

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

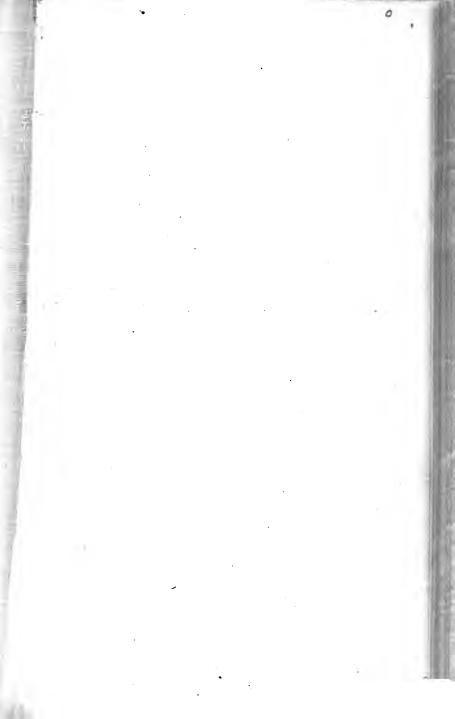
It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

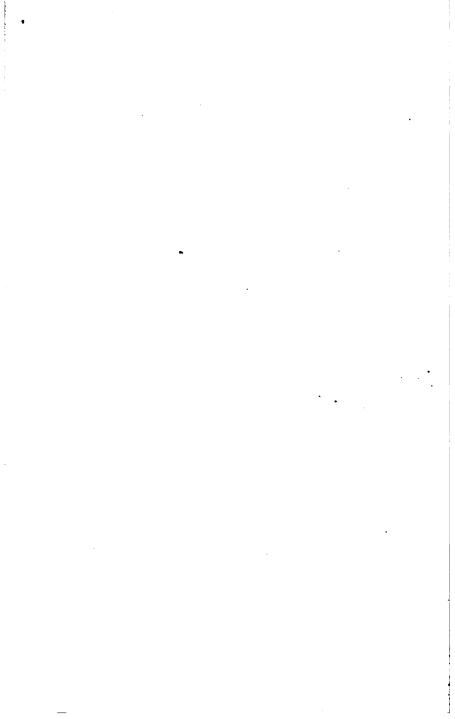
Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.


We also ask that you:


- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.


About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

ELEMENTS

OF

GEOMETRY,

CONIC SECTIONS

AND

PLANE TRIGONOMETRY.

By ELIAS LOOMIS, LL.D.,

PROFESSOR OF NATURAL PHILOSOPHY AND ASTRONOMY IN YALE COLLEGE,
AND AUTHOR OF "A COURSE OF MATHEMATICS."

REVISED EDITION, WITH APPENDIX.

NEW YORK:

HARPER & BROTHERS, PUBLISHERS, FRANKLIN SQUARE.

1880.

LOOMIS'S SERIES OF TEXT-BOOKS.

ELEMENTARY ARITHMETIC. 166 pp., 28 cents. TREATISE ON ARITHMETIC. 352 pp., 88 cents.

ELEMENTS OF ALGEBRA. Revised Edition. 281 pp., 90 cents.

Key to Elements of Algebra, for Use of Teachers. 128 pp., 90 cents. TREATISE ON ALGEBRA. Revised Edition. 384 pp., \$1 00.

Key to Treatise on Algebra, for Use of Teachers. 219 pp., \$1 00.

ALGEBRAIC PROBLEMS AND EXAMPLES. 258 pp., 90 cents.

ELEMENTS OF GEOMETRY. Revised Edition. 388 pp., \$1 00.

ELEMENTS OF TRIGONOMETRY, SURVEYING, AND NAVIGATION. 194 pp., \$1 00. TABLES OF LOGARITHMS. 150 pp., \$1 00.

The Trigonometry and Tables, bound in one volume. 860 pp., \$1 50. ELEMENTS OF ANALYTICAL GEOMETRY. Revised Edition. 261 pp., \$1 00. DIFFERENTIAL AND INTEGRAL CALCULUS. Revised Edition. 809 pp., \$1 00.

The Analytical Geometry and Calculus, bound in one volume. 570 pp., \$1 75. RLEMENTS OF NATURAL PHILOSOPHY. 851 pp., \$1 05.

ELEMENTS OF ASTRONOMY. 254 pp., \$1 00.

PRACTICAL ASTRONOMY. 499 pp., \$1 50. TREATISE ON ASTRONOMY. \$51 pp., \$1 50.

TREATISE ON METEOROLOGY. 808 pp., \$1 50.

In the Office of the Librarian of Congress, at Washington.

QA529 L7 1877 Educ. Library

PREFACE.

THE stereotype plates of my Elements of Geometry and Conic Sections having become so much worn by long-continued use that it was found necessary to recast them, the opportunity has been improved to give the entire book a thorough revision. As the general plan of the original work has met with very extensive approval, it has not been thought best to modify it materially; nevertheless, the minor changes which have been made are numerous and of considerable importance.

The volume commences with a brief sketch of the history of Elementary Geometry, which, it is hoped, may increase the student's interest in a subject which has occupied the attention of so many gifted minds. The definitions of Book I. have been somewhat amplified, for the purpose of giving clearer ideas of the philosophy of the subject; and several notes have been added to the first pages of the book which, it is hoped, may be found useful and suggestive, although they are generally such as any competent teacher might easily have supplied.

In Book II. the subject of Ratio has been expanded, especially for the purpose of meeting the difficulty of incommensurable quantities; and in this I have followed substantially the method of Vincent in his Cours de Géométrie. A few new propositions have been added to Books III., IV., and V.; and at the close of Book VI. is given a considerable collection of new theorems and problems, with some numerical exercises on the preceding books. These theorems and problems are so simple that it is hoped many students may be encouraged to labor upon them; for no one can be considered as master of the subject of Geometry who has not acquired the ability to discover the demonstration of new theorems and the solution of new problems. Those who find these

exercises too difficult may be benefited by practice upon the numerical examples here given, and such similar ones as any competent teacher can readily furnish.

Occasional alterations of some importance will be noticed in Books VII., VIII., and IX., and at the close of Book X. will be found more numerical exercises, designed to impress the preceding principles upon the mind of the student.

In the Treatise on the Conic Sections the alterations will be found more numerous. Several new propositions have been added, and the mode of demonstration has in several instances been materially changed. At the close of each chapter is given a small collection of new theorems and several numerical exercises. If the former should be found too difficult, the latter will not be beyond the power of any student who thoroughly understands the preceding principles; and the teacher can easily supply a greater number of similar exercises if it should be thought expedient.

As the demand has frequently been made for a brief treatise on Trigonometry to accompany the volume on Geometry, a concise outline of Plane Trigonometry has been added to this volume, together with a Table of Logarithms, and of Sines and Tangents sufficiently extensive for the solution of all the problems contained in this Treatise.

Throughout the entire volume I have aimed to remove difficulties to such an extent as not to discourage any faithful student, and yet have designed to leave sufficient difficulty to call out his best exertions; since that does not deserve the name of education which does not summon the student to grapple with difficulties; and each one is conscious that every difficulty which is overcome by his own efforts imparts increased power to surmount fresh difficulties.

I have again to acknowledge my obligations to Professor H.A. Newton, who has carefully read all the proofs of that part of this volume embracing Conic Sections and Plane Trigonometry.

CONTENTS.

Historical Sketch	7
PLANE GEOMETRY.	-
BOOK I.	
Rectilinear Figures	11
Ratio and Proportion	40
Mano and I Topothon	40
BOOK III.	
The Circle and the Measure of Angles	51
BOOK IV.	
Comparison and Measurement of Polygons	66
-	
BOOK V.	
Problems relating to the preceding Books	93
BOOK VL	
Regular Polygons and the Area of the Circle	
Exercises on the preceding Books	125
GEOMETRY OF SPACE.	
BOOK VII.	
Planes and Solid Angles	137
BOOK VIIL	
Polyedrons	152
•	
BOOK IX.	
Spherical Triangles and Spherical Polygons	174
BOOK X.	
Measurement of the Three Round Bodies	191
Exercises on the preceding Principles	
· · · · · · · · · · · · · · · · · · ·	
CONIC SECTIONS.	
The Parabola	
Exercises on the Parabola	
The Ellipse	
Exercises on the Ellipse	
Exercises on the Hyperbola	

PLANE TRIGONOMETRY.	Page
Elementary Principles	263
Construction of a Table of Natural Sines and Tangents	267
Nature and Use of Logarithms 2	271
Description of the Table of Logarithms	273
Multiplication, Division, etc., by Logarithms	
Description of the Table of Logarithmic Sines and Tangents 2	283
Solution of Right-angled Triangles 2	287
Solution of Oblique-angled Triangles 2	293
Instruments used in Drawing '2	299
Values of the Sines, Cosines, etc., of certain Angles 3	
Trigonometrical Formulæ	30 9
Logarithms of Numbers from 1 to 10,000	321
Logarithmic Sines and Tangents for every Minute of the Quadrant 3	343
APPENDIX 3	89

N.B.—When reference is made to a Proposition in the same Book, only the number of the Proposition is usually given; but when the Proposition is found in a different Book, the number of the Book is also specified.

SKETCH OF THE HISTORY

0F

ELEMENTARY GEOMETRY.

The term Geometry is derived from $\gamma \epsilon \omega \mu \epsilon \tau \rho i \alpha$, a Greek word, signifying the science of land-measuring. Ancient writers have generally supposed that this science was first cultivated in Egypt, and Herodotus ascribed the origin of Geometry to the time when Sesostris divided the country among the inhabitants. Aristotle attributed the invention to the Egyptian priests, who, living secluded from the world, had abundant leisure for study.

Thales of Miletus, in Asia Minor, who was born about 640 years before Christ, transplanted the sciences, and particularly mathematics, from Egypt into Greece. He resided for some time in Egypt, and formed an acquaintance with its priests. He is said to have measured the height of the Pyramids by means of their shadow, and determined the distance of vessels remote from the shore by the principles of Geometry. On his return to Greece he founded what has been called the Ionian school, from Ionia, his native country. To him are attributed various discoveries concerning the circle and the comparison of triangles, and he first discovered that all angles in a semicircle are right angles.

One of the disciples of Thales composed an elementary treatise on Geometry—the earliest on record, and he is said to have invented the gnomon, geographical charts, and sun-dials. Anaxagoras, having been cast into prison on account of his opinions relating to Astronomy, employed

his time in attempting to square the circle.

Pythagoras was one of the earliest and most successful cultivators of Geometry. He was born about 580 years before Christ, studied under Thales, and traveled in Egypt and India. On his return he settled in Italy, and there founded one of the most celebrated schools of antiquity. He is said to have discovered that in a right-angled triangle the square of the hypothenuse is equal to the sum of the squares on the two legs. He discovered that the circle has a greater area than any other plane figure having an equal perimeter, and that a sphere has a similar property among solids. He also discovered the properties of the regular solids, and the incommensurability of certain lines. One of the pupils of Pythagoras solved the problem of finding two mean proportionals between two straight lines.

Hippocrates, of the island of Chios, who lived about 400 years before Christ, was one of the best geometers of his time. He was the first who effected the quadrature of a curvilinear space by finding a rectilinear one equal to it. He showed that the *crescent*, bounded by half the circumference of one circle, and one fourth the circumference of another, is equal to

an isosceles right-angled triangle whose hypothenuse is the common chord of the two arcs. He also showed that the duplication of the cube depends on the finding of two mean proportionals between two given lines.

One of the most distinguished promoters of science among the Greeks was the celebrated philosopher Plato. He traveled in Egypt and Italy, and, on his return to Greece, made mathematics the basis of his instruction. He put an inscription over the door of his school forbidding any one to enter who did not understand Geometry; and, when questioned concerning the probable employment of the Deity, answered that he geometrized continually. Plato is reported to have invented the geometrical analysis, and the conic sections were first studied in his school.

The problem concerning the duplication of the cube acquired its celebrity about the time of Plato, who gave a solution of the problem himself, and it was also resolved by several other geometers. Another celebrated problem which occupied much attention in the school of Plato was the trisection of an angle. The geometricians of that school failed, as all others have done, in solving this problem by means of elementary Geometry. While they failed in their main object, their exertions were not thrown away, as they made valuable discoveries regarding the conic sections and other branches of Geometry. Eudoxus, a contemporary of Plato, found the measure of the pyramid and cone, and cultivated the theory of the conic sections.

After the time of Plato, the most remarkable epoch in the history of Geometry was the establishment of the school of Alexandria, about 300 years before Christ. It was here that the celebrated geometer Euclid flourished under the first of the Ptolemies. His native place is not known, but he studied at Athens, under the disciples of Plato, before he settled at Alexandria. It is recorded of Euclid that, when Ptolemy asked him whether there was no easier means of acquiring a knowledge of Geometry than that given in his Elements, he replied, "No, sir; there is no royal road to Geometry." Euclid composed treatises on various branches of the ancient mathematics: but he is best known by his Elements, a work on Geometry and Arithmetic, in thirteen books, under which he has collected all the elementary truths of Geometry which had been found before his time. This work has been translated into the languages of all nations that have made any considerable progress in civilization since it was first published, and has been more generally used for the purposes of teaching than any other work on abstract science that has ever appeared.

Of Euclid's Elements, the first four books treat of the properties of plane figures; the fifth contains the theory of proportion, and the sixth its application to plane figures; the seventh, eighth, ninth, and tenth relate to Arithmetic, and the doctrine of incommensurables; the eleventh and twelfth contain the elements of the geometry of solids, and the thirteenth treats of the five regular solids. Two books more—viz., the fourteenth and fifteenth—on regular solids, have been attributed to Euclid, but are

supposed to have been written about two centuries later.

It is only the first six, and the eleventh and twelfth, that are now much used in the schools.

After Euclid comes Archimedes, born at Syracuse about the year 287 B.C. He wrote two books on the sphere and cylinder, containing the discovery that the sphere is two thirds of the circumscribing cylinder, whether we compare their surfaces or solidities. In his book on the measure of the circle, he proves that if the diameter of a circle be reckoned unity, the circumference will be between 3½ and 3½. In his treatise on conoids and spheroids, he compares the area of an ellipse with that of a circle; and he proved that the area of any segment of a parabola cut off by a chord is two thirds of the circumscribing parallelogram.

After Archimedes comes Apollonius of Perga, in Pamphylia, born about 250 B.C. He studied in the Alexandrian school under the successors of Euclid, and so highly esteemed were his discoveries that he acquired the name of the *Great Geometer*. His treatise on the Conic Sections has contributed principally to his celebrity. During the five or six subsequent centuries we find a numerous list of mathematicians, most of whom are chiefly known as cultivators of Astronomy, and some as writers on Geometry. Near the close of the fourth century after Christ, Hypatia, the daughter of Theon, wrote commentaries on Apollonius and Diophantus, and was so learned in Geometry that she was judged worthy to succeed her father in the Alexandrian school. The school of Alexandria ceased in A.D. 640, when that city was taken by the Saracens.

In subsequent centuries the Arabs cultivated Astronomy and Geometry, and, after the revival of learning, the elements of Euclid were first known in Europe through the medium of an Arabic translation. In the fifteenth century, Vieta carried the approximate value of the ratio of the diameter of a circle to its circumference as far as eleven figures, and Adrianus Romanus carried the approximation as far as seventeen decimal figures. In the seventeenth century, Van Ceulen carried this approximation to thirty-five decimal figures.

Albert Girard, a Flemish mathematician in the seventeenth century, was the first who determined the surface of a spherical triangle, or of a polygon bounded by great circles on the sphere. Kepler was the first to introduce the idea of infinity into the language of geometry. He regarded the circle as composed of an infinite number of triangles, having their vertices at the centre; the cone as composed of an infinite number of pyramids, all having the same vertex as the cone.

The application of Algebra to Geometry by Descartes, in the early part of the seventeenth century, produced a complete revolution in this science. By bringing Geometry under the dominion of Algebra, the investigations are freed from that cumbrous formality which, however admirable in the elements of science, and however well it may be calculated to discipline the mind, is powerless in the more advanced researches of science. This application of Algebra has been reduced to a systematic form, constituting a separate branch of science, which is generally called Analytic Geometry.

During the present century Geometry has been most successfully cultivated by the French. The treatise on Elementary Geometry which, next to that of Euclid, has been most extensively adopted, is the treatise of Legendre, first published in 1794, and which has lately received important additions and modifications by Blanchet. The present volume follows substantially the order of Blanchet's Legendre, while the form of the demonstrations is modeled after the more logical method of Euclid.

The problem of the duplication of the cube, or its equivalent, the finding of two mean proportionals between two given magnitudes, is supposed to have first called the attention of mathematicians to the conic sec-If four quantities, as A, B, C, D, are in continued proportion, then A3: B3:: A:D; that is, we could find a cube which should have any given ratio to a given cube, provided we could find two mean proportionals between A and D. Thus 24 and 36 are two mean proportionals between 16 and 54. This problem can not be resolved merely by straight lines and circles—the only lines at first admitted into Geometry, and hence it became necessary to inquire what other lines would afford a solution of this and similar problems, and this investigation led to the study of the Conic Sections. We know little more than the names of the early cultivators of this branch of science, among whom are Aristæus, Euclid, Conon, and Archimedes. Archimedes demonstrated that the area of a parabola is two thirds of that of the circumscribing parallelogram; and he also showed what was the ratio of elliptic areas to their circumscribing circles, and of solids formed by the revolution of the different sections to their circumscribing cylinders.

Apollonius of Perga wrote a work on Conic Sections, consisting of eight books; the first four are supposed to comprehend all that was known on the subject before his time, and the remaining books are supposed to have contained his own discoveries. The first seven books of Apollonius's Conics have been preserved, and the eighth has been restored by Dr. Halley from the hints afforded by the account given of it by Pappus, a writer of the fourth century.

In the early ages of science, the Conic Sections were studied merely as a geometrical theory, but the discoveries of modern times have rendered it the most interesting speculation in Pure Geometry. Galileo showed that the path of a body projected obliquely in a vacuum is a parabola, and Kepler discovered that the planetary orbits are ellipses. Newton demonstrated that a body which revolves under the influence of a central force like gravitation, whose intensity decreases as the square of the distance increases, must move in one of the conic sections—that is, either a parabola, an ellipse, or an hyperbola. These discoveries have incorporated the theory of the Conic Sections with those of Astronomy and the other branches of Natural Philosophy.

ELEMENTS OF GEOMETRY.

BOOK I.

GENERAL PRINCIPLES.

Definitions.

1. EVERY material object occupies a limited portion of space. The portion of space which a body occupies, considered separately from the matter of which the body is composed, is called a Geometrical solid. The material body which occupies the given space is called a Physical solid. A geometrical solid is, therefore, merely the space occupied by a physical solid. In this treatise, only geometrical solids are considered, and they are called simply solids.

A solid is, then, a limited portion of space.

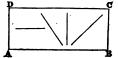
2. The surface of a solid is the limit or boundary which separates it from the surrounding space.

3. When one surface is cut by another surface, their common section is called a *line*.

4. When two lines cut each other, their common section is called a point.

- 5. Although we may derive the idea of a point from the consideration of lines, the idea of a line from the consideration of surfaces, and the idea of a surface from the consideration of a solid, we may conceive of a surface as independent of the space of which it is the boundary; we may conceive of a line as independent of the surfaces of which it is the common section, and as existing separately in space; and we may conceive of a point as independent of the lines of which it is the common section, and as having only position in space.
- 6. A solid has extension in all directions; but, for the purpose of measuring its magnitude more conveniently, we consider it as having three specific dimensions, called *length*, *breadth*, and *thick* ness.
 - 7. A surface has only two dimensions, length and breadth.

A line has only one dimension, viz., length.


A point has no extension, and therefore neither length, breadth, nor thickness.*

8. A straight line is a line which is the shortest path between any two of its points, as ABCD.

9. A broken line is a line composed of different straight lines, as ABCDEF.

10. A curved line, or simply a curve, is a line no portion of which is straight, as ABC.

For the sake of brevity, the word *line* is often used to denote a straight line.

11. A plane surface, or simply a plane, is a surface in which, if any two points are taken, the straight line which joins them lies wholly in that surface.†

12. A curved surface is a surface no portion of which is plane.

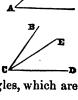
13. A geometrical figure is any combination of points, lines, surfaces, or solids.

Figures formed by points and lines in a plane are called *plans* figures.

14. Geometry is the science which treats of the properties of figures, of their construction, and of their measurement.

15. Plane geometry treats of plane figures. Geometry of space, or geometry of three dimensions, treats of figures all of whose points are not situated in the same plane.

16. When two straight lines meet together, their mutual inclination, or degree of opening, is called an *angle*. The point in which the straight lines meet is called the *vertex* of the angle, and the lines are called the *sides* of the angle.


^{*} In geometrical figures or diagrams we are obliged to employ physical lines and points instead of mathematical ones, since the finest line that we can draw has breadth. Our reasoning is not, however, thereby vitiated, because it is conducted on the supposition that the lines have no breadth, and nothing in our reasoning depends upon the breadth of the lines in our diagram.

[†] If two points be taken upon the surface of a ball, the straight line which joins them will lie within the ball, and not on its surface. Therefore the surface of a ball is not a plane surface.

[‡] A clear idea of the nature of an angle may be obtained by supposing that one c of its sides, as AC, at first coincided with the other side AB, and that it has revolved about the point A (turning about A as one leg of a pair of compasses) until it has reached the position AC. By continuing the revolution, an angle of any magnitude may be formed. It is evident that the magnitude of the angle does not depend upon the length of its cides.

If there is only one angle at a point, it may be denoted by a letter placed at the vertex, as the angle at A.

But when several angles are formed at the same point by different lines, either of the angles may be denoted by three letters, namely, by one letter on each of its sides, together with one at its vertex, which must be written between the other two. Thus the lines CB, CE, CD form three different angles, which are distinguished as BCE, ECD, and BCD.

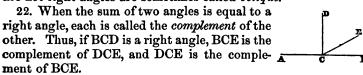
17. Angles are measured by degrees. A degree is one of the three hundred and sixty equal parts of the angular space about a point in a plane. (See B. III., Pr. 14.)

18. Angles, like other quantities, may be added, subtracted,

multiplied, or divided.

Thus the angle BCD is the sum of the two angles BCE, ECD, and the angle ECD is the difference between the two angles BCD, BCE,

19. When one straight line meets another so as to make two adjacent angles equal, each of these angles is called a right angle, and the first line is said to be perpendicular to the second.


Thus, if the line CD, meeting the line AB, makes the angles ACD, BCD equal, each is a right angle, and the line

CD is perpendicular to AB.

20. An acute angle is one which is less than a right angle.

An obtuse angle is one which is greater than a right angle.

21. Intersecting lines which are not perpendicular are said to be oblique to each other, and angles which are not right angles are sometimes called oblique.

23. When the sum of two angles is equal to two right angles, each is called the supplement of the other. Thus, if ACE and BCE are together equal to two right angles, then ACE is the supplement of BCE.

24. Parallel straight lines are such as are in the same plane, and which, being produced ever b so far both ways, do not meet, as AB, CD.

25. A rectilineal figure, or polygon, is a portion of a plane bounded by straight lines, as ABCDEF. The bounding lines are called the sides of the poly-

gon; and the sides, taken together, form the perimeter of the polygon.

26. A diagonal of a polygon is a line joining the vertices of

two angles not adjacent to each other, as AC or AD.

27. The polygon of three sides is the simplest of all, and is called a triangle; that of four sides is called a quadrilateral; that of five, a pentagon; that of six, a hexagon, etc.

> 28. A triangle is called scalene when no two of its sides are equal, as ABC.

A triangle is called isosceles when two of its sides are equal, as DEF.

A triangle is called *equilateral* when its three sides are equal, as GHI.

29. A right-angled triangle is one which has a right angle, as ABC, which is right-angled at B. The side AC, opposite to the right angle, is called the hypothenuse.

An obtuse-angled triangle is one which has an obtuse angle.

An acute-angled triangle is one which has three acute angles. 30. The base of a triangle is the side upon which it is supposed

to stand. Any side may be assumed as the base, but in an isosceles triangle that side is called the base which is not equal to either of the others. any side AB of a triangle has been adopted as the base, the angle ACB opposite to it is called the vertical angle.

31. Quadrilaterals are divided into classes as follows:

1st. The trapezium, having no two sides paral lel, as ABCD.

2d. The trapezoid, which has two sides parallel.

3d. The parallelogram, which has two pairs of parallel sides.
32. Parallelograms are divided into classes as follows: 1st. The <i>rhomboid</i> , whose angles are not right angles, and its adjacent sides are not necessarily
equal. 2d. The <i>rhombus</i> , which is an equilateral rhomboid.
3d. The rectangle, which has all its angles right angles, but all its sides are not necessarily equal.
4th. The square, which is an equilateral rectangle.
33. An equilateral polygon is one which has all its sides equal. An equiangular polygon is one which has all its angles equal. 34. Two polygons are mutually equilateral when the sides of the one are equal to the corresponding sides of the other, each to each, and arranged in the same order, as ABCD, EFGH. The equal sides are called homologous sides, as AB, EF. 35. Two polygons are mutually equiangular when the angles of the one are equal to the corresponding angles of the other, each to each, and arranged in the same order, as ABCD, EFGH. The equal angles are called homologous angles, as A and E.
36. A convex polygon is such that a straight line, however drawn, can not meet the perimeter of the polygon in more than two points, as ABCDE. 37. A concave polygon is such that a straight line may be drawn meeting the perimeter of the polygon in more than two points, as ABCDEFG. The angle D, contained by two re-entrant sides, is called a re-entrant angle. All the polygons hereafter considered will be understood to be convex, unless the contrary is stated. 38. An axiom is a truth assumed as self-evident.

- 39. A theorem is a truth which becomes evident by a train of reasoning called a demonstration.
- 40. A problem is a question proposed which requires a solution.
- 41. A postulate is a problem so simple that it is unnecessary to point out the method of performing it.
- 42. A proposition is a general term for either a theorem or a problem.
- 43. One proposition is the *converse* of another when the conclusion of the first is made the supposition of the second.
- 44. A corollary is an immediate consequence deduced from one or more propositions.
- 45. A scholium is a remark upon one or more propositions, pointing out their connection, their use, their limitation, or their extension.
- 46. An hypothesis is a supposition made either in the enunciation of a proposition or in the course of a demonstration.

Axioms.

- 1. Things which are equal to the same thing, or to equals, are equal to one another.
- 2. If equals, or the same, be added to equals, the wholes are equal.*
- 3. If equals, or the same, be taken from equals, the remainders are equal.
- 4. If equals, or the same, be added to unequals, the wholes are unequal.
- 5. If equals, or the same, be taken from unequals, the remainders are unequal.
- 6. Things which are doubles of the same, or of equals, are equal to one another.
- 7. Things which are halves of the same, or of equals, are equal to one another.
- 8. Magnitudes which coincide with one another, that is, which exactly fill the same space, are equal to one another.
 - 9. The whole is greater than any of its parts.
 - 10. The whole is equal to the sum of all its parts.

^{*} When this axiom is applied to geometrical magnitudes, it must be understood to refer simply to equality of areas. It is not designed to assert that when equal triangles are united to equal triangles, the resulting figures will admit of coincidence by superposition.

- 11. From one point to another only one straight line can be drawn.
- 12. Two straight lines which intersect one another can not both be parallel to the same straight line.

Explanation of Signs.

For the sake of brevity, it is convenient to employ in Geometry some of the signs of Algebra. The following are those which are most frequently employed:

The sign = denotes that the quantities between which it stands are equal; thus the expression A=B signifies that A is equal to B.

The sign > or < denotes inequality. Thus A>B denotes that A is greater than B; and A<B denotes that A is less than B.

The sign + is called *plus*, and indicates addition; thus A+B represents the sum of the quantities A and B.

The sign — is called *minus*, and indicates subtraction; thus

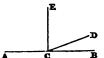
A-B represents what remains after subtracting B from A.

The sign \times indicates multiplication; thus $A \times B$ denotes the product of A by B. Instead of the sign \times , a point is sometimes employed; thus A.B is the same as $A \times B$. The same product is also sometimes represented without any intermediate sign, by AB; but this expression should not be employed when there is any danger of confounding it with the line AB.

A parenthesis () indicates that several quantities are to be subjected to the same operation; thus the expression $A \times (B + C - D)$ represents the product of A by the quantity B + C - D.

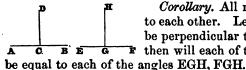
The expression $\frac{A}{B}$ indicates the quotient arising from dividing A by B.

A number placed before a line or a quantity is to be regarded as a multiplier of that line or quantity; thus 3AB denotes that the line AB is taken three times; $\frac{1}{2}A$ denotes the half of A.


The square of the line AB is denoted by AB²; its cube by AB³.

The sign $\sqrt{\text{indicates a root to be extracted; thus }}/2$ denotes the square root of 2; $\sqrt{A \times B}$ denotes the square root of the product of A and B.

N.B.—The first six books treat only of plane figures, or figures drawn on a plane surface.


PROPOSITION I. THEOREM.

From a given point in a straight line one perpendicular to that line can be drawn, and but one.

Let AB be a given straight line, and C a given point in it. From the point C one perpendicular can be drawn to the line AB, and B only one can be drawn.

Suppose that while one extremity of a straight line remains fixed at C, the line itself turns about this point from the position CB to the position CD. In each of its successive positions it makes two different angles with the line AB; one angle DCB with the portion CB, and another angle ACD with the portion AC. While the line revolves from the position CB around to to the position AC, the angle DCB, which begins from zero, is continually increasing; while the angle ACD, which at first is greater than DCB, is continually decreasing until it becomes zero. The angle DCB, which at first was smaller than ACD, becomes at last greater than ACD. There must, therefore, be one position of the revolving line, as CE, where these two angles are equal; and it is evident that there can be but one such position. Therefore, from a given point in a straight line, one perpendicular can be drawn, and but one.*

Corollary. All right angles are equal to each other. Let the straight line DC be perpendicular to AB, and GH to EF; F then will each of the angles ACD, BCD

Let the line AB be applied to the line EF so as to coincide with it, and in such a manner that the point C shall fall upon G; then will the line CD take the direction GH; otherwise there would be two perpendiculars to the line AB drawn from the same point C, which, by the preceding Proposition, is impossible. There-

^{*} The words in which a Proposition is expressed are called its enunciation. the enunciation refer to a particular diagram, it is called a particular enunciation. otherwise it is a general one.

A demonstration is a series of arguments which establish the truth of a theorem. The drawing of such lines as may be necessary to a demonstration is called the construction.

Under each proposition there is usually given, first, the general enunciation; second, the particular enunciation; third, the construction; and, fourth, the demonstration.

fore the line CD must coincide with the line GH, and the angle ACD will be equal to EGH, and BCD to FGH (Axiom 8), and the four angles will be equal to each other (Ax. 1).

PROPOSITION II. THEOREM.

The angles which one straight line makes with another, upon one side of it, are either two right angles, or are together equal to two right angles.

Let the straight line AB make with CD, upon one side of it, the angles ABC, ABD; these are either two right angles, or are together equal to two right angles.

For if the angle ABC is equal to ABD, each of C B D them is a right angle (Def. 19); but if these angles are unequal, suppose the line BE to be drawn from the point B, perpendicular to CD; then will each of the angles CBE, DBE be a right angle. Now the angle CBA is equal to the sum of the two angles CBE, EBA. To each of these equals add C B D the angle ABD; then the sum of the two angles CBA, ABD will be equal to the sum of the three angles CBE, EBA, ABD (Ax. 2).

Again, the angle DBE is equal to the sum of the two angles DBA, ABE. Add to each of these equals the angle EBC; then will the sum of the two angles DBE, EBC be equal to the sum of the three angles DBA, ABE, EBC. Now things that are equal to the same thing are equal to each other (Ax. 1); therefore the sum of the angles CBA, ABD is equal to the sum of the angles CBE, EBD. But CBE, EBD are two right angles; therefore ABC, ABD are together equal to two right angles. Therefore, the angles which one straight line, etc.

Cor. 1. If one of the angles ABC, ABD is a right angle, the other is also a right angle.

Cor. 2. If the line DE is perpendicular to AB, conversely, AB is perpendicular to DE.

For, because DE is perpendicular to AB, the A C B angle DCA must be equal to its adjacent angle DCB (Def. 19), and each of them must be a right

angle. But since ACD is a right angle, its adjacent angle, ACE, must also be a right angle (Cor. 1). Hence the angle ACE is equal to the angle ACD (Pr. 1, Cor.), and AB is perpendicular to DE.

Cor. 3. The sum of all the angles BAC, CAD, DAE, EAF, formed on the same side of the line BF, at a common point A, is equal to two right angles; for their sum is equal F to that of the two adjacent angles BAD, DAF, which, by the Proposition, is equal to two right angles.

PROPOSITION III. THEOREM (Converse of Prop. II.).

If, at a point in a straight line, two other straight lines, upon the opposite sides of it, make the adjacent angles together equal to two right angles, these two straight lines are in one and the same straight line.

At the point B, in the straight line AB, let the two straight lines BC, BD, upon the opposite sides of AB, make the adjacent

angles, ABC, ABD, together equal to two right angles; then will BD be in the same straight line with CB.

E For, if BD is not in the same straight line with CB, let BE be in the same straight line with it; then, because the straight line

CBE is met by the straight line AB, the angles ABC, ABE are together equal to two right angles (Pr. 2). But, by hypothesis, the angles ABC, ABD are together equal to two right angles; therefore the sum of the angles ABC, ABE is equal to the sum of the angles ABC, ABD. Take away the common angle ABC, and the remaining angle ABE is equal (Ax. 3) to the remaining angle ABD; the less to the greater, which is impossible. Hence BE is not in the same straight line with BC; and in like man ner it may be proved that no other can be in the same straight line with it but BD. Therefore, if, at a point, etc.*

^{*} The enunciation of a theorem embraces two parts, an hypothesis and a conclusion. The hypothesis is a supposition made, and the conclusion is a consequence of the supposition. Prop. 3 might be enunciated thus: Hypothesis, if, at a point in a straight line, two other straight lines upon the opposite sides of it make the adjacent angles together equal to two right angles, then, Conclusion, these two straight lines are in one and the same straight line.

Proposition 3d is the converse of the 2d; that is, the conclusion of the 3d is the hypothesis in the 2d.

Proposition 2d may be enunciated thus: Hypothesis, if, at a point in a straight line, two other straight lines upon opposite sides form but one straight line, then, Conclusion, the two adjacent angles are together equal to two right angles.

Demonstrations are either direct or indirect. The direct demonstration com-

F

PROPOSITION IV. THEOREM.

Two straight lines, which have two points common, coincide with each other throughout their whole extent, and form but one and the same straight line.

Let there be two straight lines having the points A and B in common; these lines will coincide throughout their whole extent.

It is plain that the two lines must coincide between A and B, for otherwise there A B C D would be two straight lines between A and B, which is impossible (Ax. 11).

Suppose, however, that, on being produced, these lines begin to diverge at the point C, one taking the direction CD, and the other CE. From the point C draw the line CF at right angles with AC; then, since ACD is a straight line, the angle FCD is a right angle (Pr. 2, Cor. 1); and, since ACE is a straight line, the angle FCE is also a right angle; therefore (Pr. 1, Cor.) the angle FCE is equal to the angle FCD, the less to the greater, which is absurd. Therefore two straight lines which have, etc.

PROPOSITION V. THEOREM.

If two straight lines cut one another, the vertical or opposite angles are equal.

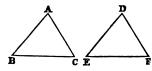
Let the two straight lines AB, CD cut one another in the point E; then will the angle AEC be equal to the angle BED, and the angle AED to the angle CEB.

For the angles AEC, AED, which the straight AE B line AE makes with the straight line CD, are together equal to two right angles (Pr. 2); and the angles AED, DEB, which the straight line DE makes with the straight line AB, are also together equal to two right angles; therefore the sum of the two angles AEC, AED is equal to the sum of the two angles AED, DEB. Take away the common angle AED, and

mences with what has been already admitted or proved to be true, and from this deduces a series of other truths, till it finally arrives at the truth to be proved.

In the indirect demonstration, or, as it is also called, the reductio ad absurdum, a supposition is made which is contrary to the conclusion to be established. On this assumption a demonstration is founded, which leads to a result contrary to some known truth, thus proving the truth of the proposition by showing that the supposition of its contrary leads to an absurd conclusion.

the remaining angle AEC is equal to the remaining angle DEB (Ax. 3).

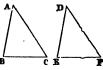

In the same manner it may be proved that the angle AED is equal to the angle CEB. Therefore, if two straight lines, etc.

Cor. 1. Hence, if two straight lines cut one another, the four angles formed at the point of intersection are together equal to four right angles.

Cor. 2. If any number of straight lines AB, AC, etc., meet at a point A, the sum of all the angles BAC, CAD, DAE, EAF, FAB, will be equal to four right angles. For if two straight lines are drawn through A perpendicular to each other, the four right angles thus formed will together be equal to the sum of all the angles BAC, CAD, etc., formed about A.

PROPOSITION VI. THEOREM.

If two triangles have two sides, and the included angle of the one equal to two sides and the included angle of the other, each to each, the two triangles will be equal, their third sides will be equal, and their other angles will be equal, each to each.

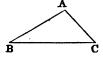

Let ABC, DEF be two triangles, having the side AB equal to DE, and AC to DF, and also the angle A equal to the angle D; then will the triangle ABC be equal to the triangle DEF.

For, if the triangle ABC be applied to the triangle DEF, so that the point A may be on D, and the straight line AB upon DE, the point B will coincide with the point E, because AB is equal to DE; and AB coinciding with DE, AC will coincide with DF, because the angle A is equal to the angle D. Hence, also, the point C will coincide with the point F, because AC is equal to DF. But the point B coincides with the point E, therefore the base BC will coincide with the base EF (Ax. 11), and will be equal to it. Hence, also, the whole triangle ABC will coincide with the whole triangle DEF, and will be equal to it, and the remaining angles of the one will coincide with the remaining angles of the other, and be equal to them, viz., the angle ABC to the angle DEF, and the angle ACB to the angle DFE. Therefore, if two triangles, etc.

PROPOSITION VII. THEOREM.

If two triangles have two angles, and the included side of the one equal to two angles and the included side of the other, each to each, the two triangles will be equal, the other sides will be equal each to each, and the third angle of the one to the third angle of the other.

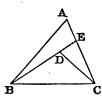
Let ABC, DEF be two triangles having the angle B equal to E, the angle C equal to F, and the included sides BC, EF equal to each other; then will the triangle ABC be equal to the triangle DEF.



For, if the triangle ABC be applied to the triangle DEF, so that the point B may be on E, and the straight line BC upon EF, the point C will coincide with the point F, because BC is equal to EF. Also, since the angle B is equal to the angle E, the side BA will take the direction ED, and therefore the point A will be found somewhere in the line DE. And, because the angle C is equal to the angle F, the line CA will take the direction FD, and the point A will be found somewhere in the line DF; therefore the point A, being found at the same time in the two straight lines DE, DF, must fall at their intersection, D. Hence the two triangles ABC, DEF coincide throughout, and are equal to each other; also, the two sides AB, AC are equal to the two sides DE, DF, each to each, and the angle A to the angle D. Therefore, if two triangles, etc.

PROPOSITION VIII. THEOREM.

Any side of a triangle is less than the sum of the other two.


Let ABC be a triangle; any one of its sides is less than the sum of the other two, viz., the side AB is less than the sum of AC and BC; BC is less than the sum of AB and AC; and BC AC is less than the sum of AB and BC.

For the straight line AB is the shortest path between the points A and B (Def. 8); hence AB is less than the sum of AC and BC. For the same reason, BC is less than the sum of AB and AC, and AC less than the sum of AB and BC. Therefore, any two sides etc.

PROPOSITION IX. THEOREM.

If, from a point within a triangle, two straight lines are drawn to the extremities of either side, their sum will be less than the sum of the other two sides of the triangle.

Let the two straight lines BD, CD be drawn from D, a point within the triangle ABC, to the extremities of the side BC; then will the sum of BD and DC be less than the sum of BA. AC, the other two sides of the triangle.

Produce BD until it meets the side AC in E; and, because one side of a triangle is less than the sum of the other two (Pr. 8), the side CD of the triangle CDE is less than the sum of CE and ED. To each of these add DB; then will the sum of CD and BD be less than the sum of CE and EB.

Again, because the side BE of the triangle BAE is less than the sum of BA and AE, if EC be added to each, the sum of BE and EC will be less than the sum of BA and AC. But it has been proved that the sum of BD and DC is less than the sum of BE and EC; much more, then, is the sum of BD and DC less than the sum of BA and AC. Therefore, if from a point, etc.

PROPOSITION X. THEOREM.

The angles at the base of an isosceles triangle are equal to one another.

Let ABC be an isosceles triangle, of which the side AB is equal to AC; then will the angle B be equal to the angle C.

For, conceive the angle BAC to be bisected by the straight line AD;* then, in the two triangles ABD, ACD, two sides AB, AD, and the included angle in the one, are equal to the two sides AC, AD, and the included an-

^{*} Throughout this Treatise we shall assume the possibility of constructing our figures, although the methods of constructing them have not yet been explained. It is not essential to a geometrical demonstration that the precise mode of constructing the figures should be previously given. For the purpose of discovering the properties of figures, we are at liberty to suppose any figure to be constructed, or any line to be drawn, whose existence does not involve an impossibility. We. shall show hereafter how the figures employed in these demonstrations may be constructed.

25

gle in the other; therefore (Pr. 6) the angle B is equal to the angle C. Therefore the angles at the base, etc.

Cor. 1. Hence, also, the line BD is equal to DC, and the angle ADB equal to ADC; consequently, each of these angles is a right angle (Def. 19). Therefore the line bisecting the vertical angle of an isosceles triangle bisects the base at right angles; and, conversely, the line bisecting the base of an isosceles triangle at right angles bisects also the vertical angle.

Cor. 2. Every equilateral triangle is also equiangular.

PROPOSITION XI. THEOREM (Converse of Prop. X.).

If two angles of a triangle are equal to one another, the opposite sides are also equal.

Let ABC be a triangle having the angle ABC equal to the angle ACB; then will the side AB be equal to the side AC.

For if AB is not equal to AC, one of them must be greater than the other. Let AB be the greater, and from it cut off DB equal to AC the less, and join CD.

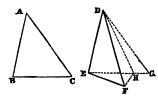
Then, because in the triangles DBC, ACB, DB is equal to AC, and BC is common to both triangles, also, by supposition, the angle DBC is equal to the angle ACB; therefore the triangle DBC is equal to the triangle ACB (Pr. 6), the less to the greater, which is absurd. Hence AB is not unequal to AC, that is, it is equal to it. Therefore, if two angles, etc.

Cor. Hence every equiangular triangle is also equilateral.

PROPOSITION XII. THEOREM.

The greater side of every triangle is opposite to the greater angle; and, conversely, the greater angle is opposite to the greater side.

Let ABC be a triangle, having the angle ABC greater than the angle ACB; then will the side AC be greater than the side AB.


Draw the straight line BD, making the angle DBC equal to C; then, in the triangle BCD, the side CD must be equal to BD (Pr. 11). Add AD to each; then will the sum of AD and DC be equal to the sum of AD and DB. But AB is less than the sum of AD and DB (Pr. 8); it is, therefore, less than AC.

Conversely, if the side AC is greater than the side AB, then will the angle ABC be greater than the angle ACB.

For if ABC is not greater than ACB, it must be either equal to it or less. It is not equal, because then the side AC would be equal to the side AB (Pr. 11), which is contrary to the supposition. Neither is it less, because then the side AC would be less than the side AB, according to the former part of this proposition; hence ABC must be greater than ACB. Therefore the greater side, etc.

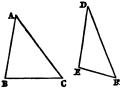
PROPOSITION XIII. THEOREM.

If two triangles have two sides of the one equal to two sides of the other, each to each, but the included angles unequal, the base of that which has the greater angle will be greater than the base of the other.

Let ABC, DEF be two triangles, having two sides of the one equal to two sides of the other, viz., AB equal to DE, and AC to DF, but the angle BAC greater than the angle EDF; then will the base BC be greater than the base EF.

Of the two sides DE, DF, let DE be the side which is not greater than the other; and at the point D, in the straight line DE, make the angle EDG equal to BAC; make DG equal to AC or DF, and join EG.

Because, in the triangles ABC, DEG, AB is equal to DE, and AC to DG; also, the angle BAC is equal to the angle EDG; therefore the base BC is equal to the base EG (Pr. 6).

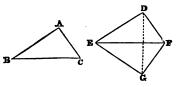

Draw the line DH bisecting the angle FDG, and meeting EG in H, and join FH. Now, because the angle FDH is equal to the angle GDH, also DG is equal to DF, and DH is common to the two triangles FDH, GDH, therefore FH is equal to GH (Pr. 6). Adding EH to each of these equals, we have the sum of EH and HF equal to the sum of EH and HG, or EG. But the sum of EH and HF is greater than EF (Pr. 8). Hence EG, or its equal BC, is greater than EF. Therefore, if two triangles, etc.

BOOK I. 27

PROPOSITION XIV. THEOREM (Converse of Prop. XIII.).

If two triangles have two sides of the one equal to two sides of the other, each to each, but the bases unequal, the angle contained by the sides of that which has the greater base will be greater than the angle contained by the sides of the other.

Let ABC, DEF be two triangles having two sides of the one equal to two sides of the other, viz., AB equal to DE, and AC to DF, but the base BC greater than the base EF; then will the angle BAC be greater than the angle EDF.



For if it is not greater, it must be either equal to it, or less. But the angle BAC is not equal to the angle EDF, because then the base BC would be equal to the base EF (Pr. 6), which is contrary to the supposition. Neither is it less, because then the base BC would be less than the base EF (Pr. 13), which is also contrary to the supposition; therefore the angle BAC is not less than the angle EDF, and it has been proved that it is not equal to it; hence the angle BAC must be greater than the angle EDF. Therefore, if two triangles, etc.

PROPOSITION XV. THEOREM.

If two triangles have the three sides of the one equal to the three sides of the other, each to each, the three angles will also be equal, each to each, and the triangles themselves will be equal.

Let ABC, DEF be two triangles having the three sides of the one equal to the three sides of the other, viz., AB equal to DE, BC to EF, and AC to DF; then will the three angles also be equal,

viz., the angle A to the angle D, the angle B to the angle E, and the angle C to the angle F.

Suppose the triangle ABC to be placed so that its base BC coincides with its equal EF, but so that its vertex A falls on the opposite side of EF from D, as at G. Join DG; and because ED and EG are each equal to AB, they are equal to each other, and the triangle EDG is isosceles; therefore the angle EDG is equal to the angle EGD (Pr. 10).

In the same manner it may be shown that the angle FDG is

equal to the angle FGD. Therefore, adding equals to equals, the two angles EDG, FDG are together equal to the two angles EGD, FGD; that is, the angle EDF is equal to the angle EGF. But the angle EGF is, by hypothesis, equal to the angle BAC; therefore also the angle BAC is equal to the angle EDF.

Since the two sides AB and AC are equal to the two sides DE and DF, each to each, and their included angles BAC, EDF are also equal, the two triangles ABC, DEF are equal (Pr. 6), and their other angles are equal each to each, viz., the angle ABC to the angle DEF, and the angle ACB to the angle DFE. Therefore, if two triangles, etc.

Scholium. In equal triangles, the equal angles are opposite to the equal sides; thus the equal angles A and D are opposite to the equal sides BC, EF.

PROPOSITION XVI. THEOREM.

From a given point without a straight line, only one perpendicular can be drawn to that line.

Let A be the given point, and DE the given straight line; from the point A only one perpendicular can be drawn to DE.

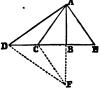
For, if possible, let there be drawn two perpendiculars AB, AC. Produce the line AB to F, making BF equal to AB, and join CF.

Then, in the triangles ABC, FBC, because AB is equal to BF, BC is common to both triangles, and the angle ABC is equal to the angle FBC, being both right angles (Pr. 2, Cor. 1); therefore two sides and the included angle of one triangle, are equal to two sides and the included angle of the other triangle; hence the angle ACB is equal to the angle FCB (Pr. 6).

But, since the angle ACB is, by supposition, a right angle, FCB must also be a right angle; and the two adjacent angles BCA, BCF, being together equal to two right angles, the two straight lines AC, AF must form one and the same straight line (Pr. 3); that is, between the two points A and F, two straight lines, ABF, ACF, may be drawn, which is impossible (Ax. 11); hence AB and AC can not both be perpendicular to DE. Therefore, from a point, etc.

PROPOSITION XVII. THEOREM.

If, from a point without a straight line, a perpendicular be drawn to this line, and oblique lines be drawn to different points:


1st. The perpendicular will be shorter than any oblique line.

2d. Two oblique lines, which meet the proposed line at equal distances from the foot of the perpendicular, will be equal.

3d. Of any two oblique lines, that which is further from the perpendicular will be the longer.

Let DE be the given straight line, and A any point without it. Draw AB perpendicular to DE; draw, also, the oblique lines AC, AD, AE. Produce the line AB to F, making BF equal to AB, and join CF, DF.

First. Because, in the triangles ABC, FBC, AB is equal to BF, BC is common to the two

triangles, and the angle ABC is equal to the angle FBC, being both right angles (Pr. 2, Cor. 1); therefore two sides and the included angle of one triangle are equal to two sides and the included angle of the other triangle; hence the side CF is equal to the side CA (Pr. 6).

But the straight line ABF is shorter than the broken line ACF (Pr. 8); hence AB, the half of ABF, is shorter than AC, the half of ACF. Therefore the perpendicular AB is shorter than any oblique line, AC.

Secondly. Let AC and AE be two oblique lines which meet the line DE at equal distances from the foot of the perpendicular;

they will be equal to each other.

For, in the triangles ABC, ABE, BC is equal to BE, AB is common to the two triangles, and the angle ABC is equal to the angle ABE, being both right angles (Pr. 1, Cor.); therefore two sides and the included angle of one triangle are equal to two sides and the included angle of the other; hence the side AC is equal to the side AE (Pr. 6). Wherefore two oblique lines, equally distant from the perpendicular, are equal.

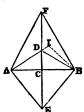
Thirdly. Let AC, AD be two oblique lines, of which AD is further from the perpendicular than AC; then will AD be longer than AC. For it has already been proved that AC is equal to CF, and in the same manner it may be proved that AD is equal to DF. Now, by Pr. 9, the sum of the two lines AC, CF is less than the sum of the two lines AD, DF. Therefore AC, the half

of ACF, is less than AD, the half of ADF; hence the oblique line which is furthest from the perpendicular is the longest. There-

fore, if from a point, etc.

Cor. 1. The perpendicular measures the shortest distance of a point from a line, because it is shorter than any oblique line. This shortest distance is frequently called the true distance, or simply the distance.

Cor. 2. It is impossible to draw three equal straight lines from


the same point to a given straight line.

PROPOSITION XVIII. THEOREM.

If through the middle point of a straight line a perpendicular is drawn to this line:

1st. Each point in the perpendicular is equally distant from the two extremities of the line.

2d. Any point out of the perpendicular is unequally distant from those extremities.

Let the straight line EF be drawn perpendicular to AB through its middle point, C.

First. Every point of EF is equally distant from the extremities of the line AB; for, since AC is equal to CB, the two oblique lines AD, DB are equally distant from the perpendicular, and are, therefore, equal (Pr. 17).

So, also, the two oblique lines AE, EB are equal, and the oblique lines AF, FB are equal; therefore every point of the perpendicular is equally distant from the extremities A and B.

Secondly. Let I be any point out of the perpendicular. Draw the straight lines IA, IB; one of these lines must cut the perpendicular in some point, as D. Join DB; then, by the first case, AD is equal to DB. To each of these equals add ID; then will IA be equal to the sum of ID and DB. Now, in the triangle IDB, IB is less than the sum of ID and DB (Pr. 8); it is, therefore, less than IA; hence every point out of the perpendicular is unequally distant from the extremities A and B.

Cor. If a straight line have two points, each of which is equally distant from the two extremities of a second line, it will be

perpendicular to the second line at its middle point.

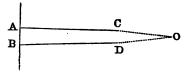
PROPOSITION XIX. THEOREM.

If two right-angled triangles have the hypothenuse and a side of the one equal to the hypothenuse and a side of the other, each to each, the triangles are equal.

Let ABC, DEF be two right- A

angled triangles, having the hypothenuse AC and the side AB of the one equal to the hypothenuse DF and side DE of the other; then will the side BC be equal to EF, and the triangle ABC to the triangle DEF.

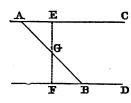
For if BC is not equal to EF, one of them must be greater than the other. Let BC be the greater, and from it cut off BG equal to EF the less, and join AG.


Then, in the triangles ABG, DEF, because AB is equal to DE, BG is equal to EF, and the angle B equal to the angle E, both of them being right angles, the two triangles are equal (Pr. 6), and AG is equal to DF. But, by hypothesis, AC is equal to DF, and therefore AG is equal to AC. Now the oblique line AC, being further from the perpendicular than AG, is the longer (Pr. 17), and it has been proved to be equal, which is impossible. Hence BC is not unequal to EF; that is, it is equal to it; and the triangle ABC is equal to the triangle DEF (Pr. 15). Therefore, if two right-angled triangles, etc.

PROPOSITION XX. THEOREM.

Two straight lines perpendicular to the same straight line are parallel.

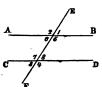
Let the two straight lines AC, BD be both perpendicular to AB; then is AC parallel to BD.


For if these lines are not parallel, being produced, they must meet on one side or the other of

AB. Let them be produced, and meet in O; then there will be two perpendiculars, OA, OB, let fall from the same point, on the same straight line, which is impossible (Pr. 16). Therefore two straight lines, etc.

PROPOSITION XXI. THEOREM.

If a straight line meeting two other straight lines makes the interior angles on the same side together equal to two right angles, the two lines are parallel.


Let the straight line AB, which meets the two straight lines AC, BD, make the interior angles on the same side, BAC, ABD, together equal to two right angles; then is AC parallel to BD.

From G, the middle point of the line AB, draw EFG perpendicular to AC; it

will also be perpendicular to BD.

For the sum of the angles ABD and ABF is equal to two right angles (Pr. 2); and, by hypothesis, the sum of the angles ABD and BAC is equal to two right angles. Therefore the sum of ABD and ABF is equal to the sum of ABD and BAC. Take away the common angle ABD, and the remainder, ABF, is equal to BAC; that is, GBF is equal to GAE.

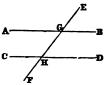
Again, the angle BGF is equal to the angle AGE (Pr. 5); and, by construction, BG is equal to GA; hence the triangles BGF, AGE have two angles and the included side of the one equal to two angles and the included side of the other; they are, therefore, equal (Pr. 7); and the angle BFG is equal to the angle AEG. But AEG is, by construction, a right angle, whence BFG is also a right angle; that is, the two straight lines EC, FD are perpendicular to the same straight line, and are consequently parallel (Pr. 20). Therefore, if a straight line, etc.

Scholium. When two parallel lines AB, CD are cut by a third line EF, called the secant line, the eight angles formed at the points of intersection are named as follows:

1st. The four angles 1, 2, 3, 4, without the parallel lines, are called exterior angles.

2d. The four angles 5, 6, 7, 8, within the par-

allel lines, are called interior angles.


3d. The two angles on opposite sides of the secant line, and not adjacent, are called *alternate* angles, as 1 and 3, or 2 and 4. Also, 5 and 7, or 6 and 8.

PROPOSITION XXII. THEOREM.

If a straight line intersecting two other straight lines makes the alternate angles equal to each other, or makes an exterior angle equal to the interior and remote upon the same side of the secant line, these two lines are parallel.

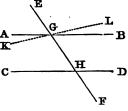
Let the straight line EF, which intersects the two straight lines AB, CD, make the alternate angles AGH, GHD equal to each other; then AB is parallel to CD.

For, to each of the equal angles AGH, GHD, add the angle HGB; then the sum of AGH and HGB will be equal to the sum of

GHD and HGB. But AGH and HGB are equal to two right angles (Pr. 2); therefore GHD and HGB are equal to two right angles; and hence AB is parallel to CD (Pr. 21).

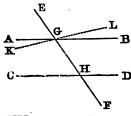
Again, if the exterior angle EGB is equal to the interior and

remote angle GHD, then is AB parallel to CD.


For, the angle AGH is equal to the angle EGB (Pr. 5); and, by supposition, EGB is equal to GHD; therefore the angle AGH is equal to the angle GHD, and they are alternate angles; hence, by the first part of the proposition, AB is parallel to CD. Therefore, if a straight line, etc.

PROPOSITION XXIII. THEOREM.

(Converse of Propositions XXI. and XXII.)


If a straight line intersect two parallel lines, it makes the alternate angles equal to each other; also, any exterior angle equal to the interior and remote on the same side; and the two interior angles on the same side together equal to two right angles.

Let the straight line EF intersect the two parallel lines AB, CD; the alternate angles AGH, GHD are equal to each other; the exterior angle EGB is equal to the interior and remote angle on the same side, GHD; and the two interior angles on the same side, BGH, GHD, are together equal to two right angles.

For, if AGH is not equal to GHD, through G draw the line KL, making the angle KGH equal to GHD; then KL must be

parallel to CD (Pr. 22). But, by supposition, AB is parallel to CD; therefore, through the same point, G, two straight lines have been drawn parallel to CD, which is impossible (Ax. 12). Therefore the angles AGH, GHD are not unequal; that is, they are equal to each other.

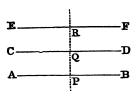
Now the angle AGH is equal to EGB (Pr. 5), and AGH has been proved equal to GHD; therefore EGB is also equal to GHD. Add to each of these equals the angle BGH; then will the sum of EGB, BGH be equal to the sum of BGH, GHD. But EGB, BGH are equal to two right angles (Pr. 2); therefore, also, BGH,

GHD are equal to two right angles. Therefore, if a straight line, etc.

Cor. 1. If a straight line is perpendicular to one of two parallel lines, it is also perpendicular to the other.

Cor. 2. Of the eight angles formed by a line cutting two parallel lines obliquely, the four acute angles are equal to each other, and the four obtuse angles are also equal to each other.

Cor. 3. If two lines, KL and CD, make with EF the two angles KGH, GHC, together less than two right angles, then will KL and CD meet, if sufficiently produced.


For if they do not meet they are parallel (Def. 24). But they are not parallel; for then the angles KGH, GHC would be equal

to two right angles.

It is evident that the two lines KL and CD will meet on that side of EF on which the sum of the two angles KGH, GHC is less than two right angles.

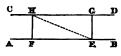
PROPOSITION XXIV. THEOREM.

Straight lines which are parallel to the same line are parallel to each other.

Let the straight lines AB, CD be each of them parallel to the line EF; then will AB be parallel to CD.

For, draw any straight line, as PQR, perpendicular to EF. Then, since AB is parallel to EF, PR, which is perpendicular to EF, will also be perpendicular to

AB (Pr. 23, Cor. 1); and, since CD is parallel to EF, PR will also


BOOK I. 35

be perpendicular to CD. Hence AB and CD are both perpendicular to the same straight line, and are consequently parallel (Pr. 20). Therefore, straight lines which are parallel, etc.

PROPOSITION XXV. THEOREM.

Two parallel straight lines are every where equally distant from each other.

Let AB, CD be two parallel straight lines. From any points, E and F, in one of them, draw the lines EG, FH perpendicular to AB; they will also be perpendicular to

CD (Pr. 23, Cor. 1). Join EH; then, because EG and FH are perpendicular to the same straight line AB, they are parallel (Pr. 20); therefore the alternate angles, EHF, HEG, which they make

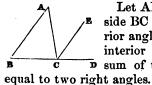
with HE, are equal (Pr. 23).

Again, because AB is parallel to CD, the alternate angles GHE, HEF are also equal. Therefore the triangles HEF, EHG have two angles of the one equal to two angles of the other, each to each, and the side EH, included between the equal angles, common; hence the triangles are equal (Pr. 7); and the line EG, which measures the distance of the parallels at the point E, is equal to the line FH, which measures the distance of the same parallels at the point F. Therefore, two parallel straight lines, etc.

PROPOSITION XXVI. THEOREM.

If two angles have their sides parallel each to each, the two angles will either be equal, or supplements of each other.

Let AB be parallel to DE, and BC to EF; then the angle ABC will be equal to the angle DEF, and the angle ABC will be the supplement of the angle DEH.


Produce DE, if necessary, until it meets BC in G. Then, because EF is parallel to GC, the angle DEF is equal to DGC (Pr. 23); and, because DG is parallel to AB, the angle DGC is equal to ABC; hence the angle DEF is equal to the angle ABC (Ax. 1). But the angle DEH is the supplement of DEF (Pr. 2). Hence ABC is the supplement of DEH. Therefore, if two angles, etc.

Scholium. Two angles are equal when their sides are not only parallel, but both lie in the same direction, as ABC, DEF; or both lie in opposite directions, as ABC, HEK. They are supple-

ments of each other when their sides are parallel and two of their sides lie in the same direction, while the other two lie in opposite directions, as ABC, DEH.

PROPOSITION XXVII. THEOREM.

If one side of a triangle is produced, the exterior angle is equal to the sum of the two interior and remote angles; and the sum of the three interior angles of every triangle is equal to two right angles.

Let ABC be any plane triangle, and let the side BC be produced to D; then will the exterior angle ACD be equal to the sum of the two interior and remote angles A and B; and the b sum of the three angles ABC, BCA, CAB is get angles

For, conceive CE to be drawn parallel to the side AB of the triangle; then, because AB is parallel to CE, and AC meets them, the alternate angles BAC, ACE are equal (Pr. 23).

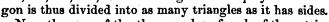
Again, because AB is parallel to CE, and BD meets them, the exterior angle ECD is equal to the interior and remote angle ABC. But the angle ACE was proved equal to BAC; therefore the whole exterior angle ACD is equal to the two interior and remote angles CAB, ABC (Ax. 2). To each of these equals add the angle ACB; then will the sum of the two angles ACD, ACB be equal to the sum of the three angles ABC, BCA, CAB. But the angles ACD, ACB are equal to two right angles (Pr. 2); hence, also, the angles ABC, BCA, CAB are together equal to two right angles. Therefore, if one side of a triangle, etc.

Cor. 1. If the sum of two angles of a triangle is given, the third may be found by subtracting this sum from two right angles.

Cor. 2. If two angles of one triangle are equal to two angles of another triangle, the third angles are equal, and the triangles are mutually equiangular.

Cor. 3. A triangle can have but one right angle; for if there were two, the third angle would be nothing. Still less can a triangle have more than one obtuse angle.

Cor. 4. In a right-angled triangle, the sum of the two acute angles is equal to one right angle; that is, each of the acute angles is the complement of the other.


Cor. 5. In an equilateral triangle, each of the angles is one third of two right angles, or two thirds of one right angle.

PROPOSITION XXVIII. THEOREM.

All the interior angles of a polygon, together with four right angles, are equal to twice as many right angles as the figure has sides.

Let ABCDE be any polygon; then all its interior angles A, B, C, D, E, together with four right angles, are equal to twice as many right angles as the figure has sides.

For, from any point, F, within it, draw lines FA, FB, FC, etc., to all the angles. The poly-

Now the sum of the three angles of each of these triangles is equal to two right angles (Pr. 27); therefore the sum of the angles of all the triangles is equal to twice as many right angles as the polygon has sides. But the same angles are equal to the angles of the polygon, together with the angles at the point F, that is, together with four right angles (Pr. 5, Cor. 2). Therefore the angles of the polygon, together with four right angles, are equal to twice as many right angles as the figure has sides.

Scholium. When this proposition is applied to concave polygons (Def. 37), each re-entering angle is to be regarded as greater than two right angles.

Cor. The sum of the angles of a quadrilateral is four right angles; of a pentagon, six right angles; of a hexagon, eight, etc.

PROPOSITION XXIX. THEOREM.

If all the sides of any polygon be produced so as to form an exterior angle at each vertex, the sum of these exterior angles will be equal to four right angles.

Let all the sides of the polygon ABC, etc., be produced in the same direction; that is, so as to form one exterior angle at each vertex; then will the sum of the exterior angles be equal to four right angles.

For each interior angle ABC, together with its ball adjacent exterior angle ABD, is equal to two right angles (Pr. 2); therefore the sum of all the interior and exterior angles is equal to twice as many right angles as there are sides of the polygon; that is, they are equal to all the interior angles of the polygon, together with four right angles. Hence

the sum of the exterior angles must be equal to four right angles (Ax. 3). Therefore, if all the sides, etc.

PROPOSITION XXX. THEOREM.

The opposite sides and angles of a parallelogram are equal to each other.

Let ABCD be a parallelogram; then will its opposite sides and angles be equal to each other.

Draw the diagonal BD; then, because AB is parallel to CD, and BD meets them, the alter-

nate angles ABD, BDC are equal to each other (Pr. 23).

Also, because AD is parallel to BC, and BD meets them, the alternate angles BDA, DBC are equal to each other. Hence the two triangles ABD, BDC have two angles, ABD, BDA of the one, equal to two angles, BDC, CBD of the other, each to each, and the side BD included between these equal angles common to the two triangles; therefore their other sides are equal, each to each, and the third angle of the one to the third angle of the other (Pr. 7), viz., the side AB to the side CD, and AD to BC, and the angle BAD equal to the angle BCD.

Also, because the angle ABD is equal to the angle BDC, and the angle CBD to the angle BDA, the whole angle ABC is equal to the whole angle ADC. But the angle BAD has been proved equal to the angle BCD; therefore the opposite sides and angles of a parallelogram are equal to each other.

Cor. 1. Two parallels, AB, CD, comprehended between two other parallels, AD, BC, are equal; and the diagonal BD divides the parallelogram into two equal triangles.

Cor. 2. If one angle of a parallelogram is a right angle, all its angles are right angles, and the figure is a rectangle.

PROPOSITION XXXI. THEOREM (Converse of Prop. XXX.)

If the opposite sides of a quadrilateral are equal, each to each, the equal sides are parallel, and the figure is a parallelogram.

Let ABDC be a quadrilateral, having its opposite sides equal to each other, viz., the side AB equal to CD, and AC to BD; then will the equal sides be parallel, and the figure will be a parallelogram.

Draw the diagonal BC; then the triangles ABC; BCD have all the sides of the one equal to the corresponding sides of the other, BOOK 1. 39

each to each; therefore the angle ABC is equal to the angle BCD (Pr. 15), and, consequently, the side AB is parallel to CD (Pr. 22). For a like reason, AC is parallel to BD; hence the quadrilateral ABDC is a parallelogram. Therefore, if the opposite sides, etc.

PROPOSITION XXXII. THEOREM

If two opposite sides of a quadrilateral are equal and parallel, the other two sides are equal and parallel, and the figure is a parallelogram.

Let ABDC be a quadrilateral, having the sides AB, CD equal and parallel; then will the sides AC, BD be also equal and parallel, and the figure will be a parallelogram.

Draw the diagonal BC; then, because AB is parallel to CD, and BC meets them, the alternate angles ABC, BCD are equal (Pr. 23).

Also, because AB is equal to CD, and BC is common to the two triangles ABC, BCD, the two triangles ABC, BCD have two sides and the included angle of the one equal to two sides and the included angle of the other; therefore the side AC is equal to BD (Pr. 6), and the angle ACB to the angle CBD.

And, because the straight line BC meets the two straight lines AC, BD, making the alternate angles BCA, CBD equal to each other, AC is parallel to BD (Pr. 22); hence the figure ABDC is a parallelogram. Therefore, if two opposite sides, etc.

PROPOSITION XXXIII. THEOREM.

The diagonals of every parallelogram bisect each other.

Let ABCD be a parallelogram, whose diagonals AC, BD intersect each other in E; then will AE be equal to EC, and BE to ED.

Because the alternate angles ABE, EDC are equal (Pr. 23), and also the alternate angles EAB, ECD, the triangles ABE, CDE have two angles in the one equal to two angles in the other, each to each, and the included sides AB, CD are also equal; hence the remaining sides are equal, viz., AE to EC, and DE to EB. Therefore the diagonals of every parallelogram, etc.

Cor. If the side AB is equal to AD, the triangles AEB, AED have all the sides of the one equal to the corresponding sides of the other, and are consequently equal; hence the angle AEB will equal the angle AED, and therefore the diagonals of a rhombus bisect each other at right angles.

BOOK II.

RATIO AND PROPORTION.

On the Relation of Magnitudes to Numbers.

1. To measure a quantity is to find how many times it contains another quantity of the same kind called the unit.

To measure a line is to find how many times it contains another line called the *unit of length*, or the *linear unit*. Thus, when a line is said to be fifteen feet in length, it is to be understood that the line has been compared with the unit of length (one foot), and found to contain it fifteen times.

The number which expresses how many times a quantity contains the unit is called the *numerical measure* of that quantity.

- 2. Ratio is that relation between two quantities which is expressed by the quotient of the first divided by the second. Thus the ratio of 12 to 4 is $\frac{12}{4}$. The ratio of A to B is $\frac{A}{B}$. The two quantities compared together are called the terms of the ratio.
- quantities compared together are called the terms of the ratio; the first is called the antecedent, and the second the consequent.
- 3. To find the ratio of one quantity to another is to find how many times the first contains the second; *i. e.*, it is to measure the first by the second taken as the unit. If B be taken as the unit of measure, the quotient $\frac{A}{B}$ is the numerical value of A expressed in terms of this unit.

The ratio of two quantities is the same as the ratio of their numerical measures. Thus, if p denotes the unit, and if p is contained m times in A, and n times in B, then

$$\frac{A}{B} = \frac{mp}{np} = \frac{m}{n}$$

4. Two quantities are said to be commensurable when there is a third quantity of the same kind which is contained an exact number of times in each. This third quantity is called the common measure of the two given quantities.

The ratio of two commensurable quantities can therefore be exactly expressed by a number either whole or fractional. The ratio of AB to CD is $\frac{7}{4}$.

5. Two quantities are said to be *incommensurable* when they have no common measure. Thus the diagonal and side of a square are said to be incommensurable (see B. IV., Pr. 35); also the circumference and diameter of a circle (see B.VI., Pr. 11).

Whether A and B are commensurable or not, their ratio is expressed by $\frac{A}{B}$.

6. To find the numerical ratio of two given straight lines. Suppose AB and CD are two straight A E G B lines whose numerical ratio is required.

From the greater line, AB, cut off
a part equal to the less, CD, as many times as possible; for example, twice with a remainder EB less than CD. From CD cut off a part equal to the remainder EB as often as possible; for example, once with a remainder FD. From the first remainder BE cut off a part equal to FD as often as possible; for example, once with a remainder GB. From the second remainder FD cut off a part equal to the third GB as many times as possible. Continue this process until a remainder is found which is contained an exact number of times in the preceding one. This last remainder will be the common measure of the proposed lines; and, regarding it as the measuring unit, we may easily find the values of the preceding remainders, and at length those of the proposed lines, whence we obtain their ratio in numbers.

For example, if we find GB is contained exactly twice in FD, GB will be the common measure of the two proposed lines; for we have FD=2GB;

The ratio of the two lines AB, CD is therefore equal to that of 13GB to 5GB, or $\frac{13}{5}$.

7. It is possible that, however far this operation is continued, we may never find a remainder which is contained an exact number of times in the preceding one. In such a case, the two quan-

tities have no common measure; that is, they are incommensurable, and their ratio can not be exactly expressed by any number, whole or fractional.

8. But, although the ratio of incommensurable quantities can not be exactly expressed by a number, yet, by taking the measuring unit sufficiently small, a ratio may always be found which shall approach as near as we please to the true ratio.

Suppose $\frac{A}{B}$ denotes the ratio of two incommensurable quantities A and B, and let it be required to obtain a numerical expression of this ratio which shall be correct within an assigned measure of precision, say $\frac{1}{100}$. Let B be divided into 100 equal parts, and suppose A is found to contain 141 of these parts, with a remainder less than one of the parts; then we have

$$\frac{A}{B} = \frac{141}{100}$$
 within $\frac{1}{100}$;

that is, $\frac{141}{100}$ is an approximate value of the ratio $\frac{A}{B}$, within the assumed measure of precision. In the same manner, by dividing B into a greater number of equal parts, the error of our approximate value may be made as small as we please.

9. To generalize this reasoning, let B be divided into n equal parts, and let A contain m of these parts with a remainder less than one of the parts; then we have

$$\frac{A}{B} = \frac{m}{n}$$
 within $\frac{1}{n}$;

and since n may be taken as great as we please, $\frac{1}{n}$ may be made less than any assigned measure of precision, and $\frac{m}{n}$ will be the approximate value of the ratio $\frac{A}{R}$, within the assigned limit.

10. The ratio of any two magnitudes A and B is equal to the ratio of two other magnitudes A' and B', when the same number expresses the value of either ratio to the same degree of approximation, however far the approximation may be carried.

Let $\frac{m}{n}$ represent the approximate value of either ratio, and let B be divided into n equal parts; then A will contain m of these parts plus a remainder which is less than one of the parts; that

is, the numerical expression of the ratio $\frac{A}{B}$ will be $\frac{m}{n}$ correct within $\frac{1}{n}$ part. Hence the ratio $\frac{A}{B}$ can not differ from the ratio $\frac{A'}{B'}$ by so much as $\frac{1}{n}$. But the measure $\frac{1}{n}$ may be assumed as small as we please; that is, less than any assignable quantity, however small. Hence $\frac{A}{B}$ can not differ from $\frac{A'}{B'}$ by any assignable quantity, however.

ever small; that is, the two ratios are equal to each other. For an application of this principle, see B. III., Pr. 14.

11. A proportion is an equality of ratios. Thus, if the ratio $\frac{A}{B}$ is equal to the ratio $\frac{C}{D}$, the equality

$$\frac{\mathbf{A}}{\mathbf{B}} = \frac{\mathbf{C}}{\mathbf{D}}$$

constitutes a proportion. It may be read, the ratio of A to B equals the ratio of C to D; or A is to B as C to D.

A proportion is often written

A:B=C:D, A:B::C:D.

or,

where the notation A:B is equivalent to $A \div B$. The first and last terms of a proportion are called the two *extremes*; the second and third terms are called the two *means*. Of four proportional quantities, the last is called a *fourth proportional* to the other three taken in order.

Since $\frac{A}{B} = \frac{C}{D}$,

it is obvious that if A is greater than B, C must be greater than D; that is, if one antecedent is greater than its consequent, the other antecedent must be greater than its consequent; if equal, equal; and if less, less.

12. Three quantities are said to be proportional when the ratio of the first to the second is equal to the ratio of the second to the third; thus, if A, B, and C are in proportion, then

A:B::B:C, A:B=B:C.

or,

In this case the middle term is said to be a mean proportional between the other two, and C is called a third proportional to A and B.

13. Equimultiples of two magnitudes are the products arising

from multiplying those magnitudes by the same number. Thus 7A, 7B are equimultiples of A and B; so also are mA and mB.

Geometers make use of the following technical terms to signify certain ways of changing either the order or magnitude of proportionals, so that they continue still to be proportionals.

14. Alternation is when antecedent is compared with antece-

dent, and consequent with consequent.

Thus, if A:B::C:D, then, by alternation, A:C::B:D.

15. Inversion is when the antecedents are made the consequents, and the consequents the antecedents.

Thus, if A:B::C:D,

then, inversely, B:A::D:C.

16. Composition is when the sum of antecedent and consequent is compared either with the antecedent or consequent.

Thus, if A:B::C:D,

then, by composition, A+B:A::C+D:C, and A+B:B::C+D:D.

17. Division is when the difference of antecedent and consequent is compared either with the antecedent or consequent.

Thus, if A:B::C:D,

then, by division, A-B:A::C-D:C, and A-B:B:C-D:D

18. When a proportion is said to exist among certain quantities, these quantities are supposed to be represented, or to be capable of being represented by numbers (Art. 3).

If, for example, in the proportion

A:B::C:D,

A, B, C, D denote lines, we may suppose one of these lines, or a fifth line, if we please, to be taken as a common measure to the whole, and to be regarded as unity; then A, B, C, D will each represent a certain number of units, entire or fractional, commensurable or incommensurable, and the proportion among the lines A, B, C, D becomes a proportion in numbers. Hence the product of two lines A and D may be regarded as the number of linear units contained in A multiplied by the number of linear units contained in D.

In the proportion A:B::C:D,

the quantities A and B may be of one kind, as lines, and the quantities C and D of another kind, as surfaces; still, these quantities are to be regarded as represented by numbers. A and B will be

expressed in linear units, C and D in superficial units, and the product of A and D will be a number, as also the product of B and C.

Axioms.

- 1. Equimultiples of the same or of equal magnitudes are equal to one another.
- 2. Those magnitudes of which the same or equal magnitudes are equimultiples are equal to one another.

PROPOSITION I. THEOREM.

