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BOOK 1.

APPLICATION OF ALGEBRA TO GEOMETRY.






CURVES AND FUNCTIONS.

BOOK 1.

APPLICATION OF ALGEBRA TO GEOMETRY,

CHAPTER L

GEOMETRICAL CONSTRUCTION OF ALGEBRAICAL QUAN-
TITIES.

1. In the application of Algebra to Geometry,
usually called Analytic G'eometry, the magnitudes of
lines, angles, surfaces and solids are expressed by
means of letters of the alphabet; and each problem,
being put into equations by the exercise of ingenuity,
is solved by the ordinary processes of Algebra. The
algebraical result is finally to be interpreted geo-
metrically ; and this geometrical interpretation of an
algebraical expression is called the geometrical con-
struction of that expression. The geometrical con-
struction of the results is, then, the last operation in
the solution of problems; but it is convenient, on
account of its simplicity, to begin with the consid-
eration of it. We begin with the easiest cases and

proceed to the more difficult ones, and we regard each
1



2 ANALYTICAL GEOMETRY. [B. I. CH. I,

« Sum and difference. Negative sign.

letter as representing a line, so that every algebraical -
expression of the first degree will denote a line; i
, whence it is called linear. '

2. Problem. 'To construct a 4 b.

Solution. Take (fig. 1)
AB=a,
BC=1b;
and we have
AC=AB4-BC=a-1b;
so that AC is the required value of a 4 3.

3. Problem. 'To construct @ — b.
Solution. Take (fig. 2)

AB = a,
and from B, in the opposite direction,
BC=1b;

we have then
AC=AB— BC=a-—1b,

so that AC is the required result.

4. Corollary. If a were zero, the preceding solution
would become the same as to take from 4 (fig. 3) in the
direction AC, opposite to 4B,

AC=1d H
so that the negative sign would only be indicated by the
direction of AC. In order to generalize the preceding con-
struction we must, then, adopt the rule that |

The geometrical interpretation of the negative sign
is, that it indicates an opposite direction. ‘

5. Problem. To construct an algebraic expression
consisting of a series of letters connected together by
the signs 4 and —. i
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Product and Quotient. Surface and Solid.

Solution. Collect into one sum, by art. 2, all the letters
preceded by -}, which sum may be denoted by a ; and col-
lect into another sum all the letters preceded by —, which
sum may be denoted by b; and the value of a—¥& may
then be constructed by art. 3.

6. Corollary. If a letter is preceded by an integral
numerical coefficient, it may be regarded as a letter
repeated a number of times equal to this integer.

7. Problem. 'To construct a b.

Solution. The parallelogram of which the base is a, and
the altitude is &, is equal to the product a b, which accord-
ingly represents a surface ; and this conclusion is a general
one, that is,

A homogeneous algebraical ezpressz'oﬁ of the second
degree represents a surface.

8. Problem. 'To construct a bec.

Solution. The parallelopiped of which the base is the
parallelogram a b, and the altitude is ¢, is equal to the pro-
duct a b ¢, which accordingly represents a solid; and, in
general,

A homogeneous algebraical expression of the third
degree represents a solid.

C 9. Problem. 'To construct ;. '
¢ Solution. Make (fig. 4) the right angle ABC,
take . AB =a
BC = b,
and join AC. The angle ACB is, by trigonometry, that

. a
angle whose tangent is 5
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Angle. To render homogeneous.

10. Corollary. If we had taken
AC =1,

the angle ACB would have been the angle, whose sine is f,
and, in general, ‘
A homogeneous algebraical expression, whose de-

gree is zero, represents the sine, tangent, &c. of an
angle.

11. Scholium. Since no other magnitudes occur in
Geometry but angles, lines, surfaces and solids, all al-
gebraical quantities which represent geometrical mag-
nitudes must be either of the 1st, the 2d, the 3d, or the
zero degree ; and since dissimilar geometrical magni-
tudes can neither be added together, nor subtracted
from each other, these algebraical expressions must
also be homogeneous.

If, therefore, an algebraical result is obtained, which
is not homogeneous, or is of a different degree, from
those just enumerated ; it can only arise from the
circumstance, that the geometrical unit of length,
being represented algebraically by 1, disappears from
all algebraical expressions in which it is either a fac-
tor or a divisor. 'T'o render these results homogene-
ous, then, and of any required degree, it is only
necessary to restore this divisor or factor which rep-
resents unity.

12. Problem. To render a given algebraical ezpres-
sion homogeneous and of any required degree.

Solution. Introduce 1, as a factor or divisor, repeat-
ed as many times as may be necessary, inlo every term
where it is required.
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To render homogeneous of any degree.

¢
13, ExamrLES.
d2
1. Render MTCI:- homogeneous of the 1st degree.
a4 (1)%c+1.4%
RS W
2. Render a-l;;:-i- 57— homogeneous of the 2d degree.
L (Ve (1pa 4 (18he,
. 1.24-m3
5 h
3. Render a+ be + s homogeneous of the 3d degree.
(l)“a +(1)°bectd5 a3
(1)2de—(1)3a
a4 b
4. Render -c:xi homogeneous of the zero degree. d
: @41.3 '
| A Te—a
5. Render a b homogeneous of the lst degree.
Ans. 22,
1
6. Render b ¢ + d — €2 homogeneous of the 1st degree.
: abe
Am e

14. Scholium. By the preceding process, every
fraction, which does not involve radicals, may be
reduced to a homogeneous form, in which each term
ig of the first degree; and, although this form is not
always that which leads to the most simple form of
construction, its generality gives it a peculiar fitness

1* .
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To render homogeneous. Fraction.

for the general purposes of instruction, where the
artifices of ingenuity are rather to be avoided than
displayed.

15. ExaMpLES.

1. Reduce the fraction of example 1, art. 13, to a homo-
geneous form, in which each term is of the first degree.

Ans. (::—)Z—i-c-l-g;)-:— (e-[—?:—) .

2. Reduce the fraction of example 2, art. 13, to a homo-
geneous form, in which each term is of the first degree.

(ot it 1)+ (T+p)-

3. Reduce the fraction of example 3, art. 13, to a homo-
geneous form, in which each term is of the first degree.

o (s (547,

4. Reduce the fraction of example 4, art. 13, to a homo-
geneous form, in which each term is of the first degree.

a? . d2
.A”’- (T + b)T (C———l- ).
16. Prob_lem. To construct gcz .
Solution. We have
abd

c:a="b: -

that is, the given fraction is a fourth proportional to the three
lines, ¢, a, and 5.

Find, then, by Geometry, a fourth proportional to
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Monomial.

the lines c, a, and b; and this fourth proportional is
the required result. '

17. Corollary. The value of Pis a third propor-
c
tional to ¢ and a. '

18. Problem. To construct any monomial which
denotes a line. :

Solution. If the monomial is not of the first degree,
reduce it to the first degree by art. 12. It is then of
the form.

d

bed... b
d ¢ =a—xc—lx—l..-.
a ¥ e

abvce...
Construct first ®2, and let m be the line which it
al

d

represents. The given quantity becomes ’% X S

m ¢
b’

also mh = ’l(;i &e.

Let, again, m =

and the last line thus obtained is plainly the required
result. :

19. ExamMPLES.

L. Construct the line ab.  Ans. m = qlé =abd.

2. Construct the line abc. Ans. m= ?, m' =m_1_c= abe.
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Any expression not involving radicals.

2
3. Construct the line a5, Ans, m = -a—l-, m = "—‘lg,
m'a m' a
m' = i ,m"':—l = a’.
. a®d a? mb
4. Construct the line P Ans. m = FL m = -
't — m.1. 9_’1_b
- d —d3
5. Construct the line 2ab. Ans. m=2a'b,m'='-n—'!,
efg e f
,_m.1 _2ab
m= - ="_
g efg
9
6. Construct the line 1 Ans. m = (—1—)- = l
a a a
7. Construct the line % Ans. m= -l-B—A = %

20. Corollary. By this process cach term of an
algebraic expression, which does not involve radicals,
is reduced to a line; and if the expression does not
tnvolve fractions, it may then be reduced to a single
line by art. 5; if it does involve fractions, the nume-
rator and denominator of each fraction is, by art. 5,
reduced to a single line, and each fraction, being then

of the form %, is constructed like example 7 of the
preceding article, and the aggregate of the fractions
18 then reduced to a single line, by art. 5.

Any algebraic expression, which represents a line,
and does not involve radicals, may therefore be con-
structed by this process.
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Any expression free fromn radicals.

21. ExamMpPLES.

2 2
1. Construct the tine f—bi'-i .
e+ i3
. a?d
Solution. Letm — —— — a2b
(1)?
a2
g2
m = 1 d
A2
N oeme = B2
m' = = )}
and the fraction becomes
m-c4-m'
e +mll "
let now A=m+c+m
B=c¢+ m",

and the line represented by is the required line.

2. Construct the line represented by the fraction of exam-
ple 2, art. 13.
Ans. m' = d3,m" = he,m" =R, mv = md,
A=a+4m+4m'", B=m"+4m",
and the required line is the fourth proportional to B, 1,
and A.

3. Construct the line represented by the fraction of exam-
ple 3, art. 13.
Ans. Letm=be,m' =d5R2,m" = de,
Ad=a+4+m4mn',B=mn"—a,
and the required line is the fourth proportional to B, 1,
and A.

’
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Radicals of the second degree.

4. Construct the line represented by the fraction of exam-
ple 4, art. 13. :
Ans. m=a?, m' = d?,
A=m+b, B=c—m,
and the required line is the fourth proportional to B, 1,
and A.

5. Coustruct the line represented by the polynomial of ex-
ample 6, art. 13.
Ans. m=abc,m = €2,
and A =m - b —m'is the required line.

22. Problem. To construct the line a/(a b).

Solution. Since a/(abd) is a mean proportional be-
tween a and b, the required result is obtained by con-
structing, geometrically, this mean proportional between
a and b. :

23. Corollary. The expression
VA =a/(1.4)
may be constructed by finding a mean proportional
between 1 and A.

24. Corollary. The square root of any algebraical
expression, which does not involve radicals, may be
constructed by finding, as in art. 20, the line A, which
this algebraic expression represents, and then construct-
ing A/A as in the preceding article.

By the repeated application of this process, any
algebraic expression may be constructed which repre-
sents a line, and which does not involve any other radi-
cals than those of the second degree.

1.C

A

n
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Radicals of the second degree.

25. ExaMPLES.
1. Construct the line o/(a +b—c—e.)
Ans. A=a+b—c—e,
and 4/ A is the required line.
2. Construct the line 4/(a? - a m).
Ans. A=a+am,
and 4/ 4 is the required line.
Nab+ Af(ef—h)
E—J(E—Ffn)
Ans. m= a/a b, m'=a/(e f—h), m"=e?, m"'=a/(2—f n),
A=m-+4m', B=mn"—m",

3. Construct the line

and the line —g—- is the required line,

.
4. Construct the line 4/a. Ans. m = a/a,
and o/m is the required line.

26. Scholium. ‘When the expression whose square
root is required is easily decomposed into two factors,
it is immediately reduced to the form 4/(a b) and con-
structed, as in art. 22.

27. ExaxrLEs.
1. Construct example 2, art. 25, by decomposing the
quantity under the radical sign into two factors.
Solution. a4-am=a(a+m).
Let b=a-m,
and the line A/(a b) is the required line.
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Square root of sum and difference of squares.

2. Construct o/(a®+ a ¢ 4+ am — an) by decomposing
the quantity under the radical sign into two factors.
Ans. b=a-+ e+ m—n,
and 4/(a b) is the required line.

8. Construct /(2 4 @2 — a?) by decomposing the quan- .

tity under the radical sign into two factors.
Ans. b=1+4a—ad?,
and a/(a d) is the required line.

4. Construct 4/(a2—32) by decomposing the quantity
under the radical sign into factors.

Ans, c=a+b,e=a—2d,
and o/(ce) is the required line.

28. Scholium. Example 4 of the preceding article
may also be solved by constructing a right triangle, of
which a is the hypothenuse and b a leg, and &/(a? — b?)
will be the other leg.

29. Corollary. In the same way &/(a®+ 82) is the
hypothenuse of a right triangle, of which a and b are
the legs. '

30. Corollary. By combining the processes of the
two preceding articles, any such expression as

V(@B —2— o ), &,
may be constructed. For if we take

m=a/(a®+ ?), m' = A/ (m2— c?),

m’ = &/ (m2—e2), m"' = A/ (m"2 4 h?), &ec.
we have m? = a2+ b2,

m' =A/(m?— ) =a/(a>+ b2 —?),

or m? = a? 4~ B2 — c2;

or

fe

T

i



§33.] GEOMETRICAL CONSTRUCTION. 13

Construction of radicals.

' =a/(m2— ) = a/(a? + 12— 32— ),

or m”’:a’—i—bﬁ_cﬂ_e!;
"= W (MR 1) = (@ B — B B),

31. Corollary. The square root of the sum or dif-
ference of any expressions, which involve no other
radicals than those of the second degree, may also be
constructed by the preceding process. For if either of
these expressions is constructed by the processes before
given, it may be represented by A; and, if we denote
AMA by m, we have

mi= A,
so that each expression is reduced to the form of a

square, and the whole radical is reduced to the form of
the preceding article.

32. ExaMrLEs.

1. Construct example 1, art. 25, by the process of art. 31.
Ans. m=w/a,m' = p/b,m" = a/c,m" = /e,
and the line 4/(m2 4 m2 — m"2 — m"?) is the required line.
2. Construct example 2, art. 25, by the process of art. 31.
Ans. m' =a/(am),and o/(a? 4 m"?) is the required
line.

3. Construct the line o/(a2--3 ¢ — €34 k) by process of
art. 31,
Ans. m=a/(bc), m' =a/€3 m" = a/h,
and the line 4/(a? 4 m? —m? 4 m2) is the required line.
33. Problem. To construct an algebraical expression

which represents a surface.
2
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Surface. Solid. Angle.

Solution. Let A be the line which is represented by
this algebraical expression, and since we have
A=1.4,
the required surface is repiesented in magnitude by the
parallelogram, whose base is 1, and altitude A, or by
the equivalent square, triangle, &ec.

34. Problem. To construct an algebraical expression
which represents a solid.

Solution. Let A be the line which is represented by
this expression, and since we have _

A=(1) 4,

the required solid is represented in magnitude by the
parallelopiped, whose base is the square (1)%, and whose
altitude is A.

35. Problem. To construct an algebraical erpres-
sion, whick represents the sine, tangent &c. of an
angle.

Solution. Let A be the line which is represented by
this expression, and since we have
4
‘i‘a
the required angle is found by art. 9 or 10.

A=

36. Scholium. The construction of all geometrical
magnitudes being, by the three preceding articles,
reduced to that of the line, we shall limit our con-
structions hereafter to that of the line.

8]
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Equations of first and second degree.

37. Problem. To construct the root of an equation of
72 e first degree with one unknown quantity.

Solution. Every equation of the first degree may, as
2 proved in Algebra, be reduced to the form

Az4+M=0;
aohence

M
T = - z H
and this value of z may be constructed by art. 18,
38. Problem. To construct the roots of an equation
of the second degree with one unknown quantity.
Solution. The equation of the second degree may, as
is shown in Algebra, be reduced to the form
Az24 Bz M=0.
If we divide this equation by A, and put

B M
azé—z, m= —z,
it becomes
2242ar+4+m=0. .

The roots of this last equation are
z=—at4+/(a®—m).

Case 1. When m is positive and greater than a2,

the roots are both imaginary, and cannot be con-
structed.

Case 2. When m is positive ‘and equal to a?, each

root is equal — a, which needs no farther construc- -
tion. »
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Quadralic equation.

Case 3. When m is positive and less than a® Lel,
in this case, b=aA/m or B2=m.
The roots become
r=—at A (a2—02),
which are thus constructed.

Draw (fig. 5) the two indefinite lines DAD' and AB
perpendicular to each other. Take

AB=b;
Jrom B as a centre, with a radius
BC =a,

describe an arc cutting DAD' in C. Take
CD=CD =BC=a, i
and the required roots, independently of their signs, are
AD and AD.
Demonstration. For
AC=/(BC?— AB?) = A/(a®— }2)
and — AD=— CD +AC =— a 4 a/(c*— )
— AD=—CD' — AC =—a —a/(a® — ).
Case A. When m is zero, the roots are
z=0and z—=—2a,
which require no further construction.
Case 5. When m is negative, so that — m is positive.
Let b=a/—m,0r 2= —m,
The roots become
r=——a+ A/ (a4 82),

which are thus constructed. ,
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Quadratic equatien.

Draw (fig. 6) the two lines AB and AC perpendicu-

" lar to each other. Take

AB=a,and AC=5b;
through BC draw the indefinite line BCD'. Take
BD=BD =AB =a,
and the required roots, independently of their signs,
are CD and CD'.
Demonstration. For
BC=a/(AB34 AC?) =a/(a®+ B9)
and
CD =—BD 4 BC=—a+a/(a®+ )
— CD' =— BD'— BC = —a—a/(a*+ }¥).

39. Scholium. Radicals of a higher than the second
degree, and roots of equations of a higher than the
second degree, do not usually admit of geometrical
construction.

2'
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Solution of determinate problems.

CHAPTER II

ANALYSIS OF DETERMINATE PROBLEMS.

40. GeoMETRICAL problems are of two classes, defer-
minate and indeterminate.

Determinate problems are those, which lead to as
many algebraical equations as unknown quantities;
and indeterminate problems are those, in which the
number of equations is less than that of the unknown
quantities.

41. The solution of a geometrical problem consists
of these three parts;

First, the putting of the question into equations;

Secondly, the solution of these equations;

Thirdly, the geometrical construction of the alge-
braical results.

The last of these processes has been discussed in the
preceding chapter, but it must be observed that much skill
is often shown in arranging the construction in such a form,
that it may be readily drawn and be neat in its appearance.

The second process is exclusively algebraical, and the
first process, the putting into equations, is a task which,
necessarily, requires ingenuity, and can only be taught by
examples. One great object is to obtain the simplest pos-
sible equations, and such as do not surpass the second de-
gree. It is not unfrequently the case, that, when a question
admits of several solutions, two or more of these solutions
are connecled together in such a way, that the same quan-
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Division of line.

tity, being obviously common to them, should, on this ac-
count, be selected as the unknown quantity.

42. ExampLES.

1. To divide a line AB (fig. 7) into two such parts, that
the difference of the squares described upon the two parts
may be equal to a given surface.

Solution. Let the magnitude of the given surface be
equal to that of the square whose side is AC, and let D be
the point of division, 4D being the greater part. Let

a=AB,b= AC,and x= AD,
we have then BD=a—=z;
and the equation for solution is

22— (a—z)? =1,

or 2az—a2=10,
¥W4a2 B
Hence = _2—a+§a.

Construction. Let E be the middle of AB. Draw the
indefinite line EB' in any direction whatever. Take
EB' =EB=%a,
EC=EC' =}AC=1}5b.
Join B'C’, and through C" draw C"D parallel to B'C', D
is the point of division required.
Demonstration. We have
EB' : EC'=EC". ED,
or $a:3b=4%4b: ED;
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Rectangle inscribed in triangle.

»
— 12 ——
whence ED=}%= }a_.2a,
12
and AD=ED+AE=2—G+§a.

2. To inscribe in a triangle ABC (fig. 8), a rectangle
DEFG whose base and altitude are in the given ratio m : n.

Solution. Let fall the perpendicular ATH. Let
BC=b, AH=nh,
DE = HI==x, Al= AH— Hl =k —z;

and, since n:m=DE: EF,
we have EF = ”’:——x—

But the triangles AEF and ABC are similar, and their bases
are, therefore, proportional to their altitudes, that is,

BC: EF= AH: Al,
or b:-m—z-=h:h—r.
n

Hence we ﬁnti, by algebraical solution,
ndh mh -
= AT —b"T(T"' b)-
Construction. Find a fourth proportional to n, m, and A,

and denote it by A‘, and then z is obviously a fourth pro-
portional to &' 4 b, b and A.

The following simple form has been obtained by geome-
ters. Draw AK parallel to BC, and take

AK =}
Join KC, and ED is the required altitude.
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Line of given length intercepted between parallels,

Demonstration. For since ', or its equal AK, is a fourth

proportional to n, m, and %, we have
n:m=h: AK,

or AK: AH=m:n.
If we let fall the perpendicular KL upon BC, we have the
quadrilaterals CFED, CAKL, which are formed of similar
triangles ; they are therefore similar, and their homologous
sides give the proportion

FE: DE=AK: KL (or AH)=m:n;
so that FE and DE are in the required ratio.

Corollary. If the ratio m : n were that of equality, the
rectangle would be a square. By making, then, AK equal
to AH, and completing the construction as before, a square
is inscribed in the given triangle.

3. To draw through a given point A (fig. 9) situated
between two given parallels BC and DE a line HI, which
may be of a given length a.

Solution. Since the point is given, its distances from the
parallels must be given, which are
AF =%, AG=c;
let AH==z;

we shall leave it as an exercise for the learner to find the
value of x, which is :

Construction. The value of z is a fourth proportional to
b+ ¢, a,and 3, and may be easily constructed.

The following form is quite simple. From any point G
in the line DE as a centre, with a radius equal to a, de-
scribe an arc cutting BC in K. Join GK, and the line
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Circle tangent to given line.

drawn through A parallel to GK is obviously of the same
length with GK, and is, therefore, the required line.

Corollary. The problem is impossible when the length a”
is less than G F or its equal b} c.

4. To draw a circle through two given points A and B
(fig 10), and tangent to a given line DC.

Solution. Join AB, and produce AB to meet DC at D.
Let C be the point of contact, and let

DA—=a, DB=b%, DC=uzx;
we have, by geometry,
. DA :DC=DC: DB,
or a:z—zx:b;
whence z=A4A/(ab).

Construction. Find a mean proportional between a and b,
and take DC or DC' equal to it, and C or C' is the point of
contact, these two values corresponding to the two different
circles Bt A and BC'A.

Instead of finding the mean proportional by the ordinary
process, we may find it by drawing any arc AEB through
A and B, and the tangent DE to this arc is, by geometry,
the mean proportional between DA and DB.

Corollary. 'The problem is impossible if a and b are of
opposite signs, that is, if 4 and B are in opposite directions
from D, one being above the line and the other below it.

Corollary. If either a or b is zero, as in fig. 11, where

DA=a=0,
the problem is reduced to that of finding a circle which
passes through the given point B, and is tangent to a given
line CA at a given point 4.

Construction of this case. Erect OA perpendicular to
AC. Join AB, and at the middle E of AB erect the per-
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Division of a line.

pendicular EO; O is the centre. The demonstration of
this construction is left as an exercise for the learner.

' Corollary. If a and b are equal, as in fig. 12, the problem

is reduced to finding a circle which touches a given line
DA at a point 4, and also touches another given line .DC.

Construction. Take

DC=DC =a=DA,
and the point O or (', the intersection of the perpendicular
OAOQ', with the perpendicular CO or C'0, is the centre of
the required circle.

5. To divide a given line AB (fig. 13) into two such
parts, that the sum of the squares described upon the two
parts may be equal to a given surface. -

Solution. Let the given surface be twice the square whose
side is AC, and let D be the point of division. Let also E
be the middle of the line, and let

BE—=AE —=a,AC=105,DE — 2.
The value of z will be found to be
z = & A/(® — a?),
s0 that z is a leg of a right triangle whose hypothenuse is
and other leg a.
_ Corollary. The problem is impossible when b is less than
a, and also when

z>a,
or 2 —a2™> a?,
or T B¥>2a,
or 203> 442

5> (2a);
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Line divided in extreme and mean ratio.

that is, when the given surface is greater than the square of
the given line.
6. To divide a given line AB (fig. 14) at the point C in
extreme and mean ratio.
Solution. Let AC be the greater part, and let
AB=a, AC=12,CB=a—z,
we are to have
. a:z=z:a—z,
whence we find
224 az—a?=0,and z = § a (— 1 3= 4/5).
Construction. The roots of the equation
¥4az—a2=0,
being constructed by case 5, art. 88, give the usual con-
struction of this problem.

7. Through a given point C (fig. 15) to draw a line BCD,
so that the surface of the triangle ABD intercepted between
the lines AB and AD may be of a given magnitude.

Solution. Let the given surface be double that of the
given rhombus AEFG. Draw CH parallel to AD, and CI
parallel to AB. Let '

Al=CH=a, AH= CI=1%,
AE=c¢,AD==z,AB=y.
We bave
surface of triangle = %z ysin. A = 2 2sin. 4,

whence zy—=—4c2
The similar triangles BHC, BAD, give

BH: HC=BA: AD,
or y—bia=y:2;
whence zy=—ay-+ bz
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Given length intercepted.

'The solution of these equations gives

e=22 <cﬂ:~/(c2—ab)>

y :-27:(0:1: A(2—a b))
which are easily constructed.

Corollary. The problem is impossible when ¢2 is less
than a b; that is, when
c?sin. A < absin 4,
or when the rhombus AEFG is less than the parallelogram
AHCIL

8. Througha given point C (fig. 16) to draw a line BCD,
so that the part BCD infercepted between two given lines
AB and AD may be of a given length, the point € being at
equal distances from the two given lines.

Solution. Draw CH and CI parallel respectively to AB
and AD, and they are obviously equal to each other. Let

then AH—=AI=CH=CI=a, BD =19,
AD=2, AB—y.
From triangle ABD, we have
24 y2—2axycos. A =2
and from similar triangles BIC and BAD,
zy—=a(z+y).

As these equations are symmetrical with regard to z ahd y,
they are simplified by putting ’

zty=—s, zy=t;
3
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Given length intercepted.

and become t—as
$2—2a (1 4 cos. 4)s=152;
whence s and ¢, z and y are found.

The following solution is, however, much neater. Join AC,
and let the angle 4CD be the unknown quantity, and put

‘¢=AC,CAD =3 A=A, ACD =y,
ADC=180°— (94 4'), ABC=¢— 4,
sin. ADC = sin. (¢ + 4');
and, by trigonometry,
sin, ADC:sin. DAC = AC: DC,
sin. (¢ 4 A') :sin. A'—=¢: DC;

¢sin, A’
Hence . . DC — m-
Also sin. ABC :sin. BAC = AC: BC,
sin. (¢ — A'):sin. 4'=c: BC;
csin. A’
BC=mlo—ay’
csin. A’ csin. 4/

Y

b=BD=BC+DC=

b sin.(¢—4')sin.(¢4-A')=c sin.A'[sin.(p4A")+-sin.(p—4")].
But, by trigoniometry,
sin. (¢ 4 4') = sin. @ cos. A’ - cos. ¢sin. 4/,
sin. (¢ — A’) =sin. @ cos. A' — cos. @sin. A';
so that
sin. (¢4 A') +sin. (¢ — A’) = 2sin. pcos. 4';
sin. (¢— A') sin.(¢ - 4') = sin.2 ¢ cos. A2 — cos.2 ¢sin.2 4’
=sin.2 ¢ (1 —sin2 4’) — (1 —sin.2 @) sin.2 4/

—sin2 @ —sin2 4/,

sin, (e—4') + 5 (o4 4) ° '

1
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Given length intercepted.

which, substituted in the preceding equation, give
bsin2¢ —-—lb sin.2 A’ =2 csin. ¢sin. A’ cos. 4';
from which we find the value of sin. ¢,
bsin. @ =sin. 4’ [ccos. A’ L=/ (5% 4 c3cos.2 4)].

Corollary. Of the two values of sin. @, one is clearly
negative; and this value corresponds to the line CB'DY,

which meets 4D produced in D', so that
BD =—CB+ CD'=b.
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Position in plane. Origin.

CHAPTER IIIL

POSITION.

43. As almost all geometrical problems involve more’
or less the elements of Position, it is important to adopt
some convenient method of determining and denoting
them. We shall, at first, confine ourselves to the con-
sideration of position in a plane, and then proceed to
that of position in space.

44. Problem. To delermine and denote the position
of points in a plane.

Solution. The most natural method of determining the
position of a point is by its distance and direction ; it is thus
that, if a man wishes to go to any place, he starts in the
direction of the place, and proceeds a distance equal to that
of the place. Some point as A (fig. 17) must then be fixed
upon in the plane to which all the other points B, B/, &c.
may be referred ; and the elements of position of B, B, &c.
are the distances AB, AB/, &c., and the angles which AB,
AB', &c. make with some assumed direction, as that of AC,
~ for instance. We shall denote the distances 4B, AB/, &ec.
by r, 7/, &c., and the angles BAC, B'AC, &c. by ¢, ¢, &c.

45. Definitions. The point A, which is thus fixed
upon to determine the other points, is called tke origin
of coordinates, or simply the origin.
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Polar ccordinales, Their transformation.

The line AC is called the azis of cobrdinates, or
simply the azis.
The distance of a point from the origin is called its

radius vector, thus r, ' &c. are the radii vectores of
B, B, &ec.

The radius vector and the angle which it makes
with the axis are called polar ccordinates.

When the pogition of a point is given, its codrdinates
must be regarded as given.

Negative radii vectores are avoided by regarding the
angles as counted from zero to four right angles. Thus the
codrdinates of B are not the angle CAB and — AB”, but
they are AB" and — CAB",

or 360°— CAB'=180"4- C'AB"=180°+4 CAB.

46. It is often found in the course of a solution, that the
origin and axis which have been assumed do not furnish the
most simple results; it is desirable, in such a case, to have ,
formule by which the elements of position can be readily
referred to some other origin and axis.

The referring of the elements of position from one
origin and axis to others, is called the ‘ransformation
of cobrdinales.

47. Problem. To transform coordinates from one
system of polar codrdinates to another system, which has
the same origin but a different azis.

Solution. Let A (fig. 18) be the origin, AC the original
axis, and AC, the new axis. The radius vector is the same
in both systems. - Let the coordinates of any point, as B,
in the first system, be

3
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" Transformation of polar,codrdinates.

AB =1y,and BAC=¢;
and let its coordinates in the new system be

AB=r,and BAC,=¢,;
we are to find ¢, in terms of ¢,.

-

Now let a=CAC,
be the angle of the two axes,
we have BAC=BAC,+4 CAC,,
or =@, + &y

which is the required formula for transformation.

48. Problem. To transform coérdinates from one
system of polar codrdinatles lo any other system.

Solution. Let A (fig. 195 be the first origin, and AC the
axis; and let A, be the new origin, and 4, C, the new
axis. The codrdinates of any point, as B, with reference
to the first origin and axis are

AB=r,and BAC=¢;
and the new codrdinates are
A, B=r,, and BA,C,=09,;
and we are to find r and @ in terms of », and @,.

The cobrdinates of the new origin referred to the first
origin and axis must be known ; let them be

AA,=a,and 4,AC=p;

the inclination of the two axes must also be known, and let
it be «. Produce C, 4, to 4’, we have

A, AC=0a,and AA'4,=180°—«;
also AA A=A AC—A Al = a—pg.
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Distance of two points.
AA B=180°—(BA,C, 44 ,4)
=180° — (¢, + = — )
cos. AAJ?: —cos. (¢, +a—B).
The triangle A4, B gives, then,
AB*= AA34+ A, B2 —2.4A,.4 B.cos. AA B,
r?=a24r2+42ar, cos. (¢, +a—g);
r =a[a4ri+2ar, cos.(9,+a—p)] (1)
and AB: A,B=sin. (AA4,B) :sin. BAA,,
or r:r, =sin (¢, 4« —§g) : sin. (p—8);

whence sin. (¢ —8) = % .sin. (¢, 2—8), (?)
and equations (1) and (2) are-the required formule,

49. Corollary. If the new origin is in the former axis,
and if the axes coincide, we have

o= Q, B = 0,
and equations (1) and (2) become
r=»/(a®+r3+4+2ar,cos. ¢,) (3)
- osin. @ = ;} .sin. @,. (4)

50. Problem. To find the distance of two given
points from each other.

Solution. Let B and B’ (fig. 20) be the two points whose

cobrdinates are respectively r @, and  ¢’. The triangle
BAB gives

BB'2 — r2 +r’3 —27r7r! cos. (¢l-‘¢)a
BB = A/ [r24r'2—2rr cos. (¢’—9)]. (5)



32 ANALYTICAL GEOMETRY. [B. L CH. IIL

Di of two poiuts,

51. Corollary. If the point B is in the axis, we have

¢ =0,
and (5) becomes )
BB —=A/(r? -} r®—2rr' cos. 9). (6)
52. Corollary. If B'is the origin, we have
r' =0,
and (5) becomes
BB =a/r?=T,

as it should be.

53. Corollary. If two points are upon the same radius
vector, we have .

¥=9,
and (5) becomes

BB =a/(r* 412 —2rr)=r'—r. 7

54. Corollary. If the two points are upon opposite radii
vectores, we have
¢ — ¢4 180°,
and (5) becomes

BB =a/(r*+r2F2rr)=r+r (8)

55. Although . polar coérdinates are the most natural ele-
ments of position, they are not those which are usually the
most simple in their applications. It has been found con-
venient to adopt, in their stead, the distances from two axes
drawn perpendicular to each other through the origin.

The distances of a point from two axes, drawn
perpendicularly to each other, are called rectangular
codrdinates.
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Rectangular codrdinates,

Thus, if XAX' and YAY' (fig. 21) are the axes, the rec-
tangular codrdinates of the points B, B, &c. are, respec-
tively, BP and BR, B'P' and B R/, &c. We shall denote
the distances BR, B'R’, &c. from the axis YAY by =z, ,
&c., and the distances BP, B P, &c. from the axis XAX'
by v, ¥', &ec.

The distances =, 2/, &c. may be called abscissas, to dis-
tinguish them from y, y', &c., which are called ordinates.

56. When the rectangular coordinates of a point are
known, it is easily found by measuring off its distance z from
the axis YAY upon the axis XA X', and its distance y from
the axis XA X’ upon the axis YAY’, and the lines, which are
drawn through the points P and R thus determined, perpen-
dicular to the axes, intersect each other at the required point.

Since the distances z, 27, &c. are thus measured
upon the axis XAX/, this axis is called tke azis of z,
or the azis of the abscissas; while the axis YAY is
called the azis of y, or the azis of the ordinates.

67. By using the negative sign, as in art. 4, the sign
of the abscissa, or of the ordinate, designates upon
which side of the axis the point is placed.

Thus if we denote, by positive ordinates, distances
above the axis XAX, and, by positive abscissas, dis-
tances to the right of the axis YAY', negative ordi-
nates will denote distances below the axis XA X', and
negative abscissas, distances to the left of YAY".

Points in the quarter YAX, being above the axis XAX'
and to the right of YAY’, will then have positive ordinates
and abscissas. Points in the quarter YAX', being above
XAX' and to the left of YAY’, will have positive ordinates
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Polar transformed to rectangular cosrdinates.

.and t‘legative abscissas. Points in the quarter XAY’, being
below XAX' and to the right of YAY’, will have negative
ordinates and positive abscissas. Points in the quarter
X' AY, being below XAX and to the left of YAY, will
have negative ordinates and abscissas.

" 58. Corollary. For any point in the axis XAX" the
ordinate is zero, that is,

y=0
is the algebraical condition that a point is in the axis
of z.

For any point in the axis YAY’, the abscissa is
zero, that is, -
z=0
is the algebraical condition that a point is in the axis
of y.

The coérdinates or the origin are

z=0, y=0.

59. Problem. To transform from polar to rectangu-
lar codrdinates.

Solution. Let A (fig. 22) be the polar origin, and AC the
polar axis. Let A, be the new origin, whose position is
determined by the codrdinates

AAI —=a, -AlACZﬁ.
Let A, X be the axis of abscissas, and 4,Y that of ordi-

nates ; and let the inclination of the axis A, X to AC be a;
so that if the line AD is drawn parallel to 4, X, we have

o« =DAC.
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Polar transformed to r g codrdinates.

The values of the polar codrdinates
AB—=r, and BAC=¢,

are to be found in terms of the rectangular codrdinates
A,P==z,and BP=—y.
Produce BP to P',and 4,Y to 4"
We have A, AA'=A AC—AAC=8—a,
BAA' = BAC —A'AC=¢—a.
The right triangles A, AA’ and BAP' give
A A =PP=AA, .sin. A A4 = asin, (B—«),
AA = AA, .cos. A AA' = acos.(f—a);
BP' =BP 4 PP'—y-+asin. (8—a),
AP =PA 4+ AA=z+4 acos. (B—«);
AB* = (AP)2 4 (BP")*,
r3 =224 2 azcos. (f—a)+a? cos.? (B—a),
+y2+42 aysin. (8— ) 4 a2 sin.2 (8 —a),
=22 +y? 4+2a[zcos. (B—a) + y.sin. (8—a)]4a2?,
r=a/ (12+y2+a3;}-2a[z. cos.(8—a )ty sin. (8—=]); (9)

tang. BAP = -f—;',
tang. (¢ — «) y+asm($z) (10)

:c-l—a cos. (B— u)
and formulas (9) and (10) are the required formulas.

60. Corollary. If the origins are the same, we have
a=0,
and the formulas (9) and (10) become

=W +y7); g (0—e)=2.  (11)
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Rectangular transformed to polar codrdinates.

T 61. Problem. To transform from rectangular to
polar coordinates.

Solution. Let AX and AY (fig. 28) be the rectangular
dxes. Let 4, be the new origin, the coordinates of which

are
LA =a,and A, A' = b.

