far as to say that even the bones themselves are only in a

limited and even a deceptive sense, separate and individual

things. The skeleton begins as a continuum, and a continuum it

remains all life long. The things that link bone with bone,

* The motto was Macquorn Rankine's.
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cartilage, ligaments, membranes, are fashioned out of the same

primordial tissue, and come into being -pari jmssu, with the bones

themselves. The entire fabric has its soft parts and its hard, its

rigid and its flexible parts ; but until we disrupt and dismember

its bony, gristly and fibrous parts, one from another, it exists

simply as a "skeleton," as one integral and individual whole.

A bridge was once upon a time a loose heap of pillars and rods

and rivets of steel. But the identity of these is lost, just as if

they were fused into a solid mass, when once the bridge is built;

their separate functions are only to be recognised and analysed

in so far as we can analyse the stresses, the tensions and the

pressures, which affect this part of the structure or that; and

these forces are not themselves separate entities, but are the

resultants of an analysis of the whole field of force. Moreover

when the bridge is broken it is no* longer a bridge, and all its

strength is gone. So is it precisely with the skeleton. In it is

reflected a field of force : and keeping pace, as it were, in action

and interaction with this field of force, the whole skeleton and

every part thereof, down to the minute intrinsic structure of the

bones themselves, is related in form and in position to the lines

of force, to the resistances it has to encounter; for by one of

the mysteries of biology, resistance begets resistance, and where

pressure falls there growth springs up in strength to meet it.

And, pursuing the same train of thought, we see that all this is

true not of the skeleton alone but of the whole fabric of the body.

Muscle and bone, for instance, are inseparably associated and

connected ; they are moulded one with another ; they come into

being together, and act and react together*. We may study

them apart, but it is as a concession to our weakness and to the

narrow outlook of our minds. We see, dimly perhaps, but yet

with all the assurance of conviction, that between muscle and

bone there can be no change in the one but it is correlated with

changes in the other; that through and through they are linked

in indissoluble association ; that they are only separate entities

* John Hunter was seldom wrong ; but I cannot believe that he was right when
he said (Scientific Works, ed. Owen, i, p. 371), "The bones, in a mechanical view,

appear to be the first that are to be considered. We can study their shape,

connexions, number, uses, etc., without considering any other part of the hody.^'
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in this limited and subordinate sense, that they are farts of a

whole which, when it loses its composite integrity, ceases to

exist.

The biologist, as well as the philosopher, learns to recognise

that the whole is not merely the sum of its parts. It is this, and

much more than this. For it is not a bundle of parts but an

organisation of parts, of parts in their mutual arrangement,

fitting one with another, in what Aristotle calls "a single and

indivisible principle of unity" ; and this is no merely metaphysical

conception, but is in biology the fundamental truth which lies at

the basis of Geoffroy's (or Goethe's) law of "compensation," or

"balancement of growth."

Nevertheless Darwin found no difficulty in believing that

"natural selection will tend in the long run to reduce any fart

of the organisation, as soon as, through changed habits, it becomes

superfluous : without by any means causing some other part to

be largely developed in a corresponding degree. And conversely,

that natural selection may perfectly well succeed in largely deve-

loping an organ without requiring as a necessary compensation

the reduction of some adjoining part*." This view has been

developed into a doctrine of the "independence of single char-

acters" (not to be confused with the germinal "unit characters"

of Mendelism), especially by the palaeontologists. Thus Osborn

asserts a "principle of hereditary correlation," combined with a

" principle of hereditary separability whereby the body is a colony,

a mosaic, of single individual and separable charactersf-"

I cannot think that there is more than a small element of truth

in this doctrine. As Kant said, "die Ursache der Art der Existenz

bei jedem Theile eines lebenden Korpers ist im Ganzen enthalten..'^

And, according to the trend or aspect of our thought, we may
look upon the co-ordinated parts, now as related and fitted to the

end or function of the whole, and now as related to or resulting

from the physical causes inherent in the entire system of forces

to which the whole has been exposed, and under whose influence

it has come into being J.

* Origin of Species, 6th ed. p. 118.

t Atner. Naturalist, April, 1915, p. 198, etc. Cf. infra, p. 727.

J Driesch sees in "Entelechy" that something which differentiates the whole
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It would seem to me that the mechanical principles and

phenomena which we have dealt with in this chapter are of no small

importance to the morphologist, all the more when he is inclined

to direct his study of the skeleton exclusively to the problem of

phylogeny; and especially when, according to the methods of

modern comparative morphology, he is apt to take the skeleton

to pieces, and to draw from the comparison of a series of scapulae,

humeri, or individual vertebrae, conclusions as to the descent

and relationship of the animals to which they belong.

It would, I dare say, be a gross exaggeration to see in every

bone nothing more than a resultant of immediate and direct

physical or mechanical conditions ; for to do so would be t® deny

the existence, in this connection, of a principle of heredity. And
though I have tried throughout this book to lay emphasis on the

direct action of causes other than heredity, in short to circum-

scribe the employment of the latter as a working hypothesis in

morphology, there can still be no question whatsoever but that

heredity is a vastly important as well as a mysterious thing; it

is one of the great factors in biology, however we may attempt to

figure to ourselves, or howsoever we may fail even to imagine,

its underlying physical explanation. But I maintain that it is

no less an exaggeration if we tend to neglect these direct physical

and mechanical modes of causation altogether, and to see in the

characters of a bone merely the results of variation and of heredity,

and to trust, in consequence, to those characters as a sure and

certain and unquestioned guide to affinity and phylogeny.

Comparative anatomy has its physiological side, which filled

men's minds in John Hunter's day, and in Owen's day ; it has its

from the sum of its parts in the case of the organism: "The organism, we know,

is a system the single constituents of which are inorganic in themselves ; only the

whole constituted by them in their typical order or arrangement owes its specificity

to 'Entelechy'" {Gifford LerAures, p. 2"?9, 1908): and I think it could be shewn

that many other philosophers have said precisely the same thing. So far as the

argument goes, I fail to see how this Entelechy is shewn to be peculiarly or

specifically related to the living organism. The conception that the whole is

ahvays somethini^ very different from its parts is a very ancient doctrine. The

reader will perhaps remember how, in another vein, the theme is treated by Martinus

Seriblerus: "In every Jack there is a meat-roasting Quality, which neither resides

in the fly, nor in the weight, nor in any particular wheel of the Jack, but is the

result of the whole composition; etc., etc."
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classificatory and phylogenetic aspect, which has all but filled

men's minds during the last couple of generations; and we can

lose sight of neither aspect without risk of error and misconception.

It is certain that the question of phylogeny, always difficult,

becomes especially so in cases where a great change of physical

or mechanical conditions has come about, and where accordingly

the physical and physiological factors in connection with change

of form are bound to be large. To discuss these questions at

length would be to enter on a discussion of Lamarck's philosophy

of biology, and of many other things besides. But let us take

one single illustration.

The affinities of the whales constitute, as will be readily

admitted, a very hard problem in phylogenetic classification.

We know now that the extinct Zeuglodons are related to the

old Creodont carnivores, and thereby (though distantly) to the

seals ; and it is supposed, but it is by no means so certain, that

in turn they are to be considered as representing, or as allied to,

the ancestors of the modern toothed whales*. The proof of any

such a contention becomes, to my mind, extraordinarily difiicult

and complicated ; and the arguments commonly used in such cases

may be said (in Bacon's phrase) to allure, rather than to extort

assent. Though the Zeuglodonts were aquatic animals, we do not

know, and we have no right to suppose or to assume, that they

swam after the fashion of a whale (any more than the seal does),

that they dived like a whale, and leaped like a whale. But the fact

that the whale does these things, and the way in which he does

them, is reflected in many parts of his skeleton—perhaps more

or less in all: so much so that the lines of stress which these

actions impose are the very plan and working-diagram of great

part of his structure. That the Zeuglodon has a scapula like that

of a whale is to my mind no necessary argument that he is akin

by blood-relationship to a whale : that his dorsal vertebrae are

very different from a whale's is no conclusive argument that

* "There can be no doubt that Fraas is correct in regarding this type (Procetus)

as an annectant form between the Zeuglodonts and the Creodonta, but, although

the origin of the Zeuglodonts is thus made clear, it still seems to be by no means

so certain as that author believes, that they may not themselves be the ancestral

forms of the Odontoceti"; Andrews, Tertiary Vertebrata of the Fayum, 1906,

p. 235.
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such blood-relationship is lacking. The former fact goes a long

way to prove that he used his flippers very much as a whale does

;

the latter goes still farther to prove that his general movements
and equilibrium in the water were totally diflierent. The whale

may be descended from the Carnivora, or might for that matter,

as an older school of naturalists believed, be descended from the

Ungulates ; but whether or no, we need not expect to find in him

the scapula, the pelvis or the vertebral column of the lion or of

the cow, for it would be physically impossible that he could live

the life he does with any one of them. In short, when we hope to

find the missing links between a whale and his terrestrial ancestors,

it must be not by means of conclusions drawn from a scapula, an

axis, or even from a tooth, but by the discovery of forms so inter-

mediate in their general structure as to indicate an organisation

and, ipso facto, a mode of life, intermediate between the terrestrial

and the Cetacean form. There is no valid syllogism to the effect

that A has a flat curved scapula like a seal's, and B has a flat,

curved scapula like a seal's : and therefore A and B are related

to the seals and to each other ; it is merely a flagrant case of an

"undistributed middle." But there is validity in an argument

that B shews in its general structure, extending over this bone

and that bone, resemblances both to A and to the seals : and that

therefore he may be presumed to be related to both, in his

hereditary habits of life and in actual kinship by blood. It is

cognate to this argument that (as every palaeontologist knows)

we find clues to affinity more easily, that is to say with less

confusion and perplexity, in certain structures than in others.

The deep-seated rhythms of growth which, as I venture to

think, are the chief basis of morphological heredity, bring about

similarities of form, which endure in the absence of conflicting

forces ; but a new system of forces, introduced by altered environ-

ment and habits, impinging on those particular parts of the fabric

which lie within this particular field of force, will assuredly not

be long of manifesting itself in notable and inevitable modifications

of form. And if this be really so, it will further imply that

modifications of form will tend to manifest themselves, not so

much in small and isolated phenomena, in this part of the fabric

or in that, in a scapula for instance or a humerus : but rather in



718 ON FORM AND MECHANICAL EFFICIENCY [ch. xvi

some slow, general, and more or less uniform or graded modification,

spread over a number of correlated parts, and at times extending

over the whole, or over great portions, of the body. Whether

any such general tendency to widespread and correlated trans-

formation exists, we shall attempt to discuss in the following

chapter.



CHAPTER XVII

ON THE THEORY OF TRANSFORMATIONS, OR THE
COMPARISON OF RELATED FORMS*

In the foregoing chapters of this book we have attempted to

study the inter-relations of growth and form, and the part which

certain of the physical forces play in this complex interaction

;

and, as part of the same enquiry, we have tried in comparatively

simple cases to use mathematical methods and mathematical

terminology in order to describe and define the forms of organisms.

We have learned in so doing that our own study of organic form,

wliich we call by Goethe's name of Morphology, is but a portion

of that wider Science of Form which deals with the forms assumed

by matter under all aspects and conditions, and, in a still wider

sense, with forms which are theoretically imaginable.

The study of form may be descriptive merely, or it may
become analytical. We begin by describing the shape of an object

in the simple words of common speech : we end by defining it

in the precise language of mathematics ; and the one method

tends to follow the other in strict scientific order and historical

continuity. Thus, for instance, the form of the earth, of a raindrop

or a rainbow, the shape of the hanging chain, or the path of a stone

thrown up into the air, may all be described, however inadequately,

in common words ; but when we have learned to comprehend

and to define the sphere, the catenary, or the parabola, we have

made a wonderful and perhaps a manifold advance. The mathe-

matical definition of a "form" has a quality of precision which

was quite lacking in our earlier stage of mere description ; it is

expressed in few words, or in still briefer symbols, and these

* Reprinted, with some changes and additions, from a paper in the Trans.

Roy. Soc. Edin. L, pp. 857-95, 1915.
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words or symbols are so pregnant with meaning that thought

itself is economised ; we are brought by means of it in touch with

Galileo's aphorism (as old as Plato, as old as Pythagoras, as old

perhaps as the wisdom of the Egyptians), that "the Book of

Nature is written in characters of Geometry."

Next, we soon reach through mathematical analysis to mathe-

matical synthesis; we discover homologies or identities which

were not obvious before, and which our descriptions obscured

rather than revealed: as for instance, when we learn that, how-

ever we hold our chain, or however we fire our bullet, the contour

of the one or the path of the other is always mathematically

homologous. Lastly, and this is the greatest gain of all, we pass

quickly and easily from the mathematical conception of form in

its statical aspect to form in its dynamical relations : we pass from

the conception of form to an understanding of the forces which

gave rise to it; and in the representation of form and in the

comparison of kindred forms, we see in the one case a diagram

of forces in equilibrium, and in the other case we discern the

magnitude and the direction of the forces which have sufficed to

convert the one form into the other. Here, since a change of

material form is only effected by the movement of matter, we have

once again the support of the schoolman's and the philosopher's

axiom, Ignorato motu, ignoratur Natura."

In the morphology of living things the use of mathematical

methods and symbols has made slow progress; and there are

various reasons for this failure to employ a method whose

advantages are so obvious in the investigation of other physical

forms. To begin with, there w^ould seem to be a psychological

reason lying in the fact that the student of living things is by
nature and training ap observer of concrete objects and phenomena,

and the habit of mind which he possesses and cultivates is alien

to that of the theoretical mathematician. But this is by no

means the only reason; for in the kindred subject of mineralogy,

for instance, crystals were still treated in the days of Linnaeus

as wholly within the province of the naturalist, and were described

by him after the simple methods in use for animals and plants ;

but as soon as Haiiy showed the application of mathematics to
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the description and classification of crystals, his methods were

immediately adopted and a new science came into being.

A large part of the neglect and suspicion of mathematical

methods in organic morphology is due (as we have partly seen in

our opening chapter) to an ingrained and deep-seated belief that

even when we seem to discern a regular mathematical figure in

an organism, the sphere, the hexagon, or the spiral which we so

recognise merely resembles, but is never entirely explained by,

its mathematical analogue ; in short, that the details in which the.

figure differs from its mathematical prototype are rhore important

and more interesting than the features in which it agrees, and

even that the peculiar aesthetic pleasure with which we regard

a living thing is somehow bound up with the departure from

mathematical regularity which it manifests as a peculiar attribute

of life. This view seems to me to involve a misapprehension.

There is no such essential difference between these phenomena of

organic form and those which are manifested in portions of

inanimate matter*. No chain hangs in a perfect catenary and no

raindrop is a perfect sphere : and this for the simple reason that

forces and resistances other than the main one are inevitably at

work. The same is true of organic form, but it is for the mathe-

matician to unravel the conflicting forces which are at work

together. And this process of investigation may lead us on step

by step to new phenomena, as it has done in physics, where

sometimes a knowledge of form leads us to the interpretation of

forces, and at other times a knowledge of the forces at work

guides us towards a better insight into form. I would illustrate

this by the case of the earth itself. After the fundamental advance

had been made which taught us that the world was round, Newton
showed that the forces at work upon it must lead to its being

imperfectly spherical, and in the course of time its oblate spheroidal

shape was actually verified. But now, in turn, it has been shown

that its form is still more complicated, and the next step will be

to seek for the forces that have deformed the oblate spheroid.

* M. Bergson repudiates, with peculiar confidence, the application of mathe-

matics to biology. Cf. Creative Evolution, p. 21, "Calculation touches, at most,

certain phenomena of organic destructioii. Organic creation, on the contrary,

the evolutionary phenomena which properly constitute life, we cannot in any way
subject to a mathematical treatment."

T. G. 46
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The organic forms which we can define, more or less precisely,

in mathematical terms, and afterwards proceed to explain and

to account for in terms of force, are of many kinds, as we have

seen; but nevertheless they are few in number compared with

Nature's all but infinite variety. The reason for this is not far

to seek. The living organism represents, or occupies, a field of

force which is never simple, and which as a rule is of immense

complexity. And just as in the very simplest of actual cases we

.
meet with a departure from such symmetry as could only exist

under conditions of ideal simplicity, so do we pass quickly to

cases where the interference of numerous, though still perhaps very

simple, causes leads to a resultant which lies far beyond our powers

of analysis. Nor must we forget that the biologist is much more

exacting in his requirements, as regards form, than the physicist

;

for the latter is usually content with either an ideal or a general

description of form, while the student of living things must needs

be specific. The physicist or mathematician can give us perfectly

satisfying expressions for the form of a wave, or even of a heap of

sand; but we never ask him to define the form of any particular

wave of the sea, nor the actual form of any mountain-peak or

hill*.

* In this there lies a certain justification for a saying of Minot's, of the greater

part of which, nevertheless, I am heartily incUned to disapprove. "We biologists,"

he says, "cannot deplore too frequently or too emphatically the great mathematical

delusion by which men often of great if hmited abihty have been misled into

becoming advocates of an erroneous conception of accuracy. The delusion is that

no science is accurate until its results can be expressed mathematically. The

error comes from the assumption that mathematics can express complex relations.