If four quantities are proportional, the product of the two extremes is equal to the product of the two means.

Let A, B, C, D be the numerical representatives of four proportional quantities, so that A:B::C:D; then will $A\times D=B\times C$.

For, since the four quantities are proportional,

$$\frac{\mathbf{A}}{\mathbf{B}} = \frac{\mathbf{C}}{\mathbf{D}}$$

Multiplying each of these equal quantities by B (Ax. 1), we obtain $A = \frac{B \times C}{B \times C}$

Multiplying each of these last equals by D, we have

$$A \times D = B \times C$$
.

Cor. If there are three proportional quantities, the product of the two extremes is equal to the square of the mean.

Thus, if A:B::B:C.

then, by this proposition, $A \times C = B \times B$, which is equal to B^2 .

PROPOSITION II. THEOREM. (Converse of Prop. I.)

If the product of two quantities is equal to the product of two others, the one pair may be made the extremes, and the other the means of a proportion.

Thus, suppose we have given

$$A \times D = B \times C$$
;

then will

For, since $A \times D = B \times C$, dividing each of these equals by D... $B \times C$

(Ax. 2), we have
$$A = \frac{B \times C}{D}$$
.

Dividing each of these last equals by B, we obtain

$$\frac{A}{B} = \frac{C}{D}$$
, or, $A : B :: C : D$.

PROPOSITION III. THEOREM.

If four quantities are proportional, they are also proportional when taken alternately.

Let A, B, C, D be the numerical representatives of four proportional quantities, so that

then, alternately, For, since A:B::C:D;by Pr. 1, $A\times D=B\times C.$ And, since $A\times D=B\times C.$ by Pr. 2, A:C::B:D.

PROPOSITION IV. THEOREM.

Ratios that are equal to the same ratio are equal to each other.

\mathbf{Let}	A:B::C:D,
and	A:B::E:F;
then will	$\mathbf{C}:\mathbf{D}::\mathbf{E}:\mathbf{F}.$
For, since	A:B::C:D.
we have	$\frac{\mathbf{A}}{\mathbf{B}} = \frac{\mathbf{C}}{\mathbf{D}}$
And, since	A:B::E:F,
we have	$\frac{\mathbf{A}}{\mathbf{B}} = \frac{\mathbf{E}}{\mathbf{F}}$.

But $\frac{C}{D}$ and $\frac{E}{F}$, being severally equal to $\frac{A}{B}$, must be equal to each other, and therefore

C:D::E:F.

Cor. If the antecedents of one proportion are equal to the antecedents of another proportion, the consequents are proportional.

 $\begin{array}{ccc} \textbf{If} & \textbf{A:B::C:D,} \\ \textbf{and} & \textbf{A:E::C:F,} \\ \textbf{then will} & \textbf{B:D::E:F.} \end{array}$

For, by alternation (Pr. 3), the first proportion becomes

A:C::B:D,

and the second, A:C::E:F.

Therefore, by this proposition,

B:D::E:F.

PROPOSITION V. THEOREM.

If four quantities are proportional, they are also proportional when taken inversely.

LetA:B::C:D;then, inversely,B:A::D:C.For, sinceA:B::C:D,by Pr. 1, $A \times D = B \times C,$ or, $B \times C = A \times D;$ therefore, by Pr. 2,B:A::D:C.

PROPOSITION VI. THEOREM.

If four quantities are proportional, they are also proportional by composition.

 $\begin{array}{lll} \textbf{Let} & \textbf{A}: \textbf{B}:: \textbf{C}: \textbf{D}; \\ \textbf{then, by composition,} & \textbf{A}+\textbf{B}: \textbf{A}:: \textbf{C}+\textbf{D}: \textbf{C}. \\ \textbf{For, since} & \textbf{A}: \textbf{B}:: \textbf{C}: \textbf{D}, \\ \textbf{by Pr. 1,} & \textbf{B} \times \textbf{C} = \textbf{A} \times \textbf{D}. \\ \end{array}$

To each of these equals add

 $A \times C = A \times C;$

then $A \times C + B \times C = A \times C + A \times D$, or, $(A+B) \times C = A \times (C+D)$.

Therefore, by Pr. 2, A+B:A::C+D:C.

PROPOSITION VII. THEOREM.

If four quantities are proportional, they are also proportional by division.

Let A:B::C:D;then, by division, A-B:A::C-D:C.For, since A:B:C:D,by Pr. 1, $B\times C=A\times D.$ Subtract each of these equals from $A\times C;$ then, $A\times C-B\times C=A\times C-A\times D,$

or, $(A-B)\times C=A\times (C-D)$.

Therefore, by Pr. 2, A-B:A::C-D:C.

PROPOSITION VIII. THEOREM.

If four quantities are proportional, the sum of the first and second is to their difference as the sum of the third and fourth is to their difference.

Let A:B::C:D;

PROPOSITION IX. THEOREM.

If any number of quantities are proportional, any one antecedent is to its consequent as the sum of all the antecedents is to the sum of all the consequents.

and we have

or,

 $A \times B + A \times D + A \times F = A \times B + B \times C + B \times E;$ $A \times (B + D + F) = B \times (A + C + E).$

But B+D+F may be regarded as a single quantity, and A+C+E as a single quantity.

Therefore, by Pr. 2,

A:B::A+C+E:B+D+F.

PROPOSITION X. THEOREM.

Equimultiples of two quantities have the same ratio as the quantities themselves.

Let A and B be any two quantities of the same kind, and m any number, entire or fractional, we have the equality

or, $B = \frac{mB}{mB}$,
or, A:B::mA:mB.
Cor. If A:B::C:D,
then mA:nB::mC:nD;
and if mA:nB::mC:nD,
then A:B::C:D; that is,

If four magnitudes are proportional, we may multiply the ante-

BOOK II. 49

cedents or the consequents, or divide them by the same quantity, and the results will be proportional.

PROPOSITION XI. THEOREM.

If four quantities are proportional, their squares or cubes are also proportional.

A : B :: C : D; Let $A^2: B^2:: C^2: D^2$ then will $A^3: B^3:: C^3: D^3$. and A:B::C:D, For, since $A \times D = B \times C$; by Pr. 1, or, multiplying each of these equals by itself (Ax. 1), we have $A^2 \times D^2 = B^2 \times C^2$; and multiplying these last equals by $A \times D = B \times C$, we have

 $A^3 \times D^3 = B^3 \times C^3$. Therefore, by Pr. 2, $A^2: B^2:: C^2: D^2$,

and

 $A^3: B^3:: C^3: D^3$.

PROPOSITION XII. THEOREM.

If there are two sets of proportional quantities, the products of the corresponding terms are proportional.

A:B::C:DLet E:F::G:H; and

 $A \times E : B \times F :: C \times G : D \times H$. then will

A:B::C:DFor, since $A \times D = B \times C$. by Pr. 1, And, since E:F::G:H, $\mathbf{E} \times \mathbf{H} = \mathbf{F} \times \mathbf{G}$. by Pr. 1,

Multiplying together these equal quantities, we have

 $\bar{A} \times D \times E \times H = B \times C \times F \times G;$

 $(A \times E) \times (D \times H) = (B \times F) \times (C \times G);$ or,

therefore, by Pr. 2,

 $A \times E : B \times F :: C \times G : D \times H$.

A:B::C:D, Cor. If B:F::G:H, and $A:F::C\times G:D\times H.$ then

For, by the proposition,

 $A \times B : B \times F :: C \times G : D \times H$

Also, by Pr. 10, $A \times B : B \times F :: A : F$; hence, by Pr. 4, $A:F::C\times G:D\times H$.

PROPOSITION XIII. THEOREM.

If three quantities are proportional, the first is to the third as the square of the first to the square of the second.

Thus, if A:B::B:C, then $A:C::A^2:B^2$.

For, since, A:B::B:C, and A:B::A:B; therefore, by Pr. 12, $A^2:B^2::A\times B:B\times C$.

But, by Pr. 10, hence, by Pr. 4, $A \times B : B \times C :: A : C$; $A : C :: A^2 : B^2$.

BOOK III.

THE CIRCLE, AND THE MEASURE OF ANGLES.

Definitions.

1. A circle is a plane figure bounded by a line, all the points of which are equally distant from a point within, called the centre.

The fine which bounds the circle is called its circumference.

2. Any straight line drawn from the centre of the circle to the circumference is called a *rudius* of the circle, as CA, CD.

Any straight line drawn through the centre, and terminated each way by the circumference, is called a diameter, as AB.

Cor. All the radii of a circle are equal; also all the diameters are equal, and each is double the radius.

3. An arc of a circle is any portion of its circumference, as EGF.

The chord of an arc is the straight line which joins its two extremities, as EF.

The arc EGF is said to be subtended by its chord EF.

4. A segment of a circle is the figure included between an arc and its chord, as EGF.

Since the same chord EF subtends two arcs EGF, EHF, to the same chord there correspond two segments EGF, EHF. By the term segment, the smaller of the two is always to be understood, unless the contrary is expressed.

- 5. A sector of a circle is the figure included between an arc and the two radii drawn to the extremities of the arc, as BCD.
- 6. A straight line is said to be *inscribed* in a circle when its extremities are on the circumference, as AB.

An *inscribed angle* is one whose vertex is on the circumference, and which is formed by two chords, as BAC.

7. A polygon is said to be *inscribed* in a circle when all its angles have their vertices on the circumference, as ABC. The circle is then said to be *described* about the polygon.

8. An angle is said to be inscribed in a segment when it is con-

tained by two straight lines drawn from any point in the arc of the segment to the extremities of the subtending chord. Thus the angles ACB, ADB are inscribed in the segment ADCB.

9. A secant is a line which cuts the circumference, and lies partly within and partly without the circle, as DE.

10. A straight line is said to touch a circle when it meets the circumference, and, being produced, does not cut it, as AB.

Such a line is called a tangent, and the point in which it meets the circumference is called the *point of contact*, as C.

11. Two circumferences are said to touch one another when they meet, but do not cut one another.

12. A polygon is said to be described about a circle when each side of the polygon touches the circumference of the circle.

In this case the circle is said to be inscribed in the polygon.

PROPOSITION I. THEOREM.

Every diameter divides the circle and its circumference into two equal parts.

Let ACBD be a circle, and AB its diameter; then will the line AB divide the circle and its circumference into two equal parts.

If the figure ADB be turned about AB, and superposed upon the figure ACB, the curve line ACB must coincide exactly with the curve line ADB.

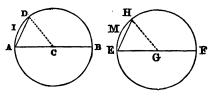
For if any part of the curve ACB were to fall either within or without the curve ADB, there would be points in one or the other unequally distant from the centre, which is contrary to the definition of a circle. Hence the two figures coincide throughout, and are equal in all respects. Therefore every diameter, etc.

PROPOSITION II. THEOREM.

A straight line can not meet the circumference of a circle in more than two points.

For, if it be possible, let the straight line ABC meet the circumference of a circle in three points, DBE. Take F, the centre of the circle, and join FD, FB, FE.

Then, because F is the centre of the circle, the three straight lines FD, FB, FE are all acqual to each other. Hence three equal straight

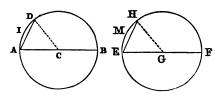

lines have been drawn from the same point to the same straight line, which is impossible (B. I., Pr. 17, Cor. 2*). Therefore a straight line, etc.

PROTOSITION III. THEOREM.

In the same circle or in equal circles, equal arcs are subtended by equal chords, and conversely equal chords subtend equal arcs.

Let ADB, EHF be equal circles, and let the arcs AI D, EMH also be equal; then will the chord AD be equal to the chord EH.

For, the diameter AB being equal to the diameter

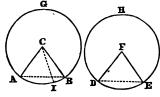


EF, the semicircle ADB may be applied exactly to the semicircle EHF, and the curve line AIDB will coincide entirely with the curve line EMHF (Pr. 1). But the arc AID is, by hypothesis, equal to the arc EMH; hence the point D will fall on the point H, and therefore the chord AD is equal to the chord EH (Ax. 11, B. I.).

Conversely, if the chord AD is equal to the chord EH, then the arc AID will be equal to the arc EMH.

For, if the radii CD, GH are drawn, the two triangles ACD, EGH will have their three sides equal, each to each, viz., AC to EG, CD to GH, and AD equal to EH; the triangles are consequently equal (B. I., Pr. 15), and the angle ACD is equal to the angle EGH.

^{*} In the references, the Roman numerals denote the Book, and the Arabic numerals indicate the Proposition. Thus, B. I., Pr. 17, means the seventeenth proposition of the first book.


Let, now, the semicircle ADB be applied to the semi circle EHF, so that AC may coincide with EG; then, since the angle ACD is equal to the angle EGH, the radius CD will coincide with

the radius GH, and the point D with the point H. Therefore the arc AID must coincide with the arc EMH, and be equal to it.

If the arcs are in the same circle, the demonstration is similar. Therefore, in the same circle, etc.

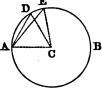
PROPOSITION IV. THEOREM.

In the same circle or in equal circles, equal angles at the centre are subtended by equal arcs; and, conversely, equal arcs subtend equal angles at the centre.

Let AGB, DHE be two equal circles, and let ACB, DFE be equal angles at their centres; then will the arc AB be equal to the arc DE.

Join AB, DE; and, because the circles AGB, DHE are equal, their radii are equal. Therefore the two

sides CA, CB are equal to the two sides FD, FE; also, the angle at C is equal to the angle at F; therefore the base AB is equal to the base DE (B. I., Pr. 6). And, because the chord AB is equal to the chord DE, the arc AB must be equal to the arc DE (Pr. 3).


Conversely, if the arc AB is equal to the arc DE, the angle AC B will be equal to the angle DFE. For, if these angles are not equal, one of them is the greater. Let ACB be the greater, and take ACI equal to DFE; then, because equal angles at the centre are subtended by equal arcs, the arc AI is equal to the arc DE. But the arc AB is equal to the arc DE; therefore the arc AI is equal to the arc AB, the less to the greater, which is impossible. Hence the angle ACB is not unequal to the angle DFE, that is, it is equal to it. Therefore, in the same circle, etc.

PROPOSITION V. THEOREM.

In the same circle, or in equal circles, a greater arc is subtended by a greater chord; and, conversely, the greater chord subtends the greater arc, the arcs being both less than a semi-circumference.

In the circle AEB, let the arc AE be greater than the arc AD; then will the chord AE be greater than the chord AD.

Draw the radii CA, CD, CE. Now, if the A arc AE were equal to the arc AD, the angle ACE would be equal to the angle ACD (Pr.

4); hence it is clear that if the arc AE be greater than the arc AD, the angle ACE must be greater than the angle ACD. But the two sides AC, CE of the triangle ACE are equal to the two AC, CD of the triangle ACD, and the angle ACE is greater than the angle ACD; therefore the third side A E is greater than the third side AD (B. I., Pr. 13); hence the chord which subtends the greater arc is the greater.

Conversely, if the chord AE is greater than the chord AD, the arc AE is greater than the arc AD. For, because the two triangles ACE, ACD have two sides of the one equal to two sides of the other, each to each, but the base AE of the one is greater than the base AD of the other, therefore the angle ACE is greater than the angle ACD (B. I., Pr. 14), and hence the arc AE is greater than the arc AD (Pr. 4). Therefore, in the same circle, etc.

Scholium. If the arcs are greater than a semi-circumference. the contrary is true; that is, the greater arc is subtended by a smaller chord.

PROPOSITION VI. THEOREM.

The diameter which is perpendicular to a chord bisects the chord, and also the arc which it subtends.

Let ABG be a circle, of which AB is a chord, and GE a diameter perpendicular to it; the chord AB will be bisected in D, and the arc AEB will be bisected in E.

Draw the radii CA, CB. The two right-angled triangles CDA, CDB have the side AC equal to CB, and CD common; therefore the triangles are equal, and the base AD is equal to the base DB (B. I., Pr. 19).

Secondly. Since the radius AC is equal to CB, and the line CD

bisects the line AB at right angles, it bisects also the vertical angle ACB (B. I., Pr. 10, Cor. 1). And, since the angle ACE is equal to the angle BCE, the arc AE must be equal to the arc BE (B. III., Pr. 4). Hence the diameter GE, perpendicular to the chord AB, divides the arc subtended by this chord into two equal parts in the point E. Moreover, since

the semi-circumference GAE is equal to GBE (B. III., Pr. 1), the arc AG must be equal to BG. Therefore the perpendicular, etc.

Corollary. The centre of the circle, the middle point of the chord AB, and the middle point of the arc AEB subtended by this chord, are three points situated in a straight line perpendicular to the chord. Now two points are sufficient to determine the position of a straight line; therefore any straight line which passes through two of these points will necessarily pass through the third, and be perpendicular to the chord.

Also, the perpendicular to the chord at its middle point passes through the centre of the circle and through the middle of the arc subtended by the chord.

PROPOSITION VII. THEOREM.

Through any three points not in the same straight line one circumference may be made to pass, and but one.

Let A, B, C be any three points not in the same straight line; they all lie in the circumference of the same circle. Join AB, AC, and bisect these lines by the perpendiculars DF, E F; DF and EF produced will meet one another.

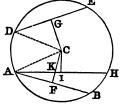
For, join DE; then, because the angles ADF, AEF are together equal to two right angles, the

angles FDE and FED are together less than two right angles; therefore DF and EF will meet if produced (B. I., Pr. 23, Cor. 3). Let them meet in F. Since this point lies in the perpendicular DF, it is equally distant from the two points A and B (B. I., Pr. 18); and, since it lies in the perpendicular EF, it is equally distant from the two points A and C; therefore the three distances FA, FB, FC are all equal; hence the circumference described from the centre F with the radius FA will pass through the three given points A, B, C.

Secondly. No other circumference can pass through the same points. For, if there were a second, its centre could not be out

of the line DF, for then it would be unequally distant from A and B (B. I., Pr. 18); neither could it be out of the line FE, for the same reason; therefore it must be on both the lines DF, FE. But two straight lines can not cut each other in more than one point, hence only one circumference can pass through three given points. Therefore, through any three points, etc.

Cor. 1. Two circumferences can not cut each other in more than two points; for, if they had three common points, they would have the same centre, and would coincide with each other.


Cor. 2. The perpendicular drawn from the middle of BC will pass through the point F, since this point is equally distant from B and C; therefore the three straight lines bisecting the three sides of a triangle at right angles meet in the same point.

PROPOSITION VIII. THEOREM.

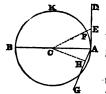
In the same circle or in equal circles, equal chords are equally distant from the centre; and of two unequal chords, the less is the more remote from the centre.

Let the chords AB, DE, in the circle AB ED, be equal to one another; they are equally distant from the centre. Take C, D the centre of the circle, and from it draw CF, CG, perpendiculars to AB, DE.

Join CA, CD; then, because the line CF A' is perpendicular to the chord AB, it bisects it (Pr. 6). Hence AF is the half of A

B; and, for the same reason, DG is the half of DE. But AB is equal to DE, therefore AF is equal to DG (B. I., Ax. 7). Now, in the right-angled triangles ACF, DCG, the hypothenuse AC is equal to the hypothenuse DC, and the side AF is equal to the side DG; therefore the triangles are equal, and CF is equal to CG (B. I., Pr. 19); hence the two equal chords AB, DE are equally distant from the centre.

Secondly. Let the chord AH be greater than the chord DE; DE is further from the centre than AH.


For, because the chord AH is greater than the chord DE, the arc ABH is greater than the arc DE (Pr. 5). From the arc AB H cut off a part, AB, equal to DE; draw the chord AB, and let fall CF perpendicular to this chord, and CI perpendicular to AH. It is plain that CF is greater than CK, and CK than CI (B. I., Pr. 17); much more, then, is CF greater than CI. But CF is equal

to CG, because the chords AB, DE are equal; hence CG is greater than CI. Therefore, in the same circle, etc.

Cor. Hence the diameter is the longest line that can be inscribed in a circle.

PROPOSITION IX. THEOREM.

A straight line perpendicular to a diameter at its extremity is a tangent to the circumference.

Let ABK be a circle, the centre of which is C, and the diameter AB, and let AD be drawn from A perpendicular to AB; AD will be a tangent to the circumference.

In AD take any point, E, and join CE; then, since CE is an oblique line, it is longer than the perpendicular CA (B. I., Pr. 17).

Now CA is equal to CF; therefore CE is greater than CF, and the point E must be without the circle. But E is any point whatever in the line AD; therefore AD has only the point A in common with the circumference, hence it is a tangent (Def. 10). Therefore a straight line, etc.

Cor. 1. Through the same point, A, in the circumference, only one tangent can be drawn. For, if possible, let a second tangent, AG, be drawn; then, since CA can not be perpendicular to AG (B. I., Pr. 1), another line, CH, must be perpendicular to AG, and therefore CH must be less than CA (B. I., Pr. 17); hence the point H falls within the circle, and AH produced will cut the circumference.

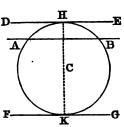
Cor. 2. A tangent, AD, to a circle at any point, A, is perpendicular to the diameter drawn to that point. For, since every point of the tangent except A is without the circumference, the radius CA is the shortest line that can be drawn from the point C to the line AD, and is therefore perpendicular to this line (B. I., Pr. 17).

PROPOSITION X. THEOREM.

Two parallels intercept equal arcs on a circumference.

The proposition admits of three cases:

First. When the two parallels are secants, as AB, DE.


Draw the radius CH perpendicular to AB; it will also be perpendicular to DE (B. I., Pr.

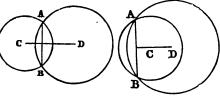
воок III. 59

23, Cor. 1); therefore the point H will be at the same time the middle of the arc AHB and of the arc DHE (Pr. 6). Hence the arc DH is equal to the arc HE, and the arc AH equal to HB, and therefore the arc AD is equal to the arc BE (B. I., Ax. 3).

Second. When one of the two parallels is a secant and the other a tangent.

To the point of contact, H, draw the radius CH; it will be perpendicular to the tangent DE (Pr. 9), and also to its parallel AB. But, since CH is perpendicular to the chord AB, the point H is the middle of the arc AHB (Pr. 6); therefore the arcs AH, HB, included between the parallels AB, DE, are equal.

Third. If the two parallels DE, FG are

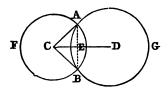

tangents, the one at H, the other at K, draw the parallel secant AB; then, according to the former case, the arc AH is equal to HB, and the arc AK is equal to KB; hence the whole arc HAK is equal to the whole arc HBK (B. I., Ax. 2). It is also evident that each of these arcs is a semi-circumference. Therefore two parallels, etc.

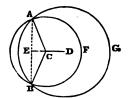
Scholium. The straight line joining the points of contact of two parallel tangents is a diameter.

PROPOSITION XI. - THEOREM.

If two circumferences cut each other, the straight line joining their centres bisects their common chord at right angles.

Let two circumferences cut each other in the points A and B; then will the line AB be a common chord to the two circles. Now, if a perpendicular be erect-

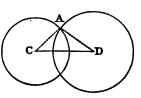



ed from the middle of this chord, it will pass through C and D, the centres of the two circles (Pr. 6, Cor.). But only one straight line can be drawn through two given points; therefore the straight line which passes through the centres will bisect the common chord at right angles.

PROPOSITION XIL. THEOREM.

If two circumferences touch each other, either externally or internally, the distance of their centres must be equal to the sum or difference of their radii.

It is plain that the centres of the circles and the point of contact are in the same straight line; for, if possible, let the point of contact, A, be without the straight line CD.


From A let fall upon CD, or CD produced, the perpendicular AE, and produce it to B, making BE equal to AE. Then, in the triangles ACE, BCE, the side AE is equal to EB, CE is common, and the angle AEC is equal to the angle BEC; therefore AC is equal to CB (B. I., Pr. 6), and the point B is in the circumference ABF. In the same manner, it may be shown to be in the circumference ABG, and hence the point B is in both circumferences. Therefore the two circumferences have two points, A and B, in common; that is, they cut each other, which is contrary to the hypothesis. Therefore the point of contact can not be without the line joining the centres; and hence, when the circles touch each other externally, the distance of the centres CD is equal to the sum of the radii CA, DA; and when they touch internally, the distance CD is equal to the difference of the radii CA, DA. Therefore, if two circumferences, etc.

Scholium. If two circumferences touch each other externally or internally, their point of contact is in the straight line joining their centres.

PROPOSITION XIII. THEOREM.

If two circumferences cut each other, the distance between their centres is less than the sum of their radii, and greater than their difference.

Let two circumferences cut each other in the point A. Draw the radii CA, DA; then, because any side of a triangle is less than the sum of the other two (B. I., Pr. 8), CD must be less than the sum of AD and AC. Also, DA must be less than the sum of CD and CA; or, subtracting CA from these unequals (B. I., Ax. 5), CD must be greater than the difference between DA and CA. Therefore, if two circumferences, etc.

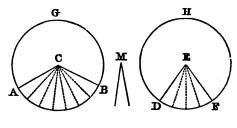
Scholium. There may be five different positions of two circles with respect to each other:

1st. When the distance between their centres is greater than the sum of their radii, there can be neither contact nor intersection.

2d. When the distance between their centres is equal to the sum of their radii, the circumferences touch each other externally.

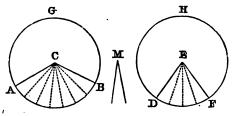
3d. When the distance between their centres is less than the sum of their radii, but greater than their difference, the circumferences intersect.

4th. When the distance between their centres is equal to the difference of their radii, the circumferences touch each other internally.


5th. When the distance between their centres is less than the difference of their radii, there can be neither contact nor intersection.

PROPOSITION XIV. THEOREM.

In the same circle, or in equal circles, two angles at the centre have the same ratio as their intercepted arcs.


Case first. When the angles are in the ratio of two whole numbers.

Let ABG, DFH be equal circles, and let the angles ACB, DEF at their centres be in the ratio of two whole numbers; then will

the angle ACB: angle DEF:: arc AB: arc DF.

Suppose, for example, that the angles ACB, DEF are to each other as 7 to 4; or, which is the same thing, suppose that the angle M, which may serve as a common measure, is contained seven times in the angle ACB, and four times in the angle DEF. Draw

radii to the several points of division of the arcs. The seven partial angles into which ACB is divided, being each equal to any of the four partial angles into which DEF is divided,

the partial arcs will also be equal to each other (Pr. 4), and the entire arc AB will be to the entire arc DF as 7 to 4. Now the same reasoning would apply if, in place of 7 and 4, any whole numbers whatever were employed; therefore, if the ratio of the angles ACB, DEF can be expressed in whole numbers, the arcs AB, DF will be to each other as the angles ACB, DEF.

Case second. When the angles are incommensurable; that is, their ratio can not be expressed exactly in numbers.

Suppose the angle DEF to be divided into any number n of equal parts; then ACB will contain a certain number m of these parts, plus a remainder which is less than one of the parts. The numerical expression of the ratio $\frac{ACB}{DEF}$ will be $\frac{m}{n}$, correct within $\frac{1}{n}$ part (B.H., Art. 10). Draw radii to the several points of division of the arcs. The arc DF will be divided into n equal parts, and the arc AB will contain m such parts, plus a remainder which is less than one of the parts. Therefore the numerical expression of the ratio $\frac{AB}{DF}$ will also be $\frac{m}{n}$, correct within $\frac{1}{n}$ part. Hence the

same number, $\frac{m}{n}$, expresses the value of the ratio $\frac{ACB}{DEF}$, and of $\frac{AB}{DF}$, however small the parts into which DEF is divided. Therefore these ratios must be absolutely equal; and hence, whatever may be the ratio of the two angles, we have the proportion

angle ACB: angle DEF:: arc AB: arc DF.

Therefore, in the same circle, etc.

Scholium. Since the angle at the centre of a circle and the arc intercepted by its sides are so related that when one is increased or diminished, the other is increased or diminished in the same ratio, an angle at the centre is said to be measured by its intercepted arc.

63 BOOK III.

It should, however, be observed that, since angles and arcs are unlike quantities, they are necessarily measured by different units. The most simple unit of measure for angles is the right angle, and the corresponding unit of measure for arcs is a quadrant. An acute angle would accordingly be expressed by some number between 0 and 1; an obtuse angle by some number between 1 and 2.

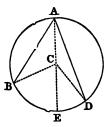
The unit, however, most commonly employed for angles is an angle equal to anth part of a right angle, called a degree. corresponding unit of measure for arcs is \frac{1}{9.0}th part of a quadrant, and is also called a degree. An angle or an arc is thus numerically expressed by the unit degree and its subdivisions. angle and a quadrant are both expressed by 90 degrees. angle is \$ths of a right angle, it is expressed by 72 degrees.

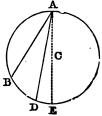
Cor. Since in equal circles sectors are equal when their angles are equal, it follows that in equal circles sectors are to each other as their arcs.

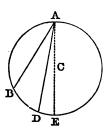
PROPOSITION XV. THEOREM.

An inscribed angle is measured by half the arc included between its sides.

Let BAD be an angle inscribed in the circle BAD. The angle BAD is measured by half the arc BD.


First. Let C, the centre of the circle, be within the angle BAD. Draw the diameter AE, also the radii CB, CD.


Because CA is equal to CB, the angle CAB is equal to the angle CBA (B. I., Pr. 10); therefore the angles CAB, CBA are together double the angle CAB. But the angle BCE is equal (B. I., Pr.


27) to the angles CAB, CBA; therefore, also, the angle BCE is double of the angle BAC. Now the angle B CE, being an angle at the centre, is measured by the arc BE; hence the angle BAE is measured by the half of BE. For the same reason, the angle DAE is measured by half the arc DE. Therefore the whole angle BAD is measured

Second. Let C, the centre of the circle, be without the angle BAD. Draw the diameter AE.

by half the arc BD.

It may be demonstrated, as in the first case, that the angle BAE is measured by half the arc BE, and the angle DAE by half the arc DE; hence their difference, BAD, is measured by half of BD. Therefore, an inscribed angle, etc.

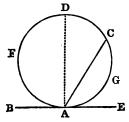
Cor. 1. All the angles BAC, BDC, etc., inscribed in the same segment, are equal, for they are all measured by half the same arc B

EC. (See next fig.)

Cor. 2. An angle BCD at the centre of a circle is double of the angle BAD at the circumference, subtended by the same arc.

Cor. 3. Every angle inscribed in a semicircle is a right angle, because it is measured by half a semi-circumference; that is, the fourth part of a circumference.

Cor. 4. Every angle inscribed in a segment greater than a semicircle is an acute angle, for it is measured by half an arc less than a semicircumference.


Every angle inscribed in a segment less than a semicircle in an obtuse angle, for it is measured by half an arc greater than a semi-circum-

ference.

Cor. 5. The opposite angles of an inscribed quadrilateral, ABE C, are supplements of each other; for the angle BAC is measured by half the arc BEC, and the angle BEC is measured by half the arc BAC; therefore the two angles BAC, BEC, taken together, are measured by half the circumference; hence their sum is equal to two right angles.

PROPOSITION XVI. THEOREM.

The angle formed by a tangent and a chord is measured by half the arc included between its sides.

Let the straight line BE touch the circumference ACDF in the point A, and from A let the chord AC be drawn; the angle BAC is measured by half the arc AFC.

From the point A draw the diameter A D. The angle BAD is a right angle (Pr. 9), and is measured by half the semi-circumference AFD; also, the angle DAC is

measured by half the arc DC (Pr. 15); therefore the sum of the angles BAD, DAC is measured by half the entire arc AFDC.

In the same manner, it may be shown that the angle CAE is

measured by half the arc AGC, included between its sides.

Cor. The angle BAC is equal to an angle inscribed in the segment AGC, and the angle EAC is equal to an angle inscribed in the segment AFC.

PROPOSITION XVII. THEOREM.

The angle formed by two chords which cut each other is measured by one half the sum of the arcs intercepted between its sides and between the sides of its vertical angle.

Let AB, CD be two chords which cut each other at E; then will the angle AED be measured by one half the sum of the arcs AD and BC, intercepted between the sides of AED and the sides of its vertical angle BEC.

Join AC; the angle AED is equal to the sum of the angles ACD and BAC (B. I., Pr. 27). But A CD is measured by half the arc AD (B. III., Pr. 15), and the angle BAC is measured by half the arc BC. Therefore AED is measured by half the sum of the arcs AD and BC. Therefore the angle, etc.

PROPOSITION XVIII. THEOREM.

The angle formed by two secants intersecting without the circumference, is measured by one half the difference of the intercepted arcs.

Let AB, AC be two secants which intersect at A; then will the angle BAC be measured by one half the difference of the arcs BC and DE.

Join CD; the angle BDC is equal to the sum of the angles DAC and ACD (B.I., Pr. 27); therefore the angle A is equal to the difference of the angles BDC and ACD. But the angle BDC is

measured by one half the arc BC (B. III., Pr. 15), and the angle A CD is measured by one half the arc DE. Therefore the angle A is measured by one half the difference of the arcs BC and DE. Therefore the angle, etc.

BOOK IV.

COMPARISON AND MEASUREMENT OF POLYGONS.

Definitions.

1. The area of a figure is its superficial content. The area is expressed numerically by the number of times that the figure contains some other surface which is assumed for its measuring unit; that is, it is the ratio of its surface to that of the unit of surface. A unit of surface is called a superficial unit. The most convenient superficial unit is the square, whose side is the linear unit, as a square foot or a square yard.

2. Equal figures are such as may be applied the one to the other, so as to coincide throughout. Thus two circles having equal radii are equal; and two triangles having the three sides of the one equal to the three sides of the other, each to each, are also

equal.

3. Equivalent figures are such as contain equal areas. Two figures may be equivalent, however dissimilar. Thus a circle may be equivalent to a square, a triangle to a rectangle, etc.

4. Similar polygons are such as have the angles of the one equal to the angles of the other, each to each, and the sides about the equal angles proportional. Sides which have the same position in the two polygons, or which are adjacent to equal angles, are called homologous. The equal angles may also be called homologous angles.

Equal polygons are always similar, but similar polygons may

be very unequal.

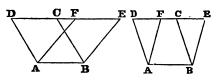
5. Two sides of one polygon are said to be reciprocally proportional to two sides of another when one side of the first is to one side of the second as the remaining side of the second is to the remaining side of the first.

6. In different circles, similar arcs, sectors, or segments are those

A which correspond to equal angles at the centre.

Thus, if the angles A and D are equal, the arc BC will be similar to the arc EF, the sector ABC to the sector DEF, and the segment BGC to the segment EHF. 7. The altitude of a triangle is the perpendicular let fall from the vertex of an angle on the opposite side, taken as a base, or on the base produced.

8. The altitude of a parallelogram is the perpendicular drawn to the base from the opposite side.


9. The altitude of a trapezoid is the perpendicular distance between its parallel sides.

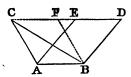
PROPOSITION I. THEOREM.

Parallelograms which have equal bases and equal altitudes are equivalent.

Let the parallelograms ABCD, ABEF be placed so that their equal bases shall coincide with each other. Let AB be the common base; and, since

the two parallelograms are supposed to have equal altitudes, their upper bases, DC, FE, will be in the same straight line parallel to AB.

Now, because ABCD is a parallelogram, DC is equal to AB (B. I., Pr. 30). For the same reason, FE is equal to AB, wherefore DC is equal to FE; hence, if DC and FE be taken away from the same line DE, the remainders CE and DF will be equal. But AD is also equal to BC, and AF to BE; therefore the triangles DAF, CBE are mutually equilateral, and consequently equal.


Now if from the quadrilateral ABED we take the triangle ADF, there will remain the parallelogram ABEF; and if from the same quadrilateral we take the triangle BCE, there will remain the parallelogram ABCD. Therefore the two parallelograms ABCD, ABEF, which have the same base and the same altitude, are equivalent.

· Cor. Every parallelogram is equivalent to the rectangle which has the same base and the same altitude.

PROPOSITION II. THEOREM.

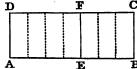
Every triangle is half of the parallelogram which has the same base and the same altitude.

Let the parallelogram ABDE and the triangle ABC have the

same base, AB, and the same altitude; the triangle is half of the parallelogram.

Complete the parallelogram ABFC; then the parallelogram ABFC is equivalent to the parallelogram ABDE, because they have the same base and the same altitude

(Pr.1). But the triangle ABC is half of the parallelogram ABFC (B. I., Pr. 30, Cor. 1), wherefore the triangle ABC is also half of the parallelogram ABDE. Therefore every triangle, etc.


Cor. 1. Every triangle is half of the rectangle which has the

same base and altitude.

Cor. 2. Triangles which have equal bases and equal altitudes are equivalent.

PROPOSITION III. THEOREM.

Two rectangles having equal altitudes are to each other as their bases.

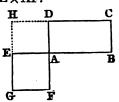
Let ABCD, AEFD be two rectangles which have the same altitude AD; they are to each other as their bases AB, AE.

Case first. When the bases are in the B ratio of two whole numbers; for exam-

ple, as 7 to 4. If AB be divided into seven equal parts, AE will contain four of those parts. At each point of division erect a perpendicular to the base; seven partial rectangles will thus be formed, all equal to each other, since they have equal bases and altitudes (Pr. 1). The rectangle ABCD will contain seven partial rectangles, while AEFD will contain four; therefore the rectangle ABCD is to the rectangle AEFD as 7 to 4, or as AB to AE. The same reasoning is applicable to any other ratio than that of 7 to 4; therefore, whenever the ratio of the bases can be expressed in whole numbers, we shall have

ABCD: AEFD:: AB: AE.

Case second. When the ratio of the bases can not be expressed exactly in numbers, the proposition may be proved by the same method employed in B. III, Pr. 14. Therefore two rectangles, etc.


PROPOSITION IV. THEOREM.

Any two rectangles are to each other as the products of their bases by their altitudes.

Let ABCD, AEGF be two rectangles; the ratio of the rectan-

gle ABCD to the rectangle AEGF is the same with the ratio of the product of AB by AD to the product of AE by AF; that is, ABCD: AEGF:: AB × AD: AE × AF.

Having placed the two rectangles so that the angles at A are vertical, produce the sides GE, CD till they meet in H. The two rectangles ABCD, AEHD have the same E altitude AD; they are, therefore, as their bases AB, AE (Pr. 3).

So, also, the rectangles AEHD, AEGF,

having the same altitude AE, are to each other as their bases AD, AF. Thus we have the two proportions

ABCD: AEHD:: AB: AE, AEHD: AEGF:: AD: AF.

Hence (B. II., Pr. 12, Cor.),

 $ABCD : AEGF :: AB \times AD : AE \times AF$.

Scholium. Hence we may take as the measure of a rectangle the product of its base by its altitude, provided we understand by it the product of two numbers, one of which is the number of linear units contained in the base, and the other the number of linear units contained in the altitude.

Thus, if the base of a rectangle contains 6 inches, and the altitude 4 inches, the rectangle can be divided into 24 squares, each equal to one square inch; that is, its area is represented by 24 square inches. If the base of a second

rectangle contains 9 inches, and its altitude 5 inches, its area is represented by 45 square inches, and the ratio of the two rectangles is that of 24 to 45.

PROPOSITION V. THEOREM.

The area of any parallelogram is equal to the product of its base by its altitude.

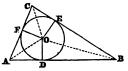
Let ABCD be a parallelogram, AF its altitude, and AB its base; then is its surface measured by the product of AB by AF. For, upon the base AB, construct a rectangle having the altitude AF; the parallelogram ABCD A B is equivalent to the rectangle ABEF (Pr. 1, Cor.). But the rectangle ABEF is measured by AB × AF (Pr. 4, Sch.); therefore the area of the parallelogram ABCD is equal to AB × AF.

Cor. Parallelograms having equal bases are to each other as their altitudes, and parallelograms having equal altitudes are to each other as their bases; for magnitudes have the same ratio that their equimultiples have (B. II, Pr. 10).

PROPOSITION VI. THEOREM.

The area of a triangle is equal to half the product of its base by its altitude.

Let ABC be any triangle, BC its base, and AD its altitude; the area of the triangle ABC is measured by half the product of BC by AD.


For, complete the parallelogram ABCE. The triangle ABC is half of the parallelogram ABCE

(Pr. 2); but the area of the parallelogram is equal to BC × AD (Pr. 5); hence the area of the triangle is equal to one half of the product of BC by AD. Therefore the area of a triangle, etc.

Cor. 1. Triangles having equal altitudes are to each other as their bases, and triangles having equal bases are to each other as their altitudes.

Cor. 2. Equivalent triangles whose bases are equal have equal altitudes, and equivalent triangles whose altitudes are equal have equal bases.

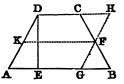
Scholium. The area of a triangle is equal to half the product of its perimeter by the radius of the inscribed circle. Let O be the

centre of the inscribed circle. From this point let fall the perpendiculars OD, OE, OF upon the sides AB, BC, AC, and draw the lines AO, BO, CO. By this proposition we have triangle AOB=½(AB×OD),

triangle $AOC = \frac{1}{2}(AC \times OF)$, and triangle $BOC = \frac{1}{2}(BC \times OE)$. Now the triangle ABC is equivalent to the sum of the triangles AOB, AOC, and BOC, and the three perpendiculars OD, OE, OF are equal to each other.

Hence

 $ABC = \frac{1}{2}(AB + AC + BC)OD.$


PROPOSITION VII. THEOREM.

The area of a trapezoid is equal to the product of its altitude by half the sum of its parallel sides.

Let ABCD be a trapezoid, DE its altitude, AB and CD its parallel sides; its area is measured by half the product of DE by the sum of its sides AB, CD.

Bisect BC in F, and through F draw GH parallel to AD, and produce DC to H.

In the two triangles BFG, CFH the side BF is, by construction, equal to CF, the vertical angles BFG, CFH are equal (B. I., Pr. 5), and the angle FCH is equal to the alter-

nate angle FBG, because CH and BG are parallel (B. I., Pr. 23); therefore the triangle CFH is equal to the triangle BFG.

Now if from the whole figure ABFHD we take away the triangle CFH, there will remain the trapezoid ABCD; and if from the same figure ABFHD we take away the equal triangle BFG, there will remain the parallelogram AGHD. Therefore the trapezoid ABCD is equivalent to the parallelogram AGHD, and is measured by the product of AG by DE.

Also, because AG is equal to DH, and BG to CH, therefore the sum of AB and CD is equal to the sum of AG and DH, or twice AG. Hence AG is equal to half the sum of the parallel sides AB, CD; therefore the area of the trapezoid ABCD is equal to the product of the altitude DE by half the sum of the bases AB, CD.

Cor. If through the point F, the middle of BC, we draw FK parallel to the base AB, the point K will also be the middle of AD. For the figure AKFG is a parallelogram, as also DKFH, the opposite sides being parallel. Therefore AK is equal to FG, and DK to HF. But FG is equal to FH, since the triangles BFG, CFH are equal; therefore AK is equal to DK.

Now, since KF is equal to AG, the area of the trapezoid is equal to DE×KF. Hence the area of a trapezoid is equal to its altitude multiplied by the line which joins the middle points of the sides which are not parallel.

PROPOSITION VIII. THEOREM.

If a straight line is divided into any two parts, the square of the whole line is equivalent to the squares of the two parts, together with twice the rectangle contained by the parts.

Let the straight line AB be divided into any two parts in C; the square on AB is equivalent to the squares on AC, CB, together with twice for the rectangle contained by AC, CB; that is,

AB², or (AC+CB)²=AC²+CB²+2AC×CB. Upon AB describe the square ABDE; take

F H D
G
A C B

AF equal to AC; through F draw FG parallel to AB, and through C draw CH parallel to AE.

The square ABDE is divided into four parts: the first, ACIF, is the square on AC, since AF was taken equal to AC. The second part, IGDH, is the square on CB; for, because AB is equal to AE, and AC to AF, therefore BC is equal to

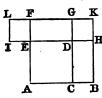
EF (B. I., Ax. 3).

But, because BCIG is a parallelogram, GI is equal to BC; and because DEFG is a parallelogram, DG is equal to EF (B. I., Pr. 30); therefore HIGD is equal to a square described on BC. If these two parts are taken from the entire square, there will remain the two rectangles BCIG, EFIH, each of which is measured by AC × CB; therefore the whole square on AB is equivalent to the squares on AC and CB, together with twice the rectangle of AC × CB. Therefore, if a straight line, etc.

Cor. The square of any line is equivalent to four times the square of half that line. For, if AC is equal to CB, the four figures AI, CG, FH, ID become equal squares.

Scholium 1. If a and b denote the numbers which represent the two parts of the line AB, this proposition may be expressed algebraically thus: $(a+b)^2 = a^2 + 2ab + b^2$.

Scholium 2. A rectangle is said to be contained by any two of the straight lines which are about one of the right angles.


PROPOSITION IX. THEOREM.

The square described on the difference of two lines is equivalent to the sum of the squares of the lines, diminished by twice the rectangle contained by the lines.

Let AB, BC be any two lines, and AC their difference; the square described on AC is equivalent to the sum of the squares on AB and CB, diminished by twice the rectangle contained by AB, CB; that is,

 AC^2 , or $(AB-BC)^2 = AB^2 + BC^2 - 2AB \times BC$.

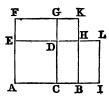
Upon AB describe the square ABKF; take AE equal to AC; through C draw CG parallel to BK, and through E draw HI parallel to AB, and complete the square EFLI.

Because AB is equal to AF, and AC to AE, therefore CB is equal to EF, and GK to LF. Therefore LG is equal to FK or AB, and hence the two rectangles CBKG, GLID are each measured by $AB \times BC$. If these rectangles are taken from the entire figure ABKLIE, which is equivalent to $AB^2 + BC^2$, there will evidently remain the square ACDE. Therefore the square described, etc.

Scholium. This proposition is expressed algebraically thus:

$$(a-b)^2=a^2-2ab+b^2$$
.

PROPOSITION X. THEOREM.


The rectangle contained by the sum and difference of two lines is equivalent to the difference of the squares of those lines.

Let AB, BC be any two lines; the rectangle contained by the sum and difference of AB and BC is equivalent to the difference of the squares on AB and BC; that is,

$$(AB+BC)\times(AB-BC)=AB^2-BC^2$$
.

Upon AB describe the square ABKF, and upon AC describe the square ACDE; produce AB so that BI shall be equal to BC, and complete the rectangle AHLE.

The base AI of the rectangle AILE is the sum of the two lines AB, BC, and its altitude AE is the difference of the same lines; there-

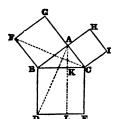
fore AILE is the rectangle contained by the sum and difference of the lines AB, BC.

But this rectangle is composed of the two parts ABHE and

But this rectangle is composed of the two parts ABHE and BILH; and the part BILH is equal to the rectangle FGDE, for BH is equal to DE, and BI is equal to EF. Therefore AILE is equivalent to the figure ABHDGF. But ABHDGF is the excess of the square ABKF above the square DHKG, which is the square of BC; therefore

$$(AB+BC) \times (AB-BC) = AB^2 - BC^2$$
.

Scholium. This proposition is expressed algebraically thus.


$$(a+b) \times (a-b) = a^2 - b^2$$
.

PROPOSITION XI. THEOREM.

In any right-angled triangle the square described on the hypotheruse is equivalent to the sum of the squares described on the other two sides.

Let ABC be a right-angled triangle, having the right angle BAC; the square described upon the side BC is equivalent to the sum of the squares upon BA, AC.

On BC describe the square BCED, and on BA, AC, the squares

BG, CH; and through A draw AL parallel to BD, and join AD, FC.

Then, because each of the angles BAC, BAG is a right angle, CA is in the same straight line with AG (B. I., Pr. 3). For the same reason, BA and AH are in the same straight line.

The angle ABD is composed of the angle ABC and the right angle CBD. The angle FBC is composed of the same angle ABC and

the right angle ABF; therefore the whole angle ABD is equal to the angle FBC. But AB is equal to BF, being sides of the same square, and BD is equal to BC for the same reason; therefore the triangles ABD, FBC have two sides and the included angle equal; they are therefore equal (B. I., Pr. 6).

But the rectangle BDLK is double of the triangle ABD, because they have the same base BD, and the same altitude BK (Pr. 2, Cor. 1); and the square AF is double of the triangle FBC, for they have the same base BF, and the same altitude AB. Now the doubles of equals are equal to one another (B. I., Ax. 6); therefore the rectangle BDLK is equivalent to the square AF.

In the same manner it may be demonstrated that the rectangle CELK is equivalent to the square AI; therefore the whole square BCED, described on the hypothenuse, is equivalent to the two squares ABFG, ACIH, described on the two other sides; that is,

BC²=AB²+AC².

Scholium. Tradition has ascribed the discovery of this proposition to Pythagoras (born about 580 B.C.), and hence it is commonly called the Pythagorean theorem.

Cor. 1. The square of one of the sides of a right-angled triangle is equivalent to the square of the hypothenuse, diminished by the square of the other side; that is,

 $AB^2 = BC^2 - AC^2$.

Hence, if the numerical measures of two sides of a right-angled triangle are given, that of the third may be found. For example, if BC=5, and AB=4, then AC=the square root of $(5^2-4^2)=3$.

Also, if AC=5, and AB=12, then BC=13.

Cor. 2. The square BCED, and the rectangle BKLD, having the same altitude, are to each other as their bases BC, BK (Pr. 3). But the rectangle BKLD is equivalent to the square AF; therefore

BC²: AB²:: BC: BK.

In the same manner, BC2: AC2:: BC: KC.

Therefore (B. II., Pr. 4, Cor.),

AB2: AC2:: BK: KC.

That is, in any right-angled triangle, if a line be drawn from the right angle perpendicular to the hypothenuse, the squares of the two sides are proportional to the adjacent segments of the hypothenuse; also, the square of the hypothenuse is to the square of either of the sides as the hypothenuse is to the segment adjacent to that side.

Cor. 3. Let ABCD be a square, and AC its diagonal; the triangle ABC being right-angled and isosceles, we have

 $AC^2 = AB^2 + BC^2 = 2AB^2$;

therefore the square described on the diagonal of a square is double of the square described on a side.

If we extract the square root of each member of this equation, we shall have $AC=AB\sqrt{2}$; or $AC:AB::\sqrt{2}:1$.

The square root of 2 is 1.4142136, correct to seven decimal places. Since the square root of 2 is an incommensurable number, it follows that the diagonal of a square is incommensurable with its side.

PROPOSITION XII. THEOREM.

In any triangle, the square of the side opposite to an acute angle is less than the squares of the base and of the other side by twice the rectangle contained by the base, and the distance from the acute angle to the foot of the perpendicular let fall from the opposite angle.

Let ABC be any triangle, and the angle at C one of its acute angles, and upon BC let fall the perpendicular AD from the opposite angle; then will

$$AB^2=BC^2+AC^2-2BC\times CD$$
.

First. When the perpendicular falls within the triangle ABC, we have BD=BC-CD, and therefore $BD^2=BC^2+CD^2-2BC\times CD$ (Pr. 9). To each of these equals add AD^2 ; then $BD^2+AD^2=BC^2+CD^2+AD^2-2BC\times CD$.

But in the right-angled triangle ABD, BD²+AD²=AB²; and in the triangle ADC, CD²+AD²=AC² (Pr. 11); therefore

 $AB^2 = BC^2 + AC^2 - 2BC \times CD$.

Secondly. When the perpendicular falls without the triangle ABC, we have BD=CD-BC, and therefore BD²=CD²+BC²-2CD \times BC (Pr. 9). To each of these equals add AD²; then BD²+AD²=CD²+AD²+BC²-2CD \times BC.

But BD²+AD²=AB²; and CD²+AD²=AC²; therefore AB²=BC²+AC²-2BC \times CD.

Scholium. When the perpendicular AD falls upon AB, this proposition reduces to the same as Pr. 11, Cor. 1.

PROPOSITION XIII. THEOREM.

In an obtuse-angled triangle, the square of the side opposite the obtuse angle is greater than the squares of the base and the other side by twice the rectangle contained by the base, and the distance from the obtuse angle to the foot of the perpendicular let fall from the opposite angle on the base produced.

Let ABC be an obtuse-angled triangle, having the obtuse angle ABC, and from the point A let AD be drawn perpendicular to BC produced; the square of AC is greater than the squares of AB, BC by twice the rectangle BC×BD.

For CD is equal to BC+BD; therefore $CD^2=BC^2+BD^2+2BC \times BD$ (Pr. 8). To each of these equals add AD^2 ; then $CD^2+AD^2=BC^2+BD^2+AD^2+2BC\times BD$.

But AC^2 is equal to CD^2+AD^2 (Pr. 11), and AB^2 is equal to BD^2+AD^2 ; therefore $AC^2=BC^2+AB^2+2BC\times BD$. Therefore, in an obtuse-angled triangle, etc.

Scholium. The right-angled triangle is the only one in which the sum of the squares of two sides is equivalent to the square on the third side; for, if the angle contained by the two sides is acute, the sum of their squares is greater than the square of the opposite side; if obtuse, it is less.

PROPOSITION XIV. THEOREM.

In any triangle, if a straight line is drawn from the vertex to the middle of the base, the sum of the squares of the other two sides is equivalent to twice the square of the bisecting line, together with twice the square of half the base.

Let ABC be a triangle having a line AD drawn from the middle of the base to the opposite angle; the squares of BA and AC are together double of the squares of AD and BD.

From A draw AE perpendicular to BC; then, in the triangle ABD, by Pr. 13,

 $AB^2 = AD^2 + DB^2 + 2DB \times DE;$

and, in the triangle ADC, by Pr. 12,

 $AC^2 = AD^2 + DC^2 - 2DC \times DE$.

Hence, by adding these equals, and observing that BD=DC, and therefore BD²=DC², and DB×DE=DC×DE, we obtain

$$AB^2 + AC^2 = 2AD^2 + 2DB^2$$
.

Therefore, in any triangle, etc.

PROPOSITION XV. THEOREM.

In every parallelogram, the sum of the squares of the four sides is equal to the sum of the squares of the diagonals.

Let ABCD be a parallelogram, of which the Adiagonals are AC and BD; the sum of the squares of AC and BD is equal to the sum of the squares of AB, BC, CD, DA.

The diagonals AC and BD bisect each other in E (B. I., Pr. 33); therefore, in the triangle ABD (Pr. 14),

$$AB^2 + AD^2 = 2BE^2 + 2AE^2$$
;

and, in the triangle BDC,

$$CD^2 + BC^2 = 2BE^2 + 2EC^2$$
.

Adding these equals, and observing that AE is equal to EC, we have $AB^2+BC^2+CD^2+AD^2=4BE^2+4AE^2$.

But $4BE^2=BD^2$, and $4AE^2=AC^2$ (Pr. 8, Cor.); therefore $AB^2+BC^2+CD^2+AD^2=BD^2+AC^2$.

Therefore, in every parallelogram, etc.

PROPOSITION XVI. THEOREM.

If a straight line be drawn parallel to the base of a triangle, it will cut the other sides proportionally; and if the sides be cut proportionally, the cutting line will be parallel to the base of the triangle.

Let DE be drawn parallel to BC, the base of the triangle AB C; then will AD: DB:: AE: EC.

Join BE and DC; then the triangle BDE is equivalent to the triangle DEC, because they have the same base, DE, and the same altitude, since their vertices B and C are in a line parallel to the base (Pr. 2, Cor. 2).

The triangles ADE, BDE, whose common vertex is E, having the same altitude, are to each other as their bases AD, DB (Pr. 6, Cor. 1); hence

ADE: BDE:: AD: DB.

The triangles ADE, DEC, whose common vertex is D, having the same altitude, are to each other as their bases AE, EC; therefore

ADE : **DEC** :: **AE** : **EC**.

But, since the triangle BDE is equivalent to the triangle DEC, therefore (B. II., Pr. 4),

AD:DB::AE:EC.

Conversely, let DE cut the sides AB, AC, so that AD: DB:: AE: EC; then DE will be parallel to BC.

For AD: DB:: ADE: BDE (Pr. 6, Cor. 1); and AE: EC:: AD E: DEC; therefore (B. II., Pr. 4), ADE: BDE:: ADE: DEC; that is, the triangles BDE, DEC have the same ratio to the triangle ADE; consequently, the triangles BDE, DEC are equivalent, and, having the same base, DE, their altitudes are equal (Pr. 6, Cor. 2); that is, they are between the same parallels. Therefore, if a straight line, etc.

Cor. 1. Since, by this proposition, AD: DB:: AE: EC; by composition, AD+DB: AD:: AE+EC: AE (B. II., Pr. 6), or AB:: AD:: AC: AE; also, AB: BD:: AC: EC.

Cor. 2. If two lines be drawn parallel to the base of a triangle, they will divide the other sides proportionally. For, because FG is drawn parallel to BC, by the preceding proposition, AF: FB:: A G: GC. Also, by the last corollary, because DE is parallel to FG, AF: DF:: AG: EG. Therefore DF: FB:: EG: GC (B. II., Pr. 4, Cor.).

Also, AD: DF:: AE: EG.

Cor. 3. If any number of lines be drawn parallel to the base of a triangle, the sides will be cut proportionally.

PROPOSITION XVII. THEOREM.

The line which bisects the vertical angle of a triangle divides the base into two segments, which are proportional to the adjacent sides.

Let the angle BAC of the triangle ABC be bisected by the straight line AD; then will

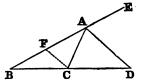
BD: DC:: BA: AC.

Through the point B draw BE parallel to D A, meeting CA produced in E. The triangle A BE is isosceles. For, since AD is parallel to E B, the angle ABE is equal to the alternate angle DAB (B. I., Pr. 23), and the exterior angle

CAD is equal to the interior and remote angle AEB. But, by hypothesis, the angle DAB is equal to the angle DAC; therefore the angle ABE is equal to AEB, and the side AE to the side AB (B. I., Pr. 11).

And because AD is parallel to BE, the base of the triangle BC E (Pr. 16), BD: DC:: EA: AC.

But AE is equal to AB, therefore


BD:DC::BA:AC.

Therefore, the line, etc.

PROPOSITION XVIII. THEOREM.

The line which bisects the exterior angle of a triangle divides the base produced into segments which are proportional to the adjacent sides.

Let BA, one side of the triangle ABC, be produced to E, and let the exterior angle CAE be bisected by the straight line AD, which meets the base produced at D; then

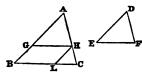
BD: DC::BA: AC.

Through C draw CF parallel to AD, meeting AB at F. Then, because the straight line AC meets the parallels AD, FC, the angle ACF is equal to the alternate angle CAD (B. I., Pr. 23). But the angle CAD is, by hypothesis, equal to DAE; therefore DAE is equal to ACF.

Again, because the straight line FAE meets the parallels AD, FC, the exterior angle DAE is equal to the interior and remote angle AFC (B. I., Pr. 23). But DAE has been shown equal to ACF; therefore ACF is equal to AFC, and therefore AF is equal to AC (B. I., Pr. 11).

And because FC is parallel to AD, one of the sides of the triangle ABD, therefore (B. IV., Pr. 16) BD: DC::BA: AF. But AF is equal to AC; therefore

BD:DC::BA:AC.


Therefore, the line, etc.

Scholium. By the segments of a line we understand the por-

tions into which the line is divided at a given point. So also by the segments of a *line produced* to a given point, we understand the distances between the given point and the extremities of the line.

PROPOSITION XIX. THEOREM.

Two triangles which are mutually equiangular have their homologous sides proportional, and are similar.

Let ABC, DEF be two triangles which are mutually equiangular, having the angle A=D, B=E, and C=F; then the homologous sides will be proportional, and we shall have

AB:DE::AC:DF::BC:EF.

Take AG=DE, AH=DF, and join GH. Then the triangles AGH, DEF are equal, since two sides and the included angle in the one are respectively equal to two sides and the included angle in the other (B. I., Pr. 6). Therefore the angle AGH is equal to the angle E. But, by hypothesis, the angle E is equal to the angle B; therefore the angle B is equal to AGH, and therefore GH is parallel to BC (B. I., Pr. 22). Hence (B. IV., Pr. 16) we have

AB: AG:: AC: AH.

Draw HL parallel to AB; then BGHL is a parallelogram, and BL is equal to GH.

Also (B. IV., Pr. 16), we have

AC: AH:: BC: BL or GH.

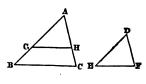
Since these two proportions contain the same ratio AC: AH, we conclude (B. II., Pr. 4)

AB: AG:: AC: AH:: BC: GH,

or, AB: DE:: AC: DF:: BC: EF.

Therefore the triangles ABC, DEF have their homologous sides proportional; hence, by Def. 4, they are similar.

Cor. Two triangles are similar when two angles of the one are respectively equal to two angles of the other, for then the third angles must also be equal (B. I., Pr. 27, Cor. 2).


Scholium. In similar triangles the homologous sides are opposite to the equal angles; thus, the angle ACB being equal to the angle DFE, the side AB is homologous to DE, and so with the other sides.

PROPOSITION XX. THEOREM.

Two triangles which have their homologous sides proportional are mutually equiangular and similar.

Let the triangles ABC, DEF have their sides proportional, so that

BC: EF:: AB: DE:: AC: DF; then will the triangles have their angles equal, viz., the angle A to the angle D, B equal to E, and C equal to F.

Take AG=DE, AH=DF, and join GH. By hypothesis we have AB: DE:: AC:DF;

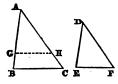
or, substituting for DE and DF their equals AG and AH, we have AB: AG:: AC: AH.

Therefore GH is parallel to BC (B. IV., Pr. 16), and the triangles ABC, AGH are mutually equiangular. Hence we have AC: AH:: BC: GH.

But, by hypothesis, we have

from it.

AC:DF::BC:EF;


and, since AH=DF, we conclude that GH=EF.

Therefore the triangles AGH, DEF, having the three sides of the one equal to the three sides of the other, are equal, and therefore the angle DEF is equal to AGH, which is equal to ABC; also, the angle DFE is equal to AHG, which is equal to ACB; and the angle D is equal to A. Hence the triangles ABC, DEF are mutually equiangular and similar. Therefore two triangles, etc.

Scholium. It will be seen from the last two propositions that triangles which are mutually equiangular have their homologous sides proportional, and conversely, so that either of these conditions involves the other. This is not true of figures having more than three sides, for in quadrilaterals we may change the angles without changing the sides; or we may change the proportion of the sides without changing the angles. Thus, if we draw EF parallel to DC, the angles of the quadrilateral ABFE are equal to those of the quadrilateral ABCD, but the proportion of the sides is a changed. Also, without changing the four sides AB, BC, CD, DA, we may change the angles by moving the point D toward B, or

PROPOSITION XXI. THEOREM.

Two triangles are similar when they have an angle of the one equal to an angle of the other, and the sides including those angles proportional.

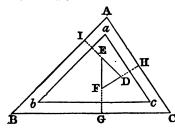
Let the triangles ABC, DEF have the angle A of the one equal to the angle D of the other, and let AB: DE:: AC: DF; the triangle ABC is similar to the triangle DEF.

Take AG equal to DE, also AH equal to DF, and join GH. Then the triangles AGH,

DEF are equal, since two sides and the included angle in the one are respectively equal to two sides and the included angle in the other (B. I., Pr. 6). But, by hypothesis,

AB: DE:: AC: DF; AB: AG:: AC: AH;

therefore AB: AG:: AC: AH; that is, the sides AB, AC, of the triangle ABC,


that is, the sides AB, AC, of the triangle ABC, are cut proportionally by the line GH; therefore GH is parallel to BC (Pr. 16).

Hence (B. I., Pr. 23) the angle AGH is equal to ABC, and the triangle AGH is similar to the triangle ABC. But the triangle DEF has been shown to be equal to the triangle AGH; hence the triangle DEF is similar to the triangle ABC. Therefore, two triangles, etc.

PROPOSITION XXII. THEOREM.

Two triangles are similar when they have their homologous sides parallel each to each, or perpendicular each to each.

Let the triangles ABC, abc, DEF have their homologous sides parallel each to each, or perpendicular each to each, the triangles are similar.

First. Let the homologous sides be parallel each to each. If the side AB is parallel to ab, and BC to bc, the angle B is equal to the angle b (B. I., Pr. 26); also, if AC is parallel to ac, the angle C is equal to the angle c; and hence the angle A is equal to the angle a. Therefore the triangles ABC,

abc are equiangular, and consequently similar.

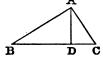
Secondly. Let the homologous sides be perpendicular each to

each. Let the side DE be perpendicular to AB, and the side DF to AC. Produce DE to I, and DF to H; then, in the quadrilateral AIDH, the two angles I and H are right angles. But the four angles of a quadrilateral are together equal to four right angles (B. I., Pr. 28, Cor.); therefore the two remaining angles IAH, IDH are together equal to two right angles. But the two angles EDF, IDH are together equal to two right angles (B. I., Pr. 2); therefore the angle EDF is equal to IAH or BAC.

In the same manner, if the side EF is also perpendicular to B C, it may be proved that the angle DFE is equal to C, and, consequently, the angle DEF is equal to B; hence the triangles ABC, DEF are equiangular and similar. Therefore, two triangles, etc.

Scholium. When the sides of the two triangles are parallel to each other, the parallel sides are homologous; but when the sides are perpendicular to each other, the perpendicular sides are homologous. Thus DE is homologous to AB, DF to AC, and EF to BC.

PROPOSITION XXIII. THEOREM.


In a right-angled triangle, if a perpendicular is drawn from the right angle to the hypothenuse;

1st. The triangles on each side of the perpendicular are similar to the whole triangle and to each other.

2d. The perpendicular is a mean proportional between the segments of the hypothenuse.

3d. Each of the sides is a mean proportional between the hypothenuse and its segment adjacent to that side.

Let ABC be a right-angled triangle, having the right angle BAC, and from the angle A let AD be drawn perpendicular to the hypothenuse BC.

First. The triangles ABD, ACD are similar to the whole triangle ABC, and to each other.

The triangles BAD, BAC have the common angle B, also the angle BAC equal to BDA, each of them being a right angle, and, therefore, the remaining angle ACB is equal to the remaining angle BAD (B. I., Pr. 27, Cor. 2); therefore the triangles ABC, ABD are equiangular and similar. In like manner, it may be proved that the triangle ADC is equiangular and similar to the triangle ABC; therefore the three triangles ABC, ABD, ACD are equiangular, and similar to each other.

Secondly. The perpendicular AD is a mean proportional between the segments BD, DC of the hypothenuse. For, since the triangle ABD is similar to the triangle ADC, their homologous sides are proportional (Def. 3), and we have

BD: AD:: AD: DC.

Thirdly. Each of the sides AB, AC is a mean proportional between the hypothenuse and the segment adjacent to that side. For, since the triangle BAD is similar to the triangle BAC, we have BC: BA:: BA: BD.

And, since the triangle ABC is similar to the triangle ACD, we have BC: CA:: CA:: CD.

Therefore, in a right-angled triangle, etc.

Cor. If from a point A, in the circumference of a circle, two chords AB, AC are drawn to the extremities of the diameter BC, the triangle BAC will be right-angled at A (B. III., Pr. 15, Cor. 3); therefore the perpendicular AD is a mean proportional between BD and DC, the two segments of the diameter; that is,

 $AD^2 = BD \times DC$.

PROPOSITION XXIV. THEOREM.

Two triangles, having an angle in the one equal to an angle in the other, are to each other as the rectangles of the sides which contain the equal angles.

Let the two triangles ABC, ADE have the angle A in common; then will the triangle ABC be to the triangle ADE as the rectangle AB × AC is to the rectangle AD × AE.

Join BE. Then the two triangles ABE, ADE, having the common vertex E, have the same altitude, and are to each other as their bases AB, AD (Pr. 6, Cor. 1); therefore

ABE: ADE:: AB: AD.

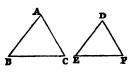
Also, the two triangles ABC, ABE, having the common vertex B, have the same altitude, and are to each other as their bases AC, AE; therefore ABC: ABE:: AC: AE.

Hence (B. II., Pr. 12, Cor.)

 $ABC: ADE:: AB \times AC: AD \times AE.$

Therefore two triangles, etc.

Cor. 1. If the rectangles of the sides containing the equal angles are equivalent, the triangles will be equivalent.


Cor. 2. Parallelograms which are mutually equiangular are to

each other as the rectangles of the sides which contain the equal angles.

PROPOSITION XXV. THEOREM.

Similar triangles are to each other as the squares described on their homologous sides.

Let ABC, DEF be two similar triangles, having the angle A equal to D, the angle B equal to E, and C equal to F; then the triangle ABC is to the triangle DEF as the square on BC is to the square on EF.

By similar triangles, we have (Def. 4)

AB: DE:: BC: EF.

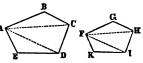
Also, BC: EF:: BC: EF.

Multiplying together the corresponding terms of these proportions, we obtain (B. II., Pr. 12),

 $AB \times BC : DE \times EF :: BC^2 : EF^2$.

But, by Pr. 24,

 $ABC:DEF::AB\times BC:DE\times EF;$


hence (B. II., Pr. 4) ABC: DEF:: BC2: EF2.

Therefore similar triangles, etc.

PROPOSITION XXVI. THEOREM.

Two similar polygons may be divided into the same number of triangles, similar each to each, and similarly situated.

Let ABCDE, FGHIK be two similar polygons; they may be divided into the same number of similar triangles. Join AC, AD, FH, FI.

Because the polygon ABCDE is similar to the polygon FGHIK, the angle B is equal to the angle G (Def. 4), and AB: BC::FG:GH.

And, because the triangles ABC, FGH have an angle in the one equal to an angle in the other, and the sides about these equal angles proportional, they are similar (Pr. 21); therefore the angle BCA is equal to the angle GHF. Also, because the polygons are similar, the whole angle BCD is equal (Def. 4) to the whole angle GHI; therefore the remaining angle ACD is equal to the remaining angle FHI. Now, because the triangles ABC, FGH are similar, AC: FH:: BC: GH.

And, because the polygons are similar (Def. 4),

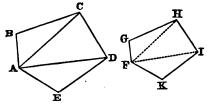
BC:GH::CD:HI;

whence AC: FH:: CD: HI;

that is, the sides about the equal angles ACD, FHI are proportional; therefore the triangle ACD is similar to the triangle FHI (Pr. 21). For the same reason, the triangle ADE is similar to the triangle FIK; therefore the similar polygons ABCDE, FGH IK are divided into the same number of triangles, which are similar each to each, and similarly situated.

Cor. Conversely, if two polygons are composed of the same number of triangles, similar each to each, and similarly situated,

the polygons are similar.


For, because the triangles are similar, the angle ABC is equal to FGH; and because the angle BCA is equal to GHF, and ACD to FHI, therefore the angle BCD is equal to GHI. For the same reason, the angle CDE is equal to HIK, and so on for the other angles. Therefore the two polygons are mutually equiangular.

Moreover, the sides about the equal angles are proportional. For, because the triangles are similar, AB:FG::BC:GH. Also, BC:GH::AC:FH, and AC:FH::CD:HI; hence BC:GH::CD:HI.

In the same manner, it may be proved that CD:HI::DE:IK, and so on for the other sides. Therefore the two polygons are similar.

PROPOSITION XXVII. THEOREM.

The perimeters of two similar polygons are to each other as any two homologous sides, and their areas are as the squares of those sides.

Let ABCDE, FGHIK be two similar polygons, and let AB be the side homologous to FG; then the perimeter of ABCDE is to the perimeter of FGHIK as AB is to FG; and the area of ABCDE is to the area of

FGHIK as AB2 is to FG2.

First. Because the polygon ABCDE is similar to the polygon FGHIK (Def. 4),

AB: FG:: BC: GH:: CD: HI, etc.;

therefore (B. II., Pr. 9) the sum of the antecedents AB+BC+CD, etc., which form the perimeter of the first figure, is to the sum of the consequents FG+GH+HI, etc., which form the perimeter of the second figure, as any one antecedent is to its consequent, or as AB to FG.

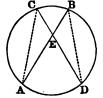
Secondly. Because the triangle ABC is similar to the triangle FGH, the triangle ABC: triangle FGH:: AC2: FH2 (Pr. 25).

And, because the triangle ACD is similar to the triangle FHI, ACD: FHI:: AC2: FH².

Therefore the triangle ABC: triangle FGH:: triangle ACD: triangle FHI (B. II., Pr. 4).

In the same manner, it may be proved that

ACD: FHI:: ADE: FIK.


Therefore, as the sum of the antecedents ABC+ACD+ADE, or the polygon ABCDE, is to the sum of the consequents FGH+FHI+FIK, or the polygon FGHIK, so is any one antecedent, as ABC, to its consequent FGH; or, as AB² to FG². Therefore the perimeters, etc.

PROPOSITION XXVIII. THEOREM.

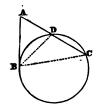
If two chords in a circle cut each other, the rectangle contained by the parts of the one is equivalent to the rectangle contained by the parts of the other.

Let the two chords AB, CD, in the circle AC BD, cut each other in the point E; the rectangle contained by AE, EB is equivalent to the rectangle contained by DE, EC.

Join AC and BD. Then, in the triangles AC E, DBE, the angles at E are equal, being vertical angles (B. I., Pr. 5); the angle A is equal to

the angle D, being inscribed in the same segment (B. III., Pr. 15, Cor. 1); therefore the angle C is equal to the angle B. The triangles are consequently similar; and hence (Pr. 19)

AE:DE::EC:EB,


or (B. II., Pr. 1) $AE \times EB :: DE \times EC.$

Therefore, if two chords, etc.

Cor. The parts of two chords which cut each other in a circle are reciprocally proportional; that is, AE: DE:: EC: EB.

PROPOSITION XXIX. THEOREM.

If from a point without a circle a tangent and a secant be drawn, the square of the tangent will be equivalent to the rectangle contained by the whole secant and its external segment.

Let A be any point without the circle BCD, and let AB be a tangent, and AC a secant; then the square of AB is equivalent to the rectangle AD × AC.

Join BD and BC. Then the triangles ABD and ABC are similar, because they have the angle A in common; also, the angle ABD, formed by a tangent and a chord, is measured by half

the arc BD (B. III., Pr. 16), and the angle C is measured by half the same arc; therefore the angle ABD is equal to C, and the two triangles ABD, ABC are mutually equiangular, and consequently similar; therefore (Pr. 19)

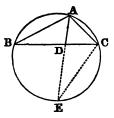
AC:AB::AB:AD;

whence (B. II., Pr. I.) $AB^2 = AC \times AD$. Therefore, if from a point, etc.

Cor. 1. If from a point without a circle a tangent and a secant be drawn, the tangent will be a mean proportional between the whole secant and its external segment.

Cor. 2. If from a point without a circle two secants be drawn, the rectangle contained by either secant and its external segment will be equivalent to the rectangle contained by the other secant and its external segment; for each of these rectangles is equivalent to the square of the tangent from the same point.

Cor. 3. If from a point without a circle two secants be drawn, the whole secants will be reciprocally proportional to their external segments.


PROPOSITION XXX. THEOREM.

If an angle of a triangle be bisected by a line which cuts the base, the rectangle contained by the sides of the triangle is equivalent to the rectangle contained by the segments of the base, together with the square of the bisecting line.

Let ABC be a triangle, and let the angle BAC be bisected by the straight line AD; the rectangle BA × AC is equivalent to BD × DC, together with the square of AD.

Describe the circle ACEB about the triangle, and produce AD

to meet the circumference in E, and join EC. Then, because the angle BAD is equal to the angle CAE, and the angle ABD to the angle AEC, for they are in the same segment (B. III., Pr. 15, Cor. 1), the triangles ABD, AEC are mutually equiangular and similar; therefore (Pr. 19)

BA:AD::AE:AC;

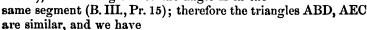
consequently (B. II., Pr. 1),

 $BA \times AC = AD \times AE$

But AE=AD+DE; and multiplying each of these equals by AD, we have (Pr. 3) $AD \times AE=AD^2+AD \times DE$. But $AD \times DE$ =BD×DC (Pr. 28); hence

 $BA \times AC = BD \times DC + AD^2$.

Therefore, if an angle, etc.


PROPOSITION XXXI. THEOREM.

In any triangle, the rectangle contained by two sides is equivalent to the rectangle contained by the diameter of the circumscribed circle, and the perpendicular let fall upon the third side from the vertex of the opposite angle.

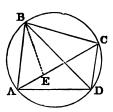
In the triangle ABC, let AD be drawn perpendicular to BC, and let AE be the diameter of the circumscribed circle; then

 $AB \times AC = AE \times AD$.

For, drawing EC, the right angle ADB is equal to the angle ACE in a semicircle (B. III., Pr. 15), and the angle B to the angle E in the

AB: AE::AD: AC;

and hence


 $AB \times AC = AE \times AD$.

Therefore, in any triangle, etc.

PROPOSITION XXXII. THEOREM.

The rectangle contained by the diagonals of a quadrilateral inscribed in a circle is equivalent to the sum of the rectangles of the opposite sides.