Let the inclination of the polar axis 4, C to the axis AX
be « ; so that, if A, P’ is drawn parallel to AX, we have

CAP = a.
The values of the rectangular codrdinates
AP=2z,and BP=1y,
are to be found in terms of the polar cobrdinates
A,B=r,and BA,C=2¢.
We have, then, in the right triangle BA, P/,
BA,P'=BA,C+4 CA,P' = ¢ 44,
BP' = A, B.sin. BA,P' =r sin.(¢ 4 «),
A,P'=A ,B.cos. BA\P'=rcos. (¢4 =);
whence
r=AA'4A'P=AA4A, P'=a+rcos. (p4=) (I2)
y=PP'+P B=A,A'4}-P' B=>b+rsin. (¢-}-=) (13)
and (12) and (13) are the required values of 2z and y.
62. Corollary. If the origins are the same, we have
a=0,and b =0,
and the formulas (12) and (13) become
z=r cos. (P4 «), y =r sin. (¢4 a). (14)
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Transformation of reetangular codrdinates.

63. Corollary. If the origins are the éame, and the polar
axis coincides with the axis of z, we have

=0,
and formula (14) becomes
T =—7rcos. ¢,y:rsin.!¢. (15)

64. Problem. To transform from one system of rec-
tangular codrdinates to another.

Solution. Let AX and AY (fig. 24) be the axes of the
first system; and A, X, and A,Y, the new axes. Let the
codrdinates of the new origin 4, be

"AA'=a,and 4, A'=b;
and let the inclination of the axis A,X, to the axis AX be
«, so that, if A, R’ is drawn parallel to AX, we have
X, 4, R =
The values of the coordinates
AP —z,and BP—y,
are to be found in terms of the codrdinates
A,P,=z,,and BP, = y,.

Draw PR parallel to AX, and P, R’ parallel to AY.

Since the sides of the angle B are respectively perpendicular
to those of the angle P, 4 R, they are equal, or

= &,
The right triangles 4, P, R’ and BP, R give
P R =A,P,sin. P,A R =gz, sin. s,
A R=A,P,cos. P A, R=1z, cos.a;
P,R=BP, sin. B =y, sin. &,

BR—=BP, cos. B . =y, cos.a
4



38 ANALYTICAL GEOMETRY. [®. 1. cm. 1.

Transformation of rectangular codrdinates.

we also have
A,P=A R—P'R—=A,R—P;R=z, cos. a—y, sin. a,
BP' = P'R- BR =P ,R'4+ BR =z,sin. a}y, cos. a;
AP = AA' 4+ A'P=AA' 4+ AP,

or == a-7%,cos,&—y,sin a; (16)
BP = PP+ BP =A A4 BF,
or y= b4z sina+4y,cos a; 17)

and (16) and (17) are the required values of z and y.

65. Corollary. If the origins are the same, we have
a=0,and b =0;
and the formulas (16) and (17) become
Z=2x, cos. a —y, Sin. &, (18)
y=2z, sin. «4-y, cos.a. (19)
66. Corollary. If the directions of the axes are the same, '
we have
=0, sin,e =0, cos.a—=1;

and formulas (16) and (17) become

. x=a+tz,y=0+4y,. (20)
If the new origin is, in this case, in the axis AX, we have
b=0;
and formulas (20) become
z2=a+4z,y=y,. (21)
But if the new origin is in the axis 4Y, we have
a=0,

and formulas (20) become
2=z, y=b+4y,. (22)
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Distance of two points. Obliqué axes.

67. Problemn. To express the distance between two
points in terms of rectangular coirdinates.

Solution. The required result might be obtained by sub-
stituting in formula (5) the values of r,s', ¢, and ¢’ obtained
from formula (11), by taking 2 and y’ to correspond to »' and
¢’. Bt it is more readily obtained by direct investigation.

Let the two points be B and B’ (fig. 25), whose codrdi-
nates are respectively z, y,and «/, . Draw BR parallel to
AX, and the right triangle BB'R gives

BB2=BR*+4 B'R*= (2 —z)24 (y' —y)?
BB =#/[( —z)*+(y'—y)%]. (23)

68. Corollary. If one of the points B is the origin, we

* have

(18)

1
me,

z=0,y=0,

AB = /(s +y9). T ()

69. Instead of the two axes being at right angles to each

other, they are sometimes taken at any angle whatever ; and

instead of the distances from the axes, the lengths of lines
drawn parallel to the axes are used.

* whence

(19)!

In this case, the axes and codrdinates are said to be
oblique.
Thus if the axes are AX and AY (fig. 26), the codrdi-
nates of B, B', &c. are respectively,
2= AP = BR,and y — BP = AR,
and
—=AP'=B'R, andy' = B'P'= AR/, &c
“70. Problem. To transform from one system of
oblique covrdinates to another.
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Transformation of oblique cedrdinates.

Solution. Let AX and AY (fig. 27) be the original axes,

their mutual inclination being

A—=1.

Let the new axes be 4, X, and 4,7, which are inclined to
the axis AX by the angles « and 8, so that, if 4, P is

drawn parallel to 4X, we have
. X;A\PP=a,and Y 4, P =3

Let the coodrdinates of A, be

AA' — a, and AIA’ =5b.
‘The values of the codrdinates

AP = z,and BP — y,
are to be found in terms of

A,P,==2,,and BP,=y,.

Draw P, R parallel to AY, and P, R’ parallel to AX.

have, then,
P,RP =P, RP =YAX =7,
A,P,R=P RP —P, A\ R=7—a;
BP, R =Y, A R=8,
B=P,RP —BP R —v—8;
sin. A,RP,:sin. A, P, R=A,P,: AR,

or sip.y:sin. (y—a)==z,:4,R, -
_zysin (y—a)
and A‘R———sin.y
sin. A,RP, :sin. P, A\ R=A,P,:P,R,
or sin. y:sin.a =2, : PR,
and P,R=PR="S3"%,

sin. y
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. Traunsformation of oblique cogrdinates.

sin. BR'P, : sin. B=BP,: P,R,

or sin, y : sin. (y —g) =y, : P, R,
and PR =Rp = Y50 (r—F),
sin. 7y
sin. BR'P, : sin. BP,R' = BP,: BR/,
or sin. y :sin. =y, : BR),
and BR = Y1fnf
sin, y

AP—=AA'4+ AP =AA+ A P =AA 4 A, R+4RP,
z—a-f—z‘ sin. (y —a) 4y, sin. (7—,8), 25)

or sin. v
BP=PP 4+ PB=A,A{ PR+ R’B,
_ z, sin, « 4y, sin. /!
or y=5b+4 sy (26)

and (25) and (26) are the required values of z and y.

71. Corollary. If the original axes are rectangular, we

have
¥y=90°sin. y=1,

and formulas (25) and (26) become
z==a-+z, cos. a4y, cos. B, (7)
y=2>b+2z, sin. a -y, sin. 8. (28)
72. Corollary. If the new axes are rectangular, we have
A=190°+4- «, sin. #=cos. «,
sin. (y— g#) = sin. (y —a — 90°) = —cos. (y —a);
‘and formulas (25) and (26) become
z, sin. (y — & cos. (y—a
=af 2 (v )sm ."/yl (r ) (29)

- x, sin. u+y1cosu
y=>b+ sin. y (30)

4+
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Point in space. Rectangular axes. .

73. Problem. To determinethe position of points in
space.

Solution. The most natural method of determining the
position of a point in space is to determine the position of
some plane passing through the point, and then to determine
the position of the point in this plane. For this purpose
some fixed axis AC (fig. 28) is assumed, and some fixed
plane CAD passing through this axis. The plane CAE,
which passes through the point B and the axis AC, is deter-
mined by the angle EAD, which it makes with the fixed
plane CAD. The position of the poi B in the plane CAB
is determined by the radius vector A an'd the angle BAC,
which this radius makes with the axis. The same method
may be adopted for any other points B’, B", &c., which are
not given on the figure, as they would only render it con-
fused. We may, then, denote these radii vectores of the
points B, B/, &c. by r, 7', &c.; the angles which these
radii make with the axis AC by ¢, ¢’ &c.; and the angles
which the planes in which they are contained make with the
fixed plane by 4, ¢, &c.

74. A system of rectangular coordinates in space has
been adopted similar to those in a plane, and possessing
the same practical advantage of simplicity.

For this purpose three planes XAY, YAZ, and XA Z (fig.
29) are drawn perpendicular to each other, and the rectan-
gular coordinates of a point are its distances from these
planes. Thus, if the point B is taken, and the perpendicu-
lars BP,; BQ, and BR are drawn perpendicular to the given
planes, these distances are the rectangular cobrdinates of B.
If these codrdinates are given, the point B is determined, by
taking

AL=BR AM= BQ, and AN = BP,
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Projection of a point. *

and drawing planes through the points L, M and IV parallel
respectively to the given planes, and their intersection B is
the required point.

The intersections AX, AY, and AZ of the three
given planes are the azes.

If the codrdinates of the point B are

# = AL = BR = NQ = MP,
y =AM = BQ = LP = NR,
2= AN = BP — MR—= LQ,
the axis AX is called the axis of z, AY is called the axis of
y,and AZ the axis of z ; the plane XAY is called the plane
of z y, the plane XAZ is called the plane of z z, and the
plane YAZ is called the plane of yz. The cobrdinates of
B, B",&c. are, in the same way,
v — AL, y = BQ, z = L'Q
and
F— ALII’ yll — B Qu’ 2!"'— L' Qu, &c.

75. The foot of the perpendicular let fall from a
point upon a plane is called the projection of the point
upon the plane.

Thus the projection of B upon the plane of 2 y is P, the
codrdinates of which are z and y; the projection upon the
plane of xzis Q, the cobrdinates of which are z and z; the
projection upon the plane y z is R, the codrdinates of which
are y and z.

76. Problem. To transform from rectangular coir-
dinates to the polar coérdinates of art. 73, the origins
being the same, the polar azis being the azis of z, and
the fized plane the plane of x y.



44 ANALYTICAL' GEOMETRY. [B. 1. CH. III.

Polar coordinates transformed to rectangular.

Solution. Let AX, AY, AZ (fig. 30) be the rectangular
axes. Let XAD be a plane passing through the point B.

The values of
AL =z, BQ = y,and LQ = z,
are to be found in terms of
AB—=1r, BAX — ¢,and DAY = 0.
Join BL. In the right triangles ABL and BLQ, we have

the angle LBQ =,
because the sides LB and BQ are parallel to AD and AY;
we also have
&= AL — AB cos. BAL — r cos. ¢, (31)
BL — ABsin. BAL — r sin. ¢
y = BQ = BL cos. LBQ = r sin. ¢ cos. 6, (32)
2 = LQ = BL sin. LBQ = r sin. ¢ sin. 4, (33)

77. Problem. To transform from the polar cosrdi-
nates of art. 73, to rectangular coordinates, the origins
being the same, the polar azis being the axis of z, and
the fized plane the plane of z y.

Using the figure and notation of the preceding article, the
values of 7, ¢, and ¢, are to be found in terms of z, y, and z.
They may be immediately found from equations (31), (32),
and (33). The sum of the squares of these equations is

24 y2 422 =12 (cos.2¢ 4+ sin.2 @ cos.2 0 -}- sin? ¢ sin.2 ¢)
=12 [cos.? ¢ 4 sin.2 ¢ (cos.20 | sin.2¢)]
=12 (cos.? ¢ 4 sin? §) = r2;

because

1 = cos.20 4 sin.2 4 = cos.2 ¢ 4 sin.2 @.
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Distance of two points in space.

Hence
r=a(+ ¥+ 2. (34)
and (31) gives
z z
P =— = . 35
080 = = A AR ()
The quotient of (33) divided by (32) is
sin. 6 z
= tang. § — ; (36)

. 78. Problem. To find the distance apart of two
points.

Solution. Let B, B’ (fig. 31) be the points, and P, P -
their projections upon the plane of z y. Join PP/, and draw
BE parallel to PP'. Since P, P’ are two points in the
plane YAX, we have, by equation (23),

PP2=(2'—2)?+ (¥ — ¥)%;
and in the right triangle BEF/,
B'E—=BP —BP =% —z,
BB?= BE*+ B'E*= PP?- B'Es,
= (@ — P (=R (7 — 2%
BB =W/[(z'—2z3+4(y'—9)*+ (¥ —2)*]. (37)

79. Corollary. If one of the points, as B', is the origin,
we have

=0, y=0, 2 =0,
and formula (87) becomes _
AB=a/(24 y2+2?), (388)

which agrees with equation (34).
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Projection of a line.

80. The line PP, which joins the projections of the
two extremities B, B' of the line BB, is called the
projection of the line BB' upon the plane of zy.

81. Corollary. 1If the angle B'BE, which is the inclina-
tion of the line BB to its projection or to the plane of y z,
is denoted by i, the right trjangle B'BE gives

BE = BB cos. B'BE,
or
PP — BB cos. i}

that is, the projection of a straight line upon a plane is
equal to the product of the line multiplied by the cosine of
its inclination to the plane.

82. If planes BPL, B'P'L/, are drawn, through the
extremities B, B’ of a line BB/, and perpendicular to
an axis AX, the part LL' of the axis intercepted be-
tween these planes is called the projection of the line
upon this azis.

83. Corollary. Since
L = AL — AL =2 —«,

the projection of a line upon an axis is equal to the
difference of the corresponding ordinates of its extremi-
ties.

The projection of the radius vector ABis AL, or
the corresponding ordinate of its extremity.

84. Corollary. Tt follows from equation (37), that
the square of a line.is equal to the sum of the squares
of its projections upon the three rectangular axes.
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Sum of the squares of the angles made by a line with the axes.

85. Corollary. If the inclination of the line BB’ to the
axis AX is denoted by ¢, we have, by drawing LS parallel
to BB’ to meet the plane B'P'L’ in S,

LS — BB, SLL' — ¢,
LL'—= L& cos. SLL/,
LL'= BB cos. ¢;

that is, the projection of a straight line upon an axis is
equal to the product of the line multiplied by the cosine
of its inclination to the axis.

86. Corollary. If ¢ is the inclination of the line to the
axis of y, and w its inclination to the axis of z, its projections .
upon these axes are, respectively,

BB cos. ¥, and BB cos. @;
so that, by art. 84?
BB2 = BB?cos.2 ¢ + BB"? cos.2y 4 BB? c0s.2 o,
or, dividing by BB?2,
1 = cos.2 ¢ 4cos2Yy 4 cos2o;

that is, the sum of the squares of the cosines of the
angles whick a line makes with three rectangular azes
s equal to unity.

87. A diffefent system of polar codrdinates from that
of art. 73, is often used upon account of its symmetri-
cal character. It consists in determining the direction
of the radius vector by the angles which it makes with
three rectangular axes.
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R gul formed to oblique codrdinates.

88. Corollary. If the angles ¢, ¢, and » denote the
angles which the radius vector makes with the axes of z, y,
and z, we have, by arts. 83 and 86,

& =7 cos. ¥y = r cos. ¥, 2 == r coS. v; (39)
c0s2 @ 4 cos?Y 4 cos?2w =1,

which will serve to transform from rectangular to polar
coirdinates in the system of the preceding article.

89. Oblique coordinates are sometimes used similar to
oblique cobrdinates in a plane; thus, if the axes 4X, AY,
and AZ (fig. 29) had been oblique to each other, and the
other lines drawn parallel to the axes, the point B would be
determined by the oblique codrdinates

AL==2, LQ=y, QB =z;
and, in the same way, for other points B', B", &c.

90. Problem. To transform from rectangular fo
oblique coérdinates.

Let AX, AY, AZ, (fig. 32) be the rectangular axes, and
4,X,, A,Y,, A4,Z,, the oblique axes. Let the codrdi-
nates of the new origin be

Ad'=a, A A" = b, A’A" = ¢;
and let the ificlination to the axes AX, AY, and AZ, of
those axes 4, X, be, respectively, «, «/, a’; let those of the
axis 4, Y, be 8,8, #"; and those of the axis 4,Z, be v, 7',
7"; these angles must be subject to the condjtion of art. 86;
that is,

cos,? a 4 cos2a’ 4 cos2a’ =1,

cos.2 8 4 cos.2 g/ 4 cos2 g' =1,

c0s.2 ¥ 4 cos.2 ¥ 4 cos.2 ¢y = 1.
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Oblique transformed to rectangular coérdinates.

The values of the rectangular coordinates
AL=z, BQ=y, LQ =7z,
are to be found in terms of
A4,L,==2,,BQ,=y,,L,Q,=1z,.

Let L’ and Q' be the projections of the points L, and Q;
upon the axis of z. Since A'L', L'Q, and QL are the
projections, respectively, of 4,L,, L,Q,, and Q, B, upon
the axis of 2; and 4,L,, Q, B, and L, Q,, are respectively
parallel to the axes of z,, ¥,,and z,, and, therefore, inclined’
to the axis of x by the angles «, 8, and vy, we have

A'L' = A,L, cos. «a — x, CoS. a,

QL = Q,B cos.8—1y, cos. By

L'Q=L,Q, cos.y =12, C08. 73
so that

AL=AA'+ AL+ QL4+ L'Q

gives : ’
z==a-} =z, cos. « 4+ y, cos. 84z, cos. y. (40)

~

In the same way we might find .
y=>b-4 1z, cos. o'}y, cos. 8’} z, cos. v, (41)
z2=c-+ =z, cos.a’+y, cos. 8" 4z, cos. y"; (42)
so that equations (40), (41), and (42) are the required equa-
tions.

91. Corollary. If the new axes are also rectangular,.
equations (40), (41), and (42) may still be used, but the
angles a, 8, v, o', &, ¥, o', #, and 7", will be subject to cer-
tain conditions, which are thus obtained. Let r be the radius
vector drawn from A, to B, and let the angles which r makes

5
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Angle of two lines.

with the axes AX, AY, 42, 4,X,,A,Y,,A,Z,, be respec-
tively ¢, ¥, , ¢,, ¥,, »,, we shall have, by arts. 83 and 85,
z=AL=AA'4+ AL=a-4rcos.9,
Ty ==7rCco8. Q,,¥Y, —7COS.y¥,;,%; =7 COS, &y}
which may be substituted in equation (40). If, in the result,

we suppress the common term a, and the common factor r,
we have

€08. ¢ = cos. a c0s. §; - cos. fcos. y, +} cos. y cos. v, ; (43)

which expresses the angls ¢ made by two lines, one of
which is inclined to the three azes of z,,y,, z,, by the
angles «, 8, v; and the other by the angles ¢,, v,, v,.

This formula may then be used for determining the angle
which any two lines make with each other, and which are
inclined to the axes of x, y, z by given angles; to determin-
ing the angles, for instance, which the axes of z,,y,,z2,,
make with each other. But these axes are perpendicular to
each other, and therefore we have for the angles of z,, and
y,,of z,,and z,, of y,, and z,, respectively,

cos. 90°=0=—cos. a cos. ,6+co’s. o/ cos. g'~4-cos. & cos. #”,(44)

cos. 90°=0=cos. « cos. y-}-cos. a! cos. y'}-cos. a' cos. v/, (45)
¢0s. 90°—=0=—cos. B cos, y-}-cos. #’ cos. y'4-cos. 87 cos. y". (46)

92. Corollary. By applying the preceding formulas to the
axes of x, y, z, referred to those of z,, y,, z,, we have

cos? a - cos.2 8 -}-cosly = 1, (47)
cos.2 o' 4 cos? g/ 4 cos3y =1, (48)
cos? a4 cos.2 g4 cos2y'=1; (49)
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Change of origin.

€0s. & cos. &/ - cos. 8 cos. #' 4 cos. y cos. ¥ =0, (50)
cos. @ cos. a'/4-cos. g cos. g -~ cos. y cos. ¥ = 0, (51)
cos. o' cos. a/'-}-cos. g cos. #' 4 cos. y' cos. v/ = 0. (52)

93. Corollary. If the origin is changed, but not the di-
rections of the axes, we have
«a=—0, B=090,y=90,
o =90°, #=0, ¥ =90,
a'= 90°, "= 90°, y'=0;
and equations (40, 41, 42) become

z=a+ z, (53)
=5 + Y (54)
t=c¢c+ % (55)
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Loci. A l;gles.

- CHAPTER 1V.

EQUATIONS OF LOCI.

94. WHeN a geometrical question regarding position
leads to a number of equations less than that of the
unknown quantities, it is indeterminate, and usually
admits of many solutions ; that is, there are usually a
series of points which solve it, and this series of points
is called ¢he locus of the question, or of the equations to
which it leads.

95. The equation of the locus of a geometrical ques-
tion is found by referring the positions of its points to
cosrdinates, as in the preceding chapter, and ezpress-
ing algebraically the conditions of the question.

96. Scholium. Instead of denoting angles by de-
grees, minutes, &c., we shall hereafter denote them by
the lengths of the arcs which measure them upon the
circumference of a circle whose radius is unity, and
shall denote by » the semicircumference of this circle,
which is nearly 3.1415926.

o The angle of 90°, or the right angle, is thus denoted by
% =, the angle of 180°, or two right angles, by =, and the
angle of 360°, or four right angles, by 2 =.

_97. Corollary. The arc which measures an angle ¢ in the
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Circle.

circle whose radius is R is R 6, because similar arcs are
propottional to their radii, and ¢ is the length if the radius is
unity.

98. ExamPpLES.

1. Find the equation of the locus of all the points
in a plane, which are at a given distance from a given
point in that plane. This locus is the circumference
of the circle.

Solution. Let the given point A (fig. 33) be assumed as
the origin of codrdinates, and let R = the given distance.
If the polar cobrdinates of art. 44 are used, we have for
each of the required points, ag M,
r= R; (56)
so that this equation is that of the required locus.

Corollary 1. Equation (56) is the polar equation of
the circle whose radius is R, and centre at the origin,

Corollary 2~FEquation (56) may be referred to other
polar axes by arts. 48 and 49. Thus for the point 4;, for
instance, for which —

AA, ta=—R

~

\
equation (3) becomes

res o/ (RB4r8 —2Rr, #s.0))
which substituted in (56) gives, by squaring and reducing,
r2—2Rr,cos. ¢, =0;
or we may divide by r,, since r, is not generally equal to
zero, and the equation is

r, =2 Rcos, ¢,, (57)
5'
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Circle,

which is the polar equation of a circle whose radius is
R, the origin being upon the circumference, and the
line drawn to the centre being the azis.

Corollary 3. Equation (56) may, by art. 60, be referred

to rectangular coordinates; and equations (11) being sub-
stituted in (56), and the result being squared, we have -
: 2% 4 y2 — R? (58)
which is the equation of a circle whose radius is R,
referred to rectangular cobrdinates, the origin of which
is the centre.

Corollary 4. Equation (58) may, by art. 66, be referred to
any rectangular codrdinates. Thus the axes 4, X,, 4, Y,,
for which the codrdinates of A are 4, A’ and A4', so that

a—=— A A= —ud,

b=— A4 =—-V
give :
z=z,—a,y—=y,—Vb,
which, substituted in (58), give

(23— @) + (v, —b)2 = Ry, (59)

whick is the equation of a circle, referred to rectangular
coordinates, the radius of the circle being R, and the
coordinates of the cenlre o' and V.

Corollary 5. For the point 4, we have
ad=R,0V=0,
so that for this point (59) becomes
(z, — R+ 3] =R3,
or 22 — 2Rz, 4 R* 4 y3 = R3 .
yi=2 Rz, —ai, (60)
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Sphere.

which is the equation of a circle, whose radius is R,
referred to rectangular coordinates, the origin of which
is upon the circumference, and the azis of z is the
diamelter. .

~ 2. Find the equation of the locus of all the points
in space, which are at a given distance from a given
point. This locus is the surface of the sphere.

Solution. Let the given point be assumed as the origin
of codrdinates, and let

R = the given distance.
If polar codrdinates are used, we have for each of the re-
quired points
r=R; (61)
which is, therefore, the polar equation of a sphere,
whose radius is R, and centre at the origin.

Corollary 1. Equation (61) may be referred to rectan-
. gular codrdinates, by art. 77 ; and if equation (34) is sub-
stituted in (61), and the result squared, we have

=24 y2 4 22 = R?; (62)
which is the equation of the sphere whose radius is R,

referred to rectangular codrdinates, the ongm of which
is the centre.

Corollary 2. Equation (62) may, by art. 93, be referred
to any rectangular codrdinates, and the substitution of equa-
tions (53, 54, 55) in (62) gives

(@taP+ 5+ +(u+c)*=R%  (63)
which is the equation of a sphere referred to rectangu-
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Ellipse.

lar cosrdinates, the radius of the sphere being R, and
the coordinates of the centre being —a, —b, and —c.

3. Find the equation of the locus of all the points
in a plane, of which the sum of the distances of each
point from two given points in that plane is equal to a
given line. 'This locus is called tke ellipse, and the
given points are called its foci.

Solution. Let Fand F’ (fig. 34) be the foci, let F be the
polar origin, let the line FF' joining the foci be the polar
axis, and let

2 ¢ — FF' — distance between the foci,

2 A = the given length ;
where the length 4 is not to be confounded with the point 4
of the figure.

If, then, we put in equation (6)

v = FF' =2e¢,
we have for the distance MF’ of each point M from F’,
MF' = a/(r244c2—4 cr cos. ) ;
so that
FM+ MF' =2 A=r—+4a/(r*4+4 2 —4 cr cos. 9)
M+ 4cBE—4crcos.9) =24—r,
and squaring and reducing
43—4crcos. ¢=—4 A2—4 Ar
(A—ccos. p) r=A*—c2
A2 2

r———
A—ccos. @

(64)
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Ellipse. Transverse axis.

which is the polar equation of the ellipse, one of the foci
being the origin, and the azxis being the line joining
the foci, which is called the transverse azis, if it is pro-
duced to meet the curve.

Corollary 1. For the point C where the ellipse cuts the
axis, we have ’
¢®=0,c08. ¢ — 1,
A — 2

FC=r= y p— —=A+4ec

Corollary 2. For the point €', where the ellipse cuts the
axis produced, we have

=m,c08 ¢ = — I,
A2 2
A¥o
CC=FC+ FC =2A4;

FC=r= = A—c¢,

so that the transverse axis is equal to the sum of the
distances of each point of the ellipse from the two foci.
Corollary 3. 1f FF is bisected at 4, we have_
AF — AF — ¢,
AC=FC—AF=A4c—c=A=3CC=AC;
A is called t&e centre of the ellipse.‘
Corollary 4. If we put
B2 — A2 — 2,
(64) becomes
B2

T=d¢ c0s. @

. (65)
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Ellipse. Eccentricity.

Corollary 5. If we put
c 2¢
e=4=53}
e 18 called the eccentricity of the ellipse, and is the ratio
of the distance between the foci divided by the transverse
azis.

Hence c—=Ade,
and this, substituted in (64), gives

A2(1—e?)  A(1—¢?) .
A(l —ecos. ) 1—e cos.p

r=

(66)
If we also put

FC=P=A—c=A4A(1—¢),
(66) may be put in the form

r=A(l—c)(l+c)_ P(1+4e) (67)

l—ecos.¢ ~ l—ecos. ¢

Corollary 6. The equation of the ellipse may be referred
to rectangular codrdinates by arts. 59 and 60. Thus, if we
take the point A for the origin, and AC for the axis of z, we
have

wa = F4A = ¢,
a=pg=0,sin. (8 —a)=0,co8. (8 —a)=1;
whence (9) becomes
r=aE@+1r+2+2cz),
and the projection of r upon the axis of z is, by art. 85,

rcos. g =1z c.
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Ellipse. Conjugate axis.

Now equation (64) freed from fractions is
Ar—crcos. o= A2—c?;
in which, if we substitute the preceding values, we have
AN/ (242424 2c2)—crz—B=A2— ¢}
or '
AN+ 2 42 +2cz) = A2+4-ca.
The square of which is, when reduced,
A222 - 4292 4 A2 P = At 223,
or
(L2— ) AP = At — B E = A2 (L2 — &),
or substituting B2,

B2 4 A2y = A% BR; (68)
which, divided by A2 B?, is
@yl
yE + g b 1. (69)

Corollary 7. 'The part BB’ of the axis of y in-
cluded within the ellipse is called its conjugate axis.

We have for the points B and B/, art. 58,
z2=0,y =AB or—— AB;
which, substituted in (68), gives

A2y — A2 B3,
Y =4+ B=++ B or—— B;
so that AB—= AB' = B,

and B is equal to the semiconjugate axis.
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o Ellipse. Conjugate axes,

Corollary 8. Equations (68) and (69) are the equ_a—v

tions of an ellipse referred to rectangular covrdinates,
the centre of the ellipse being the origin, the transverse
azis 2 A being the azis of %, and the conjugate azis
2B being the axis of y. .

Corollary 9. The eQuation of the ellipse may, by art. 71,
be referred to oblique axes. Thus, if the origin is un-
changed, we have

a=0, b=0,
and equations (27) and (28) become
z =z, cos. @ 4}y, cos. &,
y=z,sin. « 4y, sin. g;
which, substituted in (68), give, by simple reduction,
(B2cos.2a+-Ain.’a)z’4-2( B’cos.acos.p A sin.asin.)fz, ¥,
+ (B2 cos.2 p} A2sin.2 ) y 2 = A2 B2, (70)

Corollary 10. If « and g, instead of being taken arbitra-

rily, are so taken that we have

B2 cos. « cos, g + A2 sin, « sin. g =0, (71)
or A2 sin. @ sin. # = — B2 cos. « cos. 3,
or, dividing by 42 cos. « cos. g,

B2
—

the axes are said to be conjugate to each other.

tang. « tang. g = (72)

Equation (70) is then reduced to

(BAcos2at-A%sin2 e)a 34 Brcos.2 st A%sin2 p)y2 = A2B0.

(73)

|

|
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) Conjugate diameter,

Corollary 11. If C,AC", (fig. 35) is the axis of z,, and
B,AB, is the axis of y,, we have for the points C, and
C',, where the axis of x, meets the curve

y, =0,2, = AC, or— AC';
which, substituted in (73), give
(B?co0s.2 o 4 A?sin2 &) 2,2 = A?B?

AB

=t S e e F Asnda)

so that the distances AC, and AC', are equal, and in
general any line, which passes through the centre and
terminates in the curve, is bisected, and is hence called
a diameter. The axes of 2, and y,, which are subject
to the condition of equation (71) or (72), are called
conjugate diameters, and equation (73) is the equation
of the ellipse referred to conjugate diameters, which are
inclined by the angles « and g to the transverse azis.

Corollary 12. If we take
A= AC, = AC,,
B = AB, = AB',;

we have s

AB
A (B2cos2 e+ A?sin?a) '
. AB .
= N(B¥cos2 g4 A*sin2p) ’
6

.A’::
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Hyperbola.
so that
A (B?cos2 a4 A?sinla) = AB
. A/(B3cos2 g+ A¥sin2 p) = %— :

which, substituted in (73), and the result divided by 4253,
give
= N (74)
or
B2g2 4 A?2y2 = A7 B?; (75)
which are, therefore, precisely similar in form to equa-
tions (68) and (69); and they are the equations of the
ellipse referred to the conjugate diameters 2 A' and
2B.

4. Find the equation of the locus of all the points in
a plane, of which the difference of the distances of each
point from two given points in that plane is equal to a
given line. 'This locus is called the hyperbola, and the
given points are called its foci.

Solution. Let F and F' (fig. 36) be the foci, let F be the
polar origin, let the line FF' joining the foci be the polar
axis, and let

2 ¢ — FF = the distance between the foci,
2 A = the given length.
If we put, in equation 6,
"= FF =2c,
we have, for the distance of each point M from F,
MF =a/(r*+4c®—4crcos. ¢);
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Polar equation of hyperbola.

so that
MF—MF =2A=r—a/(r?+4c3—4¢rcos.9),
(2442 —4crcos. ) =r—2 A
Squaring and reducing, we have
4c®—4crcos.p—=—4Ar444°
(A—ccos, @) r = A2 —c?
A2 — 2 c2— A2

r= A—ccos. ¢ :ccos.¢—-A;

(76)

which is the polar equation of the hyperbola, one of the
. foci being the origin, and the axis being the line which
Jotins the foct, the part of which CC', intersected by the
curve, is called the transverse axis.

Corollary 1. 1f equation (76) is compared with (64),
it appears that these equations have the same form,
and only differ in the circumstance, that ¢ is less than
A for the ellipse, and greater than A for the hyperbola.
In the ellipse, then, the value of r is always positive,
because the numerator 42 — ¢® is positive, and so is the
denominator A—c cos. ¢. For ccos. @ is less than ¢,
and therefore less than 4. But in the hyperbola, while
the numerator ¢ — A2 is positive, the denominator
¢ cos. ¢ — 4 is only positive when

ccos. 9> A,
or cos. ¢>‘i.
c

If then we take cos. ¢, = %, ¢ must be confined to the

limits ¢, and — ¢,.

\ .
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Polar equation of hyperhola.

Corollary 2. 'The above solution is limited to the
hypothesis, that F'M is greater than F''M, but if it
were supposed less, we should have the equation of
another curve situated with reference to the foci F'*
and F' precisely as the curve of equation (76) is with
regard to the foci F' and F".

Since both these curves satisfy the conditions of the
problem, they are included in the common name of an
hyperbola, and are called its branches.

To find the equation of the second branch referred to the
same polar codrdinates as those already used, we have
FM,—FM,=2A=a/(r?4+4c2—4crcos. ¢) —r,
A(ri44c2—4crcos. @) =24 4.
Squaring and reducing, we have
c2—crcos.¢=A24Ar,
(4 + ccos 9) r = c2— A2,
c2— 42
_ r=A—|-ccos.¢’ ")
which is the polar equation of the branch CM,, the
JSocus F being the origin, and the line joining the foci
being the axis.

Corollary 3. The numerator of equation (i7) is
positive, but the denominator is negative, when

A+ccos. ¢L0,
or cos.¢<—%,

or cos. ¢ < —cos. @, ;
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Transverse axis of hyperbola. Centre.

or when ¢ is included between the limits = — @, and
# 4 @, so that ¢ must not be taken between these limits.

Corollary 4. For the point C, where the first branch of
the- hyperbola cuts the axis, we have, by equation (76),

¢=20, cos. =1,

‘62_A2
FC=r = c_A~_c—|-A.

Corollayy 5. For the point €', where the second branch

_ cuts the axis, we have, by (77),

¢=0, cos.0—1,

o2 — Az

T4
Hence CO=FC—FC=2A4;

FC=r= —c—A.

and the transverse axis is equal to the difference of the
distances of each point of the hyperbola from the two
Soct.
Corollary 6. If FF is bisected at A, we have
AF =AF = ¢, .
AC=AF—FC' =A4c—c=A=3CC' = AC.

A is called the centre of the hyperbola.

Corollary 1. If we put
B2 = ¢?— A3,
6*
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Conjugate axis of byperlu;Ia. Eccentricity.

('76) and (77) become

B?

r= € COSs. ¢j (78)
B2

il praryyers (79)

If this value of B?is compared with that of the ellipse
of corollary 4, we see that it is, in form, the negative
of it.

2 B is called tke conjugate azis of the hyperbola, and
is laid off upon the line BAB' drawn through the
centre perpendicular to the transverse axis, taking

AB = AB'=B.

Corollary 8. If we put

=21 _
T AT 247 cos. %,_sec.%,

e s called the eccentricity of the hyperbola.

We have c=¢ed,

and ihis, substituted in equations (76) and (77), gives
_A(l—e)  A(2—1])

r= 1—ecos.¢ ecos.¢—1" (80)
_ A=Y
r_ecos.¢+1' (81)

If we take
P=FC=c—A=(e—1),
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Rectaogular equation of hyperbola.

these may be put in the form

_ P40
~ecos.p—1 (82)
__ P(1+4¢)

T s o1 (83)

Corollary 9. If we draw ECE’ perpendicular to CC/,
and make

AE = AE' — AF = AF =,

‘'we have
, AC ¢
cos. EAC=cos. E’AC= AE=2
= co0s. @
Hence EAC = EAC=¢%,,
and EAC =»— Pos
EAC=~ + o>

CE = A/(AE? — AC?) = o/(c*— 42) = B.

Corollary 10. The equation of the hyperbola may be
referred to rectangular codrdinates by arts. 59 and 60. But
since equation (76) differs from the equation (64) of the’
ellipse only in regard to the value of ¢, this equation may be
referred to the rectangular axes CAC' and BAB', by the
very same formulas as in corollary 6 upon the ellipse, and
we shall have

(42— ) a2 A2y = A2 (A*—¥),
' or, substituting B2,

: — B2224 A2 y2 =— A2 B2, (84)
which, divided by — A2 B2, is
22 y?
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Hyperbola referred to oblique axes.

With regard to equation (77), since it may be deduced
from equation (76), by changing ¢ into —c, or —c into ¢,
it may be referred to rectangular codrdinates by the same
process, and the corresponding result may be deduced by
changing in that for (76) ¢ into —c. Since, however,

c? = (—c)3,

the result is the same in both cases.

Equations (84) and (85) are, then, the equations of
both branches of an hyperbola referred to rectangular
coordinates, the centre of the hyperbolu being the origin,
the transverse axis being the axis of z, and the conju-
gate azis being the azis of y.

Corollary 11. If we wished -to find the point where the
curve meets the axis of y, we should have for these points

=0,
so that the corresponding value of y would be

s (22 —y—m =y,

which is imaginary, and there are no such points.

Corollary 12. The equation of the hyperbola may, by
art. 71, be referred to oblique axes. If the origin remains
at A, the result is the same as that of corollary 9 for the
ellipse, by changing B2 into —B2. By this change (70)
becomes
(A%in.”u—-—BQcos.2u)a:‘;'+2(A"sin.usin.p—Bgcos.ucos.p)x.yl

+ (A2 sin.2 p— B2 cos.28)y? = — 42 B2 (86)
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Hyperbola referred 1o conjugate diameters.