Unfortunately mathematics have a very limited scope, and are based upon a few

extremely rudimentary experiences, which we make as very little children and of

which no adult has any recollection. The fact that from this basis men of genius

have evolved wonderful methods of dealing with numerical relations should not

blind us to another fact, namely, that the observational basis of mathematics is,

psychologically speaking, very minute compared with the observational basis of

even a single minor branch of biology....While therefore here and there the

mathematical methods may aid us, we need a kind and degree of accuracy of which

mathematics is absolutely incapable With human minds constituted ap they

actually are, we cannot anticipate that there will ever be a mathematical expression

for any organ ox even a single cell, although formulae wiU continue to be useful

for dealing now and then with isolated details..." (op. cit., p. 19, 1911). It were

easy to discuss and criticise these sweeping assertions, which perhaps had their

origin and parentage in an obiter dictum of Huxley's, to the effect that "Mathe-

matics is that study which knows nothing of observation, nothing of exjjeriment.
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For various reasons, then, there are a vast multitude of organic

forms which we are unable to account for, or to define, in mathe-

matical terms ; and this is not seldom the case even in forms which

are apparently of great simplicity and regularity. The curved

outline of a leaf, for instance, is such a case ; its ovate, lanceolate,

or cordate shape is apparently very simple, but the difficulty of

finding for it a mathematical expression is very great indeed.

To define the complicated outline of a fish, for instance, or of a

vertebrate skull, we never even seek for a mathematical formula.

But in a very large part of morphology, our essential task lies

in the comparison of related forms rather than in the precise

definition of each; and the deformation of a complicated figure

may be a phenomenon easy of comprehension, though the figure

itself have to be left unanalysed and undefined. This process

of comparison, of recognising in one form a definite permutation

or deforwation of another, apart altogether from a precise and

adequate understanding of the original "type" or standard of

comparison, lies within the immediate province of mathematics,

and finds its solution in the elementary use of a certain method

of the mathematician. This method is the Method of Co-ordinates,

on which is based the Theory of Transformations.

I imagine that when Descartes conceived the method of

co-ordinates, as a generalisation from the proportional diagrams

of the artist and the architect, and long before the immense

possibilities of this analysis could be foreseen, he had in mind a

very simple purpose ; it was perhaps no more than to find a way
of translating the form of a curve into numbers and into words.

This is precisely what we do, by the method of co-ordinates,

every time we study a statistical curve; and conversely, we

translate numbers into form whenever we "plot a curve" to

illustrate a table of mortality, a rate of growth, or the daily

variation of temperature or barometric pressure. In precisely

the same way it is possible to inscribe in a net of rectangular

co-ordinates the outline, for instance, of a fish, and so to translate

nothing of induction, nothing of causation" {rit. Cajori, Hist of Eletn. Mathematics,

p. 283). But Gauss called mathematics "a science of the eye"; and Sylvester

assures us that "most, if not all, of the great ideas of modern mathematics have

had their origin in observation" {Brit. Ass. Address, 1869, and Laws of Verse, p. 120,

1870).

46—2
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it into a table of numbers, from which again we may at pleasure

reconstruct the curve.

But it is the next step in the employment of co-ordinates

which is of special interest and use to the morphologist ; and this

step consists in the alteration, or "transformation," of our system

of co-ordinates and in the study of the corresponding trans-

formation of the curve or figure inscribed in the co-ordinate

network.

Let us inscribe in a system of Cartesian co-ordinates the outline

of an organism, however complicated, or a part thereof: such as

a fish, a crab, or a mammalian skull. We may now treat this

complicated figure, in general terms, as a function of x, y. If we
submit our rectangular system to "deformation," on simple and

recognised lines, altering, for instance, the direction of the axes,

the ratio of xjy, or substituting for x and y some more complicated

expressions, then we shall obtain a new system of co-ordinates,

whose deformation from the original type the inscribed figure

will precisely follow. In other words, we obtain a new figure,

which represents the old figure under strain, and is a function of

the new co-ordinates in precisely the same way as the old figure

was of the original co-ordinates x and y.

The problem is closely akin to that of the cartographer who
transfers identical data to one projection or another; and whose

object is to secure (if it be possible) a complete correspondence,

in each small unit of area, between the one representation and the

other. The morphologist will not seek to draw his organic forms

in a new and artificial projection; but, in the converse aspect of

the problem, he will inquire whether two different but more or

less obviously related forms can be so analysed and interpreted

that each may be shown to be a transformed representation of

the other. This once demonstrated, it will be a comparatively

easy task (in all probability) to postulate the direction and

magnitude of the force capable of effecting the required trans-

formation. Again, if such a simple alteration of the system of

forces can be proved adequate to meet the case, we may find

ourselves able to dispense with many widely current and more

complicated hypotheses of biological causation. For it is a

maxim in physics that an effect ought not to be ascribed to
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the joint operation of many causes if few are adequate to the

production of it: Frustra fit per jplura, quod fieri potest per

pauciora.

It is evident that by the combined action of appropriate

forces any material form can be transformed into any other:

just as out of a "shapeless" mass of clay the potter or the sculptor

models his artistic product; or just as we attribute to Nature

herself the power to effect the gradual and successive trans-

formation of the simplest into the most complex organism. In

like manner it is possible, at least theoretically, to cause the outline

of any closed curve to appear as a projection of any other what-

soever. But we need not let these theoretical considerations

deter us from our method of comparison of related forms. We
shall strictly limit ourselves to cases where the transformation

necessary to effect a comparison shall be of a simple kind, and

where the transformed, as well as the original, co-ordinates shall

constitute an harmonious and more or less symmetrical system.

We should fall into desej-ved and inevitable confusion if, whether

by the mathematical or any other method, we attempted to

compare organisms separated far apart in Nature and in zoological

classification. We are limited, not by the nature of our method,

but by the whole nature of the case, to the comparison of

organisms such as are manifestly related to one another and belong

to the same zoological class.

Our inquiry lies, in short, just within the limits which Aristotle

himself laid down when, in defining a "genus," he showed that

(apart from those superficial characters, such as colour, which he

called "accidents") the essential differences between one "species"

and another are merely differences of proportion, of relative

magnitude, or (as he phrased it) of "excess and defect." "Save

only for a difference in the way of excess or defect, the parts are

identical in the case of such animals as are of one and the same

genus; and by 'genus' I mean, for instance. Bird or Fish."

And again :
" Within the limits of the same genus, as a general

rule, most of the parts exhibit differences... in the way of multitude

or fewness, magnitude or parvitude, in short, in the way of excess

or defect. For 'the more' and 'the less' may be represented as
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'excess' and 'defect*.'" It is precisely this difference of relative

magnitudes, this Aristotelian "excess and defect" in the case of

form, which our co-ordinate method is especially adapted to

analyse, and to reveal and demonstrate as the main cause of what

(again in the Aristotelian sense) we term "specific ' differences.

The applicability of our method to particular cases will depend

upon, or be further limited by, certain practical considerations

or qualifications. Of these the chief, and indeed the essential,

condition is, that the form of the entire structure under investi-

gation should be found to vary in a more or less uniform manner,

after the fashion of an approximately homogeneous and isotropic

body. But an imperfect isotropy, provided always that some

"principle of continuity" run through its variations, will not

seriously interfere with our method ; it will only cause our trans-

formed co-ordinates to be somewhat less regular and harmonious

than are those, for instance, by which the physicist depicts the

motions of a perfect fluid or a theoretic field of force in a uniform

medium.

Again, it is essential that our struct^ire vary in its entirety,

or at least that "independent variants" should be relatively few.

That independent variations occur, that localised centres of

diminished or exaggerated growth will now and then be found,

is not only probable but manifest; and they may even be so

pronounced as to appear to constitute new formations altogether.

Such independent variants as these Aristotle himself clearly

recognised :
" It happens further that some have parts that others

have not; for instance, some [birds] have spurs and others not,

some have crests, or combs, and others not; but, as a general

rule, most parts and those that go to make up the bulk of the body

are either identical with one another, or differ from one another

in the way of contrast and of excess and defect. For 'the more'

and 'the less' may be represented as 'excess' or 'defect.'"

If, in the evolution of a fish, for instance, it be the case that

its several and constituent parts—head, body, and tail, or this

fin and that fin—represent so many independent variants, then

our co-ordinate system will at once become too complex to be

intelligible; we shall be making not one comparison but several

* Historia Animalium i, 1.
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separate comparisons, and our general method will be found

inapplicable. Now precisely this independent variability of parts

and organs—here, there, and everywhere within the organism

—would appear to be implicit in our ordinary accepted notions

regarding variation; and, unless I am greatly mistaken, it is

precisely on such a conception of the easy, frequent, and normal

independent variability of parts that our conception of the process

of natural selection is fundamentally based. For the morphologist,

when comparing one organism with another, describes the

differences between them point by point, and "character" by

"character*." If he is from time to time constrained to admit

the existence of "correlation" between characters (as a hundred

years ago Cuvier first showed the way), yet all the while he

recognises this fact of correlation somewhat vaguely, as a pheno-

menon due to causes which, except in rare instances, he can hardly

hope to trace ; and he falls readily into the habit of thinking and

talking of evolution as though it had proceeded on the lines of his

own descriptions, point by point, and character by characterf.

But if, on the other hand, diverse and dissimilar fishes can be

referred as a whole to identical functions of very different co-

ordinate systems, this fact will of itself constitute a proof that

variation has proceeded on definite and orderly lines, that a

comprehensive "law of growth" has pervaded the whole structure

in its integrity, and that some more or less simple and recognis-

able system of forces has been at work. It will not only show

how real and deep-seated is the phenomenon of "correlation,"

in regard to form, but it will also demonstrate the fact that

a correlation which had seemed too complex for analysis or

* Cf. supra, p. 714.

f Cf. Osborn, H. F., On the Origin of Single Characters, as observed in fossil

and living Animals and Plants, Amer. Nat. xlix, pp. 193-239, 1915 (and other

papers); ibid. p. 194, "Each individual is composed of a vast number of somewhat

similar new or old characters, each character has its independent and separate

history, each character is in a certain stage of evolution, each character is correlated

with the other characters of the individual....The real problem has always been

that of the origin and development of characters. Since the Origin of Species

appeared, the terms variation and variability have always referred to single

characters; if a species is said to be variable, wo mean that a considerable number

of the single characters or groups of characters of which it is composed are variable,"

etc.
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comprehension is, in many cases, capable of very simple graphic

expression. This, after many trials, I believe to be in general

the case, bearing always in mind that the occurrence of indepen-

dent or localised variations must often be considered.

We are dealing in this chapter with the forms of related organisms, in order

to shew that the differences between them are as a genera' rule simple and

symmetrical, and just such a.s might have been brought about by a slight and

simple change in the system of forces to which the living and growing organism

was exposed. Mathematically speaking, the phenomenon is identical with one

met with by the geologist, when h3 finds a bed of fossils squeezed flat or other-

wise symmetrically deformed by the pressures to which they, and the strata

which contain them, have been subjected. In the first step towards fossilisation,

when the body of a fish or shellfish is silted over and buried, we may take it

that the wet sand or mud exercises, approximately, a hydrostatic pressure

—

that is to say a pressure which is un form in aU dii'ections, and by which the

form of the buried object will not be appreciably changed. As the strata

consolidate and accumulate, the fossil organisms which they contain will

tend to be flattened by the vast superincumbent load, just as the stratum

which contains them will also be compressed and will have its molecular

arrangement more or less modified*. But the deformation due to direct

vertical pressure in a horizohtal stratum is not nearly so striking as are the

deformations produced by the ob ique or shearing stresses to which mc'ined

and folded strata have been exposed, and by which their various "dislocations
"

have been brought about. And espec"ally in mountain regions, where these

dislocations are especially numerous and complicated, the contained fossils

are apt to be so curiously and yet so symmetrically deformed (usually by a

simple shear) that they may easily be interpreted as so many distinct and

separate " species t-" A great number of described species, and here and

there a new genus (as the genus Ellipsolithes for an obUquely deformed

Goniatite or Nautilus) are said to rest on no other foundation J.

If we begin by drawing a net of rectangular equidistant

co-ordinates (about the axes x and y), we may alter or deform this

* Cf. Sorby, Quart. Journ. Geol. Soc. {Proc), 1879, p. 88.

t Cf. D'Orbigny, Ale, Cours elem. de Paleon.tologie, etc., i, pp. 144-148, 1849:

see also Sharpe, Daniel, On Slaty Cleavage, Q.J.G.S. in, p. 74, 1847.

X Thus Ammonites erugatus, when compressed, has been described as A.

planorhis: cf. Blake, J. F., Phil. Mag. (5), vi, p. 260, 1878. Wettstein has shewn

that several species of the fish-genus Lejyidopris have been based on specimens

.artificially deformed in various ways: Ueber die Fischfauna des Tertiaren

Glarnerschiefers, Abh. Schw. Palaeont. Geselhch. xni, 1886 (see especially pp.

2.3-38, pi. I). The whole subject, interesting as it is, has been little studied: both

Blake and Wettstein deal with it mathematically.



XVII] THE COMPARISON OF RELATED FORMS 729

network in various ways, several of which are very simple indeed.

Thus (
I

) we may alter the dimensions of our system, extending

it along one or other axis, and so converting each little square

into a corresponding and directly proportionate oblong (Fig. 353).

It follows that any figure which we may have inscribed in the

Y .— ^—=^
.

, y.

,-o

Fig. 352.

O Xi
Fig. 353.

Fio;. 354.

Fig. 355.

original net, and which we transfer to the new, will thereby be

deformed in strict proportion to the deformation of the entire

configuration, being still defined by corresponding points in the

network and being throughout in conformity with the original

figure. For instance, a circle inscribed in the original " Cartesian
"'

net will now, after extension in the y-direction, be found elongated
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into an ellipse. In elementary mathematical language, for the

original x and y we have substituted x-^ and cy-^, and the equation

to our original circle, a;^ + ^^ = a^, becomes that of the ellipse,

Xy + c^yx == a^.

If I draw the cannon-bone of an ox (Fig. 354, A), for instance,

within a system of rectangular co-ordinates, and then transfer

the same drawing, point for point, to a system in which for the

X of the original diagram we substitute x' = 2a;/3, we obtain a

drawing (B) which is a very close approximation to the cannon-

bone of the sheep. In other words, the main (and perhaps

the only) difference between the two bones is simply that that of

the sheep is elongated, along the vertical axis, as compared with

that of the ox in the relation of 3/2. And similarly, the long

slender cannon-bone of the giraffe (C) is referable to the same

identical type, subject to a reduction of breadth, or increase

of length, corresponding to x" = x/3.

(2) The second type is that where extension is not equal or

uniform at all distances from the origin : but grows greater or

less, as, for instance, when we stretch a tapering elastic band.

In such cases, as I have represented it in Fig. 355, the ordinate

increases logarithmically, and for y we substitute e^. It is obvious

that this logarithmic extension may involve both abscissae and

ordinates, x becoming e^, while y becomes e^. The circle in our

original figure is now deformed into some such shape as that of

Fig, 356. This method of deformation is a common one, and will

often be of use to us in our comparison of organic forms.

(3) Our third type is the " simple shear," where the rectangular

co-ordinates become "oblique," their axes being inclined to one

another at a certain angle co. Our original rectangle now becomes

such a figure as that of Fig. 357. The system may now be

described in terms of the oblique axes X, Y ; or may be directly

referred to new rectangular co-ordinates $, -q by the simple

transposition x = $ ~ t] cot co, y = rj cosec oj.

(4) Yet another important class of deformations may be

represented by the use of radial co-ordinates, in which one set of

lines are represented as radiating from a point or "focus," while

the other set are transformed into circular arcs cutting the radii

orthogonally. These radial co-ordinates are especially applicable



XVII] THE COMPARISON OF RELATED FORMS 731

to cases where there exists (either within or without the figure)

some part which is supposed to suffer no deformation ; a simple

illustration is afforded by the diagrams which illustrate the

flexure of a beam (Fig. 358). In biology these co-ordinates will

Fig. 856.

Fig. 357.

Fig. 358.

be especially applicable in cases where the growing structure

includes a "node," or point where growth is absent or at a

minimum; and about which node the rate of growth may be

assumed to increase symmetrically. Precisely such a case is

furnished us in a leaf of an ordinary dicotyledon. The leaf of a
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typical monocotyledon—such as a grass or a hyacinth, for instance

—grows continuously from its base, and exhibits no node or " point

of arrest." Its sides taper ofE gradually from its broad base to

its slender tip, according to some law of decrement specific to

the plant; and any alteration in the relative velocities of longi-

tudinal and transverse growth will merely make the leaf a little

broader or narrower, and will effect no other conspicuous alteration

in its contour. But if there once come into existence a node, or

"locus of no growth," about which we may assume the growth

—

which in the hyacinth leaf was longitudinal and transverse—to

take place radially and transversely to the radii, then we shall

Ficr. 359.

at once see, in the first place, that the sloping and slightly curved

sides of the hyacinth leaf suffer a transformation into what we

consider a more typical and "leaf-like" shape, the sides of the

figure broadening out to a zone of maximum breadth and then

drawing inwards to the pointed apex. If we now alter the ratio

between the radial and tangential velocities of growth—in other

words, if we increase the angles between corresponding radii

—

we pass successively through the various configurations which

the botanist describes as the lanceolate, the ovate, and finally

the cordate leaf. These successive changes may to some extent,

and in appropriate cases, be traced as the individual leaf grows
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to maturity; but as a much more general rule, the balance

of forces, the ratio between radial and tangential velocities of

growth, remains so nicely and constantly balanced that the leaf

increases in size without conspicuous modification of form. It is

rather what we may call a long-period variation, a tendency for

the relative velocities to alter from one generation to another,

whose result is brought into view by this method of illustration.