Let ABCD be any quadrilateral inscribed in a circle, and let the diagonals AC, BD be drawn; the rectangle AC × BD is equivalent the sum of the two rectangles AD × BC and AB × CD.

Draw the straight line BE, making the angle ABE equal to the angle DBC. To each of these equals add the angle EBD; then will the angle ABD be equal to the angle EBC. But the angle BDA is equal to the angle BCE, because they are both in the same segment (B. III., Pr. 15, Cor. 1); hence the triangle ABD is equiangular and similar to the

triangle EBC. Therefore we have AD: BD:: CE: BC;

and, consequently, $AD \times BC = BD \times CE$.

Again, because the angle ABE is equal to the angle DBC, and the angle BAE to the angle BDC, being angles in the same segment, the triangle ABE is similar to the triangle DBC; and hence

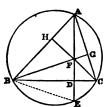
AB: AE::BD:CD;

consequently,

 $AB \times CD = BD \times AE$.

Adding together these two results, we obtain

 $AD \times BC + AB \times CD = BD \times CE + BD \times AE$


which equals $BD \times (CE + AE)$, or $BD \times AC$.

Therefore the rectangle, etc.

PROPOSITION XXXIII. THEOREM.

The perpendiculars drawn from the three angles of any triangle to the opposite sides intersect one another in the same point.

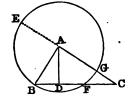
If the triangle be right angled, it is plain that all the perpendiculars pass through the right angle. But if it be not right an-

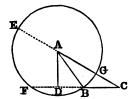
gled, let ABC be the triangle, and about it describe a circle. Let B and C be two acute angles; draw ADE perpendicular to BC, meeting the circumference in E. Make DF equal to DE; join BF, and produce it, if necessary, to cut AC, or AC produced, in G; then BG is perpendicular to AC.

Join BE; and, because FD is equal to DE, the angles at D are right angles, and DB is common to the two triangles FDB, EDB, the angle FBD is equal to EBD (B. I., Pr. 6). But CAD, EBD are also equal, because they are in the same segment (B. III., Pr. 15). Therefore CAD is equal to FBD or GBC. But the angle ACB is common to the two triangles ACD, BCG, and therefore the remaining angles ADC, BGC are equal (B. I., Pr. 27). But ADC is a right angle; therefore also BGC is a right angle, and BG is perpendicular to AC.

BOOK IV. 91

In the same manner, it may be shown that the straight line CH, drawn through C and F, is perpendicular to AB, and the three perpendiculars all pass through F. Therefore the perpendiculars, etc.


PROPOSITION XXXIV. THEOREM.


If from any angle of a triangle a perpendicular be drawn to the opposite side or base, the rectangle contained by the sum and difference of the other two sides is equivalent to the rectangle contained by the sum and difference of the segments of the base.

Let ABC be any triangle, and let AD be a perpendicular drawn from the angle A on the base BC; then

$$(AC+AB) \times (AC-AB) = (CD+DB) \times (CD-DB)$$
.

From A as a centre, with a radius equal to AB, the shorter of

the two sides, describe a circumference BFE. Produce AC to meet the circumference in E, and CB, if necessary, to meet it in F.

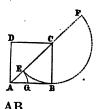
Then, because AB is equal to AE or AG, CE=AC+AB, the sum of the sides; and CG=AC-AB, the difference of the sides. Also, because BD is equal to DF (B. III., Pr. 6), when the perpendicular falls within the triangle, CF=CD-DF=CD-DB, the difference of the segments of the base. But when the perpendicular falls without the triangle, CF=CD+DF=CD+DB, the sum of the segments of the base.

Now, in either case, the rectangle CE×CG is equivalent to CB×CF (Pr. 29, Cor. 2); that is,

$$(AC+AB)\times(AC-AB)=(CD+DB)\times(CD-DB)$$
.

Therefore, if from any angle, etc.

Cor. If we reduce the preceding equation to a proportion (B. II., Pr. 2), we shall have


$$CD+DB:AC+AB::AC-AB:CD-DB;$$

that is, the sum of the segments of the base is to the sum of the two other sides as the difference of the latter is to the difference of the segments of the base.

PROPOSITION XXXV. THEOREM.

The diagonal and side of a square have no common measure.

Let ABCD be a square, and AC its diagonal; AC and AB have no common measure.

In order to find the common measure, if there is one, we must apply CB to CA as often as it is contained in it. For this purpose, from the centre C, with a radius CB, describe the semicircle EBF. We perceive that CB is contained once in AC, with a remainder AE, which remainder must be compared with BC, or its equal

Now, since the angle ABC is a right angle, AB is a tangent to the circumference; and AE: AB:: AB: AF (Prop. 29, Cor. 1). Instead, therefore, of comparing AE with AB, we may substitute the equal ratio of AB to AF. But AB is contained twice in AF. with a remainder AE, which must be again compared with AB. Instead, however, of comparing AE with AB, we may again employ the equal ratio of AB to AF. Hence at each operation we are obliged to compare AB with AF, which leaves a remainder AE; from which we see that the process will never terminate. and therefore there is no common measure between the diagonal and side of a square; that is, there is no line, however small, which is contained an exact number of times in each of them.

The same conclusion was arrived at in Pr. 11, Cor. 3, by a different method.

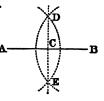
BOOK V.

PROBLEMS.

HITHERTO we have assumed the possibility of constructing our figures, although the methods of constructing them have not yet been explained. For the purpose of discovering the properties of figures, we are at liberty to suppose any figure to be constructed, or any line to be drawn, whose existence does not involve an impossibility. We now proceed to show how the figures employed in these demonstrations may be constructed.

All the constructions of Elementary Geometry are supposed to be effected by means of straight lines and circumferences of circles, these being the only lines treated of in the Elements. A straight line is supposed to be drawn by means of a ruler, and a circle by the aid of a pair of compasses. By means of other curves, which are treated of in Higher Geometry, more difficult problems may be constructed, such as to divide any angle into three equal parts; to find two mean proportionals between two given lines, etc.

Postulates.


- 1. A straight line may be drawn from any one point to any other point.
- 2. A terminated straight line may be produced to any length in a straight line.
- 3. From the greater of two straight lines, a part may be cut off equal to the less.
- 4. A circumference may be described from any centre and with any radius.

PROBLEM I.

To liscet a given straight line.

Let AB be the given straight line which it is required to bisect.

From the centre A, with a radius greater than the half of AB, describe an arc of a circle (Postulate 4); and from the centre B, with the same radius, describe another arc inter-

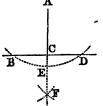
secting the former in D and E. Through the points of intersection draw the straight line DE (Post. 1); it will bisect AB in C.

For the two points D and E, being each equally distant from the extremities A and B, must both lie in the perpendicular, raised from the middle point of AB (B. I., Pr. 18, Cor.). Therefore the line DE divides the line AB into two equal parts at the point C.

PROBLEM IL

To draw a perpendicular to a straight line from a given point in that line.

Let BC be the given straight line, and A the point given in it; it is required to draw a straight line perpendicular to BC through the given point A.


In the straight line BC take any point B, and make AC equal to AB (Post. 3). From B as a centre, with a radius greater than BA, describe an arc of a circle (Post. 4); and from C as a centre, with the same radius, describe another arc intersecting the former in D. Draw AD (Post. 1), and it will be the perpendicular required.

For the points A and D, being equally distant from B and C, must be in a line perpendicular to the middle of BC (B. I., Pr. 18, Cor.). Therefore AD has been drawn perpendicular to BC from the point A.

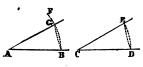
Scholium. The same construction serves to make a right angle BAD at a given point A, on a given line BC.

PROBLEM III.

To draw a perpendicular to a straight line from a given point without it.

Let BD be a straight line of unlimited length, and let A be a given point without it. It is required to draw a perpendicular to BD from the point A.

Take any point E upon the other side of BD, and from the centre A, with the radius AE, describe the arc BD, cutting the line BCD in the two points B and D. From the points


B and D as centres, describe two arcs, as in Prob. 2, cutting each other in F. Join AF, and it will be the perpendicular required.

For the two points A and F are each equally distant from the points B and D; therefore the line AF has been drawn perpendicular to BD (B. I., Pr. 18, Cor.) from the given point A.

PROBLEM IV.

At a given point in a straight line, to make an angle equal to a given angle.

Let AB be the given straight line, A the given point in it, and C the given angle; it is required to make an angle at the point A, in the straight line AB, A that shall be equal to the given angle C.

With C as centre, and any radius, describe an arc DE terminating in the sides of the angle; and from the point A as a centre, with the same radius, describe the indefinite arc BF. Draw the chord DE; and from B as a centre, with a radius equal to DE, describe an arc cutting the arc BF in G. Draw AG, and the angle BAG will be equal to the given angle C.

For the two arcs BG, DE are described with equal radii, and they have equal chords; they are, therefore, equal (B. III., Pr. 3). But equal arcs subtend equal angles (B. III., Pr. 4), and hence

the angle A has been made equal to the given angle C.

PROBLEM V.

To bisect a given arc or a given angle.

First. Let ADB be the given arc which it is required to bisect.

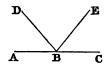
Draw the chord AB, and from the centre C draw CD perpendicular to AB (Prob. 3); it will bisect the arc ADB (B. III., Pr. 6), because CD is a radius perpendicular to a chord.

Secondly. Let ACB be an angle which it is required to bisect. From C as centre, with any radius, describe an arc AB; and, by the first case, draw the line CD bisecting the arc ADB. The line CD will also bisect the angle ACB. For the angles ACD, BCD are equal, being subtended by the equal arcs AD, DB (B. III., Pr. 4).

Scholium. By the same construction, each of the halves AD, DB may be bisected; and thus by successive bisections an arc or angle may be divided into four equal parts, into eight, sixteen, etc.

PROBLEM VI.

Through a given point to draw a straight line parallel to a given line.


Let A be the given point, and BC the given straight line; it is required to draw through the point A a straight line parallel to BC.

In BC take any point D, and join AD. Then, at the point A, in the straight line AD, make the angle DAE equal to the angle ADB (Prob. 4).

Now, because the straight line AD, which meets the two straight lines BC, AE, makes the alternate angles ADB, DAE equal to each other, AE is parallel to BC (B. I., Pr. 22). Therefore the straight line AE has been drawn through the point A, parallel to the given line BC.

PROBLEM VII.

Two angles of a triangle being given, to find the third angle.

The three angles of every triangle are together equal to two right angles (B. I., Pr. 27). Therefore, draw the indefinite line ABC. At the point B make the angle ABD equal to one of the given angles (Prob. 4), and the angle

DBE equal to the other given angle; then will the angle EBC be equal to the third angle of the triangle.

For the three angles ABD, DBE, EBC are together equal to two right angles (B. I., Pr. 2), which is the sum of all the angles of the triangle.

PROBLEM VIII.

Two sides and the included angle of a triangle being given, to construct the triangle.

Draw the straight line BC equal to one of the given sides. At the point B make the angle ABC equal to the given angle (Prob. 4), and take AB equal to the other given side. Join AC, and ABC will be the given triangle required. For its sides

AB, BC are made equal to the given sides, and the included angle B is made equal to the given angle.

PROBLEM IX.

One side and two angles of a triangle being given, to construct the triangle.

The two given angles will either be both adjacent to the given side, or one adjacent and the other opposite. In the latter case, find the third angle (Prob. 7), and then the two adjacent angles will be known.

Draw the straight line AB equal to the given side; at the point A make the angle BAC equal to one of the adjacent angles, and at the point B make the angle ABD equal to the other adjacent angle. The two lines AC, BD will cut each other in E, and ABE will be the triangle required; for

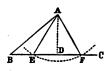
its side AB is equal to the given side, and two of its angles are equal to the given angles.

PROBLEM X.

The three sides of a triangle being given, to construct the triangle.

Draw the straight line BC equal to one of the given sides. From the point B as a centre, with a radius equal to one of the other sides, describe an arc of a circle; and from the point C as a centre, with a radius equal to the third side, describe another arc cutting the former in A. Draw AB, AC; then will ABC be

the triangle required, because its three sides are equal to the three given straight lines. Scholium. If one of the given lines was equal to or greater


than the sum of the other two, the arcs would not intersect each other, and the problem would be impossible; but the solution will always be possible when each side is less than the sum of

the other two.

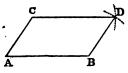
PROBLEM XI.

Two sides of a triangle and the angle opposite to one of them being given, to construct the triangle.

Draw an indefinite straight line BC. At the point B make the angle ABC equal to the given angle, and make BA equal to that side which is adjacent to the given angle. Then from A as a centre, with a radius equal to the other side, describe an arc cutting BC in the points E and F. Join AE, AF.

If the points E and F both fall on the same side of the angle B, each of the triangles ABE, ABF will satisfy the given conditions; but if they fall on different sides of B, only one of them, as ABF, will satisfy the conditions, and

therefore this will be the triangle required.

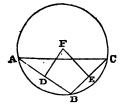

If the points E and F coincide with one another, which will happen when AEB is a right angle, there will be only one triangle, ABD, which is the triangle required.

Scholium. If the side opposite the given angle were less than the perpendicular let fall from A upon BC, the problem would be

impossible.

PROBLEM XII.

Two adjacent sides of a parallelogram and their included angle being given, to construct the parallelogram.


Draw the straight line AB equal to one of the given sides. At the point A make the angle BAC equal to the given angle, and take AC equal to the other given side. From the point C as a centre, with a ra-

dius equal to AB, describe an arc, and from the point B as a centre, with a radius equal to AC, describe another arc intersecting the former in D. Draw BD, CD; then will ABDC be the parallelogram required. For, by construction, the opposite sides are equal; therefore the figure is a parallelogram (B. I., Pr. 31), and it is formed with the given sides and the given angle.

Cor. If the given angle is a right angle, the figure will be a rectangle; and if, at the same time, the sides are equal, it will be a square.

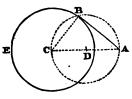
PROBLEM XIII.

To find the centre of a given circumference or of a given arc.

Let ABC be the given circumference or arc; it is required to find its centre.

Take any three points in the arc, as A, B, C, and join AB, BC. Bisect AB in D (Prob. I.), and through D draw DF perpendicular to AB (Prob. 2). In the same manner, draw EF perpendicular to BC at its middle point. The perpendiculars DF, EF

will meet in a point F equally distant from the points A, B, and C (B. III., Pr. 7), and therefore F is the centre of the circle.


Scholium. By the same construction, a circumference may be made to pass through three given points, A, B, C; and also, a circle may be described about a triangle.

PROBLEM XIV.

Through a given point, to draw a tangent to a given circumference.

First. Let the given point A be without the circle BDE; it is required to draw a tangent to the circumference through the point A.

Find the centre of the circle C, and join AC. Bisect AC in D; and, with D as a centre, and a radius equal to AD,

describe a circumference intersecting the given circumference in B. Draw AB, and it will be the tangent required.

Draw the radius CB. The angle ABC, being inscribed in a semicircle, is a right angle (B. III., Pr. 15, Cor. 3). Hence the line AB is a perpendicular at the extremity of the radius CB; it is, therefore, a tangent to the circumference (B. III., Pr. 9).

Secondly. If the given point is in the circumference of the circle, as the point B, draw the radius BC, and make BA perpendicular to BC. BA will be the tangent required (B. III., Pr. 9).

Scholium. When the point A lies without the circle, two tangents may always be drawn; for the circumference, whose centre is D, intersects the given circumference in two points.

PROBLEM XV.

To inscribe a circle in a given triangle.

Let ABC be the given triangle; it is required to inscribe a circle in it.

Bisect any two angles B and C by the lines BD, CD, meeting each other in the point D. From the point of intersection, let fall the perpendiculars DE, DF, DG on the three sides of the triangle; these perpendiculars will all be equal.

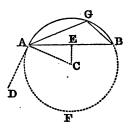
O, E O

For, by construction, the angle EBD is equal to the angle FBD; the right angle DEB is equal to the right angle DFB; hence the third angle BDE is equal to the third angle BDF (B.

I., Pr. 27, Cor. 2). Moreover, the side BD is common to the two triangles BDE, BDF, and the angles adjacent to this side are equal; therefore the two triangles are equal, and DE is equal to DF.

For the same reason, DG is equal to DF. Therefore the three straight lines DE, DF, DG are equal to each other; and, if a circumference be described from the centre D, with a radius equal to DE, it will pass through the extremities of the lines DF, DG. It will also touch the straight lines AB, BC, CA, because the angles at the points E, F, G are right angles (B. III., Pr. 9). Therefore the circle EFG is inscribed in the triangle ABC (B. III., Def. 12).


Scholium. The three lines which bisect the angles of a triangle all meet in the same point, viz., the centre of the inscribed circle.


PROBLEM XVI.

Upon a given straight line, to describe a segment of a circle which shall contain a given angle.

Let AB be the given straight line, upon which it is required to describe a segment of a circle containing a given angle.

At the point A, in the straight line AB, make the angle BAD equal to the given angle; and from the point A draw AC perpen-

dicular to AD. Bisect AB in E, and from E draw EC perpendicular to AB. From the point C, where these perpendiculars meet, with a radius equal to AC, describe a circle. Then will AGB be the segment required.

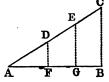
For, since AD is a perpendicular at the extremity of the radius AC, it is a tangent (B. III., Pr. 9), and the angle BAD is measured by half the arc AFB (B. III., Pr. 16). Also, the angle AGB, being an inscribed angle, is measured by half the same arc AFB; hence the angle AGB is equal to the angle BAD, which, by construction, is equal to the given angle. Therefore any angle inscribed in the segment AGB is equal to the given angle.

Scholium. If the given angle was a right angle, the required segment would be a semicircle, described on AB as a diameter.

PROBLEM XVII.

To divide a given straight line into any number of equal parts, or into parts proportional to given lines.

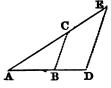
First. Let AB be the given straight line which it is proposed to divide into any number of equal parts, as, for example, five.


From the point A draw the indefinite A E B straight line AC, making any angle with AB. In AC take any point D, and set off AD five times upon AC. Join BC, and draw DE parallel to it; then is AE the fifth part of AB.

For, since ED is parallel to BC, we have AE: AB:: AD: AC (B. IV., Pr. 16). But AD is the fifth part of AC; therefore AE is the fifth part of AB.

Secondly. Let AB be the given straight line, and AC a divided line; it is required to divide AB similarly to AC. Suppose AC

to be divided in the points D and E. Place AB, AC so as to contain any angle; join BC, and through the points D, E draw DF, EG parallel to BC. The line AB will be divided into parts proportional to those of AC.


For, because DF and EG are both parallel to CB, we have AD: AF::DE:FG::EC:GB (B. IV., Pr. 16, Cor. 2).

PROBLEM XVIII.

To find a fourth proportional to three given lines.

From any point A draw two straight lines AD, AE, containing any angle DAE, and make AB, BD, AC respectively equal to the proposed lines. Join B, C, and through D draw DE parallel to BC; then will CE be the fourth proportional required.

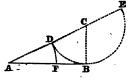
For, because BC is parallel to DE, we have

AB: BD:: AC: CE (B. IV., Pr. 16).

Cor. In the same manner may be found a third proportional to two given lines A and B, for this will be the same as a fourth proportional to the three lines A, B, B.

PROBLEM XIX.

To find a mean proportional between two given lines.


Let AB, BC be the two given straight lines; it is required to find a mean proportional between them.

B C Place AB, BC in a straight line; upon AC describe the semicircle ADC, and from the point B draw BD perpendicular to AC. Then will BD be the mean proportional required.

For the perpendicular BD, let fall from a point in the circumference upon the diameter, is a mean proportional between the two segments of the diameter AB, BC (B. IV., Pr. 23, Cor.), and these segments are equal to the two given lines.

PROBLEM XX.

To divide a given line into two parts such that the greater part may be a mean proportional between the whole line and the other part.

Let AB be the given straight line; it is required to divide it into two parts at the point F, such that AB: AF:: AF: FB.

At the extremity of the line AB erect the perpendicular BC, and make it equal to the half of AB. From C as a centre,

with a radius equal to CB, describe a circle. Draw AC cutting the circumference in D, and make AF equal to AD. The line AB will be divided in the point F in the manner required.

For, since AB is a perpendicular to the radius CB at its extremity, it is a tangent (B. III., Pr. 9); and, if we produce AC to E, we shall have AE: AB::AB: AD (B. IV., Pr. 29). Therefore, by division (B. II., Pr. 7), AE—AB: AB::AB—AD: AD. But, by construction, AB is equal to DE, and therefore AE—AB is equal to AD or AF, and AB—AD is equal to FB. Hence AF: AB:: FB: AD or AF; and, consequently, by inversion (B. II., Pr. 5), AB: AF:: AF: FB.

Schol. 1. The line AB is said to be divided in extreme and mean ratio. An example of its use may be seen in Book VI., Pr. 5.

Schol. 2. Let AB=a; AF=AD=AC-CD.
$$CD=\frac{a}{2}$$
.

But
$$AC = \sqrt{AB^2 + BC^2} = \sqrt{a^2 + \frac{a^2}{4}} = \sqrt{\frac{5a^2}{4}} = \frac{a}{2}\sqrt{5}$$
.

Therefore

$$AF = \frac{a}{2}\sqrt{5} - \frac{a}{2} = \frac{a}{2} \times (\sqrt{5} - 1).$$

PROBLEM XXI.

Through a given point in a given angle, to draw a straight line so that the parts included between the point and the sides of the angle may be equal.

Let A be the given point, and BCD the given angle; it is required to draw through A a line BD, so that BA may be equal to AD.

Through the point A draw AE parallel to BC, and take DE equal to CE. Through the points D and A draw the line BAD; it will be the B line required.

For, because AE is parallel to BC, we have (B. IV., Pr. 16) DE: EC::DA: AB.

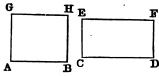
But DE is equal to EC; therefore DA is equal to AB.

PROBLEM XXII.

To construct a square that shall be equivalent to a given parallelogram or to a given triangle.

First. Let ABCD be the given parallelogram, AB its base, and DE its altitude. Find a mean proportional between AB and DE (Prob. 19), and represent it by X; the square described on X will be equivalent to the given parallelogram ABCD.

For, by construction, AB: X:: X:DE; hence X^2 is equal to $AB \times DE$ (B. II., Pr. 1, Cor.). But $AB \times DE$ is the measure of the parallelogram, and X^2 is the measure of the square. Therefore the square described on X is equivalent to the given parallelogram ABCD.


Secondly. Let ABC be the given triangle, BC its base, and AD its altitude. Find a mean proportional between BC and the half of AD, and represent it by Y. Then will the square described on Y be equivalent to the triangle ABC.

For, by construction, BC: Y::Y: $\frac{1}{2}$ AD; hence Y² is equivalent to BC× $\frac{1}{2}$ AD. But BC× $\frac{1}{2}$ AD is the measure of the triangle ABC; therefore the square described on Y is equivalent to the triangle ABC.

PROBLEM XXIII.

Upon a given straight line, to construct a rectangle equivalent to a given rectangle.

Let AB be the given straight line, and CDFE the given rectangle. It is required to construct on the line AB a rectangle equivalent to CDFE.

Find a fourth proportional (Prob. 18) to the three lines AB, CD, CE, and let AG be that fourth proportional. The rectangle constructed on the lines AB, AG will

be equivalent to CDFE.

For, because AB:CD::CE:AG (B. II., Pr. 1), AB × AG=CD × CE. Therefore the rectangle ABHG is equivalent to the rectangle CDFE, and it is constructed upon the given line AB.

PROBLEM XXIV.

To construct a triangle which shall be equivalent to a given polygon.

Let ABCDE be the given polygon; it is required to construct a triangle equivalent to it.

Draw the diagonal BD, cutting off the triangle BCD. Through the point C draw CF parallel to DB, meeting AB produced in F. Join DF, and the polygon AFDE will be

equivalent to the polygon ABCDE.

For the triangles BFD, BCD, being upon the same base BD, and between the same parallels BD, FC, are equivalent. To each of these equals add the polygon ABDE; then will the polygon AFDE be equivalent to the polygon ABCDE; that is, we have found a polygon equivalent to the given polygon, and having the number of its sides diminished by one.

In the same manner, a polygon may be found equivalent to AFDE, and having the number of its sides diminished by one; and, by continuing the process, the number of sides may be at last reduced to three, and a triangle be thus obtained equivalent to the given polygon.

Scholium. By Prob. 22, any triangle may be changed into an equivalent square, and hence a square can always be found equivalent to any given polygon. This operation is called square

ing the polygon, or finding its quadrature.

BOOK V. 105

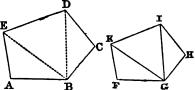
The problem of the quadrature of the circle consists in finding a square equivalent to a circle whose diameter is given.

PROBLEM XXV.

To construct a square equivalent to the sum or difference of two given squares.

First. To make a square equivalent to the sum of two given squares, draw two indefinite lines AB, BC at right angles to each other. Take AB equal to the side of one of the given squares, and BC equal to the side of the other. Join AC; it will be the side of the required square.

For the triangle ABC, being right-angled at B, the square on AC will be equivalent to the sum of the squares upon AB and BC (B. IV., Pr. 11).

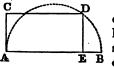

Secondly. To make a square equivalent to the difference of two given squares, draw the lines AB, BC at right angles to each other, and take AB equal to the side of the less square. Then, from A as a centre, with a radius equal to the other side of the square, describe an arc intersecting BC in C; BC will be the side of the square required, because the square of BC is equivalent to the difference of the squares of AC and AB (B. IV., Pr. 11, Cor. 1).

Scholium. In the same manner, a square may be made equivalent to the sum of three or more given squares; for the same construction which reduces two of them to one will reduce three of them to two, and these two to one.

PROBLEM XXVI.

Upon a given straight line, to construct a polygon similar to a given polygon.

Let ABCDE be the given polygon, and FG be the given straight line; it is required, upon the line FG, to construct a polygon similar to ABCDE.


Draw the diagonals BD, ABE. At the point F, in the straight line FG, make the angle GFK equal to the angle BAE, and at the point G make the angle FGK equal to the angle ABE. The lines FK, GK will intersect in K, and FGK will be a triangle similar to ABE.

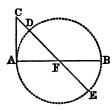
In the same manner, on GK construct the triangle GKI similar to BED, and on GI construct the triangle GIH similar to BDC. The polygon FGHIK will be the polygon required. For these two polygons are composed of the same number of triangles, which are similar to each other, and similarly situated; therefore the polygons are similar (B. IV., Pr. 26, Cor.).

PROBLEM XXVII.

Given the area of a rectangle and the sum of two adjacent sides, to construct the rectangle.

Let AB be a straight line equal to the sum of the sides of the required rectangle.

Upon AB as a diameter, describe a semicircle. At the point A erect the perpendicular AC, and make it equal to the side of a square having the given area. Through C draw the line CD parallel to AB, and let it


meet the circumference in D, and from D draw DE perpendicular to AB. Then will AE and EB be the sides of the rectangle required.

For (B. IV., Pr. 23, Cor.) the rectangle AE × EB is equivalent to the square of DE or CA, which is, by construction, equivalent to the given area. Also, the sum of the sides AE and EB is equal to the given line AB.

Scholium. The side of the square having the given area must not be greater than the half of AB, for in that case the line CD would not meet the circumference ADB.

PROBLEM XXVIII.

Given the area of a rectangle and the difference of two adjacent sides, to construct the rectangle.

Let AB be a straight line equal to the difference of the sides of the required rectangle.

Upon AB as a diameter describe a circle, and at the extremity of the diameter draw the tangent AC equal to the side of a square having the given area. Through the point C and the centre F draw the secant CE; then will CD, CE be the adjacent sides of the rect-

angle required.

For (B. IV., Pr. 29) the rectangle CD × CE is equivalent to the

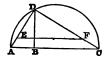
square of AC, which is, by construction, equivalent to the given area. Also, the difference of the lines CE, CD is equal to DE or AB.

PROBLEM XXIX.

To find two straight lines having the same ratio as the areas of two given polygons.

Since any two polygons can always be transformed into squares, this problem requires us to find two straight lines in the same ratio as two given squares.

Draw two lines, AC, BC, at right angles with each other, and make AC equal to a side of one of the given squares, and BC equal to a side of the other given square. Join AB, and from C draw


CD perpendicular to AB. Then (B. IV., Pr. 11, Cor. 2) we have AD: DB:: AC2: CB2.

Therefore AD, DB are in the ratio of the areas of the given polygons.

PROBLEM XXX.

To find a square which shall be to a given square in the ratio of two given straight lines.

Upon a line of indefinite length, take AB equal to one of the given lines, and BC equal to the other line. Upon AC as a diameter describe a semicircle, and at B erect the perpendicular BD, cutting the circumference in D.

Join DA, DC; and upon DA, or DA produced, take DE equal to a side of the given square. Through the point E draw EF parallel to AC; then DF is a side of the required square.

For, because EF is parallel to AC (B. IV., Pr. 16), we have DE: DF::DA:DC;

whence (B. II., Pr. 11) DE²: DF²:: DA²: DC².

Also, because ADC is a right-angled triangle (B. IV., Pr. 11), we have DA²: DC²:: AB: BC.

Hence $DE^2: DF^2:: AB: BC$.

Therefore the square described on DE is to the square described on DF in the ratio of the two given straight lines.

PROBLEM XXXI.

To construct a polygon similar to one given polygon, and equivalent to another given polygon.

Let P and Q be two given polygons. It is required to construct a polygon similar to P, and equivalent to Q.

N

Find M, the side of a square

equivalent to P (Pr. 24, Schol.), and N, the side of a square equivalent to Q. Let AB be one side of P, and let CD be a fourth proportional to the three lines M, N, AB. Upon the side CD homologous to AB, construct the polygon P' similar to P (Pr. 26); it will be equivalent to the polygon Q.

For (B. IV., Pr. 27) P: P': AB²: CD². But, by construction, AB: CD:: M: N,

or

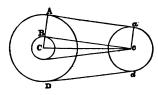
 $AB^2: CD^2:: M^2: N^2.$

Hence

 $P: P':: M^2: N^2$.

But, by construction,

 $M^2=P$, and $N^2=Q$;


therefore

P: P': P: Q.

Hence P'=Q. Therefore the polygon P' is similar to the polygon P, and equivalent to the polygon Q.

PROBLEM XXXII.

To draw a common tangent to two given circles.

Let C and c be the centres of the two given circles. With C as a centre, and a radius CB equal to the difference of the two given radii CA and ca, describe a circumference, and from c draw a straight line touching the circle CB in the point B (Prob. 14).

Join CB, and produce it to meet the given circumference in A. Draw ca parallel to CA, and join Aa. Then Aa is the common tangent to the two given circles.

For, by the construction, BC=AC-ac; and also BC=AC-AB; whence ac=AB, and ABca is a parallelogram (B. I., Pr. 32). But the angle B is a right angle; therefore this parallelogram is a rectangle, and the angles at A and a are right angles. Hence Aa is a tangent to both circles.

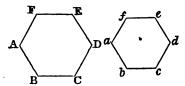
BOOK V. 109

Since two tangents can be drawn from c to the circle BC, there are two common tangents to the given circles, viz., Aa and Dd.

Scholium. Two other tangents can be drawn to the two given circles, and their points of contact will lie upon opposite sides of the line joining the centres. For this purpose CB must be taken equal to the sum of the given radii.

BOOK VI.

REGULAR POLYGONS, AND THE AREA OF THE CIRCLE.


Definition.

'A regular polygon is a polygon which is both equiangular and equilateral.

An equilateral triangle is a regular polygon of three sides; a square is one of four.

PROPOSITION I. THEOREM.

Regular polygons of the same number of sides are similar figures.

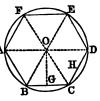
Let ABCDEF, abcdef be two regular polygons of the same d number of sides; then will they be similar figures.

For, since the two polygons have the same number of sides,

they must have the same number of angles. Moreover, the sum of the angles of the one polygon is equal to the sum of the angles of the other (B. I., Pr. 28); and, since the polygons are each equiangular, it follows that the angle A is the same part of the sum of the angles A, B, C, D, E, F, that the angle a is of the sum of the angles a, b, c, d, e, f. Therefore the two angles A and a are equal to each other. The same is true of the angles B and b, C and c, etc.

Moreover, since the polygons are regular, the sides AB, BC, CD, etc., are equal to each other (Def.); so, also, are the sides ab, bc, cd, etc. Therefore AB: ab:: BC: bc:: CD: cd, etc. Hence the two polygons have their angles equal, and their homologous sides proportional; they are consequently similar (B. IV., Def. 4). Therefore, regular polygons, etc.

Cor. The perimeters of two regular polygons of the same number of sides are to each other as their homologous sides, and their areas are as the squares of those sides (B. IV., Pr. 27).


Scholium. The magnitude of the angles of a regular polygon is determined by the number of its sides.

PROPOSITION II. THEOREM.

A circle may be described about any regular polygon, and a circle may also be inscribed within it.

Let ABCDEF be any regular polygon; a circle may be described about it, and another may be inscribed-within it.

Bisect the angles FAB, ABC by the straight A lines AO, BO, and, from the point O in which they meet, draw the lines OC, OD, OE, OF to the other angles of the polygon.

Then, because in the triangles OBA, OBC, AB is, by hypothesis, equal to BC, BO is common to the two triangles, and the included angles OBA, OBC are, by construction, equal to each other; therefore the angle OAB is equal to the angle OCB. But OAB is, by construction, the half of FAB, and FAB is, by hypothesis, equal to DCB; therefore OCB is the half of DCB; that is, the angle BCD is bisected by the line OC. In the same manner, it may be proved that the angles CDE, DEF, EFA are bisected by the straight lines OD, OE, OF.

Now, because the angles OAB, OBA, being halves of equal angles, are equal to each other, OA is equal to OB (B. I., Pr. 11). For the same reason, OC, OD, OE, OF are each of them equal to OA. Therefore a circumference described from the centre O, with a radius equal to OA, will pass through each of the points B, C, D, E, F, and be described about the polygon.

Secondly. A circle may be inscribed within the polygon ABC DEF.

For the sides AB, BC, CD, etc., are equal chords of the same circle; hence they are equally distant from the centre O (B. III., Pr. 8); that is, the perpendiculars OG, OH, etc., are all equal to each other. Therefore, if from O as a centre, with a radius OG, a circumference be described, it will touch the side BC (B. III., Pr. 9), and each of the other sides of the polygon; hence the circle will be inscribed within the polygon. Therefore a circle may be described, etc.

Scholium 1. In regular polygons, the centre of the inscribed and circumscribed circles is also called the centre of the polygon; and the perpendicular from the centre upon one of the sides, that is, the radius of the inscribed circle, is called the apothegm of the polygon.

Since all the chords AB, BC, etc., are equal, the angles at the centre, AOB, BOC, etc., are equal; and the value of each may be found by dividing four right angles by the number of sides of the

polygon.

The angle at the centre of the inscribed equilateral triangle is $\frac{1}{3}$ of four right angles, or 120°; the angle at the centre of the regular inscribed pentagon is $\frac{1}{5}$ of four right angles, or 72°; the angle at the centre of the regular hexagon is \(\frac{1}{8} \) of four right angles, or 60°; the angle at the centre of the regular decagon is 10° of four right angles, or 36°.

Sch. 2. To inscribe a regular polygon of any number of sides in a circle, it is only necessary to divide the circumference into the same number of equal parts; for, if the arcs are equal, the chords AB, BC, CD, etc., will be equal. Hence the triangles AOB, BOC, COD, etc., will also be equal, because they are mutually equilateral; therefore all the angles ABC, BCD, CDE, etc., will be equal, and the figure ABCDEF will be a regular polygon.

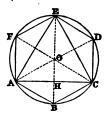
PROPOSITION III. PROBLEM.

To inscribe a square in a given circle.

Let ABCD be the given circle; it is required to inscribe a square in it. Draw two diameters AC, BD at right angles to each other, and join AB, BC, CD, DA.

Because the angles AEB, BEC, etc., are equal, the chords AB, BC, etc., are also equal. And be-

cause the angles ABC, BCD, etc., are inscribed in semicircles, they are right angles (B. III., Pr. 15, Cor. 2). Therefore ABCD is a square, and it is inscribed in the circle ABCD.


Cor. Since the triangle AEB is right-angled and isosceles, we have the proportion $\overrightarrow{AB}: \overrightarrow{AE}:: \sqrt{2}: 1$ (B. IV., Pr. 11, Cor. 3); therefore the side of the inscribed square is to the radius, as the square root of 2 is to unity.

PROPOSITION IV. THEOREM.

The side of a regular hexagon is equal to the radius of the circumscribed circle.

Let ABCDEF be a regular hexagon inscribed in a circle whose centre is O; then any side, as AB, will be equal to the radius AO.

Draw the radius BO. Then the angle AOB is the sixth part of four right angles (Pr. 2, Sch. 1), or the third part of two right angles. Also, because the three angles of every triangle are equal to two right angles, the two angles OAB, OBA are together equal to two thirds of two right angles; and since AO is equal to BO, each of these angles is one third

of two right angles. Hence the triangle AOB is equiangular, and AB is equal to AO. Therefore the side of a regular hexagon, etc.

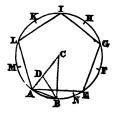
Cor. To inscribe a regular hexagon in a given circle, the radius must be applied six times upon the circumference. By joining the alternate angles A, C, E, an equilateral triangle will be inscribed in the circle.

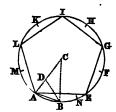
Sch. 1. In the right-angled triangle ACD we have $AC^2=AD^2$ $-DC^2=4AO^2-AO^2=3AO^2$. Whence $AC=AO\sqrt{3}$; that is, the side of an equilateral triangle is equal to the radius of the circumscribed circle multiplied by the square root of 3.

Sch. 2. The area of the triangle ACE (B. IV., Pr. 6, Sch.) = $\frac{3}{2}$ AC \times OH.

But
$$OB = \frac{AC}{\sqrt{3}} = \frac{AC\sqrt{3}}{3}$$
.

Therefore $OH = \frac{AC\sqrt{3}}{6}$.


Hence the triangle $ACE = \frac{3}{3}AC \times \frac{AC\sqrt{3}}{6} = \frac{AC^2}{4}\sqrt{3}$; that is, the area of an equilateral triangle is equal to one fourth the square of one of its sides multiplied by the square root of three.


PROPOSITION V. PROBLEM.

To inscribe a regular decagon in a given circle.

Let ABH be the given circle; it is required to inscribe in it a regular decagon.

Take C the centre of the circle; draw the radius AC, and divide it in extreme and mean ratio (B. V., Pr. 20) at the point D. Make the chord AB equal to CD, the greater segment; then will AB be the side of a regular decagon inscribed in the circle.

Join BC, BD. Then, by construction, AC: CD:: CD: AD; but AB is equal to CD; therefore AC: AB:: AB: AD. Hence the triangles ACB, ABD have a common angle A included between proportional sides; they are therefore similar (B. IV., Pr. 21).

And because the triangle ACB is isosceles, the triangle ABD must also be isosceles, and

AB is equal to BD. But AB was made equal to CD; hence BD is equal to CD, and the angle DBC is equal to the angle DCB. Therefore the exterior angle ADB, which is equal to the sum of DCB and DBC, must be double of DCB. But the angle ADB is equal to DAB, therefore each of the angles CAB, CBA is double of the angle ACB. Hence the sum of the three angles of the triangle ACB is five times the angle C. But these three angles are equal to two right angles (B. I., Pr. 27); therefore the angle C is the fifth part of two right angles, or the tenth part of four right angles. Hence the arc AB is one tenth of the circumference, and the chord AB is the side of a regular decagon inscribed in the circle.

Scholium. AB=CD= $\frac{AC}{2}$ ×($\sqrt{5}$ -1) (see B. V., Pr. 20, Sch. 2);

that is, the side of a regular decagon is equal to half the radius of the circumscribed circle, multiplied by the square root of five, less unity.

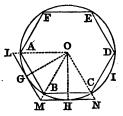
Cor. 1. By joining the alternate angles of the regular decagon, a regular pentagon, AEGIL, may be inscribed in the circle.

Cor. 2. By combining this Proposition with the preceding, a

regular pentedecagon may be inscribed in a circle.

For, let AN be the side of a regular hexagon; then the arc AN will be one sixth of the whole circumference, and the arc AB one tenth of the whole circumference. Hence the arc BN will be $\frac{1}{6}$ $-\frac{1}{10}$ or $\frac{1}{10}$, and the chord of this arc will be the side of a regular pentedecagon.

Scholium. By bisecting the arcs subtended by the sides of any polygon, another polygon of double the number of sides may be inscribed in a circle. Hence the square will enable us to inscribe regular polygons of 8, 16, 32, etc., sides; the hexagon will enable us to inscribe polygons of 12, 24, etc., sides; the decagon will enable us to inscribe polygons of 20, 40, etc., sides; and the pentedecagon, polygons of 30, 60, etc., sides.


The ancient geometricians were unacquainted with any method of inscribing in a circle regular polygons of 7, 9, 11, 13, 14, 17, etc., sides, and for a long time it was believed that these polygons could not be constructed geometrically; but Gauss, a German mathematician, has shown that a regular polygon of 17 sides may be inscribed in a circle by employing straight lines and circles only.

PROPOSITION VI. PROBLEM.

A regular polygon inscribed in a circle being given, to describe a similar polygon about the circle.

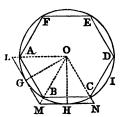
Let ABCDEF be a regular polygon inscribed in the circle ABD; it is required to describe a similar polygon about the circle.

Bisect the arc AB in G, and through G Ly draw the tangent LM. Bisect also the arc BC in H, and through H draw the tangent MN, and in the same manner draw tangents to the middle points of the arcs CD, DE, etc.

These tangents, by their intersections, will form a circumscribed

polygon similar to the one inscribed.

Find O, the centre of the circle, and draw the radii OG, OH. Then, because OG is perpendicular to the tangent LM (B. III., Pr. 9), and also to the chord AB (B. III., Pr. 6, Cor.), the tangent is parallel to the chord (B. I., Pr. 20). In the same manner, it may be proved that the other sides of the circumscribed polygon are parallel to the sides of the inscribed polygon, and therefore the angles of the circumscribed polygon are equal to those of the inscribed one (B. I., Pr. 26).


Since the arcs BG, BH are halves of the equal arcs AGB, BHC, they are equal to each other; that is, the vertex B is at the middle point of the arc GBH.

Join OM; the line OM will pass through the point B. For the right-angled triangles OMH, OMG have the hypothenuse OM common, and the side OH equal to OG; therefore the angle GOM is equal to the angle HOM (B. I., Pr. 19), and the line OM passes through the point B, the middle of the arc GBH.

Now, because the triangle OAB is similar to the triangle OLM, and the triangle OBC to the triangle OMN, we have the proportions

AB:LM::BO:MO;

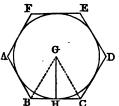
also BC: MN:: BO: MO;

therefore (B. II., Pr. 4) AB: LM:: BC: MN. But AB is equal to BC; therefore LM is equal to MN.

In the same manner, it may be proved that the other sides of the circumscribed polygon are equal to each other. Hence this polygon is regular, and similar to the one inscribed.

Cor. 1. Conversely, if the circumscribed polygon is given, and it is required to form the similar inscribed one, draw the lines OL, OM, ON, etc., to the angles of the polygon; these lines will meet the circumference in the points A, B, C, etc. Join these points by the lines AB, BC, CD, etc., and a similar polygon will be inscribed in the circle.

Or we may simply join the points of contact G, H, I, etc., by the chords GH, III, etc., and there will be formed an inscribed polygon similar to the circumscribed one.

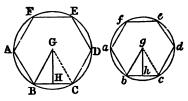

Cor. 2. Hence we can circumscribe about a circle any regular

polygon which can be inscribed within it, and conversely.

Cor. 3. A side of the circumscribed polygon MN is equal to twice MH, or MG+MH.

PROPOSITION VII. THEOREM.

The area of a regular polygon is equivalent to the product of its perimeter by half the radius of the inscribed circle.


Let ABCDEF be a regular polygon, and G the centre of the inscribed circle. From G draw lines to all the angles of the poly-The polygon will thus be divided into as many triangles as it has sides; and the common altitude of these triangles is GH, the radius of the circle.

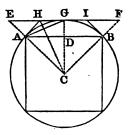
Now the area of the triangle BGC is equal to the product of BC by the half of GH (B. IV., Pr. 6), and so of all the other triangles having their vertices in G. Hence the sum of all the triangles, that is, the surface of the polygon, is equivalent to the product of the sum of the bases AB, BC., etc.; that is, the perimeter of the polygon, multiplied by half of GH, or half the radius of the inscribed circle. Therefore the area of a regular polygon, etc.

PROPOSITION VIII. THEOREM.

The perimeters of two regular polygons of the same number of sides are to each other as the radii of the inscribed or circumscribed circles, and their areas are as the squares of these radii.

Let ABCDEF, abcdef be two regular polygons of the same number of sides; let G and g be the centres of the circumscribed circles; and let GH, gh be drawn perpendicular to BC and bc; then will the perime-

ters of the polygons be as the radii BG, bg of the circumscribed circles; and also as GH, gh, the radii of the inscribed circles.


The angle BGC is equal to the angle bgc (Pr. 2, Sch. 1), and, since the triangles BGC, bgc are isosceles, they are similar. So, also, are the right-angled triangles BGH, bgh; and, consequently, BC: bc:: BG: bg:: GH: gh. But the perimeters of the two polygons are to each other as the sides BC, bc (Pr. I., Cor.); they are therefore to each other as the radii BG, bg of the circumscribed circles; and also as the radii GH, gh of the inscribed circles.

The areas of these polygons are to each other as the squares of the homologous sides BC, bc (Pr. 1, Cor.); they are therefore as the squares of BG, bg, the radii of the circumscribed circles, or as the squares of GH, gh, the radii of the inscribed circles.

PROPOSITION IX. PROBLEM.

The area of a regular inscribed polygon and that of a similar circumscribed polygon being given, to find the areas of regular inscribed and circumscribed polygons having double the number of sides.

Let AB be a side of the given inscribed Epolygon; EF, parallel to AB, a side of the similar circumscribed polygon, and C the centre of the circle. Draw the chord AG, and it will be the side of the inscribed polygon having double the number of sides. At the points A and B draw tangents, meeting EF in the points H and I; then will HI, which is double of HG, be a side

of the similar circumscribed polygon (Pr. 6, Cor. 1).

Let p represent the inscribed polygon whose side is AB, P the corresponding circumscribed polygon; p' the inscribed polygon having double the number of sides, P' the similar circumscribed polygon. Then it is plain that the space CAD is the same part of p that CEG is of P; also, CAG of

p', and CAHG of P'; for each of these spaces must be repeated the same number of times to complete the polygons to which they severally belong.

First. The triangles ACD, ACG, whose common vertex is A, are to each other as their bases CD, CG; they are also to each other as the polygons p and p'; hence

p:p'::CD:CG.

Again, the triangles CGA, CGE, whose common vertex is G, are to each other as their bases CA, CE; they are also to each other as the polygons p' and P; hence

p': P:: CA: CE.

But, since AD is parallel to EG, we have CD: CG:: CA: CE; p:p'::p':P:therefore,

that is, the polygon p' is a mean proportional between the two given polygons.

Secondly. The triangles CGH, CHE, having the common altitude CG, are to each other as their bases GH, HE. But, since CH bisects the angle GCE, we have (B. IV., Pr. 17)

GH: HE:: CG: CE:: CD: CA, or CG:: p:p'.

Therefore

CGH: CHE::p:p';

hence (B. II., Pr. 6)

CGH: CGH+CHE, or CGE::p:p+p',

2CGH : CGE :: 2p : p + p'.or

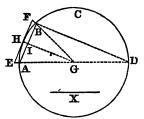
2CGH, or CGHA: CGE::P':P. But

P':P::2p:p+p'; whence $P'=\frac{2pP}{p+p'};$ Therefore

that is, the polygon P' is found by dividing twice the product of the two given polygons by the sum of the two inscribed polygons.

Hence, by means of the polygons p and P, it is easy to find the polygons p' and P' having double the number of sides.

PROPOSITION X. THEOREM.


A circle being given, two similar polygons can always be found, the one described about the circle, and the other inscribed in it, which shall differ from each other by less than any assignable surface.

Let ACD be the given circle, and the square of X any given surface however small; a polygon can be inscribed in the circle ACD, and a similar polygon be described about it, such that the difference between them shall be less than the square of X.

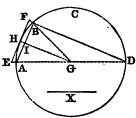
Bisect AC, a fourth part of the circumference; then bisect the half of this fourth, and so continue the bisection until an arc is found whose chord AB is less than X. As this arc must be contained a certain number of times exactly in the whole circumference, if we apply chords AB, BC, etc., each equal to AB, the last will terminate at A, and a regular polygon, ABCD, etc., will be inscribed in the circle.

Next describe a similar polygon about the circle (Pr. 6); the difference of these two polygons will be less than the square of X.

Find the centre G, and draw the diameter AD. Let EF be a side of the circumscribed polygon, and join EG, FG.
These lines will pass through the points A and B, as was shown in Pr. 6. Draw EGH to the point of contact H; it will bisect AB in I, and be perpendicular to it (B. III., Pr. 6, cor.). Join also BD.

Let P represent the circumscribed polygon, and p the inscribed polygon. Then, because the polygons are similar, they are as the squares of the homologous sides EF and AB (B. IV., Pr. 27); that is, because the triangles EFG, ABG are similar, as the square of EG to the square of AG, that is, of HG.

Again, the triangles EHG, ABD, having their sides parallel to each other, are similar, and therefore


EG: HG:: AD: BD.

But the polygon P is to the polygon p as the square of EG to the square of HG;

hence $P:p::AD^2:BD^2$,

and, by division,

 $P: P-p::AD^2:AD^2-BD^2$, or AB^2 .

But the square of AD is greater than a regular polygon of eight sides described about the circle, because it contains that polygon; and, for the same reason, the polygon of eight sides is greater than the polygon of sixteen, and so on. Therefore P is less than the square of AD, and, consequently (B. II., Def. 11), P-p is less than the square of AB; that is,

less than the given square on X. Hence the difference of the two polygons is less than the given surface.

Cor. Since the circle can not be less than any inscribed polygon, nor greater than any circumscribed one, it follows that a polygon may be inscribed in a circle, and another described about it, each of which shall differ from the circle by less than any assignable surface.

Scholium. A variable quantity is a quantity which assumes successively different values. When the successive values of a variable quantity approach more and more nearly to some constant quantity, so that the difference between the variable and the constant may become less than any assignable quantity, the constant is called the limit of the variable. Thus, if we suppose the number of sides of a regular polygon to increase, the magnitude of each angle will also increase; and if the number of sides be made greater than any finite number, each angle of the polygon will approach indefinitely near to two right angles. the variable quantity is the angle of the regular polygon, and the limit toward which its value continually approaches is two right angles. We see, also, that the circle is the limit to which the inscribed and circumscribed polygons approach when the number of their sides is indefinitely increased. When the number of sides of the polygon is greater than any finite number, the difference between the polygon and circle becomes less than any finite quantity; that is, the circle becomes identical with the inscribed polygon, and also with the circumscribed polygon. The circle may therefore be regarded as a regular polygon of an infinite number of sides.

PROPOSITION XI. PROBLEM.

To compute the area of a circle whose radius is unity.

If the radius of a circle be unity, the diameter will be repre-

sented by 2, and the area of the circumscribed square will be 4; while that of the inscribed square, being half the circumscribed, is 2.

Now, according to Pr. 9, the area of the inscribed octagon is a mean proportional between the two squares p and P, so that $p' = \sqrt{8} = 2.82843$. Also, the circumscribed octagon $P' = \frac{2pP}{p+p'} = \frac{16}{2+\sqrt{8}} = 3.31371$.

Having thus obtained the inscribed and circumscribed octagons, we may in the same way determine the polygons having twice the number of sides. We must put p=2.82843, and P=3.31371, and we shall have $p'=\sqrt{pP}=3.06147$; and $P'=\frac{2pP}{p+p'}=3.18260$.

These polygons of 16 sides will furnish us those of 32, and thus we may proceed until there is no difference between the inscribed and circumscribed polygons, at least for any number of decimal places which may be desired. The following table gives the result of this computation for five decimal places:

Number of Sides.	Inscribed Polygon.	Circumscribed Polygon.
4	2.00000	4.00000
8	2.82843	3.31371
16	3.06147	3.18260
$\bf 32$	3.12145	3.15172
164	3.13655	3.14412
128	3.14033	3.14222
256	3.14128	3.14175
512	3.14151	3.14163
1024	3.14157	3.14160
2048	$\boldsymbol{3.14159}$	3.14159

Now, as the inscribed polygon can not be greater than the circle, and the circumscribed polygon can not be less than the circle, it is plain that 3.14159 must express the area of a circle, whose radius is unity, correct to five decimal places.

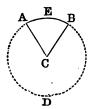
After three bisections of a quadrant of a circle we obtain the inscribed polygon of 32 sides, which differs from the corresponding circumscribed polygon only in the second decimal place. After five bisections we obtain polygons of 128 sides, which differ only in the third decimal place; after nine bisections they agree to five decimal places, but differ in the sixth place; after

eighteen bisections they agree to ten decimal places; and thus, by continually bisecting the arcs subtended by the sides of the polygon, new polygons are formed, both inscribed and circumscribed, which agree to a greater number of decimal places.

Vieta, by means of inscribed and circumscribed polygons, carried the approximation to ten places of figures; Van Ceulen carried it to 36 places; Sharp computed the area to 72 places; De Lagny to 128 places; and Dr. Clausen has carried the computation to 250 places of decimals.

By continuing this process of bisection, the difference between the inscribed and circumscribed polygons may be made less than any quantity we can assign, however small.

PROPOSITION XII. THEOREM.


The area of a circle is equal to the product of its circumference by half the radius.

Let ABE be a circle whose centre is C and radius CA: the area of the circle is equal to the product of its circumference by half of CA.

Inscribe in the circle any regular polygon, and from the centre draw CD perpendicular to one of the sides. The area of the polygon will be equal to its perimeter multiplied by half of CD (Pr. 7).

Conceive the number of sides of the polygon to be indefinitely increased by continually bisecting the arcs subtended by the sides, its perimeter will approach more nearly to the circumference of the circle; and, when the number of sides of the polygon is greater than any finite number, the perimeter of the polygon will coincide with the circumference of the circle; the perpendicular CD will become equal to the radius CA, and the area of the polygon will be equal to the area of the circle (Pr. 10, Schol.). Therefore the area of the circle is equal to the product of its circumference by half the radius.

Cor. The area of a sector is equal to the product of its arc by half its radius.

For the sector ACB is to the whole circle ABD as the arc AEB is to the whole circumference ABD (B. III., Pr. 14, Cor.); or, since magnitudes have the same ratio which their equimultiples have (B. II., Pr. 10), as the arc $AEB \times \frac{1}{2}AC$ is to the circumference $ABD \times \frac{1}{2}AC$.

But this last expression is equal to the area of the circle; therefore the area of the sector ACB is equal to the product of its arc AEB by half of AC.

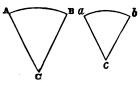
PROPOSITION XIII. THEOREM.

The circumferences of circles are to each other as their radii, and their areas are as the squares of their radii.

Let R and r denote the radii of two circles; C and c their circumferences; A and a their areas; then we shall have

and C: c:: R: r, $A: a:: R^2: r^2.$

Inscribe within the circles two regular polygons having the same number of sides. Now, whatever be the number of sides of the polygons, their perimeters will be to each other as the radii of the circumscribed circles (Pr. 8). Conceive the arcs subtended by the sides of the polygons to be continually bisected until the number of sides of the polygons becomes indefinitely great, the perimeters of the polygons will approach more nearly to the circumferences of the circles; and when the number of sides of the polygons is greater than any finite number, the perimeters of the polygons will coincide with the circumferences of the circles, and we shall have


C:c::R:r.

Again, the areas of the polygons are to each other as the squares of the radii of the circumscribed circles (Pr. 8). But when the number of sides of the polygons is greater than any finite number, the areas of the polygons become equal to the areas of the circles, and we shall have

$$A:a::R^2:r^2$$
.

Cor. 1. Similar arcs are to each other as their radii, and similar sectors are as the squares of their radii.

For, since the arcs AB, ab are similar, the angle C is equal to the angle c (B. IV., Def. 6). But the angle C is to four right angles as the arc AB is to the whole circumference described with the radius AC (B. III., Pr. 14), and the an-

gle c is to four right angles as the arc ab is to the circumference described with the radius ac. Therefore the arcs AB, ab are to each other as the circumferences of which they form a part. But these circumferences are to each other as AC, ac; therefore

arc AB: arc ab :: AC: ac.

For the same reason, the sectors ACB, acb are as the entire circles to which they belong, and these are as the squares of their radii; therefore

sector ACB: sector $acb :: AC^2 : ac^2$.

Cor. 2. Let π represent the circumference of a circle whose diameter is unity; also, let D represent the diameter, R the radius, and C the circumference of any other circle; then, since the circumferences of circles are to each other as their diameters,

 $1:\pi::2R:C;$

therefore

 $C=2\pi R=\pi D$;

that is, the circumference of a circle is equal to the product of its diameter by the constant number π .

Cor. 3. According to Pr. 12, the area of a circle is equal to the product of its circumference by half the radius.

If we put A to represent the area of a circle, then

 $A=C\times \frac{1}{2}R=2\pi R\times \frac{1}{2}R=\pi R^2$;

that is, the area of a circle is equal to the product of the square of its radius by the constant number π .

Cor. 4. When R is equal to unity, we have $A=\pi$; that is, π is equal to the area of a circle whose radius is unity. According to Pr. 11, π is therefore equal to 3.14159 nearly. This number is represented by π , because it is the first letter of the Greek word which signifies circumference.

EASY EXERCISES ON THE PRECEDING BOOKS.

A few theorems without demonstrations, and problems without solutions, are here subjoined for the exercise of the pupil. They will be found admirably adapted to familiarize the beginner with the preceding principles, and to impart dexterity in their application. No general rule can be given which will be found applicable in all cases, and infallibly lead to the demonstration of a proposed theorem, or the solution of a problem. The following directions may prove of some service:

ANALYSIS OF THEOREMS.

- 1. Construct a diagram as directed in the enunciation, and assume that the theorem is true.
- 2. Consider what consequences result from this assumption by combining with it theorems which have been already proved, and which are applicable to the diagram.
- 3. Examine whether any of these consequences are already known to be true or to be false.
- 4. If the assumption of the truth of the proposition lead to some consequence which is inconsistent with any demonstrated truth, the false conclusion thus arrived at indicates the falsehood of the proposition; and by reversing the process of the analysis, it may be demonstrated that the theorem can not be true.
- 5. If none of the consequences so deduced be known to be either true or false, proceed to deduce other consequences from all, or any of these, until a result is obtained which is known to be either true or false.
- 6. If we thus arrive at some truth which has been previously demonstrated, we then retrace the steps of the investigation pursued in the analysis till they terminate in the theorem which was assumed. This process will constitute the demonstration of the theorem.

ANALYSIS OF PROBLEMS.

1. Construct the diagram as directed in the enunciation, and suppose the solution of the problem to be effected.

- 2. Study the relations of the lines, angles, triangles, etc., in the diagram, and endeavor to discover the dependence of the assumed solution on some previous theorem or problem in the Geometry.
- 3. If such can not be found, draw other lines parallel or perpendicular, as the case may seem to require; join given points, or points assumed in the solution, and describe circles if necessary; and then proceed to trace the dependence of the assumed solution on some theorem or problem in Geometry.
- 4. If we thus arrive at some previously demonstrated or admitted truth, we shall obtain a direct solution of the problem by assuming the last consequence of the analysis as the first step of the process, and proceeding in a contrary order through the several steps of the analysis until the process terminate in the problem required.

GEOMETRICAL EXERCISES ON BOOK I.

THEOREMS.

Prop. 1. The difference between any two sides of a triangle is less than the third side. See Prop. 8.

Prop. 2. The sum of the diagonals of a quadrilateral is less than the sum of any four lines that can be drawn from any point whatever (except the intersection of the diagonals) to the four angles. See Prop. 8.

Prop. 3. If a straight line which bisects the vertical angle of a triangle also bisects the base, the remaining sides of the triangle are equal to each other.

Demonstration. Produce AD, the bisecting line, making DE = DA; then in the, etc.

Prop. 4. If the base of an isosceles triangle be produced, the exterior angle exceeds one right angle by half the vertical angle. See Prop. 27.

Prop. 5. In any right-angled triangle, the middle point of the hypothenuse is equally distant from the three angles.

Dem. From D, the middle point of the hypothenuse, draw perpendiculars upon the two sides of the triangle; then, etc.

Prop. 6. If, on the sides of a square, at equal distances from the four angles, four points be taken, one on each side, the figure formed by joining those points will also be a square. See Prop. 6.

Prop. 7. The parallelogram whose diagonals are equal is rectangular. See Prop. 32.

Prop. 8. If the diagonals of a quadrilateral bisect each other, the figure is a parallelogram. See Props. 6 and 22.

Prop. 9. Any line drawn through the centre of the diagonal of a parallelogram to meet the sides is bisected in that point, and also bisects the parallelogram. See Props. 7 and 29.

Prop. 10. The sum of the three straight lines drawn from any point within a triangle to the three vertices is less than the sum and greater than the half sum of the three sides of the triangle. See Props. 8 and 9.

PROBLEMS.

Prop. 1. On a given line describe an isosceles triangle, each of whose equal sides shall be double of the base.

Solution. Produce the given base AB both ways, making AC=AB=BD. With centre A and radius AD, describe a circle, etc.

Prop. 2. On a given line describe a square, of which the line shall be the diagonal.

Sol. Bisect the given line AB at right angles by DCE, and make CD=CE=CA or CB; then, etc.

Prop. 3. Divide a right angle into three equal angles.

Sol. On one of the sides containing the right angle describe an equilateral triangle, etc.

Prop. 4. One of the acute angles of a right-angled triangle is three times as great as the other; trisect the smaller of these.

Sol. The smaller angle is one fourth of a right angle, and its third part is one twelfth of a right angle. May be solved by the method of Prop. 3.

Prop. 5. Construct an equilateral triangle, having given the length of the perpendicular drawn from one of the angles on the opposite side.

Sol. May be solved by the method of Prop. 3.

EXERCISES ON BOOK II.

- 1. Find a third proportional to 8 and 12.

 Ans. 18.
- Find a fourth proportional to 12, 16, and 39.
 Find a mean proportional between 24 and 54.
 Ans. 36.
- 4. If $A: B:: C: \overline{D}$, prove that $A^2 + AB + B^2: A^2 AB + B^2:: C^2 + CD + D^2: C^2 CD + D^2$.

GEOMETRICAL EXERCISES ON BOOK III.

THEOREMS.

Prop. 1. Every chord of a circle is less than the diameter. See B. I., Pr. 7.

Prop. 2. If an arc of a circle be divided into three equal parts by three straight lines drawn from one extremity of the arc, the angle contained by two of the straight lines will be bisected by the third. See B. III., Pr. 15.

Prop. 3. Any two chords of a circle which cut a diameter in the same point, and make equal angles with it, are equal to each other. See B. III., Pr. 17.

Prop. 4. The straight lines which join toward the same parts the extremities of any two chords in a circle equally distant from the centre, are parallel to each other.

Prop. 5. The two straight lines which join the opposite extremities of two parallel chords intersect in a point in that diameter which is perpendicular to the chords.

Prop. 6. If two opposite sides of a quadrilateral figure inscribed in a circle are equal, the other two sides will be parallel.

Prop. 7. All the equal chords in a circle may be touched by another circle.

Prop. 8. The lines bisecting at right angles the sides of a triangle all meet in one point. See B. I., Pr. 18.

Prop. 9. If the diameter of a circle be one of the equal sides of an isosceles triangle, the base will be bisected by the circumference. See B. III., Pr. 15, Cor. 2.

Prop. 10. If two circles touch each other externally, and parallel diameters be drawn, the straight line joining the opposite extremities of these diameters will pass through the point of contact. See B. III., Pr. 12, and Pr. 15, Cor. 2.

Prop. 11. The lines which bisect the angles of any parallelogram form a rectangular parallelogram, whose diagonals are parallel to the sides of the former. See B. I., Pr. 27.

Prop. 12. If two opposite sides of a parallelogram be bisected, the lines drawn from the points of bisection to the opposite angles will trisect the diagonal.

PROBLEMS.

Prop. 1. From a given point without a given straight line, draw a line making a given angle with it. See B. V., Pr. 4.

Prop. 2. Through a given point within a circle, draw a chord which shall be bisected in that point. See B. III., Pr. 6.

Prop. 3. Through a given point within a circle, draw the least

possible chord. See B. III., Pr. 6.

Prop. 4. Two chords of a circle being given in magnitude and position, describe the circle. See B. III., Pr. 7.

Prop. 5. Describe three equal circles touching one another; and also describe another circle which shall touch them all three.

Sol. Describe an equilateral triangle and bisect its sides.

Prop. 6. How many equal circles can be described around an-

other circle of the same magnitude, touching it and one another?

Prop. 7. With a given radius describe a circle which shall pass

through two given points. See B. I., Pr. 18.

Prop. 8. Describe a circle which shall pass through two given points and have its centre in a given line. See B. I., Pr. 18.

Prop. 9. In a given circle inscribe a triangle equiangular to a given triangle. See B. III., Pr. 15.

Prop. 10. From one extremity of a line which can not be produced, draw a line perpendicular to it.

Sol. Take any point C without the given line as a centre, and with a radius equal to the distance of C from the given extremity, describe a circumference, etc.

Prop. 11. Divide a circle into two parts, such that the angle contained in one segment shall equal twice the angle contained in the other.

Sol Inscribe in the circle an equilateral triangle.

Prop. 12. Divide a circle into two segments, such that the angle contained in one of them shall be five times the angle contained in the other.

Sol. Inscribe in the circle a regular hexagon.

Prop. 13. Describe a circle which shall touch a given circle in a given point, and also touch a given straight line.

Sol. Draw a tangent at A, cutting the given line BC in C; bisect the angle ACB by CD, cutting OA in D, etc.

Prop. 14. With a given radius, describe a circle which shall

pass through a given point and touch a given line.

Sol. Draw AC perpendicular to the given line AB, and make it equal to the given radius. Draw CD parallel to AB, etc.

Prop. 15. With a given radius, describe a circle which shall touch a given line, and have its centre in another given line.

Sol. Let AB, AC be the two given lines; from any point C in

AC draw CD perpendicular to AC, and equal to the given radius; through D draw, etc.

GEOMETRICAL EXERCISES ON BOOK IV.

THEOREMS.

- Prop. 1. If from any point in the diagonal of a parallelogram lines be drawn to the angles, the parallelogram will be divided into two pairs of equivalent triangles. See B. I., Pr. 32, and B. IV., Pr. 2.
- Prop. 2. If the sides of any quadrilateral be bisected, and the points of bisection joined, the included figure will be a parallelogram, and equal in area to half the original figure. See B. IV., Pr. 16.
- *Prop.* 3. Show how the squares in Prop. 11, Book IV., may be dissected, so that the truth of the proposition may be made to appear by superposition of the parts.

Prop. 4. In the figure to Prop. 11, Book IV.,

- (a.) If BG and CH be joined, those lines will be parallel.
- (b.) If perpendiculars be let fall from F and I on BC produced, the parts produced will be equal, and the perpendiculars together will be equal to BC.
- (c.) Join GH, IE, and FD, and prove that each of the triangles so formed is equivalent to the given triangle ABC.
- (d) The sum of the squares of GH, IE, and FD will be equal to six times the square of the hypothenuse.
- *Prop.* 5. The square on the base of an isosceles triangle whose vertical angle is a right angle, is equal to four times the area of the triangle.
- Prop. 6. If from one of the acute angles of a right-angled triangle a straight line be drawn bisecting the opposite side, the square upon that line will be less than the square upon the hypothenuse by three times the square upon half the line bisected.
- **Prop.** 7. In a right-angled triangle, the square on either of the two sides containing the right angle is equal to the rectangle contained by the sum and difference of the other sides.
- Prop. 8. In any triangle, if a perpendicular be drawn from the vertex to the base, the difference of the squares upon the sides is equal to the difference of the squares upon the segments of the base.
 - Prop. 9. The squares of the diagonals of any quadrilateral fig-

ure are together double the squares of the two lines joining the middle points of the opposite sides.

Sol. Compare this Prop. with Prop. 2 above.

Prop. 10. If one side of a right-angled triangle is double the other, the perpendicular from the vertex upon the hypothenuse will divide the hypothenuse into parts which are in the ratio of 1 to 4.

Prop. 11. If two circles intersect, the common chord produced will bisect the common tangent.

Prop. 12. The tangents to a circle at the extremities of any chord contain an angle which is twice the angle contained by the same chord and a diameter drawn from either of the extremities.

Prop. 13. If two circles cut each other, and if from any given point in the straight line produced which joins their intersections two tangents be drawn, one to each circle, they will be equal to one another.

Prop. 14. If from a point without a circle two tangents be drawn, the straight line which joins the point of contact will be bisected at right angles by a line drawn from the centre to the point without the circle.

PROBLEMS.

Prop. 1. Trisect a given straight line, and hence divide an equilateral triangle into nine equal parts.

Sol. On the given line describe an equilateral triangle; bisect two of its angles, and from the point of intersection of the bisecting lines draw lines parallel to the sides of the triangle, etc.

Prop. 2. Inscribe a circle in a given rhombus.

Sol. Draw the diagonals of the rhombus, etc.

Prop. 3. Describe a circle whose circumference shall pass through one angle and touch two sides of a given square.

Sol. Divide the given angle into four equal parts, etc.

Prop. 4. In a given square, inscribe an equilateral triangle having its vertex in the middle of a side of the square.

Sol. From the middle of a side as centre, with a radius equal to one side of the square, describe a circle, etc.

Prop. 5. In a given square, inscribe an equilateral triangle having its vertex in one angle of the square.

Sol. On two adjacent sides of the square, describe equilateral triangles exterior to the square, and join their vertices with the remote vertex of the square, etc.

Prop. 6. If the sides of a triangle are in the ratio of the numbers 2, 4, and 5, show whether it will be acute-angled or obtuse angled.

Prop. 7. Given the area and hypothenuse of a right-angled tri-

angle, to construct the triangle.

Sol. On half the hypothenuse describe a rectangle equal to the given area, etc.

Prop. 8. Bisect a triangle by a line drawn from a given point

in one of the sides.

Sol. Let D be the given point in the side AB, and A the angle nearest to D. Bisect BG in E, and draw AF parallel to DE, etc.

Prop. 9. To a circle of given radius draw two tangents which

shall contain an angle equal to a given angle.

Prop. 10. Construct a triangle, having given one side, the an-

gle opposite to it, and the ratio of the other two sides.

Sol. On the given base BC describe a segment containing the given angle; draw DE perpendicular to BC at its middle point, and cutting the remaining segment in E; divide BC in F in the given ratio; join EF, etc.

Prop. 11. Construct a triangle, having given the perimeter and

the angles of the triangle.

Sol. On the line which is equal to the perimeter of the required triangle describe a triangle having its angles equal to the given angles. Bisect the angles at the base, etc.

Prop. 12. Upon a given base describe a right-angled triangle, having given the perpendicular from the right angle upon the

hypothenuse.

Sol. Draw any straight line, and erect DC perpendicular to it and equal to the given perpendicular. With centre C and radius equal to the given base, describe a circle cutting the first line in B. At C draw, etc.

Prop. 13. Construct a triangle, having given one angle, a side

opposite to it, and the sum of the other two sides.

Sol. On the given side AB describe a segment containing half the given angle, in which segment inscribe AC equal to the given sum. Make the angle CBD equal to BCA, etc.

Prop. 14. Construct a triangle, having given one angle, an ad-

jacent side, and the sum of the other two sides.

Sol. Make BC the given base, B the given angle, and BD equal to the sum of the two sides; make the angle DCA equal to CDA, etc.

Prop. 15. Inscribe a square in a given right-angled isosceles triangle.

Sol. Trisect the hypothenuse, etc.

NUMERICAL EXERCISES.

1. If the base and perpendicular of a triangle be 78 and 43 yards respectively, what is the area? Ans. 1677 square yards.

2. Given the hypothenuse of a right-angled triangle equal to 260 feet, and one of the legs equal to 224 feet, to find the other leg.

Ans. 132 feet.

3. Given the legs of a right-angled triangle equal to 765 and 408 yards respectively, to compute the length of the perpendicular from the right angle to the hypothenuse. Ans. 360 yards.

4. If the sides of a triangle are 845, 910, and 975 respectively, what are the lengths of the segments into which they are severally divided by the perpendiculars from the opposite angles?

5. Given the hypothenuse and one leg of a right-angled triangle equal to 353 and 272, to find the remaining leg without squaring the given numbers.

Ans. 225.

6. If the base of a triangle be 210, and the other sides 135 and 105, what is the length of the straight line drawn from the vertical angle to the point of bisection of the base?

Ans. 60.

7. If two adjacent sides and one of the diagonals of a parallelogram be 245, 315, and 280, what is the length of the other diagonal?

Ans. 490.

8. Given the sides of a triangle equal to 147, 119, and 70 yards respectively, to compute the area.

Ans. 4116 square yards.

9. If a chord of a circular arc 16 inches in length be divided into two parts of 7 and 9 inches respectively by another chord, what is the length of the latter, one of its segments being 3 inches?

Ans. 24 inches.

10. If the chord of an arc be 720 feet, and the chord of its half be 369 feet, what is the diameter of the circle?

Ans. 1681 feet.

11. If from a point without a circle two secants be drawn whose external segments are 8 inches and 7 inches, while the internal segment of the latter is 17 inches, what is the internal segment of the former?

Ans. 13 inches.

12. From a point without a circular pond two tangents to the

circumference are drawn, forming with each other an angle of an equilateral triangle, and the length of each tangent is 18 rods, what is the diameter?

Ans. $12\sqrt{3}=20.7846$ rods.

13. If the sides of a triangle are 39, 42, and 45 inches respectively, what is the radius of the inscribed circle?

Ans. 12 inches.

14. Given the legs of a right-angled triangle equal to 455 and 1092 respectively, to compute the segments into which the hypothenuse is divided by the perpendicular from the right angle, and to compute also the perpendicular.

Ans. The segments are 175 and 1008, and the perpendic-

ular 420.

- 15. If the base of a triangle be 246, and the other sides 250 and 160 respectively, what is the length of the line bisecting the vertical angle?

 Ans. 160.
- 16. If two similar fields together contain 518 square rods, what are their separate contents, their homologous sides being as 5 to 7?

 Ans. 175 and 343 square rods.
- 17. If the sides of a triangle are 104, 112, and 120 respectively, what is the radius of the circumscribed circle?

 Ans. 65.
- 18. If the base of a triangle be 54, and the other sides 75 and 48 respectively, what is the length of the external segment of the base made by a straight line bisecting the exterior angle at the vertex?

 Ans. 96.
- 19. Two chords on opposite sides of the centre of a circle are parallel, and one of them has a length of 48, and the other of 14 inches, the distance between them being 31 inches; what is the diameter of the circle?

 Ans. 50 inches.
- 20. Two parallel chords on the same side of the centre of a circle whose diameter is 50 inches are measured, and found to be the one 48 and the other 14 inches; what is their distance apart?

 Ans. 17 inches.
- 21. The area of a rectangle is 18 square feet, and its base is 4.62 feet; what is its altitude?
- 22. The base of one rectangle is 6 feet and altitude 5 feet; the base of another rectangle is 4 feet and altitude 3 feet; what is the ratio of the two rectangles?

GEOMETRICAL EXERCISES ON BOOK VI.

THEOREMS.

Prop. 1. The square inscribed in a circle is equal to half the square described about the same circle.

Prop. 2. Any number of triangles having the same base and the same vertical angle may be circumscribed by one circle.

Prop. 3. If an equilateral triangle be inscribed in a circle, each of its sides will cut off one fourth part of the diameter drawn through the opposite angle.

Prop. 4. The circle inscribed in an equilateral triangle has the same centre with the circle described about the same triangle,

and the diameter of one is double that of the other.

Prop. 5. If an equilateral triangle be inscribed in a circle, and the arcs cut off by two of its sides be bisected, the line joining the points of bisection will be trisected by the sides.

Prop. 6. The side of an equilateral triangle inscribed in a circle

is to the radius as the square root of 3 is to unity.

Prop. 7. The sum of the perpendiculars let fall from any point within an equilateral triangle upon the sides is equal to the perpendicular let fall from one of the angles upon the opposite side.

Prop. 8. If two circles be described, one without and the other within a right-angled triangle, the sum of their diameters will be

equal to the sum of the sides containing the right angle.