Corollary 13. If « and g are so taken, that

A2 sin. « sin. 8 — B2 cos. « cos. =0, (87)
2
. (88)
the axes are said to be conjugate to each other ; and equa-
tion (86) becomes

(42sin2a—B%c0s.2a)x? - ( A%in.26—B%o0s.28)y} =—AB>.
(89)
Corollary 14. It may be proved precisely as in corollary
11 for the ellipse, that a line drawn through the centre to
meet the curve at both extremities is bisected at the centre,
whence it is called a diameter. If such a diameter is as.
sumed for the axis of x, and if we denote it by A’; we have

or tang. « tang. 8 —

A — AB .
T A/(B2cos.2a—A2sin2a)’
and if we take
B — AB
&/ (42 sin.2 g — B2 cos.2 g)’
we have
: 2 Bz
A2sin.2a— B2 cos.2 4 — — %,
2 2
A2 sin.2 g — B2 ¢cos.2 g — 4—%—,
which substituted in (89) give, by dividing by —A2 B2,
22 Y2
A_'lz — —B’—; =1, (90)
or
—B2s2 - A2y2 —=— 42 B2, 91)

which are the equations of the hyperbola referred to
conjugate diamelers.
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Parahola. Polar equation.

5. Find the equation of the locus of all the points
in a plane so situated, that the distance of each of them
from a given point is equal to its distance from a given
line. This locus is called the parabola, the given point
ils focus, and the given line its directriz.

Solution. Let the given point F (fig. 37) be assumed as
the origin of polar cotrdinates, and let the perpendicular
BF to the given line BQ be produced to X, and let FX be
the polar axis. Let

BF=2P.
Draw the perpendicular MP ; we have
r=FM—=QM= BP
FP = r cos. ¢,
so that
rcos.—BP —~BF=r—2P
r—rcos.¢=2P
2P

' ‘ r= T-——-—COS. ? ’ (92)
which is the polar equation of the parabola, the origin
being the focus, and the azis the perpendicular from

the directriz.

Corollary 1. If equations (67) and (92) are compared
together, it is evident that (92) is what (67) becomes, when

e=1
Corollary 2. For the point 4 where the curve meets the
axis we have
¢—= =w,cos. p=—1

r=FA=32P=P.
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Parabola referred to rectangular axes.

The point A is called the vertez of the parabola, and

. is just as far from the focus as from the directrix.

Corollary 3. The equation of the parabold may be re-
ferred to rectangular coordinates by arts. 59 and 60. If we
take the vertex A for the origin, we have

a=FA="P
«a=0, p=m,
sin, (A—¢)=0, cos. (B—a) =—1;
whence (9) becomes
r=a/(2+y?—2 P P2),
and the projection of r upon the axis is
rcos. p =t — P.
Now equation (92), freed from fractions, is
r—rcos,. ¢ =2 P,
in which, if we substitute the preceding values, we have
V(4?4 2? —2 Pot P?)—zf P=2P
(2422 —2Px+ P2)=P4=z;
which squared and reduced gives
$*=4Pu; (93)

which is the equation of the parabola referred to rec-
tangular coordinates, the origin being the vertex, and
P its distance from the focus.

c Corollary 4. The equation of the parabola may be re-

ferred to oblique axes, by art. 71. If the axis of x, is
taken pajallel to z, we have
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Parabola referred to oblique axes.

a=0, sin. « =0, cos. « =1,
and (27) and (28) béccme
e z—=a+}x,}y,cos B
y=>b+4y,sin.g;
which, substituted in (93), give
92 sin.2 p (2 bsin. f—4 P cos. f) y,
+ 2 —4Pa=4Px,.

(99)

Corollary 5. If the new origin is taken at a point 4,

upon the curve, we have, by equation (93),
"®=4Pa,
which reduces (94) to

y2sin2 g4 (2bsin.p—4 Pcos. )y, = 4P x,.

Corollary 6. If the inclination g is taken so that
2 bsin. 8—4 P cos. =0,

‘ 2P
or tan. 8 = )
(95) becomes

y2sin2 g =4 Pz,

. 4P .
Yi=gne gL
And if we put
P
: P,= sin2 g8 ’
(98) becomes
y3=4P, z,.

(95)

(96)

(97)
(98)

(%9

(100)




k]

§ 98] EQUATIONS OF LOCT. 73

Prolate ellipsoid of revolution. -

The axes determined by the | “ation (96), are said
to be conjugate to each other, and (100) is the equation
of the parabola referred to conjugate azes,

6. To find the equation of the surface described by
the revolution of the ellipse about its transverse axis.
This surface is called that of the prolate ellipsoid of
revolution, which is the included solid.

Solution. Let CMC' (fig. 34) be the revolving ellipse.
If we use the notation of the 8d problem and solution, and
let F be the origin of the polar coordinates in the system of
art. 73, and the axis of revolution the polar axis, it is evident
that the distance FM of each point from the origin, or any
other point of the axis, remains unchanged during the revo-
lution of the ellipse. The value of r is then independent of
6, and depends on op‘ly upon the angle @, which it makes with
the axis. Hence the equation (64) of the ellipse determines
the value of r for every value of ¢ and every position of the
revolving ellipse.

It is, then, the polar equation of the prolate ellip-
soid.

Corollary 1. 'The equation of the ellipsoid may, by art.
%7, be referred to rectangular cobdrdinates. Thus, if in
equation (64) freed from fractions we substitute

r = M(s2 4y +27)
r cos; ¢ =2,
we have . .
AN(22 4+ y2 4 22) —com= A2 —c2. (101)
7
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Ellipsoid of revolution.

Corollary 2. This equation may, by art. 90, or 93, be
referred to other rectangular axes,
changed from Fto 4, we have for the a, b, ¢, of art. 93,

a=FA—=¢,5=0,c=0,

whence

Thus, if the origin is @

t=z,tcy=y, 2=2,;
which, substituted in (101), give
AV[(e, o) yited]=42—crpo(e, )=A2cz,.
Squaring and reducing, we have °
(42 —c2) 22+ A2 (41  22) = 42 (A2 —c2);

and substituting the B2 of corollary 4 of the ellipse

B2x2 4 A2y3 4 A222 = A2 B2, (102)
which, divided by 42 B2, is
2 y2 ' z2 [ J
—ﬁ+B;—+F;’=l; (103)

which is the equation of the prolate ellipsoid of revolu-

tion referred to its centre as the origin, the azis 2 A of

revolution being the azis of z,.

7. 'To find the equation of the surface, generated by
the revolution of the ellipse, about its conjugate axis.
‘This surface is that of the oblate ellipsoid of revolution.

Solution. If we take the centre 4 (fig. 38) of the ellipse
whose transverse axis is

and conjugate axis

CC' =2 A,

BB =2 B

| vh
Uit

=,
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Oblate ellipsoid of revolution.

for the origin of rectangular codrdinates; the equation of
this ellipse is

PLEY
= te=l

‘When it revolves about the axis BB, the distances MR
and AR remain unchanged. Letz,,y,, 2, be the coordi-
nates of the pomt M of the requlred surface, BAB being
the axis of z,. We have

AR = =z,.

Now the distance of the point M from the point R is, by
art. 78,

MR =w/[(z,—2,)'+ 33 + 23] =A(y1 +23)-

But MR and AR are the same with codrdinates AP and
MP, or x and y of the point M in the plane of the ellipse ;
so that, for this point,

y==2,, t=MR=a/(y1+),
which, substituted in the equation of the ellipse, give

A48z (104)

which is the equation of the oblate ellipsoid of revo-
lution referred to its centre as the origin, the axis 2 B
of revolution being the axis of z,.

8. To find the equation of the surface formed by the
revolution of the hyperbola about either its transverse
or its conjugate axis. 'This surface is that of the
hyperboloid of revolution.
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Hyperboloid and paraboloid of revolution.

Solution. By reasoning exactly as in the preceding selu-
tion, we find .

P—F—F&:l (105)

Jfor the equation of the hyperboloid of revolution re-
ferred to its centre as the origin, the transverse axis
2 A being the axis of x and also the axis of revolution,

and we find
zz 2 za
—mtmtE=! (106)

JSor the equation of the hyperboloid of revolution re-
Serred to its centre as origin, the conjugate axis 2 B
being the axis of z, and also the axis of revolution.

9. To find the equation of the surface generated by
the revolution of the parabola about its axis. This
surface is that of the paraboloid of revolution.

Solution. By reasoning exactly as in the preceding solu-
tions, we find

y2+122=4P«z (10’7\)

for the equation of the paraboloid of revolution re-
ferred to its vertex as origin, the axis of revolution
being the axis of x.

10. To find the equation of the straight line in +
plane.

Solution. Let AB (fig. 39) be the line, let any point 4
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Straight line.

in it be assumed as the origin of polar codrdinates, and let
the polar axis be AX, which is inclined to BA by the angle

BAX =2,
For every point M of this line we have, then,
¢ = MAX — ;;
so that 0=2 (108)

is the polar equation of a straight line, which passes
through the origin, and is inclined to the axis by the
angle 1.

Corollary 1. The equation of the axis ts
¢=0.

Corollary 2. The straight line may be referred to rec-
tangular axes by art. 60, and if the axis of z is that of AX,
(11) gives

tang. A= %’ (109)

or : y =1ztang. 1; (110)
which is the equation of the straight line, which passes
through the origin, and is inclined to the axis of x by
the angle a.

Corollary 3. For the axis of z
. 1i=20 H A
so that y=0 (111)

is the equation of the axis of 2.
rhd
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Straight line.

In like manner
z=0 (112)
is the equation of the axis of y.

Corollary 4. The straight line may be referred to any
oblique codrdinates by art. 71. But since the new axes may
be situated in any way whatever with regard to the former
ones, the generality of the result is not diminished by limit-
ing the original position of the line to that of the axis of y,
corresponding to equation (112).

Thus, if the new origin is at the point 4,, we have

a=A'A = A"4,,
and (27) becomes
x,cos. a4y, cos. 8 = —a.

Now —a is the value of A4, counted from 4, or it is
the perpendicular let fall upon the line from the new origin,
and if we put

p=—a,
ve have
" ®,cos.8-}y,co8.8=p; (113)
which is the equation of a straight line passing at the
distance p from the origin, « and p being the angles
which the perpendicular to the line makes with the axes
of z, and y,.

Corollary 5. Equation (113) may be applied to the case
in which the new axes are rectangular, when

a—p=3x
B—a—3}w
cos. 8 = sin. « and cos. & = — sin. 8,
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Straight line.
and (113) becomes
cos.a.2, +sina.y, =p, (114)
or —sin.g.z, }cos.8.y, =p (115)

cos, B.y, ===z, 8in.8 4 p
y, =, tan. 8 - p.sec. s,
in which g is the angle made by the line itself with the axis
of z,.
In (fig. 40) let AB be the line, we have in the right trian-

gle A, PB, formed by letting fall the perpendicular 4, P,

AP=p, PAB=g¢p

A,B= A, P sec. PA,B — p sec. 8,

and if

h=A4,B=psec.pB

y,= z, tang. 8 4 A, (116).
which is the equation of a straight line inclined to the
axis of z, by the angle 8, and cutting the axis of y, at
a height h above the origin.

Corollary 6. The equation of the straight line may be
obtained for any polar coordinates by art. 47, or more simply
by art. 61, applied to the axis of y ; in this case we have, as
in corollary 4,

G=—p

and (12) substituted in (112), gives
rcos. (¢ 4 «) = p, (117)
which is the polar equation of a straight line passing

at the distance p from the origin, the perpendicular
upon it being inclined to the axis by the angle— a.
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Straight line in space.

11. To find the equation of a straight line in space.

Solution. If a point in the line is assumed as the origin,
and such rectangular axes of z, y, z, that the straight line
makes with them the angles 2, #, », the polar equations of

the line in the system of art. 87, are
P=A Y=, 0=171, (118)
Corollary 1. It must not be forgotten that 1,4,» are not

entirely independent of each other, but are subject to the
restriction of art. 86,

c08.22 - cos2# 4 cosBv = 1. (119)
Corollary 2. The equations of the axis of z are
0=0,4=}ma=4}n; (120)
those of the axis of y are
p=}m¥=0,0=}n; (121)
those of the axis of z are
p=3»Y=34r,0=0, (122)

Corollary 3. Equations (39) become, by substituting in
them the values of ¢, ¥, » (118),

z =1 cos.?

Y = 7 COs. ¢

Z = 7 COS8.7;
whence

r=x::y=z,' (123)
CO0S. 4 COS. 4 COS8. 7

which are the equations of a straight line passing



§98.] " EQUATIONS or LoCL 81

Plane.

through the origin, referred to rectangular coordi-
nates.

Corollary 4. The equation of the straight line may be
referred to any rectangular axes by equations of art. 93, by
which (123) becomes

31+a_yl+b__zn+c’ (124)

COS. 2 ~ COS. u  COS. 7

which are the equations of a straight line which passes
through the point, whose cosrdinates are —a, —b, —c,
and is inclined to the azes by the angles 2, uy 4.

12. To find the equation of a plane.

Solution. If the plane is that of 2 y, we have for all
its points, by art. 74,
z =0, (125)
which is, then, the equation of the plane z y.

In the same way

y=20 (126)
is the equation of the plane = z; also
=0 (127)

is the equation of the plane y z.

Corollary 1. The plane may, by arts. 90, 91, be referred
to any axes whatever. Thus, for the plane of yz, equation
(40) gives, by (127),

z,co8. a4y, cos. S}z, cos. y =—a=p, (128)
which is therefore the equation of the plane, which
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Cycloid,

passes at the distance —a or p from the origin, and the
perpendicular to which is inclined by the angles a, 8, v,
to the azis z, y,, Z,.

Corollary 2. If the plane passes through the origin, we
have .
p=0,
and (128) becomes
z, cos. a4y, cos. B}z, cos. y=0. (129)

13. To find the equation of the curve described by
a point in the circumference of a circular wheel, which
rolls in a plane upon a given straight line. This curve
is called the cycloid.

Solution. Let the given straight line AX (fig. 41) be the
axis of x, and let the point 4, at which the given point M of
the circumference touched A X, be the origin ; let

R — the radius CM of the wheel,

6 — the angle MCB, by which the point M
is removed from B.

Then, since the arc BM has rolled over the straight line
AB, it must be equal to it in length, or, by art. 97,

Ré = MB = AB.
Draw ME parallel to AX ; the right triangle CME gives

CE = R cos. 9, ME —= BP = R sin. ¢,
whence

2= AP = AB— BP = R0 — Rsin.0, (130)
y=PM= BE= CB—CE=R— Rcos.4, (131)

’
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Cycloid. Spiral.

and the elimination of ¢ from these two equations would give
the required equation. This elimination is thus effected ;
(131) gives, by transposition,

Rcos.0 = R—y,
whence ‘
R sin. 6 = o/(R? — R? c0s.2 0) = o/[R?— (R — ¥)?]
@2 Ry—9);
which, substituted in (130), gives
z=Ro0—a/(2Ry—1?)
,_ =t NERy—p)
= R ’

which, substituted in (131), gives
— 2
y =R —Rcos (z+~/(211§y y)), (132)

which ® the equation of the cycloid, but is not so con-
venient. for use as the combination of the two equations
(130) and (131).

14. A line revolves in a plane about a fixed point of"
that line, to find the equation of the curve described by
a moving point in that line, which proceeds from the
fixed point at such a rate, that its distance from the
fixed point is proportionate to the nth power of the
angle made by the revolving line with the fixed line
from which it starts. This curve is called a spiral.

Solution. Let the fixed point A (fig. 42) be the origin, and
the fixed line AB be the polar axis. Let M be the moving
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Spirals.

point, which, after the line has revolved completely round
once, has arrived at M’. Let

R=AM,
we have, by condition,
r:R= ¢":(27r)';,
or r(2=)=R¢, (133)
for the equation of the spiral. ®
Corollary1. If n=1landR=1,
equation (133) becomes
2xr=29, (134)

which is the equation of the spiral of Conon or of
Archimedes.

Corollary 2. If n=-—1,
(138) becomes
R#)'r=Ro¢, .
or ‘ r¢=2xR, ~ (135)
which is the equation of the hyperbolic spiral.
Corollary 3. If the logarithm of the distance of the

point had been proportional to the angle, the curve
would have been the logarithmic spiral, and its equation

A ¢=log.r, (136)
in which the logarithms may be taken in any given
system without loss of generality.

15. To find the equation of the right cylinder,’whose
base is a circle.

Solution. Let the plane of the base be that of z y. For
any point whatever (fig. 43) the codrdinates of its pro-
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jection P upon the plane of z y are z and y. But since the
point P is in the circumference of the base, z and y must
satisfy the equation of this circumference.

The equation of the right cylinder is then the same
as that of its base, if the plane of this base i3 assumed
as one of the coirdinate planes.

Corollary. The preceding proposition is obviously
general, and may be applied to any right cylinder
whatever, be its base a circle, an ellipse, an hyperbola,
or any other curve. .

16. To find the equation of the right cone, whose
base is a circle.

Solution. Let the vertex A (fig. 44) be assumed as the
origin, and let the axis of z be that of the cone, and let

4 = the angle which the side of the cone makes
with the axis.

Every radius vector, as AM, is a part of a side, and therec-
fore
=12 (137)
is a property of every radius vector, and is the polar
equation of a right cone, the origin being the vertex,
and i being the angle made by the side with the azis.

Corollary 1. 'The equation of the cone may, by art. 88;
be referred to rectangular axes, and we have

2_:_ T
R CEN R
8 .

cos. ¢ = = cos. 4,
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Right cone. =
o that - 3
z=a/(24 32+ 2®) cos. 2 - =
is the required equation. 2
o1
Squaring and transposing, we have -
(P +2%) cos2a=2% (1 —cos22) =2¥sin? .4
y? + 22 = 13 tang2 1, il
which is the equation of a right cone whose verte:
_ origin, and azis the azis of x. .32

Corollary 2. The equation of the cone may be r.
to any rectangular axes which have the same orig’ L

which make the angles «, 8, ¥ with the axis of =, b- ™ .y
R

90 and 92 ; for we have s
rENE@+RA+A)=VET )
z=1, cos. « 4y, cos. 84z, CO8. 73 st

. o

which, substituted in (138), give

2 -2

,c08, a-y,cos. A4z, cos. ¥ =a/(23-+y3423)cos. i. . J’
Corollary 3. 1If the origin is changed to the point, v

cobrdinates are a, b = 0,c =0, the equation becomes A\

(z2 4 a) cos. a 4y, cos. B4z, cos. ¥ ',:

= M[(z; 4+ a)? 4 y3 + 23] cos. 2. (: .—"
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CHAPTER V.
CLASSIFICATION AND CONSTRUCTION OF LOCL.

99. WHeN the equations of loci are referred to rec-
tangular coérdinates, they are divided into degrees, or
orders, corresponding to the degree of their equation.
Thus the locus, whose equation is of the first degree,
is itself of the first degree or linear, and the same is
the case with other curves.

100. Theorem. The order of a curve is independent
of the particular system of rectongular cosrdinates to
which it may be referred; that is, it is of the same
order for all systems of rectangular coordinates.

Demonstration. The formulas (16, 17) or (40, 41, 42)
for transforming from one system of rectangular codrdinates
to another are linear; so that the greatest number of the
dimensions of z, y, z in any term must be the same with that
of the dimensions of z,, y,, z,. The degree of the equation
is, therefore, the same, when expressed in terms of z,,9,,7,,
that it is when expressed in terms of z, y, z.

101. Corollary. Since the equations for transforming
to oblique cogrdinates are also linear, the preceding
proposition may be extended to them.

102. Corollary. The degree of the circle is by (58),
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Construction of loci.

the second; likewise that of the sphere (62); of the
ellipse (69); of the hyperbola (85); of the parabola
(93); of the cylinder and of “the cone. The degree of
the straight line (123) is the first, or it is linear, as is
also that of the plane (128). The equations of the
cycloid, and of the spirals, cannot be expressed without
the aid of ares, so that these curves are franscenden-
tal.

103. Problem. To construct a locus, of which the
equation is given.

Solution. 1. If the equation is that of a locusin a
plane, and expressed by polar codrdinates, we can, by
giving successive values to ¢, differing but litti¢ from
each other, calculate, by means of the given equation,
the corresponding values of 7. As many points of the
required curve may thus be determined as may be
convenient, and the curve, which is drawn by the
hand through these points, cannot differ much from the
required curve.

IL. If the locus were in a plane and expressed by
rectangular coérdinates, points might be determined by
calcnlating for assumed values of z the corresponding
values of y.

IIL If the equation were that of a locus in space,
and expressed by polar coordinates, then for each as-
sumed direction of the radius its value might be calcu-
lated, and the locus obtained by joining the series of
points thus determined would obviously be a surface.
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IV. If the equation were that of a locus in space,
expressed by rectangular coérdinates, values might be
assumed for z and y, and the corresponding value of z
would express the height at which the point of the
locus was above its projection upon the plane zy; so
that this locus would also be that of a surface.

V. If there were two equations in space, then one
of the coérdinates might be assumed at pleasure, and
the corresponding values of the other two obtained.

104. Corollary. A single equation between coérdi-
nates in space denotes a surface. But if there are two
equations, the codrdinates of each point of the locus
must satisfy each equation, and the point must be at
once upon both the surfaces represented by these equa-
tions; so that the locus is the intersection of these
surfaces, and is consequently a line.

105. In determining the character of loci from their
equations, it is important that these equations should
be first of all referred to those coérdinates, for which
they are the most simple in their forms.
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*  Reduction of linear equation.

CHAPTER VL

EQUATION OF THE FIRST DEGREE.

106. TaEe general form of the equation of the first
degree in a plane is

Az4+By4+ M=0, (142)
and that of the first degree in space is
Az+By+Cz+4+M=0. (143)

107. Problem. 'To reduce the general equation of the
first degree in a plane to its simplest form.

Solution. Let the general formulas (16) and (17) for,
transformation from one system of rectangular coérdinates
to another in a plane be substituted in the general equation
(142). The result is

(Acos. « 4 Bsin.a)x, 4 (Bcos.« — Asin.a)y,

+A4a+Bb4+M=0, (144)
in which a and b are the cobrdinates of the new origin, and
« the angle made by the axes x and z,.
Now the position of the new origin may be assumed at
such a point that _
4de4+Bb+M=0, (145)
and the angle « may be so assumed that
A cos.a 4 Bsin.a =0,

or tang. & = — (146)

3‘)
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whence
cos. & = —, 1 — = B
"7 T /(14 tang.2 a) ~ &/(A2+4 B2)
sin. @ — cos. « . tang. » =—\/(T{|‘B?3’
and (144) is reduced to
A2 4 Bz__ —0
V@t By =0
or V(47 + B?) y, =0,
whence ¥y, =0, (147)

which is as simple a form as the given equation can attain.

108. Corollary. Since
y1=0
is, by (111), the equation of the axis of z,, the locus
of the given equation is a straight line, which passes
through the point of whick the covrdinates are a and b,
and is inclined to the axis of z by the angle whose
tangent is —A = B.

109. Corollary. If the given equation (142) is divided
by &/(A2 4 B2?), and cos. & and sin. « are substituted for
their values, it becomes, by transposition,

M
V(47 4 B7)”
which, compared with {115), leads to the result that
M
V(47 4+ B¥)
i8 the lengthof the perpendicular let fall upon the line
from the origin.

—sin. .24 cos.a.y=—
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Of the two values of
VA7 + B) = N4 BY),
that value should then be taken which renders
— M =-/(42+ B?)

positive, that is, the value which is of the same sign
with —M.

110. Problem. 'To find the angle of two linesin a
plane, whose equations are given.

Solution. Let their eqpations be
Az + By + M =0,
Az+ By+ M, =0;

and let &, «; be the angles which they respectively make
with the axis of ; we have for the angle I, which they
make with each other,

I=a,—a. (148)
But, by (146), we have
A A
tang. a=—p tang. o, = — B: ;
and )
tang. I — tang. («, — &)
__tang. «, —tang. &
~ 14 tang. a tang. a,’
_4B,— A, B
or tang. I= mm’ (149)
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Paraliel and perpendicular lines.

111. Corollary. If the two lines are parallel, we have

I=0 .
tang. I =0
A,B— B, A=0, (150)
4, 4
or -B—;—'B, (151)

and this equation expresses that the two lines are
parallel.

112. Corollary. If the two lines are perpendicular, we
have

I=}n
tang. I = @ =};
or the denominator of (149) must be zero ; that is,

AA; 4 BB, =0; (152)
and this equation expresses that the two lines are per-
pendicular.

113. Corollary. In case the two lines are parallel, their
distance apart must, by art. 109, be
M M,
V@B T @+ )

114. Problem. 'To find the cobrdinates of the point
of the intersection of two straight lines in a plane.

’

Solution. Let the coordinates of the point of intersection
be z, and y,, and let the equations.of the line be the same
as in the preceding article. Since the point ot intersection
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Intersection of two lines.

is upon each line, its codrdinates must satisfy each of their
equatnons, or we must have

A zy4 B y,4+ M =0,
Ao+ Byo+ M, =0;

from which the values of z, and y, are found to be

__ BM,—B.M
*= 4B, —4,B’ (153)
_AM—AM, '
AB — A4 B’ (154)

115. Corollary. If the equations of the line had been
given in the form corresponding to (115)

—sgin.a .r4cos.a y=p
—sin.a, .24 cos.a, y =p,

we should have found

:c P cOS.a, =P, COS.« __pCOS.&,—p,008. 4 (155)
0= §in. », COS, «—C08. &, SiN. & sin, (a ,—a)
o psina, —p, sm.a. (156)

sin. (¢, — «)

116. Corollary. The values of z, and y, (153) and (154)
would be infinite, if their denominators were zero, that is, if
we had

AB,— A,B=0,
or by (150) if they were parallel, in which case they would
not meet, and there would be no point of intersection.

117. Problem. 'To find the equation of a straight
line, which makes a given angle with a given straight
line.
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Line inclined to given line.

Solution. Let the given angle be I, and the equation of
the given straight line
—8in.a.2 4 cos.a.y=p,
and let that of the required straight line be
—sin. e, .z4-cos.a,.y=p,,
in which «, and p, are unknown. We have, by the condi-
tions of the problem,
a,—a=ILora, =I+a;
and this value of «,, being substituted in the equation of the
required line, gives
—sin. (I4a).z24cos. (I44a)y=p, (157)
for the required equation, in which p, is indeterminate, be-

cause there is an infinite number of lines which satisfy the
condition of the problem.

118. Corollary. If the required line is to be parallel to
the given line, we have

I1=0,
and (157) becomes
—sin.a.z4cos.a.y=p,. (158)

119. Corollary. If the required line is to be perpendicular
to the given line, we have

I=3}=,sin. (I4 &) = cos. a, cos. (I 4 &) = —sin. a,
and (157) becomes
cos.az 4 sin.a y = —p,. (159)

120. Problem. To find the equation of a straight
line, which passes through a given point.
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Solution. Let 2/, y' be the codrdinates of the given point,
and

—sin.a.z4cos.a.y =p,
the required equation in which & and p are unknown. Since
the given point is in the required line, its codrdinates must
satisfy this equation, and we have
—sin.a.2' 4 cos.a.y' =p, (160)
which is a condition that must be satisfied by « and p;
although it is not sufficient to determine their values, because
many different lines can be drawn through the same point.
If the value of p is substituted in the required equation, it
becomes, by transposition,
—sin.a.(z—2')4cos.a.(y—y)=0, (161)
or, dividing by cos. «, .
—tang. e« (z—2') 4 (y—y')=0, (162)
which is the required equation, « being indeterminate, be-
cause an infinite number of straight lines can be drawn
through the same point in different directions.

121. Corollary. If this straight line is also to pass through
another point, the codrdinates of which are z and y"’, we
also have this condition corresponding to (160)

—sin.a.2"4-cos.a.y’' = p,
from which and (160) the values of p and « are to be found.

The difference between the last equation and (160),
divided by cos. « and by "/ — %, is '

Yy —y
tang. & = "7—; (163)
which substituted in (162) gives, by transposition,
y/l —y

y—y'=—(—17) (164)
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Jor the equation of a.straight line, which passes through
the two points whose coirdinates are z,' y' and =", y". -

122. Corollary. ¥ the straight line of art. 120 has also
to make a given angle with the straight line whose equation
is '

—sin. «;, £ 4-cos. ¢, y =p,,

we have, by art. 117,

o =I+4a,,
which substituted in (162) gives, by transposition,

y—y = tang. (I+ 4,) (z—2) (165)
for the required equation. .
123. Corollary. If the two lines of the preceding article
are to be parallel, we have
: - I=0,
and (165) becomes
y —y' —tang. n;, (z —2). (166)
124. Corollary. If they are to be perpendicular, we have
I=}=,tang.) } » 4+ «,) == —cotan. &,,
and (165) becomes
. y—y' = —cotan. o, (z—z'), (167)
which is, therefore, the equation of the perpendicular

let fall from the point, whose codrdinates are z' y' upon
the straight line, whose equation is

—sin. &, - cos. a, y =p,.

125. Corollary. The pe;pendicular, let fall from the
9
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origin upon the straight line, which is drawn through the
point &, ¥’ parallel to the line
—sgin.a.z4cos.a.y=p

is P =—sin.c24cos.a.y'.
But p is the perpendicular let fall from the origin upon the
given line ; and therefore the perpendicular let fall from the
point &/, y', upon the given line, is the difference of these
two perpendiculars, or it is

Po=p—p =p-+sina.z’—cos.«.y. (168)

126. Corollary. The perpendicular upon the line, which
is inclined to the axis of z by the angle «, is itself inclined
by the same angle to the axis of y, and by the angle } » 4
« to the axis of z. The projections of the perpendicular let
- Tall from the point z’, ¥’ to this line upon the axes of z and y
are then

Po c0s. (3 # 4 ) = — p, sin. « and p, cos. «,
and the coordinates of the foot of the perpendicular are, by
(168),

7, = 2’ — P, sin. «
=/ —p sin. & — z'sin.2 @ 4 ¥’ sin, « cos. «
= 2/c0s.2 @ 4- y' sin. . cos. & — p sin. a, (169)
and ' :

Yo=Yy -+ Py cos. =

=1y 4 p cos. « 4 z'sin. « . cos. « — y' cos.2 &
= a'sin. «.cos. « 4 y'sin2a 4 pcos. w, (170)

127. Problem. To reduce the general equation of
the first degree in space to its simplest form.

Solution. Let the general formulas (40, 41, 42) for
transformation from one equation of rectanglar coérdinates

th

<

i

=)
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to another in space be substituted in the general equation
(143)
Az+4+ By 4 Cz4 M=0,
the result is
(4 cos. « 4+ B cos.«’ 4 Ccos. «") z,

+ (A cos. 8 + Bcos. g + Ccos. ")y,

~+ (4 cos. y 4+ B cos. y' 4 C cos. v") z,

4+ Aa+Bb4+Cc4+ M=0, (171)
in which «, 8, v, o/, g/, ¥/, &, 8", ¥ are subject to the six
conditions (44 -49).

Let now the position of the new origin be assumed at such
a point, that its codrdinates a, b, ¢ satisfy the equation

Aa+Bb4CcH4+ M=0, (172)
and let the angles 2 and y be subject to the two conditions
Acos.p4 Bcos. 8+ C.cos. p' =0 (173)

Acos.y 4 Bcos.y 4+ C.cos. v = 0. (174)
By this means equation (171), divided by
A cos. a 4 B cos. o/ 4 C cos. a”,
is reduced to
z, =0, (175)
128. Corollary. Let
A cos. « 4+ Bcos.«' 4 Ccos. " = L, (176)

and if (176) is multiplied by cos. «, (173) by cos. 8, (174)
by cos. 7, the sum of the products, reduced by means of
equations (47, 50, 51), is

A = L cos. a. (177)
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-hﬁqmdon of plane.

In the same way we find .
B = L cos. o’ (178)

C = L cos. a''. (179)
The sum of the squares of (177, 178, 179) is, by art. 86,
A24 B2 4 C2 = L2 (180)
L=w(4+ B+ &), (181)
whence
A y|
cos'“:f—;\/(AQ-{-B?-FC’) (182)
,_B_ B
cos, @ SIS EFRFO (183)
cos.a'/ = g‘= c . (184)
L=V@ETF+ o)
129. Corollary. Since
z,=0

is the equation of the planey, z,, the locus of the general
equation (143) of the first degree in space is a plane,®
the perpendicular to which is inclined to the azes by
angles, which are determined by equations (182-184).

130. Corollarg}. Since the intersection of two planes
is a straight line, the locus of two equations of the first
degree is a straight line.

131. Corollary. If the equation (143) is divided by L,
and the values (182 - 184) substituted in the result, it
becomes

M
cos. & & 4~ cos. &’ cos. @' 2 = — —
L k]
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which, compared with (128), leads to the conclusion that
M

- =P

is the length of the perpendicular let fall upon the
plane from the origin.

132. Problem. To find the angle of two planes.

Solution. Let their equations be
Az+By4+Cz4+M =0
4,24+ Byy4+Ciz+ M, =0
andlet @ 87, «, 8, v, be the angles which the perpendic-
ulars to them make with the axes of x, y, z; and let I be
the angle of the planes. The angle I is also that made by
the perpendiculars to the planes, so that, by (43),
co0s. I= cos. a cos. o, +-cos. 8 cos. £, -+ cos.y cos. 7,, (185)

and by equations (181-184)

__ 44,4 BB, 4 CC,
cos. I —= L,

____ AA,4 BB, +CC,
= V@B 0). V(43 + BTF O]

) (lSé)

133. Corollary. If the planes are parallel, their per-
pendiculars are parallel, and make equal angles with
the axes, so that

a=a,, F=L,, Y=7y»
A__Al B__B, C_C1
or I=Ly L=L L—L, (187)
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Perpendicular planes.

A B c L -
or z = = El = -rl 2 (188)
and their distance apart in thlS case is
M, M :
o (189)

134. Corollary. If the planes are perpendicular, we
have

I=90° cos. I=0,
and (185) and (186) give
€08, & C08. &, -}-cos. 8 cos. 8, }-cos. ycos. y, = 0 (190)
AA, 4 BB, 4+ CC,=0. (191)

1385. Corollary. Since
sin. I =4/ (1 —cos.2 I),
we have, by (186),
(44, 4 BB, 4 CC,)
(& B+ O) (4 + B1 + 01
_ (424 B4 C?)(434-B34-C2)—(44,4 BB, 4.CC, )
(A By O%) (434 B3+09)

{ A?B3—2 AA, BB ,+A2B*4-A42C3—2 A4, CC,
_ +A43% C*+B2C3—2 BB,CC,+ B2 C? }
= (@B 0) (AT+B1+03)

(AB —A,B)*4-(AC,—A4,C)*+4(BC,—B, C)?

(@B C) (ATHBIFC)

sin2=I—=1—

(192)
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We also have, by (181-184),

(4B,—A, B)*+-(AC,—A4, €+ (BC,—B, Cp
L2 L3
= (cos. @ cos. 8, — cos, 8 cos. «,)?

sin.2 [ =

+ (cos. « cos. vy, — cos. ¥ cos. & )3

~+ (cos. g cos. vy, —cos. y cos. £,)% (193)

136. Problem. - To find the angle which a line
makes with a plane.

Solution. If «, B, y are the angles which the line makes
with the axes, and «, 8,, 7,, those which the perpendicular
to the plane makes, and I the angle made by the given line
with the plane, the angle which the line makes with the per-
pendicular to the plane will be the complement of I, and we
shall have

sin. I=cos. a cos. « 1} cos. Bcos. B, 4 cos.ycos. vy, (194)
c08.2 = (cos. « cos. 8, — cos. £ cos. «,)?
- (cos. « cos. ¥, — cos. ¥ cos. «,)?

- (cos. g cos. v, — cos. v cos. 8,)3. (195)
L ]

187. Corollary. If the line is parallel to the plane, we
have

sin. =0 = cos. « cos. @, cos.pcos.8, 4 cos.ycos.y,. (196)

138. Corollary. If the line is perpendicular to the plane,
we have

e=a,, B=Py, Y=7,-
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139. Problem. 'To find the equation of a plane,
which passes through a given point.

Solution. Let «, 8, ¥ be the angles which the perpen-
dicular to the plane makes with the axes, and let 2/, y/, z’ be
the codrdinates of the point, and p the perpendicular let fall
upon the plane from the origin.

The equation of the plane is

cos.a.z-4cos.f.y4cos.v.2=p,
and since the point is in this plane, its codrdinates satisfy the
equations of the plane, and we have

'cos.u.z’-{-cos.p.y’-l-ccs.‘y.z’:p;
and if the value of p thus obtained is substituted in the
equation of the plane, it gives
cos. & (2 —z') - cos. 8 (y —y’) + cos. v (z—2') =0, (197)
in which «, 8, y are arbitrary.
140. Corollary. The distance of this plane from another

plane parallel to it, and which passes at the distance p, from
the origin, is

Pp—p,=cos.a.z' 4cos. 8.y ~+cos.y.z —p,, (198)
which is therefore the length of the perpendicular let
Jall from the point z', y', 2/, upon the plane, whose
equation is

cos.a.z-4cos. B.y4cos.y.z=p,.
141, ExamrrLes iNvorLvixe Linear Leci.

1. To find the locus of all the points so situated in a plane,
that m times the distance of either of them from a given line,
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Examples of linear loci.

added to n times its distance from another given line, is
equal to a given length.