There are various corollaries to this method of describing the

form of a leaf which may be here alluded to, for we shall not return

again to the subject of radial co-ordinates. For instance, the

so-called unsymmetrical leaf* of a begonia, in which one side of

the leaf may be merely ovate while the other has a cordate outline,

is seen to be really a case of

unequal, and not truly asym-

metrical, growth on either side

of the midrib. There is nothing

more mysterious in its conform-

ation than, for instance, in that

of a forked twig in which one

limb of the fork has grown

longer than the other. The case

of the begonia leaf is of sufficient

interest to deserve illustration,

and in Fig. 360 I have outlined

a leaf of the large Begonia dae-

dalea. On the smaller left-hand

side of the leaf I have taken at

random three points, a, b, c, and

have measured the angles, AOa,

etc., which th,e radii from the
Fig. 360. Begonia daedalea.

hilus of the leaf to these points make with the median axis. On
the other side of the leaf I have marked the points a', b', c', such

that the radii drawn to this margin of the leaf are equal to the

former, Oa' to Oa, etc. Now if the two sides of the leaf are

* Cf. Sir Thomas Browne, ia The Garden of Cyrus: "But why ofttimes one
side of the leaf is unequal! unto the other, as in Hazell and Oaks, why on either

side the master vein the lesser and derivative channels stand not directly opposite,

nor at equall angles, respectively unto the adverse side, but those of one side do
often exceed the other, as the Wallnut and many more, deserves another enquiry."
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mathematically similar to one another, it is obvious that the

respective angles should be in continued proportion, i.e. as AOa
is to AOa', so should AOb be to AOb'. This proves to be very

nearly the case. For I have measured the three angles on one

side, and one on the other, and have then compared, as follows,

the calculated with the observed values of the other two

:
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apple we have two sucH well-marked points of arrest, above and

below, and about both of them the same conformation tends to

arise. The bean and the human kidney owe their "reniform"

shape to precisely the same phenomenon, namely, to the existence

of a node or "hilus," about which the forces of growth are radially

and symmetrically arranged.

Most of the transformations which we have hitherto considered

(other than that of the simple shear) are particular cases of a

general transformation, obtainable by the method of conjugate

functions and equivalent to the projection of the original figure

on a new plane. Appropriate transformations, on these general

lines, provide for the cases of a coaxial system where the

Cartesian co-ordinates are replaced by coaxial circles, or a con-

focal system in which they are replaced by confocal ellipses and

hyperbolas.

Yet another curious and important transformation, belonging

to the same class, is that by which a system of straight lines

becomes transformed into a conformal system of logarithmic

spirals : the straight line Y — AX = c corresponding to the

logarithmic spiral 6 — A log r = c (Fig. 361). This beautiful and

simple transformation lets us at once

convert, for instance, the straight

conical shell of the Pteropod or the

Orthoceras into the logarithmic spiral

of the Nautiloid ; it involves a math-

ematical symbolism which is but a

shght extension of that which we

have employed in our elementary

treatment of the logarithmic spiral.

These various systems of co-

ordinates, which we have now briefly ^. „,,
. .

Fig. 361.

considered, are sometimes called " iso-

thermal co-ordinates," from the fact that, when employed in

this .particular branch of physics, they perfectly represent the

phenomena of the conduction of heat, the contour lines of equal

temperature appearing, under appropriate conditions, as the

orthogonal lines of the co-ordinate system. And it follows that
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the "law of growth" which our biological analysis by means of

orthogonal co-ordinate systems presupposes, or at least fore-

shadows, is one according to which the organism grows or

develops along stream lines, which may be defined by a suitable

mathematical transformation.

When the system becomes no longer orthogonal, as in many
of the following illustrations—for instance, that of Orfhagoriscus

(Fig. 382),—then the transformation is no longer within the reach

of comparatively simple mathematical analysis. Such departure

from the typical symmetry of a "stream-line" system is, in the

first instance, sufficiently accounted for by the simple fact that

the developing organism is very far from being homogeneous and

isotropic, or, in other words, does not behave like a perfect fluid.

But though under such circumstances our co-ordinate systems

may be no longer capable of strict mathematical analysis, they

will still indicate graphically the relation of the new co-ordinate

system to the old, and conversely will furnish us with some

guidance as to the "law of growth," or play of forces, by which

the transformation has been effected.

Before we pass from this brief discussion of transformations in

general, let us glance at one or two cases in which the forces applied

are more or less intelligible, but the resulting transformations are,

from the mathematical point of view, exceedingly complicated.

The "marbled papers" of the bookbinder are a beautiful

illustration of visible "stream lines." On a dishful of a sort of

semi-liquid gum the workman dusts a few simple lines or patches

of colouring matter; and then, by passing a comb through the

liquid, he draws the colour-bands into the streaks, waves, and

spirals which constitute the marbled pattern, and which he then

transfers to sheets of paper laid down upon the gum. By some

such system of shears, by the effect of unequal traction or unequal

growth in various directions and superposed on an originally

simple pattern, we may account for the not dissimilar marbled

patterns which we recognise, for instance, on a large serpent's

skin. But it must be remarked, in the case of the marbled paper,

that though the method of application of the forces is simple,

yet in the aggregate the system of forces set up by the many
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teeth of the comb is exceedingly complex, and its complexity is

revealed in the complicated "diagram of forces" which constitutes

the pattern.

To take another and still more instructive illustration. To

turn one circle (or sphere) into two circles would be, from the point

of view of the mathematician, an extraordinarily difficult trans-

formation ; but, physically speaking, its achievement may be

extremely simple. The little round gourd grows naturally, by

its symmetrical forces of expansive growth, into a big, round, or

somewhat oval pumpkin or melon. But the Moorish husbandman

ties a rag round its middle, and the same forces of growth, unaltered

save for the presence of this trammel, now expand the globular

structure into two superposed and connected globes. And
again, by varying the position of the encircling band, or by

applying several such ligatures instead of one, a great variety of

artificial forms of "gourd" may be, and actually are, produced.

It is clear, I think, that we may account for many ordinary

biological processes of development or transformation of form by

the existence of trammels or lines of constraint, which limit and

determine the action of the expansive forces of growth that would

otherwise be uniform and symmetrical. This case has a close

parallel in the operations of the glassblower, to which we have

already, more than once, referred in passing*. The glassblower

starts his operations with a tube, which he first closes at one end

so as to form a hollow vesicle, within which his blast of air exercises

a uniform pressure on all sides ; but the spherical conformation

which this uniform expansive force would naturally tend to

produce is modified into all kinds of forms by the trammels or

resistances set up as the workman lets one part or another of his

bubble be unequally heated or cooled. It was Oliver Wendell

Holmes who first shewed this curious parallel between the

operations of the glassblower and those of Nature, when she starts,

as she so often does, with a simple tubej. The alimentary canal,

* Where gourds are common, the glass-blower is still apt to take them for a

prototype, as the prehistoric potter also did. For instance, a tall, annulated

Florence oil-flask is an exact but no longer a conscious imitation of a gourd which

has been converted into a bottle in the manner described.

t Cf. Elsie Venner, chap. ii.

T. G. 47
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the arterial system including the heart, the central nervous

system of the vertebrate, including the brain itself, all begin as

simple tubular structures. And with them Nature does just

what the glassblower does, and, we might even say, no more

than he. For she can expand the tube here and narrow it there

;

thicken its walls or thin them; blow off a lateral offshoot or

caecal diverticulum; bend the tube, or twist and coil it; and

infold or crimp its walls as, so to speak, she pleases. Such a form

as that of the human stomach is easily explained when it is

regarded from this point of view ; it is simply an ill-blown bubble,

a bubble that has been rendered lopsided by a trammel or restraint

along one side, such as to prevent its symmetrical expansion

—

such a trammel as is produced if the glassblower lets one side of

his bubble get cold, and such as is actually present in the stomach

itself in the form of a muscular band.

We may now proceed to consider and illustrate a few permu-

tations or transformations of organic form, out of the vast

multitude which are equally open to this method of inquiry.

We have already compared in a preliminary fashion the

metacarpal or cannon-bone of the ox, the sheep, and the giraffe

(Fig. 354) ; and we have seen that the essential difference in form

between these three bones is a matter

of relative length and breadth, such

that, if we reduce the figures to an

identical standard of length (or identical

values of y), the breadth (or value of

x) will be approximately two-thirds

that of the ox in the case of the sheep

and one-third that of the ox in the

case of the giraffe. We may easily,

for the sake of closer comparison,

determine these ratios more accurately,

for instance, if it be our purpose to

compare the different racial varieties

within the limits of a single species.

And in such cases, by the way, as when we compare with one

another various breeds or races of cattle or of horses, the ratios
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of length and breadth in this particular bone are extremely

significant*.

If, instead of limiting ourselves to the cannon-bone, we inscribe

the entire foot of our several Ungulates in a co-ordinate system,

the same ratios of x that served us for the cannon-bones still give

us a first approximation to the required comparison ; but even

in the case of such closely allied forms as the ox and the sheep

there is evidently something wanting in the comparison. The

reason is that the relative elongation of the several parts, or

individual bones, has not proceeded equally or proportionately

in all cases; in other words, that the equations for x will not

suffice without some simultaneous modification of the values of

y (Fig. 362). In such a case it may be found possible to satisfy

the varying values of y by some logarithmic or other formula;

but, even if that be possible, it will probably be somewhat difficult

of discovery or verification in such a case as the present, owing

to the fact that we have too few well-marked points of corre-

spondence between the one object and the other, and that especially

along the shaft of such long bones as the cannon-bone of the ox,

the deer, the llama, or the giraffe there is a complete lack of easily

recognisable corresponding points. In such a case a brief tabular

statement of apparently corresponding values of y, or of those

obviously corresponding values which coincide with the boundaries

of the several bones of the foot, will, as in the following example,

enable us to dispense with a fresh equation.



740 THE THEORY OF TRANSFORMATIONS [CH.

value of X, will enable us, from any drawing of the ox's foot, to

construct a figure of that of the sheep or of the giraffe with

remarkable accuracy.

That underlying the varying amounts of extension to which

the parts or segments of the
TOO ^

. .

limb have been subject there is

a law, or principle of continuity,

may be discerned from such a

diagram as the above (Fig. 363),

where the values of y in the

case of the ox are plotted as a

straight line, and the corre-

sponding values for the sheep

(extracted from the above table)

are seen to form a more or less

regular and even curve. This

simple graphic result implies the

existence of a comparatively simple equation between y and y'

.

An elementary application of the principle of co-ordinates to

the study of proportion, as we have here used it to illustrate the

varying proportions of a bone, was in common use in the sixteenth

and seventeenth centuries by artists in their study of the human
form. The method is probably much more ancient, and may

Fig. 363.

Fig. 304. (After Albert Diirer.)

even be classical * ; it is fully described and put in practice by

Albert Diirer in his Geometry, and especially in his Treatise on

Proportion f . In this latter work, the manner in which the

* Cf. Vitruvius, in, 1.

f Le<i quntres livres (VAlbert Diirer de la projwriion des parties et pourtraicts

des corps humains, Arnheim, 1613, folio (and earlier editions). Cf. also Lavater,

Essays on Physiognomy, iii, p. 271, 1799.
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human figure, features, and facial expression are all transformed

and modified by slight variations in the relative magnitude of

the parts is admirably and copiously illustrated (Fig. 364).

In a tapir's foot there is a striking difference, and yet at the

same time there is an obvious underlying resemblance, between

the middle toe and either of its unsymmetrical lateral neighbours.

Let us take the median terminal phalanx and inscribe its outline

in a net of rectangular equidistant co-ordinates (Fig. 365, a). Let

us then make a similar network about axes which are no longer

at right angles, but inclined to one another at an angle of about

50° (6). If into this new network we fill in, point for point,

an outline precisely corresponding to our original drawing of the

middle toe, we shall find that we have already represented the

main features of the adjacent lateral one. We shall, however.
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toe is a precisely identical function of the form F (e*', y-^ = 0,

where x^, y^ are oblique co-ordinate axes inclined to one another

at an angle of 50°.

Fig. 366. (After Albert Durer.)

Diirer was acquainted with these oblique co-ordinates also,

and I have copied two illustrative figures from his book*.

In Fig. 367 I have sketched the common Copepod Oithona nana,

Fig. 367. Oithona nana. Fig. 368. Sapphirina.

* It was these very drawings of Diirer's that gave to Peter Camper his notion

of the "facial angle." Camper's method of comparison was the very same as em's,

save that he only drew the axes, without filling in the network, of his coordinate

system ; he saw clearly the essential fact, that the skull varies as a whole, and that

the "facial angle" is the index to a general deformation. " The great object was to

shew that natural differences might be reduced to rules, of which the direction of

the facial line foi'ms the norma or canon; and that these directions and inclinations

are always accompanied by correspondent form, size and position of the other

parts of the cranium," etc. ; from Dr T. Cogan's preface to Camper's work On the

Connexion between the Science, of Anatomy and the Arts of Drawing, Painting and
Sculpture (1768?), quoted in Dr R. HamOton's Memoir of Camper, in Lii-es of

Eminent Naturalists {Nat. Libr.), Edin. 1840.
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and have inscribed it in a rectangular net, with, abscissae three-

fifths the length of the ordinates. Side by side (Fig. 368) is drawn

a very different Copepod, of the genus Sapphirina; and about

it is drawn a network such that each co-ordinate passes (as nearly

as possible) through points corresponding to those of the former

figure. It will be seen that two differences are apparent. (1) The

values of y in Fig. 368 are large in the upper part of the figure, and

diminish rapidly towards its base. (2) The values of x are very

large in the neighbourhood of the origin, but diminish rapidly as

we pass towards either side, away from the median vertical axis;

and it is probable that they do so according to a definite, but

somewhat complicated, ratio. If, instead of seeking for an

actual equation, we simply tabulate our values of x and y in the

second figure as compared with the first (just as we did in com-

paring the feet of the Ungulates), we get the dimensions of a net

in which, by simply projecting the figure of Oithona, we obtain

that of Sapphirina without further trouble, e.g.

:

X {Oithona)

x' {Sappliirina)

y {Oithona)

y' {Sapphirina)

In this manner, with a single model or type to copy from, we
may record in very brief space the data requisite for the production

of approximate outlines of a great number of forms. For instance

the difference, at first sight immense, between the attenuated

body of a Caprella and the thick-set body of a Cyamus is obviously

little, and is probably nothing, more than a difference of relative

magnitudes, capable of tabulation by numbers and of complete

expression by means of rectilinear co-ordinates.

The Crustacea afford innumerable instances of more complex

deformations. Thus we may compare various higher Crustacea

with one another, even in the case of such dissimilar forms as a

lobster and a crab. It is obvious that the whole body of the

former is elongated as compared with the latter, and that the

crab is relatively broad in the region of the carapace, while it

tapers off rapidly towards its attenuated and abbreviated tail.

In a general way, the elongated rectangular system of co-ordinates

3
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in which we may inscribe the outline of the lobster becomes a

shortened triangle in the case of the crab. In a little more detail

we may compare the outline of the carapace in various crabs one

with another : and the comparison will be found easy and signifi-

cant, even, in many cases, down to minute details, such as the

Fig. 369. Carapaces of various crabs. 1, Geryon; 2, Corystes; 3, Scyramathia;

4, Paraloniis ; 5, Lujm; 6, Ghorinus.

number and situation of the marginal spines, though these are in

other cases subject to independent variability.

If we choose, to begin with, such a crab as Geryon (Fig. 369, 1).

and inscribe it in our equidistant rectangular co-ordinates, we shall

see that we pass easily to forms more elongated in a transverse
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direction, such as Matuta or Lupa (5), and conversely, by

transverse compression, to such a form as Corystes (2). In

certain other cases the carapace conforms to a triangular dia-

gram, more or less curvilinear, as in Fig. 4, which represents

the genus Paralomis. Here we can easily see that the posterior

border is transversely elongated as compared with that of Geryon,

while at the same time the anterior part is longitudinally extended

as compared with the posterior. A system of slightly curved and

converging ordinates, with orthogonal and logarithmically inter-

spaced abscissal lines, as shown in the figure, appears to satisfy

the conditions.

In an interesting series of cases, such as the genus Chorinus,

or Scyramathia, and in the spider-crabs generally, we appear to

have just the converse of this. While the carapace of these crabs

presents a somewhat triangular form, which seems at first sight

more or less similar to those just described, we soon see that the

actual posterior border is now narrow instead of broad, the

broadest part of the carapace corresponding precisely, not to

that which is broadest in Paralomis, but to that which was broadest

in Geryon; while the most striking difference from the latter lies

in an antero-posterior lengthening of the forepart of the carapace,

culminating in a great elongation of the frontal region, with its

two spines or "horns." The curved ordinates here converge

posteriorly and diverge widely in front (Figs. 3 and 6), while

the decremental interspacing of the abscissae is very marked

indeed.