Prop. 9. If a circle be inscribed in a right-angled triangle, the sum of the two sides containing the right angle will exceed the hypothenuse by a line equal to the diameter of the inscribed circle.

Prop. 10. The square inscribed in a semicircle is to the square inscribed in the entire circle as 2 to 5.

Prop. 11. The square inscribed in a semicircle is to the square inscribed in a quadrant of the same circle as 8 to 5.

Prop. 12. The area of an equilateral triangle inscribed in a circle is equal to half that of the regular hexagon inscribed in the same circle.

Prop. 13. The square of the side of an equilateral triangle inscribed in a circle is triple the square of the side of the regular hexagon inscribed in the same circle.

Prop. 14. The area of a regular hexagon inscribed in a circle is three fourths of the regular hexagon circumscribed about the same circle.

Prop. 15. The triangle, square, and hexagon are the only regular polygons by which the angular space about a point can be completely filled up.

PROBLEMS.

Prop. 1. Trisect a given circle by dividing it into three equal sectors.

Prop. 2. The centre of a circle being given, find two opposite points in the circumference by means of a pair of compasses only.

Prop. 3. Divide a right angle into five equal parts.

Prop. 4. Inscribe a square in a given segment of a circle.

Prop. 5. Having given the difference between the diagonal and side of a square, describe the square.

Prop. 6. Inscribe a square in a given quadrant.

Prop. 7. Inscribe a circle in a given quadrant.

Prop. 8. Describe a circle touching three given straight lines.

Prop. 9. Within a given circle describe six equal circles touching each other and also the given circle, and show that the interior circle which touches them all is equal to each of them.

Prop. 10. Within a given circle describe eight equal circles touching each other and the given circle.

Prop. 11. Inscribe a regular hexagon in a given equilateral triangle.

Prop. 12. Upon a given straight line describe a regular octagon.

NUMERICAL EXERCISES.

- 1. What is the circumference of a circle whose diameter is 28?
- 2. What is the diameter of a circle whose circumference is 50?
- 3. What is the area of a circle whose diameter is 19?
- 4. What is the area of a circle whose circumference is 30?
- 5. What is the area of a quadrant of a circle whose radius is 11?
- 6. What is the diameter of a circle whose area is 40?
- 7. What is the circumference of a circle whose area is 35?
- 8. What is the circumference of the earth, supposing it to be a circle whose diameter is 7912 miles?
- 9. What is the circumference of a circle whose area is 27.45 square rods?
- 10. What is the area of a sector whose arc is one sixth of the circumference in a circle whose radius is 17 inches?

GEOMETRY OF SPACE.

BOOK VIL

PLANES AND SOLID ANGLES.

Definitions.

1. A STRAIGHT line is perpendicular to a plane when it is perpendicular to every straight line which it meets in that plane.

Conversely, the plane in this case is perpen-

dicular to the line.

The foot of the perpendicular is the point in which it meets the plane.

2. A straight line is parallel to a plane when it can not meet the plane, though produced ever so far.

Conversely, the plane in this case is parallel to the line.

3. Two planes are parallel to each other when they can not meet, though produced ever so far in every direction.

4. The angle contained by two planes which meet one another

is the angle contained by two lines drawn from any point in the line of their common section, at right angles to that line, one in each of the planes.

This angle may be acute, right, or obtuse.

If it is a right angle, the two planes are perpendicular to each other.

5. A solid angle is the angular space contained by more than two planes which meet at the same point, and not lying in the same plane.

To represent a plane in a diagram, we are obliged to take a limited portion of it; but the planes treated of in this Book are supposed to be indefinite in extent.

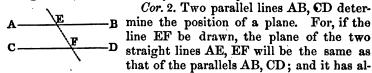
PROPOSITION I. THEOREM.

One part of a straight line can not be in a plane, and another part without it.

For, from the definition of a plane (B. I., Def. 11), when a straight line has two points common with a plane, it lies wholly in that plane.

Scholium. To discover whether a surface is plane, we apply a straight line in different directions to this surface, and see if it touches throughout its whole extent.

PROPOSITION II. THEOREM.

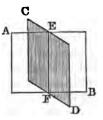

Any two straight lines which cut each other are in one plane, and determine its position.

Let the two straight lines AB, BC cut each other in B; then will AB, BC be in the same plane.

Conceive a plane to pass through the straight line BC, and let this plane be turned about BC until it pass through the point A. Then, because the points A and B are situated in this plane, the straight

cause the points A and B are situated in this plane, the straight line AB lies in it (B. I., Def. 11). Hence the position of the plane is determined by the condition of its containing the two lines AB, BC; for if it is turned in either direction about BC, it will cease to contain the point A. Therefore, any two straight lines, etc.

Cor. 1. A triangle ABC, or three points A, B, C, not in the same straight line, determine the position of a plane.

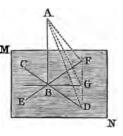


ready been proved that two straight lines which cut each other determine the position of a plane.

PROPOSITION III. THEOREM.

If two planes cut each other, their common section is a straight line.

Let the two planes AB, CD cut each other, and let E, F be two points in their common section. From E to F draw the straight line EF. Then, since the points E and F are in the plane AB, the straight line EF which joins them must lie wholly in that plane (B. I., Def. 11). For the same reason, EF must lie wholly in the plane CD. Therefore the straight line EF is common to the two planes AB, CD; that is, it is their common section. Hence, if two planes, etc.



PROPOSITION IV. THEOREM.

If a straight line be perpendicular to each of two straight lines at their point of intersection, it will be perpendicular to the plans in which these lines are.

Let the straight line AB be perpendicular to each of the straight lines CD, EF which intersect at B; AB will also be perpendicular to the plane MN which passes through these lines.

Through B draw any line BG, in the plane MN; let G be any point of this line, and through G draw DGF, so that DG shall be equal to GF (B. V., Pr. 21). Join AD, AG, and AF.

Then, since the base DF of the triangle DBF is bisected in G, we shall have (B. IV., Pr. 14),

$$BD^2 + BF^2 = 2BG^2 + 2GF^2$$
.

Also, in the triangle DAF,

$$AD^2 + AF^2 = 2AG^2 + 2GF^2$$
.

Subtracting the first equation from the second, we have $AD^2-BD^2+AF^2-BF^2=2AG^2-2BG^2$.

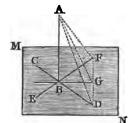
But, because ABD is a right-angled triangle,

$$AD^2-BD^2=AB^2$$
;

and, because ABF is a right-angled triangle,

$$AF^2-BF^2=AB^2.$$

Therefore, substituting these values in the former equation, we have $AB^2+AB^2=2AG^2-2BG^2$;


whence $AB^2=AG^2-BG^2$, or $AG^2=AB^2+BG^2$.

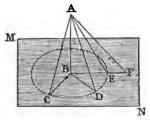
Wherefore ABG is a right angle (B. IV., Pr. 13, Sch.); that is, AB is perpendicular to the straight line BG. In like manner, it

may be proved that AB is perpendicular to any other straight line passing through B in the plane MN; hence it is perpen-

dicular to the plane MN (Def. 1). Therefore, if a straight line, etc.

Scholium. Hence it appears not only that a straight line may be perpendicular to every straight line which passes through its foot in a plane, but that it always must be so whenever it is perpendicular to two lines in the plane, which shows that the first definition involves no impossibility.

Cor. 1. The perpendicular AB is shorter than any oblique line AD; it therefore measures the true distance of the point A from the plane MN.


Cor. 2. Through a given point B in a plane, only one perpendicular can be drawn to this plane. For, if there could be two perpendiculars, suppose a plane to pass In through them, whose intersection with the

plane MN is BG; then these two perpendiculars would both be at right angles to the line BG, at the same point and in the same plane, which is impossible (B. I., Pr. 1).

It is also impossible, from a given point without a plane, to let fall two perpendiculars upon the plane. For, suppose AB, AG to be two such perpendiculars; then the triangle ABG will have two right angles, which is impossible (B. I., Pr. 27, Cor. 3).

PROPOSITION V. THEOREM.

Oblique lines drawn from a point to a plane, at equal distances from the perpendicular, are equal; and of two oblique lines unequally distant from the perpendicular, the more remote is the longer.

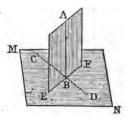
Let the straight line AB be drawn perpendicular to the plane MN; and let AC, AD, AE be oblique lines drawn from the point A, equally distant from the perpendicular; also, let AF be more remote from the perpendicular than AE; then will the lines AC, AD, AE all be equal to each other, and AF be longer than AE.

For, since the angles ABC, ABD, ABE are right angles, and BC, BD, BE are equal, the triangles ABC, ABD, ABE have two sides and the included angle equal; therefore the third sides AC, AD, AE are equal to each other.

So, also, since the distance BF is greater than BE, it is plain that the oblique line AF is longer than AE (B. I., Pr. 17).

Cor. All the equal oblique lines AC, AD, AE, etc., terminate in the circumference CDE, which is described from B, the foot of the perpendicular, as a centre.

If, then, it is required to draw a straight line perpendicular to the plane MN, from a point A without it, take three points in the plane C, D, E, equally distant from A, and find B, the centre of the circle which passes through these points. Join AB, and it will be the perpendicular required.

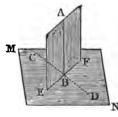

Scholium. The angle AEB is called the inclination of the line AE to the plane MN. All the lines AC, AD, AE, etc., which are equally distant from the perpendicular, have the same inclination to the plane, because all the angles ACB, ADB, AEB, etc., are equal.

PROPOSITION VI. THEOREM.

If a straight line is perpendicular to a plane, every plane which passes through that line is perpendicular to the first-mentioned plane.

Let the straight line AB be perpendicular to the plane MN; then will every plane which passes through AB be perpendicular to the plane MN.

Suppose any plane, as AE, to pass through AB, and let EF be the common section of the planes AE, MN. In the plane MN, through the point B, draw CD perpendicular to the common section EF.


Then, since the line AB is perpendicular to the plane MN, it must be perpendicular to each of the two straight lines CD, EF (Def. 1). But the angle ABD, formed by the two perpendiculars BA, BD, to the common section EF, measures the angle of the two planes AE, MN (Def. 4), and, since this is a right angle, the two planes must be perpendicular to each other. Therefore, if a straight line, etc.

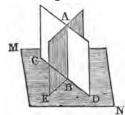
Scholium. When three straight lines, as AB, CD, EF, are perpendicular to each other, each of these lines is perpendicular to the plane of the other two, and the three planes are perpendicular to each other.

PROPOSITION VII. THEOREM.

If two planes are perpendicular to each other, a straight line drawn in one of them perpendicular to their common section will be perpendicular to the other plane.

Let the plane AE be perpendicular to the plane MN, and let the line AB be drawn in the plane AE perpendicular to the common section EF; then will AB be perpendicular to the plane MN.

For in the plane MN, draw CD through the point B perpendicular to EF. Then, because the planes AE and MN are perpendicular, the angle ABD is a right angle. Hence the line AB is perpendicular to the two straight lines CD, EF at their point of intersection; it is consequently perpendicular to their plane MN (Pr. 4). Therefore,


if two planes, etc.

Cor. If the plane AE is perpendicular to the plane MN, and if from any point B, in their common section, we erect a perpendicular to the plane MN, this perpendicular will be in the plane AE.

For if not, then we may draw from the same point a straight line AB in the plane AE perpendicular to EF, and this line, according to the Proposition, will be perpendicular to the plane MN. Therefore there would be two perpendiculars to the plane MN, drawn from the same point, which is impossible (Pr. 4, Cor. 2).

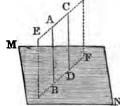
PROPOSITION VIII. THEOREM

If two planes which cut one another are each of them perpendicular to a third plane, their common section is perpendicular to the same plane.

Let the two planes AE, AD be each of them perpendicular to a third plane MN, and let AB be the common section of the first two planes; then will AB be perpendicular to the plane MN.

For, from the point B, erect a perpendicular to the plane MN. Then, by the Corollary of the last Proposition, this line

must be situated both in the plane AD and in the plane AE; hence it is their common section AB. Therefore, if two planes, etc.


PROPOSITION IX. THEOREM.

Two straight lines which are perpendicular to the same plane are parallel to each other.

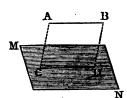
Let the two straight lines AB, CD be each of them perpendicular to the same plane MN; then will AB be parallel to CD.

In the plane MN, draw the straight line BD, joining the points B and D. Through the lines AB, BD pass the plane EF; it will be perpendicular to the plane MN (Pr. 6); M also, the line CD will lie in this plane, because it is perpendicular to MN (Pr. 7, Cor.).

Now, because AB and CD are both perpendicular to the plane MN, they are per-

pendicular to the line BD in that plane; and, since AB, CD are both perpendicular to the same line BD, and lie in the same plane, they are parallel to each other (B. I., Pr. 20). Therefore, two straight lines, etc.

Cor. 1. If one of two parallel lines be perpendicular to a plane, the other will be perpendicular to the same plane. If AB is perpendicular to the plane MN, then (Pr. 6) the plane EF will be perpendicular to MN. Also, AB is perpendicular to BD; and if CD is parallel to AB, it will be perpendicular to BD, and therefore (Pr. 7) it is perpendicular to the plane MN.

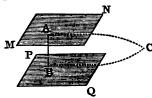

Cor. 2. Two straight lines parallel to the same straight line are parallel to each other. For, suppose a plane to be drawn perpendicular to any one of them; then the other two, being parallel to the first, will be perpendicular to the same plane, by the preceding Corollary; hence, by the Proposition, they will be parallel to each other.

The three straight lines are supposed not to be in the same plane; for in this case the Proposition has been already demonstrated.

PROPOSITION X. THEOREM.

If a straight line, without a given plane, be parallel to a straight line in the plane, it will be parallel to the plane.

Let the straight line AB be parallel to the straight line CD, in the plane MN; then will it be parallel to the plane MN.

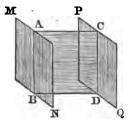


Through the parallels AB, CD suppose a plane ABDC to pass. If the line AB can meet the plane MN, it must meet it in some point of the line CD, which is the common intersection of the two planes. But AB can not meet CD, since they are parallel; hence it can not meet the plane MN; that

is, AB is parallel to the plane MN (Def. 2). Therefore, if a straight line, etc.

PROPOSITION XI. THEOREM.

Two planes which are perpendicular to the same straight line are parallel to each other.


Let the planes MN, PQ be perpendicular to the line AB; then will they be parallel to each other.

For, if they are not parallel, they will meet if produced. Let them be produced and meet in C. Join AC, BC.

Now the line AB, which is perpendicular to the plane MN, is perpendicular to the line AC drawn through its foot in that plane. For the same reason, AB is perpendicular to BC. Therefore CA and CB are two perpendiculars let fall from the same point C upon the same straight line AB, which is impossible (B. I., Pr. 16). Hence the planes MN, PQ can not meet when produced; that is, they are parallel to each other. Therefore two planes, etc.

PROPOSITION XII. THEOREM.

If two parallel planes are cut by a third plane, their common sections with it are parallel.

Let the parallel planes MN, PQ be cut by the plane ABDC, and let their common sections with it be AB, CD; then will AB be parallel to CD.

For the two lines AB, CD are in the same plane, viz., in the plane ABDC which cuts the planes MN, PQ; and if these lines were not parallel, they would meet when produced; therefore the planes MN.

PQ would also meet, which is impossible, because they are parallel. Hence the lines AB, CD are parallel. Therefore, if two parallel planes, etc.

PROPOSITION XIII. THEOREM.

If two planes are parallel, a straight line which is perpendicular to one of them is also perpendicular to the other.

Let the two planes MN, PQ be parallel, and let the straight line AB be perpendicular to the plane MN; AB will also be perpendicular to the plane PQ.

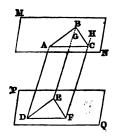
Through the point B draw any line BD in the plane PQ, and through the lines AB, BD suppose a plane to pass intersecting the

plane MN in AC. The two lines AC, BD will be parallel (Pr. 12). But the line AB, being perpendicular to the plane MN, is perpendicular to the straight line AC, which meets it in that plane; it must, therefore, be perpendicular to its parallel BD (B. I., Pr. 23, Cor. 1). But BD is any line drawn through B in the plane PQ; and, since AB is perpendicular to any line drawn through its foot in the plane PQ, it must be perpendicular to the plane PQ (Def. 1). Therefore, if two planes, etc.

PROPOSITION XIV. THEOREM.

Parallel straight lines included between two parallel planes are equal.

Let AB, CD be two parallel straight lines included between two parallel planes MN, PQ; then will AB be equal to CD.


Through the two parallel lines AB, CD, suppose a plane ABDC to pass, intersecting the parallel planes in AC and BD. The lines AC, BD will be parallel to each other

(Pr. 12). But AB is, by supposition, parallel to CD; therefore the figure ABDC is a parallelogram, and, consequently, AB is equal to CD (B. I., Pr. 30). Therefore parallel straight lines, etc.

Cor, Hence two parallel planes are every where equally distant; for if AB, CD are perpendicular to the plane MN, they will be perpendicular to the parallel plane PQ (Pr. 13), and, being both perpendicular to the same plane, they will be parallel to each other (Pr. 9), and consequently equal.

PROPOSITION XV. THEOREM.

If two angles not in the same plane have their sides parallel to each other and similarly situated, these angles will be equal, and their planes will be parallel.

Let the two angles ABC, DEF, lying in different planes MN, PQ, have their sides parallel each to each and similarly situated; then will the angle ABC be equal to the angle DEF, and the plane MN be parallel to the plane PQ.

Take AB equal to DE, and BC equal to EF, and join AD, BE, CF, AC, DF. Then, because AB is equal and parallel to DE, the figure ABED is a parallelogram (B. I., Pr.

32), and AD is equal and parallel to BE.

For the same reason, CF is equal and parallel to BE. Consequently, AD and CF, being each of them equal and parallel to BE, are parallel to each other (Pr. 9, Cor. 2), and also equal; therefore AC is also equal and parallel to DF (B. I., Pr. 32). Hence the triangles ABC, DEF are mutually equilateral, and the angle ABC is equal to the angle DEF (B. I., Pr. 15).

Also, the plane ABC is parallel to the plane DEF. For, if they are not parallel, suppose a plane to pass through A parallel to DEF, and let it meet the straight lines BE, CF in the points G and H. Then the three lines AD, GE, HF will be equal (Pr. 14). But the three lines AD, BE, CF have already been proved to be equal; hence BE is equal to GE, and CF is equal to HF, which is absurd; consequently, the plane ABC must be parallel to the plane DEF. Therefore, if two angles, etc.

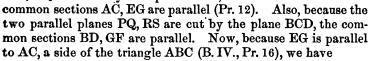
Cor. 1. If two parallel planes MN, PQ are met by two other planes ABED, BCFE, the angles formed by the intersections of the parallel planes will be equal. For the section AB is parallel to the section DE (Pr. 12), and BC is parallel to EF; therefore, by the Proposition, the angle ABC is equal to the angle DEF.

Cor. 2. If three straight lines AD, BE, CF, not situated in the same plane, are equal and parallel, the triangles ABC, DEF, formed by joining the extremities of these lines, will be equal, and their planes will be parallel.

For, since AD is equal and parallel to BE, the figure ABED is a parallelogram; hence the side AB is equal and parallel to DE.

For the same reason, the sides BC and EF are equal and parallel, as also the sides AC and DF. Consequently, the two triangles ABC, DEF are equal, and, according to the Proposition, their planes are parallel.

PROPOSITION XVI. THEOREM,


If two straight lines are cut by three parallel planes, their corresponding segments are proportional.

Let the straight lines AB, CD be cut by My the parallel planes MN, PQ, RS in the points A, E, B, C, F, D; then we shall have the proportion

AE:EB::CF:FD.

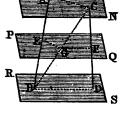
Draw the line BC meeting the plane PQ in G, and join AC, BD, EG, GF.

Then, because the two parallel planes MN, PQ are cut by the plane ABC, the

AE: EB:: CG: GB.

Also, because GF is parallel to BD, one side of the triangle BCD, we have CG: GB:: CF: FD; hence (B. II., Pr. 4) AE: EB:: CF: FD.

Therefore, if two straight lines, etc.

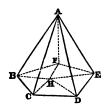

PROPOSITION XVII. THEOREM.

If a solid angle is contained by three plane angles, the sum of any two of these angles is greater than the third.

Let the solid angle at A be contained by the three plane angles BAC, CAD, DAB; any two of these angles will be greater than the third.

If these three angles are all equal to each other, it is plain that any two of them must be greater than the third.

But if they are not equal, let BAC be that angle which is not less than either of the other two, and is greater than one of them, BAD. Then, at the point A, make the angle BAE equal to the angle BAD; take AE equal to AD; through E draw


the line BEC, cutting AB, AC in the points B and C, and join DB, DC.

Now, because, in the two triangles BAD, BAE, AD is equal to AE, AB is common to both, and the angle BAD is equal to the angle BAE; therefore the base BD is equal to the base BE (B. I., Pr. 6). Also, because the sum of the lines BD, DC is greater than BC (B. I., Pr. 8), and BD is proved equal to BE, a part of BC, therefore the remaining line DC is greater than EC.

Now, in the two triangles CAD, CAE, because AD is equal to AE, AC is common; but the base CD is greater than the base CE, therefore the angle CAD is greater than the angle CAE (B. I., Pr. 14). But, by construction, the angle BAD is equal to the angle BAE; therefore the two angles BAD, CAD are together greater than BAE, CAE, that is, than the angle BAC. Now BAC is not less than either of the angles BAD, CAD; hence BAC, with either of them, is greater than the third. Therefore, if a solid angle, etc.

PROPOSITION XVIII. THEOREM.

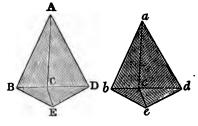
The plane angles which contain any solid angle are together less than four right angles.

Let A be a solid angle contained by any number of plane angles BAC, CAD, DAE, EAF, FAB; these angles are together less than four right angles.

Let the planes which contain the solid angle at A be cut by another plane, forming the polygon BCDEF, and from any point H within this polygon draw the lines HB, HC, HD,

HE, HF.

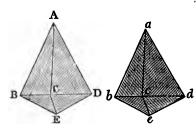
Now, because the solid angle at B is contained by three plane angles, any two of which are greater than the third (Pr. 17), the two angles ABC, ABF are greater than the angle FBC. For the same reason, the two angles ACB, ACD are greater than the angle BCD, and so with the other angles of the polygon BCDEF. Hence the sum of all the angles at the bases of the triangles having the common vertex A is greater than the sum of all the angles at the bases of the triangles whose vertex is H. But the sum of all the angles of the triangles whose vertex is A is equal to the sum of the angles of the same number of triangles whose vertex is H. Therefore the sum of the angles at A is less than


the sum of the angles at H; that is, less than four right angles. Therefore the plane angles, etc.

Scholium. This demonstration supposes that the solid angle is convex; that is, that the plane of neither of the faces, if produced, would cut the solid angle. If it were otherwise, the sum of the plane angles would no longer be limited, and might be of any magnitude.

PROPOSITION XIX. THEOREM.

If two solid angles are contained by three plane angles which are equal each to each, the planes of the equal angles will be equally inclined to each other.


Let A and a be two solid angles contained by three plane angles which are equal each to each, viz., the angle BAC equal to bac, the angle CAD to cad, and BAD equal to bad; then will the inclination of the planes ABC, ABD be equal to the inclination of the planes abc, abd.

In the line AC, the common section of the planes ABC, ACD, take any point C, and through C let a plane BCE pass perpendicular to AB, and another plane CDE perpendicular to AD. Also, take ac equal to AC, and through c let a plane bce pass perpendicular to ab, and another plane cde perpendicular to ad.

Now, since the line AB is perpendicular to the plane BCE, it is perpendicular to every straight line which it meets in that plane; hence ABC and ABE are right angles. For the same reason, abc and abe are right angles. Now, in the triangles ABC, abc, the angle BAC is, by hypothesis, equal to bac, and the angles ABC, abc are right angles; therefore the angles ACB, acb are equal. But the side AC was made equal to the side ac; hence the two triangles are equal (B. I., Pr. 7); that is, the side AB is equal to ab, and BC to bc. In the same manner, it may be proved that AD is equal to ad, and CD to cd.

We can now prove that the quadrilateral ABED is equal to the quadrilateral abed. For, let the angle BAD be placed upon the equal angle bad, then the point B will fall upon the point b, and the point D upon the point d; because AB is equal to ab, and AD to ad. At the same time, BE, which is perpendicular to

AB, will fall upon be, which is perpendicular to ab; and, for a similar reason, DE will fall upon de. Hence the point E will fall upon e, and we shall have BE equal to be, and DE equal to de.

Now, since the plane BCE is perpendicular to the line AB, it

is perpendicular to the plane ABD which passes through AB (Pr. 6). For the same reason, CDE is perpendicular to the same plane; hence CE, their common section, is perpendicular to the plane ABD (Pr. 8).

In the same manner, it may be proved that ce is perpendicular to the plane abd. Now, in the triangles BCE, bce, the angles BEC, bec are right angles, the hypothenuse BC is equal to the hypothenuse bc, and the side BE is equal to be; hence the two triangles are equal, and the angle CBE is equal to the angle cbe. But the angle CBE is the inclination of the planes ABC, ABD (Def. 4), and the angle cbe is the inclination of the planes abc, abd; hence these planes are equally inclined to each other. Therefore, if two solid angles, etc.

Scholium 1. The angle CBE is not, properly speaking, the inclination of the planes ABC, ABD, except when the perpendicular CE falls upon the same side of AB as AD does. If it fall upon the other side of AB, then the angle between the two planes will be obtuse, and this angle, together with the angle B of the triangle CBE, will make two right angles. But in this case, the angle between the two planes abc, abd will also be obtuse, and this angle, together with the angle b of the triangle cbe, will also make two right angles. And, since the angle B is always equal to the angle b, the inclination of the two planes ABC, ABD will always be equal to that of the planes abc, abd.

Scholium 2. If two solid angles are contained by three plane angles which are equal each to each, and similarly situated, the angles will be equal, and will coincide when applied the one to the other.

For we have proved that the quadrilateral ABED will coincide with its equal abed. Now, because the triangle BCE is equal to the triangle bce, the line CE, which is perpendicular to the plane ABED, is equal to the line ce, which is perpendicular

to the plane abed. And, since only one perpendicular can be drawn to a plane from the same point (Pr. 4, Cor. 2), the lines CE, ce must coincide with each other, and the point C coincide with the point c. Hence the two solid angles must coincide throughout.

It should, however, be observed, that the two solid angles do not admit of superposition unless the three equal plane angles are similarly situated in both cases. For if the perpendiculars CE, ce lay on opposite sides of the planes ABED, abed, the two solid angles could not be made to coincide. Nevertheless, the Proposition will always hold true, that the planes containing the equal angles are equally inclined to each other.

BOOK VIII.

POLYEDRONS.

Definitions.

- 1. A polyedron is a geometrical solid bounded by planes. The polygons formed by the mutual intersection of the bounding planes are called the faces of the polyedron.
- 2. The least number of planes that can form a polyedron is four, for it requires at least three planes to form a solid angle, and it requires a fourth plane to inclose a finite portion of space, or to form a solid. A polyedron of four faces is called a tetraedron; one of six faces a hexaedron; one of eight faces an octaedron; one of twelve faces a dodecaedron; and one of twenty faces an icosaedron.
- 3. The common intersection of two adjacent faces of a polyedron is called an *edge* of the polyedron. A *diagonal* of a polyedron is a straight line which joins any two of its vertices not lying in the same face.
- 4. Similar polyedrons are such as have all their solid angles equal each to each, and are contained by the same number of similar polygons similarly placed.
- 5. A regular polyedron is one whose solid angles are all equal to each other, and whose faces are all equal and regular polygons.
 - 6. A prism is a polyedron having two faces which are equal and parallel polygons, and the others are parallelograms. The equal and parallel polygons are called the bases of the prism; the other faces, taken together, form its lateral or convex surface. The intersections of the lateral faces are called the lateral edges of the prism. The altitude of a prism is the perpendicular distance between the planes of its bases.
 - 7. A right prism is one whose lateral edges are all perpendicular to the planes of its bases. An oblique prism is one whose lateral edges are oblique to the planes of its bases.
 - 8. A prism is triangular, quadrangular, pentagonal, hexagonal, etc., according as its base is a triangle, a quadrilateral, a pentagon, a hexagon, etc.

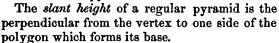
9. A parallelopiped is a prism whose bases are parallelograms. It is therefore a polyedron, all of whose faces are parallelograms.

10. A right parallelopiped is a parallelopiped whose lateral edges are perpendicular to the planes of its bases. Hence its lateral faces are all rectangles, but its bases may be either rhomboids or rectangles.

A rectangular parallelopiped is a right parallelopiped whose bases are rectangles. Hence it is a parallelopiped all of whose faces are rectangles.

11. A cube is a rectangular parallelopiped whose

six faces are all squares.


12. A pyramid is a polyedron bounded by a polygon called its base, and three or more triangles meeting in a point without the polygon called the vertex of the pyramid. The triangular faces taken together constitute its lateral or convex surface.

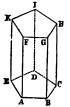
13. The altitude of a pyramid is the perpendicular let fall from the vertex upon the plane of the

base produced, if necessary.

14. A triangular pyramid is one whose base is a triangle; a quadrangular pyramid is one whose base is a quadrilateral, etc. A triangular pyramid is a tetrae dron, and any one of its faces may be taken as its base.

15. A regular pyramid is one whose base is a regular polygon, and the perpendicular drawn from its vertex to its base passes through the centre of the base. This perpendicular is called the axis of the pyramid.

16. A frustum of a pyramid is a portion of the pyramid included between its base and a section made by a plane parallel to the base. The altitude of a frustum is the perpendicular dis-

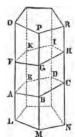

tance between the two parallel planes.

17. The volume of a polyedron is the numerical measure of its magnitude, referred to some other polyedron as the unit. The polyedron adopted as the unit is called the unit of volume.

PROPOSITION I. THEOREM.

The lateral surface of a right prism is equal to the product of the perimeter of its base by its altitude.

Let ABCDE-K be a right prism; then will its lateral surface be equal to the perimeter of its base (viz., AB+BC+CD+DE+EA) multiplied by its altitude AF.


For the lateral surface of the prism is equal to the sum of the parallelograms AG, BH, CI, etc. Now the area of the parallelogram AG is measured by the product of its base AB by its altitude AF (B. IV., Pr.

4, Sch.). The area of the parallelogram BH is measured by BC ×BG; the area of CI is measured by CD×CH, and so of the others. But the lines AF, BG, CH, etc., are all equal to each other (B. VII., Pr. 14), and each is equal to the altitude of the prism. Also, the lines AB, BC, CD, etc., taken together, form the perimeter of the base of the prism. Therefore the sum of these parallelograms, or the lateral surface of the prism, is equal to the product of the perimeter of its base by its altitude.

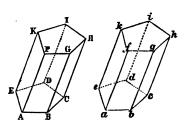
Cor. If two right prisms have the same altitude, their convex surfaces will be to each other as the perimeters of their bases.

PROPOSITION II. THEOREM.

Sections of a prism made by parallel planes are equal polygons.

Let the prism LR be cut by the parallel planes AC, FH; then will the sections ABCDE, FGHIK be equal polygons.

Since AB and FG are the intersections of two parallel planes, with a third plane LMPO, they are parallel. The lines AF, BG are also parallel, being edges of the prism; therefore ABGF is a parallelogram, and AB is equal to FG. For the same reason, BC is equal and parallel to GH, CD to IH, DE to IK, and AE to FK.


Because the sides of the angle ABC are parallel to those of FGH, and are similarly situated, the angle ABC is equal to FGH (B. VII., Pr. 15). In like manner, it may be proved that the angle BCD is equal to the angle GHI, and so of the rest. Therefore the polygons ABCDE, FGHIK being mutually equilateral, and also mutually equiangular, are equal.

Cor. Any section of a prism made by a plane parallel to the base is equal to the base.

PROPOSITION III. THEOREM.

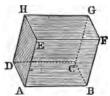
Two prisms are equal when they have a solid angle contained by three faces which are equal each to each, and similarly situated.

Let AI, ai be two prisms having the faces which contain the solid angle B equal to the faces which contain the solid angle b; viz., the base ABCDE to the base abcde, the parallelogram AG to the parallelogram BH to the parallelogram bh; then will the prism AI be equal to the prism ai.

Let the prism AI be applied to the prism ai, so that the equal bases AD and ad may coincide, the point A falling upon a, B upon b, and so on.

And because the three plane angles which contain the solid angle B are equal to the three plane angles which contain the solid angle b, and these planes are similarly situated, the solid angles B and b are equal (B. VII., Pr. 19, Sch. 2). Hence the edge BG will coincide with its equal bg, and the point G will coincide with the point g.

Now, because the parallelograms AG and ag are equal, the side GF will fall upon its equal gf; and, for the same reason, GH will fall upon gh. Hence the plane of the base FGHIK will coincide with the plane of the base fghik (B. VII., Pr. 2). But, since the upper bases are equal to their corresponding lower bases, they are equal to each other; therefore the base FI will coincide throughout with fi; viz., HI with hi, IK with ik, and KF with kf; hence the lateral faces of the two prisms will coincide each with each, and the prisms coincide throughout, and are equal to each other. Therefore, two prisms, etc.

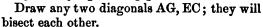

Cor. Two right prisms, which have equal bases and equal altitudes, are equal.

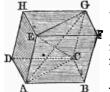
For, since the side AB is equal to ab, and the altitude BG to bg, the rectangle ABGF is equal to the rectangle abgf. So, also, the rectangle BGHC is equal to the rectangle bghc; hence the three faces which contain the solid angle B are equal to the three

faces which contain the solid angle b; consequently the two prisms are equal.

PROPOSITION IV. THEOREM.

The opposite faces of a parallelopiped are equal and parallel.


Let ABGH be a parallelopiped; then will its opposite faces be equal and parallel.


From the definition of a parallelopiped (Def. 9), the bases AC, EG are equal and parallel; and it remains to be proved that the same is true of any two opposite faces, as AH, BG.

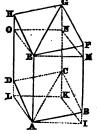
Now, because AC is a parallelogram, the side AD is equal and parallel to BC. For the same reason, AE is equal and parallel to BF; hence the angle DAE is equal to the angle CBF (B.VII., Pr. 15), and the plane DAE is parallel to the plane CBF. Therefore also the parallelogram AH is equal to the parallelogram BG. In the same manner, it may be proved that the opposite faces AF and DG are equal and parallel. Therefore, the opposite faces, etc.

Cor. 1. Since a parallelopiped is a solid contained by six faces, of which the opposite ones are equal and parallel, any face may be assumed as the base of a parallelopiped.

Cor. 2. The four diagonals of a parallelopiped bisect each other.

Since AE is equal and parallel to CG, the figure AEGC is a parallelogram, and therefore the diagonals AG, EC bisect each other (B. I., Pr. 33). In the same manner, it may be proved that the two diagonals BH and DF bi-

sect each other; and hence the four diagonals mutually bisect each other in a point which may be regarded as the centre of the parallelopiped.


PROPOSITION V. THEOREM.

If a parallelopiped be cut by a plane passing through the diagonals of two opposite faces, it will be divided into two equivalent triangular prisms.

Let AG be a parallelopiped, and AC, EG the diagonals of the opposite parallelograms BD, FH. Now, because AE, CG are

each of them parallel to BF, they are parallel to each other; therefore the diagonals AC, EG are in the same plane with AE, CG; and the plane AEGC divides the solid AG into two equivalent prisms.

Through the vertices A and E draw the planes AIKL, EMNO perpendicular to AE, meeting the other edges of the parallelopiped in the points I, K, L, and in M, N, O. The sections AIKL, EMNO are equal, because they are formed by

planes perpendicular to the same straight line, and consequently parallel (Pr. 2). They are also parallelograms, because AI, KL, two opposite sides of the same section, are the intersections of two parallel planes ABFE, DCGH, by the same plane.

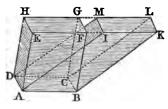
For the same reason, the figure ALOE is a parallelogram; so, also, are AIME, IKNM, KLON, the other lateral faces of the solid AIKL-EMNO; hence this solid is a prism (Def. 6); and it is a right prism, because AE is perpendicular to the plane of its base. But the right prism AN is divided into two equal prisms ALK-N, AIK-N; for the bases of these prisms are equal, being halves of the same parallelogram AIKL, and they have the common altitude AE; they are therefore equal (Pr. 3, Cor.).

Now, because AEHD, AEOL are parallelograms, the sides DH, LO, being equal to AE, are equal to each other. Take away the common part DO, and we have DL equal to HO. For the same reason, CK is equal to GN.

Conceive now that ENO, the base of the solid ENGHO, is placed on AKL, the base of the solid AKCDL; then, the point O falling on L, and N on K, the lines HO, GN will coincide with their equals DL, CK, because they are perpendiculars to the same plane. Hence the two solids coincide throughout, and are equal to each other. To each of these equals add the solid ADC-N; then will the oblique prism ADC-G be equivalent to the right prism ALK-N.

In the same manner, it may be proved that the oblique prism ABC-G is equivalent to the right prism AIK-N. But the two right prisms have been proved to be equal; hence the two oblique prisms ADC-G, ABC-G are equivalent to each other. Therefore, if a parallelopiped, etc.

Cor. Every triangular prism is half of a parallelopiped having the same solid angle, and the same edges AB, BC, BF.


Scholium. The triangular prisms into which the oblique parallelopiped is divided can not be made to coincide, because the plane angles about the corresponding solid angles are not similarly situated.

PROPOSITION VI. THEOREM

Parallelopipeds upon the same base and of the same altitude are equivalent.

Case first. When their upper bases are between the same parallel lines.


Let the parallelopipeds AG, AL have the base AC common, and let their opposite bases EG, IL be in the same plane, and between the same parallels EK, HL; then will the solid AG be equivalent to the solid AL.

Because AF, AK are parallelograms, EF and IK are each equal to AB, and therefore equal to each other. Hence, if EF and IK be taken away from the same line EK, the remainders EI and FK will be equal. Therefore the triangle AEI is equal to the triangle BFK.

Also, the parallelogram EM is equal to the parallelogram FL, and AH to BG. Hence the solid angles at E and F are contained by three faces which are equal to each other and similarly situated; therefore the prism AEI-M is equal to the prism BFK-L (Pr. 3).

Now if from the whole solid AL we take the prism AEI-M, there will remain the parallelopiped AL; and if from the same solid AL we take the prism BFK-L, there will remain the paral-

Case second. When their upper bases are not between the same parallel lines.

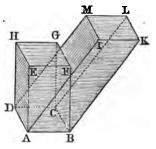
Let the parallelopipeds AG, AL have the same base AC and the same altitude; then will their opposite bases EG, IL be in the same plane. Also, since the sides EF and

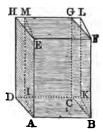
IK are equal and parallel to AB, they are equal and parallel to each other. For the same reason, FG is equal and parallel to KL.

Produce the sides EH, FG, as also IK, LM, and let them meet in the points N, O, P, Q; the figure NOPQ is a parallelogram equal to each of the bases EG, IL; and, consequently, equal to ABCD, and parallel to it.

Conceive now a third parallelopiped AP, having AC for its lower base, and NP for its upper base. The solid AP will be equivalent to the solid AG by the first Case, because they have the same lower base, and their upper bases are in the same plane and between the same parallels, EQ, FP. For the same reason, the solid AP is equivalent to the solid AL; hence the solid AG is equivalent to the solid AL. Therefore parallelopipeds, etc.

PROPOSITION VIL. THEOREM.

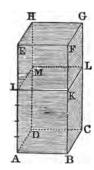

Any parallelopiped is equivalent to a rectangular parallelopiped having the same altitude and an equivalent base.


Let AL be any parallelopiped; it is equivalent to a right parallelopiped having the same altitude and an equivalent base.

From the points A, B, C, D draw AE, BF, CG, DH perpendicular to the plane of the lower base, meeting the plane of the upper base in the points E, F, G, H. Join EF, FG, GH, HE; there will thus be formed the parallelopiped AG, equivalent to AL (Pr. 6); and its lateral faces AF, BG, CH, DE are rectangles.

If the base ABCD is also a rectangle, AG will be a rectangular parallelopiped, and it is equivalent to the parallelopiped AL.

But if ABCD is not a rectangle, from A and B draw AI, BK perpendicular to CD, and from E and F draw EM, FL perpendicular to GH, and join IM, KL. The solid ABKI-M will be a rectangular parallelopiped. For, by construction, the bases ABKI and EFLM are rectangles; so, also, are the lateral faces, because the edges AE, BF, KL, IM are perpendicular to the plane of the base. Therefore the solid AL



is a rectangular parallelopiped. But the two parallelopipeds AG, AL may be regarded as having the same base AF, and the same altitude AI; they are therefore equivalent. But the parallelopiped AG is equivalent to the first supposed parallelopiped; hence this parallelopiped is equivalent to the rectangular parallelopiped AL, having the same altitude, and an equivalent base. Therefore any parallelopiped etc.

PROPOSITION VIII. THEOREM

Two rectangular parallelopipeds having the same base are to each other as their altitudes.

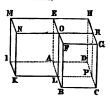
Let AG, AL be two rectangular parallelopipeds having the same base ABCD; then will they be to each other as their altitudes AE, AL

Case first. When the altitudes are in the ratio of two whole numbers.

Suppose the altitudes AE, AI are in the ratio of two whole numbers; for example, as seven to four. Divide AE into seven equal parts; AI will contain four of those parts. Through the several points of division let planes be drawn parallel to the base; these planes will divide the solid AG into seven small parallelopipeds, all

equal to each other, having equal bases and equal altitudes. The bases are equal, because every section of a prism parallel to the base is equal to the base (Pr. 2, Cor.); the altitudes are equal, for these altitudes are the equal divisions of the edge AE. But of these seven equal parallelopipeds, AL contains four; hence the solid AG is to the solid AL as seven to four, or as the altitude AE is to the altitude AI.

Case second. When the altitudes are not in the ratio of two whole numbers; that is, are incommensurable, the demonstration will be similar to that given in B. III., Pr. 14. Therefore two rectangular parallelopipeds, etc.


PROPOSITION IX. THEOREM.

Two rectangular parallelopipeds having the same altitude are to each other as their bases.

Let AG, AN be two rectangular parallelopipieds having the same altitude AE; then will they be to each other as their bases; that is,

solid AG: solid AN:: base ABCD: base AIKL.

Place the two solids so that their surfaces may have the common angle BAE; produce the plane LKNO till it meets the plane DCGH in the line PR; a third parallelopiped AR will thus be formed, which may be compared with each of the parallelopipeds AG, AN.

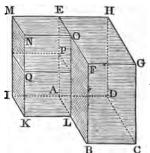
The two solids AG, AR, having the same

base AEHD, are to each other as their altitudes AB, AL (Pr. 8); and the two solids AR, AN, having the same base ALOE, are to each other as their altitudes AD, AL. Hence we have the two proportions solid AG: solid AR:: AB: AL;

solid AR: solid AN:: AD: AI.

Hence (B. II., Pr. 12, Cor.)

solid AG: solid AN:: AB × AD: AL × AI.

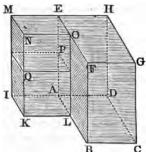

But AB × AD is the measure of the base ABCD (B. IV., Pr. 4, Sch.); and AL × AI is the measure of the base AIKL; hence solid AG: solid AN:: base ABCD: base AIKL.

Therefore two rectangular parallelopipeds, etc.

PROPOSITION X. THEOREM.

Any two rectangular parallelopipeds are to each other as the products of their bases by their altitudes.

Let AG, AQ be two rectangular parallelopipeds, of which the bases are the rectangles ABCD, AIKL, and the altitudes the perpendiculars AE, AP; then will the solid AG be to the solid AQ as the product of ABCD by AE is to the product of AIKL by AP.


Place the two solids so that their surfaces may have the common angle BAE; produce the planes necessary to form the third parallelopiped AN,

having the same base with AQ, and the same altitude with AG. Then, by the last Proposition, we shall have

solid AG: solid AN:: ABCD: AIKL.

But the two parallelopipeds AN, AQ, having the same base AIKL, are to each other as their altitudes AE, AP (Pr. 8); hence we have solid AN: solid AQ:: AE: AP.

Comparing these two proportions (B. II., Pr. 12, Cor.), we have

solid AG: solid AQ:: ABCD × AE: AIKL × AP.

If, instead of the base ABCD, we put its equal AB × AD, and instead of AIKL, we put its equal AI × AL, we shall have

solid AG: solid AQ:: AB × AD × AE: AI × AL × AP.

Therefore any two rectangular parallelopipeds, etc.

B C Scholium. Hence a rectangular parallelopiped is measured by the product of its base and altitude.

or the product of its three dimensions.

It should be remembered that, by the product of two or more lines, we understand the product of the numbers which represent those lines; and these numbers depend upon the linear unit employed, which may be assumed at pleasure. If we take a foot as the unit of measure, then the number of feet in the length of the base, multiplied by the number of feet in its breadth, will give the number of square feet in the base. If we multiply this product by the number of feet in the altitude, it will give the number of cubic feet in the parallelopiped. If we take an inch as the unit of measure, we shall obtain in the same manner the number of cubic inches in the parallelopiped.

PROPOSITION XI. THEOREM.

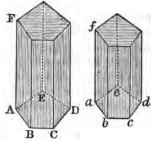
The volume of a prism is measured by the product of its base by its altitude.

For any parallelopiped is equivalent to a rectangular parallelopiped, having the same altitude and an equivalent base (Pr. 7). But the volume of the latter is measured by the product of its base by its altitude; therefore the volume of the former is also measured by the product of its base by its altitude.

Now a triangular prism is half of a parallelopiped having the same altitude and a double base (Pr. 5). But the volume of the latter is measured by the product of its base by its altitude; hence a triangular prism is measured by the product of its base by its altitude.

But any prism can be divided into as many triangular prisms of the same altitude as there are triangles in the polygon which forms its base.

Also, the volume of each of these triangular prisms is measured by the product of its base by its altitude; and, since they all have the same altitude, the sum of these prisms will be measured by the sum of the triangles which form the bases, multiplied by the common altitude. Therefore the volume of any prism is measured by the product of its base by its altitude.


Cor. If two prisms have equal altitudes, the products of the bases by the altitudes will be as the bases (B. II., Pr. 10); hence prisms having equal altitudes are to each other as their bases. For the same reason, prisms having equivalent bases are to each other as their altitudes; and any two prisms are to each other as the products of their bases and altitudes.

PROPOSITION XII. THEOREM.

Similar prisms are to each other as the cubes of their homologous edges.

Let ABCDE-F, abcde-f be two similar prisms; then will the prism AD-F be to the prism ad-f as AB² to ab³, or as AF² to af³.

For the solids are to each other as the products of their bases and altitudes (Pr. 11, Cor.); that is, as ABCDE × AF to $abcde \times af$. But, since the prisms are similar, the bases are similar figures, and are to each other as

the squares of their homologous sides; that is, as AB² to ab^2 . Therefore we have

solid FD: solid $fd::AB^2 \times AF: ab^2 \times af$.

But, since BF and bf are similar figures, their homologous sides are proportional; that is,

AB:ab::AF:af;

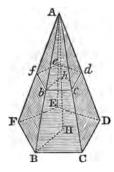
whence (B. II., Pr. 11)

 $AB^2: ab^2:: AF^2: af^2.$

Also, AF: af: AF: af.

Therefore (B. II., Pr. 12),

 $AB^2 \times AF: ab^2 \times af:: AF^3: af^3:: AB^3: ab^3$.


Hence (B. II., Pr. 4) we have

solid FD: solid fd:: AB3: ab3:: AF3: af3.

Therefore similar prisms, etc.

PROPOSITION XIII. THEOREM.

If a pyramid be cut by a plane parallel to its base, 1st. The edges and the altitude will be divided proportionally. 2d. The section will be a polygon similar to the base.

Let A-BCDEF be a pyramid cut by a plane bcdef parallel to its base, and let AH be its altitude; then will the edges AB, AC, AD, etc., with the altitude AH, be divided proportionally in b, c, d, e, f, h, and the section bcdef will be similar to BCDEF.

First. Since the planes FBC, fbc are parallel, their sections FB, fb, with a third plane AFB, are parallel (B. VII., Pr. 12); therefore the triangles AFB, Afb are similar, and we have the proportion

AF: Af:: AB: Ab.

For the same reason, AB:Ab::AC:Ac,

and so for the other edges. Therefore the edges AB, AC, etc., are cut proportionally in b, c, etc. Also, since BH and bh are parallel, we have AH:Ah:Ab:Ab.

Secondly. Because fb is parallel to FB, bc to BC, cd to CD, etc., the angle fbc is equal to FBC (B. VII., Pr. 15), the angle bcd is equal to BCD, and so on. Moreover, since the triangles AFB,

Afb are similar, we have FB:fb::AB:Ab.

And because the triangles ABC, Abc are similar, we have

AB:Ab::BC:bc.

Therefore, by equality of ratios (B. II., Pr. 4),

FB:fb::BC:bc.

For the same reason,

BC:bc::CD:cd, and so on.

Therefore the polygons BCDEF, bcdef have their angles equal each to each, and their homologous sides proportional; hence they are similar. Therefore, if a pyramid, etc.

Cor. 1. If two pyramids having the same altitude, and their bases situated in the same plane, are cut by a plane parallel to their bases, the sections will be to each other as the bases.

Let A-BCDEF, A-MNO be two pyramids having the same altitude, and their bases situated in the same plane; if these pyramids are cut by a plane parallel to the bases, the sections bcdef, mno will be to each other as the bases BCDEF, MNO.

For, since the polygons BC DEF, bcdef are similar, their surfaces are as the squares of the homologous sides BC, bc (B. IV., Pr. 27). But, by the preceding Proposition,

BC: bc:: AB: Ab.

Therefore

BCDEF: bcdef:: AB^2 : Ab^2 .

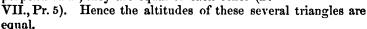
For the same reason,

 $MNO: mno::AM^2:Am^2$.

But, since bedef and mno are in the same plane, we have

AB: Ab:: AM: Am (B. VII., Pr. 16); consequently, BCDEF: bcdef:: MNO: mno.

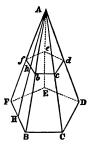
Cor. 2. If the bases BCDEF, MNO are equivalent, the sections bedef, mno will also be equivalent.


B

PROPOSITION XIV. THEOREM.

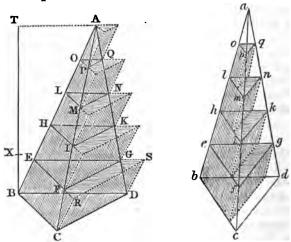
The lateral surface of a regular pyramid is equal to the product of the perimeter of its base by half its slant height.


Let A-BDE be a regular pyramid whose base is the polygon BCDEF, and its slant height AH; then will its lateral surface be equal to the perimeter BC+CD+DE, etc., multiplied by half of AH.


The triangles AFB, ABC, ACD, etc., are all equal, for the sides FB, BC, CD, etc., are all equal (Def. 15); and, since the oblique lines AF, AB, AC, etc., are all at equal distances from the perpendicular, they are equal to each other (B.

But the area of the triangle AFB is equal to FB multiplied by half of AH; and the same is true of the other triangles ABC, ACD, etc. Hence the sum of the triangles is equal to the sum of the bases FB, BC, CD, DE, EF multiplied by half the common altitude AH; that is, the lateral surface of the pyramid is equal to the perimeter of its base multiplied by half the slant height.

Cor. 1. The lateral surface of a frustum of a regular pyramid is equal to the sum of the perimeters of its two bases multiplied by half its slant height.



Each side of a frustum of a regular pyramid, as FBbf, is a trapezoid (Pr. 13). Now the area of this trapezoid is equal to the sum of its parallel sides FB, fb, multiplied by half its altitude Hh (B. IV., Pr. 7). But the altitude of each of these trapezoids is the same; therefore the area of all the trapezoids, or the lateral surface of the frustum, is equal to the sum of the perimeters of the two bases multiplied by half the slant height.

Cor. 2. If the frustum is cut by a plane parallel to the bases, and at equal distances from them, this plane must bisect the edges Bb, Cc, etc. (B. IV., Pr. 16); and the area of each trapezoid is equal to its altitude multiplied by the line which joins the middle points of its two inclined sides (B. IV., Pr. 7, Cor.). Hence the lateral surface of a frustum of a pyramid is equal to its slant height multiplied by the perimeter of a section at equal distances between the two bases.

PROPOSITION XV. THEOREM.

Two triangular pyramids having equivalent bases and equal altitudes are equivalent.

Let A-BCD, a-bcd be two triangular pyramids having equivalent bases BCD, bcd, supposed to be situated in the same plane,

and having the common altitude TB; then will the pyramid A-BCD be equivalent to the pyramid a-bcd.

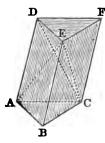
For, if they are not equivalent, let the pyramid A-BCD be the greater, and suppose it to exceed the pyramid a-bcd by a prism whose base is BCD, and altitude BX.

Divide the altitude BT into equal parts, each less than BX; and through the several points of division let planes be made to pass parallel to the base BCD, making the sections EFG, efg equivalent to each other (Pr. 13, Cor. 2); also, HIK equivalent to hik, etc.

From the point C draw the straight line CR parallel to BE, meeting EF produced in R; and from D draw DS parallel to BE, meeting EG in S. Join RS, and it is plain that the solid BCD-ERS is a prism lying partly without the pyramid.

In the same manner, upon the triangles EFG, HIK, etc., taken as bases, construct exterior prisms, having for edges the parts EH, HL, etc., of the line AB. In like manner, on the bases efg, hik, lmn, etc., in the second pyramid, construct interior prisms, having for edges the corresponding parts of ab.

It is plain that the sum of all the exterior prisms of the pyramid A-BCD is greater than this pyramid; and also, that the sum of all the interior prisms of the pyramid a-bcd is smaller than this pyramid. Hence the difference between the sum of all the exterior prisms and the sum of all the interior ones must be greater than the difference between the two pyramids themselves.


Now, beginning with the bases BCD, bcd, the second exterior prism EFG-H is equivalent to the first interior prism efg-b, because their bases are equivalent, and they have the same altitude. For the same reason, the third exterior prism HIK-L, and the second interior prism hik-e are equivalent; the fourth exterior and the third interior, and so on to the last in each series. Hence all the exterior prisms of the pyramid A-BCD, excepting the first prism BCD-E, have equivalent corresponding ones in the interior prisms of the pyramid a-bcd.

Therefore the prism BCD-E is the difference between the sum of all the exterior prisms of the pyramid A-BCD, and the sum of all the interior prisms of the pyramid a-bcd. But the difference between these two sets of prisms has been proved to be greater than that of the two pyramids; hence the prism BCD-E is greater than the prism BCD-X, which is impossible, for they have the

same base BCD, and the altitude of the first is less than BX, the altitude of the second. Hence the pyramids A-BCD, a-bcd are not unequal in volume; that is, they are equivalent to each other. Therefore, triangular pyramids, etc.

PROPOSITION XVI. THEOREM.

Any triangular pyramid is the third part of a triangular prism having the same base and the same altitude.

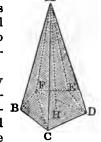
Let E-ABC be a triangular pyramid, and ABC-DEF a triangular prism having the same base and the same altitude; then will the pyramid be one third of the prism.

Cut off from the prism the pyramid E-ABC by the plane EAC; there will remain the solid E-ACFD, which may be considered as a quadrangular pyramid whose vertex is E, and whose base is the parallelogram ACFD. Draw the diagonal CD, and through the

points C, D, E pass a plane, dividing the quadrangular pyramid into two triangular ones E-ACD, E-CDF.

Then, because ACFD is a parallelogram, of which CD is the diagonal, the triangle ACD is equal to the triangle CDF. Therefore the pyramid, whose base is the triangle ACD, and vertex the point E, is equivalent to the pyramid whose base is the triangle CDF, and vertex the point E. But the latter pyramid is equivalent to the pyramid E-ABC, for they have equal bases, viz., the triangles ABC, DEF, and the same altitude, viz., the altitude of the prism ABC-DEF. Therefore the three pyramids E-ABC, E-ACD, E-CDF, are equivalent to each other, and they compose the whole prism ABC-DEF; hence the pyramid EABC is the third part of the prism which has the same base and the same altitude.

Cor. The volume of a triangular pyramid is measured by the product of its base by one third of its altitude.


PROPOSITION XVII. THEOREM.

The volume of any pyramid is measured by the product of its base by one third of its altitude.

Let A-BCDEF be any pyramid, whose base is the polygon BCDEF, and altitude AH; then will the volume of the pyramid be measured by BCDEF $\times \frac{1}{3}$ AH.

Divide the polygon BCDEF into triangles by the diagonals CF, DF, and let planes pass through these lines and the vertex A; they will divide the polygonal pyramid A-BCDEF into triangular pyramids, all having the same altitude AH.

But each of these pyramids is measured by the product of its base by one third of its altitude (Pr. 16, Cor.); hence the sum of the triangular pyramids, or the polygonal pyramid A-BCDEF, will be measured by the sum of the

triangles BCF, CDF, DEF, or the polygon BCDEF, multiplied by one third of AH. Therefore every pyramid is measured by the product of its base by one third of its altitude.

Cor. 1. Every pyramid is one third of a prism having the same

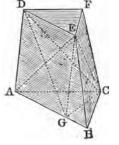
base and altitude.

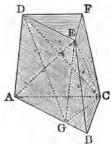
Cor. 2. Pyramids having equal altitudes are to each other as their bases; pyramids having equivalent bases are to each other as their altitudes; and any two pyramids are to each other as the products of their bases by their altitudes.

Cor. 3. Similar pyramids are to each other as the cubes of their

homologous edges.

Scholium. The volume of any polyedron may be found by dividing it into pyramids, by planes passing through its vertices.


PROPOSITION XVIII. THEOREM.


A frustum of a pyramid is equivalent to the sum of three pyramids having the same altitude as the frustum, and whose bases are the lower base of the frustum, its upper base, and a mean proportional between them.

Case first. When the base of the frustum is a triangle.

Let ABC-DEF be a frustum of a triangular pyramid. If a plane be made to pass through the points A, C, E, it will cut off the pyramid E-ABC, whose altitude is the altitude of the frustum, and its base is ABC, the lower base of the frustum.

Pass another plane through the points C, A D, E; it will cut off the pyramid C-DEF, whose altitude is that of the frustum, and its base is DEF, the upper base of the frustum.

To find the magnitude of the remaining pyramid E-ACD, draw EG parallel to AD; join CG, DG. Then, because the two triangles AGC, DEF have the angles at A and D equal to each other, we have (B. IV., Pr. 24)

 $AGC: DEF:: AG \times AC: DE \times DF$,

:: AC: DF, because AG is equal to DE.

Also (B. IV., Pr. 6, Cor. 1),

ACB: ACG:: AB: AG or DE.

But, because the triangles ABC, DEF are similar (Pr. 13), we have

AB: DE:: AC: DF.

Therefore (B. II., Pr. 4)

ACB: ACG:: ACG: DEF;

that is, the triangle ACG is a mean proportional between ACB and DEF, the two bases of the frustum.

Now the pyramid E-ACD is equivalent to the pyramid G-ACD, because it has the same base and the same altitude; for EG is parallel to AD, and consequently parallel to the plane ACD. But the pyramid G-ACD has the same altitude as the frustum, and its base ACG is a mean proportional between the two bases of the frustum.

Case second. When the base of the frustum is any polygon.

Let BCDEF-bcdef be a frustum of any pyramid.

Let G-HIK be a triangular pyramid having the same altitude and an equivalent base with the pyramid A-BCDEF, and from it let a frustum HIK-hik be cut off, having the same altitude with the frustum BCD EF-bcdef.

The entire pyramids are equivalent (Pr. 17), and the small pyramids A-bcdef, G-hik are also equivalent, for their altitudes are equal, and their bases are equivalent (Pr. 13, Cor. 2). Hence the two frustums are equivalent, and they have the same altitude, with equivalent bases. But the frustum HIK-hik has been proved to be equivalent to the sum of three pyramids, each having the same altitude as the frustum, and whose bases are the lower base of the frustum, its upper base, and a mean proportion-

al between them. Hence the same must be true of the frustum of any pyramid. Therefore a frustum of a pyramid, etc.

Scholium. If V denotes the volume of the frustum, B its lower base, b its upper base, and h its altitude, this proposition is expressed by the formula

 $V = \frac{1}{3}h(B+b+\sqrt{B\times b}).$

PROPOSITION XIX. THEOREM.

There can be but five regular polyedrons.

Since the faces of a regular polyedron are regular polygons, they must consist of equilateral triangles, of squares, of regular pentagons, or polygons of a greater number of sides.

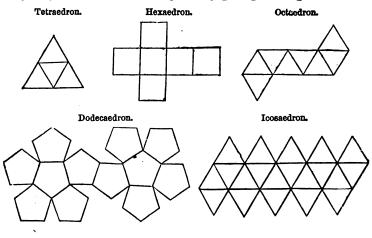
First. If the faces are equilateral triangles, each solid angle of the polyedron may be contained by three of these triangles, form-

ing the tetraedron; or by four, forming the octaedron; or by five, forming the icosaedron.

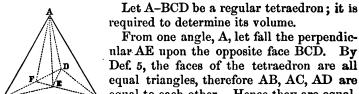
No other regular polyedron can be formed with equilateral triangles; for six angles of these triangles amount to four right angles, and can not form a solid angle (B. VII., Pr. 18).

Secondly. If the faces are squares, their angles may be united three and three, forming the hexaedron or cube.

Four angles of squares amount to four right angles, and can not form a solid angle.


Thirdly. If the faces are regular pentagons, their angles may be united three and three, forming the regular dodecaedron. Four angles of a regular pentagon are greater than four right angles, and can not form a solid angle.

Fourthly. A regular polyedron can not be formed with regular hexagons, for three angles of a regular hexagon amount to four right angles. Three angles of a regular heptagon amount to more than four right angles; and the same is true of any polygon having a greater number of sides.


Hence there can be but five regular polyedrons; three formed with equilateral triangles, one with squares, and one with pentagons.

Scholium. Models of the regular polyedrons may be easily obtained as follows: Let the figures represented below be accurately drawn on card-board and cut out entire. At the lines separating two adjacent polygons let the card-board be cut half through; the edges of the several polygons in each figure may then be brought together so as to represent a regular polyedron, and they may be secured in their place by gluing the edges.

PROPOSITION XX. PROBLEM.

To compute the volume of a regular tetraedron.

From one angle, A, let fall the perpendicular AE upon the opposite face BCD. By Def. 5, the faces of the tetraedron are all equal triangles, therefore AB, AC, AD are equal to each other. Hence they are equally distant from the perpendicular (B. VII.,

Pr. 5, Cor.); that is, E is the centre of a circle described about the equilateral triangle BCD. The area of the triangle BCD is equal to $\frac{BC^2}{4}\sqrt{3}$ (B. VI., Pr. 4, Sch. 2).

Since EF is one half of EC (B. VI., Pr. 4), it is one third of FC or AF. Then, in the triangle AEF, we have (preceding figure)

 $AE^2 = AF^2 - FE^2 = AF^2 - \frac{1}{9}AF^2 = \frac{8}{9}AF^2$.

Also, $AF^2 = CF^2 = \frac{3}{4}BC^2$.

Therefore $AE^2 = \frac{8}{9} \times \frac{3}{4}BC^2 = \frac{2}{3}BC^2$;

or, $AE = BC\sqrt{\frac{2}{3}}$.

Hence the volume of the tetraedron is equal

to
$$\frac{BC^2}{4}\sqrt{3} \times \frac{1}{3}BC\sqrt{\frac{2}{3}} = \frac{1}{12}BC^3\sqrt{2};$$

that is, the volume of a regular tetraedron is equal to the cube of a linear edge multiplied by one twelfth the square root of two.

Cor. The entire surface of the tetraedron is equal to four times the area of the triangle BCD; or $BC^2\sqrt{3}$; that is, the surface of a regular tetraedron is equal to the square of a linear edge multiplied by the square root of three.

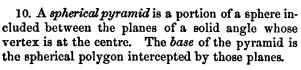
(C)

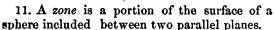
BOOK IX.

SPHERICAL GEOMETRY.

Definitions.

1. A sphere is a solid bounded by a curved surface, all the points of which are equally distant from a point within called the centre.

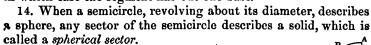

A sphere may be conceived to be described by the revolution of a semicircle ADB about its diameter AB, which remains unmoved.


2. A radius of a sphere is a straight line drawn from the centre to any point of the surface. A diameter is any straight line drawn through the centre, and terminated each way by the surface.

All the radii of a sphere are equal; all the diameters are also equal, and each double of the radius.

- 3. It will be shown (Prop. 1) that every section of a sphere made by a plane is a circle. A great circle is a section made by a plane which passes through the centre of the sphere. A small circle is a section made by a plane which does not pass through the centre.
- 4. The poles of a circle of a sphere are the extremities of that diameter of the sphere which is perpendicular to the plane of the circle.
- 5. A plane touches a sphere when it meets the sphere, but, being produced, does not cut it.
 - 6. A spherical polygon is a portion of the surface of a sphere bounded by three or more arcs of great circles, each of which is less than a semi-circumference. These arcs are called the sides of the polygon; and the angles which their planes make with each other are the angles of the polygon.
 - 7. A spherical triangle is a spherical polygon of three sides. It is called right-angled, isosceles, or equilateral in the same cases as a plane triangle.

- 8. A lune is a portion of the surface of a sphere included between two semi-circumferences of great circles having a common diameter.
- 9. A spherical ungula or wedge is a portion of a sphere included between the halves of two great circles, and has the lune for its base.

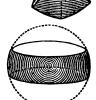


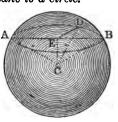
12. A spherical segment is a portion of a sphere included between two parallel planes.

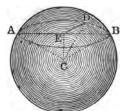
13. The bases of the segment are the sections of the sphere made by the parallel planes; the altitude of the segment or zone is the distance between the planes. One of the two planes may touch the sphere,

in which case the segment has but one base.

Thus, when the semicircle AEB, revolving about its diameter AB, describes a sphere, any circular sector, as ACD or DCE, describes a spherical sector.


PROPOSITION I. THEOREM.


Every section of a sphere made by a plane is a circle.


Let ABD be a section made by a plane in a sphere whose centre is C. From the point C draw CE perpendicular to the plane ABD; and draw lines CA, CB, CD, etc., to different points of the curve ABD which bounds the section.

The oblique lines CA, CB, CD are equal, because they are radii of the sphere; there-

fore they are equally distant from the perpendicular CE (B. VII., Pr. 5, Cor.). Hence all the lines EA, EB, ED are equal; and, consequently, the section ABD is a circle, of which E is the centre. Therefore every section, etc.

Cor. 1. If the section passes through the centre of the sphere, its radius will be the

radius of the sphere; hence all great circles of a sphere are equal to each other.

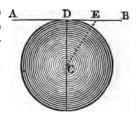
Cor. 2. Any two great circles of a sphere bisect each other; for, since they have the same centre, their common section is a diameter of both, and therefore bisects both.

Cor. 3. Every great circle divides the sphere and its surface into two equal parts. For if the two parts are separated and applied to each other, base to base, with their convexities turned the same way, the two surfaces must coincide; otherwise there would be points in these surfaces unequally distant from the centre.

Cor. 4. The centre of a small circle and that of the sphere are in a straight line perpendicular to the plane of the small circle.

Cor. 5. The circle which is farthest from the centre is the least; for the greater the distance CE, the less is the chord AB, which is the diameter of the small circle ABD.

Cor. 6. An arc of a great circle may be made to pass through any two points on the surface of a sphere; for the two given points, together with the centre of the sphere, make three points which are necessary to determine the position of a plane. If, however, the two given points were situated at the extremities of a diameter, these two points and the centre would then be in one straight line, and any number of great circles might be made to pass through them.

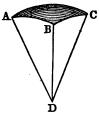

PROPOSITION II. THEOREM.

A plane perpendicular to a diameter at its extremity touches the sphere.

Let ADB be a plane perpendicular to the diameter DC at its extremity D, then the plane ADB touches the sphere at the point D.

Let E be any other point in the plane ADB, and join DE, CE. Because CD is perpendicular to the plane ADB, it is perpendicu-

lar to the line AB (B. VII., Def. 1); hence A the angle CDE is a right angle, and the line CE is greater than CD. Consequently, the point E lies without the sphere. Hence the plane ADB has only the point D in common with the sphere; it therefore touches the sphere (Def. 5). Therefore a plane, etc.

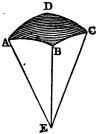

Cor. In the same manner, it may be proved that two spheres touch each other when the distance between their centres is equal to the sum or difference of their radii, in which case the centres and the point of contact lie in one straight line.

PROPOSITION III. THEOREM.

Any side of a spherical triangle is less than the sum of the other two.

Let ABC be a spherical triangle; then any side, as AC, is less than the sum of the other two, AB and BC.

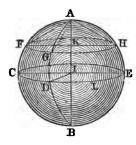
Let D be the centre of the sphere, and draw the radii AD, BD, CD. Conceive the planes ADB, BDC, CDA to be drawn, forming a solid angle at D. The angles ADB, BDC, CDA will be measured by AB, BC, CA, the sides of the


spherical triangle ABC. But when a solid angle is formed by three plane angles, any one of them is less than the sum of the other two (B. VII., Pr. 17); hence any one of the arcs AB, BC, CA must be less than the sum of the other two. Therefore any side, etc.

PROPOSITION IV. THEOREM.

The sum of the sides of a spherical polygon is less than the circumference of a great circle.

Let ABCD be any spherical polygon; then will the sum of the sides AB, BC, CD, DA be less than the circumference of a great circle.


Let E be the centre of the sphere, and join AE, BE, CE, DE. The solid angle at E is contained by the plane angles AEB, BEC, CED, DEA, which together are less than four right angles (B. VII., Pr. 18). Hence the sides AB, BC, CD, DA, which are the measures of these

angles, are together less than four quadrants described with the radius AE; that is, than the circumference of a great circle. Therefore the sum of the sides, etc.

PROPOSITION V. THEOREM.

All the points in the circumference of a circle of the sphere are equally distant from each of its poles.

Let FGH be any circle of the sphere, and AB any diameter of the sphere which is perpendicular to its plane; then, by the definition (4), A and B are the poles of the circle FGH.

Since AB is perpendicular to the plane of the circle FGH, it passes through K, the centre of that circle (Pr. 1, Cor. 4). Hence, if we draw the oblique lines AF, AG, AH, these lines will be equally dis-

tant from the perpendicular AK, and are therefore equal to each other (B. VII., Pr. 5). Hence all the points of the circumference FGH are equally distant from the pole A. For a similar reason, they are equally distant from the pole B. Therefore all the points, etc.

Cor. 1. All the arcs of great circles drawn from a pole of a circle to points in its circumference are equal. For the chords AF, AG, AH are all equal, and therefore the arcs AF, AG, AH are equal.

Cor. 2. The arc of a great circle AD, drawn from the pole to the circumference of another great circle CDE, is a quadrant, for this arc is the measure of the right angle AID.

Cor. 3. If the distance of the point A from each of the points C and D is equal to a quadrant, the point A will be the pole of the arc CD. For, since the arcs AC, AD are quadrants, the angles AIC, AID are right angles; therefore the diameter AB is perpendicular to each of the lines CI, DI, and is consequently perpendicular to the plane of the arc CD (B. VII., Pr. 4); hence it is the pole of the arc CD.

Cor. 4. To find the pole of an arc of a great circle, as CD, at each of the extremities C and D draw the arcs of great circles CA and DA perpendicular to CD; the point of intersection of these arcs will be the pole required.

Scholium. Arcs of circles may be drawn upon the surface of a

sphere with the same ease as upon a plane surface. Thus, by revolving the arc AF around the pole A, the point F will describe the small circle FGH; and by revolving the quadrant AC around the pole A, the extremity C will describe the great circle CDE.

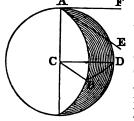
If it is required to draw an arc of a great circle through two points C and D on the surface of the sphere, then, from the points C and D as centres, with a radius equal to a quadrant, describe two arcs intersecting in A. The point A will be the pole of the great circle required; and if from A as a centre, with a radius equal to a quadrant, we describe a circle CDE, it will be a great circle passing through C and D.

PROPOSITION VI. THEOREM.

The shortest path from one point to another on the surface of a sphere is the smaller of the two arcs of a great circle, joining the two given points.

Let A and B be any two points on the surface of a sphere, and let ADB be the arc of a great circle which joins them; then will the line ADB be the shortest path from A to B on the surface of the sphere.

For, if possible, let the shortest path from A to B c pass through C, a point situated out of the arc of a great circle ADB. Draw AC, CB, arcs of great circles, and take BD equal to BC.


By Prop. 3, the arc ADB is less than AC+CB. Subtracting the equal arcs BD and BC, there will remain AD less than AC. Now the shortest path from B to C, whether it be an arc of a circle or some other line, is equal to the shortest path from B to D; for, by revolving BC around B, the point C may be made to coincide with D, and thus the shortest path from B to C must coincide with the shortest path from B to D. But the shortest path from A to B was supposed to pass through C; hence the shortest path from A to C can not be greater than the shortest path from A to D.

Now the arc AD has been proved to be less than AC; and therefore, if AC be revolved about A until the point C falls on the arc ADB, the point C will fall between D and B. Hence the shortest path from C to A must be greater than the shortest path from D to A; but it has just been proved not to be greater, which is absurd. Consequently, no point of the shortest path from A to B can be out of the arc of a great circle ADB. Therefore the shortest path, etc.

PROPOSITION VII. THEOREM.

The angle formed by two arcs of great circles is equal to the angle formed by the tangents of those arcs at the point of their intersection, and is measured by the arc of a great circle described from its vertex as a pole, and included between its sides.

Let BAD be an angle formed by two ares of great circles; then will it be equal to the angle EAF formed by the tangents A F of these ares at the point A; and it is

of these arcs at the point A; and it is measured by the arc DB described from the vertex A as a pole.

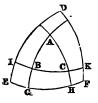
For the tangent AE, drawn in the plane of the arc AB, is perpendicular to the radius AC (B. III., Pr. 9); also, the tangent AF, drawn in the plane of the arc AD, is perpendicular to the same radius AC. Hence the angle EAF is equal to the angle

of the planes ACB, ACD (B.VII., Def. 4), which is the same as that of the arcs AB, AD.

Also, if the arcs AB, AD are each equal to a quadrant, the lines CB, CD will be perpendicular to AC, and the angle BCD will be equal to the angle of the planes ACB, ACD; hence the arc BD measures the angle of the planes, or the angle BAD.

Cor. 1. Angles of spherical triangles may be compared with each other by means of arcs of great circles described from their vertices as poles, and included between their sides; and thus an angle can easily be made equal to a given angle.

Cor. 2. If two arcs of great circles AC, DE cut each other, the vertical angles ABE, DBC are equal; for each is equal to the angle formed by the two planes ABC, DBE. Also, the two adjacent angles ABD, DBC are together equal to two right angles.


PROPOSITION VIII. THEOREM.

If from the vertices of a given spherical triangle, as poles, arcs of great circles are described, these arcs, by their intersection, form a second triangle, whose vertices are poles of the sides of the given triangle.

Let ABC be a spherical triangle; and from the points A, B, C as poles, let great circles be described intersecting each other in

D, E, and F; then will the points D, E, and F be the poles of the sides of the triangle ABC.

For, because the point A is the pole of the arc EF, the distance from A to E is a quadrant. Also, because the point C is the pole of the arc DE, the distance from C to E is a quadrant. E Hence the point E is at a quadrant's distance

from each of the points A and C; it is therefore the pole of the arc AC (Pr. 5, Cor. 3). In the same manner, it may be proved that D is the pole of the arc BC, and F the pole of the arc AB.

Scholium. The triangle DEF is called the polar triangle of

ABC; and so, also, ABC is the polar triangle of DEF.

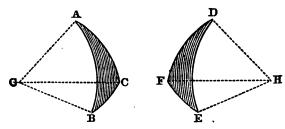
Since all great circles intersect each other in two points, the arcs DE, EF, DF, if produced, will form three other triangles; but the triangle which is taken as the polar triangle is the central one, whose vertex D; homologous to A, is on the same side of BC as the vertex A; and so of the other vertices.

PROPOSITION IX. THEOREM.

In two polar triangles, each angle of either triangle is measured by the supplement of the side lying opposite to it in the other triangle.

Let DEF be a spherical triangle, ABC its polar triangle, then will the side EF be the supplement of the arc which measures the angle A, and the side BC is the supplement of the arc which measures the angle D.