Solution. Let the first given line be the axis of , and let
the intersection of the two lines be the origin, and « the
angle which these lines make with each other. Then, if 2,y
are the coordinates of one of the points of the locus, we have

y = the distance from the first line,

and if p, is the distance from the second line, we have, by
(168),

Do = z 8in, @ — Y COS. @,
If, then, [ is the given length,
l=my+np,
l=my+nzsina—nycos. «
—n.sina.z4 (ncos.a —m)y=—1;

so that the required locus is, by art. 108, a straight line,
inclined to the first given line by the angle 8, such that

tan __ nsin. e
&L= ncos. e —m’
and which, by art. 109, passes at a distarice from the inter-
section of the two lines equal to

l l

A/ [n?sin2a+(ncos. a—m)?] =NV @ Fm—2mncos.a)

Scholium. The line thus obtained satisfies, throughout its
whole length, the algebraical conditions of the problem, but
not the intended conditions. For at those points, where the
value of y or that of p, is negative, I is no longer the absolute
sum of m y, and n p, but their difference.
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’

¢ _i‘.nmplos of linear loci,

Corollary. When m=n

we have
cos. a—1 —2 sin? § o
cotan. £ = —n e T 2sin. 3« cos. s =—tang g
£=90°+4}«,
and the distance from the point of intersection becomes
l l

nA/(2—2cos.a) 2nsinja

2. To find the locus of all the points so situated in a plane,
that the difference of the squares of the distances of either of
them from two given points in that plane is equal to a given
surface., N

Ans. If 2 a = the distance of the two given points apart,
and if the given surface is a parallelogram, whose base is a
and altitude b, the required locus is a straight line, drawn
perpendicular to the line joining the given points, and at a
distance equal to } b from the middle of this line.

3. To find the locus of all the points, from either of which
if perpendiculars are let fall upon given planes, and if the
first of these perpendiculars is multiplied by m, the second
by m,, the third by m,, &c., the sum of the products is a
given length [,

Ans. If

cos. « x4 cos.8 y4cos.y 2=p

cos. a, z + cos. 8, y 4 cos. vy, z =p,
&c., are the given planes, the required locus is a plane,
whose equation is
(m cos. a+4-m, cos. & ,4-&ec.)z4(m cos. f+m, cos. B, 4&ec.)y
+(mcos.y4m,cos.v, + &c.)z=1l4+mp+m,p, +&ec.
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or if the letter S. is used to denote the sum of all quantities
of the same kind, so that
S.m=m-+4m, 4 &ec.
the equation of this plane may be written
"S.mcos.a.z4 S.mcos. 8.y+ S.mcos.y.z=14 S.mp.

Scholium. This result is subject to limitations, precis.ely
similar to those of example 1.

4. To find the locus of all the points, whose distances
from several given points is such that if. the square of the
distance of either of them from the first given point is mul-
tiplied by m,, that of its distance from the second given
point by m,, &c., the sum of the products is a given surface
V. The quantities m,, m,, &c. are some of them to be
negative, and subject to the limitation that their sum is zero.

Ans. If z,,y,, 2, is the first given point, z,, y,, z, the
second one, &c., and if S is used as in the preceding exam-
ple, we have

S.m, =0,
and the required locus is the plane whose equation is
2zS.m,x, . +2yS.m, y,.+228.m, z,
= S.m, (o1 + 1+ 5). — V.
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Reduction of the equation of the second degree in a plane.

CHAPTER VIL

EQUATION OF THE SECOND DEGREE.

142. Tue general form of the equation of the second
degree in a plane is
As®24+Bzy+4Cy?+Dz+Ey+ M=0, (199)
and that of the equation in space is
"Az®+ Bzy+4 Cy’+ Dzz+ Eyz + F 22
+Hz+Iy+ Kz+4+ M=0. (200)

143. Problem. To reduce the general equation of
the second degree in a plane to its simplest form.

Solution.” 1. By substituting in (199) equations (18) and
(19) for transformation from one system of rectangular co-
ordinates to another, the origin being the same ; representing
the coefficients of z2, y2, z,, and y, by 4,, B,, D,, and
E,; and taking « of such a value that the coefficient of
z, y, may be zero; (199) becomes

4,23+ B,yi+ D,z, + E,y, + M=0. (201)
in which we have

A, = Acos?a - Bsin. acos. « - Csin2a (02)

B, = A sin? « — Bsin. « cos. o« 4 Ccos2s (203)

D, = Dcos. « 4 Esin. « (204)

E, = — Dsin. & 4 E cos. «, (205)
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and « satisfies the equation
2 (C — A) sin. a cos. « 4 B (cos.2 « —sin2 ¢) = 0. (206)

IL. If, now, we substitute the foriaulas (20) for transposing
the origin in (201); using z, ard y, for the new coor-
dinates; take the cobrdinates a and b of the new origin of
such values, that the coefficients of z, and y, may be zero;
and denote the sum of the terms which do not contain z, or
¥z by M, ; (201) becomes

4,23+ B, yi+ M, =0, (207)
in which
M,=A,a2+4+B, b2 +4D,a+E b+ M, (208)
and a and b satisfy the equations
24,a+D, =0 (209)
2B,b+E,=0. (210)

The form (207), to which the given equati'on is thus re-

duced, is its simplest form.

144. Corollary. If we take L, L' such that
L=2Acos.a+4 Bsin. &« (211)
L'=2 C sin. « 4 Bcos. «, (212)
these values substituted in (206), and the double of
(202) give ) :
%A, = Lcos.a+ L'sin. a (213)
0—=L'cos. « — L sin, «, (214)
The product of (213) by cos. «, diminished by that of
(214) by sin. &, reduced by means of the equation
' sinfa4-cosfa=1 (215)
10
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is, by (211),
© 24, cos.a =L=2Acos. « 4 Bsin. a, (216)
or 2 (4, — A)cos. « — Bsin. & = 0. (217) l
The product of (213) by sin. & added to that of (214) by |
cos. & is, by (215) and (212), ’
%A, sina=L'=2Csin.a 4 Bcos.a (218) «
2(4,—0) sm.x—Bcos.a:O. (219) {

The product of (217) by 2 (A4, — C) added to that of
(%19) by B is, when divided by cos. «,
€

4(A4,— A4)(4, —C)— B2 =0, (220)
from which equation the value of 4, may be deter;‘ to
mined, that is, if we put X instead of A*, A, is a roo
of the quadratic equation |

4(X—4)(X—C)—B2=0; (221}
the roots of which are ’ €

X=}(A+C)x 3o/ (BP 47 —24C4C?) |
=3+ O)xIN (B +(A—01]. (@)

aj

. 1

145. Corollary. If we take L, and L', such that :

L, =2 Asin.a — Bcos.a (223’

L', =2 C cos. a — Bsin. a, (224

we find that by changing A to C, C to 4 and B to—B, A,'!
(202) becomes B, (203), 206 remaiuns unchanged except in

the reversal of its sign, L (2L1) becomes L', (224) and L’|

i
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(212) becomes L, (223). But, by the same changes, (220)
becomes

4(B,—C) (B, — A)— B2 =0, (225)

so that B, is determined by precisely the same equation
with which 4, is determined in (220), and is a root of the
equation (221).

The sum of the roots of the equation (221) is by (222)
= (44 0), (226)

and the sum of (202) and (203) is reduced by mecans of the
equation

sin.2e¢ 4 cos.2a=1, (227)
to

A,4B,=A440; (228)

and, therefore,

I A, and B, are the two roots (222) of the equation
(221).

146. Corollary. The value of « may be obtained from
the equation (217), which gives
sin. 2(4,— A
tang. o = 200 .QB_—), (232)

or it may be obtained directly from (206).
If we substitute in (206)
sin. (2¢) = 2 sin. « cos. ¢,¢08.2 ¢ = c0s.2a —sin.2a, (233) .
it becomes
(C— A)sin.2a+ Bcos.2¢=0; (234)
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whence .
sin.2« __ B

cos.2a A—C’ (235)

tang. 2¢ =

147. Scholium. The values of A, and B, (222) are
always real as well as that of « (235), and those of D, and
E, (204) and (205), and therefore the transformation from
(199) to (201) is always possible. But the equations (209)
(210) are impossible if 4, and B, are both zero, while D,
and E, are not zero, or if either 4, or B, is zero, while
the corresponding value D, or E, is not zero; so that in
these cases the transformation from (201) to (207) is impos-
sible.

148. Scholium. The values of A, and B, cannot both
be zero, for, in this case, the quadratic terms would disap-
pear from (201), and (201) could not, then, by art. 100, be
a reduced form of a quadratic equation.

149. Scholium. If either 4, or B, were zero, the cor-
responding root of (221) would be zero; that is, this
equation would be satisfied by the value

X=0,
which reduces it to
44AC—B=0; (236)
and if we take A, for the root which vanishes, we have,
by (282),

A
tang, ¢ — — T- (237)

But
1 1

sec. «  A/(1 F tanle) ’

cos, & = (238)
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whence
B
cos. & = JE 189 (239)
. 24
sin. @ = cos. & tang. & — — VBEF L4 (R40)
DB—2AE
VS VUL a4
so that D, will also vanish, only when
DB =2 AE; (242)
and in this case (201) becomes
B,yi+ E,y,+M=0; (243)
which gives
_""Ex :]:V(E?-—-4B,M). (244)

yl— 2Bl I

so that the required locus is the combination of two lines
drawn parallel to the azis of z, at the distances from
it equal lo these two values of y,, unless these values
are imaginary or equal, in the former of which cases
there is no locus, and in the latler the given equation
is the square of the equation of the line.

150. Scholium. If the values of 4, B, C satisfy (236), so
that one of the roots of (221) is zero, and if this one is taken
for A, we have for the other root, by (222),

B,=3(A+ C)+ IN(AACH A2—24C+ ()
=34+ 0)+3A+0)=44C, (245)

10*



114 ANALYTICAL GEOMETRY. [B. L CH. VIL
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and (201) becomes

(A+C)y2+D,a,+E,y,+ M=0.  (246)

The .origin may now be transposed as in art. 143, the
coordinates a and & being taken of such values that the
coefficient of y, may be zero, and the sum of the terms
which do not contain z, or y, may be zero, and (246) is
thus reduced to

(44 C)y3+4 D, =, =0. (247)
The values of a and b satisfy the equations
2(A4+C)d+E, =0 (248)

(A4 C)®+D,a+E, b4+M=0, (249)

whence

b= — L1
2(440)
_—(A4 O P—E M
= D, ;
and if we put
4p:—:‘1£—-}:_0’ (250)

(R47) becomes
y2—4pz, =0,
or y2 =4paz,. (251)
151. Corollary. If the equation (221) is written in the
form
X2—(A4C)X+i(4AC—B)=0. (252)
The term } (4 A C — B?) is the product of the roots 4,
and B, of this equation.
A, and B, are therefore of the same sign, when
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4 AC is greater than B?; and they are of opposite
signs if 4 AC is less than B2.

1562. Corollary. When B2 is less than 4 AC, and, con-
sequently, 4, and B, are of the same sign, we will put

4, _1 B, _ 1

T, =4 E M, B

that sign being prefixed to M, which renders the first mem-

bers of these equations positive. If then (207) is divided
by &= M,, the quotient is

(253)

CoRNE ) R iy ) (254)
A3 ' B3 -

153. Scholium. If M, were zero, the equations (253)
would be absurd, but in this case equation (207) would be
A3+ B,y3=0, (255)
in which both the terms of the first member have the sign,
so that the equation can only be satisfied by the conditions
2, =0,y, =0, (256)
which represents the origin of the axes of z, and y,.
Hence, and by art. 143, the locus of the given equa-

tion is, in this case, the point whose coordinates are the
values of a and b (209) and (210).

154. Scholium. If M, were of the same sign with 4, and
B,, the upper sign would be used in equations (253) and
(254), the first member of (254) would then be the sum of
three positive quantities, and could not be equal to zero.

The given equation has, then, no locus, in this case.
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1565. Scholium. When M, is of the sign opposite to that
of A, and B, the lower sign must be used in equations
(253) and (254), and (254) becomes, by transposition and
omitting the numbers below the letters, which are no longer
necessary,

Aa +& r=1, (257)

which is of the same form with the equation (69) of the
ellipse.

156. Corollary. When B2 is greater than 4 AC, and,
consequently, A4, and B, are of opposite signs, we will put

4, 1 B, _ 1

=M, A3 EM, Bg
those signs being prefixed to M,, which render the first
members of these equations positive. If, then, (207) is
divided by 4= M,, the quotient is .

z3 Y3
43 Bz +1=0. (259)

(258)

157. Scholium. If M, were zero, the equations (258)
could not be used, but in this case equation (207) would be

4,23+ B, y3 =0,
which, multiplied by 4, gives

Af 23 =— A4, B, y3;
or, extracting the root, .
A,z =% a/(—4, B)) y,s (260)

the second member of which is real, because 4, and B, are
- of opposite signs.
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The locus of the given equation is then the combina-
tion of the two straight lines represented by the two
equations included in (260), each of whick passes
through the origin of z, and y,.

158. Scholium. If M, is not zero, equation (259) may,
by omitting the numbers below the letters and transposing
the terms, be written in one of the forms

x? y2

2
or %9— — % =1; . (262)

and the second of these equations becomes the same as the
first by changing z, y, 4, B into y, 2, B, A respectively.

Equation (261) is of the same form with equation
(85) of the hyperbola.

159. Theorem. The equation (257) is necessarily
that of an ellipse.

Proof. To prove this, it is only necessary to show that
each point of its locus is so situated, that the sum of its
distances from two fixed points is always of the same length,
By comparing the equation (257) with the solution of exam-
ple 2, art. 98, it is apparent that, since all the points of the
ellipse satisfy the equation (96,) they are in the required
locus ; so that if, conversely, all the points of the required
locus are in the ellipse, the two fixed points must be in the
axis of « at a distance ¢ from the origin such that

¢ = + 4/(42 — B3, (263)
and that the given length must be 2 A.
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Now the distancg r of the point 2, y from one of these
fixed points.is, by (23),

r= Iz — o +97]; (264)
but since y2 = B’—I—;}:—& and ¢2 = A2 — B2,

we have
r=a/(®—2caz+ 24 y3)
B2 22

=~/<z"—2f:a:—A’—-—l—ls—)
=~/(i“_;,_§f #—20xt 41)

c?

=~/<Z_§zn_2cz+ﬁﬂ)

==|:<"T°’—A>=:1:2:—Af- (265)

Now of the two signs 4 and —, that must be used which
gives the distance r positive. But we have

clAdandz < 4
for c= A/(42 — B?)
242
and z:V(A’—%%f—).
Hence ’
ca < A2orcx— A2<0; (266)
so that the lower sign must be used in (265), which gives
r=A4-%; (267)

4
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so that for the distance from one ;>f the fixed points we have

ro—4A _M’%:_Pﬁ, (268)
and for the distance from the other

ry=A+ _ﬂ*i;_—'li’); . (269)
whence r4r,=24; (270)

that is, all the points of the required locus belong to the
ellipse.

"160. Theorem. The equation (261) is necessarily
that of an hyperbola.

Proof. The proof is the same as in the preceding theo-
rem, except that the word difference is to be used for sum,
the sign of B2 is to be changed, and in the value of r (265)
the upper sign is to be used, where ¢ and z are both positive
or both negative. For, since the values of ¢ and z are

c=:1:~/(A’+B3)andz=:1:~/(A2+Asz: )

we have, when ¢ and z are of the same sign,

Az y2
cx=a/ (47 + B2).a/ <A2+ - )
cz>A%20rcx— A2>0;
whence r,=§;—A. (271)

But if ¢ and « have opposite signs the product ¢ z is nega-
tive, so that 4

r,= ‘%’ + 4, (272)
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whence r,—r,=24; (*73)

that is, all the points of the required locus belong to the
hyperbola.

161. Theorem. The equation (251) is necessarily
that of a parabola.

Proof. Omitting the numbers written below the letters,
we have only to show that the distance of each point of the
locus from that point of the axis of x, whose distance from
the origin is p, is equal to its distance from that line which
is drawn parallel to the axis of y, and at the distance — p
‘from it. Now since the distance of the point z, y from the
axis of y is z, its distance from the line parallel to it must be

e o 4
and its distance 7 from the fixed point must be
r=w[(z—p)? +y7]
=a(22—2px+p2t-4p2) =/ (22+2pz+p?)
& =gy, (274)
which is the same as the distance from the line; all the

points of the locus of equation (251) are then upon the same
parabola. '

162. Theorem. In different ellipses which have the
same transverse axis, the ordinates which correspond
to the same abscissa are proportional to the conjugate

' axes.

Proof. Let the common transverse axis be 2 A4, the dif-
ferent conjugate axes 2 B, 2 B,, &c., and let the ordinates,
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which correspond to the same abscissa z, be Y, ¥, &e. we
" have

A2 y? = B2 (A® —2?)
4231 = By (42 — =),
whence, by division, .
A2 y2: A3 y3 = B? (A2 — ..2) B2 (42 —23)
or y2:y3=B3: B2,

or extracting the square root
y:y,=B:B,=2%2B:2B,.

163. Corollary. Since the ellipse, whose conjugate
axis is equal to its transverse axis, is a circle, the
ordinate of an ellipse is to the corresponding ordinate
of the circle, described upon the transverse axis as a
diameter, as the conjugate axis is to the transverse
axis.

164. Corollary. In different ellipses which have the
same conjugate axis, the abscissas which correspond to
the same ordinate are proportional to the transversg
axes.

165. Corollary. 'The abscissa of an ellipse is to the
corresponding abscissa of the circle, described upon the
conjugate axis as a diameter, as the transverse axis is
to the conjugate axis.

166. Corollary. It may be proved in the same way
that in different hyperbolas, which have the same
transverse axis, the ordinates which correspond to the

same abscissa are proportional to the conjugate axes;
11
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and that in different hyperbolas, which have the same
conjugate axis, the abscissas, which correspond to the
same ordinate, are proportional to the transverse axes.

167. Corollary. Understanding, by an equilateral
hyperbola, one in which the axes are equal, the ordi-
nate of any hyperbola is to the corresponding ordinate
of the equilateral hyperbola, described upon its trans-
verse axis, as the conjugate axis is to the transverse
axis, and the abscissa of the hyperbola is to the corres-
ponding abscissa of the equilateral hyperbola, described
upon its conjugate axis, as the transverse axis is to the
conjugate axis.

168. The term abscissa is often applied, in regard
to the ellipse and hyperbola, to denote the distance of
the foot of the ordinate from either of the extremities
of the transverse axis.

Thus the abscissas of the point M (fig. 38) of the ellipse
are

- CP=AC—AP=A—=x
and CP=ACHAP=A+z=.
The abscissas of the point M (fig. 36) of the hyperbola

are
CP=AP—AC=1r—4

and ) CP—=AP+4 AC =2+ A.

169. Theorem. The squares of the ordinates in au
ellipse or hyperbola are proportional to the products of
the corresponding abscissas, the term abscissa being
used in the sense of the preceding article.
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Proof. 1. The product of the abscissas for the point
i &y of the ellipse is, by the preceding article,
(44 2) (4 —z) = 42 —a2;
and this product for the point 2/, y' is
A2 — g2, .
But, by equation (68), we have
A% y2 — A2 B2 — B2 g2
A2 y2 — A2 B2 — B33,
whence
A3y A2y = A3 B2 — B3z?: A? B? — B32?,
or, reducing to lower terms,
Y yd = A% —3?: A3 — 27,
which is the proposition to be proved.

IL. In the same way, for the hyperbola, the products of
the abscissas for the points z, y, and z/, y' are

1?2 — A2 and z2 — 43,
But, by equation (84),
AP =B AP
A2y? = Brz? — A2 B2,
whence YRiy? =22 — 4%2:2% — A%
170. Theorem. The squares of the ordinates in a

~ parabola are proportional to the corresponding abscis-
sas. ’
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Proof. For the point , y we have by (93)

=4 Puaz,
and for 2, y’ y3 =4 Pz,
whence ¥:y® =4 Pz:4 P2’ =2:72,

which is the proposition to be proved.

171. Problem. To find the magnitude of an angle,
which is inscribed iz a semiellipse.

Solution. Let CMC' (fig. 45) be the semiellipse, whose
semiaxes are A and B, let I be the required angle CMC',
o the angle MCX, g the angle MC'X, and 2/, y' the codrdi-
nates of the point M.

Because the line MC passes through the point 2/, y’ and
the point C, whose codrdinates are

y=0,0 = AC = A,
we have, by art. 121,

!
7 — 4
and, because the line MC’ passes through the point «/, y’
and the point C’, whose codrdinates are

tang. & = (275)

y= 0, z=— 4,
we have
y 276
g = g &)
hence
_ ‘.., __ tang « —tang. 8
tang. I = tang (¢« — B).= 1+ tang. « tang. #
_ 24y - o
T 23— A3y
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But, by (68),
AR
2 = B (B2—y7?);

and, therefore,
24B%y 2 AB?
@B - @By
172. Corollary. The product of (275) and (R76) gives by
the substitution of

yr =T (43— )

tang. I = — (1)

B2
YL (278)
which is the condition that must be satisfied by the two
angles « and g, in order that two lines CM and C'M, drawn
from the two points C and C’, may meet upon the curve.

tang. a . tang, g = —

Two such lines are called supplementary chords ; so
that (278) ts the condition which expresses that two
chords are supplementary.

173. Corollary. If equation (278) is compnred with (72),.
it is found to be identical with it; so that the condition that
two chords are supplementary is identical with the condition -
that two diameters are conjugate.

If then a given chord, as CM, is parallel to a given
diameter B,AB',, the chord C'M, supplementary to
CM, is parallel to the diameter C,AC',, conjugale to
B AB',.

174. Problem. To draw a diameter, whu:h 1S conju-
gale lo a given diameler.
11+
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Solution. Let B, AB'|, (fig. 45) be the given diameter.
Through C draw the chord CM parallel to B, AB’,; join
C'M, and the diameter C, AC',, which is drawn parallel to
C'M, is, by the preceding article, the required diameter.

175. Problem. To find the magnitude of the angle
formed by two chords drawn from a point of the hyper-
bola to the extremities of its transverse axis, which are
called supplementary chords.

Solution. The solution is the same as that of art. 177,
except in regard to the sign of B3, which being changed
gives for the required angle I

2 AB® .
@+ By

176. Corollary. The corollaries of arts. 172, 173,
and the construction of art. 174, may then be applied
to the hyperbola, and equation (88) is the condition that
two chords are supplementary.

tang. I = (279)

177. Theorem. 'The chords which are drawn parallel

to the conjugate of any diameter of an ellipse or hyper- -

bola are bisected by it.

Proof. For each value of z there are two equal values of
y, one positive the other negative, which are, in the ellipse,

B
y=t g VA=), -
and, in the hyperbola,
B
y==%=4 A (a2 — 42);




§ 180.] QUADRATIC LOCUS. 127

Parameter.

so that if for the value of z equal to AP (fig. 46), the line
" MPM is drawn parallel to the conjugate diameter, and if
PM, PM' are taken each equal to the absolute value of y,
the points M, M' are upon the curve, and the chord MM,
which joins these points, is bisected at P.

178. Corollary. The same proposition and proof
may be applied to the parabola, using the word axis
instead of diameter.

179. Corollary. 'The chords drawn perpendicular to
either axis of an ellipse or hyperbola, or to the trans-
verse axis of the parabola, are bisected by this axis.

180. Problem. 'To find the length of the chord
drawn through the focus of the ellipse, the hyperbola
or the parabola, perpendicular to the transverse axis;
this chord is called the parameter of the curve.

‘Solution. 1. Represent the parameter of the ellipse by
4p; and its half or the ordinate is 2 p, the corresponding
abscissa being, by example 3, art. 98,

c=a/ (A2 — B?) or ¢2 = 42 — B2,
Hence the equation of the ellipse gives
2A4p=Ba/(A2—c?)=DB?
B 2 B2
2?:7, 4p_ —I-.

II. In the same way in the hyperbola we should find the
same values of 2 p and 4 p.
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Tangent.
IIL. In the parabola whose equation is

y2=4p«x
the abscissa for the parameter is p; at which point
y2=4p%y=2p
parameter — 4 p.

181. Corollary. In the ellipse or hyperbola, we have
A:B=B:2p
or RA:2B=2B:4p;
so that the parameter is a third proportional to the
transverse and conjugate azes.

182. Theorem. The line drawn through either ex-
tremity of a diameter of the ellipse or hyperbola, parallel
to the conjugate diameter, is a tangent to the curve.

Proof. For the two values of y are equal to zero at
the point, so that neither of these lines has only one
point in common with the curve.

183. Problem. To draw a tangent to the ellipse or-
hyperbola at a given point of the curve.

Solution. Join the given point C, to the centre A.
Through the extremity C of the transverse axis draw the
chord CM' parallel to AC,. Join C'M’, and the line drawn
through C, parallel to C'M' is, by arts. 173 and 182, the
required tangent.

184. Scholium. The drawing of tangents to these
curves will be more fully discussed in a subsequent

chapter.
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185. Problem. To reduce the general equation of
the second degree in space to its simplest form.

Solution. 1. Substitute the equations (40, 41, 42) in
(00), making i
a=0,54=0,c=0;
so that the direction of the axes may be changed without
changing the origin.
If we represent the coefficients of 3, 3%, 2}, x, ¥,, z, by
4, = A cos2 a4 B cos. « cos. a’ 4 C cos.? o’
<+ D cos. a cos. o'’ - E cos. & cos. o'’ 4 Fcos2a”
B, = A cos3 84 Bcos. g cos. g/ 4 Ccos.2 g
~+ D cos. Bcos. g’ 4 E cos. g cos. p + Fcos.2 g
C, = Acos2y- Bcos.ycos. v+ C cos2 ¢
4 D cos. ycos. ¥' 4 E cos. y' cos. v/ =4 F cos? y"
H,= Hcos. a 4 I cos. &' + K cos. '
I, = H cos. g+ I cos. g'+4 K cos. g"
K, = H cos. y 4 I cos. ¥' 4 K cos. v,

and take «, 8, v, &/, 8/, 7', &", 8", ¥"" 1o reduce the coeffi-
cients of z, ), 7, %, ¥, % to zero; that is, to satisfy the
equations

0=2 A cos. acos. 42 C cos. o’ cos. p'42 F cos. «' cos. g
-+ B(cos. « cos. g'4-cos. o’ cos. #)4D(cos. & cos. 8
~-cos.a’cos.s)4 E(cos. &' cos. g'+-cos. ' cos.g') (280)

0 =2 A cos. acos. y+42 Ccos. &’ cos. Y42 Fcos. o'’ cos. 7"
~B(cos. & cos. y'~4-cos. a’ cos. y)4D(cos. a cos. v/
~+-cos.a’’cos.y)+ E(cos. o/ cos. y/'<-cos. ¢ cos. v') (281)
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0 =24 cos. 8 cos. y42C cos. g cos. y'+2F cos. g cos. y" -

~+ B (cos. A cos. ¥/ -} cos. £’ cos. y)- D (cos. gcos. v’
+-cos. £ cos.y)4-E(cos. £’ cos. 7" 4-cos. 8''cos. 7'), (382)
which, combined with the six equations (44 - 49), complete-

ly determine the values of these quantities, equation (200)
becomes

4,23+B,yi+-C,23+H,z,+1,y,+ K, z,+M=0. (283)

II. Substitute the equations (53-55) for changing. the
origin to the axes z,, y,, 25, and (2883) becomes

4,234+ B,y3+4C,23+(R4,a+ H))z,
+@B,b+1)y,+RC,c+ K,)z,+ M, =0, (284)
M,=A, a?4B,b34-C,c24-H,a+1,b+4+K,c+M,

and in which if a, , ¢ are taken to satisfy the equations

24,a+ H, =0 (285)
2B,b+1, =0 . (286)
2C,c+K, =0 (287)
(284) becomes
4,23+ B, y3+ C, 43 +=M,0. (288)

186. Corollary. If we take
L =2 Acos. a« 4 Bcos.a'4 Dcos. s’  '(289)

L'=2 C cos. @ 4 Becos. ® 4 Ecos. o  (290)
L'=2 F cos. o’ 4 D cos. « 4 E cos. . \'(29'1)

These values may be substituted in (280), (281), and the
double of the value of A4,, and they give
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2 A, = Lcos. a 4 L'cos. &' 4 L' cos. a”  (292)

0 = L cos. 8 4+ L’ cos. g'4 L' cos, p" (93)

0 = Lcos. y 4 L' cos. ¥/ 4 L" cos. v". (294)

If (292) is multiplied by cos. «, (293) by cos. g, and
(R94) by cos. v, the coefficient of L in the sum of the

products is by (47) unity, while those of L’and L” are by
(50) and (51) zero, so that this sum is by (289)

2.4, cos.a =L =2 Acos. a4 Bcos. &' 4 Dcos. a”, (295)
or 2(A, — A)cos.s — Bcos. a' — D cos. o’ = 0. (296)
If (292) is multiplied by cos. o, (293) by cos. #, and

(294) by cos. 7/, the sum of the products is, by (48, 50, 52,
290),

24, cos. o’ = L'=2 Ccos. ¢’ 4 Bcos.« 4 E cos. &, (207)
or 2(4,—C)cos. o' — Bcos.« — Ecos.«” =0. (298)
If (292) is multiplied by cos. ", (293) by cos. ", and

(294) by cos. 7", the sum of the products is, by (49, 51, 52,
291),

2 A, cos. 6= L"=2 F cos.a" 4 D cos. « 4 E cos.«, (299)
or 2(4; — F)cos. " — D cos. « — Ecos. o' = 0. (300)
If (296) is multiplied by 4 (4, — C) (4, — F) — E3,

(R98) by 2 B(A,— F)+ DE, (300) by 2 D (4, —C)
- BE, the sum of the products divided by 2 cos. « is

4(4,—A) (4,—0) (4,— F) — E*(4,— 4) .
— B*(4,— F)— D*(4, — C)— BDE = 0, (301)

from which the value of 4, may be found.
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187. Corollary. Since the value of B, is obtained from
that of A, by changing «, o', " into 8, £, 8", and since by
this same change and that of g, g, g" into v, ¥, 7"/, and also
by that of v, ¥, v" into &, o, a”, (280) is changed into
(282), and (281) into (280) ; it follows that these same
changes may be made in the equations from (295) to (301),
and (301) will become

4(B, —4) (B,—C) (B,— F)— E*(B, — 4)
— B*(B,— F)—I®»(B,—C)— BDE=0, (302)
from which B; may be fourrd.

188. Corollary. Since the value of C, is obtained from
that of B,, by making the same changes as in the preceding
article, and since, by these changes (282) is changed into
(281), and (280) into (282) ; it follows that these changes
may also be made in the equations obtained by the preced--
ing article, (302) will thus become

4(C,—4) (C, — ) (C,— F)— E*(C, — A)
— B?(C,— F) — I?(C, — C) — BDE = 0, (303)

from which C, may be found.

189. Corollary. Since the equations for determining
A,, B,,C, differ only in the letters which denote the
unknown quantities, and since these equations are of
the third degree, it is evident that A4,, B,, C, are the
three roots of the equation of the third degree.

4(X—A4) (X—C) (X—F)—E?(X—4)
—B(X—FH—D(X-—C)—BDE=0. (304)
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190. Scholium. Every equation of the third degree has at
least one real root, so that one at least of the three quantities
A,, B,, C, must be real. If we assume this one to be 4,,
the corresponding values of cos. «, cos. &/, cos. &', determined
by equations (296, 298, 300), and the 1st of art. 90, are also
real ; so that equations (280) and (281) are satisfied without
assigning any values to 8, &, 8", v, v, v". If (282) is not
also satisfied, let its second member be represented by D,
and equation (200), instead of being reduced to the form
(283), will become

4,234+ B,9i+Ci 23+ D, y, 7,
+H =z, +1Ly,+K 2z, +M=0
If now the same transformation is effected upon this equa-
tion, so as to transform it to the axes of z,, ¥, z,, the equa-
tion for determining 4,, B,, C, would be obtained from
(304), by changing 4, B, C, D, E, Fiato 4,,0, B,,0,D,,
C,, (304) thus becomes
4(X—4,)(X—B,)(X—C,)— D{(X —4,)=0, (305)
the roots of which are
. X=4,, .
and X=3%(B,+C,)£4#/[Di+(B,—C,)7] (306)
which are all real, so that the given equation can always be

transformed to the form (283), and all the roots of (304) will
be real.

191, Scholium. If either A4,, B,, or C, is zero, one of
the equations (285-287) is impossible, unless the corres-
ponding value of H,, I,, or K, is zero, and in this case the
second transformation of § 185 is impossible.

192. Scholium. The three roots 4,, B,, C, cannot all be
- 12
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zero at the same time; for in this case (283) would be linear, -

and would not be a reduced form of a quadratic equation.

193. Scholium. If A, and H, are both zero, the values
of b and c can be taken to satisfy equations (286) and (287),
and (2883) is then reduced to

B,yi4C 22+ M, =0 (307)

194. Scholium. If A, is zero and H, is not so, b and ¢

can satisfy equations (236) and (287), and a can be taken to

satisfy the equation
M, =0,
so that (288) is then reduced to
B,y +C 23+ H z,=0. (308)
195. Scholium. If A, and B, are zero, ccan‘ be taken to

satisfy equation (287), and if either H, or I, is not zero,
a or b can be taken to satisfy the equation

M, =0,
0 that (283) is then reduced to
C,d+Hozr 41y, =0 (309)
But if both H, and I, are also zero, (283) becomes
C,23+4 M, =0. (310)

196. Scholium. If the values of A,, B,, C,,and M, have
all the same sign, (288) is impossible, and there is no locus.

|
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197. Corollary. If A,, B,, C, have all the same sign,
which is the reverse of M, let 4,, By, C, be so taken, that

1 A, 1 B, 1 c (@11)

— T e T e ——— _.-:_._1—
A2 M.’B:T M, C2 M
and the quotient of (288), divided by — M, is
Lo L B
A2 + mtao 1=0. (312)

198. Corollary. If two of the quantities 4,, B,, C,
have the same sign with M, while the other one, which we
will assume to be 4, has the reverse sign, we will take

1 A4, 1 B, 1 __C,

PR A b AT s ‘AN
and the quotient of (288), divided by — M, is
i B U S} (314)

427 Bz C2

199. Corollary. If of the quantities 4,, B,, C,, one,
namely C,, has the same sign with M,, while the other two
have the reverse sign, we will take

1 - 4, 1 B, 1 _ ¢

=" w s naTy 9
and the quotient of (288), divided by — M, is
' z2 y3 23
74_‘%,-{_-3%——0—%—1:0. (316)

200. Corollary. The valuesof 2 4,, 2 B,;,2 C, are
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called the azes of the surface in either of the three last
articles, so that the three different values of

v(:i:—l%-), )

which are found from equation (304), are the semi-
azes.

201. Scholium. If M, is zero, the equations (311),
(313), and (315) are impossible, but in this case (288)
becomes

4,234+ B, i+ C, 22 =0. (317)

202. Scholium. If A,, B,, and C, have all the same
sign, (317) is only satisfied by the values )
2, =0, y,=0, z,=0, (318)
so that the origin of z,, y;, 2, is in this case the re-

quired locus.

203. Corollary. If of the three quantities, 4,, B;, C,,
one, as C,, is negative, while the other two are positive, we
will take

1 1
4,= A—g, B, = B—%, —C = 0—3, (319)
and (317) becomes
TN
Bt E—a=" (320)

204. The form of a surface is best investigated by
examining the character of its curved sections, which
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are made by different planes. The farther investiga-
tion of the surfaces, represented by quadratic equations,
will, therefore, be reserved for Chapter IX.

205. ExAMPLES INVOLVING PLANE QUADRATIC Locr.
e

I. To find the locus of all the points in a plane, which
are so situated with regard to given points in that plane,
that if the square of the distance of each point from the
first given point is multiplied by m’, the square of its dis-
tance from the second given point by m”, &c., the sum of
the products is equal to a given surface V.

Solution. Let the given points be, respectively, #/, y'3
z', y', &ec.

The distances of the point x, y from these points is given
by equation (23), and we have, by the conditions of the
problem and using S, as in art. 141,

S.m(x—z)24+S.m(y—y2=",
or
S.m.224S.m'. 2 —2S.mz.z2—28.m'y'.y
+8.m'(z24y2)— V=0.
This equation is already of the form (201), and may be
reduced to the form (207) by making
__S.a __S.m'y
CETEw o "T S
—[(S.m'z")2 4 (Sm'. y')?]
M, =

S.m!

+ 5. @+ y7) — T
12¢
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We have then for the axes, by (253),
—M
42 =W §o =B

so that the locus is a circle, the coordinates of whose centre
are — a and — b, and whose radius is A,.

Corollary. — M, and S.m’ must be both positive or
both negative.

2. To find the locus of all the points in a plane, which are
so situated with regard to given lines in the plane, that if
the square of the distance of each point from the first given
line is multiplied by m,, the square of its distance from the
second line by m,, &c., the sum of the products is equal to
a given surface V.

Solution. Let the given lines be respectively

sin.e, £ —cos. &, y = —p,

sin, @, £ — cos. @, y = — p,, &e.
The distances of the point z, y of the locus from these
lines is given by equation (170), and give, by the conditions
of the problem, and using S as before,

S.m,(sin.a; .z2—cos.e, .y+p,2=17,

which, developed and compared with equations (199~256),
give 4, and B, as the roots of the equation
4 X2—4 S.m\ X4-4 S.m;sin.2 a, Sm, c0s.2«;—(Sm, sin.2«,)2=0,
and to find =,
S.m,sin.2a,
S.m,cos.2a,’

and the values of a, b, M, may be found by equations (208-210).

tan. 2 « —
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3. To find the locus of the centres of all the circles which
pass through a given point, and are tangent to a given line.

Ans. A parabola of which the given point is the focus,
and the given line the directrix.