We put our method to a severer test when we attempt to sketch

an entire and complicated animal than when we simply compare

corresponding parts such as the carapaces of various Malacostraca,

or related bones as in the case of the tapir's toes. Nevertheless,

up to a certain point, the method stands the test very well. In

other words, one particular mode and direction of variation is

often (or even usually) so prominent and so paramount throughout

the entire organism, that one comprehensive system of co-ordinates

suffices to give a fair picture of the actual phenomenon. To take

another illustration from the Crustacea, I have drawn roughly in

Fig. 370, 1 a little amphipod of the family Phoxocephalidae

{Harpinia sp.). Deforming the co-ordinates of the figure into the
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curved orthogonal system in Fig. 2, we at once obtain a very fair

representation of an allied genus, belonging to a different family

of amphipods, namely Stegocephalus. As we proceed further from

our type our co-ordinates will require greater deformation, and

the resultant figure will usually be somewhat less accurate. In

Fig. 3 I show a network, to which, if we transfer our diagram of

Fig 370. 1. Harpinia plumosa Kr. 2. Stegocephalus infiatus Kr.

3. Hyperia galba.

Harpinia or of Stegocephalus, we shall obtain a tolerable representa-

tion of the aberrant genus Hyperia, with its narrow abdomen^

its reduced pleural lappets, its great eyes, and its inflated head.

The hydroid zoophytes constitute a "polymorphic" group,,

within which a vast number of species have already been dis-

tinguished; and the labours of the systematic naturalist are

constantly adding to the number. The specific distinctions are

for the most part based, not upon characters directly presented
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by the living animal, but upon the form, size and arrangement

of the little cups, or "calycles," secreted and inhabited by the

little individual polypes which compose the compound organism.

The variations, which are apparently infinite, of these conforma-

tions are easily seen to be a question of relative magnitudes, and

are capable of complete expression, sometimes by very simple,

sometimes by somewhat more complex, co-ordinate networks.

For instance, the varying shapes of the simple wineglass-

shaped cups of the Campanularidae are at once sufficiently

represented and compared by means of simple Cartesian co-ordi-

nates (Fig. 371). In the two allied families of Plumulariidae and

\A



748 THE THEORY OF TRANSFORMATIONS [CH.

hydroids which we inscribe therein (Fig. 372). The comparative

smoothness or denticulation of the margin of the calycle, and the

number of its denticles, constitutes an independent variation, and

requires separate description ; we have already seen (p. 236) that

Fig. .372. a, Cladocarpus crenatus, F. ; b, Aglaophenia pluma, L. ; c, A.

rhynchocarpa. A.; d, A cornuta, K. ; e, A. ramulosa, K.

this denticulation is in all probability due to a particular physical

cause.

Among the fishes we discover a great variety of deformations,

some of them of a very simple kind, while others are more striking

and more unexpected. A comparatively simple case, involving a

Fig. 373. Argyropelecus Olfersi. Fig. 374. Sternoptyx diaphana.

simple shear, is illustrated by Figs. 373 and 374. Fig. 373 repre-

sents, mthin Cartesian co-ordinates, a certain little oceanic fish

known as Argyropelecus Olfersi. Fig. 474 represents precisely the

same outline, transferred to a system of oblique co-ordinates whose
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axes are inclined at an angle of 70° ; but this is now (as far as can

be seen on the scale of the drawing) a very good figure of an

allied fish, assigned to a different genus, under the name of

Sternojjtyx dicvphana. The deformation illustrated by this case

of Argyropelecus is precisely analogous to the simplest and

commonest kind of deformation to which fossils are subject (as

we have seen on p. 553) as the result of shearing-stresses in the

solid rock.

Fig. 375 is an outline diagram of a typical Scaroid fish. Let us

deform its rectilinear co-ordinates into a system of (approximately)

coaxial circles, as in Fig. 376, and then filling into the new system,

space by space and point by point, our former diagram of Scarus,

we obtain a very good outline of an allied fish, belonging to a

Fig. 375. Scams sp. Fig. 376. Pomacanthus.

neighbouring family, of the genus Pomacanthus. This case is all

the more interesting, because upon the body of our Pomacanthus
there are striking colour bands, which correspond in direction

very closely to the lines of our new curved ordinates. In like

manner, the still more bizarre outlines of other fishes of the same
family of Chaetodonts will be found to correspond to very slight

modifications of similar co-ordinates; in other words, to small

variations in the values of the constants of the coaxial curves.

In Figs. 377—380 I have represented another series of Acantho-

pterygian fishes, not very distantly related to the foregoing. If

we start this series with the figure of Polyprion, in Fig. 377, we see

that the outlines of Pseudopriacanthus (Fig. 378) and oi-Sebastes or

Scorpaena (Fig. 379) are easily derived by substituting a system
of triangular, or radial, co-ordinates for the rectangular ones in
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which we had inscribed Polyjprioyi. The very curious fish Anti-

gonia capros, an oceanic relative of our own "boar-fish," conforms

closely to the peculiar deformation represented in Fig. 380.

Fig. 381 is a common, typical Diodon or porcupine-fish, and in

Fig. 382 I have deformed its vertical co-ordinates into a system

Fig. 377. Polyprion. Fig, 378. PseudopriacantJms alius.

Fig. 379. Scorpaena sp. Fig. 380. Antigonia capros.

of concentric circles, and its horizontal co-ordinates into a system

of curves which, approximately and provisionally, are made to

resemble a system of hyperbolas*. The old outline, transferred

* The co-ordinate system of Fig. 382 is somewhat different from that which

I drew and published in my former paper. It is not unlikely that further

investigation wiU further simpUfy the comparison, and shew it to involve a still

more symmetrical system.
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in its integrity to the new network, appears as a manifest

representation of the closely allied, but very different looking,

simfish, Orthagoriscus mola. This is a particularly instructive

case of deformation or transformation. It is true that, in a

mathematical sense, it is not a perfectly satisfactory or perfectly

regular deformation, for the system is no longer isogonal; but

Fig. 381. Diodon. Fig. 382. Orthagoriscus.

nevertheless, it is symmetrical to the eye, and obviously approaches

to an isogonal system under certain conditions of friction or

constraint. And as such it accounts, by one single integral

transformation, for all the apparently separate and distinct

external differences between the two fishes. It leaves the parts

near to the origin of the system, the whole region of the head,

the opercular orifice and the pectoral fin, practically unchanged



752 THE THEORY OF TRANSFOEMATIONS [ch.

in form, size and position; and it shews a greater and greater

apparent modification of size and form as we pass from the origin

towards the periphery of the system.

In a word, it is sufficient to account for the new and striking

contour in all its essential details, of rounded body, exaggerated

dorsal and ventral fins, and truncated tail. In like manner, and

using precisely the same co-ordinate networks, it appears to me
possible to shew the relations, almost bone for bone, of the skeletons

of the two fishes; in other words, to reconstruct the skeleton of

the one from our knowledge of the skeleton of the other, under

the guidance of the same correspondence as is indicated in their

external configuration.

The family of the crocodiles has had a special interest for the

evolutionist ever since Huxley pointed out that, in a degree only

second to the horse and its ancestors, it furnishes us with a close

and almost unbroken series of transitional forms, running down

in continuous succession from one geological formation to another.

I should be inclined to transpose this general statement into other

terms, and to say that the Crocodilia constitute a case in which,

with unusually little complication from the presence of independent

variants, the trend of one particular mode of transformation is

visibly manifested. If we exclude meanwhile from our comparison

a few" of the oldest of the crocodiles, such as Belodon, which differ

more fundamentally from the rest, we shall find a long series of

genera in which we can refer not only the changing contours of

the skull, but even the shape and size of the many constituent

bones and their intervening spaces or "vacuities," to one and the

same simple system of transformed co-ordinates. The manner

in which the skulls of various Crocodilians differ from one another

may be sufficiently illustrated by three or four examples.

Let us take one of the typical modern crocodiles as our standard

of form, e.g. C. porosus, and inscribe it, as in Fig. 383, a, in the

usual Cartesian co-ordinates. By deforming the rectangular net-

work into a triangular system, with the apex of the triangle a

little way in front of the snout, as in b, we pass to such a form as

C. americanus. By an exaggeration of the same process we at

once get an approximation to the form of one of the sharp-snouted,
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or longirostrine, crocodiles, such as the genus Tomistoma ; and,

in the species figured, the oblique position of the orbits, the arched

contour of the occipital border, and certain other characters suggest

a certain amount of curvature, such as I have represented in the

diagram (Fig. 383, b), on the part of the horizontal co-ordinates.

In the still more elongated skull of such a form as the Indian

Gavial, the whole skull has undergone a great longitudinal

extension, or, in other words, the ratio of x/y is greatly diminished

;

and this extension is not uniform, but is at a maximum in the

region of the nasal and maxillary bones. This especially elongated

region is at the same time narrowed in an exceptional degree, and

ABC
Fig. 383. A, Crocodilus poro.vis. B, C aniericanus. C, Notosuckus terrestris.

its excessive narrowing is represented by a curvature, convex

towards the median axis, on the part of the vertical ordinates.

Let us take as a last illustration one of the Mesozoic crocodiles,

the little Notosuckus, from the Cretaceous formation. This little

crocodile is very different from our type in the proportions of its

skull. The region of the snout, in front of and including the frontal

bones, is greatly shortened ; from constituting fully two-thirds of

the whole length of the skull in Crocodilus, it now constitutes less

than half, or, say, three-sevenths of the whole; and the whole

skull, and especially its posterior part, is curiously compact,

broad, and squat. The orbit is unusually large. If in the diagram

of this skull we select a number of points obviously corresponding

T. G. 48
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to points where our rectangular co-ordinates intersect particular

bones or other recognisable features in our typical crocodile, we
shall easily discover that the lines joining these points in Noto-

suchus fall into such a co-ordinate network as that which is

represented in Fig. 383, c. To all intents and purposes, then, this

not very complex system, representing one harmonious " deforma-

tion," accounts for all the differences between the two figures,

and is sufficient to enable one at any time to reconstruct a detailed

drawing, bone for bone, of the skull of Notosuchus from the model

furnished by the common crocodile.

The many diverse forms of Dinosaurian reptiles, all of which

manifest a strong family likeness underlying much superficial

Fig. 384. Pelvis of (A) Stegosaurus ; (B) Camptosavrus.

diversity, furnish us with plentiful material for comparison by

the method of transformations. As an instance, I have figured

the pelvic bones of Stegosaurus and of Camptosaurus (Fig. 384,

a, h) to show that, when the former is taken as our Cartesian

type, a slight curvature and an approximately logarithmic

extension of the x-axis brings us easily to the configuration of

the other. In the original specimen of Camptosaurus described

by Marsh*, the anterior portion of the iliac bone is missing; and

in Marsh's restoration this part of the bone is drawn as though

it came somewhat abruptly to a sharp point. In my figure I

* Dinosaurs of North America, pi. lxxxi, etc. 1896.
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have completed this missing part of the bone in harmony with the

general co-ordinate network which is suggested by our comparison

of the two entire pelves; and I venture to think that the result

is more natural in appearance, and more likely to be correct than

was Marsh's conjectural restoration. It would seem, in fact,

that there is an obvious field for the employment of the method

of co-ordinates in this task of reproducing missing portions of a

structure to the proper scale and in harmony with related types.

To this subject we shall presently return.

2
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forms, chief among which is the great elongation in Ichthyosaurus

of the two clavicles, are all seen by our diagrams to be part and

parcel of one general and systematic deformation.

Before we leave the group of reptiles we may glance at the

very strangely modified skull of Pferanodon, one of the extinct

flying reptiles, or Pterosauria. In this very curious skull the

region of the jaws, or beak, is greatly elongated and pointed; the

occipital bone is drawn out into an enormous backwardly-directed

crest; the posterior part of. the lower jaw is similarly produced

backwards ; the orbit is small ; and the quadrate bone is strongly
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that it may also be employed for drawing hypothetical structures,

on the assumption that they have varied from a known form in

some definite way. And this process may be especially useful,

and will be most obviously legitimate, when we apply it to the

particular case of representing intermediate stages between two

forms which are actually known to exist, in other words, of recon-

structing the transitional stages through which the course of
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and which are reproduced in Figs. 388—393., Here we have, as

extreme cases, the pelvis of Archaeopferyx, the most ancient of

known birds, and that of Apatornis, one of the fossil "toothed"

I i I t, s- 6 7 B ij

Fig. 390. The co-ordinate systems of Figs. 388 and 389. with three

intermediate systems interpolated.

J 4 3- 6 7 y y

Fig. 391. The first intermediate co-ordinate network, with its

corresponding inscribed pelvis.

birds from the North American Cretaceous formations—a bird

shewing some resemblance to the modern terns. The pelvis of

Archaeopteryx is taken as our type, and referred accordingly to
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Cartesian co-ordinates (Fig. 388) ; while the corresponding co-

ordinates of the very different pelvis of Apatornis are represented

in Fig. 389. In Fig. 390 the outlines of these two co-ordinate

systems are superposed upon one another, and those of three

intermediate and equidistant co-ordinate systems are interpolated

between them. From each of these latter systems, so determined

by direct interpolation, a complete co-ordinate diagram is drawn,

and the corresponding outline of a pelvis is found from each of

Fig. 392. The second and third intermediate co-ordinate networks,

with their corresponding inscribed pelves.

these systems of co-ordinates, as in Figs. 391, 392. Finally, in

Fig. 393 the complete series is represented, beginning with the

known pelvis of Archaeopteryx, and leading up by our three inter-

mediate hypothetical types to the known pelvis of Apatornis.

Among mammalian skulls I will take two illustrations only,

one drawn from a comparison of the human skull with that of

the higher apes, and another from the group of Perissodactyle



760 THE THEORY OF TRANSFORMATIONS [CH.

Ungulates, the group which includes the rhinoceros, the tapir,

and the horse.

Let us begin by choosing as our type the skull of Hyrachyiis

agrarius, Cope, from the Middle Eocene of North America, as

Fig. ,39.3. The pelves of Archaeopteryx and of Apatornis, with three

transitional types interpolated between them.

figured by Osborn in his Monograph of the Extinct Rhino-

ceroses* (Fig. 394).

The many other forms of primitive rhinoceros described in

the monograph differ from Hyrachyus in various details—in the

characters of the teeth, sometimes in the number of the toes, and

BO forth ; and they also differ very considerably in the general

* Mem. Amer. Mus. of Nat. Hist, i, iii, 1898.
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appearance of the skull. But these differences in the conformation

of the skull, conspicuous as they are at first sight, will be found

easy to bring under the conception of a simple and homogeneous

transformation, such as would result from the application of some

not very complicated stress. For instance, the corresponding

Fig. 394. Skull of Hymchyus agrariiis. (After Osbom.)

Fig. 395. Skull of Aceratherium tridactylum. (After Osborn.)

co-ordinates of Aceratherium tridactylum, as shown in Fig. 395,

indicate that the essential difference between this skull and the

former one may be summed up by saying that the long axis of the

skull of Aceratherium has undergone a slight double curvature,

while the upper parts of the skull have at the same time been
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subject to a vertical expansion, or to growth in somewhat greater

proportion than the lower parts. Precisely the same changes,

on a somewhat greater scale, give us the skull of an existing

rhinoceros.

Among the species of Aceratherium, the posterior, or occipital,

view of the skull presents specific differences which are perhaps

more conspicuous than those furnished by the side view; and

these differences are very strikingly brought out by the series of

conformal transformations which P" have represented in Fig. 396.

Fig. 396. Occipital view of the skuUs of various extinct rhinoceroses

{Aceratherium spp.). (After Osborn.)

In this case it will perhaps be noticed that the correspondence

is not always quite accurate in small details. It could easily

have been made much more accurate by giving a slightly sinuous

curvature to certain of the co-ordinates. But as tliey stand,

the correspondence indicated is very close, and the simplicity of

the figures illustrates all the better the general character of the

transformation.

By similar and not more violent changes w^e pass easily to such

alHed forms as the Titanotheres (Fig. 397); and the well-known

series of species of Titanotherium, by which Professor Osborn has
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illustrated the evolution of this genus, constitutes a simple and

suitable case for the application of our method.

But our method enables us to pass over greater gaps than these,

and to discern the general, and to a very large extent even the

detailed, resemblances between the skull of the rhinoceros and

those of the tapir or the horse. From the Cartesian co-ordinates

in which we have begun by inscribing the skull of a primitive

rhinoceros, we pass to the tapir's skull (Fig. 398), firstly, by con-

verting the rectangular into a triangular network, by which we

represent the depression of the anterior and the progressively

increasing elevation of the posterior part of the skull; and

secondly, by giving to the vertical ordinates a curvature such as

to bring about a certain longitudinal compression, or condensation.

Fig. 397. Titanotherium robustum. Fig. 398. Tapir's skull.

in the forepart of the skull, especially in the nasal and orbital

regions.

The conformation of the horse's skull departs from that of our

primitive Perissodactyle (that is to say our early type of rhinoceros,

Hyrachyus) in a direction that is nearly the opposite of that taken

by Titanotherium and by the recent species of rhinoceros. For

we perceive, by Fig. 399, that the horizontal co-ordinates, which

in these latter cases became transformed into curves with the

concavity upwards, are curved, in the case of the horse, in the

opposite direction. Ajid the vertical ordinates, which are also

curved, somewhat in the same fashion as in the tapir, are very

nearly equidistant, instead of being, as in that animal, crowded

together anteriorly. Ordinates and abscissae form an oblique
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system, as is shown in the figure. In this case I have attempted

to produce the network beyond the region which is actually

required to include the diagram of the tiorse's skull, in order to

show better the form of the general transformation, with a part

only of which we have actually to deal.