Produce the sides AB, AC, if necessary, until they meet EF in G and H. Then, because the point A is the pole of the arc GH, the angle A is measured by the arc GH (Pr. 7).


Also, because E is the pole of the arc AH, the arc EH is a quadrant; and because F is the pole of AG, the arc FG is a quadrant. Hence EH and GF, or EF and GH, are together equal to a semi-circumference. Therefore EF is the supplement of GH, which measures the angle A.

So, also, DF is the supplement of the arc which measures the angle B, and DE is the supplement of the arc which measures the angle C. In the same manner, it can be shown that each angle of the triangle DEF is measured by the supplement of the side lying opposite to it in the triangle ABC. Therefore in two polar triangles, etc.

PROPOSITION X. THEOREM.

If two triangles on equal spheres are mutually equilateral, they are mutually equiangular.

Let ABC, DEF be two triangles on equal spheres, having the side AB equal to DE, AC to DF, and BC to EF; then will the angles also be equal each to each.

Let the centres of the spheres be G and H, and draw the radii GA, GB, GC, HD, HE, HF. A solid angle may be conceived as formed at G by the three plane angles AGB, AGC, BGC; and another solid angle at H by the three plane angles DHE, DHF, EHF. Then, because the arcs AB, DE are equal, the angles AGB, DHE, which are measured by these arcs, are equal. For the same reason, the angles AGC, DHF are equal to each other; and, also, BGC equal to EHF. Hence G and H arc two solid angles contained by three equal plane angles; therefore the planes of these equal angles are equally inclined to each other (B. VII., Pr. 19). That is, the angles of the triangle ABC are equal to those of the triangle DEF, viz., the angle ABC to the angle DEF, BAC to EDF, and ACB to DFE.

Scholium. It should be observed that the two triangles ABC, DEF do not admit of superposition unless the three sides are similarly situated in both cases. Triangles which are mutually equilateral, but can not be applied to each other so as to coincide, are called symmetrical triangles.

PROPOSITION XI. THEOREM.

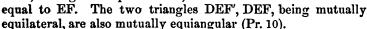
If two triangles on equal spheres are mutually equiangular, they are mutually equilateral.

Denote by A and B two spherical triangles which are mutually equiangular, and by P and Q their polar triangles.

Since the sides of P and Q are the supplements of the arcs

which measure the angles of A and B (Pr. 9), P and Q must be mutually equilateral. Also, because P and Q are mutually equilateral, they must be mutually equiangular (Pr. 10). But the sides of A and B are the supplements of the arcs which measure the angles of P and Q, and, therefore, A and B are mutually equilateral.

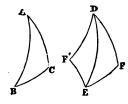
PROPOSITION XIL. THEOREM.


If two triangles on equal spheres have two sides and the included angle of the one equal to two sides and the included angle of the other each to each, their third sides will be equal, and their other angles will be equal each to each.

Let ABC, DEF be two triangles having the side AB equal to DE, AC equal to DF, and the angle BAC equal to the angle EDF; then will the side BC be equal to EF, the angle ABC to DEF, and ACB to DFE.

If the equal sides in the two triangles are similarly situated, the triangle ABC may be applied to the triangle DEF in the

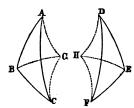
same manner as in plane triangles (B. I., Pr. 6), and the two triangles will coincide throughout. Therefore all the parts of the one triangle will be equal to the corresponding parts of the other triangle.


But if the equal sides in the two triangles are not similarly situated, then construct the triangle DF'E symmetrical with DFE, having DF' equal to DF, and EF' B equal to EF. The two triangles DEF', DEI

Now the triangle ABC may be applied to the triangle DEF' so as to coincide throughout, and hence all the parts of the one triangle will be equal to the corresponding parts of the other triangle. Therefore the side BC, being equal to EF', is also equal to EF; the angle ABC, being equal to DEF', is also equal to DEF; and the angle ACB, being equal to DF'E, is also equal to DFE. Therefore, if two triangles, etc.

PROPOSITION XIII. THEOREM.

If two triangles on equal spheres have two angles and the included side of the one equal to two angles and the included side of the other each to each, their third angles will be equal, and their other sides will be equal each to each.



If the two triangles ABC, DEF have the angle BAC equal to the angle EDF, the angle ABC equal to DEF, and the included side AB equal to DE, the triangle ABC can be placed upon the triangle DEF, or upon its symmetrical triangle DEF', so as to coincide. Hence the remaining parts of

the triangle ABC will be equal to the remaining parts of the triangle DEF; that is, the side AC will be equal to DF, BC to EF, and the angle ACB to the angle DFE. Therefore, if two triangles, etc.

PROPOSITION XIV. THEOREM.

If two triangles on equal spheres are mutually equilateral, they are equivalent.

Let ABC, DEF be two triangles which have the three sides of the one equal to the three sides of the other each to each, viz., AB to DE, AC to DF, and BC to EF; then will the triangle ABC be equivalent to the triangle DEF.

Let G be the pole of the small circle passing through the three points A, B, C;

draw the great circle arcs GA, GB, GC; these arcs will be equal to each other (Pr. 5). At the point E make the angle DEH equal to the angle ABG; make the arc EH equal to the arc BG, and join DH, FH.

Because, in the triangles ABG, DEH, the sides DE, EH are equal to the sides AB, BG, and the included angle DEH is equal to ABG, the arc DH is equal to AG, and the angle DHE equal to AGB (Pr. 12).

Now, because the triangles ABC, DEF are mutually equilateral, they are mutually equiangular (Pr. 10); hence the angle ABC is equal to the angle DEF. Subtracting the equal angles ABG, DEH, the remainder GBC will be equal to the remainder HEF.

Moreover, the sides BG, BC are equal to the sides EH, EF; hence the arc HF is equal to the arc GC, and the angle EHF to the angle BGC (Pr. 13).

Now the triangle DEH may be applied to the triangle ABG so as to coincide. For, place DH upon its equal BG, and HE upon its equal AG, they will coincide, because the angle DHE is equal to the angle AGB; therefore the two triangles coincide throughout, and have equal surfaces.

For the same reason, the surface HEF is equal to the surface GBC, and the surface DFH to the surface ACG. Hence

ABG+GBC-ACG=DEH+EHF-DFH;

or, ABC=DEF;

that is, the two triangles ABC, DEF are equivalent. Therefore

if two triangles, etc.

Scholium. The poles G and H might be situated within the triangles ABC, DEF, in which case it would be necessary to add the three triangles ABG, GBC, ACG to form the triangle ABC, and also to add the three triangles DEH, EHF, DFH to form the triangle DEF, otherwise the demonstration would be the same as above.

Cor. If two triangles on equal spheres are mutually equiangular, they are equivalent. They are also equivalent if they have two sides and the included angle of the one equal to two sides and the included angle of the other each to each, or two angles and the included side of the one equal to two angles and the included side of the other.

PROPOSITION XV. THEOREM.

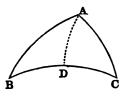
In an isosceles spherical triangle, the angles opposite the equal sides are equal; and, conversely, if two angles of a spherical triangle are equal, the triangle is isosceles.

Let ABC be a spherical triangle having the side AB equal to AC; then will the angle ABC be equal to the angle ACB.

From the point A draw the arc AD to the middle of the base BC. Then, in the two triangles ABD, ACD, the side AB is equal to AC, BD is equal to DC, and the side AD is common; hence B the angle ABD is equal to the angle ACD (Pr. 11).

Conversely. Let the angle B be equal to the angle C; then will the side AC be equal to the side AB.

For if the two sides are not equal to each other, let AB be the greater; take BE equal to AC, and join EC.


Then, in the triangles EBC, ACB, the two sides BE, BC are equal to the two sides CA, CB, and the included angles EBC, ACB are equal; hence the angle ECB is equal to the angle ABC (Pr. 13).

But, by hypothesis, the angle ABC is equal to ACB; hence ECB is equal to ACB, which is absurd. Therefore AB is not greater than AC; and, in the same manner, it can be proved that it is not less; it is, consequently, equal to AC. Therefore, in an isosceles spherical triangle, etc.

Cor. The angle BAD is equal to the angle CAD, and the angle ADB to the angle ADC; therefore each of the last two angles is a right angle. Hence the arc drawn from the vertex of an isosceles spherical triangle to the middle of the base is perpendicular to the base, and also bisects the vertical angle.

PROPOSITION XVI. THEOREM.

In a spherical triangle, the greater side is opposite the greater angle, and conversely.

Let ABC be a spherical triangle having the angle A greater than the angle B; then will the side BC be greater than the side AC.

Draw the arc AD, making the angle BAD equal to B. Then, in the triangle ABD, we shall have AD equal to DB (Pr. 15); that

is, BC is equal to the sum of AD and DC. But AD and DC are together greater than AC (Pr. 2); hence BC is greater than AC.

Conversely. If the side BC is greater than AC, then will the

angle A be greater than the angle B.

For if the angle A is not greater than B, it must be equal to it, or less. It is not equal; for then the side BC would be equal to AC (Pr. 15), which is contrary to the hypothesis. Neither can it be less, for then the side BC would be less than AC by the first case, which is also contrary to the hypothesis. Hence the angle BAC is greater than the angle ABC. Therefore, in a spherical triangle, etc.

PROPOSITION XVII. THEOREM.

The sum of the angles of a spherical triangle is greater than two, and less than six right angles.

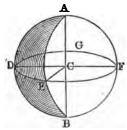
Let A, B, and C be the angles of a spherical triangle. The arcs which measure the angles A, B, and C, together with the three sides of the polar triangle, are equal to three semi-circumferences (Pr. 9). But the three sides of the polar triangle are less than two semi-circumferences (Pr. 4); hence the arcs which measure the angles A, B, and C are greater than one semi-circumference, and, therefore, the angles A, B, and C are greater than two right angles.

Also, because each angle of a spherical triangle is less than two right angles, the sum of the three angles must be less than six right angles.

Cor. A spherical triangle may have two, or even three right angles; also two, or even three obtuse angles.

If a triangle have three right angles, each of its sides will be a quadrant, and the triangle is called a tri-rectangular triangle. The tri-rectangular triangle is contained eight times in the surface of the sphere.*

* In all the preceding propositions, it has been supposed, in conformity with Def. 6, that spherical triangles always have each of their sides less than a semi-circumference, in which case their angles are always less than two right angles.


It should, however, be remarked, that there are spherical triangles of which certain sides are greater than a semi-circumference, and certain angles greater than two right angles. For if we produce the side AC so as to form an entire circumference, ACDE, the part which remains, after taking from the surface of the hemisphere the triangle ABC, is a new triangle, which may also be designated by ABC, and the sides of which are AB, BC, CDEA. Here we see that the side CDEA is greater than the semi-circumference DEA, and,

side CDEA is greater than the semi-circumference DEA, and, at the same time, the opposite angle ABC exceeds two right angles by the quantity CBD.

Triangles whose sides and angles are so large have been excluded by the definition, because their solution always reduces itself to that of triangles embraced in the definition. Thus, if we know the sides and angles of the triangle ABC, we shall know immediately the sides and angles of the triangle of the same name, which is the remainder of the surface of the hemisphere.

PROPOSITION XVIII. THEOREM.

The area of a lune is to the surface of the sphere as the angle of the lune is to four right angles.

Let ADBE be a lune, upon a sphere whose centre is C, and the diameter AB; then will the area of the lune be to the surface of the sphere as the angle DCE to four right angles, or as the arc DE to the circumference of a great circle.

First. When the ratio of the arc to the circumference can be expressed in whole numbers.

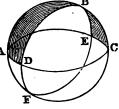
Suppose the ratio of DE to DEFG to be as 4 to 25. Now, if if we divide the circumference DEFG in 25 equal parts, DE will contain 4 of those parts. If we join the pole A and the several points of division by arcs of great circles, there will be formed on the hemisphere ADEFG 25 triangles, all equal to each other, being mutually equilateral. The entire sphere will contain 50 of these small triangles, and the lune ADBE 8 of them. Hence the area of the lune is to the surface of the sphere as 8 to 50, or as 4 to 25; that is, as the arc DE to the circumference.

Secondly. When the ratio of the arc to the circumference can not be expressed in whole numbers, it may be proved, as in B. III., Pr. 14, that the lune is still to the surface of the sphere as the angle of the lune to four right angles.

Cor. 1. On equal spheres, two lunes are to each other as the angles included between their planes.

Cor. 2. We have seen that the entire surface of the sphere is equal to eight tri-rectangular triangles (Pr. 17, Cor.). If the area of the tri-rectangular triangle be represented by T, the surface of the sphere will be represented by 8T. Also, if we take the right angle for unity, and represent the angle of the lune by A, we shall have the proportion, area of the lune: 8T:: A: 4.

Hence the area of the lune is equal to $\frac{8A \times T}{4}$, or $2A \times T$.


Cor. 3. The spherical ungula, comprehended by the planes ADB, AEB, is to the entire sphere as the angle DCE is to four right angles. For, the lunes being equal, the spherical ungulas will also be equal; hence, in equal spheres, two ungulas are to each other as the angles included between their planes.

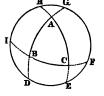
PROPOSITION XIX. THEOREM.

If two great circles intersect each other on the surface of a hemisphere, the sum of the opposite triangles thus formed is equivalent to a lune whose angle is equal to the inclination of the two circles.

Let the great circles ABC, DBE intersect each other on the surface of the hemisphere BADCE; then will the sum of the opposite triangles ABD, CBE be equivalent to a lune whose angle is CBE.

For, produce the arcs BC, BE till they meet in F; then will BCF be a semi-circumference, as also ABC. Subtracting

BC from each, we shall have CF equal to AB. For the same reason, EF is equal to DB, and CE is equal to AD. Hence the two triangles ABD, CFE are mutually equilateral; they are, therefore, equivalent (Pr. 15).


But the two triangles CBE, CFE compose the lune BCFE, whose angle is CBE; hence the sum of the triangles ABD, CBE is equivalent to the lune whose angle is CBE. Therefore, if two great circles, etc.

PROPOSITION XX. THEOREM.

The area of a spherical triangle is measured by the excess of the sum of its angles above two right angles multiplied by the tri-rectangular triangle.

Let ABC be any spherical triangle; its surface is measured by the sum of its angles A, B, C diminished by two right angles, and multiplied by the tri-rectangular triangle.

Produce the sides of the triangle ABC until they meet the great circle DEG drawn without the triangle. The two triangles ADE, AGH

are together equal to the lune whose angle is A (Pr. 19); and this lune is measured by $2A \times T$ (Pr. 18, Cor. 2). Hence we have

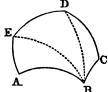
 $ADE + AGH = 2A \times T$.

For the same reason, $BFG+BDI=2B\times T$; also, $CHI+CEF=2C\times T$.

But the sum of these six triangles exceeds the surface of the hemisphere by twice the triangle ABC, and the hemisphere is represented by 4T; hence we have

 $4T+2ABC=2A\times T+2B\times T+2C\times T$;

or, dividing by 2, and then subtracting 2T from each of these equals, we have


$$ABC = A \times T + B \times T + C \times T - 2T$$
,
 $ABC = (A + B + C - 2) \times T$.

Hence every spherical triangle is measured by the sum of its angles diminished by two right angles, and multiplied by the trirectangular triangle.

Cor. If the sum of the three angles of a triangle is equal to three right angles, its surface will be equal to the tri-rectangular triangle; if the sum is equal to four right angles, the surface of the triangle will be equal to two tri-rectangular triangles; if the sum is equal to five right angles, the surface will be equal to three tri-rectangular triangles, etc.

PROPOSITION XXI. THEOREM.

The area of a spherical polygon is measured by the sum of its angles, diminished by as many times two right angles as it has sides less two, multiplied by the tri-rectangular triangle.

Let ABCDE be any spherical polygon. From the vertex B draw the arcs BD, BE to the opposite angles; the polygon will be divided into as many triangles as it has sides minus two.

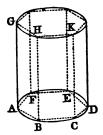
But the surface of each triangle is measured by the angles of the polygon; hence the surface of the polygon is measured by the sum of its angles diminished by as many times two right angles as it has sides less two, multiplied by the tri-rectangular triangle.

Cor. If the polygon has five sides, and the sum of its angles is equal to seven right angles, its surface will be equal to the tri-rectangular triangle; if the sum is equal to eight right angles, its surface will be equal to two tri-rectangular triangles; if the sum is equal to nine right angles, the surface will be equal to three tri-rectangular triangles, etc.

BOOK X.

MEASUREMENT OF THE THREE ROUND BODIES.

Definitions.


- 1. A cylinder is a solid described by the revolution of a rectangle about one of its sides, which remains fixed. The bases of the cylinder are the circles described by the two revolving opposite sides of the rectangle.
- 2. The axis of a cylinder is the fixed straight line about which the rectangle revolves. The opposite side of the rectangle describes the lateral or convex surface.
- 3. A cone is a solid described by the revolution of a right-angled triangle about one of the sides containing the right angle, which side remains fixed. The base of the cone is the circle described by that side containing the right angle which revolves.
- 4. The axis of a cone is the fixed straight line about which the triangle revolves. The hypothenuse of the triangle describes the lateral or convex surface. The side of the cone is the distance from the vertex to the circumference of the base.
- 5. A frustum of a cone is the part of a cone next the base, cut off by a plane parallel to the base.
- 6. Similar cones and cylinders are those which have their axes and the diameters of their bases proportionals.

PROPOSITION I. THEOREM.

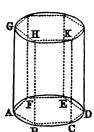
The convex surface of a cylinder is equal to the product of its altitude by the circumference of its base.

Let ACE-G be a cylinder whose base is the circle ACE, and altitude AG; then will its convex surface be equal to the product of AG by the circumference ACE.

In the circle ACE inscribe the regular polygon ABCDEF, and upon this polygon let a right prism be constructed of the same altitude with the cylinder.

The edges AG, BH, CK, etc., of the prism, being perpendicular to the plane of the base, will be contained in the convex surface of the cylinder. The convex surface of this prism is equal to the product of its altitude by the perimeter of its base (B. VIII., Pr. 1).

Let, now, the arcs subtended by the sides AB, BC, etc., be bisected, and the number of sides of the polygon be indefinitely increased, its perimeter will approach the circumference of the


circle; and when the number of sides of the polygon becomes greater than any finite number, its perimeter will become equal to the circumference of the circle (B. VI., Pr. 10), and the convex surface of the prism will become equal to the convex surface of the cylinder.

But, whatever be the number of sides of the prism, its convex surface is equal to the product of its altitude by the perimeter of its base; hence the convex surface of the cylinder is equal to the product of its altitude by the circumference of its base.

 \hat{Cor} . If H represent the altitude of a cylinder, and R the radius of its base, the circumference of the base will be represented by $2\pi R$ (B. VI., Pr. 13, Cor. 2), and the convex surface of the cylinder by $2\pi RH$.

PROPOSITION II. THEOREM.

The volume of a cylinder is equal to the product of its base by its altitude.

Let ACE-G be a cylinder whose base is the circle ACE, and altitude AG; its volume is equal to the product of its base by its altitude.

In the circle ACE inscribe the regular polygon ABCDEF, and upon this polygon let a right prism be constructed of the same altitude with the cylinder. The volume of this prism is equal to the product of its base by its altitude (B. VIII., Pr. 11).

Let, now, the number of sides of the polygon be indefinitely increased; its area will become equal to that of the circle, and the volume of the prism becomes equal to that of the cylinder. But, whatever be the number of sides of the prism, its volume is equal to the product of its base by its altitude;

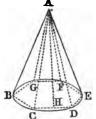
BOOK X. 193

hence the volume of a cylinder is equal to the product of its base by its altitude.

Cor. 1. If H represent the altitude of a cylinder, and R the radius of its base, the area of the base will be represented by πR^2 (B. VI., Pr. 13, Cor. 3), and the volume of the cylinder will be πR^2 H.

Cor. 2. Cylinders of the same altitude are to each other as their bases, and cylinders of the same base are to each other as their altitudes.

Cor. 3. Similar cylinders are to each other as the cubes of their altitudes, or as the cubes of the diameters of their bases.


For the bases are as the squares of their diameters; and, since the cylinders are similar, the diameters of their bases are as their altitudes (Def. 6). Therefore the bases are as the squares of the altitudes, and hence the products of the bases by the altitudes, or the cylinders themselves, will be as the cubes of the altitudes.

PROPOSITION III. THEOREM.

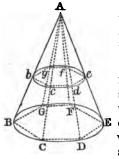
The convex surface of a cone is equal to the product of half its side by the circumference of its base.

Let A-BCDEFG be a cone whose base is the circle BDEG, and its side AB; then will its convex surface be equal to the product of half its side by the circumference of the circle BDF.

In the circle BDF inscribe the regular polygon BCDEFG, and upon this polygon let a regular pyramid be constructed having A for its vertex. The edges of this pyramid will lie in the convex surface of the cone. From A draw

AH perpendicular to CD, one of the sides of the polygon. The convex surface of the pyramid is equal to the product of half the slant height AH by the perimeter of its base (B. VIII., Pr. 14).

Let, now, the arcs subtended by the sides BC, CD, etc., be bisected, and the number of sides of the polygon be indefinitely increased, its perimeter will become equal to the circumference of the circle, the slant height AH becomes equal to the side of the cone AB, and the convex surface of the pyramid becomes equal to the convex surface of the cone.


But, whatever be the number of faces of the pyramid, its convex surface is equal to the product of half its slant height by the perimeter of its base; hence the convex surface of the cone is

equal to the product of half its side by the circumference of its base.

Cor. If S represent the side of a cone, and R the radius of its base, then the circumference of the base will be represented by $2\pi R$, and the convex surface of the cone by $2\pi R \times \frac{1}{2}S$, or πRS .

PROPOSITION IV. THEOREM.

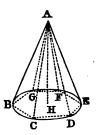
The convex surface of a frustum of a cone is equal to the product of its side by half the sum of the circumferences of its two bases.

Let BDF-bdf be a frustum of a cone whose bases are BDF, bdf, and Bb its side; its convex surface is equal to the product of Bb by half the sum of the circumferences BDF, bdf.

Complete the cone A-BDF to which the frustum belongs, and in the circle BDF inscribe the regular polygon BCDEFG, and upon this polygon let a regular pyramid be constructed having A for its vertex. Then will BDF-bdf be a frustum of a regular pyramid, whose convex surface is equal to the

product of its slant height by half the sum of the perimeters of its two bases (B. VIII., Pr. 14, Cor. 1).

Let, now, the number of sides of the polygon be indefinitely increased, its perimeter will become equal to the circumference of the circle, and the convex surface of the pyramid will become equal to the convex surface of the cone. But, whatever be the number of faces of the pyramid, the convex surface of its frustum is equal to the product of its slant height by half the sum of the perimeters of its two bases. Hence the convex surface of a frustum of a cone is equal to the product of its side by half the sum of the circumferences of its two bases.


Cor. It was proved (B. VIII., Pr. 14, Cor. 2) that the convex surface of a frustum of a pyramid is equal to the product of its slant height by the perimeter of a section at equal distances between its two bases; hence the convex surface of a frustum of a cone is equal to the product of its side by the circumference of a section at equal distances between the two bases.

PROPOSITION V. THEOREM.

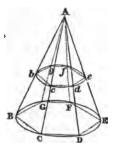
The volume of a cone is equal to one third of the product of its base by its altitude.

Let A-BCDF be a cone whose base is the circle BCDEFG, and AH its altitude; the volume of the cone will be equal to one third of the product of the base BCDF by the altitude AH.

In the circle BDF inscribe a regular polygon BCDEFG, and construct a pyramid whose base is the polygon BDF, and having its vertex in A. The volume of this pyramid is equal to one third of the product of the polygon BCDEFG by its altitude AH (B. VIII., Pr. 17).

Let, now, the number of sides of the polygon be indefinitely increased; its area will become equal to the area of the circle, and the volume of the pyramid will become equal to the volume of the cone. But, whatever be the number of faces of the pyramid, its volume is equal to one third of the product of its base by its altitude; hence the volume of the cone is equal to one third of the product of its base by its altitude.

Cor. 1. Since a cone is one third of a cylinder having the same base and altitude, it follows that cones of equal altitudes are to each other as their bases; cones of equal bases are to each other as their altitudes; and similar cones are as the cubes of their altitudes, or as the cubes of the diameters of their bases.


Cor. 2. If H represent the altitude of a cone, and R the radius of its base, the volume of the cone will be represented by $\pi R^2 \times \frac{1}{4}H$, or $\frac{1}{4}\pi R^2H$.

PROPOSITION VI. THEOREM.

A frustum of a cone is equivalent to the sum of three cones having the same altitude with the frustum, and whose bases are the lower base of the frustum, its upper base, and a mean proportional between them.

Let BDF-bdf be any frustum of a cone. Complete the cone to which the frustum belongs, and in the circle BDF inscribe the regular polygon BCDEFG, and upon this polygon let a regular pyramid be constructed having its vertex in A.

Then will BCDEFG-bcdefg be a frustum of a regular pyramid whose volume is equal to three pyramids having the same alti-

tude with the frustum, and whose bases are the lower base of the frustum, its upper base, and a mean proportional between them (B. VIII., Pr. 18).

Let, now, the number of sides of the polygon be indefinitely increased, its area will become equal to the area of the circle, and the frustum of the pyramid will become the frustum of a cone. Hence the frustum of a cone is equivalent to the sum of three cones hav-

ing the same altitude with the frustum, and whose bases are the lower base of the frustum, its upper base, and a mean proportional between them.

PROPOSITION VIL. THEOREM.

The surface of a sphere is equal to the product of its diameter by the circumference of a great circle.

Let ABDF be the semicircle by the revolution of which the sphere is described. Inscribe in the semicircle a regular semi-polygon ABCDEF, and from the points B, C, D, E let fall the perpendiculars BG, CH, DK, EL upon the diameter AF.

If, now, the polygon be revolved about AF, the lines AB, EF will describe the convex surface of two cones, and BC, CD, DE will describe the convex surface of frustums of cones.

From the centre I draw IM perpendicular to BC; also draw MN perpendicular to AF, and BO

perpendicular to CH. Let circ. MN represent the circumference of the circle described by the revolution of MN. Then the surface described by the revolution of BC will be equal to BC multiplied by circ. MN (Pr. 4, Cor.).

Now the triangles IMN, BCO are similar, since their sides are perpendicular to each other (B. IV., Pr. 22); whence

BC: BO or GH:: IM: MN,

:: circ. IM : circ. MN.

Hence (B. II., Pr. 1)

 $BC \times circ.$ MN $= GH \times circ.$ IM.

Therefore the surface described by BC is equal to the altitude GH multiplied by *eirc*. IM, or the circumference of the inscribed circle.

In like manner, it may be proved that the surface described by CD is equal to the altitude HK multiplied by the circumference of the inscribed circle; and the same may be proved of the other sides. Hence the entire surface described by ABCDEF is equal to the circumference of the inscribed circle multiplied by the sum of the altitudes AG, GH, HK, KL, and LF; that is, the axis of the polygon.

Let, now, the arcs AB, BC, etc., be bisected, and the number of sides of the polygon be indefinitely increased, its perimeter will coincide with the circumference of the semicircle, and the perpendicular IM will become equal to the radius of the sphere; that is, the circumference of the inscribed circle will become the circumference of a great circle. Hence the surface of a sphere is equal to the product of its diameter by the circumference of a great circle.

Cor. 1. The area of a zone is equal to the product of its altitude by the circumference of a great circle.

For the surface described by the lines BC, CD is equal to the altitude GK multiplied by the circumference of the inscribed circle. But when the number of sides of the polygon is indefinitely increased, the perimeter BC+CD becomes the arc BCD, and the inscribed circle becomes a great circle. Hence the area of the zone produced by the revolution of BCD is equal to the product of its altitude GK by the circumference of a great circle.

Cor. 2. The area of a great circle is equal to the product of its circumference by half the radius (B. VI., Pr. 12), or one fourth of the diameter; hence the surface of a sphere is equivalent to four of its great circles.

Cor. 3. The surface of a sphere is equal to the convex surface of the circumscribed cylinder.

For the latter is equal to the product of its altitude by the circumference of its base. But its base is equal to a great circle of the sphere, and its altitude to the diameter; hence the convex surface of the cylinder is equal to the product of its diameter by the circumference of a great circle, which is also the measure of the surface of a sphere.

Cor. 4. Two zones upon equal spheres are to each other as their altitudes, and any zone is to the surface of its sphere as the altitude of the zone is to the diameter of the sphere.

Cor. 5. Let R denote the radius of a sphere, D its diameter, C

the circumference of a great circle, and S the surface of a sphere; then we shall have

 $C=2\pi R$, or πD (B. VI., Pr. 13, Cor. 2).

Also

 $S=2\pi R \times 2R=4\pi R^2$, or πD^2 .

If H represents the altitude of a zone, its area will be $2\pi RH$.

PROPOSITION VIII. THEOREM.

The volume of a sphere is equal to one third the product of its surface by the radius.

Let ACEG be the semicircle by the revolution of which the sphere is described. Inscribe in the semicircle a regular semi-polygon ABCDEFG, and draw the radii BO, CO, DO, etc.

The solid described by the revolution of the polygon ABCDEFG about AG is composed of the solids formed by the revolution of the triangles ABO, BCO, CDO, etc., about AG.

First. To find the value of the solid formed by the revolution of the triangle ABO.

From O draw OH perpendicular to AB, and from B draw BK perpendicular to AO. The two triangles ABK, BKO, in their revolution about AO, will describe two cones having a common base, viz., the circle whose radius is BK.

The solid described by the triangle ABO will then be represented by $\frac{1}{3}\pi R^2H$, or $\frac{1}{3}\pi BK^2 \times AO$ (Prop. 5, Cor. 2).

But, by similar triangles,

BK:BA::HO:AO;

therefore

 $BK \times AO = HO \times AB;$

or, multiplying by $\frac{\pi}{3}$ BK, we have

 $\frac{1}{3}\pi BK^2 \times AO = \frac{1}{3}HO \times \pi AB \times BK$.

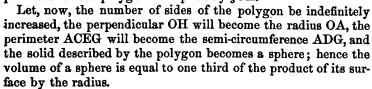
But the surface described by $AB = \pi AB \times BK$ (Prop. 3, Cor.).

Hence the solid described by the triangle ABO is equal to $\frac{1}{2}$ HO×the surface described by AB.

Secondly. To find the value of the solid formed by the revolution of the triangle BCO.

Produce BC until it meets AG produced in L. It is evident, from the preceding demonstration, that the solid described by the triangle LCO is equal to

¹30M × surface described by LC;


C

and the solid described by the triangle LBO is equal to

¹/₃OM× surface described by LB; hence the solid described by the triangle BCO is equal to

 $\frac{1}{3}$ OM × surface described by BC.

In the same manner, it may be proved that N the solid described by the triangle CDO is equal D to $\frac{1}{2}$ ON × surface described by CD, and so on for the other triangles. But the perpendiculars OH, OM, ON, etc., are all equal; hence the solid described by the polygon ABC DEFG is equal to the surface described by the perimeter of the polygon multiplied by $\frac{1}{4}$ OH.

Cor. 1. The volume of a spherical sector is equal to the product of the zone which forms its base by one third of the radius of the sphere.

For the solid described by the revolution of BCDO is equal to the surface described by BC+CD multiplied by $\frac{1}{2}$ OM.

But when the number of sides of the polygon is indefinitely increased, the perpendicular OM becomes the radius OB, the quadrilateral BCDO becomes the sector BDO, and the solid described by the revolution of BCDO becomes a spherical sector. Hence the volume of a spherical sector is equal to the product of the zone which forms its base by one third of the radius of the sphere.

Cor. 2. Let R represent the radius of a sphere, D its diameter, S its surface, and V its volume; then we shall have

$$S=4\pi R^2$$
, or πD^2 (Pr. 7, Cor. 5).

Also $V = \frac{1}{3}R \times S = \frac{4}{3}\pi R^3$, or $\frac{1}{6}\pi D^3$;

hence the volumes of spheres are to each other as the cubes of their radii.

If we put H to represent the altitude of the zone which forms the base of a sector, then the volume of the sector will be represented by $2\pi RH \times \frac{1}{4}R = \frac{2}{4}\pi R^2 H$.

Cor. 3. Every sphere is two thirds of the circumscribed cylinder

For, since the base of the circumscribed cylinder is equal to a great circle, and its altitude to a diameter, the volume of the cylinder is equal to a great circle multiplied by the diameter (Pr. 2).

But the volume of a sphere is equal to four great circles multiplied by one third of the radius, or one great circle multiplied by $\frac{4}{3}$ of the radius, or $\frac{2}{3}$ of the diameter. Hence a sphere is two thirds of the circumscribed cylinder.

PROPOSITION IX. THEOREM.

A spherical segment with one base is equivalent to half of a cylinder having the same base and altitude, plus a sphere whose diameter is the altitude of the segment.

3 T

Let BD be the radius of the base of the segment, AD its altitude, and let the segment be generated by the revolution of the circular half segment AEBD about the axis AC. Join CB, and from the centre C draw CF perpendicular to AB.

The solid generated by the revolution of the segment AEB is equal to the difference of the solids generated by the sector ACBE and the triangle ACB.

Now the solid generated by the sector ACBE is equal to

 $\frac{2}{3}\pi CB^2 \times AD$ (Pr. 8, Cor. 2).

And the solid generated by the triangle ACB, by Pr. 8, is equal to $\frac{1}{2}$ CF multiplied by the convex surface described by AB, which is 2π CF \times AD (Pr. 7), making, for the solid generated by the triangle ACB, $\frac{2}{3}\pi$ CF² \times AD.

Therefore the solid generated by the segment AEB is equal to

 $\frac{2}{3}\pi AD \times (CB^2 - CF^2),$ $\frac{2}{3}\pi AD \times BF^2;$

or that is,

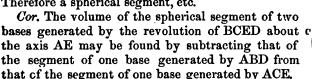
 $\frac{4}{3}\pi AD \times BF^2$; $\frac{1}{4}\pi AD \times AB^2$,

because CB²—CF² is equal to BF², and BF² is equal to one fourth of AB².

Now the cone generated by the triangle ABD is equal to $\frac{1}{3}\pi AD \times BD^2$ (Pr. 5, Cor. 2).

Therefore the spherical segment in question, which is the sum of the solids described by AEB and ABD, is equal to

 $\frac{1}{6}\pi AD(2BD^2 + AB^2);$


that is,

 $\frac{1}{6}\pi AD(3BD^2+AD^2)$,

because AB2 is equal to BD2+AD2.

This expression may be separated into the two parts $\frac{1}{2}\pi AD \times BD^2$, and $\frac{1}{6}\pi AD^3$.

The first part represents the volume of a cylinder having the same base with the segment and half its altitude (Pr. 2); the other part represents a sphere, of which AD is the diameter (Pr. 8, Cor. 2). Therefore a spherical segment, etc.

EXERCISES ON THE PRECEDING PRINCIPLES.

- 1. What is the entire surface of a triangular prism whose base is an equilateral triangle, having each of its sides equal to 17 inches, and its altitude 5 feet?
- 2. What is the entire surface of a regular triangular pyramid whose slant height is 15 feet, and each side of the base 4 feet?
- 3. What is the convex surface of the frustum of a square pyramid whose slant height is 14 feet, each side of the lower base being $3\frac{1}{2}$ feet, and each side of the upper base $2\frac{1}{2}$ feet?
- 4. What is the volume of a triangular prism whose height is 12 feet, and the three sides of its base 4, 5, and 6 feet?
- 5. What is the volume of a triangular pyramid whose altitude is 25 feet, and each side of the base 4 feet?
- 6. What is the volume of a piece of timber whose bases are squares, each side of the lower base being 14 inches, and each side of the upper base 12 inches, the altitude being 25 feet?
- 7. What is the entire surface of a cylinder whose altitude is 17 feet, and the diameter of its base 3 feet?
- 8. What is the entire surface of a cone whose side is 24 feet, and the diameter of its base 5 feet?
- 9. What is the entire surface of a frustum of a cone whose side is 18 feet, and the radii of the bases 5 feet and 4 feet?
- 10. What is the volume of a cylinder whose altitude is 16 feet, and the circumference of its base 5 feet?
- 11. What is the volume of a cone whose altitude is 13 feet, and the circumference of its base 7 feet?
- 12. What is the volume of a frustum of a cone whose altitude is 22 feet, the circumference of its lower base 18 feet, and that of the upper base 14 feet?

 I 2

- 13. What is the surface of a sphere, the circumference of its great circle being 40 feet?
- 14. What is the area of the surface of the earth, supposing it to be a sphere whose diameter is 7912 miles?
- 15. What is the convex surface of a zone whose altitude is 13 inches, upon a sphere whose diameter is 40 inches?
 - 16. What is the volume of a sphere whose diameter is 17 inches?
- 17. What is the volume of the earth, supposing it to be a sphere whose diameter is 7912 miles?
- 18. What is the volume of a spherical segment with one base, the diameter of the sphere being 12 feet, and the altitude of the segment 3 feet?
- 19. What is the surface of a regular tetraedron whose edge is 7 feet?
- 20. What is the volume of a regular tetraedron whose edge is 9 feet?
- 21. What is the edge of a regular tetraedron whose volume is 20 cubic feet?
- 22. The base of a rectangular parallelopiped is 3.42 feet by 4.36 feet, and its volume is 100 cubic feet; what is its altitude?
- 23. The volume of a parallelopiped is 366.4 cubic feet, and its altitude is 23.4 feet; what is the area of its base?
- 24. The sides of the base of a tetraedron are 13, 15, and 17 feet, and its altitude is 11 feet; required its volume.
- 25. What is the volume of a frustum of a regular triangular pyramid having a side of one base equal to 4 feet, and a side of the other base 3 feet, and the lateral edge equal to 3½ feet?
 - 26. The volume of a sphere is 1870 cubic feet; required its radius.
- 27. The edge of a cube is 30 inches; required the volume of the circumscribing sphere.
- 28. The side of a right cone is 22 feet, and its altitude 15 feet; required its lateral surface.
- 29. A stone obelisk has the form of a regular quadrangular pyramid, having a side of its base equal to 4 feet, and its slant height 13 feet. The density of the stone is 2.5 times that of water; what is its weight, assuming that a cubic foot of water weighs 62½ pounds.
- 30. Supposing the earth to be a sphere, and that a quadrant is equal to 32,800,000 feet, it is required to determine the radius of the earth, the area of its surface, its volume, and its weight, the mean density of the earth being 4.5 times that of water.

CONIC SECTIONS.

THERE are three curves whose properties are extensively applied in Astronomy and many other branches of Natural Philosophy, which, being the sections of a cone made by a plane in different positions, are called the *Conic Sections*. These are

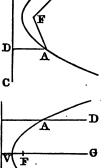
The Parabola, The Ellipse, and The Hyperbola.

PARABOLA.

Definitions.

1. A parabola is a plane curve, every point of which is equally distant from a given fixed point and a given straight line.

2. The fixed point is called the focus of the parabola, and the

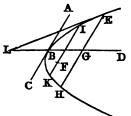

given straight line is called the directrix.

Thus, if a straight line BC, and a point without it, F, be given in position in a plane, and the point A be supposed to move in such a manner that AF, its distance from the given point, is always equal to AD, its perpendicular distance from the given line, the point A will describe a curve called a parabola.

3. Any straight line perpendicular to the directrix, terminated at one extremity by the parabola, and produced indefinitely within the curve, is called a *diameter*.

The vertex of a diameter is the point in H which it meets the parabola.

Thus, through any point of the curve, as E
A, draw a line DE perpendicular to the directrix BC; AD is a diameter of the parabola, and the point A is the vertex of this diameter.


D

4. The axis of the parabola is the diameter which passes through the focus, and the vertex of the axis is called the principal vertex.

Thus, through the focus F draw GH perpendicular to the directrix; GV is the axis of the parabola, and the point V, where the axis meets the curve, is called the principal vertex of the parabola, or simply the vertex.

It is evident, from Def. 1, that FV=VH; that is, a perpendicular drawn from the focus to the directrix is bisected at the vertex of the axis.

- 5. A tangent to the parabola is a straight line which meets the curve in one point only, and every where else falls without the curve.
- 6. An ordinate to a diameter is a straight line drawn from any point of the curve to meet that diameter, and is parallel to the tangent at its vertex.

Thus, let AC be a tangent to the parabola at B, the vertex of the diameter BD, and from any point E of the curve draw EGH parallel to AC; then is EG an ordinate to the diameter BD.

It is proved in Prop. 12 that EG is equal to GH; hence the entire line EH is sometimes called a double ordinate.

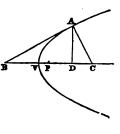
7. An abscissa is the part of a diameter intercepted between its vertex and an ordinate.

Thus BG is the abscissa of the diameter BD corresponding to the ordinate EG, and also to the point E of the curve.

8. A subtangent is that part of a diameter produced which is included between a tangent and an ordinate drawn from the point of contact.

Thus, let EL, a tangent to the curve at E, meet the diameter BD in the point L, and let the ordinate EG meet the same diameter in G; then LG is the subtangent of BD corresponding to the point E.

9. The parameter of a diameter is the double ordinate which passes through the focus.

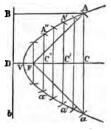

Thus, through the focus F draw IK parallel to AC, which touches the curve at the vertex of the diameter BD; then is IK the parameter of the diameter BD.

10. The parameter of the axis is called the principal parameter, or latus rectum.

11. A normal is a line drawn perpendicular to a tangent from the point of contact, and terminated by the axis.

12. A subnormal is the part of the axis included between the normal and an ordinate drawn from the same point of the curve.

Thus, let AB be a tangent to the parabola at any point A. From A draw AC perpendicular to AB, and draw AD an ordinate to the axis VC; then AC is the normal, and DC is the subnormal corresponding to the point A.*


PROPOSITION I. PROBLEM.

The focus and directrix of a parabola being given, to describe the curve.

FIRST METHOD. By points.

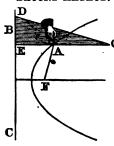
Let F be the focus, and Bb the directrix of a parabola. Through F draw DC perpendicular to Bb, and bisect FD in V; then, since DV=VF, V is a point on the curve, and CV is the axis of the parabola.

To find other points of the curve, draw any number of lines Aa, A'a', A"a", etc., perpendicular to CD; then, with the distances DC, DC', DC'', etc., as radii, and the focus F as a

centre, describe arcs intersecting the perpendiculars in A, A', A'', etc. The points A, A', A'', etc., in which the arcs cut the perpendiculars, are points of the curve.

For
$$FA = DC = AB$$
 (Def. 1).

We may thus determine as many points on the curve as we please, and the curve line which passes through all the points V, A, A', A", etc., will be the parabola whose focus is F, and directrix Bb.


Cor. The same radius determines two points of the curve, one above and one below the axis; and, since AF = aF, FC is common

^{*} The subtangent is so called because it is below the tangent, being limited by the tangent and ordinate to the point of contact. The subnormal is so called because it is below the normal, being limited by the normal and ordinate. The subtangent and subnormal may be regarded as the projections of the tangent and normal upon a diameter.

to the two triangles AFC, aFC, and the angles at C are right angles; therefore AC=aC; that is, every straight line terminated by the curve, and perpendicular to the axis, is bisected by it; and, consequently, the parabola consists of two equal branches similarly situated with respect to the axis.

Moreover, since the radius FA is always greater than FC, the arc described with F as a centre will always intersect the corresponding perpendicular, and there is therefore no limit to the distance to which the curve may extend on both sides of the axis.

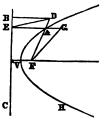
SECOND METHOD. By continuous motion.

Let BC be a ruler whose edge coincides with the directrix of the parabola, and let DEG be a square. Take a thread equal in length to EG, and attach one extremity of it at G, and the other at the focus F. Then slide the side of the square DE along the ruler BC, and at the same time keep the thread continually stretched by means of the point of a pencil A in contact with the square; the pencil will describe one part

of the required parabola. For, in every position of the square,

$$AF + AG = AE + AG$$
;

and hence


$$AF = AE$$
;

that is, the point A is always equally distant from the focus F and the directrix BC.

If the square be turned over and moved on the other side of the point F, the other part of the same parabola may be described.

PROPOSITION II. THEOREM.

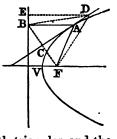
The distance of any point without the parabola from the focus is greater than its distance from the directrix; and the distance of any point within the parabola from the focus is less than its distance from the directrix.

Let AVH be a parabola, of which F is the focus, and BC the directrix; and let D be a point without the curve, that is, on the same side of the curve as the directrix. Then, if DF be joined, and BD be drawn perpendicular to BC, DF will be greater than DB.

For, as DF necessarily cuts the curve, let A be the point of section. Draw AE perpendic-

nlar to the directrix, and join DE. Then, because A is a point in the parabola, AE=AF (Def. 1); therefore DF=DA+AE; but DA+AE is greater than DE (B. I., Pr. 8), and therefore still greater than DB (B. I., Pr. 17). Therefore DF is greater than DB.

Again, let G be a point within the parabola. Then GF, a line drawn to the focus, is less than GE, a perpendicular to the directrix. The perpendicular GE necessarily cuts the curve; let A be the point of section, and join AF. Then AF=AE (Def. 1), and GA+AF=GE. But GF is less than GA+AF, therefore GF is less than GE.


Cor. A point is without or within the parabola according as its distance from the focus is greater or less than its distance from the directrix.

PROPOSITION III. THEOREM.

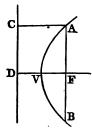
The straight line which bisects the angle contained by two lines drawn from the same point in the curve, the one to the focus and the other perpendicular to the directrix, is a tangent to the parabola at that point.

Let A be any point of the parabola AV, from which draw the line AF to the focus, and AB perpendicular to the directrix, and draw AC bisecting the angle BAF; AC is a tangent to the curve at the point A.

Let D be any other point in the line AC, from which draw DB, DF. Also draw DE perpendicular to the directrix, and join BF. Since, in the two triangles, ACB, ACF, AF

is equal to AB (Def. 1), AC is common to both triangles, and the angle CAB is, by supposition, equal to the angle CAF; therefore CB is equal to CF, and the angle ACB to the angle ACF.

Again, in the two triangles DCB, DCF, because BC is equal to CF, the side DC is common to both triangles, and the angle DCB is equal to the angle DCF; therefore DB is equal to DF. But DB is greater than DE (B. I., Pr. 17); therefore the distance of the point D from the focus is greater than its distance from the directrix; hence that point is without the parabola (Pr. 2, Cor.). Therefore every point of the line DC, except A, is without the curve; that is, DC is a tangent to the curve at A (Def. 5).


Cor. 1. Since the angle BAF continually increases as the point A moves toward V, and at V becomes equal to two right angles,

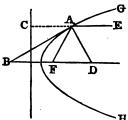
the tangent at the principal vertex is perpendicular to the axis. The tangent at the vertex V is called the vertical tangent.

Cor. 2. Since an ordinate to any diameter is parallel to the tangent at its vertex, an ordinate to the axis is perpendicular to the axis.

PROPOSITION IV. THEOREM.

The latus rectum is equal to four times the distance from the focus to the vertex.

Let AVB be a parabola, of which F is the focus, and V the principal vertex; then the latus rectum AFB will be equal to four times FV.


Let CD be the directrix, and let AC be drawn perpendicular to it; then, according to Def. 1, AF is equal to AC or DF, because ACDF is a parallelogram. But DV is equal to VF; that is, DF is equal to twice VF. Hence AF is equal to twice VF. In the same manner, it may be

proved that BF is equal to twice VF; consequently, AB is equal to four times VF. Therefore the latus rectum, etc.

PROPOSITION V. THEOREM.

If a tangent to the parabola cut the axis produced, the points of contact and of intersection are equally distant from the focus.

Let AB be a tangent to the parabola GAH at the point A, and let it cut the axis produced in B; also, let AF be drawn to the focus; then will the line AF be equal to BF.

Draw AC perpendicular to the directrix; then, since AC is parallel to BF, the angle BAC is equal to ABF. But the angle BAC is equal to BAF (Pr. 3); hence the angle ABF is equal to BAF, and, consequently, AF is equal to BF. Therefore, if a tangent, etc.

Cor. 1. Let the normal AD be drawn.

H Then, because BAD is a right angle, it is

equal to the sum of the two angles ABD, ADB, or to the sum of the two angles BAF, ADB. Take away the common angle BAF, and we have the angle DAF equal to ADF. Hence the line AF is equal to FD. Therefore, if a circle be described with the centre F and radius FA, it will pass through the three points B, A, D.

Cor. 2. The normal bisects the angle made by the diameter at the point of contact with the line drawn from that point to the focus.

For, because BD is parallel to CE, the alternate angles ADF, DAE are equal. But the angle ADF has been proved equal to DAF; hence the angles DAF, DAE are equal to each other.

Scholium. It is a law in Optics that the angle made by a ray of reflected light with a perpendicular to the reflecting surface is equal to the angle which the incident ray makes with the same perpendicular. Hence, if GAH represent a polished surface whose figure is that produced by the revolution of a parabola about its axis, a ray of light falling upon it in the direction EA would be reflected to F. The same would be true of all rays parallel to the axis. Hence the point F, in which all the rays would intersect each other, is called the focus, or burning point.

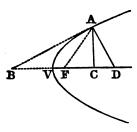
PROPOSITION VI. THEOREM.

The subtangent to the axis is bisected by the vertex.

Let AB be a tangent to the parabola ADV at the point A, and AC an ordinate to the axis; then will BC be the subtangent, and it will be bisected at the vertex V.

For BF is equal to AF (Pr. 5), and AF is equal to CE, which is the distance of the point A from the directrix.

That is, But BF=CE. FV=EV.


Therefore the remainder BV=the remainder CV.

- Cor. 1. Hence the tangent at D, the extremity of the latus rectum, meets the axis in E, the same point with the directrix. For, by Def. 8, EF is the subtangent corresponding to the tangent DE.
- Cor. 2. Hence, if it is required to draw a tangent to the curve at a given point A, draw the ordinate AC to the axis. Make BV equal to VC; join the points B, A, and the line BA will be the tangent required.

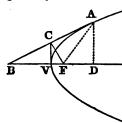
PROPOSITION VII. THEOREM.

The subnornal is equal to half the latus rectum.

Let AB be a tangent to the parabola AV at the point A; let

AC be the ordinate, and AD the normal from the point of contact; then CD is the subnormal, and is equal to half the latus rectum.

For the distance of the point A from the focus is equal to its distance from the directrix, which is equal to VF+VC, or 2VF+FC; that is,


FA=2VF+FC

But Hence FA=FD (Pr. 5, Cor. 1). FD=2VF+FC.

Taking away the common part FC, the remainder CD=2VF, which is equal to half the latus rectum (Pr. 4).

PROPOSITION VIII. THEOREM.

If a perpendicular be drawn from the focus to any tangent, the point of intersection will be in the vertical tangent.

Let AB be any tangent to the parabola AV, and FC a perpendicular let fall from the focus upon AB; join VC; then will the line VC be a tangent to the curve at the vertex V.

Draw the ordinate AD to the axis. Since FA is equal to FB (Pr. 5), and FC is drawn perpendicular to AB, it divides the triangle AFB into two equal parts, and

therefore AC is equal to BC. But BV is equal to VD (Pr. 6); hence BC: CA::BV: VD, and therefore CV is parallel to AD (B. IV., Pr. 16). But AD is

and therefore CV is parallel to AD (B. IV., Pr. 16). But AD is perpendicular to the axis BD; hence CV is also perpendicular to the axis, and is a tangent to the curve at the point V (Pr. 3, Cor. 1). Therefore, if a perpendicular, etc.

Cor. 1. Because the triangles FVC, FCA are similar, we have FV: FC:: FC: FA;

that is, the perpendicular from the focus upon any tangent is a mean proportional between the distances of the focus from the vertex and from the point of contact.

Cor. 2. From Cor. 1 we have $FC^2 = FV \times FA$.

But FV remains constant for the same parabola; therefore the square of the perpendicular from the focus to any tangent varies as the distance from the focus to the point of contact.

PROPOSITION IX. THEOREM.

The square of an ordinate to the axis is equal to the product of the latus rectum by the corresponding abscissa.

Let AVC be a parabola, and A any point of the curve. From A draw the ordinate AB; then is the square of AB equal to the product of VB by the latus rectum.

Draw the tangent AT and the normal AD. Since TAD is a right angle, and AB perpendicular to TD,

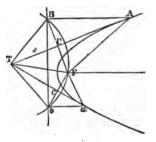
 $AB^2 = TB \times BD$ (B. IV., Pr. 23).

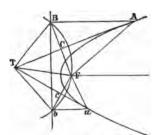
But TB=2VB (Pr. 6),

and BD=2VF (Pr.7). Therefore $AB^2=4VB\times VF$,

or $=VB\times$ the latus rectum (Pr. 4).

Cor. 1. Since the latus rectum is constant for the same parabola, the squares of ordinates to the axis are to each other as their corresponding abscissas.


Cor. 2. The preceding demonstration is equally applicable to ordinates on either side of the axis; hence AB is equal to BC, and AC is called a *double ordinate*. The curve is composed of two branches of unlimited extent, which recede continually from the axis as well as from the directrix.


PROPOSITION X. THEOREM.

If two tangents to the parabola intersect each other, and lines be drawn from the focus to the points of contact and to the point of intersection, the two triangles thus formed will be similar to each other.

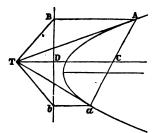
Let two lines which touch the parabola at A and a intersect each other at T; from the focus draw FA, FT, and Fa; the two triangles TFA, TFa are similar.

Draw AB and ab perpendicular to the directrix Bb, and join TB, Tb, and BF. The two triangles ACB, ACF are equal to each other, since AB is equal to AF, AC is common to the two tri-

angles, and the angle CAB is equal to CAF (Pr. 3); therefore the angles at C are right angles, and BC is equal to CF.

Also, the two triangles TCB, TCF are equal, since BC is equal to CF, TC is common to both triangles, and the angles at C are equal; therefore TF is equal to TB.

In the same manner, it may be proved angle FTa is equal to bTa and a cir-


that TF is equal to Tb, the angle FTa is equal to bTa, and a circle described from the centre T, with radius TF, will pass through B and b.

The angle FBb is equal to the angle CAB, since each is the complement of ABC; also, the angle BAC is equal to FAC (Pr. 3); therefore the angle FAC is equal to FBb. But the angle FBb is half the angle FTb (B. III., Pr. 15, Cor. 2), and is therefore equal to the angle FTa. Therefore the angle FAT is equal to the angle FTa.

In the same manner, it may be proved that the angle ATF is equal to FaT. Therefore the remaining angle TFA is equal to the angle TFa, and the triangle AFT is similar to the triangle aFT.

PROPOSITION XI. THEOREM.

If two tangents to a parabola be drawn at the extremities of a chord, the diameter which passes through their point of intersection will bisect the chord.

Let two lines which touch the parabola at A and a intersect each other at T, and from T let TC be drawn perpendicular to the directrix Bb, meeting the chord Aa in C; then Aa will be bisected in C.

Draw AB, ab perpendicular to the directrix; join TB, Tb, and let TC meet Bb in D.

The two triangles TDB, TDb are equal, since TB is equal to Tb (Pr. 10), TD is common to the two triangles, and the angles at D are right angles; therefore BD is equal to bD.

Because the lines AB, CD, ab are parallel, we have AC: Ca::BD:Db.

But BD=Db; therefore AC=Ca; that is, Aa is bisected in C.

PROPOSITION XII. THEOREM.

If two tangents to a parabola be drawn at the extremities of a chord, and a diameter be drawn through their point of intersection, the tangent at its vertex will be parallel to the chord.

If from a point T two tangents TA, Ta be drawn to a parabola, and TC be drawn parallel to the axis, meeting the parabola in C, the tangent -BCb will be parallel to the chord Aa.

Let the tangent BCb meet TA, Ta in B and b. Join AC, and draw BD parallel to the axis, meeting AC in D.

Because BD is parallel to TC, we

have But

TB:BA::CD:DA. CD=DA (Pr. 11); therefore TB=BA.

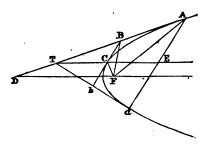
For the same reason, Tb = ba.

Therefore TB: BA:: Tb:ba, and Bb is parallel to Aa (B. IV., Pr. 16).

Cor. 1. Since AE is parallel to the tangent BC, it is an ordinate to the diameter CE; and since Aa is bisected in E (Pr. 11), Aa is a double ordinate to CE. Hence every diameter bisects its double ordinates.

Cor. 2. Since BC is parallel to AE, we have TC:CE::TB:BA.

But TB=BA; therefore TC=CE; that is, the subtangent upon any diameter is bisected at the vertex of that diameter.


PROPOSITION XIII.

The square of an ordinate to any diameter is equal to four times the product of the corresponding abscissa by the distance from the vertex of that diameter to the focus.

Let AE be an ordinate to the diameter CE; then $AE^2 = 4CE \times CF$.

Produce AE to meet the parabola in a, and draw the tangents TA, Ta, meeting CE produced in the point T (Pr. 12). Let the tangent at C meet TA in B, and join FA, FB, and FC.

Now, since from the point B two tangents BA, BC are drawn

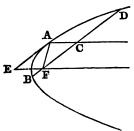
to the parabola, the triangle BCF is similar to the triangle BFA (Pr. 10); therefore the angle CBF is equal to BAF. But BAF is equal to BDF (Pr. 3), which equals BTC; therefore the angle CBF is equal to BTC. Also, the angle FCb is equal to TCb; therefore their supplements are equal; that

is, FCB is equal to BCT. Therefore the remaining angle BFC is equal to the remaining angle CBT, and the triangle BCF is similar to BCT. Hence CF: CB::CB:CT,

 $CB^2 = CT \times CF = CE \times CF$ (Pr. 12, Cor. 2).

Also, since AE is parallel to BC, we have

AE:BC::ÉT:CT.


But E's

or

ET=2CT (Pr. 12, Cor. 2); therefore AE=2BC; AE=4BC=4CE \times CF.

PROPOSITION XIV. THEOREM.

The parameter of any diameter is equal to four times the distance from its vertex to the focus.

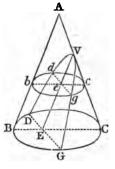
Let BAD be a parabola, of which F is the focus, AC is any diameter, and BD its parameter; then is BD equal to four times AF.

Draw the tangent AE; then, since AE FC is a parallelogram, AC is equal to EF, which is equal to AF (Pr. 4).

Now, by Pr. 13, BC² is equal to $4AF \times AC$; that is, to $4AF^2$. Hence BC is equal to twice AF, and BD is equal to four

times AF. Therefore the parameter of any diameter, etc.

Cor. Hence the square of an ordinate to any diameter is equal to the product of its parameter by the corresponding abscissa (Pr. 13).


PROPOSITION XV. THEOREM.

If a cone be cut by a plane parallel to its side, the section is a parabola.

Let ABGCD be a cone cut by a plane VDG parallel to the slant side AB; then will the section DVG be a parabola.

Let ABC be a plane section through the axis of the cone, and perpendicular to the plane VDG; then VE, which is their common section, will be parallel to AB (B. VII., Pr. 12). Let bgcd be a plane parallel to the base of the cone; the intersection of this plane with the cone will be a circle.

Since the plane ABC divides the cone into two equal parts, BC is a diameter of the circle BGCD, and bc is a diameter of the circle bgcd. Let DEG, deg be the common sections of the plane VDG with the planes BGCD,

bgcd respectively. Then DG is perpendicular to the plane ABC (B. VII., Pr. 8), and, consequently, to the lines VE, BC. For the same reason, dg is perpendicular to the two lines VE, bc.

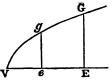
Now, since be is parallel to BE, and bB to eE, the figure bBEe is a parallelogram, and be is equal to BE. But, because the triangles Vec, VEC are similar, we have

and, multiplying the first and second terms of this proportion by the equals be and BE, we have

 $be \times ec : BE \times EC :: Ve : VE$.

But, since bc is a diameter of the circle bgcd, and de is perpendicular to bc (B. IV., Pr. 23, Cor.), $be \times ec = de^2$.

For the same reason, $BE \times EC = DE^2$.


Substituting these values of $be \times ec$, and $BE \times EC$ in the preceding proportion, we have

 de^2 : DE²:: Ve: VE;

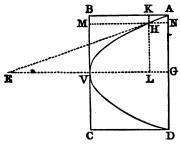
that is, the squares of the ordinates are to each other as the corresponding abscissas, and hence the curve is a parabola whose axis is VE (Pr. 9, Cor. 1). Hence the parabola is called a *conic section*, as mentioned on page 203.

Schol. 1. The conclusion that DVG is a parabola would not be legitimate unless it was proved that the property that "the

squares of the ordinates are to each other as the corresponding abscissas" is *peculiar* to the parabola. That such is the case appears from the fact that, when the axis and one point of a parabola are given, this property will determine the position of every

other point of the curve. Thus, let VE be the axis of a parabola,

and g any point of the curve, from which draw the ordinate ge. Take any other point in the axis, as E, and make GE of such a $Ve: VE:: ge^2: GE^2$. length that


Since the first three terms of this proportion are given, the fourth is determined, and the same proportion will determine

any number of points of the curve.

Schol. 2. AB, AC, the sides of the cone, may be conceived to be indefinitely extended, until the height of the cone ABC is infinite. If the plane DVG be also indefinitely extended, the two branches of the parabola DVG will extend to an infinite distance from V, and will also recede to an infinite distance from the axis, as stated in Prop. 9, Cor. 2.

PROPOSITION XVI.

A segment of a parabola cut off by a double ordinate to the axis is two thirds of its circumscribing rectangle.

Let AVD be a segment of a N parabola cut off by the straight line AD perpendicular to the axis. Through V draw the tangent BC; also, draw AB, CD parallel to the axis; then will the parabolic segment AVD be two thirds of the rectangle ABCD.

Let H be a point of the curve near to A, and through A and H

Also, through H draw KL perpendraw the secant line AHE. dicular, and MN parallel to the axis.

The area of the trapezoid AHLG is equal to ½(AG+HL)HN, (B. IV., Pr. 7); and the area of the trapezoid ABMH is equal to $\frac{1}{2}(AB+MH)AN$. Hence we have

> AHLG: ABMH:: (AG+HL)HN: (AB+MH)AN, :: (AG + HL)EG : (AB + MH)AG,

EG: AG:: HN: AN. because

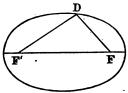
If, now, we suppose the point H to move toward A, the secant line AHE will approach the position of a tangent to the curve at A, and will coincide with the tangent when H coincides with A. When this takes place, AG will be equal to HL, and AB to MH; also, EG will be double of VG or AB (Pr. 6). We shall then have

$$\frac{AHLG}{ABMH} = \frac{2AG.EG}{2AB.AG} = \frac{EG}{AB} = 2.$$

Hence the portion of the parabola included between two ordinates indefinitely near is double of the corresponding portion of the external space ABV. The same may be proved for every point of the curve, and hence the whole space AVG is double the space ABV. Whence AVG is two thirds of ABVG, and the parabolic segment AVD is two thirds of the circumscribing rectangle ABCD. Therefore a segment, etc.

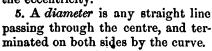
EXERCISES ON THE PARABOLA.

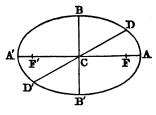
- 1. The diameter of the circle described about the triangle AVB is equal to 5FV. (See fig., Pr. 4.)
- 2. If from the point D, DE be drawn at right angles to FA, then AE is equal to 2VF. (See fig., Pr. 7.)
- 3. If the triangle ADF is equilateral, then AF is equal to the latus rectum. (See fig., Pr. 7.)
- 4. If AB is a common tangent to a parabola, and the circle described on the latus rectum as a diameter, prove that AF and BF make equal angles with the latus rectum.
- 5. If the tangent AC meets the directrix in G, prove that AC, AG=AF², and that AC.CG=AF.FV. (See fig., Pr. 3.)
- 6. If AE be drawn at right angles to AV, meeting the axis in E, then CE is equal to 4VF. (See fig., Pr. 7.)
- 7. The tangent at any point of a parabola meets the directrix and latus rectum produced in points equally distant from the focus.
- 8. Prove that BC=CD, and that BA.BC=BF.BD. (See fig., Pr. 8.)
- 9. If a circle be described about the triangle AFC, the tangent to it from V is equal to one half AC. (See fig., Pr. 7.)
- 10. If the ordinate of a point A bisect the subnormal of a point B, the ordinate of A is equal to the normal of B.
- 11. If from any point on the tangent to a parabola a line be drawn touching the parabola, the angle between this line and the line to the focus from the same point is constant.
- 12. If the diameter AC meets the directrix in G, and the chord drawn through the focus parallel to the tangent at A in C, prove that AC=AG. (See fig., Pr. 14.)
- 13. Required the area of a segment of a parabola cut off by a chord 15 inches in length, perpendicular to the axis, the corresponding abscissa of the axis being 21 inches.
- 14. An ordinate to the axis of a parabola is 9 inches, and the corresponding abscissa is 10 inches; required the latus rectum.


- 15. An ordinate to a diameter of a parabola is 12 inches, and the corresponding abscissa is 5 inches; required the parameter of that diameter.
- 16. The latus rectum of a parabola is 20 inches; required the area of the segment cut off by a double ordinate to the axis when the corresponding abscissa is 30 inches.
- 17. The latus rectum of a parabola is 9. What is the ordinate to the axis corresponding to the abscissa 4?
- 18. The latus rectum of a parabola is 10 inches. Find the ordinate to the axis corresponding to that point of the curve from which, if a tangent and normal be drawn, they will form with the axis a triangle whose area is 36 inches.
- 19. The latus rectum of a parabola is 15, and a tangent is drawn through the point whose ordinate to the axis is 4. Determine where the tangent line meets the axis produced.
- 20. The latus rectum of a parabola is 12, and a tangent is drawn through the point whose ordinate to the axis is 7. Determine where the normal line passing through the same point meets the axis.

ELLIPSE.

Definitions.

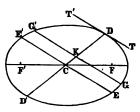

- 1. An ellipse is a plane curve traced out by a point which moves in such a manner that the sum of its distances from two fixed points is always the same.
 - 2. The two fixed points are called the foci of the ellipse.


Thus, if F and F' are two fixed points, and if the point D moves about F in such a manner that the sum of its distances from F and F' is always the same, the point D will describe an ellipse, of which F and F' are the foci.

- 3. The centre of the ellipse is the middle point of the straight line joining the foci.
- 4. The eccentricity is the distance from either focus to the centre.

Thus, let F and F' be the foci of the ellipse ABA'B'. Draw the line FF', and bisect it in C. The point C is the centre of the ellipse, and CF or CF' is the eccentricity.

6. The extremities of a diameter are called its vertices.


Thus, through C draw any straight line DD' terminated by the curve; DD' is a diameter of the ellipse; D and D' are the vertices of that diameter.

- 7. The major axis is the diameter which passes through the foci.
- 8. The *minor axis* is the diameter which is perpendicular to the major axis.

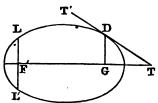
Thus, produce the line FF' to meet the curve in A and A', and through C draw BB' perpendicular to AA'; then is AA' the major axis, and BB' the minor axis.

9. A tangent to an ellipse is a straight-line which meets the curve in one point only, and every where else falls without it.

10. An ordinate to a diameter is a straight line drawn from any point of the curve to the diameter, and is parallel to the tangent at one of its vertices.

Thus, let DD' be any diameter, and TT's tangent to the ellipse at D. From any point G of the curve draw GKG' parallel to TT', and cutting DD' in K; then is GK an ordinate to the diameter DD'. It is proved in Pr. 7 that the tangents at D and D' are parallel.

It is proved in Pr. 21, Cor. 1, that GK

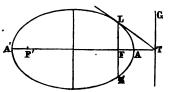

is equal to G'K; hence the entire line GG' is called a double ordinate.

11. Each of the parts into which a diameter is divided by an ordinate is called an abscissa.

Thus, DK and D'K are the abscissas of the diameter DD' corresponding to the ordinate GK, or to the point G.

12. One diameter is said to be *conjugate* to another when it is parallel to the ordinates of the other diameter.

Thus, draw the diameter EE' parallel to GK, an ordinate to the diameter DD', in which case it will, of course, be parallel to the tangent TT'; then is the diameter EE' conjugate to DD'.


13. The *latus rectum* is the double ordinate to the major axis which passes through one of the foci.

Thus, through the focus F' draw LL', a double ordinate to the major axis; it will be the latus rectum of the ellipse.

14. A subtangent is that part of an

axis produced which is included between a tangent and the ordinate drawn from the point of contact.

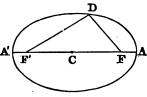
Thus, if TT' be a tangent to the curve at D, and DG an ordinate to the major axis, then GT is the corresponding subtangent.

15. The directrix of an ellipse is a straight line perpendicular to the major axis produced, and intersecting it in the same point with the tangent drawn through one extremity of the latus rectum.

Thus, if LT be a tangent drawn

through one extremity of the latus rectum LL', meeting the axis produced in T, and GT be drawn through the point of intersection perpendicular to the axis, it will be the directrix of the ellipse.

The ellipse has two directrices, one corresponding to the focus


F, and the other to the focus F'.

PROPOSITION I. THEOREM.

The sum of the two lines drawn from any point of an ellipse to the foci is equal to the major axis.

Let ADA' be an ellipse, of which F, F' are the foci, AA' is the major axis, and D any point of the curve; then will DF+DF' be equal to AA'.

For, by Def. 1, the sum of the distances of any point of the curve from the foci is equal to a given line. Now,

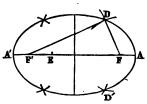
when the point D arrives at A, FA+F'A, or 2AF+FF' is equal to the given line. And when D is at A', FA'+F'A', or 2A'F'+FF' is equal to the same line. Hence

2AF+FF'=2A'F'+FF';

consequently,

AF is equal to A'F'.

Hence DF+DF', which is equal to AF+AF', must be equal to AA'. Therefore the sum of the two lines, etc.

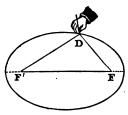

Cor. The major axis is bisected in the centre. For, by Def. 3, CF is equal to CF'; and we have just proved that AF is equal to A'F'; therefore AC is equal to A'C.

PROPOSITION II. PROBLEM.

The major axis and foci of an ellipse being given, to describe the curve.

FIRST METHOD. By points.

Let AA' be the major axis, and F, F' the foci of an ellipse. Take E any point between the foci, and from F and F' as centres, with the distances AE, A'E & as radii, describe two circles cutting each other in the point D; D will be a point on the ellipse. For, join FD,

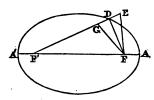


F'D; then DF+DF'=EA+EA'=AA'; and, at whatever point between the foci E is taken, the sum of DF and DF' will be equal to AA'. Hence, by Def. 1, D is a point on the curve; and, in the

same manner, any number of points in the ellipse may be determined.

Cor. The same circles determine two points of the curve D and D', one above and one below the major axis. It is also evident that these two points are equally distant from the axis; that is, the ellipse is symmetrical with respect to its major axis, and is bisected by it.

SECOND METHOD. By continuous motion.


Take a thread equal in length to the major axis of the ellipse, and fasten one of its extremities at F, the other at F'. Then let a pencil be made to glide along the thread, so as to keep it always stretched; the curve described by the point of the pencil will be an ellipse. For in every position of the pencil the sum of the dis-

tances DF, DF' will be the same, viz., equal to the entire length of the string.

Scholium. The ellipse is evidently a continuous and closed curve.

PROPOSITION III. THEOREM.

The sum of two lines drawn from any point without the ellipse to the foci is greater than the major axis; and the sum of two lines drawn from any point within the ellipse to the foci is less than the major axis.

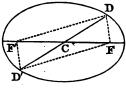
Let ADA' be an ellipse, of which F, F' are the foci, and AA' the major axis; and let E be a point without the ellipse. Join EF, EF'; the sum of EF and EF' will be greater than AA'.

Let EF', which must meet the ellipse, meet it in D; then DE+EF is

greater than DF (B. I., Pr. 8). Adding DF' to these unequals, we have EF+EF' greater than DF+DF'; that is, than AA'.

' Again, let G be a point within the ellipse; then GF+GF' will be less than AA'.

Let F'G, which must meet the curve if produced beyond G, meet it in D, and join DF. The line GF is less than DG+DF (B. I., Pr. 8). Adding GF' to these unequals, we have GF+GF' less than DF+DF'; that is, less than AA'. Therefore the sum, etc.

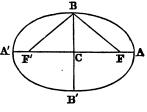

Cor. A point is without or within the ellipse according as the sum of two lines drawn from it to the foci is greater or less than the major axis.

PROPOSITION IV. THEOREM.

Every diameter of an ellipse is bisected in the centre.

Let D be any point of an ellipse; join DF, DF', and FF'. Complete the parallelogram DFD'F', and join DD'.

Now, because the opposite sides of a parallelogram are equal, the sum of DF and DF is equal to the sum of D'F and D'F'; hence D' is a point in the ellipse.


But the diagonals of a parallelogram bisect each other; therefore FF' is bisected in C; that is, C is the centre of the ellipse, and DD' is a diameter bisected in C. Therefore every diameter, etc.

PROPOSITION V. THEOREM.

The distance from either focus to the extremity of the minor axis is equal to half the major axis.

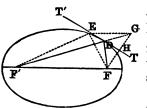
Let F and F' be the foci of an ellipse, AA' the major axis, and BB' the minor axis; draw the straight lines BF, BF'; then BF, BF' are each equal to AC.

In the two right-angled triangles BCF, BCF', CF is equal to CF', and BC is common to both triangles;

hence BF is equal to BF'. But BF+BF' is equal to 2AC (Pr. 1); consequently, BF and BF' are each equal to AC. Therefore the distance, etc.

Cor. 1. Half the minor axis is a mean proportional between the parts into which either focus divides the major axis.

For BC² is equal to BF²-FC² (B. IV., Pr. 11), which is equal to AC²-FC² (Pr. 5). Hence (B. IV., Pr. 10)


$$BC^2 = (AC + FC) \times (AC - FC)$$

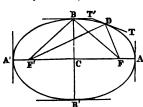
= $AF' \times AF$; and, therefore,
 $AF : BC :: BC :: FA'$.

Cor. 2. The square of the eccentricity is equal to the difference of the squares of the semi-axes.

For FC² is equal to BF²-BC², which is equal to AC²-BC².

PROPOSITION VI. THEOREM.

A tangent to the ellipse makes equal angles with straight lines drawn from the point of contact to the foci.



Let F, F' be the foci of an ellipse, and D any point of the curve; if through the point D the line TT' be drawn, making the angle TDF equal to T'DF', then will TT' be a tangent to the ellipse at D.

Let E be any point in the line TT different from D. Produce F'D to G,

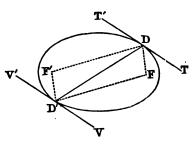
making DG equal to DF, and join EF, EF', EG and FG.

Now, in the two triangles DFH, DGH, because DF is equal to DG, DH is common to both triangles, and the angle FDH is, by supposition, equal to F'DT', which is equal to the vertical angle GDH; therefore HF is equal to HG, and the angle DHF is equal to the angle DHG. Hence the line TT' is perpendicular to FG at its middle point; and, therefore, EF is equal to EG. Hence EF+EF' is equal to EG+EF'. But EG+EF' is greater than GF'; that is, greater than FD+F'D, which is equal to the major axis of the ellipse; therefore EF+EF' is greater than the major axis, and hence the point E is without the ellipse (Pr. 3, Cor.). Therefore every point of the line TT' except D is without the curve; that is, TT' is a tangent to the curve at D.

Cor. 1. As the point D moves toward A, each of the angles FDT, F'DT increases, and at A becomes a right angle. Hence the tangents at the vertices of the major axis are perpendicular to that axis. Also, since the angle FBC is equal to F'BC (Pr. 5), the tangents at the vertices of the

minor axis are perpendicular to that axis, and hence an ordinate to either axis is perpendicular to that axis.

Cor. 2. If TT' represent a plane mirror, a ray of light proceeding from F in the direction FD would be reflected in the direction DF', making the angle of reflection equal to the angle of incidence. And, since the ellipse may be regarded as coinciding with a tangent at the point of contact, if rays of light proceed from one focus of a polished concave surface whose figure is that


produced by the revolution of an ellipse about its major axis, they will all be reflected to the other focus. For this reason, the points F, F' are called the *foci*, or burning points.

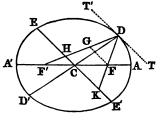
PROPOSITION VII. THEOREM.

Tangents to the ellipse at the vertices of any diameter are parallel to each other.

Let DD' be any diameter of an ellipse, and TT', VV' tangents to the curve at the points D, D'; then will they be parallel to each other.