4. To find the locus of the centres of all the circles,
which are tangent to two given circles. .

Ans. When the locus is entirely contained within the
given circles, it is an ellipse of which the foci are the two
given centres, and the transverse axis is the difference of the
two given radii, if both the contacts are internal; but the
transverse axis is the sum of the radii if one of the contacts
is internal while the other is external. Otherwise, it is an
hyperbola, of which the foci are the two given centres, and
the transverse axis the difference of the two given radii, if
the contacts are both external or both internal, and their
sum, if one of the contacts is external and the other internal ;
and it may be remarked, that the contact with either of the
given circles is external upon one branch of the hyperbola,
and internal upon the other.
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CHAPTER VIIIL

SIMILAR CURVES.

206. Definition. 'T'wo curves are said to be similar
when they can be referred to two such systems of
rectangular codrdinates, that if the abscissas are taken
in a given ratio, the ordinates are in the same ratio.

207. Corollary. If the given ratio is m : n, and if the co-
ordinates of the first curve are z, y, the corresponding ones
of the second curve must be

nT ny.

'm—5 ’; H
so that if these values are substituted for the codrdinates in
the equation of the second curve, the equation obtained
must be that of the first curve.

208. Theorem. Two ellipses or two hyperbolas are
similar, if the ratios of their axes are equal.
Proof. 1. Let the semiaxes of the two ellipses be 4, B
and 4’, B', we have, by hypothesis,
A:A'=B: B,
and the equations of these ellipses are (68),
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and if, in the second equation, we take the codrdinates in the
. . . A
ratio equal to that of the axes, that is, substitute for x, Tz s

)/ 1
and for y, —1% = —‘%; it becomes identical with the first

equation.

II. The same reasoning may be applied to the hyperbola ;
but it must be observed, that the ratios of the transverse
axes must be equal to that of the conjugate axes in the two
hyperbolas; and the theorem must not be applied to the
case in which the ratio of the conjugate axis of the first
curve to the transverse axis of the second is equal to that
of the transverse axis of the first curve to the conjugate axis
of the second curve.

209. Theorem. The radii vectores, which are drawn
in the same direction to two similar curves, are in the
same ratio with the corresponding codrdinates.

Proof. If x and y are the coordinates for the first curve,
and 2’ and y’ the coordinates for the second curve, taken as
in art. 207, we have
T z -
vy
so that, by (11), the angle ¢ — «, which determines the di-
rection of the radius vector drawn to the point z, y, is equal
to the angle which determines the direction of the radius
vector drawn to the point z/, y’. These radii vectores must,
therefore, coincide in direction, and we have for their values

13

r=uxsec. (p —«), r' =2’ sec. (p—=)
r_*_3

rl— z '—'y/’

L4
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210. Similar surfaces may be defined in the same
way as similar curves, and are subject to propositions
precisely like those of arts. 207 and 209.

Similar solids are solids bounded by similar sur-
faces.




§ 211.] PLANE SECTION OF SURFACES. 143

Section of surface by a plane.

CHAPTER 1IX.

PLANE SECTIONS OF SURFACES.

211. Problem. To find the section of a surface made
by a plane.

Solution. 1. If the cutting plane is one of the codrdinate
planes, that of = y, for instance, the points of the section
are all of thém in this plane, and we have, therefore, for all
these points,

z2=0, }
so that we have only to substitute zero for z in the
equation of the surface to find the equation of the inter-
section foith the plane of z y. In the same way by
putting
) z=0

the intersection with the plane of y 2z is found, and the
intersection with the plane of z z is found by putting

y=0.

II. For any other plane the intersection is found by
transforming the coordinates of the surface, to a system of
which the cutting plane is one of the codrdinate planes. If
the cutting plane is supposed to be the plane of z, y,, we
shall be oliged to put

2, =0,
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after substituting the equations (40-42) for the transforma-
tion of codrdinates. But a useless operation is avoided by
putting, at once,

’ 2, =0
in the equations for transformation.

The required equation is, then, obtained by substitut-
ing in the given equation of the surface the equations

z=a-x,cos. a4y, cos.p (321)
y =b-+ =z, cos.a’ + y, cos. £ (322)
z =c-z,cos.a’ 4y, cos. g". (323)

In which a, b, c are the codrdinates of a point of the
cutting plane which is the origin of z, and y,, «, &/, ",
and 8, @/, g" are the angles which the two axesof z, ¥,
make with the given axes.

212. Corollary. 1If the cutting plane is parallel to to the
plane of z y, the axes of z, and y, may be taken parallel
to the axes of x and y, and the origin may be taken in the
axis of z, so that the equations (321-323) become

T=r,Yy =Y,z =C (324)

If the cutting plane is parallel to the plane of z z, we have
in the same way ¢

z=z,y=2"0,z2=1z; (325)
and if it is parallel to the plane of y z, we have
T= Y =Y. %=1, - (326)

218. Corollary. If the cutting plane passes through the
axis of z, the axis of z may be taken for that of x,,and the
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origin may remain as it was. In this case equations
(321-323) become

z=u=x,, y=y, cos. B, z=—y, sin. g (327)

If the cutting plane passes through the axis of y, and if
the axis of y is taken for that of z,, (321-323) become

r=—1y,,C088, y==1,, 2=y, sin. A, (328)

If the cutting plane passes through the axis of z, and if
the axis of z taken for that of z , (321-323) become

r=—y,c08 8, y=y,sin. 8, z==,. (329)
214. Problem. To find the section of a surface of the
second degree made by a plane.

Solution. The equation (200) is the most general equation
of the surface of a second degree. It may then be regarded
as the equation of the surface referred to codrdinate planes,
of which the plane z y4s the cutting plane. By putting

2=0,
we have then for the required section
A2+ Bzy+ Cy>+ Hz+Iy+4+ M=0. (330)
From the discussion (201-262), it follows that if
B1—4AC<0
the section, if there is one, is a point or an ellipse. But if
B*—4AC=0 '
it is a parabola, a straight line, or a combination of two
parallel straight lines. But if
"B*—4AC>0
it is an hyperbola, or a combination of two straight lines.
13
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215. Corollary. For the section which is parallel to the
plane of z y at the distance ¢, we have by (324) putting

H =Dc+H (331)
I,=Ec+1I (332)
M,=Fc+4+Kc+M (333)

A23+Bz,y,+Cyi+H,z,4+1,y,+M,=0; (334)
80 that this section 13 in the same class with that made
by the parallel plane of z y, so far as it depends upon
the value of B*— 4 AC.

216. The values of 4, and B, depend by (220, 231)
only upon those of 4, B, C, so that the ratios of the semi-
axes 4, and B, must also depend only upon 4, B, C, and
be the same for all the parallel sections of the quadratic
locus.

Hence, if one of the sections of a quadratic locus is
an ellipse, all the parallel sections must be similar
ellipses, except those which are points.

If one of the sections is an hyperbola, all the curved
parallel sections are hyperbolas; and all those sections
are similar whose greater axes are transverse; and also
those are similar whose greater axes are conjugate.

If one of the sections is a parabola, all the curved
sections which are parallel to it are parabolas.

In all the parallel sections the axes are parallel.

217. Problem. To investigate the form of the sur-
face of equation (312).

Solution. The numbers below the letters were only used
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Ellipsoid.

to distinguish the different axes of cobrdinates; they may,
then, be omitted, and (812) may be written ‘

A2+m+——1_o (335)

I. The equation of the section parallel to the plane of z_y
at the distance ¢ from the origin is

+ + ——1=0, (336)
which is impossxble when
3> (3
it is the point
2, =0,y, =0
when c= C,

and it is the ellipse whose semiaxes are

ol ~/(C2—0"’), V(CEB—¢) (337)
when L C

II. The sections parallel to the planes of z z and y z are
easily found in the same way, and it is evident that the sur-
face is included by six planes, of which two are drawn
parallel to the plane of z y at the distances 4 C and — C,
two parallel to the plane of z z at the distances 4~ B and — B,
and two parallel to the plane of y z at the distances - 4 and
—A4.

IIl. The section made by any other plane must then be
limited, and must therefore be an ellipse or a point, so that
this surface is called that of an ellipsoid, whose semiaxes
are 4, B, C.

IV. The section made by a plane passing through the axis



148 ANALYTICAL GEOMETRY. [B. 1. cH. 1x.

Elipsoid.
of z,and inclined by an angle g’ to the axis of' y is, by (327,)

cos’p’ sin.2 g .
A9+( - >3/1—'1—0 (338)

It is, therefore, an ellipse, whose semiaxes are 4 and
l_v<0059p’ sin.%’)_ BC
" A/ (C3c0s.28'+4 Bsin.3p')
or if we substitute for cos.2 # its value, the second semiaxis is
BC
JVIOF B —C)snspr] (340)
The ellipsoid may, then, be considered as generated by the
revolution of an ellipse about the axis of z, the semiaxis of
the’ ellipse, which corresponds to the axis of #, remaining
constantly A, and the other axis changing from B to the
value (340).
The sections made by planes passing through the axes of
y and z may be found in the same way.

218. Corollary. If we have
B=C
the semiaxis (339) becomes equal to B, so that the
ellipse retains the same value of its second axis as well
as of its first, during its revolution; and the ellipsoid
is one of revolution. The sections made by planes
parallel to the plane of y z are, in this case, circles.

219. Corollary. If we have
A=B=2C
the revolving ellipse is a circle, and the surface is that
of a sphere.

»(339)

220. Problem. To investigate the form of the sur-
face of equation (314).
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Hyperboloid.

Solution. By omitting the numbers below the letters,
(314) may be written

—_—— e —1=0. (341)

I. The section, parallel to the plane of z y, at the dis-
tance ¢ from the origin is, by (253, 261), an hyperbola, of
which the semitransverse axis, which is parallel to the axis
of z,is

%V(c’«}-C“),and the semiconjugate is g A (4-C%).(342)

II. The section, parallel to the plane of z z, at the dis-
tance b from the origin, is an hyperbola, of which the
éemitransverse axis is parallel to the axis of z, and is

B ~/ (4*4-B%),and the semxconjugate is = ;\/ (b*+B%). (343)

III. The equation of the section, parallel to the plane of
y 2, at the distance a from the origin, is, by reversing the
signs,

a’
L+a+1—S=0; (344)

so that when a* < A?

the section is imaginary, that is, none of the surface is con-
tained between the two planes drawn parallel to the plane of
y z, at the distances 4 4 and — A ; so that the surface con-
sists of two entirely distinct branches, similar to the two
branches of an hyperbola.

When a®= A2
the section is reduced to the point .
y=0, 2=0;
when a?™> A3,

13*
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Hyperboloid of two branches.

the section is an ellipse, of which the two semiaxes are
PV @—ayand Sa@— 7). (345)

IV. The section made by any plane, which cuts both
branches, is evidently an hyperbola, for no other curve of
the second degree is composed of two branches. The sec-
tion made by a plane, which cuts entirely across either
branch without cutting the other, is an ellipse ; for this is
the only curve of the second degree, which returns into
itself, so as to enclose a space. The section made by a
plane, which cuts one branch without entirely cutting across
it, and without cutting the other branch, is a parabola ; for
this is the only endless curve of the second degree, which
consists of only a single branch. This surface is called that
of an hyperboloid of two branches.

V. The equation of the section, made by a plane passing
through the axis of # and inclined, by an angle £, to the
axis of y is, by (327),

z3 cos.? g/ sin.2 g/

Iﬂ"‘( B: C?
It is, therefere, an hyperbola, whose semitransverse axis,
directed along the axis of x, is 4, and whose semiconjugate
axis is precisely that of (340). This hyperboloid may, then,
be regarded as generated by the revolution of an hyperbola
about the axis of z, the semitransverse axis remaining con-
stant, and the semiconjugate axis changing in such a way,
that its extremity describes an ellipse, whose scmiaxes are
B and C.

VI. The section, made by a plane passing through the axis
of y,and inclined by an angle 8 to the axis of z, is, by (328),

(cos.2 B sin.2 g8 ) , &2

)yg-—1=o. (346)

A2 cz )Y1i— B

—1=0. (347)
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Hyperboloid of two branches.

When, therefore,

cos.28 sin2g
= o >0

or tang.2 8 < % : (348)

the section is an hyperbola, of which the semitransverse
axis is

T (Cioos 2;1_?_ Fsindp)’ and the scmiconjugate is B. (349)
When tang.2 g = %

the section is impossible, but every parallel section is a
parabola. '

When tang.2 8> %

the section is impossible, but there are parallel sections
which are ellipses.

In the same way and with like results, the sections made
by planes passing through the axis of z may be found.

221. Corollary. 1f we have
B=C
the semiaxis (340) becomes equal to B, so that the re-
volving hyperbola retains the same value of its second
axis as at first, and the hyperboloid is one of revolution
about the transverse axis. The sections made by

planes parallel to the plane of y z are, in this case,
circles.

222, Problem. 'To investigate the form of the sur-
face of equation (316).
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Hyperboloid.

Solution. By omitting the numbers below the let{ers,
(316) may be written
z2 y? Rt

I. The section, made by a plane parallel to the plane of
z y, at the distance c, is an ellipse, of which the semiaxes
are

V(@40 amd D/ 4C2).  (351)

II. The section, made by a plane parallel to the plane of
z 2z, at the distance 3, is when

b2 < B2
an hyperbola, of which the transverse semiaxis is parallel to

the axis of z, and is

%A\/(B’—Iﬂ), and the semiconjugate is %»\/(B’—b’). (352)

When ‘ b2 = B2
the section is the combination of the two straight lines
z z
=3¢ (353)
When b2> B2

the section is an hyperbola, whose semitransverse axis is
parallel to the axis of z, and is

%V(P—B‘/’), the semiconjugate is % N (32— B2). (354)

In the same way and with like results, the sections made -
by a plane parallel to that of y 2 may be found.
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Hyperboloid.

III. The curved section made by any other plane is an
hyperbola when it consists of two branches, an ellipse when
it is limited, and a parabola when it consists of one infinite
branch.

‘IV. The equation of the section, made by a plane passing
through the axis of = and inclined, by an angle g, to the
axis of ¥, is

x2 cos.2p’  sin2 g o
_._A; + ( BTG ) y2—1 =0. (355)
. 2 pl h 2 g
When - >0
24
or tang.2 8 <B-_j (356)

this section is that of an ellipse, whose semiaxes are

- BC

. b)
4 and /(C?cos.? g'— B?sin.2 #') (357)
c?
When tang.2 g/ = - (358)
the section is reduced to the two parallel straight lines
A z, =4 A

drawn parallel to the axis of y,. Any parallel section to
this one is a parabola.

When tang.2 g/>> %2—9 _ (359)

the section is an hyperbola, whose transverse semiaxis is in
the direction of the axis of z, and is
BC -

A, the semiconjugate is V(B sni ¥ — CFoos2F)’ (360)
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Hyperboloid of revolution.

In the same way and with like results, the sections made
by a plane passing through the axis of y may be found.

V. The equation of the section, made by a plane passing
through the axis of z, and inclined, by an angle 8 to the axis
of z, is by (329)

cos3p sin2 8 z3
(S +50 ) n—F—1=0 (1)

This section is, therefore, an hyperbola, whose semiconju-

gate axis, directed according to the axis of z or z,, is

AB
A/ (B%co0s.284A%in.2g)’ (362)
. - AB
or the semitransverse axis is VB @—F)sini] (363)
This hyperboloid may, then, be regarded as generated by
the revolution of an hyperbola about its conjugate axis C,
the extremity of the transverse axis describing the ellipse,
whose semiaxes are A and B.

223. Corollary. If we have
A=2RB
the semiaxis (363) becomes equal to A4, so that the
revolving hyperbola retains its original axes, and the
surface is that of an hyperboloid of revolution. The
sections made in this case, by a plane parallel to the
plane of z y, are circles.

C, while the semitransverse is

224. Problem. To investigate the form of the surface
of equation (320).
Solution. By omitting the numbers below the letters, (320)
may be written
2

x? Y2
Tt E—w=o (364)
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Cone.

I. The section made by a plane parallel to the plane of

z y, at the distance c, is an ellipse, of which the semiaxes are
Ac Be

when the distance ¢ is zero, this ellipse is a point.

IL. The section made by a plane parallel to the plane of
x z, at the distance b, is an hyperbola, of which the semi.
transverse axis, parallel to the axis of z, is

Cbh - Ad
-5 and the semiconjugate 5 (366)
This section becomes the combination of the two straight
lines
Cx=d Az, (367)
when b is zero.

III. The section, made by a plane parallel to the plane of
¥ z, at the distance a, is an hyperbola, of which the semi-
transverse axis, parallel to the axis of z, is

%9— and the semiconjugate %. (368)

This section becomes the combination of the two straight
lines

Cy= Bz, (369)
when aq is zero.

IV. The equation of the section, made by a plane passing
through the axis of z, and inclined by an angle g’ to the
axis of y, is

z2 cos. 2 g sin. 2 g/
2+ (FE-T) =0 @)
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Cone.

When the condition (856) is fulfilled, this section is re-
duced to the point

z,=0,y,=0.
But every section parallel to this one is an ellipse.

When the condition (538) is fulfilled, the section is re-
duced to the straight line

z, =0;

that is, to the axis of y, ; and every section parallel to this
is a parabola.

When the condition (359) is fulfilled, the section is the
combination of the two straight lines

z, sin2 g  cos?p
B=av(TEE -5 ) e

and every section parallel to this is an hyperbola.

In the same way and with like results, the sections made
by a plane passing through the axis of y may be found.

V. The equation of the section, made by a plane passing
through the axis of z, and inclined by an angle g to the axis
of z, is by (329)

cos2 g sin.2 g 2 z2
Y1

so that this section is the combination of the two straight
lines

> cos2 g sin.2 g
2=Vt + ) v M)

which are inclined at equal angles on opposite sides of the
axis of z,. :
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Conic sections.

This surface may then be regarded as generated by a
straight line which passes through the origin, and revolves
about the axis of z, inclined to this axis by a variable angle,
whose tangent is

AB .
Ca/(B2cos.2 g 4 A2sin.2 g)’

the surface is therefore that of a cone.

(374)

225. Corollary. If A and B are equal, the axes
(365) are equal, and the section parallel to zy is a
circle; and the tangent (374) of the angle which the
revolving lines makes with the axis of z, becomes

A

6}
so that its value is constant, and the cone is a right
cone.

226. All the curves of the second degree may then
be obtained by cutting a right cone by different planes;
these curves are therefore called conic sections.

From examining section 1v. of art. 224, it appears
that the section of a right cone is an ellipse, when the
plane cuts completely across the cone, so as not to
meet the cone produced above the vertex; it is a para-
bola, when the plane is parallel to one of the extreme
sides of the cone, so as not to meet it, nor the cone
produced above the vertex; it is an hyperbola,*when
the plane cuts the cone both above and below the
vertex.

227. Problem. To investigate the form of the surface
of equation (307). ) :
14
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Paraboloid.

Solution. By omitting the numbers below the letters,
(307) becomes

By? 4 Cz2 4 M=0. (375)

The equation of the section made by a plane parallel to
the plane of yz is, then, the same with (8375), so that the
surface must be a cylinder, of which (375) is the equation
of the base.

228. Problem. 'To investigate the form of the sur-
face of equation (308).

Solution. By omitting the numbers below the letters,
(308) becomes

By24C224+Hx=0. - (376)

1. The section made by a plane parallel to the plane of
y z is an ellipse or an hyperbola, and those made by planes
parallel to the planes of z y and x z are parabolas.

II. The equation of the section, made by a plane passing
through the axis of #, and inclined by an angle g’ to the axis
of y,is

(Bcos.2 8+ Csin2g)y2 4+ He, =0,  (377)

so that it is a parabola, of which the vertex is the origin, and

the parameter
»

dp— H
P=""TBecosz B+ Csin.2 A
The surface may then be considered as generated by the

revolution of a parabola, with a variable parameter, about
the axis of ;. It is, hence, called a paraboloid.

(378)
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Cylinder.

229. Corollary. If B and C arc equal, (378) becomes

H
— 5
so that the parameter is no longer variable, and the
paraboloid is a paraboloid of revolution.

4p= (379)

230. Problem. 'To investigate the form of the sur-
face of equation (309).

Solution. By omitting the numbers below the letters,
(309) becomes )

Cz24+ Hzx+Iy=0. (380)

Before proceeding to investigate the sections of the sur-

face, we may refer it to other axcs, which have the same

origin, of which the -axis of z, is the same with the axis

of z, and the plane of z, y, the same with the plane of z y.
[n this case, we have

a=b=c=0,
A =p=y=y=90,7"=0
—a, 8 =90°+a, &/ = a—90",
so that (40, 41, 42) become v

=1, cos. «a—y, sin. a (381)
" y—==z,sin.a4y, cos. « (382)
2=z, (383)

which being substituted give, by taking « to satisfy the con-
dition that the coefficient of y, is zero,

Cz3 4 (H cos. a4 Isin. a)z, =0, (384)
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Two planes.

in which & is determined by the equation

tang. « = é (385)

The equation of the section, which is made by a plane
parallel to the plane of z, z,, is now the same with (384) ;
that is, the section is a parabola, and the surface is that of a
cylinder, of which the base is a parabola.

231. Problem. To investigate the form of the sur-
face of equation (310).

Solution. When (310) is possible, it is cvidently the com-
bination of the two equations

ta= ko — (36)

1
each of which represents a plane parallel to the plane of
LT
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DIFFERENTIAL CALCULUS.

CHAPTER I

FUNCTIONS.

L. A variable is a quantity, which may continually
assume different values.

A constant is a quantity, which constantly retains
the same value.

Thus the axes of an ellipse or hyperbola are constants,
while the ordinates and abscissas are variables.

Constants are usually denoted by the first letters of the
alphabet, and variables by the last letters, but this notation
cannot always be retained.

2. When quantities are so connected together that
changes in the values of some of them affect the values
of the other, they are said to be functions of each other.
Any quantity is, then, a function of all the quantities
upon which its value depends; but it is usual to name
only the variables of which it is a function.

Functions are denoted by the letters f., f., F.,®.,¢.,
®. f's F'uy foy fis &c.; thus

Si(2),F.(2):0.(2),7.(2),8c.. f/(2)&c., oo (2)f1:(2) o fa-(2)s

&c. are functions of x.
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Independent variable. Construction of function.

f.(z,9), F.(2, y), &ec.
are functions of z and y.

3. When variables are functions of each other, some
of them can always be selected, to which, if particular
values are given, the corresponding values of all the
rest can be determined. The variables, which are thus
selected, are called the independent variables.

4. When a function is actually expressed in terms of
the quantities, upon which it depends, it is called an
explicit function.

But when the relations only are given, upon which
the function depends, the function is called an implicit
Junction.

Thus the roots of an equation are, before its solution,
implicit functions of its coefficients; but, after its solution,
they are explicit functions,

5. A function of a variable may be expressed geo-
metrically, by regarding it as the ordinate of a curve,
of which the variable is the abscissa. _

A function of two variables may be expressed geo-
metrically, by regarding it as one of the coérdinates of
a surface, of which the two variables are the other two
codrdinates.

A function is said to be constructed, geometrically,
when the curve or surface, which expresses it, is con-
structed.

The inspection of the curve or surface, which thus repre-
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Algebraic, logarithmic, trigonometric functions.

sents a function, is often of great assistance in obtaining a
clear idea of the function.

6. Algebraic functions are those which are formed
by addition, subtraction, multiplication, division, and
raising to given powers, whether integral or {ractional,
positive or negative.

An integral function is a polynomial, which contains
only positive integral powers of the variable; and a
rational fractional function is a fraction, whose nume-
rator and denominator are both integral functions.

Every other algebraic function is called irrational.

Thus

a4z, a—z,ax+4by,a4br+ cx? 4 &c.
are integral functions ;

ba+4¢ca?
LS L T

T a+b x4 cx?
are rational fractional functions ;
and A z, 23, &c.

are irrational functions.

7. Ezponential or logarithmic functions involve
variable exponents or logarithms of variables.

Thus, a%, log. z, &c. are logarithmic or exponential func-
tions.

8. Trigonometric or circular functions involve trigo-
nometric operations.
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Compound, free, ﬁxe«i, linear functions.

Thus sin. z, tan. 7, &ec.

are trigonometric or circular functions.

9. Compound functions result from several succes-
sive operations.

Thus loé. sin. z is the logarithm of the sine of .

10. When functions are so related, that the com-
pound function formed from their combination is inde-
pendent of the order in which the functional operations
are performed, the functions are said to be relatively
free ; otherwise they are fized. .

Thus if the two functions ¢ and f are so related that the
compound function ¢.f.x is equal to the compound function
f.¢.z, these two functions are relatively free, and this con-
dition is algebraically

e.fiz=f.0.z; (387)
or if we omit the variable, which is often done in functional
expressions which involve but one variable, (387) becomes

¢.f.=f.9 (388)

11. A linear function is one, which leads to the
same result, whether the operation indicated by it is
performed upon the whole of a polynomial at once, or
upon the different terms of it successively.

Such a function is indicated by the equation
flxy)=f.axf.y; (389)

and the product m r, that is, m times the variable, is a simple
example of such a function.
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Repeated functions.

12. Theorem. The compounds of linear functions
are linear.

Proof. Let f and f' be two linear functions, we are to
prove that

RRNCE S)EF RV ff '7 (390)
Now we have from definition

fllexy)=flaxf'y, (391)
and therefore '

f S exy)=f.(f/exf'y)= ff’zd:ff Y (392)
as we wished to prove.

13. When the same operation is successively repeat-
ed, the result is called the second, third, &-c. function.

Thus the log. log. z is the second logarithm ef 2.

These repeated functions may be expressed by a notation
similar to that of powers; thus
log.2 z = log. log. z
log.3 z = log. log.2 z — log. log. log. 7, &ec.
flz=f.f.x
fle=f.fle=f.f.f.z, &
Care must be taken not to confound f* (z) with [f(z)]",
or with f(z)", which have widely different significations;
thus, [f(z)]" is the nth power of the function of z, f(z)"is

the function of the nth power of z, while f* (z) is the nth
function of .

The common use of a different notation in the case of trigo-
nometric functions must, however, cause them to he excepted
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Zero function.

from these remarks ; thus, sin.* 2 and sin. z" do either of them
denote the nth power of sin.z. Whenever we extend this
notation to trigonometric functions, we shall indicate it by en-
closing the exponent within brackets; thus we shall denote
the second, third, &c. sine of z by sin.[2] z, sin.[3] 2, &c.

14. By a process of reasoning, precisely similar to
that used in the case of powers, it may be proved that
we must have

frfre=frtrx; (393)

or, omitting the variable
frfr=frtn (394)

This equation may be adopted as applicable to all func-
tional exponents, whether positive or negative, entire or
fractional ; and the signification of the exponent, when not
positive and integral, must, in this case, be determined by
the aid of the equation. :

‘15. Problem: 'To determine the signification of a
function, of which the ezponent is zero.

Solution. Equation (393) becomes by making

m =0,
‘f.of."a:zf.”‘*"'z:f.":p; (895)
so that if we put )
fra=y |
we have fly=y; (396)

that is, the function whose exponent is zero is the vari-
able itself, and this function may be represenied by
unity.
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Negative and fractional functions.

16. Problem 'To determine the signification of a
function, of which the exponent is negative.

Solution. Equation (393) becomes, by making

m—=—n
forfre=fla=1; (397)
or if we put
fre=y,
we have
frry=s; (398)

that is, if two variables, x and y, are functions of each
other, whatever function y may be of z, x is the corres-
ponding negative function of y, or, as it is usually
called, the inverse function of y.

17. Confusion is likely to arise in the use of negative
cxponents, unless it is carefully observed that many
functions have, like roots, several different values corres-
ponding to the same value of the variable.

18. Problem. To determine the signification of a
function, of which the ezponent is fractional.
Solution. We have, from (394)
frfrfero =) =f"
in which n denotes the number of repetitions of f.™. If now

nl
n=mn, m—=—
n

f."‘" =f~

f"‘:f"%:f%,
5

1
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Functions calculated like factors.

that is, if m is a fraction, of which the denominator is
n and the numerator n/, the corresponding function is
one which, repeated n times, gives the n” repetition of
the original function f.

19. Theorem. When the different funciions of
which a compound function is composed are linear and
relatively free, they may be combined precisely as if
the letters which indicate them were factors instead of
functional expressions.

Proof. For the two equations (388) and (389), which
apply to this case, are the same in form as the two funda-
mental equations of addition and multiplication, upon which
all arithmetical and algebraical processes are founded.

20. Corollary. 'The repetitions of the compound func-

tions

S +Sio L+ S+ for &e. .
in which f, f,, f,, &c., are linear and relatively free, may
be effected by means of the binomial and polynomial theo-
rems. Thus

et = fotfy b P2 f2. 4 e, (399)
(Fot Fotfa V=Tt nf 1 f 2 f 4 Goc. (400)
+n(n l)f"_2f2 + &

21. The exponents of functions are so similar to the
exponents of powers, that they may be used in a simi-
lar way, and called functional logarithms; so that if
any function, as f., is assumed as a base, the functional
logarithm of any other function indicates the expo-
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Functional logarithms.

nent which the base must have to be equivalent to this
new. function.
Thus, if we denote functional logarithms by [f.log.],

and if fr=9. (401)
we have n=[f.log]¢.; . (402)

and it may be shown, as in the theory of logarithms, that

[f.log]¢.0./=[f.log]¢.+4[f.log]e.  (403)
[f.-log.]¢."=n[f.log.]e. _(404)

22. When a function has but one finite value cor-
responding to each value of its variable, included
between given limits, and varies by infinitely small
degrees for infinitely small changes in the value of its
variable between these limits, it is said to be continuous
between these limits. '

The curve which represents a continuous function is obvi-
ously a continuous curve.
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CHAPTER II.

INFINITESIMALS.

23. Theorem. Any power of an infinitesimal is in-
finitely smaller than any inferior power of the same

infinitesimal. .

Demonstration. Let i be the given infinitesimal, a the
exponent of the given power, and  the exponent of an in-
ferior power. We have, then, the ratio

AR i

=i 1;
that is, ¢* bears the same ratio to i’ that i*~* does to unity,
or 4* is infinitely smaller than °.

24. Definition. 1If a given infinitesimal is assumed
as a base or standard to which all others may be re-
ferred, any infinitesimal is said to be of the order a,
when it is infinitely less than any power of the base
inferior to the a® power, and infinitely greater than
any power of the base superior to the at* power.

25. Corollary. If A is a finite quantity, and ¢ the
infinitesimal which is assumed as the base, 4 i* must
be an infinitesimal of the at ®rder.

26. Corollary. If, in the preceding article, we make

a=0,
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we have

A=A = A;
so that a finite quantity is an infinitesimal of the order
zero.

27. Corollary. If, in art. 25, we make a negative, or
a=—a
we have
, A
Ai*=Ai Y === m;

so that infinitely great quantities may be regarded as
infinitesimals of negative orders ; that is, an infinitely
great quantity of the a® order is an infinitesimal of the
—a® order.

28. Theorem. Of two infinitesitnals of different or-
ders, that, which is of the inferior order is the infinitely
grealer.

Demonstration. Let I and J be the two infinitesimals of
the orders @ and & respectively, a being greater than b, and let
¢ be an any number between a and &, and let ¢ be the base.
We have, by the definition of art. 24, I infinitely less than
i, and J infinitely greater than 1, so that I is infinitely less
than J, agreeably to the theorem to be demonstrated.

29. Corollary. When infinitesimals of different or-
ders are connected together by the signs of addition or
subtraction, all may be neglected but those which qre of
the lowest order, so that the sum or difference is of the
same order with those of the lowest order, which are
retained. ’

15*
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30. Corollary. The continued product of several in-
Sinitesimals is of an order equal to the sum of the
orders of the factors.

31. Corollary. If one or more of the factors is finite,
the product is of the order equal to the sum of the
orders of the other factors. -

32. Corollary. The order of the quotient of one infi-
nitely small quantity divided by another is equal to the
order of the dividend diminished by that of the divisor.

33. Corollary. The order of any power of an infini-
tesimal is equal to the order of the infinitesimal multi-
plied by the exponent of the power; and the order of
any root is equal to that of the infinitesimal divided by
the exponent of the root.

34. Theorem. The order of any function of an infi-
nitesimal is equal to the product of the order of the
infinitesimal multiplied by the order which the function
would have if the infinitesimal were assumed as the
base.

Proof. Let I be the infinitesimal of the order a, J a
function of I, which would be of the order 3, if I were the
base, and let ¢ be the base ; we are to prove that J is of the
order a b. :

Since >J' is of the order b with refcrence to I as a base, it
is of the same order with I°. But I, being of the order a, is
of the same order with ¢*; and therefore I® is of the same
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order with i*%, that is, I® is of the order a 8. Hence, J is
of the order abd.

35. Corollary. The order of any function of an in- -
finitesimal of the first order is of the same order with
the same function of the base.

36. Corollary. The ratios between the orders of
several infinitesimals are not changed by changing the
base; and their orders with refercnce to the new base
are obtained by dividing their original orders by the
order of the new buse referred to the original one.

This rule cannot, however, be applied when the order of
the new base, referred to the original one, is zero or infinity.

37. Corollary. If Iis an infinitesimal of the order a

. . . 1
with reference to the base i, ¢ must be of the order P

with reference to I as a base.

38. Problem. 'To find the order of a', when ¢ is the
infinitesimal base.

Solution. Denote the order of a’ by x ; that of (a’)™ is, by
art. 33, m z ; while that of a™ is, by art. 35, z; but we have

(a')" = a™,
and, therefore,
mz ==z,
which gives
z=20;

that is, the order of af is zero.
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39. Problem. 'To find the order of log. ¢, when ¢ is
the base.

Solution. Denote the order of log. i by z; that of a log. 4
is, by art. 81, also z; while that of log. <" is, by art. 34, a z;
but we have

a log. i = log. #*,
and, therefore, az—ux,
which gives z2=0;
that is, the order of log. i is zero.

40. Corollary. ‘The order of 1 ; is also zero.

log. 4

41. If 7 were zero, we know that a', log. 4, and -
log. ¢

would be respectively 1, — and 0; and their values must
differ infinitely little from these values, when ¢ is infinitely

! - is infi-
log. @

nitcly small. But each of these infinitesimals has been
shown to be of the order zero, so that there are infinitesimals
of the order zero, which are finite, infinite, and infinitely

small.

42. Problem. To find the nt power of 1 4 i, when
i is infinitely small and = infinitely great, so that
ni=a. (405)
Solution. The binomial theorem gives
—1
(1+i)"=1+ni+"(” ); 2-|-"(” 21)(3" 2)i5 4 &c. (406)
But # is infinite, and, therefore,
n—1=n, n—2=n, &c. (407)

small ; that is, @ is finite, log.  is infinite, and




§ 45.] INFINITESIMALS. 177

Neperian logarithms.

which substituted in (406) give, by (405),
N ., n2i3 n343
(1 +'I/) = l+nt+l—.—2— +m +&C.
_l+a+12+ 23-{—&,c (408)

43. Corollary. When
a=1

(408) becomes

(if= 141 o b &e (109)

If we denote the value of the second member of (409) by
e, we easily find

e = 2,71828 4 (410)
and (409) is
o '
14 =e (411)
44. Corollary. Since
a -
n—-—,

1
we have

(49)7= ((4if ) =e=14at 2= 4 &o. (412)
1.2

45. The number e is the base of Neper’s system of
logarithms, and the logarithms taken in this system
are called the Neperian logarithms. 'The Neperian
logarithms will be generally used in the‘course of this
work, and will be denoted by log. as usual.
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46. Corollary. The log. of (411) is

_:,- log. (1 4-4) =log. e = 1 (413)
log. (144)=1. (414)
47. Corollury. If in (412) we put for a the value
a=mit, (415)
and transpose 1 to the first member, (412) becomes
emt—1=mi; (416)

all the terms of the second member except the first being
omitted, because they are infinitely smaller.

48. Corollary. 1If b is taken so that
b=c¢€™ or m=log. b, (417)
(416) becomes
b'—1=ilog. b. (418)

49. Corollary. If in (416)
m=1, (419)
(416) is
' . el—1=1. (420)
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‘CHAPTER IIL

DIFFERENTIALS.

50. Tae difference of a function is the difference be-
tween its two values, which correspond to two different
values of the variable.

When the difference between the two values of the
variable is infinitely small, the difference of the funec-
tion is called its differential.

The letters 4., 4./, 4.", &c., 4.y, 4., &c., p.,r.', &ec.
placed before a function, denote its differences, and corres-
ponding differences are denoted by the same letters. Thus

4.f. 2, J.f.’.r,.&,c.

are corresponding differences of f.(z), f./(z), &c., and"
these differences correspond to the difference 4.z of the
variable, so that

4. f.e=f. (z44.2)—f. (421)
d.f'e=f"(z+4 4.2)—f' 2 &c.
Differentials are denoted by the letters ¢, ¢/, &c., d, d’, &c.
51. Theorem. Differences and differentials are linear
JSunctions.

Proof. For it is obvious that the increment of the sum of
‘several functions arising from an increase of the variable is
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equal to the sum of the increments of the funcfion; or, as
it may be expressed algebraically, that

4.(f. £ f)=I(f-+4.f)x(f '+ 2. f)]—(f. =f)
= 4. f A fr (422)

52. Theorem. Differences and differentials are free
relatively lo any other linear function.

Proof. Let f. be a linear function, and (389) gives
f Gt a.5)=f.atf. 4.2, (423
which, substituted in (421), gives
4. f.e=f.4.z, (424)

and this is the theorem to be proved.