It is at first sight not a little surprising to find that we can pass,

by a cognate and even simpler transformation, from our Peris-

sodactyle skulls to that of the rabbit; but the fact that we can

Fig. 399. Horse's skull.

Fig. 400. Rabbit's skull.

easily do so is a simple illustration of the undoubted affinity

which exists between the Rodentia, especially the family of the

Leporidae, and the more primitive Ungulates. For my part, I

would go further; for I think there is strong reason to believe

that the Perissodactyles are more closely related to the Leporidae

than the former are to the other Ungulates, or than the Leporidae

are to the rest of the Rodentia. Be that as it may, it is obvious

from Fig. 400 that the rabbit's skull conforms to a system of
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co-ordinates corresponding to the Cartesian co-ordinates in which

we have inscribed the skull of Hyrachyus, with the difference,

firstly, that the horizontal ordinates of the latter are transformed

into equidistant curved lines, approximately arcs of circles, with

their concavity directed downwards; and secondly, that the

vertical ordinates are transformed into a pencil of rays approxi-

mately orthogonal to the circular arcs. In short, the configuration

of the rabbit's skull is derived from that of our primitive rhinoceros

by the unexpectedly simple process of submitting the latter to a

Fig. 401. A, outline diagram of the Cartesian co-ordinates of the skull of Hyra-

cotherium or Eohippus, as shevni in Fig. 402, A. H, outline of the corresponding

projection of the horse's skull. B-G, intermediate, or interpolated, outlines.

strong and uniform flexure in the downward direction (cf. Fig. 358,

p. 731). In the case of the rabbit the configuration of the

individual bones does not conform quite so well to the general

transformation as it does when we are comparing the several

Perissodactyles one with another; and the chief departures

from conformity will be found in the size of the orbit and in the

outline of the immediately surrounding bones. The simple fact

is that the relatively enormous eye of the rabbit constitutes an

independent variation, which cannot be brought into the general

and fundamental transformation, but must be dealt with
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Fig. 402 ..4, skull of Hyracotheriuni. from the Eocene, after W. B. Scott; H, skull

of horse; represented as a co-ordinate transformation of that of Hyracotherium,
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and to the same scale of magnitude; B-G, various artificial or imaginary

types, reconstructed as intermediate stages between A and H; M, skull of

Mesohippus, from the Oligocene, after Scott, for comparison with C ; P, skull

of Protohippus, from the Miocene, after Cope, for comparison with E; Pp,

lower jaw of Protohippus placidus (after Matthew and Gidley), for comparison

with F ; Mi, MioJiippus (after Osborn), Pa, Parahippus (after Peterson),

shewing resemblance, but less perfect agreement, with C and D.
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separately. The enlargement of the eye, like the modification in

form and number of the teeth, is a separate phenomenon, which

supplements but in no way contradicts our general comparison of

the skulls taken in their entirety.

Before we leave the Perissodactyla and their allies, let us look

a little more closely into the case of the horse and its immediate

relations or ancestors, doing so with the help of a set of diagrams

which I again owe to Mr Gerard Heilmann *. Here we start afresh,'

with the skull (Fig. 402, A) of Hyracotherium (or Eohippus),

inscribed in a simple Cartesian network. At the other end of the

series (H) is a skull of Equus, in its own corresponding network

;

and the intermediate stages {B—G) are all drawn by direct and

simple interpolation, as in Mr Heilmann's former series of drawings

of Archaeop'eryx and Apatornis. In this present case, the relative

magnitudes are shewn, as well as the forms, of the several skulls.

Alongside of these reconstructed diagrams, are set figures of

certain extinct "horses" (Equidae or Palaeotheriidae), and in

two cases, viz. Mesohippus and Protohippus {M, P), it will be

seen that the actual fossil skull coincides in the most perfect

fashion with one of the hypothetical forms or stages which our

method shews to be implicitly involved in the transition from

Hyracotherium to Equus. In a third case, that of Parahippus

(Pa), the correspondence (as Mr Heilmann points out) is by no

means exact. The outline of this skull comes nearest to that of

the hypothetical transition stage D, but the "fit" is now a bad

one ; for the skull of Parahippus is evidently a longer, straighter

and narrower skull, and differs in other minor characters besides.

In short, though some writers have placed Parahippus in the

direct line of descent between Equus and. Eohippus, we see at

once that there is no place for it there, and that it must, accord-

ingly, represent a somewhat divergent branch or offshoot of the

Equidae J. It may be noticed, especially in the case of Pro ohippus

* These and also other coordinate diagrams will be found in Mr G. Heilmann's

book Fughnes Afstamning, 398 pp., Copenhagen, 1916; see especially pp. 368-380.

j- Cf. Zittel, Grundziige d. Palaeontologie, p. 463, 1911.

J Cf. W. B. Scott (Amer. Journ. of Science, XLvm, pp. 335-374, 1894), "We
find that any mammahan series at all complete, such as that of the horses, is

remarkably continuous, and that the progress of discovery is steadily filling up
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(P), that the configuration of the angle of the jaw does not tally

quite so accurately with that of our hypothetical diagrams as do

other parts of the skull. As a matter of fact, this region is

somewhat variable, in different species of a genus, and even in

different individuals of the same species ; in the small figure {Pp)

of Protohippus placidus the correspondence is more exact.

In considering this series of figures we cannot but be struck,

not only with the regularity of the succession of " transformations,"

but also with the slight and inconsiderable differences which

separate the known and recorded stages, and even the two extremes

of the whole series. These differences are no greater (save in

regard to actual magnitude) than those between one human skull

and another, at least if we take into account the older or remoter

Fig. 403. Human scapulae (after Dwight), A, Caucasian; B, Negro;

C, North American Indian (from Kentucky Mountains).

races; and they are again no greater, but if anything less, than

the range of variation, racial and individual, in certain other

human bones, for instance the scapula*.

The variabiHty of this latter bone is great, but it is neither

what few gaps remain. So closely do successive stages follow upon one another

that it is sometimes extremely difficult to arrange them all in order, and to

distinguish clearly those members which belong in the main line of descent, and

those which represent incipient branches. Some phylogenies actually suffer from

an embarrassment of riches."

* Cf. Dwight, T., The Range of Variation of the Human Scapula, Amer. Nat.

XXI, pp. 627-638, 1887. Cf. also Turner, CMllenger Rep. XLvn, on Human Skele-

tons, p. 86, 1886: "I gather both from my own measurements, and those of other

observers, that the range of variation in the relative length and breadth of the

scapula is very considerable in the same race, so that it needs a large number of

bones to enable one to obtain an accurate idea of the mean of the race."

T G. 49-
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surprising nor peculiar ; for it is linked with all the considerations

of mechanical efficiency and functional modification which we

dealt with in our last chapter. The scapula occupies, as it were,

a focus in a very- important field of force; and the lines of force

converging on it will be very greatly modified by the varying

development of the muscles over a large area of the body and of

the uses to which they are habitually put.

J(
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and the configuration of every constituent bone of the face and

skull undergoes an alteration. We do not know to begin with,

and we are not shewn by the ordinary methods of comparison,

how far these various changes form part of one harmonious and

congruent transformation, or whether we are to look, for instance,

upon the changes undergone by the frontal, the occipital, the

maxillary, and the mandibular regions as a congeries of separate

modifications or independent variants. But as soon as we have

marked out a number of points in the gorilla's or chimpanzee's

skull, corresponding with those which our co-ordinate network

intersected in the human skull, we find that these corresponding

points may be at once linked uj5 by smoothly curved lines of

intersection, which form a new system of co-ordinates and con-

stitute a simple "projection" of our human skull. The network

Fig. 406, Skull of chimpanzee. Fig. 407. Skull of baboon.

represented in Fig. 405 constitutes such a projection of the human

skull on what we may call, figuratively speaking, the "plane" of

the chimpanzee; and the full diagram in Fig. 406 demonstrates

the correspondence. In Fig. 407 I have shewn the similar de-

formation in the case of a baboon, and it is obvious that the

transformation is of precisely the same order, and differs only in

an increased intensity or degree of deformation.

In both dimensions, as we pass from above downwards and

from behind forwards, the corresponding areas of the network

are seen to increase in a gradual and approximately logarithmic

order in the lower as compared with the higher type of skull;

and, in short, it becomes at once manifest that the modifications

of jaws, braincase, and the regions between are all portions of one

continuous and integral process. It is of course easy to draw the

49—2
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inverse diagrams, by which the Cartesian co-ordinates of the ape

are transformed into curvilinear and non-equidistant co-ordinates

in man.

From this comparison of the gorilla's or chimpanzee's with

the human skull we realise that an inherent weakness underlies

the anthropologist's method of comparing skulls by reference to

a small number of axes. The most important of these are the

"facial" and " basicranial " axes, which include between them the

"facial angle." But it is, in the first place, evident that these

axes are merely the principal axes of a system of co-ordinates,

and that their restricted and isolated use neglects all that can be

learned from the filling in of the rest of the co-ordinate network.

And, in the second place, the "facial axis," for instance, as

ordinarily used in the anthropological comparison of one human
skull with another, or of the human skull with the gorilla's, is

in all cases treated as a straight line; but our investigation has

shewn that rectilinear axes only meet the case in the simplest

and most closely related transformations ; and that, for instance,

in 'the anthropoid skull no rectilinear axis is homologous with a

rectilinear axis in a man's skull, but what is a straight line in the

one has become a certain definite curve in the other.

Mr Heilmann tells me that he has tried, but without success,

to obtain a transitional series between the human skull and some

prehuman, anthropoid type, which series (as in the case of the

Equidae) should be found to contain other known types in direct

linear sequence. It appears impossible, however, to obtain such a

series, or to pass by successive and continuous gradations through

such forms as Mesopithecus, Pithecanthropus, Homo neander-

thalensis, and the lower or higher races of modern man. The

failure is not the fault of our method. It merely indicates that

no one straight line of descent, or of consecutive transformation,

exists; but on the contrary, that among human and anthropoid

types, recent and extinct, we have to do with a complex problem

of divergent, rather than of continuous, variation. And in like

manner, easy as it is to correlate the baboon's and chimpanzee's

skulls severally with that of man, and easy as it is to see that the

chimpanzee's skull is much nearer to the human type than is the

baboon's, it is also not difficult to perceive that the series is not.
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strictly speaking, continuous, and that neither of our two apes

lies precisely on the same direct line or sequence of deforma-

tion by which we may hypothetically connect the other with

man.

As a final illustration I have drawn the outline of a dog's

skull (Fig. 408), and inscribed it in a network comparable with

the Cartesian network of the human skull in Fig. 404. Here we
attempt to bridge over a wider gulf than we have crossed in any

of our former comparisons. But, nevertheless, it is obvious that

our method still holds good, in spite of the fact that there are

various specific differences, such as the open or closed orbit, etc.,

which have to be separately described and accounted for. We
see that the chief essential differences in plan between the dog's

skull and the man's lie in the fact that, relatively speaking, the

Fig. 408. Skull of dog, compared with the human skull of Fig. 404.

former tapers away in front, a triangular taking the place of a

rectangular conformation ; secondly, that, coincident with the

tapering off, there is a progressive elongation, or pulling out, of

the whole forepart of the skull ; and lastly, as a minor difference,

that the straight vertical ordinates of the human skull become

curved, with their convexity directed forwards, in the dog. While

the net result is that in the dog, just as in the chimpanzee, the

brain-pan is smaller and the jaws are larger than in man, it is

now conspicuously evident that the co-ordinate network of the

ape is by no means intermediate between those which fit the other

two. The mode of deformation is on different lines; and, while

it may be correct to say that the chimpanzee and the baboon are

more brute-like, it would be by no means accurate to assert that

they are more dog-like, than man.
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In this brief account of co-ordinate transformations and of

their morphological utility I have dealt with plane co-ordinates

only, and have made no mention of the less elementary subject

of co-ordinates in three-dimensional space. In theory there is

no difficulty whatsoever in such an extension of our method; it

is just as easy to refer the form of our fish or of our skull to the

rectangular co-ordinates x, y, z, or to the polar co-ordinates

I, 7], I,, as it is to refer their plane projections to the two axes to

which our investigation has been confined. And that it would

be advantageous to do so goes without saying ; for it is the shape

of the solid object, not that of the mere drawing of the object,

that we want to understand ; and already we have found some

of our easy problems in solid geometry leading us (as in the case

of the form of the bivalve and even of the univalve shell) quickly

in the direction of co-ordinate analysis and the theory of conformal

transformations. But this extended theme I have not attempted

to pursue, and it must be left to other times, and to other hands.

Nevertheless, let us glance for a moment at the sort of simple

cases, the simplest possible cases, with which such an investigation

might begin ; and we have found our plane co-ordinate systems

so easily and effectively applicable to certain fishes that we may
seek among them for our first and tentative introduction to the

three-dimensional field.

It is obvious enough that the same method of description and

analysis which we have applied to one plane, we may apply to

another : drawing by observation, and by a process of trial and

error, our various cross-sections and the co-ordinate systems

which seem best to correspond. But the new and important

problem which now emerges is to correlate the deformation or

transformation which we discover in one plane with that which

we have observed in another: and at length, perhaps, after

grasping the general principles of such correlation, to forecast

approximately what is likely to take place in the other two planes

of reference when we are acquainted with one, that is to say, to

determine the values along one axis in terms of the other two.

Let us imagine a common "round" fish, and a common "flat"

fish, such as a haddock and a plaice. These two fishes are not as

nicely adapted for comparison by means of plane co-ordinates as
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some which we have studied, owing to the presence of essentially

unimportant, but yet conspicuous differences in the position of

the eyes, or in the number of the fins,—that is to say in the manner

in which the continuous dorsal fin of the plaice appears in the

haddock to be cut or scolloped into a number of separate fins.

But speaking broadly, and apart from' such minor differences as

these, it is manifest that the chief factor in the case (so far as we

at present see) is simply the broadening out of the plaice's body,

as compared with the haddock's, in the dorso-ventral direction,

that is to say, along the y axis ; in other words, the ratio xjy

is much less, (and indeed little more than half as great), in the

haddock than in the plaice. But we also recognise at once that

while the plaice (as compared with the haddock) is expanded in

one direction, it is also flattened, or thinned out, in the other:

y increases, but z diminishes, relatively to x. And furthermore,

we soon see that this is a common or even a general phenomenon.

The high, expanded body in our Antigonia or in our sun-fish is

at the same time flattened or compressed from side to side, in

comparison with the related fishes which we have chosen as

standards of reference or comparison ; and conversely, such a

fish as the skate, while it is expanded from side to side in com-

parison with a shark or dogfish, is at the same time flattened or

depressed in its vertical section. We proceed then, to enquire

whether there be any simple relation of magnitude discernible

between these twin factors of expansion and compression ; and

the very fact that the two dimensions tend to vary inversely

already assures us that, in the general process of deformation, the

volume is less affected than are the linear dimensions. Some years

ago, when I was studying the length-weight co-efficient in fishes

(of which we have already spoken in Chap. Ill, p. 98), that is to

say the coefficient k in the formula W = kL^, or k = W/L^, I

was not a little surprised to find that k was all but identical in

two such dift'erent looking fishes as our haddock and our plaice:

thus indicating that these two fishes, little as they resemble one

another externally (though they belong to two closely related

families), have approximately the same volume when they are

equal in length ; or, in other words, that the extent to which the

plaice's body has become expanded or broadened is just about
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compensated for by the extent to which it has also got flattened

or thinned. In short, if we could permit ourselves to conceive

of a haddock being directly transformed into a plaice, a very

large part of the change would be simply accounted for by supposing

the former fish to be "rolled out," as a baker rolls a piece of dough.

This is, as it were, an extreme case of the balancement des organes,

or "compensation of parts."

Simple Cartesian co-ordinates will not suffice very well to

compare the haddock with the plaice, for the deformation under-

gone by the former in comparison with the latter is more on the

lines of that by which we have compared our Antigonia with our

Polyprion; that is to say, the expansion is greater towards the

middle of the fish's length, and dwindles away towards either

end. But again simplifying our illustration to the utmost, and

being content with a rough comparison, we may assert that,

when haddock and plaice are brought to the same standard of

length, we can inscribe them both (approximately) in rectangular

co-ordinate networks, such that Y in the plaice is about twice

as great as y in the haddock. But if the volumes of the two

fishes be equal, this is as much as to say that xyz in the one case

(or rather the summation of all these values) is equal to XYZ
in the other; and therefore (since X = x, and Y = 2y), it follows

that Z = z/2. When w^e have drawn our vertical transverse

section of the haddock (op projected that fish in the yz plane), we

have reason accordingly to anticipate that we can draw a similar

projection (or section) of the plaice by simply doubling the ^'s

and halving the e's : and, very approximately, this turns out to

be the case. The plaice is (in round numbers) just about twice

as broad and also just about half as thick as the haddock; and

therefore the ratio of breadth to thickness (or y to z) is just about

four times as great in the one case as in the other.