Join DF, DF', D'F, D'F'; then, by the preceding Proposition, the angle FDT is equal to F'DT', and the angle FD'V is equal to F'DV'. But, by Pr. 4,

DFD'F' is a parallelogram; and, since the opposite angles of a parallelogram are equal, the angle FDF' is equal to FD'F'; therefore the angle FDT is equal to F'D'V' (B. I., Pr. 2). Also, since FD is parallel to F'D', the angle FDD' is equal to F'D'D; hence the whole angle D'DT is equal to DD'V'; and, consequently, TT' is parallel to VV'. Therefore tangents, etc.


Cor. If tangents are drawn through the vertices of any two diameters, they will form a parallelogram circumscribing the ellipse.

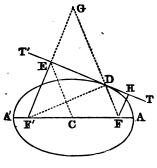
PROPOSITION VIII. THEOREM.

If from the vertex of any diameter straight lines are drawn through the foci, meeting the conjugate diameter, the part intercepted by the conjugate is equal to half the major axis.

Let EE' be a diameter conjugate to DD', and let the lines DF, DF' be drawn, and produced, if necessary, so as to meet EE' in H and K; then will DH or DK be equal to AC.

Draw FG parallel to EE' or TT'. Then the angle DGF is equal to the alternate angle F'DT', and the angle DFG is equal to FDT. But the

angles FDT, F'DT' are equal to each other (Pr. 7); hence the angles DGF, DFG are equal to each other, and DG is equal to DF.


Also, because CH is parallel to FG, and CF is equal to CF', therefore HG must be equal to HF'.

Hence FD+F'D is equal to 2DG+2GR or 2DH. But FD+F'D is equal to 2AC. Therefore 2AC is equal to 2DH, or AC is equal to DH.

Also, the angle DHK is equal to DKH, and hence DK is equal to DH or AC. Therefore, if from the vertex, etc.

PROPOSITION IX. THEOREM.

Perpendiculars drawn from the foci upon a tangent to the ellipse meet the tangent in the circumference of a circle whose diameter is the major axis.

Let TT' be a tangent to the ellipse at D, and from F' draw F'E perpendicular to T'T; the point E will be in the circumference of a circle described upon AA' as a diameter.

Join CE, FD, F'D, and produce F'E to meet FD produced in G.

Then, in the two triangles DEF', DEG, because DE is common to both triangles, the angles at E are equal, being right angles; also, the angle EDF' is equal to FDT (Pr. 6), which

is equal to the vertical angle EDG; therefore DF' is equal to DG, and EF' is equal to EG.

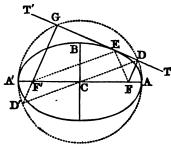
Also, because F'E is equal to EG, and F'C is equal to CF, CE must be parallel to FG, and, consequently, equal to half of FG.

But, since DG has been proved equal to DF', FG is equal to FD+DF', which is equal to AA'. Hence CE is equal to half of AA' or AC; and a circle described with C as a centre, and radius CA, will pass through the point E.

The same may be proved of a perpendicular let fall upon TT from the focus F. Therefore perpendiculars, etc.

Cor. CE is parallel to DF; and, if CH be joined, CH will be parallel to DF'.

PROPOSITION X. THEOREM.


The product of the perpendiculars let fall from the foct upon a tangent is equal to the square of half the minor axis.

Let TT' be a tangent to the ellipse at any point E, and let the

perpendiculars FD, F'G be drawn from the foci; then will the product of FD by F'G be equal to the square of BC.

On AA' as a diameter, describe a circle; it will pass through the points D and G (Pr. 9).

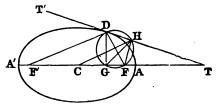
Produce GF' to meet the circle in D', and join DD'; then, since the angle at G is a right angle, DD' passes through the centre C.

Because FD and D'G are perpendicular to the same straight line, they are parallel to each other, and the alternate angles CFD, CF'D' are equal. Also, the vertical angles DCF, D'CF' are equal, and CF is equal to CF'. Therefore DF is equal to D'F'; hence DF \times GF' is equal to D'F' \times GF', which is equal to A'F' \times F'A (B. IV., Pr. 28), which is equal to BC² (Pr. 5, Cor. 1).

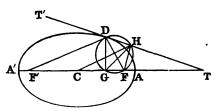
Cor. The triangles FDE, F'GE are similar; hence

FD: F'G:: FE: F'E;

that is, perpendiculars let fall from the foci upon a tangent are to each other as the distances of the point of contact from the foci.


PROPOSITION XI. THEOREM.

If a tangent and ordinate be drawn from the same point of an ellipse, meeting either axis produced, half of that axis will be a mean proportional between the distances of the two intersections from the centre.

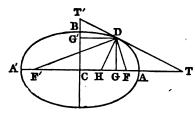

1st. For the major axis.

Let TT' be a tangent to the ellipse, and DG an ordinate to the major axis from the point of contact; then we shall have CT: CA:: CA:: CG.

From F draw FH perpendicular to TT'; join DF, DF', CH and GH. Then, by Pr. 9, Cor., CH is parallel to DF'. Also, since DGF, DHF are both right angles, a circle described on DF as a di-

ameter will pass through the points G and H. Therefore the angle HGF is equal to the angle HDF (B. III., Pr. 15, Cor. 1),

which is equal to T'DF' or DHC. Hence the angles CGH and CHT, which are the supplements of H GF and DHC are equal; and, since the angle C is common to the two triangles CGH, CHT, these tri-


angles are equiangular, and we have

CT: CH:: CH: CG.

But CH is equal to CA (Pr. 9); therefore CT: CA: CA: CG.

2d. For the minor axis.

Let the tangent TT' meet the minor axis in T', and let DG' be an ordinate to the minor axis from the point of contact; then we shall have CT': CB:: CB: CG'.

Draw DH perpendicular to TT', and it will bisect the angle FDF' (Pr. 6). Hence HF': HF:: DF': DF

:: TF': TF (Pr. 10, Cor.).

Therefore (B. II., Pr. 8) 2CF: 2CH:: 2CT: 2CF.

Whence $CT \times CH = CF^2$.

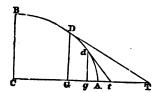
But we have proved that

$$CT \times CG = CA^2$$
.

Subtracting the former from the latter, we have $CT \times GH = CA^2 - CF^2 = CB^2$.

Because the triangles DGH and CTT' are similar, we have

CT: CT':: DG: GH.


Whence Therefore

or

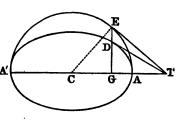
 $CT \times GH = CT' \times DG = CT' \times CG'$.

 $CT' \times CG' = CB^2$,

CT': CB:: CB: CG'.

Cor. By this Proposition, CA²=CG.CT.

If a second ordinate dg, and tangent dt, be drawn, we shall also have


 $CA^2 = Cg.Ct.$

Whence CG.CT = Cg.Ct, or, GC:Cg::Ct:CT.

PROPOSITION XII. THEOREM.

The subtangent of an ellipse is equal to the corresponding subtangent of the circle described upon its major axis.

Let AEA' be a circle described on AA', the major axis of an ellipse, and from any point E in the circle draw the ordinate EG, cutting the ellipse in D. Draw A'DT touching the ellipse at D, and join ET; then will ET be a tangent to the circle at E.

Join CE. Then, by the last Proposition, CT: CA: CA: CG;

or, because CA is equal to CE,

CT: CE:: CE: CG.

Hence the triangles CET, CGE, having the angle at C common, and the sides about this angle proportional, are similar (B. IV., Pr. 21). Therefore the angle CET, being equal to the angle CGE, is a right angle; that is, the line ET is perpendicular to the radius CE, and is, consequently, a tangent to the circle (B. III., Pr. 9). Hence GT is the subtangent corresponding to each of the tangents DT and ET. Therefore the subtangent, etc.

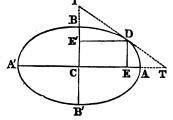
Cor. A similar property may be proved of a tangent to the ellipse meeting the minor axis.

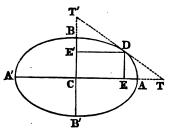
PROPOSITION XIII. THEOREM.

The square of either axis is to the square of the other as the rectangle of the abscissas of the former is to the square of their ordinate.

1st. For the major axis.

Let DE be an ordinate to the major axis from the point D; then we shall have


 $CA^2: CB^2:: AE \times EA': DE^2$.


Draw TT' a tangent to the ellipse at D; then, by Pr. 11,

CT: CA:: CA: CE.

Hence (B. II., Pr. 13)

CT: CE:: CA²: CE²; and by division (B. II., Pr. 7),

 $\mathbf{CT}: \mathbf{ET}:: \mathbf{CA^2}: \mathbf{CA^2} - \mathbf{CE^2}. \quad (1)$

Again, by Pr. 11,

CT': CB:: CB: CE' or DE.

Hence $CT':DE::CB^2:DE^2$.

But, by similar triangles, CT': DE:: CT: ET;

Therefore

 $CT : ET :: CB^2 : DE^2.$ (2)

Comparing proportions (1) and (2),

we have $CA^2: CA^2 - CE^2: CB^2: DE^2$.

But CA²-CE² is equal to AE×EA' (B. IV., Pr. 10).

Hence $CA^2: CB^2:: AE \times EA': DE^2$.

2d. For the minor axis.

Let DE' be an ordinate to the minor axis; then we shall have $CB^2: CA^2:: BE' \times E'B': DE'^2$.

We have already proved that

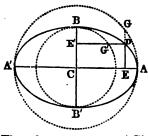
 $CA^2: CA^2 - CE^2: CB^2: DE^2 (= CE^2);$

therefore, by division,

 $CA^2: CE^2:: CB^2: CB^2 - CE'^2;$

or $CB^2: CA^2:: CB^2 - CE'^2: DE'^2$.

But $CB^2-CE'^2$ is equal to $BE'\times E'B'$ (B. IV., Pr. 10).


Hence Cor. 1.

 $CB^2: CA^2:: BE' \times E'B': DE'^2$. $CA^2: CB^2:: CA^2 - CE^2: DE^2$.

Cor. 2. The squares of the ordinates to either axis are to each other as the rectangles of their abscissas.

PROPOSITION XIV. THEOREM.

If a circle be described on either axis, then any ordinate in the circle is to the corresponding ordinate in the ellipse as the axis of that ordinate is to the other axis.

Let a circle be described on AA' as a diameter, and let DE, an ordinate to the axis, be produced to meet the circle in G; then

GE:DE::AC:BC.

For (Pr. 13)

 $AC^2:BC^2::AE\times EA':DE^2.$

But $AE \times EA'$ is equal to GE^2 (B. IV.,

Pr. 23, Cor.)

Therefore $AC^2:BC^2::GE^2:DE^2$, or AC:BC::GE:DE.

Also, if a circle be described on BB' as a diameter, and the ordinate DE' be drawn meeting the circle in G', then

G'E':DE'::BC:AC.

PROPOSITION XV. THEOREM.

The latus rectum is a third proportional to the major and minor xxes.

Let LL' be a double ordinate to the major axis passing through the focus F; then we shall have

AA': BB':: BB': LL'.

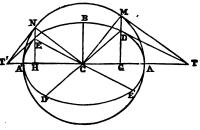
Because LF is an ordinate to the major axis,

 AC^2 : BC^2 :: $AF \times FA'$: LF^2 (Pr. 13).

:: BC2: LF2 (Pr. 5, Cor. 1).

Hence

or


AC: BC:: BC: LF, AA': BB':: BB': LL'.

Therefore the latus rectum, etc.

PROPOSITION XVI. THEOREM.

If one diameter of an ellipse is conjugate to another, and if from the vertices of these two diameters ordinates be drawn to either axis, the sum of the squares of these ordinates will be equal to the square of half the other axis.

Let the diameter EE' be conjugate to DD'; and let DG and EH, ordinates to the major axis, be drawn from their vertices; in which case CG and CH will be equal to the ordinates of the minor axis drawn from the same points; then we shall have

 \mathbf{B}'

 $CG^2+CH^2=CA^2$; $DG^2+EH^2=CB^2$.

and

Upon AA' as a diameter describe the circle AMA', and produce DG and EH to cut the circumference in M and N. Draw the tangents at D and M, which will meet each other in T, in the axis produced (Pr. 12). Join CM and CN.

Since DT is parallel to EC, the triangles DTG and ECH are similar, and therefore

CH: GT:: EH: DG

:: NH: MG. By Pr. 14.

Hence the triangle NHC is similar to MGT, and it is also similar to MCG (B. IV., Pr. 23). But the hypothenuse CM=CN; therefore MG=CH; and, consequently,

 $CG^2 + CH^2 = CG^2 + GM^2 = CM^2 = CA^2$.

Secondly. By Pr. 14,

AC2: BC2:: NH2: EH2

 $:: MG^2: DG^2$

:: NH^2+MG^2 : EH^2+DG^2 (B. II., Pr. 6). $NH^2+MG^2=NH^2+CH^2=CN^2=AC^2$;

But therefore

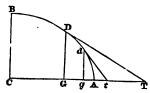
 $EH^2+DG^2=BC^2$.

Therefore, if one diameter, etc.

Cor. 1. Since CG²=NH², we have

AC2: BC2:: CG2: EH2.

Cor. 2. If one diameter of an ellipse is conjugate to another, the second is conjugate to the first. For if the tangent ET' be drawn, it will be parallel to DD'.


Draw NT'; it will be tangent to the circle at N, and the triangle NT'H will be similar to NHC; that is, to CGM.

Hence

T'H: CG:: NH: MG

::EH:DG.

Therefore the triangles ET'H and DCG are similar, and ET' is parallel to CD.

Cor. 3. Since

 $CA^2: CB^2:: MG^2: DG^2$,

and

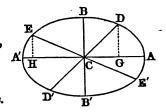
MG²=CG.GT (B. IV., Pr. 23, Cor.), we have CA²: CB²:: CG.GT: DG².

If a second ordinate dg, and tangent dt be drawn, we shall have

 $CA^2: CB^2:: Cg.gt: dg^2.$ $CG.GT: Cg.gt:: DG^2: dg^2.$

Hence

PROPOSITION XVII. THEOREM.


The sum of the squares of any two conjugate diameters is equal to the sum of the squares of the axes.

Let DD', EE' be any two conjugate diameters; then we shall have DD'2+EE'2=AA'2+BB'2.

Draw DG, EH ordinates to the major axis. Then, by the preceding Proposition, $CG^2+CH^2=CA^2$,

and
$$DG^2 + EH^2 = CB^2$$
.
Hence $CG^2 + DG^2 + CH^2 + EH^2 = CA^2 + CB^2$,
or $CD^2 + CE^2 = CA^2 + CB^2$;
that is

 $DD'^2+EE'^2=AA'^2+BB'^2$. Therefore the sum of the squares, etc.

PROPOSITION XVIII. THEOREM.

The parallelogram formed by drawing tangents through the vertices of two conjugate diameters is equal to the rectangle of the axes.

Let DED'E' be a parallelogram formed by drawing tangents to the ellipse through the vertices of two conjugate diameters DD', EE'; its area is equal to AA'×BB'.

Let the tangent at D meet the major axis produced in T; join E'T, and draw the ordinates DG, E'H.

Then, by Pr. 16, Cor. 1, we have

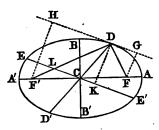
CA²: CB²:: CG²: E'H², or CA: CB:: CG: E'H.

But CT: CA:: CA: CG (Pr. 11); hence CT: CB:: CA: E'H.

or $CA \times CB$ is equal to $CT \times E'H$,

which is equal to twice the triangle CE'T, or the parallelogram DE'; since the triangle and parallelogram have the same base CE', and are between the same parallels.

Hence $4CA \times CB$ or $AA' \times BB'$ is equal to 4DE', or the parallelogram DED'E'. Therefore the parallelogram, etc.


PROPOSITION XIX. THEOREM.

If from the vertex of any diameter straight lines are drawn to the foci, their product is equal to the square of half the conjugate diameter.

Let DD', EE' be two conjugate diameters, and from D let lines be drawn to the foci; then will $FD \times F'D$ be equal to EC^2 .

Draw a tangent to the ellipse at D, and upon it let fall the perpendiculars FG, F'H; draw, also, DK perpendicular to EE'.

and

Then, because the triangles DFG, DLK, DF'H are similar, we have

FD:FG::DL:DK.

Also, F'D: F'H::DL:DK.

Whence (B. II., Pr. 12)

 $FD \times FD : FG \times F'H :: DL^2 : DK^2.$ (1)

(2)

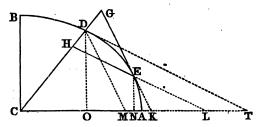
But, by Pr. 18,

 $AC \times BC = EC \times DK$;

whence

AC or DL:DK::EC:BC,

 $DL^2: DK^2:: EC^2: BC^2.$


Comparing proportions (1) and (2), we have $FD \times F'D : FG \times F'H :: EC^2 : BC^2$.

But $FG \times F'H$ is equal to BC^2 (Pr. 10); hence $FD \times F'D$ is equal to EC^2 . Therefore, if from the vertex, etc.

PROPOSITION XX. THEOREM.

If a tangent and ordinate be drawn from the same point of an ellipse to any diameter, half of that diameter will be a mean proportional between the distances of the two intersections from the centre.

Let a tangent EG and an ordinate EH be drawn from the same point E of an ellipse, meeting the diameter CD produced; then we shall have CG; CD; CD; CH.

Produce EG and EH to meet the major axis in K and L; draw DT a tangent to the curve at the point D, and draw DM parallel to GK. Also, draw the ordinates EN, DO.

By similar triangles we have

OM:NK::DO:EN,

and also OT: NL:: DO: EN.

Multiplying together the terms of these proportions (B. II., Pr. 12), we have

OM.OT:: NK.NL:: DO²: EN²:: CO.OT: CN.NK (Pr. 16, Cor. 3). Omitting the factor OT in the antecedents, and NK in the consequents of this proportion (B. II., Pr. 10, Cor.), we have

OM:NL::CO:CN,

and, by composition,
But, by Pr. 11, Cor.,
Whence
But
CK: CM:: CM:: CK:: CT.
CK:: CM:: CT:: CL.
CK:: CM:: CG:: CD.

and CT: CL:: CD: CH; hence CG: CD:: CD: CH.

Therefore, if a tangent, etc.

PROPOSITION XXI. THEOREM.

The square of any diameter is to the square of its conjugate as the rectangle of its abscissas is to the square of their ordinate.

Let DD', EE' be two conjugate diameters, and GH an ordinate to DD'; then

 $DD'^2: EE'^2:: DH \times HD': GH^2.$

Draw TT' a tangent to the curve at the point G, and draw GK an ordinate to EE'. Then, by Pr. 20,

CT: CD:: CD: CH,

and CD2: CH2:: CT: CH (B. II., Pr. 13);

whence, by division,

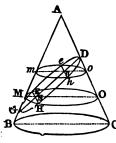
 $CD^2: CD^2-CH^2:: CT: HT.$ (1)

Also, by Pr. 20, CT': CE:: CE: CK, and CE²: CK²:: CT': CK or GH,

 $:: \mathbf{CT}: \mathbf{HT}. \tag{2}$

Comparing proportions (1) and (2), we have $CD^2: CE^2:: CD^2 - CH^2: CK^2 \text{ or } GH^2$,

or $DD'^2: EE'^2::DH \times HD': GH^2$.


Therefore the square, etc.

Cor. 1. In the same manner, it may be proved that DD'2: EE'2::DH×HD':G'H²; hence GH is equal to G'H, or every diameter bisects all chords parallel to the tangents at its vertices.

Cor. 2. The squares of the ordinates to any diameter are to each other as the rectangles of their abscissas.

PROPOSITION XXII. THEOREM.

If a cone be cut by a plane, making an angle with the base less than that made by the side of the cone, the section is an ellipse.

Let ABC be a cone cut by a plane DE GH, making an angle with the base less than that made by the side of the cone; the section DeEGHh is an ellipse.

Let ABC be a section through the axis of the cone, and perpendicular to the plane DEGH. Let EMHO, emho be circular sections parallel to the base; then EH, the intersection of the planes DEGH, EMHO will be perpendicular to the plane ABC, and,

consequently, to each of the lines DG, MO. So, also, ch will be perpendicular to DG and mo.

Now, because the triangles DNO, Dno are similar, as also the triangles GMN, Gmn, we have the proportions

NO: no::DN:Dn,

and

 $\mathbf{MN}: mn :: \mathbf{NG}: nG.$

Hence, by B. II., Pr. 12,

 $MN \times NO : mn \times no :: DN \times NG : Dn \times nG.$

But, since MO is a diameter of the circle EMHO, and EN is perpendicular to MO, we have (B. IV., Pr. 23, Cor.)

 $MN \times NO = EN^2$.

For the same reason,

 $mn \times no = en^2$.

Substituting these values of MN \times NO and $mn \times no$ in the preceding proportion, we have

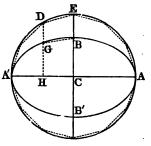
 EN^2 : en^2 :: $DN \times NG$: $Dn \times nG$;

that is, the squares of the ordinates to the diameter DG are to each other as the products of the corresponding abscissas. Therefore the curve is an ellipse (Pr. 13, Cor. 2), whose major axis is DG. Hence the ellipse is called a *conic section*, as mentioned on page 203.

Scholium. The conclusion that the curve DEGH is an ellipse would not be legitimate unless the property above demonstrated were peculiar to the ellipse. That such is the case appears from the fact that when the major axis and one point of an ellipse are given, this property will determine the position of every other point of the curve, in the same manner as was shown in the corresponding Proposition for the parabola, p. 215.

PROPOSITION XXIII. THEOREM.

The area of an ellipse is a mean proportional between the two circles described on its axes.


Let AA' be the major axis of an ellipse ABA'B'. On AA' as a diameter describe a circle; inscribe in the circle any regular polygon AEDA', and from the vertices E, D, etc., of the polygon draw perpendiculars to AA'. Join the points B, G, etc., in which these perpendiculars intersect the ellipse, and there will be inscribed in the ellipse a polygon of an equal number of sides.

Now the area of the trapezoid CEDH is equal to (CE+DH) ×

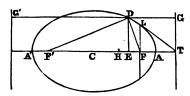
 $\frac{\text{CH}}{9}$; and the area of the trapezoid CBGH is equal to (CB+GH)

 $\times \frac{CH}{2}$. These trapezoids are to each other as CE+DH to CB+GH, or as AC to BC (Pr. 14).

In the same manner, it may be proved that each of the trapezoids composing the polygon inscribed in the circle is to the corresponding trapezoid of the polygon inscribed in the ellipse as AC to BC. Hence the entire polygon in-

scribed in the circle is to the polygon inscribed in the ellipse as AC to BC.

Since this proportion is true, whatever be the number of sides of the polygons, it will be true when the number is indefinitely increased; in which case one of the polygons coincides with the circle, and the other with the ellipse. Hence we have


area of circle: area of ellipse:: AC: BC.

But the area of the circle is represented by πAC^2 ; hence the area of the ellipse is equal to $\pi AC \times BC$, which is a mean proportional between the two circles described on the axes.

PROPOSITION XXIV. THEOREM.

The distance of any point in an ellipse from either focus is to its distance from the corresponding directrix as the eccentricity to half the major axis.

Let D be any point in the ellipse; let DF, DF' be drawn to the two foci, and DG, DG' perpendicular to the directrices; then DF: DG:: DF': DG':: CF: CA.

Draw DE perpendicular to the major axis, and take H, a point in the axis, so that AH=DF, and consequently HA'=DF'; then CH is half the difference between A'H and AH, or DF' and DF, and CE is half the difference be-

tween FE and F'E. By B. IV., Pr. 34,

 $\mathbf{FF'}: \mathbf{DF'} + \mathbf{DF}:: \mathbf{DF'} - \mathbf{DF}: \mathbf{F'E} - \mathbf{FE}$

Dividing each term by two, we have

CF: CA:: CH: CE.

But, by Pr. 11, CA: CT:: CF: CA.

Therefore CA:CT::CH:CE.

Hence (B. II., Pr. 7)

CA-CH:CT-CE::CA:CT,

or AH: ET:: CA: CT:: CF: CA;

that is, DF:DG::CF:CA.

In the same manner, it may be proved that DF': DG':: CF: CA.

EXERCISES ON THE ELLIPSE.

1. If a series of ellipses be described having the same major axis, the tangents at the extremities of their latera recta will all meet the minor axis in the same point.

2. The foci of an ellipse being given, it is required to describe

an ellipse touching a given straight line.

3. If the angle FBF' be a right angle, prove that CA²=2CB².

(See fig., Pr. 5.)

4. If a circle be described touching the major axis in one focus, and passing through one extremity of the minor axis, AC will be a mean proportional between BC and the diameter of this circle. (See fig., Pr. 5.)

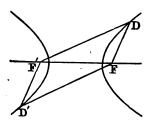
5. If, on the two axes of an ellipse as diameters, circles be described, and a line be drawn through the centre cutting the larger circle in H and H', and the smaller circle in K and K', then HK.H'K=CF². (See fig., Pr. 14.)

6. If DG produced meet the tangent at the extremity of the

latus rectum in K, then KG=DF. (See fig., Pr. 11.)

7. A tangent to the ellipse makes a greater angle with a line drawn from the point of contact to one of the foci than with the perpendicular on the directrix. (See fig., Pr. 24.)

- 8. If from C one line be drawn parallel, and another perpendicular to the tangent at D, they inclose a part of DF' equal to DF. (See fig., Pr. 9.)
- 9. If the tangent at the vertex A cut any two conjugate diameters in T and t, then AT.At=BC². (See fig., Pr. 16.)
- 10. What is the area of an ellipse whose axes are 46 and 34 feet?
- 11. An ordinate to the major axis of an ellipse is 7 inches, and the corresponding abscissas are 5 and 20 inches; required the latus rectum.
- 12. The latus rectum of an ellipse is 11 inches, and the major axis 26 inches; required the area of the ellipse.
- 13. The eccentricity of an ellipse is 10 inches, and its latus rectum 12 inches; required the area of the ellipse.
- 14. Supposing a meridional section of the earth to be an ellipse whose major axis is 7926 miles, and its minor axis 7900 miles, what is the area of the section?
- 15. What is the latus rectum of the terrestrial ellipse, and what is its eccentricity?
- 16. What is the distance of the directrix of the terrestrial ellipse from the nearest vertex of the major axis?
- 17. If the axes of an ellipse are 60 and 100 feet, what is the radius of a circle described to touch the curve, when its centre is in the major axis at the distance of 16 feet from the centre of the ellipse?

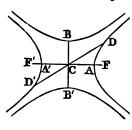

 Ans. 27.495 feet.
- 18. If the axes of an ellipse are 60 and 80 feet, what are the areas of the two segments into which it is divided by a line perpendicular to the major axis at the distance of 10 feet from the centre?

 Ans. 1291.27 and 2478.65 feet.
- 19. The minor axis of an ellipse is 8 inches, the latus rectum 5 inches, and an ordinate of 3 inches is drawn to the major axis; determine where the tangent line drawn through the extremity of this ordinate meets the major axis produced.
- 20. Determine where the tangent line in the last example meeta the minor axis produced.

HYPERBOLA.

Definitions.

- 1. An hyperbola is a plane curve traced out by a point which moves in such a manner that the difference of its distances from two fixed points is always the same.
 - 2. The two fixed points are called the foci of the hyperbola.


Thus, if F and F' are two fixed points, and if the point D moves about F in such a manner that the difference of its distances from F and F' is always the same, the point D will describe an hyperbola, of which F and F' are the foci.

If the point D' moves about F' in such a manner that D'F-D'F' is always equal to DF'-DF, the point D' will describe a

second branch of the curve similar to the first. The two branches are called branches of the hyperbola.

3. The centre of the hyperbola is the middle point of the straight line joining the foci.

4. The eccentricity is the distance from either focus to the centre.

Thus, let F and F' be the foci of an hyperbola. Draw the line FF', and bisect it in C. The point C is the centre of the hyperbola, and CF or CF' is the eccentricity.

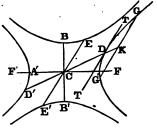
5. A diameter is any straight line passing through the centre, and terminated on both sides by opposite branches of an hyperbola.

6. The extremities of a diameter are called its vertices.

Thus, through C draw any straight line DD' terminated by the opposite curves; DD' is a diameter of the hyperbola; D and D' are the vertices of that diameter.

- 7. The transverse axis is the diameter which, when produced, passes through the foci.
- 8. The conjugate axis is a line drawn through the centre perpendicular to the transverse axis, and terminated by the circum-

ference described from one of the vertices of the transverse axis as a centre, and with a radius equal to the eccentricity.


Thus, through C draw BB' perpendicular to AA', and with A as a centre, and with CF as a radius, describe a circumference cutting this perpendicular in B and B'; then AA' is the transverse axis, and BB' the conjugate axis.

If, on BB' as a transverse axis, opposite branches of an hyperbola are described, having AA' as their conjugate axis, this hyperbola is said to be *conjugate* to the former.

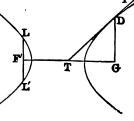
- 9. A tangent to an hyperbola is a straight line which meets the curve in one point only, and every where else falls without it.
- 10. An ordinate to a diameter is a straight line drawn from any point of the curve to meet the diameter produced, and is parallel to the tangent at one of its vertices.

Thus, let DD' be any diameter, and TT' a tangent to the hyperbola at D. From any point G of the curve draw GKG' parallel to TT', and cutting DD' produced in K; then is GK an ordinate to the diameter DD'.

It is proved in Pr. 21, Cor. 1, that GK is equal to G'K; hence the entire line GG' is called a *double ordinate*.

11. The parts of the diameter produced, intercepted between its vertices and an ordinate, are called its abscissas.

Thus, DK and D'K are the abscissas of the diameter DD' corresponding to the ordinate GK.

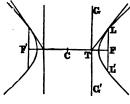

12. When the ordinates of a diameter of an hyperbola are parallel to a diameter of the conjugate hyperbola, the latter diameter is said to be *conjugate* to the former.

Thus, draw the diameter EE' parallel to GK, an ordinate to the diameter DD', in which case it will, of course, be parallel to the tangent TT'; then is the diameter EE'

conjugate to DD'.

13. The *latus rectum* is the double ordinate to the transverse axis which passes through one of the foci.

Thus, through the focus F' draw LL', a double ordinate to the transverse axis; it will be the latus rectum of the hyperbola.

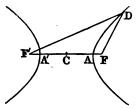


14. A subtangent is that part of an axis produced which is included between a tangent and the ordinate drawn from the point of contact.

Thus, if TT' be a tangent to the curve at D, and DG an ordinate to the transverse axis, then GT is the corresponding subtangent.

15. The directrix of an hyperbola is a straight line perpendicular to the transverse axis, and intersecting it in the same point

with the tangent to the curve at one extremity of the latus rectum.



Thus, if LT be a tangent drawn through one extremity of the latus rectum LL', meeting the axis in T, and, through the point of intersection, GG' be drawn perpendicular to the axis, it will be the directrix of the hyperbola.

The hyperbola has two directrices, one corresponding to the focus F, and the other to the focus F'.

PROPOSITION I. THEOREM.

The difference of the two lines drawn from any point of an hyperbola to the foci is equal to the transverse axis.

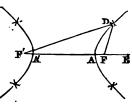
Let F and F' be the foci of two opposite hyperbolas, AA' the transverse axis, and D any point of the curve; then will DF'—DF be equal to AA'.

For, by Def. 1, the difference of the distances of any point of the curve from the foci is equal to a given line. Now when the point D arrives at A, F'A—

FA, or AA'+F'A'-FA, is equal to the given line. And when D is at A', FA'-F'A', or AA'+AF-A'F', is equal to the same line. Hence AA'+AF-A'F'=AA'+F'A'-FA, or 2AF=2A'F';

that is, AF is equal to A'F'.

Hence DF'—DF, which is equal to AF'—AF, must be equal to AA'. Therefore the difference of the two lines, etc.

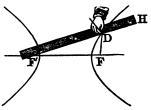

Cor. The transverse axis is bisected in the centre. For, by Def. 3, CF is equal to CF'; and we have just proved that AF is equal to A'F'; therefore AC is equal to A'C.

PROPOSITION II. PROBLEM.

The transverse axis and foci of an hyperbola being given, to describe the curve.

FIRST METHOD. By points.

Let AA' be the transverse axis, and F, F' the foci of an hyperbola. In the transverse axis AA' produced, take any point E, and from F and F' as centres, with the distances AE, A'E as radii, describe two circles cutting each other in the point D; D will be a point in the hyperbola. For, join FD, F'D; then



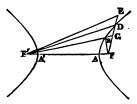
DF'-DF=EA'-EA=AA'; and at whatever point of the transverse axis produced E is taken, the difference between DF' and DF will be equal to AA'. Hence, by Def. 1, D is a point on the curve; and, in the same manner, any number of points in the hyperbola may be determined. In a similar manner the opposite branch may be constructed.

Cor. The same circles determine two points of the curve D and D', one above and one below the transverse axis. It is also evident that these two points are equally distant from the axis; that is, the hyperbola is symmetrical with respect to its transverse axis.

SECOND METHOD. By continuous motion.

Take a ruler longer than the distance FF', and fasten one of its extremities at the point F'. Take a thread shorter than the ruler, and fasten one end of it at F, and the other to the end H of the ruler. Then move the ruler HDF' about the point F', while the thread is kept constantly

stretched by a pencil pressed against the ruler; the curve described by the point of the pencil will be a portion of an hyperbola. For, in every position of the ruler, the difference of the lines DF, DF' will be the same, viz., the difference between the length of the ruler and the length of the string.


If the ruler be turned, and move on the other side of the point F, the other part of the same branch may be described.

Also, if one end of the ruler be fixed in F, and that of the thread in F', the opposite branch may be described.

It is evident that each portion of each branch will extend to an indefinitely great distance from the foci and centre.

PROPOSITION III. THEOREM.

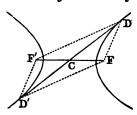
The difference of the two lines drawn to the foci from any point without the hyperbola is less than the transverse axis, and the difference of the two lines drawn to the foci from any point within the hyperbola is greater than the transverse axis.

Let F and F' be the foci of an hyperbola; let AA' be the transverse axis, and E any point without the curve. Join EF, EF'; the difference of EF' and EF will be less than AA'.

Let F be the focus nearest to E; the line EF must cut the curve in some point

D; then EF' is less than ED+DF' (B. I., Pr. 8). Subtracting EF, or ED+DF, from these unequals, we have EF'-EF less than DF'-DF; that is, than AA'.

Again, let G be a point within either branch of the hyperbola, and let F be the nearer focus; then F'G will cut the nearer branch of the curve in H. Join FH; then FG<HG+HF. Subtract each from F'G, and we have


F'G-FG>F'G-HG-HF, which equals F'H-FH;

that is, F'G-FG>AA'.

Cor. A point is without or within the hyperbola according as the difference of two lines drawn from it to the foci is less or greater than the transverse axis.

PROPOSITION IV. THEOREM.

Every diameter of an hyperbola is bisected in the centre.

Let D be any point of an hyperbola; join DF, DF', and FF'. Complete the parallelogram DFD'F', and join DD'.

Now, because the opposite sides of a parallelogram are equal, the difference between DF and DF' is equal to the difference between D'F and D'F'; hence D' is a point in the opposite branch of the

nyperbola. But the diagonals of a parallelogram bisect each other; therefore FF' is bisected in C; that is, C is the centre of the hyperbola, and DD' is a diameter bisected in C. Therefore every diameter, etc.

PROPOSITION V. THEOREM.

Half the conjugate axis is a mean proportional between the distances from one of the foci to the vertices of the transverse axis.

Let F and F' be the foci of an hyperbola, AA' the transverse axis, and BB' the conjugate axis; then will BC be a mean proportional between AF and A'F.

r F'A C A F

Join AB. Now BC² is equal to AB² – AC², which is equal to FC² – AC² (Def. 8). Hence (B. IV., Pr. 10)

$$BC^{2} = (FC - AC) \times (FC + AC)$$

$$= AF \times A'F;$$

$$AF \cdot BC \cdot A'F$$

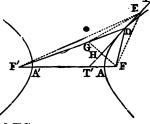
and hence

AF:BC::BC:A'F.

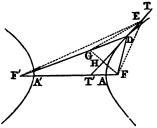
Cor. 1. The square of the eccentricity is equal to the sum of the squares of the semi-axes.

For FC² is equal to AB² (Def. 8), which is equal to AC²+BC².

Cor. 2. The eccentricity of an hyperbola and of its conjugate are equal, and a circle described from C as a centre and CF as a radius will pass through the four foci of the two hyperbolas.

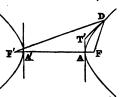

PROPOSITION VI. THEOREM.

A tangent to the hyperbola bisects the angle contained by lines drawn from the point of contact to the foci.


Let F, F' be the foci of an hyperbola, and D any point of the curve; if, through the point D, the line TT' be drawn bisecting the angle FDF', then will TT' be a tangent to the hyperbola at D.

Let E be any point in the line TT' different from D, and let F be the focus nearest to E. On DF' take DG

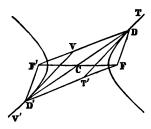
equal to DF, and join EF, EF', EG, and FG.



Now, in the two triangles DFH, DGH, because DF is equal to DG, DH is common to both triangles, and the angle FDH is, by supposition, equal to GDH; therefore HF is equal to HG, and the angle DHF is equal to the angle DHG. Hence the line TT' is perpendicular to FG at its middle point, and therefore EF is equal to EG.

Hence EF'—EF is equal to EF'—EG. But EF'—EG is less than GF' (B. I., Pr. 8); that is, less than the difference of DF' and DF, which is equal to AA'; therefore EF'—EF is less than the transverse axis, and hence the point E is without the hyperbola (Pr. 3, Cor.). Therefore every point of the line TT' except D is

without the curve; that is, TT is a tangent to the curve at D.



Cor. 1. As the point D moves toward A, each of the angles FDT', F'DT' increases, and at A becomes a right angle. Hence the tangents at the vertices of the transverse axis are perpendicular to that axis.

Cor. 2. If TT' represent a plane mirror, a ray of light proceeding from F in the direction FD would be reflected in a line which, if produced backward, would pass through F', making the angle of reflection equal to the angle of incidence. And, since the hyperbola may be regarded as coinciding with a tangent at the point of contact, if rays of light proceed from one focus of a polished surface whose figure, whether concave or convex, is that produced by the revolution of an hyperbola about its transverse axis, they will be reflected in lines diverging from the other focus. For this reason, the points F, F' are called the foci.

PROPOSITION VII. THEOREM.

Tangents to the hyperbola at the vertices of any diameter are parallel to each other.

Let DD' be any diameter of an hyperbola, and TT', VV' tangents to the curve at the points D, D'; then will they be parallel to each other.

Join DF, DF', D'F, D'F'. Then, by Pr. 4, FDF'D' is a parallelogram; and, since the opposite angles of a parallelogram are equal, the angle FDF' is equal to FD'F'. But the tangents TT',

 $\mathbf{V}\mathbf{V}'$ bisect the angles at D and D' (Pr. 6); hence the angle $\mathbf{F}'\mathbf{D}\mathbf{T}'$.

or its alternate angle FT'D, is equal to FD'V. But FT'D is the exterior angle opposite to FD'V; hence TT' is parallel to VV'. Therefore tangents, etc.


Cor. If tangents are drawn through the vertices of any two diameters, whether of the same or of conjugate hyperbolas, they will form a parallelogram.

PROPOSITION VIII. THEOREM.

If through the vertex of any diameter straight lines are drawn from the foci, meeting the conjugate diameter, the part intercepted by the conjugate is equal to half of the transverse axis.

Let EE' be a diameter conjugate to DD', and let the lines DF, DF' be drawn, and produced, if necessary, so as to meet EE' in H and K; then will DH or DK be equal to AC.

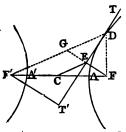
Draw F'G parallel to EE' or TT', meeting FD produced in G. Then the angle DGF' is equal to the exterior angle FDT', and the angle DF'G is equal to the alternate angle F'DT'. But the angles FDT', F'DT' are equal to each other (Pr. 6);

hence the angles DGF', DF'G are equal to each other, and DG is equal to DF'. Also, because CK is parallel to F'G, and CF is equal to CF', therefore FK must be equal to KG.

Hence F'D-FD is equal to GD-FD or GF-2DF; that is, 2KF-2DF or 2DK. But F'D-FD is equal to 2AC. Therefore 2AC is equal to 2DK, or AC is equal to DK.

Also, the angle DHK is equal to DKH, and hence DH is equal to DK or AC. Therefore, if through the vertex, etc.

PROPOSITION IX. THEOREM.

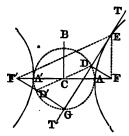

Perpendiculars drawn from the foci upon a tangent to the hyperbola meet the tangent in the circumference of a circle whose diameter is the transverse axis.

Let TT' be a tangent to the hyperbola at D, and from F draw FE perpendicular to TT'; the point E will be in the circumference of a circle described upon AA' as a diameter.

Join CE, FD, F'D, and produce FE to meet F'D in G.

Then, in the two triangles DEF, DEG, because DE is common to both triangles, the angles at E are equal, being right angles;

also, the angle EDF is equal to EDG (Pr. 6); therefore DF is equal to DG, and EF to EG.


Also, because FE is equal to EG, and CF is equal to CF', CE must be parallel to F'G, and, consequently, equal to half of F'G.

But, since DG has been proved equal to DF, F'G is equal to F'D—FD, which is equal to AA'. Hence CE is equal to half of AA' or AC, and a circle described with C as a centre, and radius CA, will pass through the point E.

The same may be proved of a perpendicular let fall upon TT from the focus F'. Therefore perpendiculars, etc.

PROPOSITION X. THEOREM.

The product of the perpendiculars from the foci upon a tangent is equal to the square of half the conjugate axis.

Let TT' be a tangent to the hyperbola at any point E, and let the perpendiculars FD, F'G be drawn from the foci; then will the product of FD by F'G be equal to the square of BC.

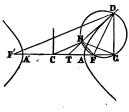
On AA'as a diameter describe a circle; it will pass through the points D and G (Pr. 9). Let GF' meet the circle in D', and join DD'; then, since the angle at G is a right angle, DD' passes through the centre

C. Because FD and F'G are perpendicular to the same straight line TT', they are parallel to each other, and the alternate angles CFD, CF'D' are equal. Also, the vertical angles DCF, D'CF' are equal, and CF is equal to CF'. Therefore DF is equal to D'F'; hence DF \times GF' is equal to D'F' \times GF', which is equal to A'F' \times F'A (B. IV., Pr. 29, Cor. 2), which is equal to BC² (Pr. 5).

Cor. The triangles FDE, F'GE are similar; hence

FD: F'G:: FE: F'E;

that is, perpendiculars let fall from the foci upon a tangent are to each other as the distances of the point of contact from the foci.


PROPOSITION XI. THEOREM.

If a tangent and ordinate be drawn from the same point of an hyperbola, meeting either axis produced, half of that axis will be a mean proportional between the distances of the two intersections from the centre.

1st. For the transverse axis.

Let DT be a tangent to the hyperbola, and DG an ordinate to the transverse axis from the point of contact; then we shall have CT: CA:: CA:: CG.

From F draw FH perpendicular to DT, and join DF, DF', CH, and GH. Then, by Pr. 9, CH is parallel to DF'. Also, since DGF, DHF are both right

angles, a circle described on DF as a diameter will pass through the points G and H. Therefore the angle CGH or FGH is equal to the angle HDF (B. III., Pr. 15, Cor. 1), which is equal to F'DT or CHT. That is, the angle CGH is equal to CHT; and, since the angle C is common to the two triangles CGH, CHT, these triangles are equiangular, and we have

CT: CH:: CH: CG.

But CH is equal to CA (Pr. 9); therefore CT: CA: CA: CG.

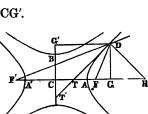
2d. For the conjugate axis.

Let the tangent DTT' meet the conjugate axis in T', and let DG' be an ordinate to the conjugate axis from the point of contact; then we shall have

CT': CB:: CB: CG'.

Draw DH perpendicular to DT, and it will bisect the exterior angle of the triangle FDF'. Hence (B. IV., Pr. 18)

HF': HF:: DF': DF :: TF': TF.


Therefore (B. II., Pr. 8)

2CF: 2CH:: 2CT: 2CF.

Whence $CT \times CH = CF^2$. But we have proved that $CT \times CG = CA^2$. Subtracting the letter from the former, we

Subtracting the latter from the former, we have

 $CT \times GH = CF^2 - CA^2 = CB^2$.

Because the triangles DGH and CTT' are similar, we have

CT: CT':: DG: GH.

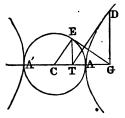
Whence Therefore $CT \times GH = CT' \times DG = CT' \times CG'$. $CT' \times CG' = CB^2$,

1 nereio

CT': CB:: CB: CG'.

or

Cor. By this Proposition, CA²=CG×CT.


C T t C C

If a second ordinate dg, and tangent dt be drawn, we shall also have $CA^2 = Cg \cdot Ct$. Whence $CG \times CT = Cg \cdot Ct$,

W hence or $CG \times CT = Cg.Ct$, CT : Ct :: Cg : CG.

PROPOSITION XII. THEOREM.

The subtangent of an hyperbola is equal to the corresponding subtangent of the circle described upon its transverse axis.

Let AEA' be a circle described on AA', the transverse axis of an hyperbola, and from any point E in the circle draw the ordinate ET. Through T draw the line DT touching the hyperbola in D, and from the point of contact draw the ordinate DG. Join GE; then will GE be a tangent to the circle at E.

Join CE. Then, by the last Proposition, CT: CA:: CA: CG;

or, because CA is equal to CE,

CT: CE:: CE: CG.

Hence the triangles CET, CGE, having the angle at C common, and the sides about this angle proportional, are similar (B. IV., Pr. 21). Therefore the angle CEG, being equal to the angle CTE, is a right angle; that is, the line GE is perpendicular to the radius CE, and is, consequently, a tangent to the circle (B. III., Pr. 9). Hence GT is the subtangent corresponding to each of the tangents DT and EG. Therefore the subtangent, etc.

PROPOSITION XIII. THEOREM.

The square of the transverse axis is to the square of the conjugate as the rectangle of the abscissas of the former is to the square of their ordinate.

Let DE be an ordinate to the transverse axis from the point D; then we shall have

(2)

 $CA^2: CB^2:: AE \times EA': DE^2$.

Draw DTT' a tangent to the hyperbola at D; then, by Pr. 11,

CT: CA:: CA: CE.

Hence (B. II., Pr. 13)

CT: CE:: CA2: CE2;

and, by division (B. II., Pr. 7),

 $CT : ET :: CA^2 : CE^2 - CA^2$. (1

Again, by Pr. 11, CT': CB:: CB: CH or DE. Hence CT': DE:: CB²: DE².

But, by similar triangles,

CT': DE :: CT : ET; CT : ET :: CB² : DE².

therefore CT: ET:: CB²: DE². Comparing proportions (1) and (2), we have

CA²: CE²—CA²:: CB²: DE².

But CE^2-CA^2 is equal to $AE \times EA'$ (B. IV., Pr. 10).

Hence Cor. 1.

 $CA^2: CB^2:: AE \times EA': DE^2.$ $CA^2: CB^2:: CE^2 - CA^2: DE^2.$

Cor. 2. The squares of the ordinates to the transverse axis are to each other as the rectangles of their abscissas.

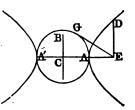
Cor. 3. Produce DE to meet the conjugate hyperbola in D', and draw D'E' at right angles to CE'; then, since the conjugate hyperbola is described with BB' as transverse axis and AA' as conjugate axis, we shall have

 $CB^2: CA^2:: CE'^2 - CB^2: D'E'^2.$

PROPOSITION XIV. THEOREM.

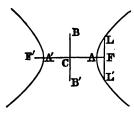
If a circle be described on the transverse axis of an hyperbola, an ordinate to this axis is to a tangent to the circle drawn from the foot of the ordinate as the conjugate axis is to the transverse.

Let a circle be described on AA' as a diameter; draw the ordinate DE, and from E draw EG tangent to the circle; then ED: EG:: BC: AC.


For, by Pr. 13,

 $ED^2: AE \times EA' :: CB^2: CA^2$.

But AE×EA' is equal to EG2 (B. IV.,


Pr. 29).

Therefore $ED^2: EG^2:: CB^2: CA^2$; or ED: EG:: CB: CA.

PROPOSITION XV. THEOREM.

The latus rectum is a third proportional to the transverse and conjugate axes.

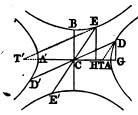
Let LL' be a double ordinate to the transverse axis passing through the focus F; then we shall have

AA': BB':: BB': LL'.

Because LF is an ordinate to the transverse axis,

 AC^2 : BC^2 :: $AF \times FA'$: LF^2 (Pr. 13) :: BC^2 : LF^2 (Pr. 5).

Hence


or

AC: BC:: BC: LF, AA': BB':: BB': LL'.

Therefore the latus rectum, etc.

PROPOSITION XVI. THEOREM.

If a diameter of the hyperbola is conjugate to a diameter of the conjugate hyperbola, and if ordinates be drawn to either axis from the vertices of the two diameters, the difference of their squares will be equal to the square of half the other axis.

Let DD' be a diameter of an hyperbola, and DT a tangent at the point D; and let EE' be a diameter of the conjugate hyperbola parallel to DT. Let DG and EH be ordinates to the axis AA'; then we shall have $CG^2-CH^2=CA^2$.

and $EH^2-DG^2=CB^2$.

Through E draw the tangent ET'; then,

by Pr. 13, Cor. 3,

 $CA^2: CB^2:: CH^2: EH^2 - CB^2$,

and, by composition,

CA2+CH2: EH2:: CA2: CB2

:: CG²-CA²: DG² (Pr. 13, Cor. 1).

But $CA^2+CH^2=CH.CT'+CH^2=CH.HT'$ (Pr. 11), and $CG^2-CA^2=CG^2-CG.CT=CG.GT$.

Hence CH.HT': CG.GT:: EH²: DG²

:: CH2: GT2, by sim. triangles.

Hence, B. II., Pr. 10, Cor.,

HT': CG:: CH: GT:: EH: DG.

Therefore the triangles EHT' and DGC are similar, and ET' is

parallel to DD'. Hence the triangles ECT' and DCT are similar,

and we have CT: CT':: GT: CH.

But CT: CT':: CH: CG (Pr. 11, Cor.).

Hence GT: CH:: CH: CG, or $CH^2 = CG.GT$.

Subtract each of these equals from CG², and we have CG²-CH²=CG²-CG.GT=CG.CT=CA².

Also, since ET' is parallel to DD', the diameter DD' is conjugate to EE', and we have $EH^2-DG^2=CB^2$.

Therefore, if a diameter, etc.

Cor. 1. $CA^2+CH^2=CG^2$; hence $CA^2:CB^2::CG^2:EH^2$.

Cor. 2. If a diameter of an hyperbola is conjugate to a diameter of the conjugate hyperbola, the second diameter is conjugate to the first; for it has been proved that if EE' be parallel to the tangent DT, DD' will be parallel to the tangent ET'.

Cor. 3. CG^2 - CA^2 =CG.GT;

hence $CA^2: CB^2:: CG \times GT: DG^2$.

If a second ordinate dg, and tangent dt be drawn, we shall have

 $\operatorname{CA^2}:\operatorname{CB^2}::\operatorname{C}g\times gt:dg^2.$ Hence $\operatorname{CG}\times\operatorname{GT}:\operatorname{C}g\times gt::\operatorname{DG^2}:dg^2.$

PROPOSITION XVII. THEOREM.

The difference of the squares of any two conjugate diameters is equal to the difference of the squares of the axes.

Let DD', EE' be any two conjugate diameters; then we shall have

$$DD'^{2}-EE'^{2}=AA'^{2}-BB'^{2}$$
.

Draw DG, EH ordinates to the transverse axis. Then, by the preceding Proposition, $CG^2-CH^2=CA^2$,

osition, $CG^2-CH^2=CA^2$, and $EH^2-DG^2=CB^2$.

Hence

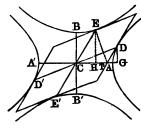
$$CG^{2}+DG^{2}-CH^{2}-EH^{2}=C\dot{A^{2}}-CB^{2},$$

 $CD^{2}-CE^{2}=CA^{2}-GB^{2}$:

or $CD^2-CE^2=CA^2-GB^2$; that is, $DD'^2-EE'^2=AA'^2-BB'^2$.

Therefore the difference of the squares, etc.

PROPOSITION XVIII. THEOREM.

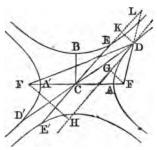

The parallelogram formed by drawing tangents through the vertices of two conjugate diameters is equal to the rectangle of the axes.

Let DED'E' be a parallelogram formed by drawing tangents to the conjugate hyperbolas through the vertices of two conjugate diameters DD', EE'; its area is equal to AA' × BB'.

Let the tangent at D meet the transverse axis in T; join ET.

and draw the ordinates DG, EH.

Then, by Pr. 16, Cor. 1, we have CA2: CB2:: CG2: EH2.



CA: CB:: CG: EH. But CT: CA:: CA: CG (Pr. 11); CT : CB : : CA : EH, or CA×CB is equal to CT×EH, which is equal to twice the triangle CTE, or the parallelogram DE; since the triangle and parallelogram have the same base CE, and are between the same parallels.

Hence 4CA × CB or AA' × BB' is equal to 4DE, or the parallelogram DED'E' Therefore the parallelogram, etc.

PROPOSITION XIX. THEOREM.

If from the vertex of any diameter straight lines are drawn to the foci, their product is equal to the square of half the conjugate diameter.

Let DD', EE' be two conjugate diameters, and from D let lines be drawn to the foci; then will FD× F'D be equal to EC2.

Draw a tangent to the hyperbola at D, and upon it let fall the perpendiculars FG, F'H; draw, also, DK perpendicular to EE'.

Then, because the triangles DFG. DLK, DF'H are similar, we have FD: FG:: DL: DK.

F'D:F'H::DL:DK.

Also, Whence (B. II., Pr. 12)

 $FD \times F'D : FG \times F'H :: DL^2 : DK^2$.

(1)

But, by Pr. 18, $AC \times BC = EC \times DK$;

whence AC or DL: DK:: EC: BC,

and $DL^2: DK^2:: EC^2: BC^2.$ (2)

Comparing proportions (1) and (2), we have

 $\mathbf{FD} \times \mathbf{F'D} : \mathbf{FG} \times \mathbf{F'H} : : \mathbf{EC^2} : \mathbf{BC^2}.$

But $FG \times F'H$ is equal to BC^2 (Pr. 10); hence $FD \times F'D$ is equal to EC^2 . Therefore, if from the vertex, etc.

PROPOSITION XX. THEOREM.

If a tangent and ordinate be drawn from the same point of an hyperbola to any diameter, half of that diameter will be a mean proportional between the distances of the two intersections from the centre.

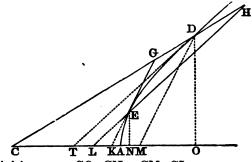
Let a tangent EG, and an ordinate EH, be drawn from the same point E of an hyperbola, meeting the diameter CD produced; then we shall have

CG:CD::CD:CH.

Produce GE and HE to meet the transverse axis in K and L; draw DT a tangent to the curve at the point D, and draw DM parallel to GK. Also draw the ordinates EN, DO.

By similar triangles we have

OM: NK:: DO: EN, OT: NL:: DO: EN.

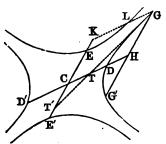

and also

G E

Multiplying together the terms of these proportions (B. II., Pr. 12), we have

 $OM \times OT :: NK \times NL :: DO^2 : EN^2 :: CO \times OT : CN \times NK$ (Pr. 16, Cor. 3).

Omitting the factor OT in the antecedents, and NK in the consequents of this proportion (B. II., Pr. 10, Cor.), we have OM: NL:: CO: CN,


and, by division,
But, by Pr. 11, Cor.,
Whence
But
and
CK: CM:: CK: CT.
CK: CM:: CT: CL.
CK: CM:: CG: CD,
CT: CL:: CD: CH;
hence
CO: CN:: CM: CH: CT.

Cor. If a tangent to the hyperbola meet a conjugate diameter, and from the point of contact an ordinate be drawn to that diameter, it may be proved that half of that diameter is a mean proportional between the distances of the two intersections from

the centre.

PROPOSITION XXI. THEOREM.

The square of any diameter is to the square of its conjugate as the rectangle of its abscissas is to the square of their ordinate.

Therefore, if a tangent, etc.

Let DD', EE' be two conjugate diameters, and GH an ordinate to DD'; then

DD'2: EE'2:: DH × HD': GH2. Draw GTT' a tangent to the curve at the point G, and draw GK an ordinate to EE'. Then, by Pr. 20,

> CT : CD : : CD : CH, $CD^2 : CH^2 : : CT : CH$

and CD²: CH²:: C (B. II., Pr. 13),

whence, by division, CD²: CH²-CD²:: CT: HT. (1)

Also, by Pr. 20, Cor., CT': CE:: CE: CK,

and CE²: CK²:: CT': CK or GH,

:: CT : HT. (2)

Comparing proportions (1) and (2), we have $CD^2: CE^2:: CH^2-CD^2: CK^2 \text{ or } GH^2$,

 $DD'^2: EE'^2:: DH \times HD': GH^2$.

Therefore the square, etc.

 \mathbf{or}

Cor. 1. In the same manner, it may be proved that DD'2: EE'2: DH×HD': G'H2; hence GH is equal to G'H, or every diameter bisects all chords parallel to the tangents at its vertices.

Cor. 2. The squares of the ordinates to any diameter are to each other as-the rectangles of their abscissas.

Scholium. If DD' be produced beyond D', and ordinates be drawn in the opposite branch of the hyperbola, all the propositions which refer to the ordinates of the diameter DD' will apply indiscriminately to ordinates of either or both branches.

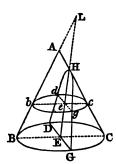
Thus, let DD' be produced to h, and draw the ordinate gh; then, by Cor. 2, DH.D'H: Dh.D'h:: GH^2 : gh^2 .

Also, produce EE' beyond E' to k, and draw the ordinate kl; then EK.E'K: EkE'k:: KL^2 : kl^2 .

PROPOSITION XXII. THEOREM.

If a cone be cut by a plane not passing through the vertex, and making an angle with the base greater than that made by the side of the cone, the section is an hyperbola.

Let ABC be a cone cut by a plane DGH, not passing through the vertex, and making an angle with the base greater than that made by the side of the cone, the section DHG is an hyperbola.


Let ABC be a section through the axis of the cone, and perpendicular to the plane HDG. Let bgcd be a section made by a plane parallel to the base of the cone; then DE, the intersection of the planes HDG, BGCD, will be perpendicular to the plane ABC, and, consequently, to each of the lines BC, HE. So, also, de will be perpendicular to bc and HE. Let AB and HE be produced to meet in L.

Now, because the triangles LBE, Lbe are similar, as also the triangles HEC, Hec, we have the proportions

· BE : be : : EL : eL, EC : ec : : HE : He.

Hence, by B. II., Pr. 12,

 $\overrightarrow{BE} \times \overrightarrow{EC} : be \times ec :: \overrightarrow{HE} \times \overrightarrow{EL} : \overrightarrow{He} \times eL$.

But, since BC is a diameter of the circle BGCD, and DE is perpendicular to BC, we have (B. IV., Pr. 23, Cor.)

 $BE \times EC = DE^2$.

For the same reason,

 $be \times ec = de^2$.

Substituting these values of BE \times EC and $be \times ec$ in the preceding proportion, we have DE²: de^2 :: HE \times EL: He $\times e$ L:

that is, the squares of the ordinates to the diameter HE are to each other as the pro-

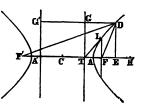
ducts of the corresponding abscissas. Therefore the curve DHG is an hyperbola (Pr. 13, Cor. 2) whose transverse axis is LH. Hence the hyperbola is called a *conic section*, as mentioned on page 203.

Schol. 1. The conclusion that the curve DHG is an hyperbola would not be legitimate unless the property above demonstrated were peculiar to the hyperbola. That such is the case appears from the fact that, when the transverse axis and one point of an hyperbola are given, this property will determine the position of every other point of the curve in the same manner as shown in the corresponding Proposition for the parabola, p. 215.

It will be noticed that this property of the hyperbola differs from the corresponding property of the ellipse in this particular, that the ordinate of the hyperbola falls upon the axis produced, while in the ellipse it falls upon the axis itself.

Schol. 2. The surface of the cone may be regarded as extending indefinitely below the base BGC, and hence the curve will extend indefinitely in the same direction.

The surface of the cone is described by the motion of the line AB (B. X., Def. 3). If the portion of AB produced toward L be regarded as describing a second portion of the conical surface, the intersection of the plane DHGE with this second portion will be the opposite branch of the hyperbola DHG.


PROPOSITION XXIII. THEOREM.

The distance of any point in an hyperbola from either focus is to its distance from the corresponding directrix as the eccentricity to half the transverse axis.

Let D be any point in the hyperbola; let DF, DF' be drawn to the two foci, and DGG' perpendicular to the directrices; then

DF: DG:: DF': DG':: CF: CA.

Draw DE perpendicular to the transverse axis, and take H a point in the axis, so that AH=DF, and, consequently, HA'=DF'; then CH is half the sum of AH and A'H, or DF and DF'; and CE is half the sum of FE and F'E.

By B. IV., Pr. 34,

FF': DF'-DF:: DF'+DF: F'E+FE

Dividing each of these equals by two, we have

CF: CA:: CH: CE.

By Pr. 11, CF: CA:: CA: CT.
Therefore CH: CE:: CA: CT.

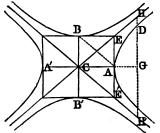
Hence (B. II., Pr. 7)

CH-CA:CE-CT::CA:CT;

or AH: ET:: CA: CT:: CF: CA; that is, DF: DG:: CF: CA.

In the same manner, it may be proved that DF': DG':: CF: CA.

Scholium 1. We have seen that, in the parabola, the distance of any point of the curve from the focus is equal to its distance from the directrix, while in the ellipse and hyperbola these distances are in the ratio of the eccentricity to half the major or transverse axis. In the ellipse the eccentricity is less than the semi-major axis, while in the hyperbola it is greater than the semi-transverse axis. In each of these three curves the two distances have to each other a constant ratio. In the parabola this ratio is unity; in the ellipse it is less than unity; while in the hyperbola it is greater than unity.


Scholium 2. Astronomers generally regard the semi-major axis of a planetary orbit as unity, in which case the eccentricity of the ellipse will be less than unity. It we regard the semi-transverse axis of an hyperbola as unity, its eccentricity will be greater than unity. The parabola may be regarded as an ellipse whose major axis is infinite, and in which the eccentricity is equal to the semi-major axis; that is, the eccentricity is unity. In Astronomy, therefore, the eccentricity of a parabola is considered as unity; that of an ellipse is less than unity; and that of an hyperbola is greater than unity. In each case the value of the eccentricity expresses the ratio of the distances of any point of the curve from the focus and directrix.

OF THE ASYMPTOTES.

Definition. If tangents to two conjugate hyperbolas be drawn through the vertices of the axes, the diagonals of the rectangle so formed, being indefinitely produced, are called asymptotes to the hyperbolas.

PROPOSITION XXIV. THEOREM.

If an ordinate to the transverse axis be produced to meet the asymptotes, the rectangles of the segments into which it is divided by the curve will be equal to the square of half the conjugate axis.

Let AA', BB' be the axes of two conjugate hyperbolas, and through the vertices A, A', B, B' let tangents to the curve be drawn, and let CE, CE', the diagonals of the rectangle thus formed, be indefinitely produced, they will be asymptotes to the curves.

From any point D of one of the curves draw the ordinate DG to the transverse axis, and produce it to

meet CE in H, and CE' in H'. Then, from Pr. 13, Cor. 1, we shall $CA^2: CB^2(=AE^2):: CG^2-CA^2: DG^2$ have

:: CG2: GH2, by similar triangles.

 $CG^2: GH^2:: CG^2-CA^2: DG^2$, Hence

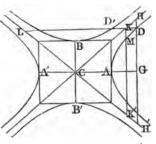
and by division.

CG2: GH2:: CA2: GH2-DG2, or as CA2: AE2.

Since the antecedents of this proportion are equal to each other, the consequents must be equal; that is,

AE2 or BC2 is equal to GH2-DG2,

 $HD \times DH'$ (B. IV., Pr. 10). which is equal to


Cor. 1. Since the rectangle contained by HD and DH' remains constant, while HDH' is removed from C, and the line DH' consequently increases, DH must diminish; and, by taking H sufficiently far from C, DH may be made less than any assignable magnitude. The line CH, therefore, approaches nearer and nearer to the hyperbola the farther it is produced, though it never actually reaches it at any finite distance from C. When the distance of H from C becomes infinitely great. DH becomes less than any assignable quantity, and the asymptote may therefore be considered as a tangent to the curve at a point infinitely distant from the centre.

The asymptote CH', in the same manner, approaches nearer and nearer to the other branch of the hyperbola the farther it is produced.

Cor. 2. The line AB, joining the vertices of the two axes, is bi-

sected by one asymptote, and is parallel to the other.

Cor. 3. If DL be drawn perpendicular to the conjugate axis, and meet the asymptotes in K and L, and the conjugate hyperbola in D', it may also be proved that CA²=D'K×D'L. The asymptote CH, therefore, continually approaches the conjugate hyperbola, and becomes tangent to it at an infinite distance from the centre.

Cor. 4. If KK' be drawn parallel to HH', then KM×MK'=HD ×DH', for each of them is equal to BC²; that is, if two ordinates to the transverse axis be produced to meet the asymptotes, the rectangles of the segments into which these lines are divided by the curve are equal to each other.

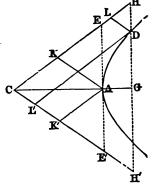
PROPOSITION XXV. THEOREM.

All the parallelograms formed by drawing lines from any point of an hyperbola parallel to the asymptotes are equal to each other.

Let CH, CH' be the asymptotes of an hyperbola; let the lines AK, DL be drawn parallel to CH', and the lines AK', DL' parallel to CH; then will the parallelogram CLDL' be equal to the

parallelogram CKAK'.

Through the points A and D draw EE', HH' perpendicular to the transverse axis; then, because the triangles AEK, DHL are similar, as also the triangles AE'K', DH'L', we have the proportions


AK: AE::DL: DH.

Also, AK': AE':: DL': DH'.

Hence (B. II., Pr. 12)

 $AK \times AK' : AE \times AE' :: DL \times DL' : DH \times DH'.$

But, by Pr. 24, Cor. 4, the consequents of this proportion are equal to each other; hence $AK \times AK'$ is equal to $DL \times DL'$.

But the parallelograms CA, CD, being equiangular, are as the rectangles of the sides which contain the equal angles (B. IV., Pr. 24, Cor. 2); hence the parallelogram CD is equal to the parallelogram CA.

EXERCISES ON THE HYPERBOLA.

- 1. In an hyperbola, the tangents at the vertices of the transverse axis will meet the asymptotes in the circumference of the circle described on FF' as a diameter.
- 2. If DM be drawn parallel to CG (fig., Pr. 14), meeting the transverse axis in M, then ME=BC.
- 3. If an hyperbola and an ellipse have the same foci, they cut one another at right angles.
- 4. If DG (fig. 2d, Pr. 11) be the ordinate of a point D, and GK be drawn parallel to AD to meet CD in K, then AK is parallel to the tangent at D.
- 5. If from any point of the hyperbola lines be drawn parallel to, and terminating in the asymptotes, the parallelogram so formed will be equal to one eighth of the rectangle described on the axes.
- 6. An ordinate to the transverse axis of an hyperbola is 43 inches, and the corresponding abscissas are 30 and 85 inches; required the latus rectum.
- 7. If the axes of an hyperbola are 65 and 54 inches, what is the radius of a circle described to touch the curve, when its centre is in the transverse axis produced, at the distance of 112 inches from the centre of the hyperbola?
- 8. If the axes of an hyperbola are 65 and 54 inches, what is its latus rectum, and what is the position of its directrix?
- 9. The conjugate axis of an hyperbola is 52 inches, the latus rectum 42 inches, and an ordinate of 36 inches is drawn to the transverse axis; determine where the tangent line drawn through the extremity of this ordinate meets the transverse axis.
- 10. Determine where the tangent line in the last example meets the conjugate axis.

PLANE TRIGONOMETRY.

1. TRIGONOMETRY is that branch of Mathematics which teaches how to determine the several parts of a triangle by means of others that are given. In a more enlarged sense, it embraces the investigation of the relations of angles in general.

Plane Trigonometry treats of plane angles and triangles;

Spherical Trigonometry treats of spherical triangles.

2. In every triangle there are six parts: three sides and three angles. These parts are so related to each other that when any three of them are given, provided one of them is a side, the remaining parts can be determined.

3. In order to subject angles to computation, they must be expressed by numbers. The units by which angles are expressed are the degree, minute, and second, designated by the characters o, ', ''.

A degree is the 90th part of a right angle, or the 360th part of the whole angular space about a point. A right angle is expressed by 90°; two right angles by 180°; and the whole angular space about a point by 360°.

A minute is an angle equal to the 60th part of a degree. Therefore one degree = 60'.

Inerefore one degree=60.

A second is an angle equal to the 60th part of a minute. Therefore one minute=60".

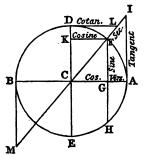
Angles less than a second are expressed as decimal parts of a second. Thus ½th of four right angles will be expressed by 51° 25′ 42.″86.

4. Since angles at the centre of a circle are proportional to the arcs intercepted between their sides, these arcs may be taken as the measures of the angles. An angle may therefore be measured by the number of *units of arc* intercepted on the circumference.

The units of arc are also the degree, minute, and second. They are the arcs which subtend angles of a degree, a minute, and a second respectively at the centre. The quadrant is therefore expressed by 90°; the semi-circumference by 180°; and the whole circumference by 360°.

The radius of the circle employed in measuring angles is arbi-

trary, and, for convenience, is generally taken as unity. When this is not done, it is denoted by its initial letter R.


- 5. The circumference of a circle whose diameter is unity is 3.14159. If the radius be unity, the semi-circumference, or an arc of 180°, will be 3.14159. Hence the length of an arc of 1° will be 0.01745; and the length of an arc of 1' will be 0.00029, etc.
- 6. The complement of an arc or angle is the remainder obtained by subtracting the arc or angle from 90°. Thus the complement of 25° 15' is 64° 45'. Since the two acute angles of a right-angled triangle are together equal to a right angle, each of them must be the complement of the other.

In general, if we represent any arc by A, its complement is 90° —A. Hence, if an arc exceeds 90° , its complement must be negative. Thus the complement of 113° 15' is -23° 15'. See Art. 79.

7. The supplement of an arc or angle is the remainder obtained by subtracting the arc or angle from 180°. Thus the supplement of 25° 15′ is 154° 45′. Since in every plane triangle the sum of the three angles is 180°, either angle is the supplement of the surrof the other two.

In general, if we represent any arc by A, its supplement is 180° —A. Hence, if an arc is greater than 180° , its supplement must be negative. Thus the supplement of 200° is -20° .

8. The sine of an arc is the perpendicular let fall from one extremity of the arc upon the diameter passing through the other extremity.

Thus FG is the sine of the arc AF, or of the angle ACF.

Every sine is half the chord of double the arc. Thus the sine FG is the half of FH, which is the chord of the arc FAH, double of FA. The chord which subtends the sixth part of the circumference, or the chord of 60°, is equal to the radius (Geom., B. VI., Pr. 4); hence the sine of 30° is equal to half of the radius.

9. The tangent of an arc is the line

which touches the circle at one extremity of the arc, and is limited by a line drawn from the centre through the other extremity.

Thus AI is the tangent of the arc AF, or of the angle ACF.

10. The secant of an arc is the line drawn from the centre of the circle through one extremity of the arc, and is limited by the tangent drawn through the other extremity.

Thus CI is the secant of the arc AF, or of the angle ACF.

In the preceding definitions of sine, tangent, and secant, the radius of the circle has been assumed as unity. In a circle of any other radius, we must suppose these lines to be divided by that radius.

11. The cosine of an arc is the sine of the complement of that arc.

Thus the arc DF, being the complement of AF, FK, or its equal CG, is the sine of the arc DF, or the cosine of the arc AF.

The cotangent of an arc is the tangent of the complement of that arc. Thus DL is the tangent of the arc DF, or the cotangent of the arc AF.

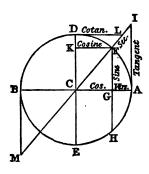
The cosecant of an arc is the secant of the complement of that arc. Thus CL is the secant of the arc DF, or the cosecant of the arc AF.

In general, if we represent any angle by A, $\cos A = \sin (90^{\circ} - A);$ $\cot A = \tan (90^{\circ} - A);$ $\csc A = \sec (90^{\circ} - A).$

Since in a right-angled triangle either of the acute angles is the complement of the other, the sine, tangent, and secant of one of these angles is the cosine, cotangent, and cosecant of the other.

12. The versed sine of an arc is that part of the diameter intercepted between the extremity of the arc and the foot of the sine.

Thus GA is the versed sine of the arc AF, or of the angle ACF.


The versed sine of an acute angle ACF is equal to the radius minus the cosine CG. The versed sine of an obtuse angle BCF is equal to radius plus the cosine CG; that is, to BG.

13. The sine, tangent, and secant of any arc are equal to the sine, tangent, and secant of its supplement.

Thus FG is the sine of the arc AF, or of its supplement BDF. AI, the tangent of the arc AF, is equal to BM, the tangent of the arc BDF.

And CI, the secant of the arc AF, is equal to CM, the secant of the arc BDF.

14. Fundamental formulæ. The relations of the sine, cosine, etc., to each other may be derived from the proportions of the

sides of similar triangles. Thus the tri angles CGF, CAI, CDL being similar, we have

1. CG: GF:: CA: AI; that is, representing the arc by A, and the radius of the circle by R, we have

cos. A: sin. A::R: tang. A.

Whence tang. $A = \frac{R \sin A}{\cos A}$

2. CG: CF:: CA: CI; that is, cos. A:R::R:sec. A.

sec. $A = \frac{R^2}{\cos A}$. Whence

3. GF: CG::CD: DL; that is, sin. A: cos. A::R: cot. A.

 $\cot A = \frac{R \cos A}{\sin A}.$ Whence

4. GF: CF:: CD: CL; that is, sin. A: R:: R: cosec. A.

cosec. $A = \frac{R^2}{\sin A}$. Whence

5. AI; AC;:CD; DL; that is, tang. A; R;:R; cot. A. Whence $\tan A = \frac{R^2}{\cot A}$.

The preceding formulæ will be frequently referred to hereafter. 15. Given the sine of an angle, to find the cosine, tangent, etc.

In the right-angled triangle CGF, we find CG²+GF²=CF²; that is, sin.2A + cos.2A = R2, where sin.2A signifies "the square of the sine of A." When radius is taken as unity, we have

cos.
$$A = \sqrt{1 - \sin^2 A} = \sqrt{(1 + \sin A)(1 - \sin A)}$$
.

When the sine and cosine of an angle have been determined, the tangent may be found by Eq. 1, Art. 14,

tang.
$$A = \frac{\sin. A}{\cos. A}$$
,

and the cotangent by Eq. 3, Art. 14,

$$\cot A = \frac{\cos A}{\sin A}$$

Also the secant by Eq. 2, Art. 14,

sec.
$$A = \frac{1}{\cos A}$$
,

and the cosecant by Eq. 4, Art. 14,

$$\operatorname{cosec.} \mathbf{A} = \frac{1}{\sin. \mathbf{A}}$$

Hence we see that if we had a table of sines for every degree and minute of the quadrant, we could easily obtain the cosines. tangents, cotangents, etc.

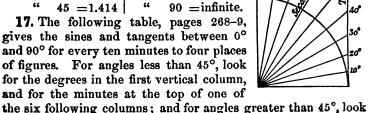
Ex. 1. Compute the cosine, tangent, etc., of 30°.

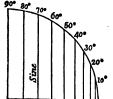
Ex. 2. Given the tangent of 20°, equal to 0.364, to find the secant of 20°. Find also the sine, etc., of the same angle.

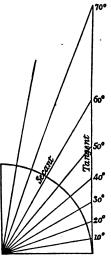
Ex. 3. The tangent of 45° is unity. Compute the sine and secant of 45°.

Ex. 4. The sine of 40° is 0.643. Compute the cosine, tangent, etc.

16. A table of natural sines, tangents, etc., is a table giving the lengths of those lines for different angles in a circle whose radies is unity.