53. Corollary. In equation (399) we may put

fl =4,
and it becomes

(foFa)y=fr+nfr 4.+ &. (425)

54. Corollary. If the function f. of (423) is unity, (425)
becomes

(1.+4.)":1.+n4.+'il”_gl—)4.2+&c. (426)

55. In finding differences and differentials, the dif-
ferences and differentials of the independent variables
are also independent and may vary or not, as may be
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most convenient. It is usually most simple to suppose
the differences and differentials of the independent
variables not to vary, and, adopting this hypothesis,
we must regard the differences and differentials of
the independent variables as constant.

56. Corollary. By the principle of art. 55, (426) be-
comes, when applied to the independent variable z,
A.44.)e=Q1Q.4nd)e=z4+nd.2; (427)
for we have

43x=0, 43xz=0, &ec. (428)

57. Corollary. Taking the function f. of each member
of (427), we have

foQ.fays=f(.+n4a)ze  (429)

58. Corollary. Equation (421) gives, by transposition
and omitting z,
fota.fo=f.(1.44, (430)
or Q.44)f.=f.1.44) (431)
so that the functions f. and (1. #.) are relatively free,
and we have, by (429),

At sy fe=f Q.4 4pe=f.(.4na)z
=f.(z+n4.2). (432)

59. Corollary. Since the linear function 4. may be sub-
jected to all the forms of algebraic calculation, it may be
substituted for @ in (412), and gives

16
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éd:—(l.-{-d.%-{—&c.); (433)
and in like manner
c"'L.:(l.-l—nJ.-]—%i). (434)

60. The quotient of the differential of a function
divided by the differential of the variable is called the
differential coefficient of the function; the differential
coefficient of the differential coefficient is the second
differential coefficient, and so on.

Differential coefficients are denoted by D, D', &c. ; thus

df.z v
Df.z= ‘{z (435)
D3f.z=D.D.f.1; © (436)

or, sinice d z is independent of z,
Dz:f.zzd.D.f.z_d’f.z (487)

dzx — dz

61. Theorem. The differential coefficients of con-
- tinuous functions are finite functions of the variable,
independent of the differential of the variable.

Proof. 1. Let BC (fig. 47) be the curve which denotes
the function f. z, so that if A is the origin, we have for

AP=12, PM=f.x,
and if we take ‘
PP'=d.r= MR, PP' =d'.x = MR/,
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we have
d.f.e=P M —PM=MR,
d.f.e=P'M'—PM=MPR,
MR ., _ M'R!
D.f.$="MT, D-f-z—w.

Baut sitice MM'M" is an infinitely small portion of*the curve,
it may be regarded as a straight line, and we have

MR _M'R
‘MR — MR’
or D.f.x=D.fx;

that is, the value of the differential coefficient does not
change with that of the differential.

II. The differential coefficient is, in general, a finite func-
tion, for the ratio M'R : MR, which represents this function,
is the tangent of the angle M’MR, by which the curve is
inclined to the axis AX.

62. Corollary. We have, by (435) and (437),
d.f.a=D.f.z.dz, d?.f.a=D?.f.z.d22, (438)

so that if d z is an infinitesimal of the first order, d f.z is,
by art. 30, of the same order, d2 f. z is of the second order,
and so on.

Differentials may then be regarded as infinitesimals
of the same order with their exponents.

63. Corollary. If we put

h
ndz—=Hh, sothatn:(n, - (439)
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and put d. for 4. in (432), we have

(L Adyfr=F (c+h); (440)
or developing, as in art. 42, and putting
D.=% pa % (441)
dz’ T dsa?
(1 +4D. )f.x:f.(z-{—h). (442)
But, by (434), ’
L4048 L o=ty (u3)
whence
éD.fox=f.(z+h). (444)
64. Corollary. When, in (442) and (444), we put
=0
they become
(148D 48 L o ) ro=rh (aa5)
' &2 .0 = f.h, (446)
and if we now put z for A, we have
( =f. (447)
e?: f 0 s (448)

Equation (442) is called Z'aylor’s theorem, of which
(444) is a neat form of writing, and (447) is called
Mac Laurin’s theorem. The great use of these the-
orems will be seen in the sequel.
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65. Corollary. If we put, in (442) and (444),
. h= 4.z
they becorhe, by (431),

(14+4.2D.+ &c.) f.z=f. (1.+4.)c=(1+-4.) f .z (449)
ed =0 fx—(ls4.)f.2. - (450)

66. Theoremy. When the differential coefficient of a
continuous function is finite and positive, the function
increases with the increase of the variable; but if the
differential coefficient is negative, the function de-
creases with the increase of the variable.

Proof. For the differential coefficient is the ratio between
the differential of the function and that of the variable, and
is therefore positive when both' these differentials are posi-
tive, and negative when one is positive and the other
negative.

67. Corollary. 1f the variable increases from any of
its values, for which the function vanishes, the func-
tion must be positive if the differential coefficient is
positive, and negative if the differential coefficient is
negative ; that is, the function has the same sign with
the differential coefficient. The reverse is the case if
the variable decreases. ' :

68. T'heorem. The greatest value of the differential
coefficient of a continuous function, which vanishes with
the variable, and extends to a given limit, is larger than
the quotient o[f the greatest value “of the function, divided L.
by the corresponding value of the variable ; and the /

16*
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smallest value of the differential coefficient is smaller
than the smallest value of this quotient.

Proof. Let f. denote the given function which vanishes
with the variable, let 2’ be the limit of the variable to which
the function is extended, and let 4 and B be respectively
the greatest and the least of the values of the differential
coefficient, so that

A—Df.zand Df.z—"B

are positive. But these two quantities are the differential
coefficients of the functions

Az—f.zand f.2— B,

both of which vanish when z is zero, and are, therefore, by
art. 67, of the same sign with their differential coefficients
when z is increasing and positive, and of the opposite sign
when z is decreasing and negative. Hence these two func-
tions are of the same sign with 2z, and their quotients,
divided by %, must be positive, that is,

f"andf;f—n

T

are positive. It follows, then, that A is greater than the
quotient of f.z divided by x, and that B is less than this
quotient.

The truth of this proposition may be exhibited geo-
metrically. Thus, if AMB (fig. 48) is the curve which
represents f . z, so that, for

AP = 2, we have MP =f .z ;
if the curve at M is produced in the straight line MT, we
have, by art. 61,

D.fz =tang. MTX,
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and, by joining AM,

MP _ f.»

AP T o (451)
Now, M,AX being the greatest value which the angle

MAX has in this curve, it is evident that in proceeding from

M, to A the curve must be inclined to the axis AX by an

angle greater than M,A4X; so that at M, for instance, the

value of tang. MTX, orof D f.=,isgreater than tang. M, AX,

tang. MAX —

the greatest value of -f; ; and, therefore, A, the greatest

value of D f.z, must-be greater than any value of %—

Again, M, AX being the least value of MAX, we see
that in proceeding from M, to 4 the curve must be inclined
to the axis AX by an angle less thanM,AX, so that at M/,
for instance, we have

tang. M'T'X < tang. M, AX;
whence it follows as above, that B is less than any value of

=

x

69. Theorem. If a function f. and its differential
coefficient are continuous, and if the function vanishes
when the variable is zero, there is, for every value of
the variable z, a value of ¢ less than unity, which
satisfies the equation

f-e=zDf.(6z). (452)

Proof. If A and B are respectively the greatest and
least values of Df.r, contained between the limits

r=0,andz =z,
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it follows from the fact, that D f. z is continuous, that it must
assume every possible value between A and B;while x varies

from 0 to z. But the value of f; % is included between 4 and

B, and, therefore, there is a value of ' less than z such that

pf.w=12%,

or fie=zDf.z. (453)

But since «’ is less than , if we put
0 — = orzr =140z,
z
we have ¢ less than unity, and (453) becomes (452).

70. Corollary. If in (452) divided by x, we suppose =
to be such a function f, of a new variable z, as constantly
to increase with the increase of z, and to vanish with z,, so
that

z=f,.2,,
and take ¢, so that
bz=f,.(8,2,),
then 4, is evidently less than unity, and if we suppose
F.=f.f,.
(452) becomes, by dividing by =,

Jfoe __df (0=) ffy.x, df.f,.(4, 7))
z = d(lx) T fi.z, T df,.(8,2,)°

or
F.z, dF.(¢,z,) DF.(s,2)
Jiewy  dfy.(8,2,) 7 Df,.(0,3)°
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or, omitting the numbers below the letters, which are no
longer needed, and put 2’ — 0z
F.z DF.(¢z) DF.x
f.ea = Df.(¢z) — Df.a'’

(454)

71. Corollary. 1If the n first successive differential
coeflicients of the functions F'. and f. were continuous,
and all but the nth vanished with the variable, (454)
would give

_F._a:'___ DF.x _ D*F.z" D'F.z,
f.x = Df.e ~ DBf.z' — D'f.z,’

(455)
in which z, z', 2/, &c. are decreasing, so that if we put
6, =
z
we have

F.o _ IrF.(4,2)
J.2 T Df.(hx) (456)

in which ¢ is less than unity,

N
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CHAPTER IX.

COMPOUND AND ALGEBRAIC FUNCTIONS,

72. Theorem. The differential of a compound func-
tion of several simple functions, is equal to the sum of
its partial differentials arising from allowing each
simple function to vary by itself, independently of the
other simple functions.

Proof. Let f., f.' be simple functions, of which @. is the
compound function. We will denote by d,, d,.. the partial
differentials, supposing f., f' respectively to vary by them-
selves. We are to prove that

do.(fof)=dr.e.(fs f)Fdr. 0. (f f) (457)

Now we have,. by definition,

4. 0. (fo f)=0.(f-+d f, f)—0.(f f) (458)

or, by transposition,

. (fofN=0.(fo+d fsf)—dno.(fs f)

The differential of this last equation, supposing f./ to vary, is

&30 o )= 9. (fdfor f )Py 0. £.)(459)
But, by definition,

Ay F Af Iy =0 f df o frAf)=0.(fH4f- f)(460)
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which, substituted in (459), gives
oo (fufH=e(f-Fdf,f'+df))
—o.(fotdff)—dp0.(f f) (461)
The sum of (458) and (461) is
4. 0. (Fof N Hds 0. (Fof)=0.(fdfn fidf)
=9 (f fN) =R @ (fr f). (462)
But we have _
do.(fuf)=0.(f4df,f'+df)—o.(f.f), (463)

which, substituted in (462), gives (457) by omitting the last
term, because it is a second differential, and therefore an
infinitesimal of the second order.”

%8. Corollary. Equation (457) is written by omitting the
function,

74, Problem. To differentiate a f. z.
Solution. We have, by definition,
d.(af .x)=af.(z4+dz)—af.z
=a[f(x+dz)—f.x]=ad.f.x. (465)
75, Corollary. We have then
d.(ax)=adz. (466)

76. Corollary. We have also
d.(fox.flay=flzdf.2
. (fox.fiz)y=f.zdf /=

\e

\
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and, by (464), :
d.(foo.fle)=flzd foetf.od flz (467)

In the same way, if  and v are functions of ,

d.(uv)=udv4vdu (468)

71. Corollary. Equation (467), divided by f.z.f. z, is

d.(fie.f'z) _d.f.x  d.f!=
fz.flz = f.= + fiz (469)

78. Corollary. From (469), it follows that

d.(f.:c.f.'z.f.”a:...)_d.f,z d.ﬁlz
Fefrifiae. = fa tfm t&e (170)

79. Corollary. If in (470) we have the n functions
fe=fla=f"2= &ec. (471)

- (470) becomes

d.(f.z)* ndf.z . '
fox) — f.z’ (472)
which, freed from fractions, is
d(f.2)'=a(f.z)"'df.z. (473)

Hence, to differentiate any power of a function, multi-
ply by the exponent and by the differential of the func-
tion, and diminish the exponent by unity.

80. Scholium. The proof of (472) and (473), which is
given in art. 79, is limited to positive integral exponents, but
may be easily extended.

-
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L. Proof of (4712) and (473) for fractional ezponents.
Let n be the fraction

m .

—w
and let ¢ z=(f.2)
so that (9.2)~" = (f.2)" .

Equation (472) gives

m'd(¢.z) md(f.7)
¢z ~— f.z

or
d(¢.2) _d(f.2)" _md(f.x) nd(f.z)
¢.x2 ~ (f.e)» =~ wf.x = f.z
which includes (472), and consequently (473).

IL. Proof of (472) and (473) for negatwe exponcuts.
Let n be negative

n=—m
and let ¢.w=(f.x)“”'=(‘%)—m
so that @ e.x(fox)"=1
The differential of which gives, by (470) and (472),

d@z d(f.7)" _de¢.x , mdf.x__
T o = ee ¥ fo =0

whence
d(f.r) _  mdf.x_ndf.z
(fry~ " f.z = fu=
which is the same as (472), and therefore includes (473).
17
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81. Corollary. Equation (473) gives
d.a"=mz""'dz (474)>
and D.z"=mz""! (475)
DP.ar=mD.z» '=m(m—1)a""* (476)
D.a"=m(m—1) (m—2)z"—3, &e. (477)
If now we substitute z™ for f.z in (44%), we have

(e )= hD.en T D 2m - &

= 2" fmamh ’"('"_'1)

2"k-&e. (478)
which is the binomial theorem.

82. ExAMPLES FOR DIFFERENTIATION.

1. Differentiate a 2™} b.
Ans. The differential coefficient is m a 2™

2. Differentiate A/(f. z). Ans. f?g/‘_{fz_—x)
3. Differentiate j_'_l; Ans. — df_c ;)”‘2.
4. Differentiate (f_azT' Ans -—-(’}—ag'){;_ﬁ.
‘2. df.0— af.
5. Dlﬁ'erentlate';:, f f(‘; a:‘)c <. df z.

m

(f-=)"
6. Differentiate =——;
(fz)

(f z)""“(mf’z df .c—m'f.xdf. :c)
(f. =)y~ +!
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Differential of polynomial.

7. Find the successive differential coefficients of
at+brtcat+4. . . . 4+ Mz™
Ans. The firstis b42cz...4+mMz""';
the second is 2c...4m(m—1)Ma™3;
the mth is mim—1)(m—2)...1. M; .
the (m - 1) is 0.
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Differential of exponential.

CHAPTER V.
LOGARITHMIC FUNCTIONS.

83. Problem. 'To differentiate a*.

Solution. We have, by definition,

da*—=a*tdr — gz — g% qdv — g*

= a (a’* —1). (479)

But, by (418),
a'*—1=log.a.dzx; (480)

whence )
da*=log.a.a"dz. (481)

84. Corollary. Hence

D.a*=log. a.a®

DR.a*=log. a. D a* = (log. a)? a*

Dr. a* = (log. a)" a?, (482)
and by making z=20 )
a® =1
D.a® = log. a

I?. a® = (log. a)?
Dr. a® = (log. a)™ (483)
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Differential of logarithm.
If now we put in (447)
f.z=a"
we have
(log. a . z)*
a'=l+log.a.a:+—l—2———+&c. (484)
85. Corollary. If we have a = ¢, we have
fog.e =1,
e=D.e=D.ee=D.c (485)
1=D.e" =D = D.¢ (486)
=14+ o+ be (187)
and (487) is the same with (412).
86. Problem. To differentiate log. z.
Solution. We have, by definition,
d.log. x = log. (x§dz)—log. =z
=log.~ xdz:-_log; (1 + "7’5 . (488)
But, by (414) . . '
dzx dz
l%- (I + ‘;— — T [
and, therefore,
a.log e=22, (489)
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Development of logarithm.

87. Corollary. Hence

D.log. z:% (490)
1 1
D’.log.a:_ D. ;_——E
D8, log.:c:%
2.3
Dt log. 2 = -
Dr.log.z =+ 1—2——&#—(”—-——12, (491)

the upper sign being used when n is odd, and the lower
when n is even.
If now in (442) we make
f.=log.
we have,

h A "
log. (x4 h) =log.z+;——§t; + Ey- T &c. (492)

88. Corollary. If in (492) we put
z=1,
we have
log. (14-2)=2A—3 A2+ 3 43—} At 4 &c. (493)

89. ExaMPLEs.
1. Differentiate log. [z 4 4/ (1 4 23)].
" Ans, — 2%
VAR ION
n (log. x)*~'dx

2. Differentiate (log. x)". Ans
: . z
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Differential of 24 and 3d logarithms.

dzx
zlog. z’
dz
Tiog.z.log %"

3. Differentiate log.2 2. Ans.

4. Differentiate log.3 z. Ans.

5. Differentiate a®~,

Solution. Let y= b
and we have at* = a
whence d.a*=d.a’=log. a.a".dy
But dy =d.b"=log. b.b*.dzx
so that d.ab* —=log. a.log; b.ab%. bx d 2.
6. Differentiate zY.

Solution. Equation (464) gives
d.2¥=d,.2*4+d, .2
But by (473) and (481) ‘
dy.2a*—=yz* " 'da
d,.2*=log.x.2¥dy
so that |
d.v=ya*~'dz4log z.2*d y.
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Differential of sine and cosine,

CHAPTER VI

CIRCULAR FUNCTIONS.

90. Problem. To differentiate sin. z.

Solution. We have, by definition,
d . sin. x = sin. (z 4 d £) —sin. z.
But, by trigonometry,
sin. ia: ~+ d z) = sin. z cos. d z - cos. x sin. d 2,
cos.dz=1, sin.. de=4d a:,.

so that d.sin.z=cos. z.dz. - (494)

91. Problem. To differentiate cos. 2.

Solution. Substitute in (494), § » — z, and it becomes
d.sin. (37 —z)=cos. (3 —2).d (} —2z). (495)
But we have
sin. (4 # —2z) = cos.z, cos. (3 » —z) =sin.
d(ir—z)=—dz,
which, substituted in (495), give
d.cos.z = —sin.z.dz. (496)




-
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Development of sine and cosine,

92. Corollary. Equations (494) and (496) give
D. sin. z = cos.
IDR.sin.2 —= D, cos.x — —sin. z
IB.sin.z — DR, cos. = — D sin. x — — cos. z
DA sin.z = DB.cos.z = — Dcos.x =sin.
Ir.sin.x = D™, cos.x = D", sin. x, (497)
so that the four values of all the successive differential co-
efficients of sin. 2 and cos. z are alternately cos. z,— sin. ,
—cos. z, and sin .
Hence, making z=0,
we have, when 7 is even,

D*.sin. 0 = D*'cos. 0 =0, (498)
but when % is odd
Dr.sin.0=D""cos. 0 =% 1; (499)

the upper sign being used when n — 1 is divisible by 4, and
the lower sign when n - 1 is divisible by 4.

These values, substituted in (447), give
z3 5 a7

sin.e=r—1o5+t 1845 1234567 T & (500)
2 :c“ 8
cos.z=l—g5+yo3 i Tesa 56T & (B

93. Problem. To differentiate tang. z.

Solution. We have, by trigonometry and example 5, of
art. 82,

sin.z  cos.z Dsin.x —sin. z. D cos. z
‘cos.x cos.2x

’

D.tang.z2 =D
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Development of targent.

whence, by (494), (496), and trigonometry,

cos.2z 4 sin3z 1

D.tang. 2 = P Syt (502)
94. Corollary. Equations (502) and (496) give
. 2Dcos.z __ 2sin.x__2tang.z
D tang. & = — cos3z ~ cos3z ~ cos2z ’

or IP. tang. z = 2 tang. z. Dtang. =
D*tang. z = 2 tang. z D? tang. z 2 (D tang. z)?
D' tang. z = 2 tang. z I® tang. z + 6 Dtang.x D2tang. 2
D5tang. z =2 tang. z D* tang: z -+ 8 Dtang. z D3tang. =
+ 6 (D% tang. x)?
Drtang. 2 = (D.tang. 2 4 D.tang. z)*, (503)
in which the exponents are to be annexed to the D.; when
the exponent is zero, as in the first and last terms, the D. is
omitted, and tang. z retained ; and as the terms equally dis-

tant from the two extremities of the developed series are
alike, they may be added together.

By making- r=0,
these equations give ]
D tang.z =1
DPtang. 2 =0
Ddtang, z =2
Ditang. 2 =0

D5 tang. z = 16
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Differential of pegative sine and tangent.

Hence, by (447),
2 16
wigz=2+ya 38 tigsas® T4
=z 4 4234 F 25 4 &e. (504)
95. To differentiate arc sin. z = sin.=1 z.
Solution. Let y = sin.=1 g,
or siny—u=a

so that by differentiation
cos.y.dy=dz=dya/(l—sin2y) =dyas/(1—2?)
and

dy 1

D-Sin-[—'1]1'= Dy-‘: ﬂ‘:—'v(———l——_zg)'z(l——a‘,)—*. (505)

96. Corollary. By the same process we should find
D.cos. "= z= Darc cos. = — (1 —a?)—4.  (506)

97. Problem. To differentiate tang.(—1 z — arc
tang. z.

Solution. Let y=—tang." Mz
or tang. y = &,
so that, by differentiation,

— —y=da:_—..dysec.’y_—.dy(l-{-tang.’y):dy(l +-2%)

-
Dung.~ha=Dy=2{=(4a" (50
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Development of negative sine.

.

98. Scholium. Dy applying Taylor’s theorem, the
values of sin.[-1 z, cos.l=1 z, and tang.—=" z, might
easily be found expressed in series; but they may more
easily be found by the following process.

99. Problem. To develop sin.l=1z in a series arranged
according to powers of z.

Solution. Suppose the series to be

sin—lz=C,+ C,z4 C 234 C, 234 C, o4 &c. (508)
in which the number below the coefficient denotes the power

of z, which it multiplies. We find, then, by differentiation,
(505), and the binomial theorem, ‘

(1—29)—4=C,+2C,z+43C, 2344 C, 27+ &e.

1.3 , , 1.3.5
=ltid+ 7o+ 6" T4

whence C,=1
1.
C,=1%. 3= 3
1.3
_ Ca =1. 9.4 i
and, C.=0
which n is even, and if in (508) we put
z2=0
it becomes
CQ = 0.

Hence, by substitution,

sint M g =z 4 } a3 4 ' 4 &e. (509)
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Development of negative cosine and tangent.

100. Corollary. 1In the same way, if we put
cos.Fp=Cy+C,z+ C, 22 4 &c.  (510)
we find all the coefficients except C, to be the negative of
those for sin.l™" x, and if in (510) we put -
v i z=0

we find

‘ C,=arc.cos.0 =%,
whence

cosllz=3}r—zr—}ad—FHa’ —&c. (511)

101. Corollary. If in (511) we put '

r=—1
we have

cos.MN1=04r—1—}— & — &e. (512)
and if (512) is subtracted from (511), term from term, it gives

cos.l g = (1—2) + § (1 —2%) 4 & (1—25) + &e. (513)

102. Problem. To develop tang.[™ z in series, ac-
cording to powers of z.
Solution. Suppose the series to be
tang.Me = Cy 4 C,z4 C, 22 + &c.  (514)
we find, by differentiation, (507), and the binomial theorem,
(142)"'=C,+2C,z+4+3C,22+4C, * + &e.
‘ =1—2?4 ot — 2% 4 &e.

whence- C,=1
' C;=—1%
Ci=1 .
and when n is odd C.=+ %,

18
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° Differentials of circular functions.

the upper sign being used when n — 1 is divisible by 4, and
the lower sign when 1 4 1 is divisible by 4 ; but when n is
even or zero, ’
h C.—=0.

Hence, by substitution,

tang.Mr=r— Y34 Lab—3}a’ 4 &c. (515)

103. ExampLESs.

1. Differentiate sec. . Ans. tang. z.sec.zdz.
2. Differentiate sin." z. Ans. nsin*'zcos.xda.
3. Differentiate log. cos. x. Ans. —tang.zdz.
4. Differentiate log. / ( 1+ ::: :) . Ans. sec.zdr.
; . 1 b4 acos.x
——=cos.FI{ ————— ).
5. Differentiate V@—5) cos (a Fhoos s )
dx
Ans. aFbos
6. Differentiate cot. = Ans. — d2

sin2a’
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Value of fraction, when both terms vanish.

CHAPTER YVIIL
INDETERMINATE FORMS,

104. Problem. To find the value of a fraction when
its numerator and denominator both vanish for a given
value of the variable, of which they are both continu-
‘ous functions.

Solution. Let the fraction be

;: :, (516)
and let 2, be the value of z, for which the terms vanish ; let
h=z—z, or zc=1x,+h (517)
the given fraction becomes then
F ey o
which is a fraction, both whose terms vanish for
h=0; (519)

so that in (456), A being the variable instead of x, we have,
if all the differential coefficients of the terms vanish, up to
the nt*, when

h=0,

F.(z,4%) _D'.F.(c,40,h)
TACE D had e AT

(520)
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Fraction of which both terms vanish.

which when h=0

F.zy D'.F.z,
f.oz, — D fiz,’

so that the value of the given fraction is obtained by
differentiating its numerator and denominator, until a
differential coefficient is obtained, which does not
vanish for the given value of the variable.

becomes

(521)

105, ExamMPLES.

er 4
1. Find the value of — , when z = 0.

sin. &

Solution. We have
eo—e® D.e>—D.e® e04e° 141

w0 = D0 w0 — 1T
2. Find the value of %@, whenz = 0. Ans. 0.

" 8. Find the value of si:;.r, when z = 0. Ans. .
4. Find the value of Loia;, when 2 —= 1. Ans. 1.
5. Find the value of ?;—: a", whenz —=a. Ans. n a""..
6. Find the value of ! —a;os.x , when z = 0. Ans. §.
7. Find the val’ue of 2 sin. 2

p ,when z = 0. Ans. }.
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Fraction of which both terms are infinite.

8. Find the value of C—er—2 .r, when ¢ = 0.

Ans. 2.

x —sin.,

—e—7—2sin, 2

9. Find the value of e -

, when £ =0.

Ans. 3.

sin, m @

10. Find the value of = when ¢ = 0. Ans. m.

sin.

. : sin. m .
11. Find the value of o f , when ¢ =, and m is an
integer. .
Ans. —m cos. m », so that when m is even, the answer

is —m ; and when m is odd, the answer is m.

106. Problem. To find the value of a fraction, when
both its terms become infinite for a given value of
the variable.

Solution. Let the numerator of the fraction be Y and the
denominator y, the fraction is

Y vy

—

Pl
But when y and Y are infinite, their reciprocals, y~' and
Y~!, vanish, and we have by the preceding art.,

(522)

Y Dy —y'Dy YDy
y D.Y' T —Y*D¥Y $#DY’
2
and, dividing by -’Y;,
y Dy Y DY

I — = or- =_—— (523)
18* :
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“Product of which one factor is infinite, the other zero.

so that the value of the fraction may be found by dif-
ferentiating both its terms; and if both the terms of
the fraction thus obtained are infinite or zero, the
differentiation may be continued, until a fraction is
obtained, of which both terms are not infinite or zero;
and equation (521) applies to the present case as well
as to the preceding one.

107. ExAMPLES.

1. Find the value of log. a:, when z = 0.
cot. x

Solution. We have

Y
log 0 D.log.0 _ _ sin. 0=——2 sin. 0 cos. 0 =0.

cot.0 D.cot.0 0
2. Find the value of ™% when ¢ =0. Ans. L.
. cot, ¢ m

108. Problem. To find the value of a product of
two factors, when one of the factors become infinite
and the other factor becomes zero for a given value of
the variable.

Solution. Let y and Y be the two factors, and we have
for the given product
Y
yY= et (524)

so that it is equal to a fraction, of which both the terms
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Infinite or zero powers.

are infinite, or both are zero, and the value of this
fraction may be found by the preceding articles.

109. ExaxpLEs.

L. Find the value of 22 e~# when z = .co. Ans. 0.
2. Find the value of « (log. )", whenz = 0.  Ans. 0.
3. Find the value of z° Jog. x, when 2 =0.  Ans. 0.

4. Find the value of z cotan. z, when x — 0.  Ans. 1-

110. Problem. 'To find the value of a power, when
the exponent and the root are both such functions of a
variable, that they assume, for a given value of the
variable, one of the forms 0° &9 or 1.

-

Solution. Let the power be

1=Y (525)
and we have, by logarithms, : _
log.z=ylog. ¥, (526)

so that in either of the given cases log. z isequal to a
product, of which one of the factors is zero, while the
other is infinite; its value may therefore be found by
the preceding articles; and when its value is found,
we have

2= elE* (527)

or Yy =evios Y, (528)
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Infinite or zero powers.

111. ExamMPpLES.

1. Find the value of 2%, when x — 0.
Solution. Since 0log.0=0
we have, here, 0=e=1
2. Find the value of (e*—1)*, whenz = 0. Ans. 1.
3. Find the value of cot.? ¢, when ¢ = 0. A’ns. 1.
4. Find the value of cos. ¢°%¢-¢, when ¢ — 0. Ans. L
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Maxima and minima of function of one variable.

CHAPTER VIIIL

MAXIMA AND MINIMA,

112. A varue of a function, which is greater than
those immediately preceding and following it, is called
a mazimum of the function; while a value, which is
less than those adjacent to it, is called a minimum.

113. Problem. Find the mazima and minima of
continuous function of one variable.

Solution. Let f. be the given function, of which all the
differential coefficients, inferior to the nth, vanish, for a given
value x; of the variable. Then

folegth)—F .z (529)
is a function of Ak, which vanishes with & ; and its differen-
tial coefficients, inferior to the nth, also vanish with &, for
they are, when & is zero,

D*.f. (xg+h)=D".f.2,=0. (530)
Moreover k" is a function of %, all the differential coeffi-

cients of which, inferior to the att, vanish with &, and the
nth differential coefficient is

D.r=1.2.3....n (531)

If now, in (456), these two functions are substituted, and
if A is regarded as the variable, (456) becomes
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Rule for maxima and minima,
[ (o +h)—f.20  D.f.(z,40.h
A" - 1.2.8....n ° (532)

But if & is taken infinitely small, z, 4 6, & differs infin-
itely little from z,, and the 6,k may be neglected, so that
(532), multiplied by A", becomes, by transposition,

ot N =Fozg4 [ e—— D" foze.  (533)

By changing k into — &, (533) becomes

floo—N=fozgt [y gy D f.ry. (534)

If, then, n is odd, of the values of the given function,
which are adjacent to f.x,, one is greater, while the other
is less than f. z,, so that thxs value does not correspond to
a maximum or mmlmum :

But if n is even, the values which are adjacent to f . z,are
both greater than f.z,, when the nth differential coefficient
is positive ; and they are both less than f.z,, when this
coefficient is negative.

Hence, to obtain the mazima and minima of a given
Sunction, find the values of the variable which reduce
the first differential coefficient to zero. [Each of these
values of the variable must be substituted in the succeed-
ing differential coefficients, until one is arrived at, which
does not vanish,

If the first differential coefficient which does not van-
ish is cven and positive, the corresponding value of the
Sunction is a minimum ; but if the coefficient is even
and negative, the value of the function is a mazimum.
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Case when differential coefficient is infinite.

114. Scholium. When the function, varying with the in-
crease of its variable, passes through a maximum or mini-
mum, its difference must change its sign. If this difference
is continuous, it can only change its sign by passing through
zero ; but if it is discontinuous, it may also change its sign
by passing through infinity, and the first differential co-
efficient which does not vanish must in this case be infinite.

The case, therefore, in which the first differential
coefficient, which does not vanish, is infinite, deserves
particular examination ; and all other cases of discon-
tindity are to be considered by themselves, but they are
rarely of much interest. '

115. ExaMPLES.

1. Find the maxima and miﬁima of the function 3}-ax+-b.

Solution. The differential coefficients are
D, (P*4ax+4d)=322+4a
DR (B4ar4b)=6=z
DB (34 ar+b)=6.

The first differential coefficient is zero when
z=Ha/(—1%a)
so that there is neither maximum nor minimum, unless a is
zero or negative. For this value of z, the second coefficient
becomes
+ 6 '\/ - % a,

which, when a is negative, is positive for the positive value

)
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Examples of maxima and minima,

of z, and negative for the negative value of z. The cor-
responding values of the function are

bt2%aa/(—1%a)
But when a is zero, the second differential coefficient also

vanishes, and the third does not, so that there is neither
maximum nor minimum.

2. Find the maxima and minima of the function
g ar24+baz—+c.
—_l2
Ans. The value ﬂ(‘;a—b is a maximum when a is neg-

ative, and a minimum when a is positive ; the corresponding

value of z is
b

T 2a’
3. Find a maximum or minimum of the function
e® 4 e* 4 2 cos. x.
Ans. The value of 4 is & minimum, which corresponds
to the value’
- 2=0.
4. Find a maximum or minimum of the function
e* -+ e—% — 12,
Ans. The value of 2 is a minimum, which corresponds
to the value
z=0.
5. Divide a number into two such parts that their produet
may be a maximum or minimum.

Ans. The product is a maximum, when the two paris are
equal.
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Examples of maxima and minima.

6. Divide a number into two such parts that the product
of the m*: power of the one by the at: power of the other
may be a maximum or a minimum, m and n being positive.

Ans. The product is a maximum, when the parts are in
the same ratio as the exponents of their powers.

7. Inscribe in the triangle ABC (fig. 8), the greatest or
the least possible rectangle DEFG.

Solution. Using the notation of art, 42, example 2, we have

the surface DEFG = b_z(l}:_—_a:_)_,
which is a maximum, when
z=13%h

8. Through a given point C (fig. 15) draw a line BCD, so
that the surface of the triangle ABD, intercepted between
“the lines AB and 4D, may be a maximum or a minimum.

Solution. This surface is, by art. 42, example 7,
zysin. A=} (ay— b2)sin 4.
the first and second differential coefficients of which are
0=31(y+2Dy)sin. A=} (a Dy+ b)sin. A.
(Dy+4xD¥)sin.A=1}a D?ysin. A.
Hence

b—y
Dy= z—a

O0=bdbz—ay,

.2b
y=2b,af=24,D’y=?,

and the surface is a minimum.
19
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Maxima and minima of produet.

9. Find on the circle (fig. 33), referred to the centre 4, as
the origin of rectangular codrdinates, the point M, for which
the product of the coérdinates is 2 maximum or a minimum.

Ans. The product is & maximum when y = z.

10. Find on the ellipse (fig. 35), referred to its centre as
the origin, its axes as the axes of codrdinates, the point M,
for which the product of the codrdinates is a maximum or a
minimum.

Ans. The product is a maximum, when the codrdinates
are in the ratio of the axes.

116. When the function, of which the maxima and minima
are to be found, is a product or quotient, the solution is often
simplified by finding the maxima and minima of its loga-
rithm, which evidently correspond to those of the function.

ExaMpLES.
1. Find the maxima and minima of the function z¢"*,
when « is positive.
Solution. We have
log. (rse¥) =—alog.z4 bz
D.log. (x—seb=) :—%—-l— b

DR ]og. (x—0et*) = %— H

so that the value
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Maxima and minima of product.

corresponds to a minimum. The corresponding value of
the given function is ‘
be\*
(%)

2. Find the maxima and minima of the function
(z—a)(xz—b)a2
Ans. There is a minimum, when
_2ab
T a+b



220 DIFFERENTIAL CALCULUS. [B. IL CH. IX.

Orders of contact,

CHAPTER IX.

CONTACT.

117. WHEN two curves meet or cut at a given point,
and, at any infinitesimal distance of the first order
from this point, are at a distance apart, which is an
infinitesimal of the n 4 1% order, they are said to be
in contact at this point, and their contact is of the n't
order.

“When one of the curves is of the first degree or the
straight line, it is the ordinary tangent.

When 7 is zero, there is no contact, but only an
intersection.

118. Theorem. When two curves are in contact, the
portion which is intersected between them upon a line,
drawn at an infinitesimal distance from the point of
contact, and inclined by a finite angle to the directions
of the curves, is of the same order of infinitesimals
with the distances of the curves apart.

Proof. Let MMM and M' MM, (fig. 49) be the
curves, M, the point of contact, MN their distance apart,
and MM, the intercepted portion of the line PM. The
line M, N may be regarded as a straight line, and the angle
MNM, as a right angle ; so that we have
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Couditions of contact.

MM, = MN X sec. NMM,.

But sec. NM M, is finite, as long as the angle M M, N,
by which N M M, differs from a right angle, is finite ; and,
therefore, by art. 31, M M, is generally of the same order
with M N.

119. Problem. F'ind the algebraic conditions which
denote that two given curves have a contact of the nt
order.

Solution. Let the equations of the two given curves
M'M,M, M, M, M, (fig. 49), referred to rectangular co-
ordinates, be, respectively,

' y=f=2 (535)

y=f .2 (536)
Then if A4 is the origin and M, the point of contact, we
have at this point

APy =gy Py M, =y,

or fexg=1f, .2, or f-'o—'fr“'o:(); (537)
and if PP,=h,
we have MM, =f. (z,+ h) —f, . (zg+R). (538)

If, now, f. 2y—f, . z, is such a function of z, that all its
differential coefficients inferior to the m™ are zero, we have,
by (533) and (537), substituting f.—f. for f.

hn

1

MMl:mD“. (f. Zo—fl.l'o); (539)
and if we put
_ D" (f.my—f,.%) D".f.zg—D.f, .z,
L=t eam — 1.23...m &0

19*
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.

we have

MM, =X,.r" (541)
go that if A is of the first order, M M, is of the m™ order.
But M M, is to be of the (n+-1)* order, and therefore we
must have

m=n+1, MM, = X,.kH, (542)
+ £z + z
o X°—m1 gso.....D."(n-f-fll) B (543)

and all the differential coefficients of f.z,—f, . z, inferior
to the (n 4 1)*, must be zero ; that is, we must have, when
m is less than n4- 1,

D f.zg— D" f, .2 =0, (544)
or Dt f.ozy= D f, .2, (545)

120. In the same way it may be proved, that if the
equations of the two curves are expressed in the polar
coordinates of art. 45; so that they are

r=F.¢,r=F, .09, (546)
we must have, when m is less than n -1, for the
point 7y, @,, of contact,

D"F.¢,=D"F,. ¢, (547)

121. Theorem. T'wo curves, which are in contact,
cross each other at the point of contact, when the con-
tact is of an even order; but, if the contact is of an
uneven order, they do not cross.