It is true that this simple, or simplified, illustration carries us

but a very little way, and only half prepares us for much greater

complications. For instance, we have no right or reason to pre-

sume that the equality of weights, or volumes, is a common,

much less a general rule. And again, in all cases of more complex

deformation, such as that by which we have compared Diodon

with the sunfish, we must be prepared for very much more
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recondite methods of comparison and analysis, leading doubtless to

very much more complicated results. In this last case, of Diodon

and the sunfish, we have seen that the vertical expansion of the

latter as compared with the former fish, increases rapidly as we
go backwards towards the tail ; but we can by no means say that

the lateral compression increases in like proportion. If anything,

it would seem that the said expansion and compression tend to

vary inversely ; for the Diodon is very thick in front and greatly

thinned away behind, while the flattened sunfish is more nearly

of the same thickness all the way along. Interesting as the whole

subject is we must meanwhile leave it alone ; recognising, however,

that if the difficulties of description and representation could be

overcome, it is by means of such co-ordinates in space that we
should at last obtain an adequate and satisfying picture of the

processes of deformation and of the directions of growth*.

* There is a paper on the mathematical study of organic forms and organic

processes by the learned and celebrated Gustav Theodor Fechner, which I have
only lately read, but which would have been of no little use and help to our

argument had I known it before. (Ueber die mathematische Behandlung organ-

ischer Gestalten und Processe, Berichte d. k. sdchs. GeseUsch., Math.-phys. CI.,

Leipzig, 1849, pp. 50-64.) Fechner's treatment is more purely mathematical

and less physical in its scope and bearing than ours, and his paper is but a short

one; but the conclusions to which he is led differ little from our own. Let me
quote a single sentence which, together with its context, runs precisely on the

lines of the discussion with which this chapter of ours began. " So ist also die

mathematische Bestimmbarkeit im Gebiete des Organischen ganz eben so gut

vorhanden als in dem des Unorganischen, und in letzterem eben solchen oder

aquivalenten Beschrankungen unterworfen als in ersterem ; und nur sofern die

unorganischen Formen und das unorgaiiische Geschehen sich einer einfacheren

Gesetzlichkeit mehr nahem als die organischen, kann die Approximation im
unorganischen Gebiet leichter und weiter getrieben warden als im organischen.

Dies ware der ganze, sonach rein relative, Unterschied." Here in a nutshell, in

words written some seventy years ago, is the gist of the whole matter.

An interestmg little book of Schiaparelli's (which I ought to have known long

a.go)—Forme organiche naturali e forme geometrlche pure, Milano, Hoepli, 1898

—

has likewise come into my hands too late for discussion.



EPILOGUE.

In the beginning of this book I said that its scope and treat-

ment were of so prefatory a kind that of other preface it had no

need ; and now, for the same reason, with no formal and elaborate

conclusion do I bring it to a close. The fact that I set little store

by certain postulates (often deemed to be fundamental), of our

present-day biology the reader will have discovered and I have

not endeavoured to conceal. But it is not for the sake of polemical

argument that I have written, and the doctrines which I do not

subscribe to I have only spoken of by the way. My task is finished

if I have been able to shew that a certain mathematical aspect of

morphology, to which as yet the morphologist gives httle heed, is

interwoven with his problems, complementary to his descriptive

task, and helpful, nay essential, to his proper study and com-

prehension of Form. Hie artem remumque repono.

And while I have sought to shew the naturalist how a few

mathematical concepts and dynamical principles may help and

guide him, I have tried to shew the mathematician a field for his

labour,—a field which few have entered and no man has explored.

Here may be found homely problems, such as often tax the

highest skill of the mathematician, and reward his ingenuity all

the more for their trivial associations and outward semblance of

simpUcity.

That I am no skilled mathematician I have had little need to

confess, but something of the use and beauty of mathematics I

think I am able to understand. I know that in the study of

material things, number, order and position are the threefold clue

to exact knowledge ; that these three, in the mathematician's

hands, furnish the "first outhnes for a sketch of the Universe";

that by square and circle we are helped, hke Emile Verhaeren's

carpenter, to conceive " Les lois indubitables et fecondes Qui sont

la regie et la clarte du monde."

For the harmony of the world is made manifest in Form and

Number, and the heart and soul and all the poetry of Natural
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Philosophy are embodied in the concept of mathematical beauty.

A greater than Verhaeren had this in mind when he told of " the

golden compasses, prepared In God's eternal store." A greater

than Milton had magnified the theme and glorified Him "who
sitteth upon the circle of the earth," saying: He measureth the

waters in the hollow of his hand, he meteth out the heavens with

his span, he comprehendeth the dust of the earth in a measure.

Moreover the perfection of mathematical beauty is such (as

Maclaurin learned of the bee), that whatsoever is most beautiful

and regular is also found to be most useful and excellent.

The living and the dead, things animate and inanimate, we
dwellers in the world and this world wherein we dwell,

—

irdvTa

ja fjuav rd yiypcocTKOfMeva,—are bound alike by physical and

mathematical law. "Conterminous with space and coeval with

time is the kingdom of Mathematics
;

' within this range her

dominion is supreme ; otherwise than according to her order

nothing can exist, and nothing takes place in contradiction to her

laws." So said, some forty years ago, a certain mathematician;

and Philolaus the Pythagorean had said much the same.

But with no less love and insight has the science of Form and

Number been appraised in our own day and generation by a very

great Naturahst indeed:—by that old man eloquent, that wise

student and pupil of the ant and the bee, who died but yesterday,

and who in his all but saccular hfe tasted of the firstfruits of

immortahty; who curiously conjoined the wisdom of antiquity

with the learning of to-day ; whose Proven9al verse seems set to

Dorian music; in whose plainest words is a sound as of bees'

industrious murmur; and who, being of the same blood and

marrow with Plato and Pythagoras, saw in Number "la clef de la

voute," and found in it "le comment et le pourquoi des choses."
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Abbe's diffraction plates 323
Abel, O. 706
Abonyi, A. 127
Aeantharia, spicules of 458
Acanthometridae 462
Acceleration 64
Aceratherium 761
Achlya 244
Acromegaly 135
Actinomma 469
Actinomyxidia 452
Actinophrys 165, 197, 264, 298
Actinosphaerium 197, 266, 298, 468
Adams, J. C. 663
Adaptation 670
Addison, Joseph, 671
Adiantum 408
Adsorption 192, 208, 241. 277, 357;

orientirte 440, 590; pseudo 282
Agglutination 201
Aglaophenia 748
Airy, H. 636
Albumin molecule 41
Alcyqnaria 387, 413, 424, 459
Alexeieff, A. 157, 165
AUmann, W. 643
Alpheus, claws of 150
Alpine plants 124
Altmann's granules 285
Alveolar meshwork 170
Ammonites 526, 530, 537, 539, 550,

552, 576, 583, 584, 728
Amoeba 12, 165, 209, 212, 245, 255,

288. 463, 605
Amphidiscs 440
Amphioxus 311
Ampullaria 560
Anabaena 300
Anaxagoras 8

Ancvloceras 550
Andxews, G. F. 164; C. W. 716
Anhydrite 433
Anikin, W. P. 130
Anisonema 126
Anisotropy 241, 357
Anomia 565, 567
Antelopes, horns of 614, 671
Antheridia 303, 403, 405, 409

Anthoceros, spore of 397
Anthogorgia, spicules of 413
Anthropometry 51
Antichne 360'

Antigonia 750, 775
Antlers 628
Apatornis 757
Apocynum, pollen of 396
Aptychus 576
Arachnoidiscus 387
Arachnophyllum 325
Arcella 323
Arcestes 539, 540
Archaeopteryx 757
Archimedes 580; spiral of 503, 524,

552
Argali, horns of 617
Argiope 561
Argonauta 546, 561
Argus jjheasant 431, 631
Argyropelecus 748
Aristotle 3, 4, 5, 8, 15, 138, 149, 158,

509, 653, 714, 725, 726
Arizona trees 121

Arrhenius, Sv. 28, 48, 171

Artemia 127

Artemis 561
Ascaris megalocephala 180, 195
Aschemonella 255
Assheton, R. 344
Asterina 342
Asteroides 423
Asterolampra 386
Asters 167, 174
Asthenosoma 664
Astrorhiza 255, 463, 587, 607
Astrosclera 436
Asymmetric substances 416
Asymmetry 241
Atrypa 569
Auerbach, F. 9

Aulacantha 460
Aulastrum 471
Aulonia 468
Auricular height 93
Autocatalysis 131

Auximones 135
Awerinzew, S. 589
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Babak, E. 32
Babirussa, teeth of 634
Baboon, skull of 771
Bacillus 39; B. ramosus 133
Bacon, Lord 4, 5, 51, 53, 131. 656,

716
Bacteria 245, 250
Baer, K. E. von 3, 55, 57, 155
Balancement 714, 776
Balfour, F. M. 57, 348
Baltzer, Fr. 327
Bamboo, growth of 77

Barclay, J. 334
Barfurth, D. 85
Barlow, W. 202
Barratt, J. O. W. 285
BarthoUnus, E. 329
Bashforth, Fr. 663
Bast-fibres, strength of 679
Baster, Job 138
Bateson, W. 104, 431
Bather, F. A. 578
Batsch, A. J. G. K. 606
Baudrimont, A., and St Ange 124
Baumann and Roos 136
Bayhss, W. M. 135. 277
Beads or globules 234
Beak, shape of 632
Beal, W. J. 643
Beam, loaded 674
Bee's cell 327, 779
Begonia 412, 733
Beisa antelope, horns of 616, 621
BeUerophon 550
Benard, H. 2.59, 319, 448, 590
Bending moments 19, 677, 696
Beneden, Ed. van 153, 170, 198
Bergson. H. 7, 103, 251, 611, 721
Bernard, Claude 2, 13, 127
Bernoulli, James 580; John 30, 54
Berthold, G. 8, 234, 298, 306, 322, 346,

351, 357, 358, 372, 399
Bethe, A. 276
Bialaszewicz, K. 114, 125
Biedermann, W. 431
Bilharzia, egg of 656
Binuclearity 286
Biocrystalhsation 454
Biogenetisches Grundgesetz 608
Biometrics 78
Bird, flight of 24; form of 673
Bisection of soUds 352, etc.

Bishop, .John 31
Bivalve shells 561
Bjerknes, V. 186
Blackman, F. F. 108, 110, 114, 124,

131, 132
Blackwall, J. 234
Blake, J. F. 536, 547, 553, 578, 583,

728

Blastosphere 56, 344
Blood-corpuscles, form of 270; size

of 36
Blood-vessels 665
Boas, Fr. 79
Bodo 230, 269
Boerhaave, Hermann 380
Bonanni, F. 318
Bone, 425, 435 ; repair of 687; struc-

ture of 673, 680
Bonnet, Ch. 108, 138, 334, 635
Borelli, J. A. 8, 27, 29, 318, 677, 690
Bosanquet, B. 5
Boscovich, Father R. J., S.J. 8
Bose, J. C. 87
Bostryx 502
Bottazzi, F. 127
Bottomley, J. T. 135
Boubee, N. .529

Bourgery, J. M. 683
Bourne," G. C. 199
Bourrelet, Plateau's 297, 339, 446, 470,

477
Boveri, Th. 38, 147, 170, 198
Bowditch, H. P. 61, 79
Bower, F. 0. 406
Bowman, J. H. 428
Boyd, R. 61

Boys, C. V. 233
Brachiopods 561, 568, 577
Bradford, S. C. 428
Brady, H. B. 255, 606
Brain, growth of 89; weight of 90
Branchipus 128, 342
Brandt, K 459, 482
Brauer, A. 180
Braun, A. 636
Bravais, L. and A. 202, 502. 630
Bredig, G. 178
Brewster, Sir D. 209, 337, 350, 431
Bridge, T. W. 671
Bridge construction 18, 691
Brine shrimps 127
Brooke, Sir V. 614, 624, 628, 631
Browne, Sir T. 324, 329, 480, 650. ()52,

733
Brownian movement 45, 279, 421
Briicke. C. 160, 199
Buccinum 520, 527
Buch, Leopold von 528, 583
Buchner, Hans 133
Budding 213, 399
Buffori, on the bee's cell 333
Buhle, C. A. 653
BuUmus 549; 556
Burnet, .L 509
Biitschh, O. 165, 170, 171, 204, 432,

434, 458, 492
Biittel-Reepen, H. von 332
Byk, A. 419
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Cactus, sphaerocrystals in 434
Cadets, growth of German 119
Calandrini, G. L. 636
Calcospherites 421, 434
Callimitra 472
Callithamnion, spore of 396
Caiman, T. W. 149
Calyptraea 556
Camel 703, 704
Campanularia 237. 262, 747
CampbeU, D. H. 302, 397, 402
Camper, P. 742
Camptosaurus 754
Cannon bone 730
Cantilever 678, 694
Cantor, Moritz 503
Caprella 743
Caprinella 567, 577
Carapace of crabs 744
Cardium 561
Cariacus 629
CarUer, E. W. 211
Carnoy, J. B. 468
Carpenter, W. B. 45. 422, 465
Caryokinesis 14, 157, etc.

Cassini, D. 329
Cassis 559
Catabolic products 435
Catalytic action 130
Catenoid 218, 223, 227, 252
Causation 6

Cavolinia 573
Cayley, A. 385
Celestite 459
Cell-theory 197, 199

Cells, forms of 201 ; sizes of 35
Cellular pathology 200; tissue, artificial

320
Cenosphaera 470
Centres of force 156, 196

Centrosome 167, 168, 173
Cephalopods 548, etc.; eggs of 378
Ceratophyllum, growth of 97
Ceratorhinus 612
Cerebratulus, egg of 189
Cerianthus 125
Cerithium 530, 557, 559
Chabrier, J. 25
Chabry, L. 30, 306, 415
Chaetodont fishes 671, 749
Chaetopterus, egg of 195
Chamois, horns of 615
Chapman. Abel 672
Chara 303
Characters, biological 196, 727
Chevron bones 709
Chick, hatching of 108
Chilomonas 1J4
Chladni figures 386, 475
Chlorophyll 291

Choanofiagellates 253
Chodat, R. 78, 132

Cholesterin 272
Chondriosomes 285
Chorinus 744
Chree, C. 19

Chromatin 153
Chromidia 286
Chromosomes 157, 173, 179, 181, 190,

195
Church, A. H. 639
Cicero 62
Cicinnus 502
Cidaris 664
Circogonia 479
Cladocarpus 748
Claparede, E. R. 423
ClathruUna 470
Clausiha 520. 549
Claws 149, 632
Cleland, John 4
Cleodora 570-575
Chmate and growth 121

CUo 570
Close packing 453
Clytia 747
Coan, C. A. 514
Coassus 629
Cod, otoliths of 432; skeleton of 710
Codonella 248
Codosiga 253
Coe, W. R. 189
Coefficient of growth 153; of tem-

perature 109
Coelopleurus 664
Cogan, DrT. 742
Cohen, A. 110
Cohesion figures 259
Collar-cells 253
Colloids 162, 178, 201, 279, 412, 421,

etc.

Collosclerophora 436
CoUosphaera 459
Colman, S. 514
Comoseris 327
Compensation, law of 714, 776
Conchospiral 531, 539, 594
ConchyUometer 529
Concretions 410, etc.

Conjugate curves 561, 613
Coniilin, E. G. 36, 191, 310, 340, 377
Conostats 427
Continuous girder 700
Contractile vacuole 165, 264
Conus 557, 559. 560
Cook, Sir T A. 493, 635, 639, 650
Co-ordinates 723
Corals 325, 388, 423
Cornevin, Ch. 102
Cornuspira 594
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Correlation 78, 727
Corystes 744
Cotton, A. 418
Cox, J. 46
Crane-head, 682
Crayfish, sperm-cells of, 273
Creodonta 716
Crepidula 36, 310, 340
Creseis 570
Cristellaria 515, 600
Crocodile 704, 752
Crocus, growth of 88
Crookes, Sir W. 32
Cryptocleidus 755
Crystals 202, 250, 429, 444, 480, 601
Ctenophora 391
Cube, partition of 346
Cucumis, growth of 109
Culmann, Professor C. 682, 697
Cultellus 564
Curlew, eggs of 652
Cushman,^J. A. 323
Cuvier 727
Cuvierina 258, 570
Cyamus 743
CyathophyUtim 325, 391
Cyclammina 595, 596, 602
Cyclas 561
Cyclostoma 554
Cylinder 218, 227, 377
Cymba 559
Cyme 502
Cypraea 547, 554, 560, 561
Cyrtina 569
Cyrtocerata 583
Cystoliths 412

Daday de Dees, E. v. 130
Daffner, Fr. 61, 118
Dalyell, Sir John G. 146
Danilewsky, B. 135
DarUng, C. R. 219, 257, 664
D'Arsonval, A. 192, 281
Darwin, C. 4, 44, 57, 332, 431, 465,

549. 624, 671, 714
Dastre, A. 136
Davenport, C. B. 107, 123. 125, 126,211
De Candolle, A. 108, 643; A. P. 20;

C. 636
Decapod Crustacea, sperm-cells of 273
Deer, antlers of 628
Deformation 638, 728, etc.

Degree, differences of, 586, 725
Delage, Yves 153
Delaunav. C. E. 218
Delisle 31
DelUnger, 0. P. 212
Delphinula 557
Delpino, F. 636
Democritus 44

Dendy, A. 137, 436, 440, 671
DentaUum 535, 537, 546, 555, 556, 561
Dentine 425
Descartes, R. 185, 723
Des Murs, 0. 653
Devaux, H. 43
De Vries, H. 108
Diatoms 214, 386, 426
Diceras 567
Dickson, Alex. 647
Dictyota 303, 356, 474
Diet and growth 134
Difflugia 463, 466
Diffusion figures 259, 430
Dimorphism of earwigs 105
Dimorphodon 756
Dinenympha 252
Dinobryon 248
Dinosaurs 702. 704, 754
Diodon 751, 777
Dionaea 734
Diplodocus 702, 706, 710
Disc, segmentation of a 367
Discorbina 602
Distigma 246
Distribution, geographical 457, 606
Ditrupa 586
Dixon, A. F. 684
Dobell, C. C. 286
Dodecahedron 336, 478, etc.