Thus, if we describe a circle with a radius of one inch, and divide the circumference into equal parts of


ten degrees, we shall find that


If we draw the tangents of the same arcs, we shall find that

Also, if we draw the secants of the same arcs, we shall find that

17. The following table, pages 268-9, gives the sines and tangents between 0° and 90° for every ten minutes to four places of figures. For angles less than 45°, look for the degrees in the first vertical column, and for the minutes at the top of one of

	o'	10'	20'	36	40'	50	-41	o'	10'	20'	30'	40'	50'
00	0000	0029	0058	0087	0116	0145	450	7071	7092	7112	7132	7153	7173
1			0233				46	7193					7294
2	0349	0378	0407	0436	0465	0494	47	7314	7333	7353	7373	7392	7412
3			0581				48						7528
4	0698	0727	0756	0785	0814	0843	49	7547	7566	7585	7604	7623	7642
5	0872	0901	0929	0958	0987	1016	50	7660	7679	7698	7716	7735	7753
6	1045	1074	1103	1132	1161	1190	51				7826		
7	1219	1248	1276	1305	1334	1363	52				7934		
8	1392	1421	1449	1478	1507	1536	53			-	8039		
9	1564	1593	1622	1650	1679	1708	54	8090	8107	8124	8141	8158	8175
10	1736	1765	1794	1822	1851	1880	55				8241		
11	1908	1937	1965	1994	2022	2051	56				8339		
12			2136				57						8465
13			2306				58				8526		
14			2476				59						8646
15			2644				60				8704		
16	2756	2784	2812	2840	2868	2896	61				8788		
17			2979				62	8829	8843	8857	8870	0003	8897
18			3145				63				8949		
19			3311				64	8988	9001	9013	9026	9038	9051
20			3475				65				9100		
21			3638				66	9135	9147	9159	9171	9182	9194
22			3800				67				9239		
23			3961				68				9304		
24			4120				69				9367		
25			4279				70				9426		
26	1000	1. 1.	4436	. 7 175		Charles St.	71	-	-	-	9483	-	_
27	4540	4566	4592	4617	4643	4669	72				9537		
28	4695	4720	4746	4772	4797	4823	73	9563	9572	9580	9588	9596	9605
29	4848	4874	4899	4924	4950	4975	74				9636		
30			5050				75						9696
31			5200				76				9724		
32			5348				77						9775
33			5495 5640				78	9781			9799 9833		
35			5783				79 80				9863		
	_	-		-		_	_	-	-	-	-	-	
36			5925				81	9877			9890		
37		1.50	6065		V 10 43 W		82				9914		
38			6202				83				9936		
39			6338				84						9959
40			6472 6604								9969		9974
41			6734								9990		
43			6862										9998
44			6988								unity		
44		-		-	-	-	-4		-	-	-		
-31	o'	10'	20'	30'	40'	50'		o'	10'	20'	30'	40'	50'

Γ	o'	10'	20'	30'	40'	5o'		o'	10.	20'	30'	40'	5o'·
0	0000	0020	0058	0087	0116	0145	45°	1.000	1.006	1.012	1.018	1.024	1.030
1						0320	46			1.048			
2			0407				47			1.085			
3	0524	0553	0582	0612	0641	0670	48			1.124			
4	0699	0729	0758	0787	0816	o846	49			1.164			
5	0875	0904	0934	0963	0992	1022	50	1.192	1.199	1.206	1.213	1,220	1.228
6	1051	1080	1110	1139	1169	1198	51			1.250			
1 7	1228	1257	1287	1317	1346	1376	52	1.280	1.288	1.295	1.303	1.311	1.319
8	1405	1435	1465	1495	1524	1554	53			1.343			
19			1644				54			1.393			
10			1823				55			1.446			
11			2004				56			1.501			
12			2186				57			1.560			
13			2370				58			1.621			
14			2555				59			1.686			
15			2742				60			1.756			
16			2931				61			1.829			
17		·	3121				62			1.907			
18			3314				63			1.991			
19	3443	3476	35o8	3541	3574	3607	64			2.081			
20			3706				65			2.177			
21			3906				66			2.282			
22			4108				67			2.394			
23			4314				68			2.517			
24			4522				69			2.651			
25			4734				70			2.798			
26			<u>4950</u>				71			2.960			
27			5169				72			3.140			
28			5392				73			3.340			
29			5619				74			3.566			
30			5851				75			3.821			
31 32			6088 6330				76			4.113			4.638
33			6577				77 78	4.005	4.590	4.843	4.015	1 080	5.066
34	67/5	6785	683o	6873	6016	6050		5 1/5	5 226	5.309	5.306	5.485	5.576
35	7002	7046	7089	7133	7177	7221	79 80			5.871			
36			7355				81			6.561			
37	7536	758.	7627	7400	7445	7490	82			7.429			
38	7813	7860	7907	7054	8000	8050	83	8 7 6 6	8 345	8.556	8.777	0.010	0.255
39	8008	8146	8195	8263	8202	83/2	84	0.514	0.788	10.08	10.30	10.71	11.06
40	8391	8441	8401	8541	8501	8642	85			12.25			
41	8693						86			15.60			
42			9110				87						26.43
43	9325	6386	0435	0400	0545	0601	88						49.10
44	9657	9713	9770	9827	9884	9942	89						343.8
	0'	10'	20'	30′	40'	50'	-	0'	10'	20'	30'	40'	50'
	1				7-		!						

for the degrees in the eighth vertical column, and for the minutes at the top of one of the six following columns. Upon the same horizontal line with the degrees, and under the given number of minutes at the top of the page, will be found the sine or tangent required. Since the radius of the circle is supposed to be unity, the sine of every arc below 90° is less than unity. The sines are expressed in decimal parts of radius; and, although the decimal point is not written in the table, it must always be prethe sine of 25° 10' is 0.4253: fixed. Thus

51 30 is 0.7826.

· So also the tangent of 31° 40' is 0.6168; 65 20 is 2.1770.

If the cosine of an angle is required, we must look for the sine of the complement of that angle. Thus

the cosine of 16° 40' is the sine of 73° 20', or 0.9580; 22 40. or 0.3854. 67 20

The cotangents are found in the same manner.

It is not necessary to extend the tables beyond a quadrant, because the sine of an angle is equal to that of its supplement, Art. 13.

Thus the sine of 116° 10' is the same as the sine of 63° 50'.

cosine of 132 40 sine of 42 40: tangent of 36 40; tangent of 143 20 tangent of 61 50. cotangent of 151 50

18. If a sine is required for an angle containing a number of minutes not given in the table, it must be found by interpolation. This interpolation is based upon the assumption that the differences of the sines are proportional to the differences of the angles; and, although this assumption is not strictly correct, the error is generally so small that it may be neglected. Thus

the sine of 40° 20' is 0.6472: 40 30 is 0.6494.

The difference of the sines corresponding to ten minutes of arc is .0022, which is called the tabular difference.

The correction for 1' is therefore .00022; for 2' it is .00044; for

3' it is .00066, etc.

As the tables only extend to four decimal places, we omit the fifth decimal, and, when the fraction omitted exceeds a half, we increase the preceding figure by unity. Thus we find

the sine of 40° 21' is 0.6474;

40 22 0.6476;

40 23 0.6479, etc. Thus we see that the correction for the odd minutes is found by multiplying the tabular difference by the number of minutes, and dividing the product by 10.

In this manner we find

the sine of 27° 17' is 0.4584; cosine of 45 23 is 0.7024; the tangent of 63 32 is 2.0090; cotangent of 81 48 is 0.1441.

19. To find the number of degrees and minutes belonging to a given sine or tangent.

If the given sine is found exactly in the table, the corresponding degrees will be found in the first or eighth vertical column, and the minutes at the top of the page. But when the given number is not found exactly in the table, look for the sine or tangent which is next less than the proposed one, and take out the corresponding degrees and minutes. The additional minutes may be found by reversing the process described in the preceding article.

Find the difference between the given number and the one next less in the table; multiply this difference by 10, and divide the result by the tabular difference. The quotient will be the additional minutes required.

Ex. Required the arc whose sine is 0.5060.

The next less sine in the table is 0.5050, which corresponds to 30° 20′. The difference between this sine and the given sine is .0010, which, multiplied by 10 and divided by the tabular difference .0025, gives 4, the additional minutes required. The required arc is therefore 30° 24′.

In the same manner we find

the arc whose tangent is 1.750 is 60° 15'.

If the arc corresponding to a cosine or a cotangent is required, first find the arc corresponding to the same number regarded as a sine or tangent, and take the complement of this arc. Thus

the arc whose cosine is 0.8264 is 34° 16'; " cotangent is 0.7146 is 54° 27'.

LOGARITHMS.

20. Logarithms are numbers designed to diminish the labor of multiplication and division by substituting in their stead addition and subtraction. All numbers are regarded as powers of some one number, which is called the base of the system; and the

exponent of the power to which the base must be raised in order to be equal to a given number is called the logarithm of that number.

The base of the common system of logarithms (called, from their inventor, Briggs's Logarithms) is the number 10. Hence all numbers are to be regarded as powers of 10. Thus, since

$$10^{0}=1$$
 we have logarithm of 1 =0;
 $10^{1}=10$ " 10 =1;
 $10^{2}=100$ " 100 =2;
 $10^{3}=1000$ " 1000=3, etc.

Whence it appears that in Briggs's system the logarithm of any number between 1 and 10 is some number between 0 and 1; that is, it is a fraction less than unity, and is generally expressed as a decimal. The logarithm of any number between 10 and 100 is some number between 1 and 2; that is, it is equal to 1 plus a decimal. The logarithm of any number between 100 and 1000 is some number between 2 and 3; that is, it is equal to 2 plus a decimal; and so on.

21. The same principle may be extended to fractions by means of negative exponents. Thus, since

```
10^{-1} = \frac{1}{10}, or 0.1, -1 is the logarithm of 0.1;

10^{-2} = \frac{1}{100}, or 0.01, -2 " 0.01;

10^{-3} = \frac{1}{1000}, or 0.001, -3 " 0.001;

10^{-4} = \frac{1}{10000}, or 0.0001, -4 " 0.0001, etc.
```

Hence it appears that the logarithm of any number between 1 and 0.1 is some number between 0 and -1, or may be represented by -1 plus a decimal. The logarithm of any number between 0.1 and 0.01 is some number between -1 and -2, or may be represented by -2 plus a decimal. The logarithm of any number between 0.01 and 0.001 is some number between -2 and -3, or may be represented by -3 plus a decimal, and so on.

22. Hence we see that the logarithms of most numbers must consist of two parts, an integral part and a decimal part. The integral part is called the *characteristic* or *index* of the logarithm. The characteristic may always be determined by the following

RULE.

The characteristic of the logarithm of any number is equal to the number of places by which the first significant figure of that number is removed from the unit's place; and is positive when this figure is to the left of the unit's place, negative when it is to the right, and zero when it is in the unit's place.

Thus the characteristic of the logarithm of 397 is +2, and that of 4673 is +3, while the characteristic of the logarithm of 0.0046 is -3.

23. Since powers of the same quantity are multiplied by adding their exponents, the logarithm of the product of two or more numbers is equal to the sum of the logarithms of those numbers. Also, since powers of the same quantity are divided by subtracting their exponents, the logarithm of the quotient of two numbers is equal to the logarithm of the dividend diminished by that of the divisor.

Since the logarithm of 10 is 1, if a number be multiplied or divided by 10, its logarithm will be increased or diminished by 1, the decimal part remaining unchanged. Hence

The decimal part of the logarithm of any number is the same as that of the number multiplied or divided by 10, 100, 1000, etc.

Thus, if we denote the decimal part of the logarithm of 3456 by m, we shall have

logarithm of 3456 =
$$3+m$$
; | logarithm of .3456 = $-1+m$; | " .03456 = $-2+m$; | " .003456 = $-2+m$; | " .003456 = $-3+m$; | " .0003456 = $-3+m$; | " .0003456 = $-4+m$.

Table of Logarithms.

24. A table of logarithms usually contains the logarithms of the entire series of natural numbers from 1 up to 10,000, and the larger tables extend to 100,000 or more. In the smaller tables the logarithms are usually given to five or six decimal places; the larger tables extend to seven, and sometimes eight or more places.

In the accompanying table, the logarithms of the first 100 numbers are given, with their characteristics; but for all other numbers, only the decimal part of the logarithm is given, while the characteristic is left to be supplied according to the rule in Art. 22.

To find the Logarithm of any Number between 1 and 100.

25. Look on the first page of the accompanying table, along the column of numbers under N., for the given number, and against it, in the next column, will be found the logarithm, with its characteristic. Thus

To find the Logarithm of any Number consisting of three Figures.

Look on one of the pages of the table from 322 to 342, along the left-hand column, marked N., for the given number, and against it, in the column headed 0, will be found the decimal part of its logarithm. To this the characteristic must be prefixed, according to the rule in Art. 22. Thus

the logarithm of 347, from page 330, will be found, 2.540329;
" 871. " 340. " 2.940018.

As the first two figures of the decimal are the same for several successive numbers in the table, they are not repeated for each logarithm separately, but are left to be supplied. Thus the decimal part of the logarithm of 339 is .530200. The first two figures of the decimal remain the same up to 347; they are therefore omitted in the table, and are to be supplied.

To find the Logarithm of any Number consisting of four Figures.

Find the three left-hand figures in the column marked N., as before, and the fourth figure at the head of one of the other columns. Opposite to the first three figures, and in the column under the fourth figure, will be found four figures of the logarithm, to which two figures from the column headed 0 are to be prefixed, as in the former case. The characteristic must be supplied according to Art. 22. Thus

the logarithm of 3456 is 3.538574; " 8765 is 3.942752.

In several of the columns headed 1, 2, 3, etc., small dots are found in the place of figures. This is to show that the two figures which are to be prefixed from the first column have changed, and they are to be taken from the horizontal line directly below. The place of the dots is to be supplied with ciphers. Thus

the logarithm of 2045 is 3.310693; " 9777 is 3.990206.

The two leading figures from the column 0 must also be taken from the horizontal line below, if any dots have been passed over on the same horizontal line. Thus

the logarithm of 1628 is 3.211654.

To find the Logarithm of any Number containing more than four Figures.

26. By inspecting the table, we shall find that the differences of the logarithms are nearly proportional to the differences of their corresponding numbers. Thus

Here the difference between the successive logarithms, called the tabular difference, is constantly 60, corresponding to a difference of unity in the natural numbers. If, then, we suppose the differences of the logarithms to be proportional to the differences of their corresponding numbers (as they are nearly), a difference of 0.1 in the numbers should correspond to a difference of 6 in the logarithms; a difference of 0.2 in the numbers should correspond to a difference of 12 in the logarithms, etc. Hence

the logarithm of 7250.1 must be 3.860344;
" " 7250.2 " 3.860350;
" " 7250.3 " 3.860356.

In order to facilitate the computation, the tabular difference is inserted on page 338 in the column headed D., and the proportional part for the fifth figure of the natural number is given at the bottom of the page. Thus, when the tabular difference is 60, the corrections for .1, .2, .3, etc., are seen to be 6, 12, 18, etc.

If the given number was 72501, the characteristic of its logarithm would be 4, but the decimal part would be the same as for 7250.1.

If it were required to find the correction for a sixth figure in the natural number, it is readily obtained from the Proportional Parts in the table. The correction for a figure in the sixth place must be one tenth of the correction for the same figure if it stood in the fifth place. Thus, if the correction for .5 is 30, the correction for .05 is obviously 3.

Required the logarithm of 452789.

The logarithm of 452700 is 5.655810.

The tabular difference is 96.

Accordingly, the correction for the fifth figure, 8, is 77, and for the sixth figure, 9, is 8.6, or 9 nearly. Adding these corrections to the number before found, we obtain 5.655896.

The preceding logarithms do not pretend to be perfectly exact,

but only the nearest numbers limited to six decimal places. Accordingly, when the fraction which is omitted exceeds half a unit in the sixth decimal place, the last figure must be increased by unity.

Required the logarithm of 8765432.

The logar	rithm of	8765000 is	6.94	2752
Correctio	n for th	e fifth figure, 4,		20
. "	6	sixth figure, 3,		1.5
"	66	seventh figure 2.		0.1

Therefore the logarithm of 8765432 is 6.942774.

Required the logarithm of 234567.

The logar	ithm of	234500 is	5.370143
Correction	n for the	e fifth figure, 6,	111
66	66	sixth figure, 7,	13

Therefore the logarithm of 234567 is 5.370267.

To find the Logarithm of a Decimal Fraction.

27. According to Art. 23, the decimal part of the logarithm of any number is the same as that of the number multiplied or divided by 10, 100, 1000, etc. Hence, for a decimal fraction, we find the logarithm as if the figures were integers, and prefix the characteristic according to the rule of Art. 22.

EXAMPLES.

\mathbf{T} he	logarithm	of 345.6	is	2.538574;
"	"	87.65	is	1.942752;
"	"	2.345	is	0.370143;
"	"	.1234	is	1.091315;
"	66	.005678	is	$\overline{3}.754195.$

The minus sign is here placed over the characteristic, to show that that alone is negative, while the decimal part of the logarithm is positive.

To find the Logarithm of a Vulgar Fraction.

28. We may reduce the vulgar fraction to a decimal, and find its logarithm by the preceding article; or, since the value of a fraction is equal to the quotient of the numerator divided by the denominator, we may, according to Art. 23, subtract the logarithm of the denominator from that of the numerator; the difference will be the logarithm of the fraction.

Ex. 1. Find the logarithm of $\frac{3}{16}$, or 0.1875.

From the logarithm of 3, Take the logarithm of 16,

0.477121, 1.204120.

Leaves the logarithm of $\frac{3}{16}$, or .1875, $\frac{1}{1.273001}$.

Ex. 2. The logarithm of $\frac{4}{55}$ is $\overline{2.861697}$.

Ex. 3. The logarithm of $\frac{123}{876}$ is $\overline{1}.147401$.

To find the Natural Number corresponding to any Logarithm.

29. Look in the table, in the column headed 0, for the first two figures of the logarithm, neglecting the characteristic; the other four figures are to be looked for in the same column, or in one of the nine following columns; and if they are exactly found, the first three figures of the corresponding number will be found opposite to them in the column headed N., and the fourth figure will be found at the top of the page. This number must be made to correspond with the characteristic of the given logarithm by pointing off decimals or annexing ciphers. Thus the natural number belonging to the log. 4.370143 is 23450;

" . " 1.538574 is 34.56.

If the decimal part of the logarithm can not be exactly found in the table, look for the nearest less logarithm, and take out the four figures of the corresponding natural number as before; the additional figures may be obtained by means of the Proportional Parts at the bottom of the page.

Required the number belonging to the logarithm 4.368399.

On page 328 we find the next less logarithm .368287.

The four corresponding figures of the natural number are 2335. Their logarithm is less than the one proposed by 112. The tabular difference is 186; and, by referring to the bottom of page 328, we find that, with a difference of 186, the figure corresponding to the proportional part 112 is 6. Hence the five figures of the natural number are 23356; and, since the characteristic of the proposed logarithm is 4, these five figures are all integral.

Required the number belonging to the logarithm 5.345678.

The next less logarithm in the table is 345570.

Their difference is 108.

The first four figures of the natural number are 2216.

With the tabular difference 196, the fifth figure, corresponding to 108, is seen to be 5, with a remainder of 10. To find the sixth figure corresponding to this remainder 10, we may multiply it by

10, making 100, and search for 100 in the same line of Proportional Parts. We see that a difference of 100 would give us 5 in the fifth place of the natural number. Therefore a difference of 10 must give us 5 in the sixth place of the natural number. Hence the required number is 221655.

In the same manner we find

the number corresponding to the log. 3.538672 is 3456.78;

" 1.994605 is 98.7654;
" 1.647817 is .444444.

MULTIPLICATION BY LOGARITHMS.

30. According to Art. 23, the logarithm of the product of two or more factors is equal to the sum of the logarithms of those factors. Hence, for multiplication by logarithms, we have the following

RULE.

Add the logarithms of the factors; the sum will be the logarithm of their product.

Ex. 1. Required the product of 57.98 by 18.

The logarithm of 57.98 is 1.763278 is 1.255273

The logarithm of the product 1043.64 is 3.018551. Ex. 2. Required the product of 397.65 by 43.78.

Ans. 17409.117.

Ex. 3. Required the continued product of 54.32, 6543, and 12.345.

The word sum in the preceding rule is to be understood in its algebraic sense; therefore, if any of the characteristics of the logarithms are negative, we must take the difference between their sum and that of the positive characteristics, and prefix the sign of the greater. It should be remembered that the decimal part of the logarithm is invariably positive; hence that which is carried from the decimal part to the characteristic must be considered positive.

Ex. 4. Multiply 0.00563 by 17.

The logarithm of 0.00563 is 3.750508 " 17 is 1.230449

Product, 0.09571, whose logarithm is $\overline{2.980957}$. Ex. 5. Multiply 0.3854 by 0.0576.

The logarithm of 0.3854 is 1.585912 " 0.0576 is 2.760422

Product 0.022199, whose logarithm is $\overline{2.346334}$.

Ex. 6. Multiply 0.007853 by 0.00476. Ans. 0.00003738.

Ex. 7. Find the continued product of 11.35, 0.072, and 0.017.

31. The logarithm of a *negative* number is an imaginary quantity. If, therefore, it is required to multiply negative numbers by means of logarithms, we must multiply the equal positive numbers, and give to the product the sign required by the rule of signs in Multiplication. To distinguish the negative sign of a natural number from the negative characteristic of a logarithm, we append the letter n to the logarithm of a negative factor. Thus

for -56 we write the logarithm 1.748188 n.

Ex. 8. Multiply 53.46 by -29.47.

The logarithm of 53.46 is 1.728029

For -29.47 we write the logarithm 1.469380 n.

Product, -1575.47, log. 3.197409 n.

Ex. 9. Find the continued product of 372.1, -.0054, and -175.6.

Ex. 10. Find the continued product of -0.137, -7.689, and -.0376.

DIVISION BY LOGARITHMS.

32. According to Art. 23, the logarithm of the quotient of one number divided by another is equal to the difference of the logarithms of those numbers. Hence, for division by logarithms, we have the following

RULE.

From the logarithm of the dividend subtract the logarithm of the divisor; the difference will be the logarithm of the quotient.

Ex. 1. Required the quotient of 888.7 divided by 42.24.

The logarithm of 888.7 is 2.948755 42.24 is 1.625724

The quotient is 21.039, whose log. is $\overline{1.323031}$.

Ex. 2. Required the quotient of 3807.6 divided by 13.7.

Ans. 277.927.

The word difference, in the preceding rule, is to be understood in its algebraic sense; therefore, if the characteristic of one of the logarithms is negative, or the lower one is greater than the upper, we must change the sign of the subtrahend, and proceed as in addition. If unity is carried from the decimal part, this must be considered as positive, and must be united with the characteristic before its sign is changed.

Ex. 3. Required the quotient of 56.4 divided by 0.00015.

The logarithm of 56.4 is 1.751279

0.00015 is 4.176091

The quotient is 376000, whose logarithm is 5.575188.

This result may be verified in the same way as subtraction in common arithmetic. The remainder, added to the subtrahend, should be equal to the minuend. This precaution should always be observed when there is any doubt with regard to the sign of the result.

Ex. 4. Required the quotient of .8692 divided by 42.258.

Ex. 5. Required the quotient of .74274 divided by .00928.

The logarithm of

0.74274 is 1.870837

" 0.00928 is $\frac{3.967548}{1.903289}$. The quotient is 80.037, whose logarithm is $\frac{1.903289}{1.903289}$.

Ex. 6. Required the quotient of 24.934 divided by .078541.

If the divisor or dividend, or both, be negative, we perform the division by logarithms by using the equal positive numbers, and prefixing to the quotient the sign required by the rule of signs in Algebra.

Ex. 7. Required the quotient of -79.54 divided by 0.08321.

Ex. 8. Required the quotient of -0.4753 divided by -36.74.

INVOLUTION BY LOGARITHMS.

33. It is proved in Algebra, Art. 398, that the logarithm of any power of a number is equal to the logarithm of that number multiplied by the exponent of the power. Hence, to involve a number by logarithms, we have the following

RULE.

Multiply the logarithm of the number by the exponent of the power required.

Ex. 1. Required the square of 428.

The logarithm of 428 is 2.631444

Square, 183184, $\log . \frac{2}{5.262888}$.

Ex. 2. Required the 20th power of 1.06.

The logarithm of 1.06 is 0.025306

20

20th power, 3.2071, log. 0.506120.

Ex. 3. Required the 5th power of 2.846.

It should be remembered that what is carried from the decimal part of the logarithm is positive, whether the characteristic is positive or negative.

Ex. 4. Required the cube of .07654.

The logarithm of .07654 is $\overline{2}.883888$

Cube, .0004484, log. 4.651664.

Ex. 5. Required the fourth power of 0.09874.

Ex. 6. Required the seventh power of 0.8952.

EVOLUTION BY LOGARITHMS.

34. It is proved in Algebra, Art. 399, that the logarithm of any root of a number is equal to the logarithm of that number divided by the index of the root. Hence, to extract the root of a number by logarithms, we have the following

RULE.

Divide the logarithm of the number by the index of the root required.

Ex. 1. Required the cube root of 482.38.

The logarithm of 482.38 is 2.683389.

Dividing by 3, we have 0.894463, which corresponds to 7.842, which is therefore the root required.

Ex. 2. Required the 100th root of 365.

Ans. 1.0608.

When the characteristic of the logarithm is negative, and is not divisible by the given divisor, we may increase the characteristic by any number which will make it exactly divisible, provided we prefix an equal positive number to the decimal part of the logarithm.

Ex. 3. Required the seventh root of 0.005846.

The logarithm of 0.005846 is $\overline{3}.766859$, which may be written 7+4.766859.

Dividing by 7, we have 1.680980, which is the logarithm of .4797, which is, therefore, the root required.

This result may be verified by multiplying 1.680980 by 7; the result will be found to be 3.766860.

Ex. 4. Required the fifth root of 0.08452.

Ex. 5. Required the tenth root of 0.007815.

PROPORTION BY LOGARITHMS.

35. The fourth term of a proportion is found by multiplying together the second and third terms, and dividing by the first. Hence, to find the fourth term of a proportion by logarithms,

Add the logarithms of the second and third terms, and from

their sum subtract the logarithm of the first term.

Ex. 1. Find a fourth proportional to 72.34, 2.519, and 357.48.

Ans. 12.448.

36. When one logarithm is to be subtracted from another, it is sometimes more convenient to convert the subtraction into an addition, which may be done by first subtracting the given logarithm from 10, adding the difference to the other logarithm, and afterward rejecting the 10.

The difference between a given logarithm and 10 is called its complement; and this is easily taken from the table by beginning at the left hand, subtracting each figure from 9, except the last significant figure on the right, which must be subtracted from 10.

To subtract one logarithm from another is the same as to add its complement, and then reject 10 from the result. For

a-b is equivalent to 10-b+a-10.

To work a proportion, then, by logarithms, we must

Add the complement of the logarithm of the first term to the logarithms of the second and third terms.

The characteristic must afterward be diminished by 10.

Ex. 1. Find a fourth proportional to 6853, 489, and 38750.

The complement of the logarithm of 6853 is 6.164119

The logarithm of

489 is 2.689309

" 38750 is 4.588272

The fourth term is 2765, whose logarithm is 3.441700. One advantage of using the complement of the first term in working a proportion by logarithms is, that it enables us to exhibit the operation in a more compact form.

Ex. 2. Find a fourth proportional to 73.84, 658.3, and 4872.

Ans.

Ex. 3. Find a fourth proportional to 5.745, 781.2, and 54.27.

LOGARITHMIC SINES AND TANGENTS.

37. When the natural sines, tangents, etc., are used in proportions, it is necessary to perform the tedious operations of multiplication and division. It is therefore generally preferable to employ the *logarithms* of the sines; and, for convenience, these numbers are arranged in a separate table, called *logarithmic sines*, etc. Thus

the natural sine of 32° 30' is 0.5373.

Its logarithm, found from page 335, is 1.730217.

The characteristic of the logarithm is negative, as must be the case with all the sines, since they are less than unity. To avoid the introduction of negative numbers in the table, we increase the characteristic by 10, making 9.730217, and this is the number found on page 376 for the logarithmic sine of 32° 30′. The radius of the table of logarithmic sines is therefore sometimes regarded as 10,000,000,000,000, whose logarithm is 10.

The accompanying table contains the logarithmic sines and

tangents for every degree and minute of the quadrant.

38. To find the logarithmic sine, cosine, etc., of a given arc or angle. If the angle be less than 45°, find the degrees at the top of the page, and the minutes in the left vertical column, marked M.; then, in the column marked sine at the top, and opposite to the minutes, will be found the logarithmic sine of the given arc; in the column marked cosine, and opposite to the minutes, will be found the cosine of the given arc, etc.

Thus, on page 371, we find

the log. sine of 27° 38' is 9.666342; cosine "9.947401; tangent "9.718940; cotangent "10.281060.

If the angle be greater than 45°, find the degrees at the bottom of the page, and the minutes in the vertical column on the right; then, in the column marked sine at the bottom, and opposite to the minutes, will be found the logarithmic sine of the given arc, etc.

It will be seen that the angle found by taking the degrees at the top of the page, and the minutes from the first vertical column on the left, is the complement of the angle found by taking the corresponding minutes upon the same horizontal line from the vertical column on the right, and the degrees at the bottom of the page. Thus, on page 371, having found 27° 38′, follow the horizontal line containing the minutes to the right vertical column, and we find 22′ with 62° at the bottom of the page; and we see that 62° 22′ is the complement of 27° 38′. Now the sine of 27° 38′ is the cosine of 62° 22′; and the cosine of 27° 38′ is the sine of 62° 22′. This fact is indicated in the table, where the column marked sine at the top is marked cosine at the bottom; and the column marked tangent at the top is marked cotangent at the bottom.

On page 379 we find

the log. sine of 54° 43' is 9.911853; cosine "9.761642; tangent "10.150210; cotangent "9.849790.

39. If a sine is required for an arc consisting of degrees, minutes, and seconds, we must make an allowance for the seconds in the same manner as was directed in the case of logarithms, Art. 26; for within certain limits the differences of the logarithmic sines are proportional to the differences of the corresponding arcs. Thus the log. sine of 24° 15′ is 9.613545;

" 25 16 is 9.613825.

The difference of the log. sines corresponding to one minute of arc, or 60", is .000280; or 280 if we regard the sixth decimal place as units. The proportional part for 1" is found by dividing the tabular difference by 60, which in this case gives 4.67; that is, the allowance for 100" would be 467; and this is the number given on page 368, in the column with the title D. 100", upon the horizontal line between 15' and 16'. The correction for any number of seconds will be found by multiplying the proportional part for 1" by the number of seconds; or multiplying the corresponding number in the column marked D. by the number of seconds, and rejecting the last two figures of the product.

Required the log. sine of 32° 45' 37".

On page 376 the corresponding number in the column marked D. is 327. Multiplying this by 37, and rejecting the last two figures of the product, we obtain 121, which is the correction for 37". Adding this to the sine of 32° 45', we find

the log. sine of 32° 45′ 37" is 9.733298.

In a similar manner we find the tangent of an arc consisting of degrees, minutes, and seconds; and so also for cosines and cotangents, except that the correction for the seconds is to be sub-

tracted instead of added, because the cosines decrease while the arcs increase.

The column marked D. between the tangents and cotangents answers for each of these columns, because by Eq. 5, Art. 14, tang. $A \times \cot A = R^2$; that is, log. tang. $A + \log$. cot. A = 20; and it will be observed that the sum of any two numbers on the same horizontal line in these two columns is equal to 20. Hence the difference for 1" is the same in both columns.

Examples. The log. sine of 37° 24′ 13″ is 9.783493; log. cosine of 48 32 29 is 9.820910; the log. tangent of 62° 45′ 31″ is 10.288325; log. cotangent of 81 17 58 is 9.184781.

40. For arcs not exceeding half a degree, the sine and tangent may be found more conveniently, and in general more accurately, as in the following examples: for in so small an arc the sine and tangent do not differ from the arc by so much as a unit in the sixth decimal place, and hence the sine of a small arc may be assumed as equal to the sine of 1" multiplied by the number of seconds in the arc.

Ex. 1. Required the log. sine of 23".87.

4.685575
1.377852
6.063427

Ex. 2. Required the log. tangent of 5' 37."5.

The log. tangent of 1" is	4.685575
log. of 337.5 is	2.528274
The log. tangent of 5' 37".5 is	7.213849.

For arcs not exceeding 7' this method will give the log. sine or tangent correct to six decimal places; and for arcs not exceeding one degree, the error is quite small.

41. It is not necessary to extend the tables beyond 90°, because the sine of an angle is equal to that of its supplement, Art. 13. Thus the log. sine of 126° 17′ 24″ is 9.906352;

```
log. cosine of 132 29 53 is 9.829667; log. tangent of 158 42 12 is 9.590860; log. cotangent of 147 51 38 is 10.201862.
```

42. The secants and cosecants are omitted in this table, since they are easily derived from the sines and cosines. We have found, Art. 14, Eq. 2, secant $=\frac{R^2}{\text{cosine}}$; or, taking the logarithms,

we have log. secant=2. log. R-log. cosine;

log. secant=20-log. cosine. $cosecant = \frac{R^2}{sine}$;

Also,

or log. cosecant=20-log. sine; that is,

The logarithmic secant is found by subtracting the logarithmic cosine from 20; and the logarithmic cosecant is found by subtracting the logarithmic sine from 20.

Thus we have found the logarithmic sine of 37° 24' 13" to be

9.783493.

Hence the logarithmic cosecant of 37° 24' 13" is 10.216507.

The logarithmic cosine of 48° 32′ 29″ is 9.820910. Hence the logarithmic secant of 48° 32′ 29″ is 10.179090.

43. To find the arc corresponding to a given logarithmic sine or tangent.

If the given number is found exactly in the table, then, when the appropriate title is found at the top of the column, the degrees will be found at the top of the page, and the minutes in the vertical column on the left; but if the title is found at the bottom of the column, the degrees will be found at the bottom of the page, and the minutes in the vertical column on the right.

But when the given number is not found exactly in the table, look for the sine or tangent which is next less than the one proposed, and take out the corresponding degrees and minutes. Find also the difference between this tabular number and the number proposed; annex two ciphers, and divide the result by the corresponding number in the column D. The quotient will be the required number of seconds, to be added to the degrees and minutes before found.

Example. Find the arc whose log. sine is 9.750000.

9.749987. The next less sine in the table is

The arc corresponding to which is 34° 13'.

The difference between its sine and the one proposed is 13. Annexing two ciphers, and dividing by 309 (the corresponding number in column D.), we obtain 4 nearly. Hence the required arc is 34° 13′ 4″.

In the same manner we find the arc corresponding to log. tangent 10.250000 to be 60° 38′ 57".

If a cosine or cotangent is required, we must look for the number in the table which is next greater than the one proposed, and then proceed as for a sine or tangent. Thus

the arc whose cosine is 9.602000 is 66° 25′ 31″; cotangent is 10.300000 is 26° 37° 10.

44. For arcs not exceeding half a degree, it will be most convenient to reverse the method of Art. 40. For this purpose subtract the log. sine of 1" from the given log. sine, and the remainder will be the logarithm of the number of seconds in the arc.

Required the arc whose log. sine is
Subtracting the log. sine of 1"

we have
7.000000
4.685575
2.314425,

which is the log. of 206.26.

Hence the required arc is 3' 26".26.

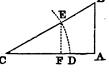
Required the arc whose log. tangent is 7.500000 Subtracting the log. tangent of 1" 4.685575 we have 2.814425,

which is the log. of 652.27.

Hence the required arc is 10' 52".27.

SOLUTION OF RIGHT-ANGLED TRIANGLES.

THEOREM I.


45. In any right-angled triangle, radius is to the hypothenuse as the sine of either acute angle is to the opposite side, or the cosine of either acute angle to the adjacent side.

Let the triangle CAB be right-angled at A; then will

nen wiii

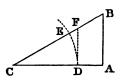
R: CB:: sin. C: BA:: cos. C: CA.

From the point C as a centre, with a radius equal to the radius of the tables, describe the arc DE, and on AC let fall the permendicular EF. Then EF will be the significant

perpendicular EF. Then EF will be the sine, and CF the cosine of the angle C.

Because the triangles CAB, CFE are similar, we have

CE: CB:: EF: BA,


or R: CB:: sin. C: BA.
Also, CE: CB:: CF: CA,
or R: CB:: cos. C: CA.

Cor. If radius be taken as unity, we shall have AB=CB sin. C, and AC=CB cos. C.

Hence, in any right-angled triangle, either of the sides which contain the right angle is equal to the product of the hypothenuse by the sine of the angle opposite to that side, or by the cosine of the acute angle adjacent to that side.

THEOREM II.

46. In any right-angled triangle, radius is to either side as the tangent of the adjacent acute angle is to the opposite side, or the secant of the same angle to the hypothenuse.

Let the triangle CAB be right-angled at A; then will

R: CA:: tang. C: AB:: sec. C: CB.

From the point C as a centre, with a radius equal to the radius of the tables, describe the arc DE, and from the point D

draw DF perpendicular to CA. Then DF will be the tangent, and CF the secant of the angle C.

Because the triangles CAB, CDF are similar, we have

CD: CA:: DF: AB,

or R: CA:: tang. C: AB.
Also, CD: CA:: CF: CB,
or R: CA:: sec. C: CB.

Cor. If radius be taken as unity, we shall have AB=AC tang. C, and BC=AC sec. C.

Hence, in any right-angled triangle, either of the sides which contain the right angle is equal to the product of the other side by the tangent of the angle which is opposite to the first side; and the hypothenuse is equal to the product of either side by the secant of the acute angle adjacent to that side.

47. In every plane triangle there are six parts: three sides and three angles. Of these, any three being given, provided one of them is a side, the others may be determined. In a right-angled triangle, one of the six parts, viz., the right angle, is always given; and if one of the acute angles is given, the other is, of course, known. Hence the number of parts to be considered in a right-angled triangle is reduced to four, any two of which being given, the others may be found.

It is desirable to have appropriate names by which to designate each of the parts of a triangle. One of the sides adjacent to the right angle being called the base, the other side adjacent to the right angle may be called the perpendicular. The three sides will then be called the hypothenuse, base, and perpendicular. The base and perpendicular are sometimes called the legs of the triangle. Of the two acute angles, that which is adjacent to the base may be called the angle at the base, and the other the angle at the perpendicular.

We may, therefore, have four cases, according as there are given,

1. The hypothenuse and the angles;

2. The hypothenuse and a leg;

3. One leg and the angles; or,

4. The two legs.

All these cases may be solved by the two preceding theorems.

CASE L.

48. Given the hypothenuse and the angles, to find the base and perpendicular.

This case is solved by Theorem I.

Radius: hypothenuse::sine of the angle at the base: perpendicular;

Radius: hypothenuse:: cosine of the angle at the base: base.

Ex. 1. Given the hypothenuse 275, and the angle at the base 57° 20', to find the base and perpendicular.

The natural sine of 57° 20' is .8418.

" cosine " .5398.

Hence 1:275::.8418:231.5=AB. 1:275::.5398:148.4=AC.

The computation is here made by natural numbers. If we work the proportion by logarithms, we shall have

	radius,	10.000000
	is to the hypothenuse 275,	2.439333
	as the sine of C 57° 20',	9.925222
	to the perpendicular 231.50,	2.364555.
Also,	radius,	10.000000
-	is to the hypothenuse 275,	2.439333
	as the cosine of C 57° 20',	9.732193
	to the base 148.43,	2.171526.

Ex. 2. Given the hypothenuse 67.43, and the angle at the perpendicular 38° 43', to find the base and perpendicular.

Ans. The base is 42.175, and perpendicular 52.612.

The student should work the examples both by natural numbers and by logarithms until he has made himself perfectly familiar with both methods. He may then employ either method, as may appear to him most expeditious.

CASE II.

49. Given the hypothenuse and one leg, to find the angles and the other leg.

This case is solved by Theorem I.

Hypothenuse: radius:: base: cosine of the angle at the base.

Radius: hypothenuse: sine of the angle at the base: perpendicular.

When the perpendicular is given, perpendicular must be substituted for base in this proportion.

Ex. 1. Given the hypothenuse 54.32, and the base 32.11, to find the angles and the perpendicular.

By natural numbers we have

54.32:1::32.11:cos. C. 1:54.32::sin. C:AB.

Also

By logarithms,

54.32,	1.734960
is to radius,	10.000000
as 32.11,	1.506640
is to cos. 53° 45′ 47″,	9.771680.

That is, the angle $C=53^{\circ}$ 45' 47", and therefore the angle $B=36^{\circ}$ 14' 13".

Also

radius,	10.000000
is to 54.32,	1.734960
as sine 53° 45′ 47″,	9.906647
is to 43.813, the perpendicular	1.641607

Ex. 2. Given the hypothenuse 332.49, and the perpendicular 98.399, to find the angles and the base.

Ans. The angles are 17° 12′ 51″ and 72° 47′ 9″; the base, 317.6.

CASE III.

50. Given one leg and the angles, to find the other leg and hypothenuse.

This case may be solved by Theorem II.

Radius: base::tangent of the angle at the base: the perpendicular. :: secant of the angle at the base: hypothenuse.

When the perpendicular is given, perpendicular must be sub stituted for base in this proportion.

· This case may also be solved by Theorem L.

sin. B: base :: sin. C: perpendicular; :: radius: hypothenuse.

Ex. 1. Given the base 222, and the angle at the base 25° 15', to find the perpendicular and hypothenuse.

By natural numbers we have

radius,

1:222::tang. 25° 15': perpendicular.

Also By logarithims,

Also

sin. 64° 45': 222: radius: hypothenuse.

	is to 222,	2.346353
Ţ	as tang. 25° 15′,	9.673602
* -	is to 104.70, the perpendicular	2.019955.
	sin. 64° 45′,	9.956387
	is to 222,	2.346353
	as radius,	10.000000.
	is to 245.45, the hypothenuse,	2.389966.

Ex. 2. Given the perpendicular 125, and the angle at the perpendicular 51° 19', to find the hypothenuse and base.

Ans. Hypothenuse, 199.99; base, 156.12.

10,000000

CASE IV.

51. Given the two legs, to find the angles and hypothenuse. This case is solved by Theorem II.

Base: radius:: perpendicular: tangent of the angle at the base. Radius: base: secant of the angle at the base: hypothenuse.

When the angles have been found, the hypothenuse may be found by Theorem I.

sin. C: AB::radius: BC.

Ex. 1. Given the base 123, and perpendicular 765, to find the angles and hypothenuse.

By natural numbers we have

123:1::765:tang. C; sin. C: 765::1: hypothenuse.

By logarithms

Also

ишъ,	-
123,	2.089905
is to radius,	10.000000
as 765,	2.883661
is to tang. 80° 51′ 57″,	0.793756.
sin. 80° 51′ 57″,	9.994458
is to 765,	2.883661
as radius,	10.000000
is to 774.82, hypothenuse,	2.889203.

Ex. 2. Given the base 53, and perpendicular 67, to find the angles and hypothenuse.

Ans. The angles are 51° 39′ 16″, and 38° 20′ 44″; hypothenuse,

85.428.

Examples for Practice.

· 1. Given the base 777, and perpendicular 345, to find the hypothenuse and angles.

This example, it will be seen, falls under Case IV.

- 2. Given the hypothenuse 324, and the angle at the base 48° 17′, to find the base and perpendicular.
- 3. Given the perpendicular 543, and the angle at the base 72° 45', to find the hypothenuse and base.
- 4. Given the hypothenuse 666, and base 432, to find the angles and perpendicular.
- 5. Given the base 634, and the angle at the base 53° 27', to find the hypothenuse and perpendicular.
- 6. Given the hypothenuse 1234, and perpendicular 555, to find the base and angles.
- 7. Suppose the radius of the earth to be 3963 miles, and that it subtends an angle of 57' 2".3 at the moon, what is the distance of the moon from the earth?
 - 8. Suppose that when the moon's distance from the earth is 238,885 miles, its apparent semi-diameter is 15' 33".5, what is its diameter in miles?
- 9. Suppose the radius of the earth to be 3963 miles, and that it subtends an angle of 8".9 at the sun, what is the distance of the sun from the earth?
- 10. Suppose that the sun's distance from the earth is 92,000,000 miles, and that its apparent semi-diameter is 16'1".8, what is its diameter in miles?
- **52.** When two sides of a right-angled triangle are given, the third may be found by means of the property that the square of the hypothenuse is equal to the sum of the squares of the other two sides.

Hence, representing the hypothenuse, base, and perpendicular by the initial letters of these words, we have

$$h = \sqrt{b^2 + p^2}$$
; $b = \sqrt{h^2 - p^2}$; $p = \sqrt{h^2 - b^2}$.

Ex. 1. If the base is 2720, and the perpendicular 3104, what is the hypothenuse?

Ans. 4127.1.

Ex. 2. If the hypothenuse is 514, and the perpendicular 432, what is the base?

SOLUTION OF OBLIQUE-ANGLED TRIANGLES.

THEOREM I.

53. In any plane triangle, the sines of the angles are proportional to the opposite sides.

Let ABC be any triangle, and from one of its angles, as A, let AD be drawn perpendicular to the opposite side BC. There may be two cases.

First. If the perpendicular falls within the trian-B ngle, because the triangle ABD is right-angled at D, we have $R: \sin B: AB: AD$; whence $R \times AD = \sin B \times AB$.

For a similar reason.

 $R: \sin C :: AC: AD$; whence $R \times AD = \sin C \times AC$.

Therefore

 $\sin B \times AB = \sin C \times AC;$ $\sin B \cdot \sin C :: AC : AB.$

or, sin. B: sin. U:: AU: AB.

Second. If the perpendicular falls without the triangle, we have in the triangle ABD, as before,

R: sin. ABD :: AB : AD.

Also, in the triangle ACD,

 $R: \sin C::AC:AD;$

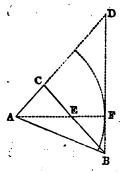
whence sin. ABD: sin. C::AC: AB.

But, since ABD is the supplement of ABC, their sines are equal, Art. 13.

Therefore

sin. ABC: sin. C:: AC: AB.

THEOREM IL


54. In any plane triangle, the sum of any two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference.

Let ABC be any triangle; then will

$$CB+CA: CB-CA: tang. \frac{A+B}{2}: tang. \frac{A-B}{2}$$
.

Produce AC to D, making CD equal to CB, and join DB. Take CE equal to CA; draw AE, and produce it to F. Then AD is the sum of CB and CA, and BE is their difference.

The sum of the two angles CAE, CEA is equal to the sum of CAB, CBA, each being the supplement of ACB (Geom., B. I., Pr. 27). But, since CA is equal to CE, the angle CAE is equal to the angle CEA; therefore CAE is the half sum of the angles CAB,

CBA. Also, if from the greater of the two angles CAB, CBA there be taken their half/ sum, the remainder, FAB, will be their half difference (Algebra, p. 89).

Since CD is equal to CB, the angle ADF is equal to the angle EBF; also, the angle CAE is equal to AEC, which is equal to the vertical angle BEF. Therefore the two triangles DAF, BEF are mutually equiangular; hence the two angles at F are equal, and AF is perpendicular to DB.

If, then, AF be made radius, DF will be

the tangent of DAF, and BF will be the tangent of BAF. But, by similar triangles, we have

AD: BE:: DF: BF; that is,

$$CB+CA: CB - CA: tang. \frac{A+B}{2}: tang. \frac{A-B}{2}$$
.

THEOREM III.

55, If from any angle of a triangle a perpendicular be drawn to the opposite side or base, the sum of the segments of the base is to the sum of the two other sides as the difference of those sides is to the difference of the segments of the base.

For demonstration, see Geometry, B. IV., Pr. 34, Cor.

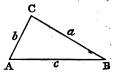
- 56. In every plane triangle three parts must be given to enable us to determine the others, and of the given parts one at least must be a side. For, if the angles only are given, these might belong to an infinite number of different triangles. In solving oblique-angled triangles four different cases may therefore be presented. There may be given,
 1. Two angles and a side;

 - 2. Two sides and an angle opposite one of them;
 - 3. Two sides and the included angle; or,
 - 4. The three sides.

We shall represent the three angles of the proposed triangle by A, B, C, and the sides opposite them respectively by a, b, c.

CASE I.

57. Given two angles and a side, to find the third angle and the other two sides.


, To find the third angle, add the given angles together, and subtract their sum from 180°.

The required sides may be found by Theorem I. The proportion will be,

The sine of the angle opposite the given side: the given side: the sine of the angle opposite the required side: the required side.

Ex. 1. In the triangle ABC, there are given the angle A, 57° 15′, the angle B, 35° 30′, and the side c, 364, to find the other parts.

The sum of the given angles, subtracted from 180° , leaves 87° 15' for the angle C. Then, to find the side a, we say,

 $\sin C : c :: \sin A : a$.

By natural numbers,

.9988:364::.8410:306.49 = a.

This proportion is most easily worked by logarithms, thus:
As the sine of the angle C, 87° 15′, comp. 0.000500
Is to the side c, 364, 2.561101
So is the sine of the angle A, 57° 15′, 9.924816

To the side a, 306.49, 2.486417.

To find the side b, we have, sin. $C:c::\sin B:b$. By natural numbers,

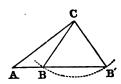
9988:364:..5807:211.62=b.

The work by logarithms is as follows:

sin. C, 87° 15', comp. 0.000500 : c, 364, 2.561101 :: sin. B, 35° 30', 9.763954 : b, 211.62, 2.325555.

Ex. 2. In the triangle ABC, there are given the angle A, 49° 25′, the angle C, 63° 48′, and the side c, 275, to find the other parts.

Ans. B=66° 47′; a=232.766; b=281.67.


CASE II.

58. Given two sides and an angle opposite one of them, to find the third side and the remaining angles.

One of the required angles is found by Theorem I. The proportion is,

The side opposite the given angle: the sine of that angle: the other given side: the sine of the opposite angle.

The third angle is found by subtracting the sum of the other two from 180°; and the third side is found as in Case I.

If the side BC, opposite the given angle A, is shorter than the other given side AC, the solution will be *ambiguous*; that is, two different triangles ABC, AB'C may be formed, each of which will satisfy the conditions of the problem.

The numerical result is also ambiguous, for the fourth term of the first proportion is a sine of an angle. But this may be the sine either of the acute angle AB'C, or of its supplement, the obtuse angle ABC (Art. 13). In practice, however, there will generally be some circumstance to determine whether the required angle is acute or obtuse. If the side opposite the given angle is longer than the other given side, there can be no ambiguity, for B will fall on B'A produced, and the triangle ABC will no longer be one solution of the problem. This is always the case when the given angle is obtuse.

Ex. 1. In a triangle ABC, there are given AC, 458, BC, 307, and the angle A, 28° 45′, to find the other parts.

To find the angle B;

BC: sin. A:: AC: sin. B.

By natural numbers,

307:.4810::458:.7176, sin. B, the arc corresponding to which is 45°51', or 134°9'.

This proportion is most easily worked by logarithms, thus:

BC,	307,	comp.	7.512862
: sin. A,	28° 45′,	_	9.682135
:: AC,	458,		2.660865
: sin. B.	45° 51′ 14″.	or 134° 8′ 46″,	9.855862.

The angle ABC is 134° 8′ 46," and the angle AB'C, 45° 51′ 14″. Hence the angle ACB is 17° 6′ 14″, and the angle ACB', 105° 23′ 46″.

To find the side AB;

sin. A: CB:: sin. ACB. AB.

By logarithms,

sin. A,	28° 45′,	comp. 0.317865
: CB,	307,	2.487138
:: sin. AC	B, 17° 6′ 14″,	9.468502
: AB,	187.72,	$\overline{2.273505}$.

To find the side AB';

sin. A: CB':: sin. ACB': AB'.

By logarithms,

sin. A,	28° 45′,	comp.	0.317865
: CB',	307,	•	2.487138
:: sin. ACI	3', 105° 23' 46",		9.984128
: AB',	615.36,		2.789131

Ex. 2. In a triangle ABC, there are given AB, 532, BC, 358, and the angle C, 107° 40', to find the other parts.

Ans. A=39° 52′ 52″; B=32° 27′ 8″; AC=299.6.

In this example there is no ambiguity, because the given angle is obtuse.

CASE III.

59. Given two sides and the included angle, to find the third side and the remaining angles.

The sum of the required angles is found by subtracting the given angle from 180°. The difference of the required angles is then found by Theorem II. Half the difference added to half the sum gives the greater angle, and, subtracted, gives the less angle. The third side is then found by Theorem I.

Ex. 1. In the triangle ABC, the angle A is given 53° 8'; the side c, 420, and the side b, 535, to find the remaining parts.

The sum of the angles $B+C=180^{\circ}-53^{\circ} 8'=126^{\circ} 52'$. Half their sum is 63° 26'.

Then, by Theorem II.,

535+420:535-420::tang. 63° 26':tang. 13° 32' 25",

which is half the difference of the two required angles.

Hence the angle B is 76° 58′ 25″, and the angle \overline{C} , 49° 53′ 35″. To find the side a;

 $\sin C: c:: \sin A: a=439.32.$

Ex. 2. Given the side c, 176, a, 133, and the included angle B, 73°, to find the remaining parts.

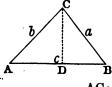
Ans. b=187.022, the angle C, 64° 9′ 3″, and A, 42° 50′ 57″.

CASE IV.

60. Given the three sides, to find the angles.

Let fall a perpendicular upon the longest side from the opposite angle, dividing the given triangle into two right-angled triangles. The two segments of the base may be found by Theorem III. There will then be given the hypothenuse and one side of a right-angled triangle to find the angles.

Ex. 1. In the triangle ABC, the side α is 261, the side δ , 345, and c, 395. What are the angles?


Let fall the perpendicular CD upon AB.

Then, by Theorem III.,

AB:AC+CB::AC-CB:AD-DB;

or , 395:606::84:128.87.

Half the difference of the segments added to half their sum gives the greater segment, and subtracted gives the less segment.

Therefore AD is 261.935, and BD, 133.065.
Then, in each of the right-angled triangles ACD, BCD we have given the hypothenuse and base, to find the angles by Case II. of right-angled triangles. Hence

AC: R:: AD: $\cos A = 40^{\circ} 36' 13''$; BC: R:: BD: $\cos B = 59^{\circ} 20' 52''$.

Therefore the angle C=80° 2' 55".

Ex. 2. If the three sides of a triangle are 150, 140, and 130, what are the angles?

Ans. 67° 22′ 48″, 59° 29′ 23″, and 53° 7′ 49″.

Examples for Practice.

1. Given two sides of a triangle, 478 and 567, and the included angle, 47° 30′, to find the remaining parts.

2. Given the angle A, 56° 34', the opposite side, a, 735, and the

side b, 576, to find the remaining parts.

- 3. Given the angle A, 65° 40', the angle B, 74° 20', and the side a, 275, to find the remaining parts.
 - 4. Given the three sides, 742, 657, and 379, to find the angles.
- 5. Given the angle A, 116° 32', the opposite side, a, 492, and the side c, 295, to find the remaining parts.
- 6. Given the angle C, 56° 18', the opposite side, c, 184, and the side b, 219, to find the remaining parts.

This problem admits of two answers.

- 7. Given the angle B, 68° 35′ 27″, the angle C, 44° 48′ 47″, and the side c, 479, to find A, α , and b.
- 8. Given the angle A, 67° 23' 56", the side a, 1486.73, and the side b, 2073.22, to find B, C, and c.
- 9. Given the angle C, 66° 3' 27", the side a, 897, and the side b, 571, to find A, B, and c.
 - 10. Given a=2251, b=738, and c=830, to find A, B, and C.

INSTRUMENTS USED IN DRAWING.

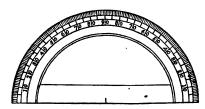
61. The following are some of the most important instruments used in drawing.

I. The dividers consist of two legs, revolving upon a pivot at one extremity. The joints should be composed of two different metals, of unequal hardness: one part, for example, of steel, and

the other of brass or silver, in order that they may move upon each other with greater freedom.

The points should be of

tempered steel, and, when the dividers are closed, they should meet with great exactness. The dividers are often furnished with various appendages, which are exceedingly convenient in drawing. Sometimes one of the legs is furnished with an adjusting screw, by which a slow motion may be given to one of the points, in which case they are called hair compasses. It is also useful to have a movable leg, which may be removed at pleasure, and other parts fitted to its place; as, for example, a long beam for drawing large circles, a pencil-point for drawing circles with a pencil, an ink-point for drawing black circles, etc.


62. II. The parallel rule consists of two flat rules, made of wood or ivory, and connected together by two cross-bars of equal length, and parallel to each other. This instrument is useful for drawing a line parallel to a given line, through a given point.

For this purpose, place the edge of one of the flat rules against the given line, and move the other rule until its edge coincides with the given point. A line drawn along its edge will be parallel to the given line.

63. III. The protractor is used to lay down or to measure angles. It consists of a semicircle, usually of brass, and is divided into degrees, and sometimes smaller portions, the centre of the circle being indicated by a small notch.

To lay down an angle with the protractor, draw a base line,

and apply to it the edge of the protractor, so that its centre shall fall at the angular point. Count the degrees contained in the proposed angle on the limb of the circle, and mark the extremity of the arc with a fine dot. Re-

move the instrument, and through the dot draw a line to the angular point; it will give the angle required. In a similar manner, the inclination of any two lines may be measured with the

protractor.

64. IV. The plane scale is a ruler, frequently two feet in length, containing a line of equal parts, chords, sines, tangents, etc. For a scale of equal parts, a line is divided into inches and tenths of an inch, or half inches and twentieths. When smaller fractions are required, they are obtained by means of the diagonal scale, which is constructed in the following manner. Describe a square inch, ABCD, and divide each of its sides into ten equal parts.

Draw diagonal lines from the first point of division on the upper line to the second on the lower; from the second on the upper line to the third on the lower, and so on. Draw, also, other lines parallel to AB, through the points of division of BC. Then, in the triangle ADE, the base, DE, is one tenth of an inch; and, since the line AD is divided into ten equal parts, and through the points of division lines are drawn parallel to the base, forming nine smaller triangles, the base of the least is one tenth of DE, that is, .01 of an inch; the base of the second is .02 of an inch; the third, .03, and so on. Thus the diagonal scale furnishes us hundredths of an inch.

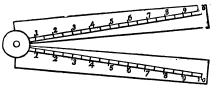
To take off from the scale a line of given length, as, for example, 4.45 inches, place one foot of the dividers at F, on the sixth horizontal line, and extend the other foot to G, the fifth diagonal line.

A half inch or less is frequently subdivided in the same manner

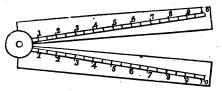
65. A line of chords, commonly marked cno., is found on most plane scales, and is useful in setting off angles. To form this line, describe a circle with any convenient radius, and divide the circumference into degrees. Let the length of the chords for every degree of the quadrant be determined and laid off on a scale: this is called a line of chords.

Since the chord of 60° is equal to radius, in order to lay down

Chords	10	20	30	40	5	2	60	70	80	90		
Sines	10	20	30	40	50 (60 7	90	30	40		50 Secants	60
Tang.	10	20		30		10		50			60	


an angle, we take from the scale the chord of 60°, and with this radius describe an arc of a circle. Then take from the scale the chord of the given angle, and set it off upon the former arc. Through these two points of division draw lines to the centre of the circle, and they will contain the required angle.

The line of sines, commonly marked SIN, exhibits the lengths of the sines to every degree of the quadrant, to the same radius as the line of chords. The line of tangents and the line of secants are constructed in the same manner. Since the sine of 90° is equal to radius, and the secant of 0° is the same, the graduation on the line of secants begins where the line of sines ends.


On the back side of the plane scale are often found lines representing the logarithms of numbers, sines, tangents, etc. This is called Gunter's Scale.

66. V. The Sector is a very convenient instrument in drawing.

It is generally made of ivory or brass, and consists of two equal arms, movable about a pivot as a centre, having several scales drawn on the faces, some single, others double. The

single scales are like those upon a common Gunter's Scale. The double scales are those which proceed from the centre, each being laid twice on the same face of the instrument, viz., once on each leg. The double scales are a scale of lines marked Lin., or L; the scale of chords, sines, etc. On each arm of the sector there is a diagonal line, which diverges from the central point like the radius of a circle, and these diagonal lines are divided into equal parts.

The advantage of the sector is to enable us to draw a line upon paper to any scale; as, for example, a scale of 6 feet to the inch. For this purpose, take an inch with the di-

viders from the scale of inches; then, placing one foot of the dividers at 6 on one arm of the sector, open the sector until the other foot reaches to the same number on the other arm. Now, regarding the lines on the sector as the sides of a triangle, of which the line measured from 6 on one arm to 6 on the other arm is the base, it is plain that if any other line be measured across the angle of the sector, the bases of the triangles thus formed will be proportional to their sides. Therefore a line of 7 feet will be represented by the distance from 7 to 7, and similarly for other lines.

The sector also contains a line of chords, arranged like the line of equal parts already mentioned. Two lines of chords are drawn, one on each arm of the sector, diverging from the central point. This double line of chords is more convenient than the single one upon the plane scale, because it furnishes chords to any radius. If it be required to lay down any angle, as, for example, an angle of 25°, describe a circle with any convenient radius. Open the sector so that the distance from 60 to 60, on the line of chords, shall be equal to this radius. Then, preserving the same opening of the sector, place one foot of the dividers upon the division 25 on one scale, and extend the other foot to the same number upon the other scale: this distance will be the chord of 25 degrees, which must be set off upon the circle first described.

The lines of sines, tangents, etc., are arranged in the same manner.

67. By means of the instruments now enumerated, all the cases in Plane Trigonometry may be solved mechanically, without the use of tables, and without any arithmetical process. The sides and angles which are given are laid down according to the preceding directions, and the required parts are then measured from the same scale. The student will do well to exercise himself upon the following problems:

I. Given the angles and one side of a triangle, to find, by construction, the other two sides.

Draw an indefinite straight line, and from the scale of equal parts lay off a portion, AB, equal to the given side. From each extremity lay off an angle equal to one of the adjacent angles by means of a protractor or a scale of chords. Extend the two lines till they intersect, and measure their lengths upon the same scale of equal parts which was used in laying off

the base.

Ex. 1. Given the angle A, 45° 30′, the angle B, 35° 20′, and the side AB, 432 rods, to construct the triangle, and find the lengths of the sides AC and BC.

The triangle ABC may be constructed of any dimensions whatever; all which is essential is that its angles be made equal to the given angles. We may construct the triangle upon a scale of 100 rods to an inch, in which case the side AB will be represented by 4.32 inches; or we may construct it upon a scale of 200 rods to an inch; that is, 100 rods to a half inch, which is very conveniently done from a scale on which a half inch is divided like that described in Art. 64; or we may use any other scale at pleasure. It should, however, be remembered, that the required sides must be measured upon the *same* scale as the given sides.

Ex. 2. Given the angle A, 48°, the angle C, 113°, and the side AC, 795, to construct the triangle.

II. Given two sides of a triangle and an angle opposite one of

them, to find the other two parts.

Draw the side which is adjacent to the given angle. From one end of it lay off the given angle, and extend a line indefinitely for the required side. From the other extremity of the first side, with the remaining given side for radius, describe an arc cutting the indefinite line. The point of intersection will determine the third angle of the triangle. The side and angles required may then be measured.

Ex. 1. Given the angle A, 74° 45′, the side AC, 432, and the side BC, 475, to construct the triangle, and find the other parts.

Ex. 2. Given the angle A, 105°, the side BC, 498, and the side AC, 375, to construct the triangle.

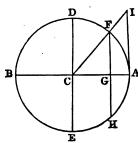
III. Given two sides of a triangle and the included angle, to find the other parts.

Draw one of the given sides. From one end of it lay off the given angle, and draw the other given side, making the required

angle with the first side. Then connect the extremities of the two sides, and there will be formed the triangle required. The side and angles required may then be measured.

Ex. 1. Given the angle A, 37° 25′, the side AC, 675, and the side AB, 417, to construct the triangle, and find the other parts.

Ex. 2. Given the angle A, 75°, the side AC, 543, and the side AB, 721, to construct the triangle.


IV. Given the three sides of a triangle, to find the angles.

Draw one of the sides as a base; and from one extremity of the base, with a radius equal to the second side, describe an arc of a circle. From the other end of the base, with a radius equal to the third side, describe a second arc intersecting the former; the point of intersection will be the third angle of the triangle.

Ex. 1. Given AB, 678, AC, 598, and BC, 435, to find the angles. Ex. 2. Given the three sides 476, 287, and 354, to find the angles.

Sines, Tangents, etc., of Arcs of any Magnitude.

68. In a plane triangle each angle is less than 180°, and the sines, tangents, etc., of the angles of such a triangle are the sines, etc., of angles less than 180°, or of arcs less than a semi-circumference. Frequently, however, especially in Astronomy, we have occasion to consider arcs greater than a semi-circumference, or even than an entire circumference. Thus the moon, in its motion about the earth, describes an entire revolution in less than 30 days, and in the course of a year completes more than twelve revolutions; that is, its apparent angular motion through the heavens exceeds 4000 degrees.

Suppose the line CF, starting from the position CA, to revolve about the point C, in the direction of the arc AFD; when it arrives at CD it will have described an angular magnitude of 90°; when it arrives at CB it will have described an angular magnitude of 180°; at CE, 270°; and at CA again, 360°. If it continue its revolution, when it arrives again at CD, it

will have described an angular magnitude of 450°; and thus we may have an angular magnitude of any number of degrees, and we may have arcs equal to or greater than one, two, or more circumferences.

- 69. For convenience, we draw two diameters, AB, DE, at right angles to each other, and suppose one of them to occupy a horizontal position, and the other a vertical position. Then ACD is called the *first* quadrant, DCB the *second* quadrant, BCE the third quadrant, and ECA the fourth quadrant; that is, the first quadrant is above the horizontal diameter and on the right of the vertical diameter; the second quadrant is above the horizontal diameter and on the left of the vertical; and so on. We propose now to consider the values of the sines, tangents, etc., for arcs of any magnitude.
- 70. Sines, etc., of 0° and 90°. When the line CF coincides with CA, that is, when the arc AF is zero, the sine is zero, and the cosine is equal to the radius of the circle. As the point F advances toward D, the sine increases and the cosine decreases; when F arrives at D, the sine is equal to the radius, and the cosine becomes zero.

The tangent begins with zero at A, and increases with the arc. As the point F approaches D, the tangent increases very rapidly; and when the difference between the arc and 90° is less than any assignable quantity, the tangent is greater than any assignable quantity. Hence the tangent of 90° is said to be *infinite*.

Since the cotangent of an arc is equal to the tangent of its complement, the cotangent is infinite at A, and zero at D.

The secant begins with radius at A, increases through the first quadrant, and becomes infinite at D. The cosecant is infinite at A, and equal to radius at D. Hence we have

```
\sin 0^{\circ} = \cos 90^{\circ} = 0; \cot 0^{\circ} = \tan 90^{\circ} = \infty; \cos 0^{\circ} = \sin 90^{\circ} = 1; \sec 0^{\circ} = \csc 90^{\circ} = 1; \csc 0^{\circ} = \sec 0^{\circ} =
```

71. Sine, etc., of 180°. As the point F advances from D toward B, the sine diminishes and becomes zero at B; that is, the sine of 180° is zero. During the motion through the second quadrant the cosine increases, and becomes equal to radius at B.

In the motion through the second quadrant the tangent is at first infinitely great, being drawn from A downward to meet the secant, and it rapidly diminishes till at B it is reduced to zero. The secant also diminishes in the second quadrant, till at B it becomes CA, or radius. Hence we have

```
sin. 180^{\circ} = \tan g. 180^{\circ} = 0; cot. 180^{\circ} = \csc. 180^{\circ} = \infty. cos. 180^{\circ} = \sec. 180^{\circ} = 1;
```

72. Sine, etc., of 270°, 360°, etc. During the motion through the third quadrant the sine again increases, and becomes equal: to radius at E; the tangent and secant, which are now AI and CI, also increase, and become infinite at E.

When the line FC, in its motion about C, has revolved through 360°, it comes again into coincidence with AC. Hence the sine,

tangent, etc., of 360° are the same as those of 0°.

The same reasoning shows that the sine, tangent, etc., of 450° are the same as those of 90°; the sine of 540° is the same as that of 180°, etc.

If C represent an entire circumference, or 360°, and A any arc whatever, we shall have

$$\sin A = \sin(C+A) = \sin(2C+A) = \sin(3C+A)$$
, etc.

The same is true of the cosine, tangent, etc.; that is, the sine, tangent, etc., of an arc which exceeds 360°, is the same as those of the excess above 360°, and so also for any multiple of 360°. In fact, since the sine is drawn from one end of an arc perpendicular to a diameter through the other end, two arcs that have the same extremities must have the same sine; and so of the tangent, etc.

Values of the Sines, Cosines, etc., of certain Arcs or Angles.

73. Sine, etc., of 30° and 60°. By Art. 8, the sine of 30° is equal. to half radius; and if we call radius unity, we have

$$\sin 30^{\circ} = \cos 60^{\circ} = \frac{1}{2}$$

Also, since cos.
$$A = \sqrt{R^2 - \sin^2 A}$$
, Art. 15, we have
 $\sin 60^\circ = \cos 30^\circ = \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{1}{2}\sqrt{3}$.

Since tang.
$$A = \frac{\sin A}{\cos A}$$
, Art. 15, we have

tang.
$$30^{\circ} = \cot . 60^{\circ} = \frac{\frac{1}{2}}{\frac{1}{2}\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{3}\sqrt{3}.$$

Since tang.
$$A = \frac{\sin. A}{\cos. A}$$
, Art. 15, we have $\tan 30^{\circ} = \cot. 60^{\circ} = \frac{\frac{1}{2}}{\frac{1}{2}\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{3}\sqrt{3}$. Since $\cot. A = \frac{R^2}{\tan g. A}$, Art. 14, we have $\cot. 30^{\circ} = \tan g. 60^{\circ} = \sqrt{3}$.

Since sec.
$$A = \frac{R^2}{\cos A}$$
, we have sec. $30^\circ = \csc 60^\circ = \frac{2}{\sqrt{3}} = \frac{2}{3}\sqrt{3}$.

Since cosec.
$$A = \frac{R^2}{\sin A}$$
, Art. 14, we have cosec. 30°=sec. 60°=2.

74. Sine, etc., of 45°. Since sin. 45°=cos. 45°; and sin. 2A+ cos.2A=R2, Art. 15, we have

$$\sin^2 45^\circ + \sin^2 45^\circ = 1$$
. Hence $\sin^2 45^\circ = \frac{1}{2}$,
 $\sin^2 45^\circ + \sin^2 45^\circ = 1$. Hence $\sin^2 45^\circ = \frac{1}{2}$,
 $\sin^2 45^\circ + \sin^2 45^\circ = 1$.

and

Also,
$$\tan 3.45^{\circ} = \cot .45^{\circ} = \frac{\sin .45^{\circ}}{\cos .45^{\circ}} = 1$$
, and $\sec .45^{\circ} = \csc .45^{\circ} = \frac{1}{\sin .45^{\circ}} = \sqrt{2}$.

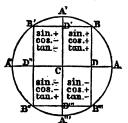
75. Algebraic signs of the trigonometrical functions. If we attribute proper algebraic signs to the trigonometrical functions, the formulæ which have been demonstrated for arcs less than 180° will apply also to arcs greater than 180°. For this purpose we adopt the general principle that lines measured in opposite directions from a fixed line must have opposite signs. It is also convenient to assume that in the first quadrant the sines and cosines are both positive.

76. In the first and second quadrants the sines are measured upward from the horizontal diameter AB, while in the third and fourth quadrants they are measured downward. Hence, regarding the sines as positive in the first quadrant, they will also be positive in the second quadrant, but negative in the third and fourth.

In the first and fourth quadrants the cosine extends to the right from the vertical diameter DE, but in the second and third quadrants to the left. Hence the cosines are positive in the first and fourth quadrants, but negative in the second and third.

77. The signs of the tangents are derived from those of the sines and cosines. For tang. $=\frac{R. \sin}{\cos}$ (Art. 14). Hence, when the sine and cosine have like algebraic signs, the tangent will be positive; when unlike, negative. That is, the tangent is positive in the first and third quadrants, and negative in the second and fourth.

Also, cotangent = $\frac{R^2}{tang}$. (Art. 14); hence the tangent and cotangent have always the same sign.

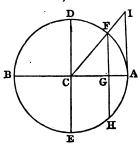

We have seen that sec. $=\frac{R^2}{\cos}$; hence the secant must have the same sign as the cosine.

Also, cosec. = $\frac{R^2}{\sin}$; hence the cosecant must have the same sign as the sine.

The same results are obtained from the figure; for the tangent is drawn from A *upward* for an arc ending in the first or third quadrant, and *downward* for one ending in the second or fourth.

The cotangent is drawn from A' to the right for an arc ending in the first or third quadrant, and to the left for the second and fourth.

The secant is positive when drawn from the centre through the


end of the arc; that is, for an arc ending in the first or fourth quadrant; and negative when drawn from the centre away from the end of the arc; that is, for the second or third quadrant. So also for the cosecant.

The accompanying figure may assist the student to retain in memory the algebraic signs of the different trigonometrical lines.

78. The preceding results are exhibited in the following tables, which should be made perfectly familiar:

*	First quad.	Second quad.	Third quad.	Fourth quad.
Sine and cosecant,	+	+		
Cosine and secant,	+		-	+
Tangent and cotangent	t, +	_	+	-

	00	90°	180°	270°	360°
Sine,	0	+R	0	$-\mathbf{R}$	0
Cosine,	+R	0	$-\mathbf{R}$	0	+R
Tangent,	0	œ	0	00	0
Cotangent,	o	0	œ	0	ထ
Secant,	+R	∞	$-\mathbf{R}$	∞	+R
Cosecant,	œ	+R	œ	$-\mathbf{R}$	00

79. Negative arcs. We generally consider those arcs as positive which are estimated from A in the direction ADBE. If, then, an arc were estimated in the direction AEBD, it should be considered as negative; that is, if the arc AF be considered positive, AH must be considered negative.

Now, wherever a plus arc may end, the equal minus arc will end upon the

opposite side of the horizontal diameter AB, and in the same vertical line. The sines will evidently be equal, but one will be plus, and the other minus. Thus

sin. $AH = -\sin AF$, and $\sin AEF = -\sin ADH$.

and universally

$$\sin \cdot (-A) = -\sin \cdot A$$
.

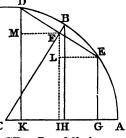
In like manner,

$$\cos (-A) = \cos A$$
.

Hence, also, dividing, tang. $(-A) = -\tan g$. A,

$$ang. (-A) = -tang. A$$

and


$$\cot. (-A) = -\cot. A.$$

TRIGONOMETRICAL FORMULÆ.

80. Expressions for the sine and cosine of the sum and differ ence of two arcs.

Let AB and BD represent any two given arcs; take BE equal to BD: it is required to find an expression for the sine of AD, the sum, and of AE, the difference of these arcs.

Put AB=a, and BD=b; then AD=a+b, and AE=a-b. Draw the chord DE, and the radius CB, which may be represented by R. Since DB is, by construction, equal to BE, DF is equal to C

FE, and therefore DE is perpendicular to CB. Let fall the perpendiculars EG, BH, FI, and DK upon AC, and draw EL, FM parallel to AC.

Because the triangles BCH, FCI are similar, we have CB: CF:: BH: FI; or R: cos. b:: sin. a: FL

Therefore,

$$FI = \frac{\sin a \cos b}{R}.$$

 $CB: CF:: CH: CI; \text{ or } R: \cos b:: \cos a: CI.$

Therefore,

$$CI = \frac{\cos a \cos b}{R}$$

The triangles DFM, CBH, having their sides perpendicular each to each, are similar, and give the proportions

CB:DF::CH:DM; or $R:\sin b::\cos a:DM$.

Hence

$$DM = \frac{\cos a \sin b}{R}.$$

Also, CB:DF::BH:FM; or $R:\sin b::\sin a:FM$.

Hence
$$FM = \frac{\sin a \sin b}{R}$$

 $FI+DM=DK=\sin(a+b)$; But $CI - FM = CK = \cos (a+b)$. and FI-FL = EG = sin. (a-b); Also. $CI+EL=CG=\cos(a-b)$. and

Hence
$$\sin (a+b) = \frac{\sin a \cos b + \cos a \sin b}{R}$$
;

$$\frac{b + \cos a \sin b}{R}; \qquad (1)$$

$$\cos (a+b) = \frac{\cos a \cos b - \sin a \sin b}{R}; \qquad (2)$$

$$\sin. (a-b) = \frac{\sin. a \cos. b - \cos. a \sin. b}{R}; \quad (3)$$

$$\cos (a-b) = \frac{\cos a \cos b + \sin a \sin b}{R}.$$
 (4)

These four equations express important geometrical theorems. The last of them may be stated as follows: The product of radius and the cosine of the difference between two arcs is equal to the sum of the product of the sines and the product of the cosines of those arcs.