Proof. For, when & is negative in (541), the sign of M M,
is the same as when & is positive if n is uneven, but is the
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reverse if n is even; that is, if = is even, the point M’
(fig. 49) is nearer AP than M,’, while the point M of the
same curve with M is farther from AP than M, of the
same curve with M,’; and if n is uneven, the reverse is the
case, as in (fig. 50).

122. Problem. Through a given point upon a gwen
curve, to draw a tangent to the curve.

Solution. Let z, and y, be the coordinates of the given
point, and (535) the equation of the given curve. 1f 7 is
the angle which the tangent makes with the axis of =, its

equation, since it passes through the given pomt is by
(162),
y—y, =tang. v (x—ux,). (548)

Hence, by differentiation,
D.y=tang.r=D.y,=D.f.z, (549)
and the equation of the tangent is
¥—yo=2D.f.z,(z—z,). (550)

123. The projection P7T (fig. 51) of the tangent
MT upon the axis of z is called the subltangent, and .
.if we put
AT=1z'
the codrdinates of T are
y=0and z =2,
so that

ey el — Yo Y% __f'zo
Pl=2 = =5 0 = D.y; —D.f.ag OOV
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e

124. Corollary. When the equation of the curve is
expressed in polar cobrdinates, as in (546), the tangent can
be found by means of (117). Thus we have

T=47—a,0ra=}%x—1 (552)
Pte=gr—7+ 0=4x—("—9)
r cos. (¢ 4 a) =rsin. (r— @) =p, (553)
and by logarithms
log. r 4 log. sin. (* — ¢) =log. p. (554)
The differential of which is, by transposition,

Dr __cos.(r—¢)__ 1 .
7—— sin, (T— ¢)_ tang. (T—¢) cotan. (1 — (P) (555)

But in (fig. 51), we have

¢ = MAP,~= MTP, (556)
and if we put

= AMT =+r—¢ ' (557)
¢ is the angle which the curve makes with the radius vector
at the point M, so that

cotan. § = % = Dlog.r = Dlog. F.¢,, (558)

and the equation of the tangent at the point r, @, is
r sin. (v — @) = r, sin. &, (559)

125. The perpendicular M1 to the tangent at the
point of contact is called (ke normal to the curve.

O e T 77/

i
- /7 e, . 7‘-‘ ’

— -
¢ /
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If » is the angle which the normal makes with the axis of
7, we have then, by (549),

v=3w e (560)
1 1
tang. v — — cotan. 1 = — g = Dyy (561)

and the equation of the normal is

1
Yy—1y, :t&ng.V(x—xo):—W (x"—'xo). (562)
(] .

126. The projection P I of the normal M I upon the
axis of z is called the subnormal, so that its value,
found like that of the subtangent, is

AI-wa:yoDyuzf.mo.Df.zo. (563)

127. Corollary. The lengths of the tangent and normal,
found from the right triangles MTP and MPI, are

T=MT#V(MP=+PTz)zpi;;v[lHDyo)ﬂ] (564)

N=MI=+/(MP2+ PI?) =y, /[14(Dy,)?]
=TDy,. (565)

128. The tangent is called an asymptote, when the
point of contact is at an infinite distance from the
origin.

129. Scholium. It must not be overlooked that in finding
Dy, z has been regarded as the independent variable. But if
it were not so, and if some other variable, as u, were the inde-
pendent variable ; then, denoting by D.,., D.,., the differ-
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ential coefficients taken on the supposition that z, u are
respectively the independent variables, we have, at once,

_1vy_ D..y
Y=3:~ D..z’

D. (566)

130. If all the terms of the equation of the given curve
were transposed to its first member, and if ¥ were this first
member, the equation would be

V=0; (567)

whence by differentiation, putting V, for the value of V at
the point of contact,

D. Vydzy+D.,V,dy=0, (568)
from which the value of %7, being found and substituted.in

(550), gives by reduction for the equation of the tangent
D, Vo (z—7)+ D, Vo(y—13,) =0, (569)

so that the equation of the tangent may be found by differ-
entiating the equation of the curve and substituting z —z,
and y — y, for d x and d y respectively.

131. ExAMPLES. -

1. Find the tangent, normal, &ec. gf the cirele.

Solution. The diffcrential of equation (58) of the circle
gives for any point z,, ¥,
Zy+ 9o Dy, =0,
e Yo

tang, 7 — — —, tang. v — —.
8 .'Io, & To
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Tangent and normal to circle and ellipse.

The equation of the tangent, reduced bjf (58), is
YoV+2,2=9y3+422=R?,
and that of the normal is
zy—Yyz=0,
so that the normal, by art. 109 of Book I., passes through
the centre, and is the radius. We have also

2 2 p2
the subtangent — — Yo _ Rl—=
.’to xo
the subnormal = —z,
the tangent = %@-, the normal = R.
0

Again, from equation (56) we find
cotan, e = Dlog. R=10
§ — 90°;
that is, the radius vector drawn from the centre is perpen-
dicular to the tangent.

2. Find the tangent, normal, &c. of the ellipse, of which
A and B are the semiaxes.

_ 4%,
— Bz,

By
Ans. tang. ; = — Xy 2, tang. »
The equation of the tangent is

A2y, y+4 B2zyz = A2 B?;
that of the normal is

— Blzyy + Aty 1= (4 — Bz, 3,

_ Mgz s A

The subtangent = B, s = Ly — P
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Tangent and normal to hyperbola.

The subnormal = — B;f".
When the focus F (fig. 34) is the origin
_ csin. @  —ersin@, ¢y,
cotan. & = — A4 cos. @ B2 - B
When the fogus F" is the origin
€Y%

cotan. &/ — = —cotan. &

& —

== - &,

Corollary. The lines FM, F'M, (fig. 52) drawn from the
foci to any point M of the ellipse make equal angles FM¢
E Mt, with the tangent at the point M. Hence a tangent
may be drawn fo the ellipse by bisecting the angle FME
‘by the line T'Mt, which will be the tangent required.

3. The tangent, normal, &c. of the hyperbola are found
from those of the ellipse by changing the sign of B2

We hence find for PT (fig. 51) in this case

2
PT=zo—A—
o
p)
AT = AP —PT= A—,
Ty

so that for the asymptote we have
z2=aw, AT=0,

cotan. § = — @, 8 =7 —@=0,r=¢.

But, in this case, we have, by cor. 1, of the hyperbola, B.
I.§ 98,

A
7 = ®, €08, ¢ == €08, Py = —,
c
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and the lines EAE;, E , AE' (fig. 36) are asymptotes of
the hyperbola.

4. Find the tangent, nor;nal, &c. of the parabola, whose
parameter is 4 p.

~

2p y
Ans. tang. r— —, tang. vy — — 22,
ang. 7 "~ ng. v 2p

The equation of the tangent is
Yoy =2p (x4 ),
that of the normal is

2py+y.2=2p+ ) v,-

The subtangent — 2 7,
the subnormal = 2 p,

and when the focus is the origin

- sin, ¢ __ 2sin.3¢@cos.3¢

cotan. = l—cos. ¢~ 2sin2}¢ =—cotan. } ¢
E=—3 Qo =7—9¢
= %¢;

that is, if (fig. 37) MT is the tangent, we have
MFP=FMQ=¢ =2 FMT,

so that a tangent may be drawn to the parabola by bisecting

the angle FMQ.

5, Find the tangent, normal, &c. of the cycloid.

Solution. Taking ¢ as the independent variable, we have
by (549) and (566)
20
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Taogent and normal to cycloid and spirals.

D.y  sin. ¢
D.z~ l—cos. 6

tang. v = D,y = = cotan. } ¢

r=}F—3b, r=x—30,

But if (fig. 41) MB is joined, the angle MBX is measured
by a semicircumference diminished by half the arc MB,
that is,

MBX=»—3} MCB=%s—}0=>,

8o that MB is the normal to the cycloid, and MT, which is
drawn perpendicular to MB, is the tangent.

The subtangent = 2 R sin.3 } ¢ sec. } ¢
the subnormal = Rsin. § = R4 —12z
the tangent =2 Rsin.?} 0 sec.} o

the normal =2 Rsin. } 4.

6. Find the tangent of the spirals of equation (133).
Ans. For the tangent '

cotan, € —= n
. 8= %.

7. Find the tangent of the logarithmic spiral.

Ans. If the logarithms of equation (136) are taken in
the system of which the base is a, (136) converted inte
Neperian logarithms is

log. r = log. a. ¢,
and we have, for the cotangent,

cotan. ¢ = log. a.
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+ Order of contact of straight line.

8. Find the tangent and asymptote of the hyperbolic
spiral. :

Ans. For the tangent
1

cotan, § — — —

Po

2 R
dist. of tang. from origin = —————
g g =Va+e)

which for the asymptote become
P=0,s=17—@;=0,7= @, =0,
dist. of asympt. from origin = 2 » R,

so that the asymptote is parallel to the polar axis.

132. Corollary. The straight line is completely de-
termined by the condition, that the first differential
coefficient of its ordinate is equal to that of the curve
at the point of intersection ; and, therefore, the tangent
has usually only a contact of the first order with a
given curve; so that, by art. 121, the tangent does not
usually cross the curve at the point of contact.

133. Corollary. A point of one curve may be placed
upon a point of another, and the twa curves turned
around upon this common pivot until their tangents
coincide; in this position, the two curves have evident-
ly a contact of the first order. If now one of the
curves is everywhere of the same curvature, that is, if
it is a circle, the contact will remain of the same order,
whichever of the points is brought to the point of con-
tact; but if it is any other curve, a point of it can
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Element of curve.

usually be found, which, brought to the point of con-
tact, will elevate the order of contact to the next higher
" order.

134. Corollary. By changing the dimensions of one
of the curves, the order of contact can usually be in-
creased by an unit for each of the constants which
enter into the equation of this curve, and upon which
its dimensions depend; because each of these con-
stants, regarded as an unknown quantity, may be
determined so as to satisfy a new equation of those
(545) or (547) upon which the .order of contact de-
pends. .

Thus, a circle can usually be found, which has a contact
of the second order, with a given curve at a given point; a
parabola, a cycloid, or a spiral of the form (133), (135), or
(136), which has a contact of the third order; an ellipse or
hyperbola, which has a contact of the fourth order, &c.

135. The differential of the arc of a curve is called
its element.

Thus, if s denotes the arc, d s is the element of the curve.
Hence in (fig. 53) if
dx= PP = MN,
we have then, by regarding MM’ as a straight line,
dy=MN,ds= MM =a/(d2*4dy?), (570)
so that if z is the independent variable

Ds=w[14(Dy)] (571)
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and if s is the independent variable, using the notation of
art. 129,

1=a/[(D.,2)*+ (D., )] (572)

136. Corollary. In the same way, if the radii vectores
AM, AM are drawn, and the arc MR described with » as a
radius, we have

MAM =dyM'R=AM'—AM=dr,MR=rd o, (573)
and if MRM is regarded as a right triangle

ds=a/(dr24r2d ¢?), (574)
so that if @ is regarded as the independent variable
Ds=a/[(Dr)241r2]. (575)

137. Corollary. The triangle M'MN gives, by (560), =
being regarded as the independent .variable, when none is
expressed in the formula

MMN=r-
cos.f:%:jls—:D.,wzsin.' (576)
“sin. 7= :_Z"—_ %: D.,g{:—cos.v (677)
and by (564) and (565) .
tang. = %:yp'”s': Dfl,y=si.:/iﬂ=_coz.r (578)
noxr'malz'y Ds Y y 3 (679)

— D.,x” cos.T ~ sin.»
20%
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188. Corollary. The triangle MRM' gives

MMR=s ) (580)
dr D.r
cos.b‘:E—‘;: DJ:D.,T (581)
. rd¢ r
Slﬂ-e_—d;—_-m-_fp.,¢, (582)

¢ being regarded as the independent variable, when none is
expressed in the formula. ’

139. Two surfaces which intersect at a given point
are said to be in contact, when their sections, found by
any plane passing through this point, are in contact.

140. Problem. 'To find the algebraic conditions that
two surfaces are in contact at a given point.

Solution. Let the surfaces be referred to rectangular co-
ordinates, and let 7y, y,, 7y be the codrdinates of the point
of contact. Then the sections of the two surfaces, made by
any plane, are found by equations (321-323), and since
these sections are in contact, the values of D y,, found on the
hypothesis that z, is the independent variable, must be equal
for the two surfaces at the point of contact. Hence the values
of Dz,, Dy, Dz, found by differentiating the equations
(321-323) must also be equal for the two surfaces, as well as

D.’Io_ dy, _—
—D—z‘;_i‘;‘—)-—.v-,yo (583)
and Dz _d%_p o (584)

Dz, da-
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141. Corollary. If one of the surfaces is the tangent
plane, its equation, since it passes through the point of con-
tact, is by (197)

cos. a (x—1,) 4 cos. 8 (y—y,) 4 cos. y (z—2z) = 0, (585)
from which we find by differentiation

COS. & S
D.,y:-cos_pzp.,yo, (586)

COS. o
D"zz—cos.yzD"z"’ (587)

which substituted in (585), divided by cos. «, give, for the
equation of the tangent plane,

_Y—Y% _  r—m _
(& —20) =5, Do =0  (5%9)

142. Corollary. If all the terms of the equation of the
given surface are transposed to the first member, and this
first member, which is a function of z, y, z, represented by
V, and if V becomes V; at the point of contact, the equa-
tion of the surface is /

V=0 (589)
The ditferential of this equation being taken on the hypo-
thesis that z is constant, in order to find D. , y,, gives

D.,V,.dzy+D.,V,.dy,=0, (590)
whence, by (586),

8y  D.,V,  cos.a
D..yy= d.ro_—D.,Vo__cos.p’ (591)
Cor — 1  cos.p  D.TV, (592)

D.,y, cos.a  N..V,
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In the same way we find
1 cos.y _D.,V,
—_ = = 593
D..zy" cos.a  D..Vy (593)

and these values, substituted in (588), give, by freeing from
fractions,
D.Vy (s—) 4 D., Vy (y—90) + D... Vo (z—2,) = 0. (504
This equation of the tangent plane compared with the com-
plete differential of (589), which is

D..Vydzy+D.,Vydy,4 D..Vydz, =0, (595)
shows that the equation of the tangent plane may be
obtained from that of the surface by changing in the

complete differential of the equation of the surface
referred to the point of coutact d zo, dy,, dzs respec-

tively into (z—=z,), (¥—¥%0), (2—20).

143. Cor;)llary. The sum of the squares of (592) and
(593) increased by unity is

cos2a+-cos.34-cos.2y_ (D.. Vo) H(D., Vo)*+(D..V)? 596
e = (Do 0%

or by (47), and putting
L=a/[(D..V2+(D., V2 +(D..V)]  (597)
D.:V,

cos.a# 7 sy D..Vo=L cos.a (598)
[]
D.,V,

cos. = — I:, e, D.,Vo=L,cos. 8 (599)

cos. ¥ = D‘I;V" s D.,Vo=1L, cos. 7. (600)
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144. The perpendicular to the tangent plane drawn
through the point of contact, is called the normal to
the surface.

145. Corollary. The angles 4, 8, v are, by (128), the
angles which the normal makes with the axes; hence, by
(124) and (598-600), the equations of the normal are

T—7Ty Y—Yo __*—2
Cos. @ CO0S.8  €OS. ¥

(601)

T—% _Y—Yo _2—2%

or D..V,=D.,V, D.V,

(602)

146. ExaMrLES.

1. Find the equations of the tangent plane and of the
normal to the sphere.

Solution. If the sphere is that of equation (62), we have
V=224 42— R2=0

D., Vo"_—_2.‘l‘o
D., V0:2y0
D., Vo___'2Zo
Ly=24/(s3 4y +3) =2R
L %
COS. a :—.ﬁ, cos.p:%), cos. ¥ = T{q'

The equation of the tangent plane is, by reduction,
2t 4 yoy+%z= R
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The equations of the normal are, by reduction,

Ty __ 1z

Y, %

so that by (123) it passes through the origin and is radius.

2. Find the equations of the tangent plane and of the
normal to the ellipsoid of equation (335).

Ans. The equation of the tangent plane is, by reduction,
y“ y + —1=0.

The equations of the normal are

Aﬁ(——l) B’(——l Cﬂ(———l)
3. Find the equations of the tangent plane to the cone of
equation (364).
- Ans. The equation of the tangent plane is
2y %

o+ 5 — =0,

so that it passes through the origin.

4. Find the equations of the tangent plane and of the
normal to the cylinder of equation (375).
Ans. The equation of the tangent plane is

By,y+Czyz2+4+ M=0,
so that it is perpendicular to the plane of y z. The equa-
tions of the normal are
r==x,

Cz,y— B y,z2=(C— B) y, 2.
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Tangent and normal 10 paraboloid.

'5. Find the equations of the tangent plane and of the
normal to the paraboloid of equation (376).

Ans. The equation of the tangent plane is
2By, y+2Cz+ H(x+2)=0.
Those of the normal are

2 Byy (z—x0) = H(y—,)
Czy— Byyz2=(C— B)y, 2%

6. Find the equations of the tangent plane and of the nor-

mal to the cylinder, of which the base is a parabola, and
the equation is (384).

Ans. Put H cos. « 4 I sin. « = — 4 p C, and omitting
the numbers below the letters in (384) ; the equation of the
tangent plane is

72=2p(z+ %),

so that it is perpendicular to the plane of xz. The equa-
tions of the normal are

y=%

% (x—2) =2p (7 —2)
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CHAPTER X.

CURVATURE.

< 147. THe circle, which has the contact of the second
order with a curve at a given point, coincides more
nearly with the curve at that point than any other
circle, and its curvature is therefore adopted as the
measure of the curvature of the given curve at that
point. It is hence called the circle of curvature, and
its centre and radius are called, respectively, the centre
and radius of curvature.

148. Problem. To find the radius of curvature of a
given curve at any point. :

Solution. Let ¢ be the required radius of curvature, v the
angle which the normal to the given curve makes with the
axis of z, +' the corresponding angle for the circle. Then,
at the point 2y, y, of contact, we have -

Yo = ”0" (603)

But if s, s’ are the arcs of the given curve, and of the
circle, we have, by (576),

d s = cosec.r.d x, d s’ = cosec.+'. d z,
8o that at the point of contact

d 8p = d 80’.‘ (604)
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But it is evident from (574) that, since the radius of the
circle is constant, we have

ds,=ds,=cdy,. (605)
But the differential of (561) gives, since the contact is of
the second order, .
dry=sindr, DB, y,dz,, dvy = sin2r; DAy, d z,, (606)
and

DRy, = DRy,,
so that by (603) and (606)
drg=dv,, (607)
which substituted in (605) gives '
ds,=¢edr,, (608)
or omitting the cyphers below the létters,
ezz—:-.—_'%zl)v& (609)

149. Corollary. Equations (609), (571), (576), (577),
(606), and (565) give .
__ D.s (D) 4Dy
~ sin2vD3.,y — D2,y Dz, y
(sec. 7)3 N d

8
Dy =Dy =g =De  (61)

(6i0)

e

e=

150. Corollary. When the equation of the curve is given
in polar coordinates, the radius of curvature may be found by
means of equations (557) and (558). For these give

. dr
d6=—sm.26d.(m) (612)
21 ‘
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. dr
d1=d¢+ds=d¢—sm.95d.(—d——¢ (613)

1 dr d¢ sin? dr
T T ds T ds "(rw)' (€14

151. ExampLEs.

1. Find the radius of curvature of the ellipse.

Solution. Equation (69) of the ellipse gives

B2z
D.,y—_-—m
B¢
.m.zy = — W
_(Atp4Ba)f  aaNe A2 B

At Bt T Bt (A4%sin2r + B?cos.? 1)3.
This value of the radius of curvature is the same also for
the hyperbola. .

2. Find the radius of curvature of the parabola of equa-
.tion of B. 1. ¢ 180.

@ +4)t _ 2p

‘ T 4p T 2 p2 cosd7

3. Find the radius of curvature of the cycloid.
Ans. 4 Rsin. 36 = 4 Rcos.t—=2 N,

4. Find the radius of curvature of the spiral of Archi-
medes.

Ans.

Ra+e?
i TICET N
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Evolute and involute.

5. Find the radius of curvature of the logarithmic spiral,
of which the equation is given in Example 7, § 133.

Ans. a?a/[1 4 (log. a)?].

152. Problem. To find the centre of curvature of &
given curve. '

Solution. Letz,,y, be the codrdinates of the centre of
¢urvature corresponding to the point of contact z, y of the
given curve, and, by B. L. § 83, 2, — = is the projection of
the radius of curvature upon the axis of z.

But, by B. L. § 85, this projection is also expressed by
ecos.r—x, —2, (615)
whence 2, =z 4ecos.r (616)

In the same way we find
Y, =9g+esinrn (617)

153. Corollary. 1If the two codrdinates of the given
curve are eliminated between the three equations (616),
(617), and the given equation of the curve, the result-
ing equation, containing only the coérdinates of the
centre of curvature, is the equation of the curve upon
which the centre of curvature is situated. This curve
is called the evolute of the given curve, for a reason
which will soon be given. 'The given curve is called
the involute of its evolute.

154. Corollary. The differentials of (616) and (617) are
dex,=dz+4de.cos.yv—sin.».od» (618)
dyl_—_dy+de.sin.v+cos.v.od9. (619)



244 DIFFERENTIAL CALCULUS. [B.IL CH.X
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But by (576), (577), and (609)
sin.r.¢edr—=dz (620)°
cos.r.odv=—dy (621)
which, substituted in (618) and (619), give
dx, =dg.cos.» (622)
dy, = de.sin.» (623)

155. Corollary. If 7, and », are the angles, which the
tangent and normal to the evolute make with the axis of z,
we have, by (622) and (623),

dy
dx:._tang vy (624)

tang. 7, = — cot. 78—
whence

n=rvr=§x+n,=¢x+r=%4r1, (625)
so that the normal to the involute coincides with the
tangent to the evolute.

156. Corollary. If s, is the arc of the evolute, we have,
by (622) and (623),

ds,=a[(dz,)? 4+ (dy,)?] =xde, 1626)

so that thearc of the evolute increases at the same rate

that the radius of curvature of the involute increases
or decreases. Hence

48, =% 4de. (627)

157. Corollary. If CM M (fig. 54) is the involute, C, M, M",
the evolute, and if MM,, M"M', are tangent to the evolute,
and consequently normal to the involute, we have
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e=MM,, ¢/ =M'M,
do=MM;,—MM, = 43,=MM|,,

so that MM, = MM, 4 MM,
Hence if a string were wound around the evolute of
such a length, that, when drawn tight at M, in the
direction of the tangent MM, it would reach to M,
it would, when unwound and drawn tight at M;,
reach to M, and its extremity would, in the process

of unwinding, describe the involute. The names of
these curves are derived from this property.

158. Corollary. If o, is the radius of curvature of the
evolute, we have, from (611), (625), and (626),

ds,

dr,

de
=:L—_'d—t-=:b.D.10o (628)

e, =

159. Corollary. The evolute of the evolute is called
the second evolute, and the evolute of the second evo-
lute the third evolute, and so on.

If, then, ¢, is the radius of curvature of the n* evolute,
and 7, the angle, which the tangent to this evolute makes
with the axis of z, (625) and (628) give

&= D're (629)
R L (630)

160. Scholium. No more natural system of coordi-
nates of a curve could probably be devised than its
radius of curvature, ¢, and the angle, 7, which its
direction makes with a given direction. A curve is

1+
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readily referred to these coordinates by the equations
already given ;.and from its equation referred to these
codrdinates, the corresponding equation of either of its
evolutes is readily obtained by means of (629) and
(630).

161. ExaMPLEs.

1. Find the evolute of the ellipse.

Ans. The equation referred to the coordinates of
§ 160 is

__ 3 A2 B (A%—B?%)sin. 27
€= (A42cos?7 4 B2sin®1) §°

2. Find the evolute of the parabola of equation of § 160.
Ans. Its equation is

' 6 psin. v
M
cos.t 7

3. Find the n'* evolute of the cycloid.
Ans. Its equation is
¢e=4 Rcos. 7,
so that it is a cycloid precisely equal to the given cycloid.

4. Find the n* evolute of the logarithmic spiral.
Ans. 1t is a logarithmic spiral.

5. Find the evolute of the curve of which the equation
results from eliminating ¢ between the two equations
y= Rsin. — R ¢ cos. ¢
2= Rcos. 4 R ¢sin. 9.



§161.] CURVATURE. 247

Involute of circle.

Solution. We have
dx—= Rod@cos. ¢
dy= Rodpsin. ¢
tang. 7 — tang. ¢, r = @
ds=Rtd~
e=R~

e;=D.re=R,

that is, the radius of curvature of the evolute is constant,
and the evolute is therefore a circle.
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CHAPTER XL

SINGULAR POINTS.

162. THose points of a curve, which present any
peculiarity as to curvature or discontinuity, are called
singular points.

163. Whenever a function is discontinuous, the cor-
responding curve found, as in § 5, is also generally
discontinuous.

Thus if f. z is a function of x, which is imaginary for all
values of x less than

z = a = AP (fig. 55);

for all values contained

between z — a’ — AP’ andz=a"= AP",

between z = a’/ — AP and £ —= a'¥ = APv,
and for all values greater than

z=a" = APr;

and is continuous for all values of =

betweena —a — AP andz=—=a' — AP/,

between r — ¢’ — AP” and 2 = a"' = AP,

and betweenzr — qv—= AP~and x = a* — AP";

.
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its locus is composed of the different portions MM', M"' M,
and MvMv,

If, for instance, this function were such as to have always
the same value

b= PM= PN = PN, &c.
wherever it was not imaginary, the locus of
. Yy = f. x
would be the portions MIV', N"N', and NivINv, of a straight
line drawn parallel to the axis of z.

164. ExamMPLES.

1. Construct the locus of the equation
y— b= [log. (z —a)]™
in the vicinty of the point at which it stops' and find its
tangent at this point.

Solution. The logarithm of a negative number is imagi-
nary, and therefore the value of y is 1magmary aslong as 2
_ is less than a; but when z = a, we have

y—b=(log.0)'=@'=0
, y=2,

so that the point M (fig. 56), for which

AP —=a, PM =%
is the point at which the curve stops. At this point we
have, by § 108,

tang. 7 = D.y = — [log. (2 —a)] 2 (z—a)' =
T= 3},

so that PM is the tangent to the curve at the point M.
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The remainder of the curve near the point M is constructs
ed by finding different values of y for different values of z
nearly equal to @, and drawing the curve through the points
M, M', M, &c. thus determined. The figure 56 has been
constructed for the case in which

a=2,b=1,
and, for the present example, extends to
z= AP" = 2.135, y = 0.5,  — 118° 26'.

2. Construct the locus of the equation
y— b= (r—a) [log. (x—a)]?

in the vicinity of the point at which it stops; and find its
tangent at this point.

Ans. This locus is, for the present example, represented
in fig. 57, from

r=—wotorz=a-405=AP.

The point where the curve stops corresponds to
z — a= AP, where = 0,
80 that M T parallel to 4X is the tangent.

3. Construct the locus of the equation
y—b=(x—a—1) [log. (r — a)]?
and find the tangent at the point where it stops.

Ans. This locus is represented in fig. 58. The point
where it stops corresponds to

2z =a= AP, where t = } =,

so that PM is the tangent.
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¥ 4. Construct the locus of the equation
y—>5b = (x—a) log. (z—a)
and find the tangent.at the point where it stops.

Ans. This locus is represented in fig. 59. The point
where it stops corresponds to

X e—=a= AP, where st =} =,
#0 that PM is the tangent,

« 5, Construct the locus of the equation
y—b=(z—a)log.(x—a)

in the vicinity of the point where it stops, and find the tan-
gent at this point.

Ans. This locus is represented in fig. 60, which, for the
- present example, extends

from r——a

to 2z—AP'—a+0.223, where y=—5—0.075, r=155° 57'.

The curve stops at the point corresponding to
#=AP = a, where r=20,
so that MT, parallel to AX, is the tangent.

~

6. Construct the locus of the equation
| y—b=(2—a) [log. s — )

in the vicinity of the point where it stops, and find its tan-
gent at this point.

Ans. This locus is represented in fig. 61, which, for the
present example, extends

from z=—w to t=AP' =a-}-0.368;
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it stops at the point corresponding to
. 2=AP=a, where =} =,
_ 8o that PM is the tangent at this point.

7. Construct the locus of the equation
y—b=(z—a)?[log. (x—a)]?
in the vicinity of the point where it stops, and find the tan-
gent at this point.

Ans. This locus is represented in fig. 62, which, for the
present example, extends

from z=-—w, to z=A4AP'=a+0.38;
it stops at the point corresponding to
2 =AP — a, where 1 =0,
so that MT, parallel to AX, is the tangent.

8. Construct the locus of the equation
y = log. (z4 1) 4 = log. =,
and find the tangent at the point where it stops.

Ans. This locus is represented in fig. 63 ; it stops at the
origin where the axis of y is the tangent.

9. Construct the locus of the equation .
y=mz log. z4 n (a— z) log. (a—2),
and find the tangents at the points where it stops.
Ans. This locus stops at the points where

2=0and z2=a;
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A )
at which points the values of y are, respectively,

y—=mnalog.a, and y =malog. a;
and the tangents are parallel to the axis of y.
Figure 64 represents this locus when
a=1m=2, n=3,
and figure 65 represents it when

a=—=1lm=2, n=—3.

10. Construct the locus of the equation
=mz2 log. z 4 n (a — z) log. (a — z),
and find the tangents at the points where it stops.
Ans. This locus stops at the points where
z=0and x = a;
at the first of which points
tang. r = — n log. (a—:l;)—n,~
and at the second
=3
Figure 66 represents this curve when
a=1,m=2,n=3;
and figure 67 represents it when

a=l,m=2,n=;3.

- 11. Construct the locus of the equation

y=f,.x(f.x)log. f.2,
in which f.z is a given function of z; and find the points
where it stops.

N
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Ans. It stops when f.z becomes imaginary, or when it
becomes negative.

Figure 68 represents this locus when
Sirz=n=1, fa=22—z,
in which case it extends
from 2=—wo tor=20,
where it stops, and extends again
from 2=1=AP toz =

The tangent at each of the points where it stops is parallel
to the axis of y.

~—  Figure 69 represents this locus when
n=1, fi.z=z, f.o=2? —a,

so that the points of stopping are the same as in figure 68.
But the tangent at the point A4 is the axis of z,-while that at
the point P is parallel to the axis of y.

+  Figure 70 represents this locus when
‘=2, f,.2=1, f.x=122—az,

so that the points of stopping are the same as in figure 68 ;
but the tangent at each point is the axis of z.

Figure 71 represents this locus when
Sfi.a=n=1, fia=2—22,

so that the points of stopping and the tangents are the same
as in figure 68 ; but the curve extends from one point to the
other. .

Figure 72 represents this locus when

n=1, fi.z=z, fie=2—22,
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so that the points of stopping and thé tangents are the same
as in figure 69 ; but the curve extends from one point to the
other.

Figure 73 represents this locus when
n=2, f.2=1,fi=z—a,

so that the points of stopping and the tangents are the same- -
as in figure 70 ; but the curve extends from one poiat to the
other. ’

Figure 74 repre:sents this locus when
n=1, f,.z=(10z4 1)
fie=z(z—1) (—2) (zr—4) (z—15),
in which case it extends .

from 2 =0 toz = 1= AP, where it stops,
from 2 =2 = AP, toz = 4 = AP,, where it stops,
from z=5=AP tor= .

The tangent at each point where it stops is parallel to the

axis of y.

Figure 75 represents this locus when
n=1, fi.2= (1024 1)
fie=—z(z—1)(z—2) (r—4) (r—5),
in which case it extends
from z — — @ tox = 0, where it stops,
from z—=1= AP, toz =2 = AP,, where it stops,
from £ =4 = AP, tox = 5 = AP, where it stops;

the points of stopping and the tangents are the same as in
figure 74.
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Figure 76 represents this locus when
n=1, f,.e=3%(z41)2¥(z—2)(z2—3) (z—4) (224 3)2
fz=z(x—1) (x—2) (x —4) (z—5);

in which case it extends as in figure 74, and the tangents at
the points P, and P, are parallel to the axis of y, but the
axis of z is the tangent at the points A, P,, and P,.

Figure 77 represents this locus when
a=1,f,.2=4(z41)2%(x—2) (r—3) (z — 4) (10z 1)~
fie=—z(z—1) (z—2) (z—4) (x—5),

in which case it extends as in figure 75, and the tangents
ave as in figure 76.

Figure 78 represents this locus when
a=1,f,.z2=(10z41)!
fr=z(z—1) (x—2) (x—3) (x—4) (xr—5),
in which case it extends-
from z—= — @ to z = 0, where it stops,
from e =1=AP, toz = 2 = AP,, where it stops,
from =83 = AP, to t=4 = AP, where it stops,
from 2=5=AP tor— o;
the tangent at each point where it stops is parallel to the
axis of y.
Figure 79 represents this locus when
n=1f . 2= (10x+4 1)1
fr=—z(z—1) (z—2) (r—3) (x—4) (r—5),
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from z =0 to 2 =1= AP, where it stops,
from t =2= AP, to x=3 = AP,, where it stops,
from 2=4 = AP, to r=>5= AP,, where it stops;

the points of stopping and the tangents are the same as in
figure 78.

Figure 80 represénts this locus when
n=1, fi.e=3%(z+41)2? (z—2) (—3) (+—4) (22z43)2
Sfe=z(x—1) (+—2) (z—3) (—4) (=—5),

in which case it extends as in figure 78, and the tangents at
the points P, and P, are parallel to the axis of y ; but the
axis of z is the tangent at the points 4, P,, P, and P,.

Figure 81 represents this locus when
n=1,f,.2=4(z+1) 23 (x—3) (z—3) (=—4) (102}1)~*
fa=—z@—1)(2=2) (+—3) (+—4) (=—5),

in which case it extends as in figure 79, and the tangents
are as in figure 80.

Figure 82 represents this locus when
n= i, fiz=1}z
: foe=—62(2—1)2 (2—2),
in which case it extends from
z=0 to z=2=AP,.
Figure 83 represents this locus when
n=1, fiz=}z(z—1)"
fix=—6z(z—1)3 (r—2),
in which case it extends as in figure 82.
22
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- Figure 84 represents this locus when
n=1, fl..'c—_- 1
fer=ax+4 N2,

in which case the portion AM of the curve, which cor-
responds to the positive value of the radical, extends

from z=0 to r=wm;

the portion P, M,, which corresponds to the negative value
of the radical, extends

from z=1=AP, to z= .

- Figure 85 represents this locus when
n=2, f.z=1
Sfr=z+4+ W2,

in which case the portions extend as in figure 84.

Figure 86 represents this locus when
n=0, f,.z2=(12—2z)
.f--” =+ A/ z,

in which case the portions extend as in figure 84.

Figure 87 represents this locus when

n=1, fi.z=log. f.x
fr=z+/1,

in which case the portions extend as in figure 84.

Figure 88 represents this locus when
n=1, flia=1
Ja=(z+~2)}
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in which case each portion extends from

2=0tor =,

- Figure 89 represents this locus when
n=1, f,.x=(z4a/2)""
. for=(e+a2)7,
in which case the portions extend as in figure 88.

«  Figure 90 represents this locus when
n=1, f,.z2=log. f.x
fz=(z+/2)3
in which case the portions extend as in figure 88.
Figure 91 represents this locus when
=0, f,.2= (22 —z)?log. f.2
f‘z = (1’+~/1‘)’,
in which case the portions extend as in figure 88.

Figures 92-99 represent this locus when
fie=n=1, f.e=a4+/(4—122),
in which case it stops at the values
t=—AP =—a/(4—a?) andz = AP" =4/ (4 —a?).
The tangents at the points P’ and P are parallel to the axis
of y. '
In figure 92, a=—1.5.
In figure 93, a=—1.
In figure 94, a=— 0.5.
In figure 95, a=0.
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In figure 96, a —0.5.
In figure 97, a=1.
In figure 98, a=1.5.
In figure 99, a=2.

12. Construct the locus of the equation

y=f.z+mnf .z
when m is infinitely small and f, .z a function, which is not
infinite while z is finite, but is alternately real and imaginary.

Solution. Since m is infinitely small, the part m f, .z may
be neglected when f . z is real, but when f, . z is imaginary,
the value of y is imaginary, so that if figure 100 is the locus
of equation

y=f.z;
the same figure, with the dotted parts omitted, which corre-

spond to the imaginary values of f, .z, represents the locus
of the given equation.

Thus, the locus of the equation
y=a/(R? — 22) 4 0.00000000001 X z"log. z

differs insensibly from the semicircle BCB' (fig. 101), of
which R is the radius. But it must be remarked, that, when
n is unity, the curve is suddenly turned into the form of a
hook at the points B and B/, so as to become tangent to the
axis of y, assuming a form similar to that of the dotted line,
but of indefinitely less extent.

13. Construct the locus of the equation

r=f.0%mf,.0
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expressed. in polar coordinates, and in which m is infinitely
small, and f,. ¢ finite when real.

Solution. If MM' M'M" &c. fig. (102) represent the
locus of

r=f.(P,

the same curve with the dotted parts omitted represents the
given curve, the dotted parts corresponding to the imaginary
values of f.@.