Doflein, F. J. 46, 267, 606
Dog's skull 773
Dolium 526, 528, 530, 557, 559, 560
Dolphin, skeleton of 709
Donaldson, H. H. 82, 93
Dorataspis 481
D'Orbigny, Ale. 529, 555, 591, 728
Douglass, A. E. 121

Draper, J. W. 165, 264
Dreyer, F. R. 435, 447, 455, 468, 606,

608
Driesch, H. 4, 35, 157, 306, 310, 312,

377, 378, 714
Dromia, 275
Drops 44, 257, 587
Du Bois-Reymond, Emil 1, 92
Duerden, J. E. 423
Dufour, Louis 219
Dujardin, F. 257, 591
Dunan 7

Duncan, P. Martin 388
Dupre, Athanase 279
Durbin, Marion L. 138

Durer, A. 55, 740, 742
Dutrochet, R. J. H. 212, 624
Dwight, T. 769
Dynamical similarity 17

Earthworm, calcospheres in 423
Earwigs, dimorphism in 104
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Ebner, V. von 444, 683
Echinoderms, larval 392; spicules of

449
Echinus 377, 378, 664
Eclipse, skeleton of 739
Ectosarc 281
Eel, growth of. 85
Efficiency, mechanical 670
Efficient cause 6, 158, 248
Eggs of birds 652
Eiffel tower 20
Eight cells, grouping of 381, etc.

Eimer, Th. 606
Einstein formula 47
Elastic curve 219, 265, 271
Elaters 489
Electrical convection 187; stimulation

of growth 153

Elephant 21, 633, 703, 704
Elk. antlers of 629, 632
Ellipsolithes 728
Ellis, R. Leslie 4, 329, 647; M. M.

147, 656
Elodea 322
Emarginula 556
Emmel, V. E. 149
Empedocles 8

Emperor Moth 431
Encystment 213, 283
Engelmann, T. W. 210, 285
Enriques, P. 4, 36, 64, 133, 134, 677
Entelechy 4, 714
Entosolenia 449
Enzymes 135
Epeira 233
Epicurus 47
Epidermis 314, 370
Epilobium, pollen of 396
Epipolic force 212
Equatorial plate 174
Equiangular spiral 50, 505
Equilibrium, figures of 227
Equipotential lines 640
Equisetum. spores of 290, 489
Errera, Leo 8, 40, 110, 111, 213, 306,

346, 348, 426
Erythrotrichia 358, 372, 390
Ethmosphaera 470
Euastrum 214
Eucharis 391
Euchd 509
Euglena 376
Euglypha 189
Euler, L. 3, 208, 385, 484, 690
Eulima 559
Eunicea, spicules of 424
Euomphalus 557, 559
Evelyn, John 652
Evolution 549, 610, etc.

Ewart, A. J. 20

Fabre, J. H. 64, 779
Facial angle 742, 770, 772
Faraday, M. 163, 167, 428, 475
Farmer, J. B. and Digby 190
Fatigue, molecular 689
Faucon, A. 88
Favosites 325
Fechner, G. T. 654, 777
Fedorow, E. S. von 338
Fehling, H. 76, 126
Ferns, spores of 396
FertiUsation 193
Fezzan-worms 127
Fibonacci 643
FibriUenkonus 285
Fick, R. 57, 683
Fickert, C. 606
Fidler, Prof. T. Claxton 691, 674.

696
Films, liquid 215, 217, 426
Filter-passers 39
Final cause 3, 248, 714
Fir-cone 635, 647
Fischel, Alfred 88
Fischer, Alfred 40, 172; Emil 417,

418; Otto 30, 699 '

Fishes, forms of 748
Fission, multiphcation by 151
Fissurella 556
FitzGerald, G. F. 158, 281, 323, 440,

477
FlageUum 246, 267, 291
Flemming, W. 170, 172, 180
FHght 24
FUnt, Professor 673
Fluid crystals 204, 272. 485
Fluted pattern 260
Fly's cornea 324
Fol, Hermann 168, 194
Folliculina 249
Foraminifera 214, 255, 415, 495, 515
Forth Bridge 694, 699, 700
Fossula 390
Foster, M. 185
Fraas, E. 716
Frankenheim, M. L. 202
Frazee, 0. E. 153
Fredericq, L. 127, 130
Free cell formation 396
Friedenthal, H. 64
Frisch, K. von 671
Frog, egg of 310, 363, 378, 382;

growth of 93. 126
Froth or foam 171, 205, 305, 314, 322,

343
Froude, W. 22
Fucus 355
Fundulus 125
Fusulina 593, 594
Fusus 527, 557
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Gadow, H. F. 028
Galathea 273
Galen 3, 465, 656
Galileo 8, 19, 28, 562, 677, 720
Gallardo, A. 163

Galloway, Principal 672
Gamble, F. A. 458
Ganglion-cells, size of 37

Gans, R. 46
Garden of Cyrus 324, 329
Gastrula 344
Gauss, K. F. 207, 278, 723
Gebhardt, W. 430, 683
Gelatination, water of 203
Generating curves and spirals 526,

561, 615, 637, 641
Geodetics 440, 488
Geoffroy St Hilaire, Et. de 714
Geotropism 211
Gerassiraow, J. J. 35
Gerdy, P. N. 491
Geryon 744
Gestaltungskraft 485
Giard, A. 156
GUmore, C. W. 707
Giraffe 705, 730, 738
Girardia 321, 408
Glaisher, J. 250
Glassblowing 238, 737
Gley, E. 135, 136

Globigerina 214, 234, 440, 495, 589,

602, 604, 606
Gnomon 509, 515, 591
Goat, horns of 613
Goat moth, wings of 430
Goebel, K. 321, 397, 408
Goethe 20, 38, 199, 714, 719
Golden Mean 511, 643, 649
Goldschmidt, R. 286
Goniatites 550, 728
Gonothyraea 747
Goodsir, John 156. 196, 580
GottUeb, H. 699
Gourd, form of 737
Grabau, A. H. 531, 539, 550
Graham, Thomas 162, 201, 203
Grant, Kerr 259
Grantia 445
Graphic statics 682
Gravitation 12, 32
Gray, J. 188
Greenhill, Sir A. G. 19

Gregory. D. F. 330, 675
GreviUe, R. K. 386
Gromia 234, 257
Gruber, A. 165
Gryphaea 546, 576, 577
Guard-cells 394
Gudernatsch, J. F. 136
Guillemot, egg of 652

Gulliver, G. 36
Giinther, F. C. 653, 654
Gurwitsch, A. 285

Hacker, V. 458
Haddock 774
Haeckel, E. 199, 445, 454, 455, 457,

467, 480, 481
Hair, pigmentation of 430
Hales, Stephen 36, 59, 95 669
Haliotis 514, 527, 546, 547, 554, 555,

557, 561
Hall, C. E. 119
Haller, A. von 2, 54, 56, 59, 64, 68
Hardesty, Irving 37
Hardy, W. B. 160, 162, 172, 187, 287
Harle, N. 28
Harmozones 135
Harpa 526, 528, 559
Harper, R. A. 283
Harpinia 746
Harting, P. 282. 420, 426, 434
Hartog, M. 163, 327
Harvey, E. N. and H. W. 187

Hatai, S. 132. 135
Hatchett, C. 420
Hatschek, B. 180
Haughton, Rev. S. 334, 666
Haiiy, R. J. 720
Hay, 0. P. 707
Haycraft, J. B. 211, 690
Head, length of 93
Heart, growth of 89; muscles of 490
Heath, Sir T. 511
Hegel, G. W. F. 4
Hegler 680, 688
Heidenhain, M. 170, 212
Heilmann, Gerhard 757, 768, 772
Helicoid 230; cyme 502, 605
Helicometer 529
Helicostyla 557
Hehohtes 326
Heliozoa 264, 460
Helix 528, 557
Helmholtz, H. von 2, 9, 25

Henderson, W. P. 323
Henslow, G. 636
Heredity 158, 286, 715

Hermann, F. 170

Hero of Alexandria 509
Heron-Allen, E. 257, 415, 465
Herpetomonas 268
Hertwig, 0. 56, 114, 153, 199, 310;

R. 170, 285
Hertzog, R. O. 109

Hess, W. 666, 668
Heteronymous horns 619
Heterophyllia 388
HexactinelHds 429, 452, 453
Hexagonal symmetry 319,323,471,513

50
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Hickson, S. J. 424
Hippopus 561
His, W. 55, 56, 74, 75
Hobbes, Thomas 159
Hober, R. 1, 126, 130, 172
Hodograph 516
Hoffmann, C. 628
Hofmoister, F. 41; W. 87, 210, 234,

304, 306, 636, 639
Holland, W. J. 707
Holmes, 0. W. 62, 737
Holothuioid spicules 440, 451
Homonymous horns 619
Homoplasy 251
Hooke, Robert 205
Hop, growth of 118; stem of, 627
Horace 44
Hormones 135
Horns 612
Horse 694, 701, 703, 764
Houssay, F. 21

Huber, P. 332
Huia bird 633
Humboldt, A. von 127
Hume, David 6

Hunter, John 667, 669, 713, 715
Huxley, T. H. 423, 722, 752
Hyacinth 322, 394
Hyalaea 571-577
Hyalonema 442
Hyatt, A. 548
Hyde, Ida H. 125, 163, 184, 188
Hydra 252 ; egg of 164
Hydractinia 342
Hydraulics 669
Hydrocharis 234
Hyperia 746
Hyrachyus 760, 765
Hyracotherium 766, 768

Ibex 617
Ice, structure of 428
Ichthyosaurus 755
Icosahedron 478
Iguanodon 706, 708
Inachus, sperm-cells of 273
Infusoria 246, 489
Intussusception 202
InuUn 432
Invagination 56, 344
Iodine 136
Irvine, Robert 414, 434
Isocardia 561, 577
Isoperimetrical problems 208, 346
Isotonic solutions 130, 274
Iterson, G. van 595

Jackson, C. M. 75, 88, 106
Jamin, J. C. 418
Janet, Paul 5, 18, 673

Japp, F. R. 417
Jellett, J. H. 1

Jenkin, C. F. 444
Jenkinson, J. W. 94, 114, 170
Jennings, H. S. 212, 492; Vaughan

424
Jensen, P. 211
Johnson, Dr 8. 62
Joly, John 9, 63
Jost, L. 110, 111

Juncus, pith of 335
Jungermannia 404

Kangaroo 705, 706, 709
Kanitz, Al. 109
Kant, Immanuel 1, 3, 714
Kappers, C. U. A. 566
Kellicott. W. E. 91

Kelvin, Lord 9, 49, 188, 202, 336, 453
Kepler 328, 480, 486, 643, 650
Kienitz-Gerloff, F. 404, 408
Kirby and Speiice 28, 30, 127
Kirchncr, A. 683
Kirkpatrick, R. 437
Klebs, G. 306
Kny, L. 680
Koch, G. von 423
Koenig, Samuel 330
Kofoid, C. A. 268
KoUiker, A. von 413
Kollmann, M. 170
KoltzofE, N. K. 273, 462
Koninckina 570
Koodoo, horns of 624
Koppen, Wladimir 111

Korotneff, A. 377
Kraus, G. 77
Krogh, A. 109
Krohl 666
Kiihne, W. 235
Kiister, E. 430

Lafresnaye, F. dc 653
Lagena 251, 256, 260, 587
Lagrange, J. L. 649
Lalanne, L. 334
Lamarck, J. B. dc 549, 716
Lamb, A. B. 186

Lamellaria 554
Lamellibranchs 561
Lami, B. 296, 643
Laminaria 315
Lammel, R. 100
Lanchester, F. W. 26
Lang, Arnold 561

Lankester, Sir E. Ray 4, 251, 348,

465
Laplace. P. S. de 1, 207. 217
Larmor, Sir J. 9, 259
Lavater, J. C. 740
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Law, Borclli's 29; Brandfs 482; of

Constant Angle 599; Errera's 213,

306; Fronde's 22; Laniarle's

309; of Mass 130; Maupertiiis's

208; Miillcr's 481; of Optimum
110; van't Hoff's 109; Willard-

Gibbs' 280; Wolff's 3, 51, 155
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Leaves, arrangement of (i35 ; form of

731
Ledingham, J. C. G. 211

Leduc; Stephane 162, 167, 185, 219,

259, 415, 428, 431, 590
Leeuwenhoek, A. van 36. 209
Leger, L. 452
Le Hello, P. 30
Lehmann, O. 203, 272, 440, 485. 590
Leibniz, G. W. von 3, 5, 159, 385
Leidenfrost, J. G. 279
Leidy, J. 252, 468
Leiper, R T. 660
Leitch, I. 112
Lcitgeb, H. 305
Length-weight coefficient 98-103, 775

Leonardo da Vinci 27, 635 ; of Pisa

643
Lepeschkin 625
Leptocephalus 87
Leray, Ad. 18

Lesage, G. L. 18

Leslie, Sir John 163, 503
Lestiboudois, T. 636
Leucocytes 211
Levers, Orders of 690
Levi, G. 35, 37
Lewis, C. M. 280
Lhuihcr, S. A. J. 330
Liesegang's rings 427, 475
Light, pressure of 48
Lillie. F. R. 4. 147. 341 ; R. S. 180,

187, 192

Lima 565
Limacina 571

Lines of force 163; of growth 562
Lingula 251, 567
Linnaeus 28, 250, 547, 720
Lion, brain of 91

Liquid veins 265
Lister, Martin 318; J. J. 436
Listing. J. B. 385
Lithostrotion 325
Littorina 524
liituitcs 546, 550
Llama 703
Lobsters' claws 149
Locke. John 6

Locb, J. 125, 132. 135. 136, 147, 157,

191, 193
Loewy, A. 281
Logarithmic spiral, 493, etc.

Loisel, G. 88
Loligo, shell of 575
Lo Monaco 83
Lonnberg, E. 614, 632
Looss, A. 660
Lotze, R. H. 55
Love, A. E. H. 674
Lucas, F. A. 138
Luciani, L. 83
Lucretius 47, 71, 137, 160
Ludwig, Carl 2; F. 643; H. J. 342
Lupa 744
Lupinus, growth of 109, 112

Macalister, A. 557
MacAlister, Sir D. 673, 683
MacaUum, A. B. 277, 287, 357, 395;

J. B. 492
McCoy, F. 388
Mach, Ernst 209, 330
Machaerodus, teeth of 633
McKendiick, J. G. 42
McKenzie, A. 418
Mackinnon, D. L. 268
xMaclaurin, Colin 330, 779
Macroscaphites 550
Mactra 562
Magnitude 16

Maillard. L. 163
Maize, growth of 109, 111. 2t)8

Mall, F. P. 492
Maltaux, Mile 114
Mammoth 634, 705
Man, growth of 61 ; skull of 770
Maraldi, J. P. 329, 473
Marbled papers 736
Marcus Aurelius 609
Markhor, horns of 619
Marsh, O. C. 706, 754
Marsigli, Comte L. F. de 652
Massart, J. 114
Mastodon 634
Mathematics 719, 778 etc.

Mathews, A. 285
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Matter and energy 11

Matthew, W. D. 707
Matuta 744
Maupas, M. 133
Maupertuis 3, 5. 208
Maxwell. J. Clerk 9, 18. 40, 44, 160,

207, 385, 691
Mechanical efficiency 670
Mechanism 5. 161, 185, etc

Meek. C. F. U. 190
Melanchthon 4
Melanopsis 557
Meldola, R. 670
Melipona 332
Mellor, J. W. 134
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Melobesia 412
Melsens, L. H. F. 282
Membrane-formation 281
Mensbrugghe, G. van der 212, 29S, 470
Meserer, 0. 683
Mesocarpus 289
Mesohippus 766
Metamorphosis 82
Meves, F. 163, 285
Meyer, Arthur 432; G. H. 8, 682, 683
Micellae 157
Michaelis, L. 277
Microchemistry 288
Micrococci 39, 245, 250
Micromonas 38
MiMolidae 595, 604
Milner, R. S. 280
Milton, John 779
Mimicry 671
Minchin, E. A. 267, 444, 449, 455
Minimal areas 208, 215, 225, 293, 306,

336 349
Minot, 6. S. 37, 72, 722
Miohippus 767
Mitchell, P. Chalmers 703
Mitosis 170
Mitra 557, 559
Mobius, K. 449
Modiola 562
Mohl, H. von 624
Molar and molecular forces 53

Mole-cricket, chromosomes of 181

Molecular asymmetry 416
Molecules 41

Moller, V. von 593
Monnier, A. 78, 132

Monticulipora 326
Moore, B. 272
Morey. S. 264
Morgan, T. H. 126, 134, 138, 147

Morita 699
Morphodynamique 156

Morphologic synthetique 420
Morphology 719, etc.