Thus, if f-¢=R,
the curve consists of several successive arcs of the same

circle.

165. A conjugate point is one separated entirely from
the rest of the curve, but included in the same alge-
braic equation.

A conjugate point is indicated algebraically by the con-
dition that coordinates of this point are real, while the
codrdinates of no adjacent point are so.

166. ExamMpPLES.

1. Construct the locus of the equation

y=f.z4+nf . =

in which m is imaginary and f, . z real.
Solution. If the curve (fig. 100) is the locus of
y=f .2
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and if M, M', &c. are the points which correspond to the
abscissas, for which

fi.=0;
the locus of the given equation consists of the series of coun-
jugate points M, M, &c. without any continuous curve.

If fre=az+40,

all these points are upon the same straight line.

2. Construct the locus of the equation
(y—f.2)4+y—f,.2)*=0.

Solution. 'The sum of two squares cannot be zero unless
each square is zero; so that the given equatlon is equivalent
to the two equations

y—fz=0, y—f,.2=0;

that is, the codrdinates of all the points of the required locus
satisfy these two equations.

If, then, APP' P/ P P'V PV &e. (ﬁg 103) is the locus
of the equation

y=fz, .
and if AP, P'P; P" P}y P" PV PY &ec. is the locus of the
equation

y=ri-z
the required locus is the series of conjugate points 4, P, P,
PV, &c., in which these curves intersect.

Thus the locus of the equation

(z—a)P 4 (y—B)2=0
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is the single conjugate point of which the coordinates are @
and 5.

3. Find the conjugate points of the locus of the equation

cy=f.a4f,.2f;.x,
in which f, .z and f, . x are sometimes imaginary.

Solution. If f, .x is imaginary for values of z between a
and b,and, if f, . z vanishes for one or more of the values of
@ contained between a and & ; the given equation is reduced
for these values of f, .z to

y=Ff.=
so that the corresponding points of the curve are conjugate
points situated upon the locus of the equation
- . ) =f. Z.
In the same way, those points of this locus are conjugate

which correspond to values of 2, for which f, .z vanishes,
while f, . z is imaginary.

Thus the point P/, for which #=—1 is a conjugate
point upon the axis of z in the curve of figure 76.

This locus is represented in figure 104, when
fe=A(4—2%, fi.c=A/(1—123), f, .o = zlog.2—1.

It has four conjugate points, M', M, M, M, situated
upon the circle of which the origin is the centre, and of
which the radius is

AP =—2.
The common abscissa of two of these points is
g—=— AP =—1,
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and of the other two
x= AP'=1.763.

4. Construct the locus of the polar equation of example 13,
§ 164, when m is imaginary.

Ans. It represents a series of conjugate points, upon the
cuive of which the equation is

= f . P
These points correspond to the values of ¢, which satisfy the
equation.
fi-¢=0.
When f. ¢=R,

the points are all situated upon the circumference of which
R is the radius, and the origin the centre.

167. A branch of acurve is a continuous portion of
it, which extends from one point of discontinuity to
another.

When a branch returns into itself, so that its com-
mencement is the continued curve of its end, it is called
an oval.

168. A point through which the curve passes more
than once, or at which two or more branches termi-
nate, is called a mudtiple point.

A multiple point at which two or more branches stop,
and have the same tangent, is called a cusp. If a branch
begins and ends at a point, having but one tangent at
this point, without being continuous, this point is also
a cusp.
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A cusp is said to be of the first kind, when the two
branches at the point of contact lie upon opposite
sides of the tangent, as at M (fig. 106) ; but if the two.
branches lie upon the same side of the tangent, as at
M (fig. 107), the cusp is said to be of tke second kind.

169. In the algebraic consideration of curves, they
are naturally divided into portions, according to the
number of ordinates which correspond to the same
abscissa; or of radii vectores, which correspond to the
same angle.

" The algebraic portions of a curve are not to be con-
founded with the geometric branches ; for the same portion
may consist of several branches, or several different portlonu
may be united mto one branch.

Thus the cyclond consists of but one portion, but of an
infinite number of branches; whereas the circle, the ellipse,’
and the parabola consist of two portions, but only of one
branch ; and though the hyperbola consists of two portions
and two branches, yet half of each portion belongs to each
branch. '

170. Problem. To find the cusps of a given curve.

Solution. 1. If a portion MMM (fig. 105) of a curve,
whose equation is expressed in rectangular coordinates, has
a cusp at a point M, it is evident that the tangent TM at this
point must be perpendicular to the axis of z. For if it were
not 8o, as in figure 106, there would, for the abscissa AP’
very near to AP, be the two ordinates P’M' and P'M,, so
that MM’ and MM would be two different portions of the
curve, and not the same portion, as we here suppose.

23
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Moreover, the tangents M‘T' and M" T', which are in-
finitely near to MT, must evidently be inclined to the axis of
=, one by an acute angle and the other by an obtuse angle,
so that

tang. 7= D.y

must change ils sign at the point M by passing
through infinity if the point M is a cusp, formed by
two bramches of the same portion of the curve; and
such a cusp is necessarily of the first kind.

2. If a cusp is formed at the meeling of two
branches of different portions, as at M (figs. 106 and
107) and if the common tangent MT is not perpen-
dicular to the axis of x; the ordinates for both por-
tions, which correspond to the abscissas AP and AP,
one of which is greater and the other less than AP,
must be imaginary for one of. these abscissas, and real
for the other. The cusp is of the first kind, as in
Sigure 106, if the value of = is greater than MTX
upon one branch, and less than MTX upon the other
branch ; but it is of the second kind, as in figure 107,
if the value of = is greater or less than MTX upon
both branches.

But if the common tangent is perpendicular to the
axis of x at M (figs. 108 and 109), the ordinates
Jor the two portions must be both increasing, or both
decreasing in proceeding from M. The cusp is of
the first kind, as in figure 108, when it ts the end
of one branch and the beginning of the other; but i
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18 of the second when it is the end or the beginning of
both branches, as in figure 109.

171. Problem. To ﬁnd the points where two portions
of a curve unile in the same branch.

Solution. The point M ( figs. 110 and 111) is one
of the required points, if the two portions MM'" and
MM have a common tangent at this point, while the
point is not a cusp, but merely a point where both the
portions siop. .

172. Corollary. The portions MM'M, and MMM,
(fig. 112) compose an oval, if at their two extremities
M and M, they unite in a continuous curve and have
no point of discontinuity between their extremities.

173. When the curve is expressed in polar coordi-
nates, the analytic portion depends upon the number
of radii vectores which correspond to the same angle.
Buat it must not be overlooked that the same direction
is determined by angles which differ by any entire
multiple of four right angles, so that a curve, like one
of the spirals of B. 1, § 98, may consist of but one
portion, although there are an infinite number of radii
vectores in each direction.

Multiple points are obtained in. any portion, when
the same value of the radius corresponds to two or
more angles, which differ by any entire multiple of
four right angles. . -
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- 174. ExamMrLES.

1. Find the cusps of the cycloid.

Solution. The cycloid obviously consists of but a single
portion. If there is a cusp, the tangent at it must, then, as
in § 170, be perpendicular to the axis of z ; that is, we must
have, by § 131, example 5,

cotan. $ 6 =,
which gives ,
do=nx 0=2nw
in which n is an integer.
But this value of ¢ gives, by (131),
y=0,

and since we can never have

‘cos. 0 > 1,

the value of y is never negative, so that there is a cusp at
each of the points where -
y=0.

2. Find the branches of the locus of Example 1, § 164.

Ans. It consists of two branches, one of which, M A’
(fig. 56), begins with

z=a, y=2>,
and extends to
z=a+1, y=—w.
The second M, M, begins with
r=a41, y=a,
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and extends to
z—=awm, y==b.
‘3. Find the branches of the locus of Example 2, § 164.
Ans. Tt consists of two branches, one of which MM’ (fig.
57), begins with

z=a, y=2",
and extends to ' .
t=a+4+1 y=—o.
The second M, M}, begins with
r=a+41, y=o, -
and extends to
r=wo, y=w.
The least value of y in this second branch is found by
§ 113, to be
y= P, M, =2.118, corresponding to z = AP; =2.718,
4. Find the multiple poiat of the locus of Example 11,
§ 164, when
=0, f,.2 = (s2—2z)
f.e=z4 Az
Ans. There is a multiple point when
2=1=A4P,, y=20,
at which point the portion corresponding to the negative
value of the radical begins, its tangent being P, T, (fig. 86),
drawn parallel to the axis of y, and the portion correspond-
ing to the positive value of the radical passes through the
same point, its tangent being P, T}, so drawn that
T, P, X= 34° 44
23¢
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5. -Find the multiple points of the locus of Example 11,
§ 164, when

a=1, fize=log.f.2
foz=1}(+n2)
Ans. There are two multiple points; one is at P, (fig.

113) where .
. z=1 y=0;
at which point the branch corresponding to the negative
value of the radical begins, while the other branch passes
through it; P, T, is the tangent to the former branch, and
the axie of z is tangent to the latter branch. The other
multiple point is at M,, where
z =196, y=1045;

the value of r for the former branch is

+ = 149° 15/,
and that for the latter branch is
7 = 60° 35,

6. Find the cusp and the other multiple point of the
locus of Example 11, § 164, when

‘ n=1, firz=1, foz =(z 4+ A/2)2
Ans. The origin A (fig. 88) is a cusp of the second kind,
and the axis of z is the tangent at this point.

The other maltiple point M, corresponds to
z = 0328, y = 0.169.
The values of 7 at this point are
= 69° 29, and r = 6° 30/,
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7. Find the branches and the multiple point of the locus
of Example 11, § 164, when

n=1, f,.a=(++2)7, f.e= (24 /2)2
Ans. The curve consists of but one branch, for the two
portions unite in one branch at the origin 4 (fig. §9).

The multiple point corresponds to
x = 0.544, y — 0.634, -
at which point the two values of » are
*="176° 85, +=124°13.
8. Find the multiple points of the locus of Example 11,
§ 164, when
n=1, fi.e=log.f.x

Ans. The origin (fig. 90) is a cusp of the first kind, the
tangent at this point being the axis of z.

M, is a multiple point corresponding to
2 —0.142, y—0.465,
at which point the two values of r are
*=114° 37, ==21°40.
M, is a multiple point corresponding to
z = 0.544, y—=0.402,
at which point the two values of 7 are
T=>53" 17, +r=172°29.

9. Find the multiple points of the locus of Example 11,
§ 164, when
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1=0, f,e=(x2—2z)%log. f.x
Sfoz= (x4 A/2)%

Ans. The origin (fig. 91) is a cusp of the second kind,
the tangent at this point being the axis of .

M, is a multiple point corresponding to
x=1, y=0,

at which the axis of z is the common tangent to the two
branches of the curve, and the contact of the two branches
is of the second order.

10. Has the locus of Example 11, § 164, any cusp, when
a=1, fle=}z(z—1)", fiz=—62(z—1)2(z—2)?

Ans. It has none.

11. Find the multiple point of the locus of Example 11,
§ 164, when

Sre=n=1, fix=a4A/(4—22).

Ans. When a is zero, or negative, there is no multiple
point.

When a is positive, and less than

¢l = [2.71828] ! = 0.3679,
the curve consists of a single branch without any multiple
point. ’
When a=¢1=0.3679

the curve consists of three branches, as in (fig. 114), and
has two cusps of the second kind, corresponding to

=42, y=—a=—#0.3679.
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When a is greater than e~ and less than 4, the curve
censists of one branch with two multiples, as in figure 115,
where

a = 04,

and the two multiple points correspond to
= 4 1.984, y = —0.275.
The values of + at one point are
= 102° 38, and v = 97° 4%/,
at the other
T="T7°22, and r = 82° 15,
When ca=1=0.5,
the curve (fig. 96) has two multiple points at the beginning
and end of its branch, corresponding to
=4 1937, y=0.
The values of = are
r=90°, 7=90° 4 45°.
When a is greater than } and less than 2, the curve con-
sists of a single branch, with no multiple points.
When a—=2,

the curve (fig. 99) is an oval.

12. Construct the locus of Example 11, § 164, when
fire=n=1, fix=a+/(a®—22).
Ans. Where a is greater than }, the curve is an oval, as

in figure 99, where
a=2

When a=3=0.5,
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the curve (fig. 116) consists of a single continuous branch,
which returns into itself ; and it has a multiple point at the
origin, where the curve has a contact with itself, the common
tangent being the axis of .

When a is less than } and greater than
e~' = 0.3679,

the curve consists of a single continuous branch, which re-
turns into itself; and has two multiple points, as in figure
117, where

a= 04,

the two multiple points correspond to
z = 4+ 031, y = — 0.27.
The values of 7 at one point are
r = 144° 53, +=131°41,
and at the other
=35 7,+ = 45° 17’
When a=¢"'=0.3679,

the curve (fig. 118) consists of two branches and two cusps
of the first kind, corresponding to

r=a, y=—a.
When a is less than e~ the curve is an oval, as in figure

119, where
a—02.

13. Construct the locus of the equations of Example 5,

§ 161, and find its cusp.

Ans, This locus is represented in figure 120. Its cusp is
of the first kind, and corresponds to
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¢=0, z=1, y=0,
where the axis of z is the tangent.

14. Construct the locus of the equation

yr=2,
and find its cusp.

Ans. This locus is represented in figure 121. Its cusp is
of the first kind, and is the origin, where the axis of 2 is
the tangent.

15. Construct the locus of the equation

y¥=uat—2a3,
and find its cusp.

Ans. This curve (fig. 122) consists of three branches,
two of which extend from

r=—wm to =0,
where there is a cusp of the first kind.
The third branch extends from

z=1 to r=w.

16. Construct the locus of the equation

¥ = a3 —at,

and find its cusp.
Ans. This locus (fig. 123) consists of a single branch,
which has a cusp of the first kind at the origin.
17. Construct the locus of the equation

=1zt —2?,
and find its branches.
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Ans. This locus (fig. 134) consists. of two branches, one
of which extends from

r=—am to z2=—1,

and the other from
z=1 to z—= o,

and a conjugate point, which is the origin.

18. Construct the locus of the equation
. y’ =at—at ’
and find its multiple point.

Ans. This locus (fig. 125) consists of one branch, which
returns into itself, and has a multiple point at the origin,
where the values of 7 are

T =4 45°.

19. Construct the locus of the equation
y? = a2t — 28,
and find its multiple point.

Ans. This locus (fig. 126) consists of a single branch,
which returns into itself, and has a multiple point at the
origin, where it has a contact with itself. The tangent at
the origin is the axis of z.

20. Construct the locus of the equation
P=z3—z

Ans. This locus (fig. 127) consists of an oval, which
extends from
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T == o ltox — 0,
and a branch which extends from

z—1toxr = .

21. Construct the locus of the equation
¥ = 25— 3,
and find its cusp.

Ans. This locus (fig. 128) consists of a branch, whick:
extends from

z—=—1tox =0,
where there is a cusp and a branch, which extends from

z=1toz —=.

22. Construct the locus of the equation
y=at (12,
and find its multiple points.

Ans. This locus (fig. 129) consists of two branches,
which' extend from

z=—1ltoz=1
They cross at the origin, where the values of 7 are
=4 45°,
and there are two cusps of the first kind, corresponding to
z=41

23. Construct the locus of the equation
¥ =zt (1 —a2)3,
and find its multiple points.
4
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Ans. This locus (fig. 130) consists of two branches,
which extend from
z=—1toz=1.

There are two cusps corresponding to the two values of z,
and the origin is also a multiple point, where the two
branches are in contact.

24. Construct the locus of the equation.
y¥=02—2) (1—2%) (3 —2),
and find its branches.

~ Ans. This locus (fig. 131) consists of a succession of
three ovals, which extend respectively

from z=-—a/2 toz = —1
from &= —a/F toz=na/}

from «—= 1 to x = /2.

25. Construct the locus of the polar equation
r=a-sin.m 9,
and find its multiple points and branches.

Ans. If m is an integer and a greater than 1, this locus
is oval, as in figure 133, where

a=2,m—=3.

If m is a fraction and a greater than 1, this locus is a
curve, which returns into itself after as many revolutions of
the radius vector as there are integers in the denominator of
m.

Thus, in (fig. 134),

a=2, m=4,
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there is a multiple point carresponding to
¢=0o0r=360°, r=2,
at which point the values of & and = are
§=71="75°58,and e =+ =104 2.

In (fig. 135) a=2, m=3,
there are three multiple points corresponding to
@ =0° or = 360°, ¢ = 120° or = 480°, ¢—= 240° or = 600°,
at each of which points the values of r and & are
=2, e=53"8, and s = 126°52'.

In (fig. 186) a=2,m=y4,
there are two multiple points, one of which corresponds to
¢ = 90° or = 450°, r =2.5
& = 83° 25 and & = 96° 35/,
and the other to ¢=630°0or =990°, r = 1.5
& =797 and £ = 100° 53".

In (fig. 137) a=2, m=%, .

there are four multiple points; at two of these points we
have

¢ = 45° or = 765°, ¢ — 225° or = 585°,
and at each of these points
x r—=2.5, e =177, and s — 108°;
at the other two points we have
= 315° or = 1035°, ¢ — 495° or = 855°,
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and at each of these points
r—= 1.5; £ —=68°57, and s = 111° 3",
In (fig. 138) a=2, m=—1},
there are three multiple points ; one of which corresponds to
=00r="720°,r=2 ’
8§ = 82°53' and 8 — 97° 7';
the second corresponds to
¢ = 180° or — 540°, r — 2.707
& —86° 16’ and s — 93° 44';
the third corresponds to
¢ = 900° or — 1260°, r — 1.293
& = 82° 13’ and s = 97° 47,
In (fig. 139) a=2, m=3},
there are nine multiple points ; three of which correspond to
@ = 0°or = 720°, o= 240° or — 960°, ¢ = 480° or = 1200",
. -and at each of thest points we have
r—=2, e=69°27, and ¢ = 110°33';
three correspond to
¢ =160°0r = 1140°, ¢ — 180° or = 540°, ¢:660°o_r= 10207,
and at each of these points, we have
r=2.707, ¢ ="78°55', and ¢ = 101° 5 ;

three correspond to
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¢ =360° or = 1380°, ¢ =420° or= 780", ¢ = 900° or = 1260°,,
and at each of these points we have
r—=1293, ¢ =67 42/, and ¢ =112° 18"

If a—=1 and m an uneven integer, or a fraction whose
numerator is uneven, the origin is a multiple point consisting
of the union of as many cusps as there are in the integer m,
or the numerator of the fraction m.

Thus, in (fig. 140) a=1, m=1,
the origin is a cusp,vand the tangent is the axis of y.
In (fig. 141) - a=1, m=3,

the origin is an union of three cusps, and the three values
- of = at this point are

+=90°, v=210°, v —=330".
In (fig. 142) a=1, m=25,

the origin is an union of five cusps, and the five values
" of 7 at this point are

T=54°, .= 126°, +—198°,
T=270°, v =342,
In (fig. 143) a=1, m=4%,

the origin is a cusp, and the tangent at this point is the axiy
of x. There is a multiple point corresponding to

¢=0° or =360°, r=1
¢ =63°26' and &= 116°34',

In (fig. 144) a=1, m=3,
84e
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the origin as an union of three cusps, and the three values
of ¢ at this point are

T =60°, v=180°, + =300°, ~
Thero are three other multiple points corresponding to
@ =0° or = 360°, ¢=120° or =480°, ¢ =240° or = 600°,
at each of which points we have
r=1, 6=33°41, and s =146°19".

In (fig. 145) a=1, m=},
the origin is a cusp, and the tangent at this point is perpen-
dicular to the axis.

There are two other multiple points corresponding to
¢=90° or =450°, ¢ =630° or =990°,
at each of which points we have
r=1, 6=T71° 34, and ¢= 108" 26'.

In (fig. 146) ca=1l,m=4%§,

the origin is an union of five cusps, and the five values
of = at this point are

r=18°, T=90°, 7 =162, v=234°, 306".
There are ten other multiple points; five of these points
correspond to
@ =90° or = 450°, ¢ =306° or = 666°, ¢ = 522° or = 882°
¢=18" or ="738°, ¢=234° or = 954°,
for each of these points
r=15, e =46°6, and s = 133" 54/,
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the other five points corres‘pond to
@ = 198° or — 558°,90 —=414° or = "774°,¢ = 630° or = 990°,
¢ — 126° or — 846°, ¢ —342° or = 110R°,
for each of these points
r=0.5, e =19°6' and ¢ = 160° 54'.
In (fig. 147) a=1,m=14,

the origin is g cusp, and the tangent at this point is perpen- _
dicular to the axis. -

There are four other multiple points corresponding to

®=270°or = 630° 7 —9.045,2—86°16' and s = 93°44’

¢=1170° or = 1530°, » = 0.955, ¢ — 58°23' and & = 121°37"

¢= 90°or= 810°,r—=6.545,6 =81 39’ and e= 98°21/

@ =990° or = 1710°, r —0.345, ¢ — 19°58' and s = 160°2'.
In (fig. 148) a=1,m=4%,

the origin is a union of three cusps, at which point the values
of 7 are
*=90°, r =210°, * = 330°.

There are twelve other multiple points; three of these points
correspond to

¢ =90 or = 810°, ¢ —=690° or —1410°, ¢ =210°or —=1290°,
for each of these points

r— 1.809, s — 78° 58/ and ¢ = 101°2’;
three points correspond to
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¢ =270°or = 630°, ¢ — 870° or —=1230°, § = 30° or =1470",
for each of these points ’

r = 1.309, s = 66°27/, and ¢ — 113°33';
three point; correspond to
¢ =570° or = 930°,  =1170° or 1530°, ¢ = 330°or =1770°,
for each of these points

r=0.691, s = 50°27', and & = 129° 33';
three points correspond to .
¢=2390°or=1110°, 9= 990° or = 1710°, = 510° or 1590°,
for each of these points

r=0.191, ¢ = 28°26/, and s = 151°34".
When m is an even integer, or a fraction whose numerator
is even, each cusp at the original has another cusp opposite
to it, which causes both of them to disappear; and the
origin, instead of being an union of cusps, is a multiple

point where the curve has a contact or several contacts with
itself. '

In (fig. 149) a=1, m=2,
the curve consists of two ovals, which have a contact at the
origin, the value of = at this point is
7= 185°.
In (fig. 150) a=1, m=4,

the curve has two contacts with itself at the origin; the two
values of 7 at this point are

+=67°30, + = 157°30".
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In (fig. 151) a=1,m=3%,

the curve has a contact with itself at the origin, and consists
of two distinct branches. The value of = at the origin is

T = 45°

There are four other multiple points; two of these points
correspond to .

¢ = 45° or = 765°, ¢ =225° or = 585°,
for each of these points

r=15, s = 68°57, and ¢ = 111° 3';
two points correspond to

¢ = 315° or = 1085°, ¢ = 495° or = 855°,

for each of these points

r= 0.5, ¢ =40° 54’, and ¢ =139° 6'.

In (fig. 152) a=1, m=4%,
the curve has two contacts at the origin; the two values of
+ at this point are ‘
T = 22° 30,, T = 112° 30'.

There are eight other multiple points; four of these
points correspond to

¢p= 22°30 or —382° 30", ¢ =292° 30’ or= 652" 30/
¢=562°30 or =922°30/, ¢= 112° 30’ or = 832° 30/,
for each of these points
r = 1.5, ¢ = 52°25, and ¢ = 127°385';

four points correspond to
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¢=157"30 or = 517°3(/, ¢ = 427°30' or — 7187° 30’
¢ =697°30' or — 1057° 30", ¢ =—247° 30" or — 967° 30",
for each of these points

r = 0.5, ¢ = 23°25/, and s = 156° 35'.

In (fig. 153) al, m=24%,

the curve consists of two distinct branches, which are in
contact at the origin ; the value of ¢ at this point is

¢ = 135°.

There are eight other multiple points ; two of these points
correspond to

¢ = 315° or = 1085°, ¢ = 135° or = 1215°,

for each of these points .

r = 1.809, ¢ = 82° 36, and s — 97°24/;
two points correspond to

¢ = 45° or = 405°, ¢ = 945° or =— 1305°,
for each of these points

r = 1309, ¢ = 73°48', and & = 106° 12';
two points correspond to

¢ = 495° or = 855°, ¢ = 1395° or — 1755°,
for each of these points

r = 0.691, ¢ = 61° 10, and ¢ = 118° 50';
two points correspond to

¢ = 765° or — 1485°, ¢ = 585° or = 1665°,

1
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for each of these points
r=0.191, s —=39° 5, and ¢ — 140° 55'.

When a is less than unity, the origin is a multiple point,and
several branches of the curve stop at this point, if the nega-
tive values of the radius vector are neglected, while they
continue through it if these values are retained. This ex-
ample, therefore, furnishes an analytic exception to the
method of avoiding negative radii vectores given in B. 1. § 45.
In the following figures the dotted portions correspond to the
negative radii vectores.

In (fig. 154) a=% m=1,
the two values of 7 at the origin are
T=30°, 7=150"
In (fig. 155) a=} m=2,
the two values of r at the origin are
T=105°, 7 =165

Whether the dotted parts are included or not, the curve is
continuous.

In (fig. 156) a=%, m=3,
the six values of 7 at the origin are
T = 10",‘ = 50°, r= 70, '
T=110°, *=180°, = =170
In (fig. 157) a=3%, m=4,
the four values of = at the origin are
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T= 52°30’, T= 82'30’,
7= 142° 30/, +—=172°30".

In (fig. 158) a=4%, m=%,
the two values of = at the origin are
T =60°, +=120".

There is another multiple point corresponding to
¢=00r—=2360°, r—= 0.5, r—45°and = 135°,
or ¢="540°, r=—0.5, v+=90°,

In (fig. 169) a=%, m=3},
the six values of = at the origin are
= 20°, T= 40°, 7= 80°,
T=100°, *=140°, *=160"
There are three other multiple points, corresponding, res-
pectively, to
¢=0°or = 360°, ¢ = 12° or= 480", ¢=240"or = 600",
for each of which r =0.5,

or to ,
-¢ =180°, ¢=420°, ¢= 660",

for each of which r=—0.5;
at each of these three points the values of ¢ are
6= 18°26', ¢ =161°34/, and & = 90",
In (fig. 160) a=%, m=},
the curve has a contact with itself at the origin, the tangent
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at this point is perpendicular to the axis. There are three
other multiple points ; one corresponds to

¢ = 90°= 450°, r =0.5, ¢ =60°, and §=120;
the two others correspond to

¢ = 555° 48/, = 1064° 12/, r = 0.408,
or to

¢="735°48', ¢=883" 12, r = —0.408,
and at one of these two points,
8§ =129°7', and s ="T1°8';
at the other,
&8 =50°53', and & = 108°52’.
In (fig. 161) a=3%, m=4§.

The curve consists of two ovals and a continuous re-entering
branch, which has a contact with itself and with each of the
ovals at the origin ; the value of = at the origin is

T=45"
There are two other multiple points, corresponding to
¢ =225°=0585°, ¢=45"="765°;
at each of these points
r=1, §=60° and &=120".
In (fig. 162) a=3%, m= 4.

The curve has several contacts with itself at the origin ; the
values of 7 at this point are

*=67°30/, *=157°30"

25
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There are four other multiple points, corresponding to
o= 22°30’ or =382°30', ¢=292°30' or =652°30/
¢=562°30" or =922°30', ¢=112°30' or =832°30’,

at each of these points .

r=1, ¢=40°54/, and s=139°6"

In (fig. 163) a=3%, m=1}.
The two values of - v at the origin are
1==60°, 7==120"

There are four other multiple points ; one corresponds to
¢=0° or =1720°, r=0.5,
T=63°26' and 7=116°34';
one point corresponds to
"@=180" or = 540°, r==1.207,
- 7=81°40' and 7=98"20';
one point corresponds to

¢="T61'4', r=0.322, ¢=127°14,
or to I
o=41°4, r—=—10322, &=66°15;

and one point corresponds to

¢=1218°56/, r=— 0.322, s=113"45,
or to
¢ =1398°56/, r=0.322, &==5%°46..

In (fig. 164) a=%, m=4%.
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The six values of 7 at the origin are
7= 20°, r—= 40°, r—= 80,
T=100°, *=140°, == 160"

There are fifteen other multiple points ; three correspond to
¢ = 0°or = 720°, ® = 240° or ="760°, ¢ — 480° or = 1200°,
r—4%, e=334l', and ¢ = 146° 19';

three correspond to
¢ = 180°or = 540°, ¢ = 660°, or =1020°, ¢ = 60° or =1140°,
" r=1207, e =66° 23 and s = 113° 37';
three correspond to
@ —420° or = 880°, $=900° or = 1260°, $—=3800° or — 1380°,
r=—0207, e =21° 31/, and e = 158° 29';
three éorrespond to
¢ =133 41', ¢ — 1213° 41, ¢ = 253° 4V,
for each of which
r = 0.322, ¢ = 156° 26/,
or to
¢ = 1273 41/, 9 = 313° 4V, ¢ =793° 41/,
for each of which
r=—0322 ¢=143"1/;
three correspond to
¢ —406° 19’, ¢ — 886° 19, ¢ = 1366° 19/,
for each of which ]
r=-—0.322, ¢ =36°59,
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or to
¢=946° 19, ¢ = 1426° 19’, ¢ =—=826° 19/,
for each of which
r=0.322, & =23° 34"

26. Construct the locus of the polar equation
r=a@-+4a¥.
Ans. This curve (fig. 165) has an infinite number of
multiple points corresponding to '
) ¢=n.180,

in which n is any integer.

' °175. When a curve is continuous at a point, but
changes its direction so as to turn its curvature the
opposite way at this point, the point is called a point
of contrary flexure, or a point of inflexion.

Thus M (figs. 166~ 199) is such a point.

176. Problem. To findthe points of conirary flezure.

Solution. It is evident, from the comparison of the two
tangents M’ T” (figs. 165—169), and M" T" near M, that
the value of the angle MTX or 7 is either a maximum or a
minimum at the point M. )

The points of contrary flexure correspond, therefore,
to the mazima and minima of the angle =.

177. Corollary. When the equation of the curve is given
in rectangular codrdinates, we have by (549)

tang. 7 = D.y;
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so that the maxima and minima of = correspond to those of
D. y, except at those points where 7 is a right angle.

178. Corollary. It is evident, from (figs. 166 —169),
that the convezity of & curve is turned towards the azis
of = when the angle 7 (or its supplement, if the curve
is below the axis) increases with the increase of z;
otherwise the convezily is turned from the azis.

179. ExamrPLEs.

1. Find the point of contrary flexure in the locus of
example 1, § 164, and the tangent at this point.

’

Solution. We have, in this case,
D.y=—][log.(z—a)]2(x—a)™?
Dy = (z—a)~2[log.(x—a)]™® [log. (z—a)+2];

so that the point of contrary flexure corresponds to the point
M (fig. 56) for which

log. (z—a)+42=0
2=a+40.135, y=5—0.5
T=61°38"
2. Find the point of contrary flexure in the locus of
example 2, § 164, and the tangent at this point.
Ans. It corresponds to
z=a+"7.387, y=>5-43.694, T=26°33..
8. Find the point of contrary flexure in the locus of

example 3, § 164, and the tangent at this point,
25*
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Ans. It corresponds to
z=a+1, y=>0+41, r=26°33"
4. Find the point of contrary flexure in the locus of
example 5, § 164, and the tangent at this point. -
Ans. It corresponds to '
z=a-40.223, y =b—0.335, r=155°57".
5. Find the point of contrary flexure in the locus of
example 6, of § 164, and the tangent at this point.
Ans. It corresponds to
z=a-40.340, y =54 0.085, r = 135"
6. Find the points of contrary flexure in the locus of
example 7, § 164.
Ans. There are two which correspond to
z—=a-}0.683, y =>4 0.068, r= 162" 8
z=a+40.073, y="5-40.035, - = 31°6".
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Approximate value of an explicit function.

CHAPTER XIIL

APPROXIMATION.

Armost all theoretical results, when converted into
numbers, are insusceptible of exact expression, and
can only be obtained approximatively. Hence, in all
its practical applications, ready and rapid means of
obtaining approximations are the only object of the
exact science of mathematics; and the great labor,
which has been bestowed upon this subject, is the dis-
tinguishing characteristic of the modern science.

180. Problem. To obtain by approz-zmatwn the value
of an explicit function.

Solution.” The only useful method of accomplishing this
object is to arrange the function in a series of terms, which
are susceptible of easy calculanon and decrease as rapidly
as possible.

I. When the variable is very small, the function is, at
once, arranged by means of MacLaurin’s Theorem (447) in
a series of terms, which are multiplied by the successive
powers of the variable, and are, therefore, usually de-
" creasing.

II. When the values of the function and its differential
coefficients are known for a given value of the variable;
the function can, for another value of the variable, which
differs but little from the given one, be arranged, by means

-~
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of Taylor’s Theorem (445), according to the successive
powers of the difference between the two values of the
variable.

III. Besides the formulas thus obtained, other formulas
can often be found, by processes dependent upon the nature
of the functions and the tact of the geometer; and some
formulas, often of great use, will be given in the Integral
Calculus.

-

Scholium. Formulus (478, 484, 487, 492, 493, 500, 501,
504, 509, 513, 515), are examples of useful developments.

181. Problem. To obtain, by approzximation, the val-
ues of an implicit function, when its value is known to
differ but little from that of a given ezplicit function.

Solution. Let

z = the required implicit function
t = the given explicit function

2 — t — ¢ = the excess of z above &.

Find the algebraic equation for determining e, and let it
be reduced to the form

e= Fugz,

where F z is a small function of z, which we may denote

by az, in which a is any small quantity, and z the function

of z obtained by dividing e by a; we have then,
e=Fz—az" ‘ (631)

z=tt+e=t4{ Fa=t4az (632)
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Now we have by MacLaurin’s Theorem for any function u
of z if we develop it according to powers of a, and denote
by u,, D.,u,, &c., the values of u, D.,u, &c., when

a=20

a® ad
u_u,,+.D,,u,.a+ D“,.u,.-l.—2+D3_.u,.m+&c.

Again, if we put (633)
.D.z U= u,, D.Z uo = u’o; (634)
-we have by (566),
D ,u=uD,a, (635)
D, u=wD,_,a (636) -

But the differentiation of (632) gives, by putting
=D,z (637)

D.,t=z4aD  2=z+4azD .z, ~ (638)
whence

D o= (639)

l1—az

In the same way, the differential, coefficient of (632),
relatively to ¢, is

D,x=1+4aD , ,z=1+4a2 D 2, (640)
whence

1

D o= ——-
.t l—azl’

(641)
and, therefore,
D, ,2=z2D =z (642)
D ,u=uzD,z. (643)
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The differential coéfficient of this last equation, relatively.to
t is
D .D,u=D,(vzD,k2), (644)
or }
D..,(wD  z)y=D. ,wzD, z), (645)

in which any function whatever of z may be substituted
for u'.
By substituting “for %’ in (645) the function z" u’ of z, we
have
D  (zw D, z)=D (»+1u'D ,x). (646)
Now the successive differential coefficients of (643), rel-
atively to a, are by (646)
DB ,u=D,:zwD z)=D (24D, z) (647)
D ,u=D D (24D z)=I8 (3w D,,x),(648)
and in general
Du=D D (='wD, ;x)=D7'(zw D ,x). (649)
Now if in (641 and 646) we take
a=—o
we have
D,z,=1
D u,=v,z,
mcu¢= D.l("’o ’3)
D u, = D7 (v, 27), (650)
whence by (631)
aD ,u,—av,z,=u,F.t (651)
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@D u,=D, (a®w, %) =D [v,(F.t)?
aDu,=D7 (a"v, 2)) = D3 [v, (F. tP], (652)
which, substituted in (633), give

w=u, 4o, F.t4 2 [" (F F 4 ge.... (653)
which is called Lagrange’s Theorem.

Corollary. If ‘
u=ux, (654)

and (650) becomes )

z=t4F. t+D (F i

4+ T BT e (655)

- Corollary. If instead of (632), x had been the given
function of t 4+ az

! z=f.(t+ az), (656)
we might have put
=t4az, (657)
and « would have been a function of 2/, and that if such
u—¢.x (658)
we have .
u=¢.f.2, (659)
and if we put
v.,=D 0.f.t, (660)

the formula (650) may be directly applied to this case.
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The theorem (650) under this form of application, has
been often called Laplace’s Theorem ; but, regarding
this change as obvious and insignificant, we do not
hesitate to discard the latter name, and give the whole
honor of the theorem to its true author, Lagrange.

ExAMPLES.

1. Find the mth power of a root of the equation
z=t4az’ (661)

in which « is a small quantity.

Solution. In this case
F.o=ax*, F.t=atr
Y —=z",u=ma™" .
u, =" v, —mt™!
Dt [w,.(F.t") = D7 (m am t7rimt)
=ma" (np+m—l) (np4m—2) ...... (np4-m—n-4-1) tet=—r

and, therefore,
2™ = t”'+m o tPHm—1 + m (21;+;—1) a 2rtm—2 + &e.
Corollary. When (662)

m=1
(659) becomes (663)

2 =t+ut”"‘+—l2—2¢9t’?“+ 3_1’1(35__3_'_]),%3:»—2 +&e.
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2. Find the valuc of z from the equAation
z=t4ae™ )
in which « is small and e is the Neperian base.

Ans. (664)
:c_t+ue”"+mu98'"“+1239mu3e3”"+&c

3. Find the value of €, from the preceding example.
Ans. (665)
e =¢" -t ane™t 4 1 a2 (2m 4 n) e 4 &e.

THE END.
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