Morse, Max 136

Moseley, H. 8, 518, 521, 538, 553, 555,

592
Moss, embryo of 374 ; gemma of 403

;

rhizoids of 356
Mouillard, L. P. 27
Mouse, growth of 82
Mucor, sporangium of 303
Miillenhof, K. von 25, 332
Miiller, Fritz 3; Johannes 459, 481

Mummery, J. H. 425
Munro, H. 323
Musk-ox, horns of 615
Mya 422, 561
Myonemes 562

Naber, H. A. 511, 650
Nageli, C. 124, 159, 210
Nassellaria 472
Natica 554, 557, 559
Natural selection 4, 58, 137, 456, 586,

609, 651, 653
Naumann, C. F. 529, 531, 539, 550,

577, 594, 636; J. F. 653
Nautilus 355, 494, 501, 515, 518, 532,

535, 546, 552, 557, 575, 577, 580,

592, 633; hood of 554; kidney
of 425; N. umbihcatus 542, 547,
554

Nebenkern 285
Neottia, pollen of 396
Nereis, egg of 342, 378, 453
Nerita 522, 555
Neumayr, M. 608
Neutral zone 674, 676, 686
Newton 1, 6, 158, 643, 721
Nicholson, H. A. 325, 327
Noctiluca 246
Nodoid 218, 223
Nodosaria 262, 535, 604
Norman, A. M. 465
Norris, Richard 272
Nostoc 300, 313
Notosuchus 753
Nuclear spindle 170; structure 166
Nummulites 504, 552, 591
Nussbaum, M. 198

Oekotraustes 550
Ogilvie-Gordon, M. M. 423
Oil-globules, Plateau's 219
Oithona 742
Oken, L. 4, 635
OUva 554
Ootype 660
Operculina 594
Operculum of gastropods 521
Oppel, A. 88
Optimum temperature 110
Orbitolites 605
Orbuhna 59, 225, 257, 587, 598, 604,

607
Organs, growth of 88
Orthagoriscus 751, 775, 777
Orthis 561, 567
Orthoceras 515, 548, 551, 556, 579,

735
Orthogenesis 549
Orthogonal trajectories 305, 377, 400,

640, 678
Orthostichies 649
Orthotoluidene 219
Oryx, horns of 616
Osborn, H. F. 714, 727, 760
Oscillatoria 300
Osmosis 124, 287, etc.
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Osmundca 39G, 406
Ostrea 562
Ostrich 25, 707, 708
Ostwald, Wilhelm 44, 131, 426;

Wolfgang 32, 77, 82, 132, 277, 281

Otoliths 425, 432
Ovis Amnion 614
Owen, Sir R. 20, 575, 654, 669, 715

Ox, cannon-bone of 730,738; growth
of 102

Oxalate, calcium 412, 434

Palaecchinus 663
Palm 624
Pander, C. H. 55
Pangenesis 44, 157

Papillon, Fernand 10

Pappus of Alexandria 328
Parabolic girder 693, 696
Parahippus 767
Paralomis 744
Paraphyses of mosses 351
Parastichies 640, 641
Passitiora, pollen of 396
Pasteur, L. 416
Patella 561
Pauh, W. 211, 434
Pearl, Raymond 90, 97, 654
Pearls 425, 431
Pearson, Karl 36, 78

Peas, growth of 112

Pectcn 562
Peddle, W. 182, 272, 344, 448
Pellia, spore of 302
Pelseneer, P. 570
Pendulum 30
Peneroplis 606
Percentage-curves, Minot's 72
PericUne 360
Periploca, pollen of 396
Peristome 239
Permeability, magnetic 177, 182

Perrin, J. 43, 46
Peter, Karl 117

Pettigrew, J. B. 490
Pfeffer, W. 111. 273, 688
Ptiiiger, E. 680
Phagocytosis 211
Phascum 408
Phase of curve 68, 81, etc.

Phasianella 557, 559
Phatnas2:)is 482
Phillipsastraea 327
Philolaus 779
Pholas 561
Phormosonia 664
Phractaspis 484
Phvllotaxis 635
Phvlogeny 196, 251, 548, 716

Pike, F. H. 110

Pileopsis 555
Pinacoceras 584
Pithecanthropus 772
Pith of rush 335
Plaice 98, 105, 117, 432, 710, 774
Planorbis 539, 547, 5.54, 557, 559
Plateau, F. 30, 232; J. A. F. 192, 212,

218, 239, 275, 297, 374, 477
Plato 2,478,720; Platonic bodies 478
Plesiosaurs 755
Pleurocarpus 289
Pleuropus 573
Plcurotomaria 557
Plumulariidae 747
Plutcus larva 392, 415
Podocoryne 342
Poincare, H. 134
Poiscuille, J. L. M. 669
Polar bodies 179; furrow 310, 340
Polarised light 418
Polarity, morphological 1(>(), 168, 246,

265, 284
Pollen 396, 399
Polyhahte 433
Polyprion 749, 776
Polyspermy 193
Polytrichum 355
Pomacanthus 749
Popoff, M. 286
Potamides 554
Potassium, in living cells 288
Potential energy 208, 294, 601, etc.

Potter's wheel 238
Potts, R. 126
Pouchet, G. 415
Poulton, E. B. 670
Poynting, J. H. 235
Precocious segregation 348
Preformation 54, 159
Prenant, A. 163, 164, 189, 286, 289
Prevost, Pierre 18

Pringsheim, N. 377
Probabilities, theory of 61

Productus 567
Protective colouration 671

Protococcus 59, 300, 410
Protoconch 531
Protohippus 767
Protoplasfti, structure of 172

Przibram, Hans 16, 82, 107, 149, 204,

211, 418, .595; Karl 46
Psammobia 564
Pseuopriacanthus 749
Pteranodon 756
Pteris, antheridia of 409
Pteropods of 258, 570
Pulvinulina 514, 595, 600, 602

Pupa 530, 549, 556
Piittcr, A. 110, 211, 492
Pyrosoma, egg of 377
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Pythagoras 2, 509, 651, 720, 779

Quadrant, bisection of 359
Quekett, J. T. 423
Quetelet, A. 61, 78, 93
Quincke, G. H. 187, 191, 279, 421

Rabbit, skull of 764
Rabl, K. 36, 310
Radial co-ordinates 730
Radiolaria 252, 264, 457, 467, 588, 607
Rainey, George 7, 420, 431, 434
Rainfall and growth 121
Ram, horns of 613-624
Ramsden, W. 282
Ramulina 255
Rankine, W. J. Macquorn 697, 712
Ransom's waves 164
Raphides 412, 429, 434
Raphidiophrys 460, 463
Rasumowsky 683
Rat, growth of 106
Rath, 0. vom 181
Rauber, A. 200, 305, 310, 380, 382, 398,

677, 683
Ray, John 3
Rayleigh, Lord 43, 44
Reaumur, R. A. de 8, 108, 329
Reciprocal diagrams 697
Rees, R. van 374
Regeneration 138
Reid, E. Waymouth 272
Reinecke, J. C. M. 528
Reinke, J. 303, 305, 355, 356
Reniform shape 735
Reticularia 569
Reticulated patterns 258
Reticulum plasmatique 468
Rhabdammina 589
Rheophax 263
Rhinoceros 612, 760
Rhumbler, L. 162, 165, 260, 322, 344,

465, 466, 589, 590, 595, 599, 608,
628

Rhynchonella 561
Riccia 372, 403, 405
Rice, J. 242, 273
Richardson, G. M. 416
Riefstahl, E. 578
Riemann, B. 385
Ripples 33. 261, 323
Rivularia 300
Roaf, H. C. 272
Robert, A. 306, 339, 348, 377
Roberts, C. 61
Robertson, T. B. 82, 132, 191, 192
Robinson, A. 681
Rorig, A. 628
Rose, Gustav 421
Rossbach, M. J. 165

RotaUa 214, 535, 602
Rotifera, cells of 38
Roulettes 218
Roux, W. 8, 55, 57, 157, 194, 378,

383, 666, 683
Ruled surfaces 230, 270, 582
Ruskin, John 20
Russow, — 73, 75
Ryder, J. A. 376

Sachs, J. 35, 38, 95, 108, 110, HI,
200, 360, 398, 399, 624, 635, 640,
651, 680

Sachs's rule 297, 300, 305, 347, 376
Saddles, of ammonites 583
Sagrina 263
St Venant, Barre de 621, 627
Salamander, sperm-cells of 179
Salpingoeca 248
Salt, crystals of 429
Salvinia 377
Samec, M. 434
Samter, M. and Heymons 130
Sandberger, G. 539
Sapphirina 742
Saville Kent, W. 246, 247, 248
Scalaria 626, 547, 554, 557, 559
Scale, effect of 17, 438
Scaphitcs 550
Scapula, human 769
Scarus 749
Schacko, G. 604
Schaper, A. A. 83
Schaudinn, F. 46, 286
Scheerenumkehr 149
Schewiakoff, W. 189, 462
Schimper, C. F. 502, 636
Schmaltz, A. 675
Schmankewitsch, W. 130
Schmidt, Johann 85, 87, 118
Schonfiies, A. 202
Schultze, F. E. 452, 454
Schwalbe, G. 666
Schwann, Theodor 199, 380, 591
Schwartz, Fr. 172
Schwendener, S. 210, 305, 636, 678
Scorpaena 749
Scorpioid cyme 502
Scott, E. L. 110; W. B. 768
Scyromathia 744
Searle, H. 491
Sea urchins 661; egg of 173; growth

of 117, 147
Sebastes 749
Sectio aurea 511, 643, 649
Sedgwick, A. 197, 199
Sedillot, Charles E. 688
Segmentation of egg 57, 310, 344, 382,

etc.; spiral do., 371, 453
Segner, J. A. von 205
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Selaginella 404
Scmi-pcrmeable membranes 272
Sepia 575, 577
Septa 577, 592
Serpula 603
Sexual characters 135
Sharpe, D. 728
Shearing stress 684, 730, etc.

Sheep 613, 730, 738
Shell, formation of 422
Sigaretus 554
Silkworm, growth of 83
Similitude, principle of 17

Sims Woodhead, G. 414, 434
Siphonogorgia 413
Skeleton 19, 438, 675, 691, etc.

Snow crystals 250, 480, 611
Soap-bubbles 43, 219, 299, 307, etc.

Socrates 8

Sohncke, L. A. 202
Solanum 625
Solarium 547, 554, 557, 559
Solecurtus 564
Solen 565
Sollas. W. J. 440, 4.50, 455
Solubihty of salts 434
Sorby, H. C. 412, 414, 728
Spallanzani, L. 138

Span of arms 63, 93
Spangenberg, Fr. 342
Specific characters 246, 380; induc-

tive capacity 177; surface 32,

215
Spencer, Herbert 18, 22
Spermatozoon, path of 193
Sperm-cells of Crustacea 273
Sphacelaria 351
Sphaerechinus 117, 147
Sphagnum 402, 407
Sphere 218, 225 *

Spherocrystals 434
Spherulites 422
Spicules 282, 411, etc.

Spider's web 231
Spindle, nuclear 169, 174
Spinning of protoplasm 164
Spiral, geodetic 488 ; logarithmic 493,

etc.; segmentation 371, 453
Spireme 173, 180
Spirifer 561, 568
Spirillum 46, 253
Spiroehaetes 46. 230, 266
Spirographis 586
Spirogyra 12, 221, 227, 242, 244, 275,

287, 289
Spirorbis 586, 603
Spirula 528, 547, 554, 575, 577
Spitzka, E. A. 92
Splashes 235, 236, 254, 260
Sponge-spicules 436, 440

Spontaneous generation 420
iSporangium 406
Spottiswoode, W. 779
Spray 236
Stallo, J. B. 1

Standard deviation 78
Starch 432
Starling, E. H. 135
Stassfurt salt 433
Stegocephalus 746
Stegosaurus 706, 707, 710, 754
Steiner, Jacob 654
Steinmann, G. 431
Stellate cells 335
Stentor 147

Stereometry 417
Sternoptyx 748
Stillmann, .1. D. B. 695
St Loup, R. 82
Stokes, Sir G. G. 44
Stole, Ant. 452
Stomach, muscles of 490
Stomata 393
Stomatella 554
Strasbiirger, E. 35, 283, 409
Straus-Diirckheim. H. E. 30
Stream-lines 250, 673, 736
Strength of materials 676, 679
Streptoplasma 391
Strophomena 567
Studer, T. 413
Stylonichia 133
Succinea 556
Sunflower 494, 635, 639, 688

Surface energy 32, 34, 191, 207, 278,

293, 460, 599
Survival of species 251

Sutures of cephalopods 583
Swammerdam, J. 8, 87, 380, 528, 585

Swezy, Olive 268
Sylvester, J. J. 723
Symmetry, meaning of 209
Synapta, egg of 453
Syncytium 200
Synhelia 327
Szielasko, A. 654

Tadpole, growth of 83, 114, 138, 153

Tait, P. G. 35, 43, 207, 644
Taonia 355, 356
Tapetum 407
Tapir 741, 763
Taylor, W. W. 277, 282, 426, 428
Teeth 424, 612, 632
Telescopium 557
Telesius, Bernardinus 656

Telhna 562
Temperature coefficient 109

Terebra 529, 557, 559

Terebratula 568, 574, 576
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Teredo 414
Terni, T. 35
Terquem, O. 329
Tesch, J. J. 573
Tetractinellida 443, 450
Tetrahedral symmetry 315, 396, 47(i

Tetrakaidecahedron 337
Tetraspores 396
Textularia 604
Thamnastraea 327
Thayer, J. E. 672
Thecidium 570
Thecosmilia 325
Theel, H. 451
Thienemann, F. A. L. 653
Thistle, capitulum of 639
Thoma, R. 666
Thomson, James 18,259; J. A. 465;

J. J. 235, 280; Wyvilla 466
Thurammina . 256
Thyroid gland 136
Time-element 51, 496, etc.; time-

energy diagram 63
Tintinnus 248
Tissues, forms of 293
Titanotherium 704, 762
Tomistoma 753
Tomhnson, C. 259, 428
Tornier, G. 707
Torsion 621, 624
Trachelophylhim 249
Ti'ansformations, theory of 562, 719
Traube, M. 287
Trees, growth of 119; height of 19

Trembley, Abraham 138, 146
Treutlein, P. 510
Trianea, hairs of 234
Triangle, properties of 508 ; of forces

295
Triasters 327
Trichodina 252
Trichomastix 267
Tricpel, H. 683, 684
Triloculina 595
Triton 554
Trochus 377, 557, 560; embryology

of 340
Trondle, A. 625
Trophon 526
Trout, growth of 94
Tryjjanosomes 245, 266, 269
Tubularia 125, 126, 146

Turbinate shells 534
Turbo 518, 555
Turgor 125
Turner, Sir W. 769
Turritella 489, 524, 527, 555, 557,

559
Tusks 515, 612
Tutton, A. E. H. 202

Twining plants 624
Tyndall, John 428

Umbihcus of shell 547
Underfeeding, effect of 106
Undulatory membrane 266
Unduloid 218, 222, 229, 246, 256
Unio 341
Univalve shells 553
Urechinus 664

Vaginicola 248
Vallisneri, Ant. 138
Van Iterson, G. 595
Van Rees, R. 374
Van't Holf, J. H. 1, 110, 433
Variability 78, 103
Venation of wings 385
Verhaeren, Emile 778
Verworn, M. 198, 211, 467, 605
Vesque, J. 412
Vierordt, K. 73
Villi 32
Vincent, J. H. 323
Vines, S. H. 502
Virchow, R. 200, 286
Vital phenomena 14, 417, etc.

Vitruvius 740
Volkmann, A. W. 669
Voltaire 4, 146
Vorticella 237, 246, 291

Wager, H. W. T. 259
Walking 30
Wallace, A. R. 5, 432, 549
Wallich-Martius 77
Warburg, 0. 161
Warburton, C. 233
Ward, H. Marshall 133
Warnecke, P. 93
Watase, S. 378
Water, in growth 125
Watson, F. R. 323
Weber, E. H. 210, 259, 669; E. H.

and W. E. 30; Max 91
Weight, curve of 64, etc.

Weismann, A. 158
Werner, A. G. 19

Wettstein, R. von 728
Whale, affinities 716; size 21; struc-

ture 708
Whipple, I. L. 123
Whitman, C. 0. 157, 164, 193, 194,

199. 200
Whitworth, W. A. 506, 512
Wiener, A. F. 45
Wildeman, E. de 307, 355
Willcy, A. 425, 548, 555, 578
Williamson, W. C. 423, 609
Willughby, Fr. 318
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Wilson, E. B. 150, 163, 173, 195, 199,

311, 341, 342, 398, 453
Winge, 0. 433
Winter eggs 283
Wissler, Clark 79
Wissner, J. 636
Wohler, Fr. 416, 420
Wolff, J. 683; J. C. F. 3, 51, 155
Wood, R. W. 590
Woods, R. H. 666
Woodward, H. 578; S. P. 554, 567
Worthington, A. M. 235, 254
Wreszneowski, A. 249
Wright, Chauncey 335
Wright, T. Strethill 210
Wyman, Jeffrey 335

Yeast cell 213, 242
Yield -point 679
Yolk of egg 165, 660
Young, Thomas 9, 36, 669, 691

Zangger, H. 282
Zeising, A. 636, 650
Zeleny, C. 149
Zeuglodon 716
Zeuthen, H. G. 511
Ziehen, Ch. 92
Zittel, K. A. von 325, 327, 548, 584
Zoogloea 282
Zschokke, F. 683
Zsigmondy 39
Zuelzer, M. 165
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