81. Expressions for the sine and cosine of a double arc.

If, in the formulas of the preceding article, we make b=a, the first and second will become

$$\sin 2a = \frac{2 \sin a \cos a}{R},$$

$$\cos 2a = \frac{\cos^2 a - \sin^2 a}{R}.$$

Making radius equal to unity, and substituting the values of sin. a, cos. a, etc., from Art. 14, we obtain

$$\sin 2a = \frac{2 \tan g \cdot a}{1 + \tan g \cdot a}$$

$$\cos 2a = \frac{1 - \tan g \cdot a}{1 + \tan g \cdot a}$$

82. Expressions for the sine and cosine of half a given arc. If we put $\frac{1}{2}a$ for a in the preceding equations, we obtain

$$\sin a = \frac{2 \sin \frac{1}{2} a \cos \frac{1}{2} a}{R},$$

$$\cos a = \frac{\cos \frac{21}{2} a - \sin \frac{21}{2} a}{R}.$$

We may also find the sine and cosine of $\frac{1}{2}a$ in terms of a. Since the sum of the squares of the sine and cosine is equal to the square of radius, we have

$$\cos^{2} \frac{1}{2}a + \sin^{2} \frac{1}{2}a = R^{2}$$
.

And, from the preceding equation,

$$\cos^{2} \frac{1}{2}a - \sin^{2} \frac{1}{2}a = R \cos a$$
.

If we subtract one of these from the other, we have $2 \sin^{2} a = R^{2} - R \cos a$.

And, adding the same equations, we have $2 \cos^2 a = R^2 + R \cos a$.

Hence

$$\sin \frac{1}{2}a = \sqrt{\frac{1}{2}R^2 - \frac{1}{2}R} \cos \frac{a}{2};$$

 $\cos \frac{1}{2}a = \sqrt{\frac{1}{2}R^2 + \frac{1}{2}R} \cos \frac{a}{2}.$

83. Expressions for the products of sines and cosines.

By adding and subtracting the formulas of Art. 80, we obtain

sin.
$$(a+b) + \sin \cdot (a-b) = \frac{2}{R} \sin \cdot a \cos \cdot b$$
.
sin. $(a+b) - \sin \cdot (a-b) = \frac{2}{R} \cos \cdot a \sin \cdot b$;
cos. $(a+b) + \cos \cdot (a-b) = \frac{2}{R} \cos \cdot a \cos \cdot b$;
cos. $(a-b) - \cos \cdot (a+b) = \frac{2}{R} \sin \cdot a \sin \cdot b$.

If, in these formulas, we make a+b=A, and a-b=B; that is, $a=\frac{1}{2}(A+B)$, and $b=\frac{1}{2}(A-B)$, we shall have

sin. A+sin. B=
$$\frac{2}{R}$$
 sin. $\frac{1}{2}$ (A+B) cos. $\frac{1}{2}$ (A-B); (1)

sin. A-sin. B=
$$\frac{2}{R}$$
 sin. $\frac{1}{2}$ (A-B) cos. $\frac{1}{2}$ (A+B); (2)

cos. A + cos. B =
$$\frac{2}{R}$$
 cos. $\frac{1}{2}$ (A+B) cos. $\frac{1}{2}$ (A-B); (3)

cos. B - cos.
$$A = \frac{2}{R} \sin \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$$
. (4)

These four equations express important geometrical theorems. The first of them may be stated as follows: The sum of the sines of any two arcs is equal to twice the sine of half the sum of the arcs multiplied by the cosine of half their difference, radius being unity.

84. Theorems relating to the sum and difference of two arcs. Dividing formula (1) by (2), Art. 83, and considering that $\frac{\sin a}{\cos a} = \frac{\tan a}{R}$ (Art. 14), we have

$$\frac{\sin. A + \sin. B}{\sin. A - \sin. B} = \frac{\sin. \frac{1}{2}(A + B) \cos. \frac{1}{2}(A - B)}{\sin. \frac{1}{2}(A - B) \cos. \frac{1}{2}(A + B)} = \frac{\tan g. \frac{1}{2}(A + B)}{\tan g. \frac{1}{2}(A - B)};$$
that is,

The sum of the sines of two arcs or angles is to their difference as the tangent of half the sum of those arcs is to the tangent of half their difference.

Since the sides of a plane triangle are as the sines of their op-

posite angles (Art. 53), it follows, from the preceding theorem, that the sum of any two sides of a plane triangle is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference.

This is the same as Theorem II., Art. 54, which is here demon-

strated by a more general method.

Dividing formula (3) by (4), and considering that $\frac{\cos}{\sin} = \frac{\cot}{R}$ = $\frac{R}{\tan g}$. (Art. 14), we have

$$\frac{\cos A + \cos B}{\cos B - \cos A} = \frac{\cos \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)}{\sin \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)} = \frac{\cot \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)};$$
that is,

The sum of the cosines of two arcs is to their difference as the cotangent of half the sum of those arcs is to the tangent of half their difference.

From the first formula of Art. 82, by substituting A+B for a, we have

 $\sin (A+B) = \frac{2 \sin \frac{1}{2}(A+B) \times \cos \frac{1}{2}(A+B)}{R}$

Dividing formula (1), Art. 83, by this, we obtain

$$\frac{\sin. A + \sin. B}{\sin. (A+B)} = \frac{\sin. \frac{1}{2}(A+B) \cos. \frac{1}{2}(A-B)}{\sin. \frac{1}{2}(A+B) \cos. \frac{1}{2}(A+B)} = \frac{\cos. \frac{1}{2}(A-B)}{\cos. \frac{1}{2}(A+B)};$$
that is,

The sum of the sines of two arcs is to the sine of their sum as the cosine of half the difference of those arcs is to the cosine of half their sum.

If we divide equation (1), Art. 80, by equation (3), we shall

have

$$\frac{\sin. (a+b)}{\sin. (a-b)} = \frac{\sin. a \cos. b + \sin. b \cos. a}{\sin. a \cos. b - \sin. b \cos. a}$$

By dividing both numerator and denominator of the second member by $\cos a \cos b$, and substituting $\frac{\tan g}{R}$ for $\frac{\sin a}{\cos b}$, we obtain

$$\frac{\sin. (a+b)}{\sin. (a-b)} = \frac{\tan g. a + \tan g. b}{\tan g. a - \tan g. b},$$

that is,

The sine of the sum of two arcs is to the sine of their difference as the sum of the tangents of those arcs is to the difference of the tangents.

From equation (3), Art. 80, by dividing each member by cos. a cos. b, we obtain

$$\frac{\sin. (a-b)}{\cos. a \cos. b} = \frac{\sin. a \cos. b - \sin. b \cos. a}{R \cos. a \cos. b} = \frac{\tan g. a - \tan g. b}{R^2}$$

that is,

The sine of the difference of two arcs is to the product of their cosines as the difference of their tangents is to the square of radius

85. Expressions for the tangents of arcs.

If we take the expression tang. $(a+b) = \frac{R \sin (a+b)}{\cos (a+b)}$ (Art. 14), and substitute for sin. (a+b) and cos. (a+b) their values given in Art. 80, we shall find

tang.
$$(a+b) = \frac{R (\sin a \cos b + \sin b \cos a)}{\cos a \cos b - \sin a \sin b}$$
.

But sin.
$$a = \frac{\cos a \tan a}{R}$$
, and sin. $b = \frac{\cos b \tan b}{R}$ (Art. 14).

If we substitute these values in the preceding equation, and divide all the terms by $\cos a \cos b$, we shall have

tang.
$$(a+b) = \frac{R^2 \text{ (tang. } a+\text{tang. } b)}{R^2-\text{tang. } a \text{ tang. } b}$$

In like manner we shall find
$$\tan a \cdot (a-b) = \frac{R^2 (\tan a \cdot a - \tan a \cdot b)}{R^2 + \tan a \cdot a \cdot \tan a \cdot b}.$$

Suppose b=a, then

tang.
$$2a = \frac{2R^2 \text{ tang. } a}{R^2 - \tan g.^2 a}$$

Suppose b=2a, then

tang.
$$3a = \frac{R^2 \text{ (tang. } a + \text{tang. } 2a)}{R^2 - \text{tang. } a \text{ tang. } 2a}$$
.

In the same manner we find

$$\cot (a+b) = \frac{\cot a \cot b - R^2}{\cot b + \cot a},$$

$$\cot (a-b) = \frac{\cot a \cot b + R^2}{\cot b - \cot a}.$$

86. Formula for an angle of a triangle when the three sides are given.

When the three sides of a triangle are given, the angles may be found by the formula

$$\sin \frac{1}{2} A = R \sqrt{\frac{(S-b)(S-c)}{bc}},$$

where S represents half the sum of the sides a, b, and c.

Demonstration.

Let ABC be any triangle; then (Geom., B. IV., Pr. 12)

$$AD = \frac{AB^{2} + AC^{2} - 2AB \times AD}{2AB}.$$

Hence
$$AD = \frac{AB^2 + AC^2 - BC^2}{2AB}$$
.

But in the right-angled triangle ACD we have

R: AC:: cos. A: AD.
cos.
$$A = \frac{R \times AD}{AC}$$
;

Hence

or, by substituting the value of AD, we have

$$\cos A = R \times \frac{AB^2 + AC^2 - BC^2}{2AB \times AC}.$$

Let a, b, c represent the sides opposite the angles A, B, C; then

$$\cos A = R \times \frac{b^2 + c^2 - a^2}{2bc}$$
.

This equation expresses the following theorem: In every plane triangle the cosine of either of the angles is equal to the sum of the squares of the adjacent sides, diminished by the square of the opposite side, and divided by twice the product of the adjacent sides, radius being unity.

This formula is not well adapted to computation by logarithms, but may be rendered suitable by the following transformation:

By Art. 82, we have $2 \sin^2 A = R^2 - R \cos A$.

Substituting for cos. A its value given above, we obtain

$$2 \sin^{2} \frac{1}{2} A = R^{2} - R^{2} \times \frac{b^{2} + c^{2} - a^{2}}{2bc} = R^{2} \times \frac{2bc + a^{2} - b^{2} - c^{2}}{2bc},$$

$$= \frac{R^{2} \times (a + b - c) (a + c - b)}{2bc}.$$

Put $S = \frac{1}{2}(a+b+c)$, and we obtain, after reduction,

$$\sin \frac{1}{2} A = R \sqrt{\frac{(S-b)(S-c)}{bc}}.$$

In the same manner we find

$$\sin \frac{1}{2}B = R\sqrt{\frac{(S-a)(S-c)}{ac}}$$
.
 $\sin \frac{1}{2}C = R\sqrt{\frac{(S-a)(S-b)}{ab}}$;

that is, in every plane triangle the square of the cosine of half

either of the angles is equal to the product of the excess of the semiperimeter over the two adjacent sides divided by the product of those sides, radius being unity.

Ex. 1. What are the angles of a plane triangle whose sides are 432, 543, and 654?

Here S=814.5; S-b=382.5; S-c=271.5.

Angle $A=83^{\circ} 25' 13''$.

In a similar manner we find the angle $B=41^{\circ}0'39''$, and the angle $C=55^{\circ}34'8''$.

Ex. 2. What are the angles of a plane triangle whose sides are 245, 219, and 91?

Ex. 3. What are the angles of a plane triangle whose sides are 538, 475, and 647?

87. On the computation of a table of sines, cosines, etc.

In computing a table of sines and cosines, we begin with finding the sine and cosine of one minute, and thence deduce the sines and cosines of larger arcs. The sine of so small an angle as one minute is nearly equal to the corresponding arc. The radius being taken as unity, the semi-circumference is known to be 3.14159. This, being divided successively by 180 and 60, gives .0002908882 for the arc of one minute, which may be regarded as the sine of one minute.

The cosine of $1' = \sqrt{1 - \sin^2 2} = 0.9999999577$.

The sines of very small angles are nearly proportional to the angles themselves. We might then obtain several other sines by direct proportion. This method will give the sines correct to five decimal places, as far as two degrees. By the following method they may be obtained with greater accuracy for the entire quadrant.

By Art. 83 we have, by transposition, $\sin. (a+b)=2 \sin. a \cos. b-\sin. (a-b)$, $\cos. (a+b)=2 \cos. a \cos. b-\cos. (a-b)$. If we make a=b, 2b, 3b, etc., successively, we shall have $\sin. 2b=2 \sin. b \cos. b$;

 $\sin . 3b = 2 \sin . 2b \cos . b - \sin . b;$

```
\begin{array}{c} \sin. 4b = 2 \sin. 3b \cos. b - \sin. 2b, \\ \text{etc.,} & \text{etc.,} \\ \cos. 2b = 2 \cos. b \cos. b - 1; \\ \cos. 3b = 2 \cos. 2b \cos. b - \cos. b; \\ \cos. 4b = 2 \cos. 3b \cos. b - \cos. 2b, \\ \text{etc.,} & \text{etc..} \\ \end{array}
\begin{array}{c} \text{etc.,} & \text{etc..} \\ \text{whence, making } b = 1', \text{ we have} \\ \sin. 2' = 2 \sin. 1' \cos. 1' & = .000582; \\ \sin. 3' = 2 \sin. 2' \cos. 1' - \sin. 1' = .000873; \\ \sin. 4' = 2 \sin. 3' \cos. 1' - \sin. 2' = .001164, \\ \text{etc.,} & \text{etc..} \\ \cos. 2' = 2 \cos. 1' \cos. 1' - & 1 = 0.999999; \\ \cos. 3' = 2 \cos. 2' \cos. 1' - \cos. 1' = 0.999999; \\ \cos. 4' = 2 \cos. 3' \cos. 1' - \cos. 2' = 0.999999, \\ \text{etc.,} & \text{etc..} \\ \end{array}
```

The table of tangents may be computed from the sines and cosines by the formula tang. $A = \frac{\sin A}{\cos A}$. The rule is, divide each sine by the corresponding cosine.

The secants are computed by the formula sec. $A = \frac{1}{\cos A}$; or, the rule, divide unity by each cosine.

The cotangents and cosecants are computed by the formulas $\cot = \frac{1}{\tan g}$, and $\csc = \frac{1}{\sin e}$.

The logarithmic tables are formed by taking the logarithms of the numbers in the tables computed as above, and adding 10 to each index.

88. Formulæ of verification. In so extended a work as the computation of the sines and cosines of all angles from 0° to 90°, it is necessary from time to time to verify the accuracy of the results by independent computations. For this purpose we employ special formulæ for the values of the sines and cosines of certain angles. The sines and cosines of 30°, 45°, and 60° have been given in Arts. 73 and 74. The sines and cosines of other angles may be found by means of the preceding formulas. By means of the Equations of Art. 82, from the cosine of any angle we can find the sine and cosine of its half; hence from the cosine of 45° we can find the sine and cosine of 22° 30′; and from these, the sine and cosine of 11° 15′. Also, from cos. 30°, we can find the sine and cosine of 15°, 7° 30′, and 3° 45′. If the values of the

sines of these angles agree with the values obtained by the process of Art. 87, the whole work may be presumed to be correct.

Examples for Practice.

Prob. 1. Given the three sides of a triangle, 627, 718.9, and 1140, to find the angles.

Ans. 29° 44′ 2″, 34° 39′ 26″, and 115° 36′ 32″.

Prob. 2. In the triangle ABC, the angle A is given 89° 45′ 43" the side AB 654, and the side AC 460, to find the remaining parts.

Ans. BC=798; the angle B=35° 12′ 1″, and the angle C=55° 2' 16".

Prob. 3. In the triangle ABC, the angle A is given 56° 12′ 45″, the side BC 2597.84, and the side AC 3084.33, to find the remain-Ans. $B=80^{\circ} 39' 40'', C=43^{\circ} 7' 35'', c=2136.8$; ing parts.

or, $B=99\ 20\ 20$, $C=24\ 26\ 55$, c=1293.8.

Prob. 4. In the triangle ABC, the angle A is given 44° 13' 24", the angle B 55° 59' 58", and the side AC 368, to find the remaining parts.

Ans. $C=79^{\circ} 46' 38''$, AB=436.844, and BC=309.595.

Prob. 5. In a right-angled triangle, if the sum of the hypothenuse and base be 3409 feet, and the angle at the base 53° 12′ 14″, what is the perpendicular? Ans. 1707.2 feet.

Prob. 6. In a right-angled triangle, if the difference of the hypothenuse and base be 169.9 yards, and the angle at the base 42° 36' 12", what is the length of the perpendicular?

Ans. 435.732 yards.

Prob. 7. In a right-angled triangle, if the sum of the base and perpendicular be 123.7 feet, and the angle at the base 58° 19' 32", what is the length of the hypothenuse? Ans. 89.889 feet.

Prob. 8. In a right-angled triangle, if the difference of the base and perpendicular be 12 yards, and the angle at the base 38° 1'8", what is the length of the hypothenuse? Ans. 69.81 yards.

Prob. 9. A May-pole 50 feet 11 inches high, at a certain time will cast a shadow 98 feet 6 inches long; what, then, is the breadth of a river which runs within 20 feet 6 inches of the foot of a steeple 300 feet 8 inches high, if the steeple at the same time throws its shadow 30 feet 9 inches beyond the stream?

Ans. 530 feet 5 inches.

Prob. 10. A ladder 40 feet long may be so placed that it shall reach a window 33 feet from the ground on one side of the street, and by turning it over without moving the foot out of its place, it will do the same by a window 21 feet high on the other side. Required the breadth of the street.

Ans. 56.649 feet.

Prob. 11. A May-pole, whose top was broken off by a blast of wind, struck the ground at the distance of 15 feet from the foot of the pole; what was the height of the whole May-pole, supposing the length of the broken piece to be 39 feet?

Ans. 75 feet.

Prob. 12. How must three trees, A, B, C, be planted, so that the angle at A may be double the angle at B, the angle at B double the angle at C, and a line of 400 yards may just go round them?

Sol. Assume AB=1, and compute the corresponding values of AC and BC.

Ans. AB=79.225, AC=142.758, and BC=178.017 yards. Prob. 13. The town B is half way between the towns A and C, and the towns B, C, and D are equidistant from each other. What is the ratio of the distance AB to AD?

Ans. As unity to $\sqrt{3}$.

Prob. 14. There are two columns left standing upright in the ruins of Persepolis; the one is 66 feet above the plain, and the other 48. In a straight line between them stands an ancient statue, the head of which is 100 feet from the summit of the higher, and 84 feet from the top of the lower column, the base of which measures just 74 feet to the centre of the figure's base. Required the distance between the tops of the two columns.

Ans. 156.68 feet.

Prob. 15. Prove that tang.
$$(45^{\circ}-b) = \frac{1-\tan g. b}{1+\tan g. b}$$

Prob. 16. One angle of a triangle is 45°, and the perpendicular from this angle upon the opposite base divides the base into two parts, which are in the ratio of 2 to 3. What are the parts into which the vertical angle is divided by this perpendicular?

Sol. Let x= the larger angle; then

tang.
$$(45^{\circ}-a) = \frac{2}{3} \text{ tang. } a = \frac{1-\text{tang. } a}{1+\text{tang. } a}$$

which can be solved as an equation of the second degree.

Ans. 18° 26′ 6″, and 26° 33′ 54″.

Prob. 17. Prove that $\sin 3b=3 \sin b-4 \sin 3b$.

Prob. 18. One side of a triangle is 25, another is 22, and the angle contained by these two sides is one half of the angle opposite the side 25. What is the value of the included angle?

Sol. $\frac{\sin . 3x}{\sin . 2x} = .88 = \frac{3 \sin . x - 4 \sin . 3x}{2 \sin . x \cos . x} = \frac{3 - 4 \sin . 2x}{2 \cos . x} = \frac{3 - 4 \sin . 2x}{2 \sqrt{1 - \sin . 2x}}$

which can be solved as an equation of the second degree.

Ans. 39° 58′ 51″.

Prob. 19. One side of a triangle is 25, another is 22, and the angle contained by these two sides is one half of the angle opposite the side 22. What is the value of the included angle?

Sol. Like the preceding.

Ans. 30° 46′ 38″.

Prob. 20. Two sides of a triangle are in the ratio of 11 to 9, and the opposite angles have the ratio of 3 to 1. What are those angles?

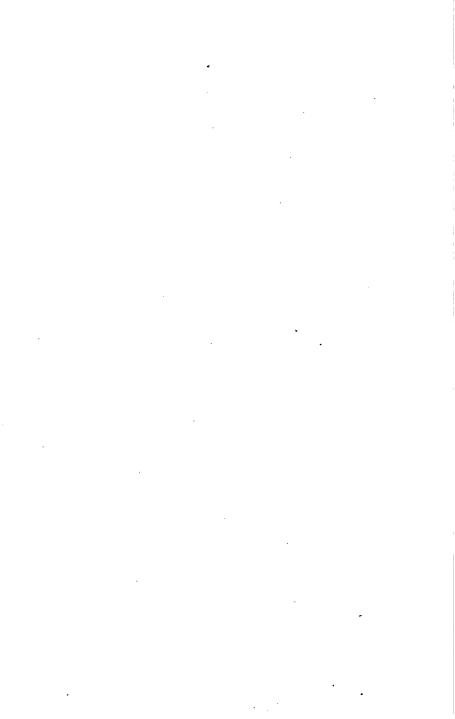
Sol. $3 \sin x - 4 \sin^3 x : \sin x :: 11:9$.

Ans. The sine of the smaller of the two angles is $\frac{2}{3}$, and of the greater $\frac{2}{3}$; the angles are $\frac{2}{3}$, and $\frac{2}{3}$, and $\frac{2}{5}$ ° $\frac{2}{5}$ 1".

Prob. 21. One side of a triangle is 15, and the difference of the two other sides is 6; also, the angle included between the first side and the greater of the two others is 60°. What is the length of the side opposite to this angle?

Ans. 57.

Prob. 22. One side of a triangle is 15, and the difference of the two other sides is 6; also, the angle opposite to the greater of the two latter sides is 60°. What is the length of said side?


Ans. 13.

Prob. 23. One side of a triangle is 15, and the opposite angle is 60°; also, the difference of the two other sides is 6. What are the lengths of those sides?

Ans. 11.0712, and 17.0712.

Prob. 24. The perimeter of a triangle is 100; the perpendicular let fall from one of the angles upon the opposite base is 30, and the angle at one end of this base is 50°. What is the length of the base?

Ans. 30,388.

LOGARITHMS OF NUMBERS

FROM 1 TO 10,000.

N.	Log.	N.	Log.	N.	Log.	N.	Log.
1	0.000000	26	1.414973	51	1.707570	76	1.880814
2	0.301030	27	1.431364	52	1.716003	77	1.886491
. 3	0.477121	28	1.447158	53	1.724276	78	1.892095
4	0.602060	29	1.462398	54	1.732394	79	1.897627
5	0.698970	30	1.477121	55	1.740363	80	1.903090
6	0.778151	31	1.491362	56	1.748188	81	1.908485
7	0.845098	. 32	1.505150	57	1.755875	82	1.913814
8	0.903090	83	1.518514	58	1.763428	83	1.919078
9	0.954243	34	1.531479	59	1.770852	84	1.924279
10	1.000000	35	1.544068	60	1.778151	85	1.929419
11	1.041393	36	1.556303	61	1.785330	86	1.934498
12	1.079181	37	1.568202	62	1.792392	87	1.939519
13	1.113943	38 39	1.579784	63	1.799341	88	1.944483
14	1.146128		1.591065	64	1.806180	89	1.949390
15	1.176091	40	1.602060	65	1.812913	90	1.954243
16	1.204120	41	1.612784	66	1.819544	91	1.959041
17	1.230449	42	1.623249	67	1.826075	92	1.963788
18	1.255273	43	1.633468	68	1.832509	93	1.968483
19	1.278754	41	1.643453	69	1.838849	94	1.973128
20	1.301030	45	1.653213	70	1.845098	95	1.977724
21	1.322219	46	1.662758	71	1.851258	96	1.982271
22	1.342423	47	1.672098	$7\overline{2}$	1.857332	97	1.986772
23	1.361728	48	1.681241	73	1.863323	98	1.991226
21	1.380211	49	1.690196	74	1.869232	99	1.995635
$\mathbf{\tilde{2}\tilde{3}}$	1.397940	50	1.698970	75	1.875061	100	2.000000

N.B.—In the following table, commencing with page 322, the two leading figures in the first column of logarithms are to be prefixed to all the numbers of the same horizontal line in the next nine columns; but when a point (.) occurs, its place is to be supplied by a cipher, and the two leading figures are to be taken from the next lower line.

The logarithms of the first 100 numbers are given with their characteristics; but for all other numbers the decimal part only of the logarithm is given, and the characteristic is to be supplied by the usual rule.

The last column of each page shows the difference between the successive logarithms on the same horizontal line; and on the lower portion of each page are given the Proportional Parts for a fifth figure in the natural number.

<u>z</u>				A10111	1110	72 410	MDE.				
N.	0	1	2	3	4	5	6	7	8	9	D.
100	000000	0434	0868	1301	1734	2166	2598	3029	3461	3891	432
101		4751	5181	5609	6038	6466	6894	7321	7748	8174	428
102		9026	9451	9876	.300	.724	1147	1570	1993	2415	424
103		3259	3680	4100	4521	4940	5360	5779	6197	6616	419
104		7451	7868	8284	8700	9116	9532	9947	.861	.775	416
105		1603	2016	2428	2841	3252	3664	4075	4486	4896	412
106	5306	5715	6125	6533	6942	7350	7757	8164	8571	8978	408
107	9384	9789	.195	.600	1004	1408	1812	2216	2619	3021	404
108		3826	4227	4628	5029	5430	5830	6230	6629	7028	400
109		7825	8228	8620	9017	9414	9811	.207	.602	.998	396
1110		1787	2182	2576	2969	3362	3755	4148	4540	4932	393
1111		5714	6105	6495	6885	7275	7664	8053	8442	8830	389
112	9218	9606	9998	.380	.766	1153	1538	1924	2309	2694	386
N.	0	1	2	3	4	5	6	7	8	9	D.
	(484	(43	87	130	174	217	260	304	347	391	
1	433	43	87	130	173	217	260	803	846	5 90	1
1	432	43	86	130	173	216	259	302	346	389	
1	431	43	86	129	172	216	259	302	345	388	
ļ.	430	43	86	129	172	215	258	301	844	387	
1	429	43	86	129	172	215	257	800	843	386	
1	428	43	86	128	171	214	257	800	842	385	
1	427	43	85	128	171	214	256	299	342	384	
1	426 425	43	85	128 128	170	213 213	256 255	298 298	841 840	383 383	l
!	1	48	85		170						
1	424	42	85	127	170	212	254	297	339	382	
	423	42	85	127	169	212	254	296	838 838	381 380	1
ł	422 421	42 42	84	127 126	169 168	211 211	253 253	295 295	837	379	i
	420	42	84 84	126	168	210	252 252	294	836	378	
	419	42	84	126	168	210	251	293	835	877	
	418	42	84	125	167	209	251	293	834	376	1
1 .	417	42	83	125	167	209	25C	292	884	875	1
!	416	42	83	125	166	208	250	291	333	374	
1	415	42	83	125	166	208	249	291	382	374	
1	414	1 77	83	124	166	207	248	290	831	878	
1	413	81 41 81 41	83	124	165	207	248	289	330	372	
İ	- 410	2 41	82	124	165	206	247	288	330	371	
i	2 411	I – 41 I	82	123	164	206	247	288	329	870	1
1	9 412 411 410 409	641 41 41 41	82	123	164	205	246	287	828	369	
1	₽ 409	≠41	82	123	164	205	245	286	827	368	1
1	ā 408	ੋਂ 41	82	122	163	204	245	286	826	367	1
1	407	₫ 41	81	122	163	204	244	285	826	366	ı
1	406	Ā 41 	81	122	162	203	244	284	825	865	1
!	405	41	81	122	162	203	243	284	824	365	- 1
1	404	40	81	121	162	202	242	283	323	364	1
1	403	40	81	121	161	202	242	282	822	868	l
1	402	40	80	121	161	201	241	281	322	362	
1	401	40	80	120	160	201	241	281	821	861	. 1
!	400	40	80	120	160	200	240	280	820	360	
İ	399	40	80	120	160	200	289	279	319	859	
1	398	40	80	119	159	199	239	279	318	358	1
1	397	40 40	79 79	119	159	199	238	278 277	318 317	357	
l	396 395	40	79	119	158 158	198 198	238 237	277	317	356 356	1
l	1 1	1 1		119							
1	394	39	79	118	158	197	236	276	315	355	
1	393	39	79	118	157	197	236	275	314	854	l
1	392	39	78	118	157	196	285	274 274	314 318	353 352	
1	391	39 39	78 78	117 117	156 156	196 195	285 284	274	313 312	351	l
1	389	39	78	117	156	195	233	272	311	350	. !
ı	388	39	78	116	155	194	233	272	310	349	. J
1	887	89	77	116	155	194	232	271	310	348	
1	386	89	77	116	154	193	232	270	809	347	
	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 		<u> </u>					<u></u>			

N.	0	1	2	3	4	5	6	7	8	9	D.
113	053078	3463	3846	4230	4613	4996	5378	5760	6142	6524	382
114	6905	7286	7666	8046	8426	8805	9185	9568	9942	.320	879
115	060698	1075	1452	1829	2206	2582	2958	3333	3709	4083	876
116	4458	4832	5206	5580	5953	6326	6699	7071	7443	7815	372
117	8186	8557	8928	9298	9668	38	.407	.776	1145	1514	869
118	071882	2250	2617	2985	3352	3718	4085	4451	4816	5182	866
119	5547	5912	6276	6640	7004	7368	7781	8094	8457	8819	863
120	9181	9543	9904	.266	.626	.987	1347	1707	2067	2426	860
121	082785	3144	8503	3861	4219	4576	4984	5291	5647	6004	857
122 123	6360 9905	.258	7071 .611	7426 .963	7781 1315	8136 1667	8490 2018	8845 2370	9198 2721	9552 3071	855 351
124	093422	3772	4122	4471	4820	5169	5518	5866	6215	6562	849
125	6910	7257	7604	7951	8298	8644	8990	9335	9681	26	846
126	100871	0715	1059	1403	1747	2091	2434	2777	3119	3462	343
127	3804	4146	4487	4828	5169	5510	5851	6191	6531	6871	340
N.	0	1	1 2	3	7	5	6	7	8	9	D.
	(385	(89	77	116	154	193	231	270	808	347	
l i	384	38	77	115	154	192	230	269	807	846	1
1.	383	38	77	115	153	192	230	268	306	345	
1 1	382	38	76	115	153	191	229	267	806	344	
1 1	381	38	76	114	152	191	229	267	805	343	
1	380	38	76	114	152	190	228	266	504	842	
1	379	38	76	114	152	190	227	265	303	341 340	
1 1	378	38	76	113	151	189	227	265	802		
1 1	377	38	75	113	151 150	189 188	226 226	264 263	302 201	33 9 838	
1 1	376		75								
1 1	375	38	75	113 112	150 150	188 187	225 224	263 262	300 299	338 337	
	374 373	37	75 75	112	149	187	224	261	298	336	
1 1	372	37	74	112	149	186	223	260	298	335	
1 1	371	87	74	iii	148	186	223	260	297	334	
1 1	370	37	74	iii	148	185	222	259	296	833	
1 1	369	37	74	111	148	185	221	258	295	832	1
1 1	368	37	74	110	147	184	221	258	294	331	
	367	87	73	110	147	184	220	257	294	330	
1 1	366	₽ 37	78	110	146	183	220	256	293	329	
1 1	365	2 37 37	73	110	146	183	219	256	292	329	
	364 363 92 362 9361	E 36	73	109	146	182	218	255	291	328	
1 1	g 363	≅ 36	78	109	145	182	218	254	290	327	
1 1	2 362	€ 36	72	109	145	181	217	253	290 289	326 325	
1 1	361 2 360	£ 36	72 72	108 108	144 144	181 180	217 216	258 252	288	324	
1 1	1 359	96 98 98 98	72	108	144	180	215	251	287	323	
1 1	358	A 36	72	107	148	179	215	251	286	822	l
	857	86	71	107	143	179	214	250	286	321	
	856	36	71	107	142	178	214	249	285	320	
1	355	36	71	107	142	178	213	249	284	320	
1)	354	35	71	106	142	177	212	248	283	319	
1 1	853	85	71	106	141	177	212	247	282	818	
()	352	85	70	106	141	176	211	246	282	817	
j	351	85	70	105	140	176	211	246	281 280	316 315	
, I	350 349	35 35	70 70	105 105	140 140	175 175	210 209	245 244	279	314	
1 (348	85	70	103	189	174	209	244	278	813	
	347	35	69	104	139	174	208	243	278	312	
1	346	35	69	104	138	178	208	242	277	311	
1 1	345	85	69	104	138	173	207	242	276	811	
	344	84	69	103	138	172	206	241	275	310	
1 1	343	34	69	103	137	172	206	240	274	809	
1	342	34	68	103	137	171	205	239	274	308	
	341	84	68	102	136	171	205	239	273	307	
	340	34	68	102	136	170	204	238	272	306	
L_ J	(339	84	68	102	136	170	203	237	271	805	

								-					
Γ	N.	0	Т	1	2	3	4	5	6	7	8	9	D.
-	128	107210	- -	7549	7888	8227	8565	8903	9241	9579	9916	.253	338
H	129	110590		0926	1263	1599	1934	2270	2605	2940	3275	3609	335
-	130	8943		4277	4611	4944	5278	5611	5943	6276	6608	6940	333
-	181	7271		7603	7934	8265	8595	8926	9256	9586	9915	.245	330
1	182	120574		0903	1231	1560	1888	2216	2544	2871	3198	3525	328
-	183	8852		4178	4504	4830	5156	5481	5806	6131	6456	6781	325
	184	7105		7429	7753	8076	8399	8722	9045	9368	9690	12	323
	185	180834		0655	0977	1298	1619	1939	2260	2580	2900	3219	321
	136	8589		8858	4177	4496	4814	5133	5451	5769	6086	6408	318
	187	6721		7037	7354	7671	7987	8303	8618	8934	9249	9564	315
		I	_!-										
	138	9879		.194	.508	.822	1136	1450	1763	2076	2389	2702	314
	189	143015		8827	8639	8951	4263	4574	4885	5196	5507	5818	311
	140	6128		6438	6748	7058	7867	7676	7985	8294	8603	8911	809
	141	9219		9527	9835	.142	.449	.756	1063	1370	1676	1982	307
	142	152288		2594	2900	3205	3510	8815	4120	4424	4728	5032	805
	143	5336		5640	5943	6246	6549	6852	7154	7457	7759	8061	303
	144	8362		8664	8965	9266	9567	9868	.168	.469	.769	1068	301
	145	161368		1667	1967	2266	2564	2863	3161	3460	3758	4055	299
L	146	4353	14	4650	4947	5244	5541	5838	6134	6430	6726	7022	297
1-	N.	0	T	1	2	3	4	5	6	7	8	9	D.
-		(339	- -	(84	68	102	136	170	203	237	271	305	
		338	1	31	68		135		203	237	271	304	
		337		34	67	101 101	135	169 169	203			303	
1		336	1	34	67	101	134	168	202	236 235	270 269	302	
1		335	1	34	67		134					302	1
1			1	33	67	101		168	201	285	268	301	1
		834	1			100	134	167	200	234	267	300	[]
1		333	1	33	67	100	138	167	200	233	266		
1		832	1	33	66	100	133 132	166	199	232	266	299 298	1
1		331	1		66	99		166	199	232	265		1
1	- 1	330	1	33	66	99	132	165	198	231	264	297	
1		329	1	33	66	99	132	165	197	230	263	296	
1		328	1	33	66	98	131	164	197	230	262	295	
ı	- 1	327		33	65	98	131	164	196	229	262	294	
1		326	1	33	65	98	130	163	196	228	261	293	
1	- 1	325	l	33	65	98	130	163	195	228	260	293	
1	- 1	824	1	32	65	97	130	162	194	227	259	292	
1	ŀ	323	ĺ	32	65	97	129	162	194	226	258	291	i i
1	- 1	322	١,	32 32 32	64	97	129	161	193	225	258	290	- 1
1	- 1	321	1	E 32	64	96	128	161	193	225	257	289	- 1
1	- 1	g 320	٩	32	64	96	128	160	192	224	256	288	- 1
1	- 1		17	₹ 32	64	96	128	160	191	223	255	287	
	ı	318 317	}	32 32 32 33 33 31 31 31 31 31 31 31 31 31 31 31	64	95	127	159	191	223	254	286	i
	- 1	₩ 317	13	32	63	95	127	159	190	222	254	285	
1	J	Ä 316	3	32	63	95	126	158	190	221	253	284	- 1
	1	315	8	32	63	95	126	158	189	221	252	284	- 1
1	i	314	Å	31	63	94	126	157	188	220	251	283	- 1
1	Ì	813		31	63	94	125	157	188	219	250	282	- 1
1	- 1	312		31	62	94	125	156	187	218	250	281	ı
1	- 1	311	1	31	62	93	124	156	187	218	249	280	1
1		310		31	62	93	124	155	186	217	248	279	ı
1	- 1	309		31	62	93	124	155	185	216	247	278	
1	1	808		31	62	92	128	154	185	216	246	277	I
1	- 1	307					1						- 1
ı	- 1			31	61	92	123	154	184	215	246	276	t
1	- 1	306		31	61	92	122	153	184	214	245	275	- 1
1	- 1	305		31	61	92	122	153	183	214	244	275	ı
ŀ	- 1	304	ا إ	30	61	91	122	152	182	218	243	274	ı
١	- 1	303		30	60	91	121	152	182	212	242	273	- 1
1	- 1	302	1	30	60	91	121	151	181	211	242	272	- 1
1	- 1	301		30	60	90	120	151	181	211	241	271	- 1
L	- 1	300		30	60	90	120	150	180	210	240	270	1
1		299	1	30	60	90	120	150	179	209	239	269	- 1
1	- 1	298 297		80	60	89	119	149	179	209	238	268	- 1
		1 297	1	(80	59	89	119	149	178	208	238	267	

N.	0	1	2	3	4	5 -	6	. 7	8	9	D.
147	167317	7613	7908	8203	8497	8792	9086	9380	9674	9968	295
148	170262	0555	0848	1141	1434	1726	2019	2311	2603	2895	293
149	3186	3478	3769	4060	4351	4641	4932	5222	5512	5802	291
150	6091	6381	6670	6959	7248	7536	7825	8113	8401	8689	289
151	8977	9264	9552	9839	.126	.413	.699	.986	1272	1558	287
152	181844	2129	2415	2700	2985	3270	8555	38 39	4123	4407	285
153	4691	4975	5259	5542	5825	6108	6391	6674	6956	7239	288
154	7521	7803	8084	8366	8647	8928	9209	9490	9771	51	281
155	190332	0612	0892	1171	1451	1730	2010	2289	2567	2846	279
156	3125	3403	8681	3959	4237	4514	4792	5069	5346	5623	278
157	5900	6176	6453	6729	7005	7281	7556	7832	8107	8382	276
158	8657	8932	9206	9481	9755	29	.303	.577	.850	1124	274
159	201397	1670	1943	2216	2488	2761	3033	3305	3577	3848	272
160	4120	4891	4663	4934	5204	5475	5746	6016	6286	6556	271
161	6826	7096	7365	7634	7904	8173	8441	8710	8979	9247	269
162	9515	9783	51	.819	.586	.853	1121	1388	1654	1921	267
163	212188	2454	2720	2986	3252	3518	3783	4049	4314	4579	266
164	4844	5109	5873	5638	5902	6166	6430	6694	6957	7221	264
165	7484	7747	8010	8273	8536	8798	9060	9323	9585	9846	262
166	220108	0370	0631	0892	1153	1414	1675	1936	2196	2456	261 259
167	2716	2976	3236	3496	3755	4015	4274	4533	4792 7372	5051 7630	258
168	5309	5568	5826	6084	6342	6600	6958	7115	- -		D.
N.	0	1	2		4	5	6		8	9	
1	(296	(30	59	89	118	148	178	207	237	266	
1	295	30	59	89	118	148	177	207	236	266	
1	294	29	59	88	118	147	176	206	235	265	
1	.293	29	59	88	117	147	176	205	234	264 263	
1	292	29	58	88	117 116	146	175	204 204	234 233	262	ı
1	291 290	29	58	87	116	146	175 174	203	232	261	
1	289	29	58 58	87 87	116	145 145	173	202	231	260	
1 .	288	29	58	86	115	144	178	202	230	259	
	287	29	57	86	115	144	172	201	230	258	
1					114	143		200	229	257	
i	286 285	29	57 57	86 86	114	143	172 171	200	228	257	
1	284	28	57	85	114	142	170	199	227	256	
ł	283	28	57	85	113	142	170	198	226	255	i
1	282	28	56	85	113	141	169	197	226	254	
i i	281	28	56	84	112	141	169	197	225	253	
1	280	₹ 28	56	84	112	140	168	196	224	252	
	279	\$ 28 4 28 4 28	56	84	112	140	167	195	223	251	
1		A 28	56	83	111	139	167	195	222	250	
1	₿ 277	₹ 28	55	83	111	139	166	194	222	249	
1	278 277 276 276	28 28 28 27 27 27 27	55	83	110	138	166	193	221	248	
1 1	\$ 275	₹ 28	55	83	110	138	165	193	220	248	
1	F 275	₹27	55	82	110	137	164	192	219	247	
1	273	£ 27	55	82	109	137	164	191	218	246	1
	272	1 1 2.	54	82	109	136	163	190	218	245	
	271	27	54	81	108	136	163	190	217	244	1
1	270	27	54	81	108	135	162	189	216	243	
1	269	27	54	81	108	135	161	188	215	242	
	268	27	54	80	107	134	161	188	214	241	
	267	27	53	80	107	134	160	187	214	240	
	266 265	27 27	53	80 80	106 106	133 133	160 159	186 186	213 212	239 239	
1	263 264	26	53 53		106	132	158	185	212	238	
1	263	26	53	79 79	105	132	158	184	210	237	
1	262	26	52	79	105	131	157	183	210	236	
	261	26	52	78	103	131	157	183	209	235	
1	260	26	52	78	104	130	156	182	208	234	
1	259	26	52	78	104	130	155	181	207	233	
1	258	26	52	77	103	129	155	181	206	232	
1	257	26	51	77	108	129	154	180	206	231	
<u> </u>											

	·			,							
N.	0	1	2	3	4	_ 5	6	7	8	9	D.
169	227887	8144	8400	8657	8913	9170	9426	9682	9938	.193	256
170	230449	0704	0960	1215	1470	1724	1979	2234	2488	2742	254
171	2996	3250	3504	8757	4011	4264	4517	4770	5023	5276	253
172	5528	5781	6033	6285	6537	6789	7041	7292	7544	7795	252
173	8046	8297	8548	8799	9049	9299	9550	9800	50	.300	250
174	240549	0799	1048	1297	1546	1795	2044	2293	2541	2790	249
175	3038	3286	3534	3782	4030	4277	4525	4772	5019	5266	248
176	5513	5759	6006	6252	6499	6745	6991	7237	7482	7728	246
177	7973	8219	8464	8709	8954	9198	9443	9687	9932	.176	245
178	250420	0664	0908	1151	1395	1638	1881	2125	2368	2610	243
179	2853	8096	3338	8580	3822	4064	4306	4548	4790	5031	242
180	5273	5514	5755	5996	6237	6477	6718	6958	7198	7439	241
181	7679	7918	8158	8398	8637	8877	9116	9355	9594	9833	289
182	260071	0310	0548	0787	1025	1263	1501	1789	1976	2214	238
183	2451	2688	2925	8162	8399	3636	8873	4109	4346	4582	287
184	4818	5054	5290	5525	5761	5996	6232	6467	6702	6937	235
185	7172	7406	7641	7875	8110	8344	8578	8812	9046	9279	234
186	9513	9746	9980	.213	.446	.679	.912	1144	1877	1609	233
187	271842	2074	2306	2538	2770	3001	3233	3464	3696	3927	282
188	4158	4389	4620	4850	5081	5311	5542	5772	6002	6232	282
189	6462	6692	6921	7151	7380	7609	7838	8067	8296	8525	229
190	8754	8982	9211	9439	96 6 7	9895	.123	.351	.578	.806	228
191	281033	1261	1488	1715	1942	2169	2896	2622	2849	3075	227
192	8301	3527	3753	3979	4205	4431	4656	4882	5107	5332	226
193	5557	5782	6007	6232	6456	6681	6905	7130	7354	7578	225
194	7802	8026	8249	8473	8696	8920	9143	9366	9589	9812	223
195	290035	0257	0480	0702	0925	1147	1369	1591	1813	2034	222
∤ ====											
N.	0	1	2	3	4	_ 5	_6	7	8	9	D.
1	(257	(26	51	77	103	129	154	180	206	231	
i	256	26	51	77	102	128	154	179	205	230	
1	255	26	51	77	102	128	153	179	204	230	
l i	254	25	51	76	102	127	152	178	203	229	
1 1	253	25	51	76	101	127	152	177	202	228	1
	252	25	50	76	101	126	151	176	202	227	1
i I	251	25	50	75	100	126	151	176	201	226	1
1 1	250	25	50	75	100	125	150	175	200	225	
1 1	249	25	50	75	100	125	149	174	199	224	1
	248	25	50	74	99	124	149	174	198	223	
1 1	247	25	. 49	74	99	124	148	173	198	222	
	246	25	49	74	98	128	148	172	197	221	1
1 1	245	25	49	74	98	123	147	172	196	221	
1 1	244	a 24	49	78	98	122	146	171	195	220	
j.	243	Parts 74	49	73	97	122	146	170	194	219	l Į
! }	242 241		48	73	97	121	145	169	194	218	•
1 1	g 241		48	72	96	121	145	169	193	217	- 1
i I	241 240 239	24 0 24	48	72	96	120	144	168	192	216	. i
, I	≅ 239	24 24 24 24 24	48	72	96	120	148	167	191	215	
]	A 238	224	48	71	95	119	143	167	190	214	
]	237	2 24	47	71	95	119	142	166	190	213	
1 1	236		47	71	94	118	142	165	189	212	
į l	235	24	47	71	94	118	141	165	188	212	- 1
]	234	23	47	70	94	117	140	164	187	211	
{	233	23	47	70	93	117	140	163	186	210	- 1
	232	23	46	70	93	116	139	162	186	209	- 1
	231	23	46	69	92	116	139	162	185	208	Į
1 1	230	23	46	69	92	115	138	161	184	207	ł
	229	23	46	69	92	115	187	160	183	206	
, 1	228	23	46	68	91	114	137	160	182	205	- 1
1 !	227	23	45	68	91	114	136	159	182	204	- 1
	226	23	45	68	90	113	136	158	181	203	
1 1	225	23	45	68	90	113	135	158	180	203	1
: I	224	22	45	67	90	112	134	157	179	202	•
i l	223	22	45	67	89	112	134	156	178	201	1
_											

N.	0	1	2	3	4	5	6	7	8	9	D.
196	292256	2478	2699	2920	3141	3363	3584	3804	4025		
190	4466	4687	4907	5127	5347	5567	5787	6007	6226	4246 6446	221 220
198	6665	6884	7104	7323	7542	7761	7979	8198	8416	8635	219
199	8853	9071	9289	9507	9725	9943	.161	.378	.595	.813	218
200	301030	1247	1464	1681	1898	2114	2331	2547	2764	2980	217
201	3196	3412	3628	3844	4059	4275	4491	4706	4921	5136	216
202	5351	5566	5781	5996	6211	6425	6639	6854	7068	7282	215
203	7496	7710	7924	8137	8351	8564	8778	8991	9204	9417	213
204	9630	9843	56	.268	.481	.693	.906	1118	1330	1542	212
205	311754	1966	2177	2389	2600	2812	3023	3234	3445	3656	211
206	8867	4078	4289	4499	4710	4920	5130	5340	5551	5760	210
207	5970	6180	6390	6599	6809	7018	7227	7436	7646	7854	209
208	8063	8272	8481	8689	8898	9106	9314	9522	9730	9938	208
209	320146	0354	0562	0769	0977	1184	1391	1598	1805	2012	207
210	2219	2426	2633	2839	3046	3252	3458	3665	3871	4077	206
211	4282	4488	4694	4899	5105	5310	5516	5721	5926	6131	205
212	6336	6541	6745	6950	7155	7859	7563	7767	7972	8176	204
213	8380	8583	8787	8991	9194	9398	9601	9805	88	.211	203
214 215	830414 2438	0617 2640	0819 2842	1022 3044	1225 8246	1427 8447	1630	1832	2034	2236	202
							3649	3850	4051	4253	202
216	4454	4655	4856	5057	5257	5458	5658	5859	6059	6260	201
217 218	6460 8456	6660 8656	6860 8855	7060	7260 9253	7459 9451	7659 9650	7858 9849	8058	8257 .246	200 199
219	340444	0642	0841	9054 1039	1237	1435	1632	1830	47 2028	2225	198
220	2423	2620	2817	3014	3212	8409	3606	3802	3999	4196	197
221	4392	4589	4785	4981	5178	5374	5570	5766	5962	6157	196
222	6353	6549	6744	6939	7135	7330	7525	7720	7915	8110	195
223	8305	8500	8694	8889	9083	9278	9472	9666	9860	54	194
224	350248	0442	0636	0829	1023	1216	1410	1603	1796	1989	193
225	2183	2375	2568	2761	2954	3147	3339	3532	3724	3916	193
226	4400	400=	4400	400	10-0	EACO	5260	5452	E C 40	E004	100
220	4108	4301	4498	4685	4876	5068	0200	040Z	5643	5834	192
N.	0	4301 1	4498	3	4876	5	6	7	8	9	D,
	(222	1 (22	44	67	89	5	6 133	7	8 178	9 200	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1}{\binom{22}{22}}$	2 44 44	3 67 66	89 88	5 111 111	6 133 133	7 155 155	8 178 177	9 200 199	
	$ \begin{array}{ c c c c c } \hline & 0 \\ \hline & 222 \\ & 221 \\ & 220 \\ \hline \end{array} $	$\begin{array}{ c c }\hline 1\\\hline \begin{pmatrix} 22\\22\\22\\22\\\end{array}\end{array}$	41 44 44 44	3 67 66 66	4 89 88 88	5 111 111 110	133 133 132	7 155 155 154	8 178 177 176	9 200 199 198	
	0 222 221 220 219	$ \begin{array}{ c c c } \hline 1 \\ \hline \begin{pmatrix} 22 \\ 22 \\ 22 \\ 22 \\ 22 \end{pmatrix} $	2 44 44 44 44	67 66 66 66	89 88 88 88	5 111 111 110 110	133 133 132 131	7 155 155 154 158	178 177 176 175	9 200 199 198 197	
	222 221 220 219 218	$ \begin{array}{ c c c } \hline 1 \\ \hline \begin{pmatrix} 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \end{array} $	41 44 44 44 44 44	67 66 66 66 66 65	89 88 88 88 88	5 111 111 110 110 109	6 133 133 132 131 131	7 155 155 154 158 153	8 178 177 176 175 174	9 200 199 198 197 196	
	222 221 220 219 218 217	$ \begin{array}{ c c c } \hline 1 \\ \hline \begin{pmatrix} 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \end{array} $	44 44 44 44 44 43	3 67 66 66 66 65 65	89 88 88 88 87 87	5 111 111 110 110 109 109	6 133 133 132 131 131 130	7 155 155 154 158 153 152	8 178 177 176 175 174 174	9 200 199 198 197 196 195	
	0 222 221 220 219 218 217 216	1 22 22 22 22 22 22 22 22 22 22 22	44 44 44 44 43 43	67 66 66 66 65 65 65	89 88 88 88 87 87 86	5 111 111 110 110 109 109 108	6 133 133 132 131 131 130 130	7 155 155 154 158 153 152 151	8 178 177 176 175 174 174 178	9 200 199 198 197 196 195 194	
	222 221 220 219 218 217 216 215	1 22 22 22 22 22 22 22 22 22 22 22 22 22	44 44 44 44 43 43 43	3 66 66 66 65 65 65 65	89 88 88 88 87 87 86 86	5 111 111 110 110 109 109 108 108	133 133 132 131 131 130 130 129	7 155 155 154 158 153 152 151 151	8 178 177 176 175 174 174 178 172	9 200 199 198 197 196 195 194 194	
	222 221 220 219 218 217 216 215 214	1 22 22 22 22 22 22 22 22 22 22 22	44 44 44 44 43 43	3 66 66 66 65 65 65 65 65	89 88 88 88 87 87 86	5 111 111 110 110 109 109 108	6 133 133 132 131 131 130 130	7 155 155 154 158 153 152 151	8 178 177 176 175 174 174 178	9 200 199 198 197 196 195 194	
	222 221 220 219 218 217 216 215 214 213	1 (22 22 22 22 22 22 22 22 22 22 22 21 21	2 44 44 44 44 43 43 43 43 43	3 67 66 66 65 65 65 65 65 64 64	88 88 88 87 87 86 86 86 86	5 111 111 110 110 109 109 108 108 107	133 133 132 131 131 130 130 129 128 128	7 155 155 154 158 153 152 151 151 150 149	8 178 177 176 175 174 174 178 172 171 170	9 200 199 198 197 196 195 194 194 193 192	
	222 221 220 219 218 217 216 215 214 213 212	1 (22 22 22 22 22 22 22 22 22 2	44 44 44 44 43 43 43 43 43 43	3 67 66 66 65 65 65 65 65 64 64	88 88 88 87 87 86 86 86 86 85	5 111 110 110 109 109 108 108 107 107	133 133 132 131 131 130 130 129 128	7 155 155 154 158 153 152 151 151 150	8 178 177 176 175 174 174 178 172 171	9 200 199 198 197 196 195 194 194 193	
	222 221 220 219 218 217 216 215 214 213 212 211	22 22 22 22 22 22 22 22 22 22 21 21 21 2	2 44 44 44 44 43 43 43 43 43	3 67 66 66 65 65 65 65 64 64 64	89 88 88 88 87 87 86 86 86 86 85	5 111 111 110 110 109 109 108 108 107	6 133 133 132 131 131 130 130 129 128 128	7 155 155 154 153 153 152 151 151 150 149	8 178 177 176 175 174 174 178 172 171 170	9 200 199 198 197 196 195 194 194 193 192	
	222 221 220 219 218 217 216 215 214 213 212 211 210	22 22 22 22 22 22 22 22 21 21 21 21 21 2	44 44 44 44 43 43 43 43 43 43 42 42	3 67 66 66 65 65 65 65 65 64 64	88 88 88 87 87 86 86 86 86 85	5 111 111 110 109 109 108 108 107 107 106 106 105 105	133 133 132 131 131 130 130 129 128 128 127 127 126 125	7 155 155 154 153 152 151 151 150 149 148 148 147 146	8 178 177 176 175 174 178 172 171 170 169 168 167	9 200 199 198 197 196 195 194 194 193 192 191 190 189 188	
	222 221 220 219 218 217 216 215 214 213 212 211 210	22 22 22 22 22 22 22 22 21 21 21 21 21 2	44 44 44 43 43 43 43 43 42 42 42 42 42	3 67 66 66 65 65 65 65 64 64 64 63	89 88 88 88 87 87 86 86 86 85 85 84 84 83	5 111 111 110 109 109 108 108 107 107 106 106 105 105 104	133 133 132 131 131 130 130 129 128 127 127 127 126 125	7 155 155 154 153 152 151 150 149 148 148 147 146	8 178 177 176 175 174 178 172 171 170 169 168 167 166	9 200 199 198 197 196 195 194 194 193 192 191 189 188 187	
	222 221 220 219 218 217 216 215 214 213 212 211 210	22 22 22 22 22 22 22 22 21 21 21 21 21 2	44 44 44 44 43 43 43 43 42 42 42 42 42 42	67 66 66 65 65 65 65 64 64 64 63 63	89 88 88 88 87 87 86 86 86 86 85 84 84 84 83 83	111 111 110 110 109 108 108 107 107 106 106 105 105 104	133 133 132 131 131 130 130 129 128 127 127 126 125 125 124	7 155 155 154 158 153 152 151 151 150 149 148 148 147 146 146	8 178 177 176 175 174 174 178 179 170 169 168 167 106	9 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186	
	222 221 220 219 218 217 216 215 214 213 212 211 210	22 22 22 22 22 22 22 22 21 21 21 21 21 2	44 44 44 43 43 43 43 43 42 42 42 42 41 41	66 66 66 65 65 65 65 64 64 63 63 63 62 62	89 88 88 88 87 87 86 86 86 85 84 84 84 84 83 83	111 111 110 110 109 108 108 107 107 106 105 105 104 104	133 133 132 131 131 130 130 129 128 127 127 126 125 125 124 124	7 155 155 154 158 153 152 151 150 149 148 147 146 146 145 144	8 178 177 176 175 174 174 178 179 170 169 168 167 166 166 166	9 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185	
	222 221 220 219 218 217 216 215 214 211 211 211 210 3 208 2 207 206 207 208	22 22 22 22 22 22 22 22 21 21 21 21 21 2	44 44 44 43 43 43 43 42 42 42 42 41 41	67 66 66 65 65 65 64 64 63 63 63 62 62 62	89 88 88 88 87 86 86 86 85 84 84 84 83 82 82	111 111 110 110 109 108 108 107 107 106 106 105 105 104 103 103	133 132 131 131 130 129 128 127 127 127 125 125 124 123	7 155 154 153 153 152 151 151 150 149 148 148 147 146 146 146 144	8 178 177 176 175 174 178 172 171 170 169 168 167 166 166 165	9 200 199 198 197 195 194 194 193 192 191 190 188 187 186 185	
	222 221 220 2219 218 217 216 215 211 211 211 210 209 209 207 2206 2207 2206	22 22 22 22 22 22 22 22 21 21 21 21 21 2	44 44 44 43 43 43 43 43 42 42 42 42 41 41 41	67 66 66 65 65 65 65 64 64 63 63 62 62 62 62 62	89 88 88 88 87 87 86 86 86 85 84 84 84 83 82 82 82	5 111 110 110 109 108 108 107 107 106 106 105 105 104 103 103 103	133 132 131 131 130 130 128 128 127 127 126 125 124 124 123 122	7 155 154 153 153 152 151 151 150 149 148 148 147 146 146 145 144 144	8 178 177 176 175 174 178 179 170 169 169 167 166 166 165 164	9 200 199 198 197 196 195 194 194 194 193 192 191 190 188 187 186 185 185 185	
	222 221 221 220 219 218 215 216 215 214 213 212 211 210 208 208 208 206 205 205 208 205 205 205 205 205 205 205 206 205 206 206 206 206 206 206 206 206 206 206	Proportional Parts. 552 552 552 551 511 511 512 512 512 513 51	44 44 44 43 43 43 43 43 42 42 42 42 41 41 41	67 66 66 65 65 65 64 64 63 63 63 62 62 62 62 61	80 88 88 88 87 87 86 86 86 85 83 82 82 82 82	111 111 110 110 109 108 108 107 107 106 106 105 104 104 103 103 103 102 102	133 132 131 131 130 130 129 128 127 127 126 125 124 124 124 122 122	7 155 154 153 153 152 151 150 149 148 148 147 146 146 145 144 144 144 144	8 178 177 176 175 174 178 179 170 169 168 167 166 166 165 164 163	9 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 185 184 183	
	222 221 220 219 218 217 216 215 214 213 212 211 210 208 208 208 202 204 204 202	Proportional Parts. 250 25	44 44 44 43 43 43 43 43 42 42 42 42 41 41 41 41	67 66 66 65 65 65 65 64 64 63 63 62 62 62 62 61	89 88 88 88 87 87 86 86 85 84 84 84 83 82 82 82 81	5 111 110 110 109 109 108 107 107 106 106 105 105 104 103 103 102 102	6 133 132 131 130 130 129 128 127 127 126 125 125 124 124 123 122 121	7 155 155 154 153 152 151 150 149 148 148 147 146 146 144 144 144 144 144 144	8 178 177 176 175 174 174 172 171 170 169 168 167 166 165 164 163 162	9 200 199 198 197 196 195 194 193 192 191 190 188 187 186 185 185 184 183	
	222 221 220 219 218 217 216 215 214 211 211 210 320 320 208 208 208 208 208 209 204 204 202 201	Total Parts. 252 252 252 252 252 252 252 252 252 25	44 44 44 43 43 43 43 43 42 42 42 42 41 41 41 41 40 40	67 66 66 65 65 65 64 64 63 63 62 62 62 62 61 61 60	85 88 88 88 87 87 86 86 86 85 84 84 83 82 82 82 82 82 81	111 111 110 109 109 108 108 107 106 106 105 104 104 103 102 102	133 133 132 131 131 130 130 129 128 128 127 127 125 125 124 123 122 121 121	7 155 155 154 158 153 152 151 151 150 149 148 148 146 146 146 144 144 144 143 142	8 178 177 176 175 174 174 178 177 170 169 168 167 166 165 164 163 162 162	9 199 198 197 196 195 194 193 192 191 190 188 187 186 185 184 185 184 188	
	222 221 2210 2219 218 217 216 215 214 213 212 211 211 211 210 \$209 \$208 208 208 208 208 208 208 208 208 208	1 22 22 22 22 22 22 22 22 22 22 22 22 22	44 44 44 43 43 43 43 43 42 42 42 42 41 41 41 41 40 40	67 66 66 65 65 65 65 64 64 63 63 62 62 62 62 61 61 60	85 88 88 88 88 87 87 86 86 86 85 84 84 84 84 83 82 82 82 82 81 80 80 80 80	5 111 111 110 109 109 108 107 107 106 106 105 105 104 103 103 102 102 101 101	133 133 132 131 130 130 129 128 127 127 126 125 124 124 124 122 122 121 121	7 155 155 154 153 153 151 150 149 148 147 146 146 145 144 143 142	8 178 177 176 175 174 174 178 172 171 170 169 168 167 166 165 164 163 162	9 199 199 197 196 195 194 194 193 192 191 189 188 187 186 185 184 183	
	222 221 220 219 218 217 216 215 214 213 212 211 210 208 208 208 202 204 203 202 201 201 201 201 201 201 201 201 201	22 22 22 22 22 22 22 22 22 22 22 22 22	44 44 44 43 43 43 43 42 42 42 42 41 41 41 40 40	67 66 66 65 65 65 65 64 64 63 63 62 62 62 62 61 61 60 60	89 88 88 88 87 86 86 86 85 84 84 83 82 82 82 82 81 80 80	111 111 110 109 108 108 107 106 106 105 104 103 103 102 101 101 100	133 133 133 131 131 130 129 128 127 127 126 125 124 123 122 121 121 121	7 155 155 154 153 153 151 151 150 148 148 147 146 146 144 144 144 144 144 144 144 145	8 178 177 176 175 174 178 172 170 169 168 167 166 165 164 163 162 161 160 159	9 199 198 197 196 194 194 194 192 191 180 187 185 185 184 183 182 181	
	222 221 220 219 218 217 216 215 214 211 211 211 210 3 208 220 204 203 202 201 200 200 199 198	200 500 500 500 500 500 500 500 500 500	44 44 44 43 43 43 43 42 42 42 42 41 41 41 41 41 41 40 40 40 40	3 67 66 66 65 65 65 65 64 64 64 63 63 63 62 62 62 62 61 61 61 61 66 66 65 65 65 65 65 65 65 65 65 65 65	80 80 80 80 80 80 80 80 80 80 80 80 80 8	111 111 110 109 109 108 108 107 106 106 105 105 104 104 103 102 101 101 100 100 99	133 133 133 131 131 131 130 129 128 127 127 126 125 124 124 124 122 122 121 120 119	7 155 155 154 153 153 152 151 151 150 149 148 144 144 144 144 144 144 141 141 140 139 139	178 177 176 176 174 174 174 178 179 170 170 169 168 166 166 165 164 163 162 161 160 159	9 200 199 198 197 196 195 194 194 193 192 191 191 189 188 187 186 185 185 185 185 185 185 185 187 187 189 189 189 189 189 189 189 189 189 189	
	222 221 220 219 218 217 216 215 214 213 212 211 211 211 211 211 200 208 208 209 208 209 200 200 201 201 201 201 201 201 201 201	T C C C C C C C C C	44 44 44 43 43 43 43 42 42 42 42 42 41 41 41 41 40 40 40 40 89	3 667 666 665 655 654 644 633 633 622 622 622 6262 6365 655 655 655 654 655 655 656 656 657 657 658 658 659 659 659 659 659 659 659 659 659 659	89 88 88 88 87 877 86 86 86 86 85 82 82 82 81 81 80 80 779 79	111 111 110 109 109 108 108 107 106 106 105 105 104 103 103 103 102 102 101 100 99	133 133 132 131 131 131 130 129 128 127 127 127 127 124 124 124 122 122 121 121 121 121 121	155 155 154 158 153 152 151 151 151 150 149 148 147 146 144 144 144 144 141 141 141 141 141	178 177 176 175 174 174 178 179 170 170 170 169 166 165 164 162 162 161 160 159 158	200 199 198 197 196 195 194 194 194 198 199 189 180 187 186 185 185 185 181 181 181 179 178	
	222 221 220 219 218 217 216 215 214 213 212 211 210 209 5208 208 209 208 209 201 201 201 201 201 201 201 201 201 201	200 200 200 200 200 200 200 200 200 200	44 44 44 44 43 43 43 43 43 44 42 42 42 42 42 41 41 41 41 41 41 40 40 40 40 89 89	3 67 66 66 65 65 65 65 64 64 63 63 63 62 62 62 62 61 61 60 60 60 62 65 65 65 65 65 65 65 65 65 65 65 65 65	89 88 88 88 87 87 87 86 86 86 86 86 86 86 82 82 82 82 82 82 81 80 79 79 79 78	111 111 110 109 109 108 108 107 106 106 105 105 104 104 103 102 101 101 100 100 99	133 133 133 131 131 131 130 129 128 127 127 126 125 124 124 124 122 122 121 120 119	7 155 155 154 153 153 152 151 151 150 149 148 144 144 144 144 144 144 141 141 140 139 139	178 177 176 176 174 174 174 178 179 170 170 169 168 166 166 165 164 163 162 161 160 159	200 199 198 197 196 195 194 194 193 189 187 186 185 185 181 181 180 179 178	
	222 221 220 219 218 217 216 215 214 211 210 200 202 203 204 204 205 201 200 199 198 197 196	1 (252 200 200 200 200 200 200 200 200 200	44 44 44 43 43 43 43 42 42 42 42 42 41 41 41 41 40 40 40 40 89	3 67 66 66 65 65 65 65 64 64 63 63 63 62 62 62 61 61 61 60 60 60 60 60 60 60 60 60 60 60 60 60	89 88 88 88 87 87 87 87 88 88 88 88 88 88	111 111 110 109 108 108 107 106 106 105 104 103 103 102 101 101 100 99 99 98	133 133 133 131 131 131 130 129 128 127 127 126 125 125 124 123 122 121 121 121 121 121 121 121 121	7 155 155 154 153 153 152 161 161 149 148 148 144 144 144 144 144 141 141 141	178 177 176 175 174 174 177 170 170 170 169 168 167 166 165 164 162 162 161 169 159 158 157 158	200 199 198 197 196 195 194 194 198 199 191 190 188 187 186 185 184 188 187 179 176 176	
	222 221 220 219 218 217 216 215 214 213 212 211 210 209 5208 208 209 208 209 201 201 201 201 201 201 201 201 201 201	200 500 500 500 500 500 500 500 500 500	44 44 44 43 43 43 42 42 42 42 42 41 41 41 41 40 40 40 89 89 89 89	3 67 66 66 65 65 65 65 64 64 63 63 63 62 62 62 62 61 61 60 60 60 62 65 65 65 65 65 65 65 65 65 65 65 65 65	89 88 88 88 87 87 87 86 86 86 86 86 86 86 82 82 82 82 82 82 81 80 79 79 79 78	111 111 110 109 108 108 107 107 106 106 105 105 104 104 103 102 102 101 100 100 100 100 100 100 100	133 133 133 131 131 131 130 129 128 127 127 126 125 125 124 123 122 122 121 121 120 119 118 118 118	155 155 154 153 153 152 151 151 150 149 148 144 144 144 143 142 141 141 140 139 138 137 137	178 177 176 175 174 174 178 179 170 170 170 168 166 166 166 166 162 162 169 158 158 158	9 200 199 198 197 196 195 194 194 193 192 191 190 188 187 186 185 184 183 181 180 179 176 177 176	

N.	0	1	2	3	4	5	6	7	8	9	D.
227	356026	6217	6408	6599	6790	6981	7172	7363	7554	7744	191
228	7935	8125	8316	8506	8696	8886	9076	9266	9456	9646	190
229	9835	25	.215	.404	.593	.783	.972	1161	1350	1539	189
230	361728	1917	2105	2294	2482	2671	2859	3048	3236	3424	188
231	3612	3800	3988	4176	4363	4551	4739	4926	5113	5301	188
232	5488	5675	5862	6049	6236	6423	6610	6796	6983	7169	187
233	7356	7542	7729	7915	8101	8287	8473	8659	8845	9030	186
284	9216	9401	9587	9772	9958	.148	.328	.513	.698	.883	185
235	371068	1253	1437	1622	1806	1991	2175	2360	2544	2728	184
236	2912	8096	3280	3464	3647	3831	4015	4198	4382	4565	184
237	4748	4932	5115	5298	5481	5664	5846	6029	6212	6394	183
238	6577	6759	6942	7124	7306	7488	7670	7852	8034	8216	182
239	8398	8580	8761	8943	9124	9306	9487	9668	9849	30	181
240 241	380211 2017	0392 2197	0578 2377	0754 2557	0934 2737	1115 2917	1296 3097	1476 3277	1656 8456	1837 3636	181 180
241	3815	3995	4174	4353	4533	4712	4891	5070	5249	5428	179
243	5606	5785	5964	6142	6321	6499	6677	6856	7034	7212	178
244	7390	7568	7746	7923	8101	8279	8456	8634	8811	8989	178
245 246	9166 3909 35	9343 1112	9520 1288	9698 1464	9875 1641	51 1817	.228 1993	.405 2169	.582 2345	.759 2521	177 176
246	2697	2873	3048	3224	3400	3575	3751	3926	4101	4277	176
248	4452	4627	4802	4977	5152	5326	5501	5676	5850	6025	175
249	6199	6374	6548	6722	6896	7071	7245	7419	7592	7766	174
250	7940	8114	8287	8461	8634	8808	8981	9154	9328	9501	173
251	9674	9847	20	.192	.365	.538	.711	.883	1056	1228	173
252	401401	1573	1745	1917	2089	2261	2433	2605	2777	2949	172
253	3121	3292	3464	3635	3807	3978	4149	4320	4492	4663	171
254	4834	5005	5176	5346	5517	5688	5858	6029	6199	6370	171
255	6540	6710	6881	7051	7221	7891	7561	7731	7901	8070	170
256	8240	8410	8579	8749	8918	9087	9257	9426	9595	9764	169
257	9933	.102	.271	.440	.609	.777	.946	1114	1283	1451	169
258	411620	1788	1956	2124	2293	2461	2629	2796	2964	3132	168
259	8300	3467	3635	3803	8970	4137	4305	4472	4639	4806	167
260	4973	5140	5307	5474	5641	5808	5974	6141	6308	6474	167
261	6641	6807	6973	7139	7306	7472	7638	7804	7970	8135	166
N.	0	1	2	3	4	5	6	7	8	9	_D.
	192	(19	38	58	77	96	115	134	154	173	
	191	19	38 38	57	76	96	115	134	153	172 171	
1 1	190 189	19	38	57 57	76 76	95	114 113	133 132	152 151	170	!
1 1	188	19	38	56	75	95 94	113	132	150	169	
	187	19	37	56	75	94	112	131	150	168	
	186	19	37	56	74	93	112	130	149	167	
()	185	19	37	56	74	93	111	130	148	167	
1 1	184	18	37	55	74	92	110	129	147	166	
	183	1 200	37	55	73	92	110	128	146	165	
1 1	182	Parts. 81 18	36	55	73	91	109	127	146	164	
1 1	8 181	a 18	36	54	72	91	109	127	145	163	
[]	181 180 178 178 177	ਰ 18	36	54	72	90	108	126	144	162	
]	E 179	g 18	86	54	72	90	107	125	143	161	
1 1	≝ 178	필 18	3 6	53	71	89	107	125	142	160	
1		-Proportional P 81 8 81 8 81 81	35	53	71	89	106	124	142	159	İ
1 1	176	2 18	85	53	70	88	106	123	141	158	
1 1	175	박 <u>18</u>	85	53	70	88	105	123	140	158	
1 1	174	17	35	52	70	87	104	122	139	157	
1 1	173	17	35	52	69	87	104	121	138	156	
-	172	17	34	52	69	86	103	120	138	155	
l l	171	17	34	51	68	86	103	120	137	154	i
, 1	170	17	34	51	68	85	102	119	136	153	
]]	169	17	34	51	68	85	101	118	135	152	
1 1	168	17	34	50 50	67	84	101	118	134 134	151 150	Ì
1 1	167 166	17 17	. 8 8	50 50	67 66	84 83	100 100	117 116	133	149	j
Į į	(100	(1/	1 55	ן טט	ן סס	65	100	110	199	143	i

268 9956 .121 .286 .451 .616 .781 .945 .1110 1275 264 421604 1768 1938 2097 2261 2426 2590 2754 2918 265 3246 3410 3574 3737 3901 4065 4228 4392 4555 266 4882 5045 5208 5371 5534 5697 5860 6023 6186 267 6511 6674 6836 6999 7161 7324 7486 7648 7811 268 8135 8297 8459 8621 8783 8944 9106 9268 9429 269 9752 9914 75 .236 .398 .559 .720 .881 1042 270 431364 1525 1685 1846 2007 2167 2328 2488 2649 271 2969 3180 3290 3450 3610	9791 1489 3082 164718 6849 166792 12989 175 15.2223 158889 15449 157003 158652	9791 1439 3082 4718 6349 7973 9591 1208 2809 4409 6004 7592 9175 .752 2323	16 16 16 16 16 16
268 9956 .121 .286 .451 .616 .781 .945 1110 1275 264 421604 1768 1933 2097 2261 2426 2590 2754 2918 292 4555 266 3246 3410 8574 8737 3901 4065 4228 4392 4555 266 4882 5045 5208 5371 5534 5697 5860 6023 6186 6267 6511 6674 6836 6999 7161 7324 7486 7648 7811 288 269 9752 9914 75 .236 .398 .559 .720 .881 1042 270 431364 1525 1685 1846 2007 2167 2328 2488 2649 2271 2909 3180 3290 3450 3610 3770 3930 4090 4249 4228 2488 2649 2272 4569 4729 4888 5048 5207<	1439 163082 164718 166849 1667973 1699591 1208 162869 166004 157692 158889 158652 15865	1439 8082 4718 6349 7973 9591 1208 2809 4409 6004 7592 9175 .752 2323	16 16 16 16
264 421604 1768 1933 2097 2261 2426 2590 2754 2918 265 3246 3410 3574 3737 3901 4065 4228 4392 4555 2455 266 4882 5045 5208 5371 5534 5697 5860 6023 6186 6267 6511 6674 6836 6999 7161 7324 7486 7648 7811 2869 9752 9914 .75 236 398 .559 .720 .881 1042 270 431364 1525 1685 1846 2007 2167 2328 2488 2649 271 2969 3130 3290 3450 3610 3770 3930 4090 4249 4 273 4569 4729 4888 5048 5207 5867 5526 5685 5844 274 7751 7909 8067 8226 8384 8542 8701 8859	3082 164718 166604 157592 157592 157693 157603 158552 1585	3082 4718 6349 7973 9591 1208 2809 4409 6004 7592 9175 .752 2323	16 16 16
265 3246 8410 8574 8737 3901 4065 4228 4392 4555 266 266 4882 5045 5208 5371 5534 5697 5860 6023 6186 6226 6611 6674 6836 6999 7161 7324 7486 7648 7811 268 8135 8297 8459 8621 8783 8944 9106 9268 9429 9429 9269 9752 9914 775 236 .398 .559 .720 .881 1042 272 2328 2488 2649 2721 2969 8130 3290 8450 8610 3770 2328 2488 2649 2721 2969 4729 4888 5048 5207 5867 5526 5685 5844 264 273 4669 4729 4888 5048 5207 5867 5526 5685 5844 274 7751 7909 8067 8226 8884	4718 6849 16 6849 16 2809 16 2809 16 6004 15 7592 15 2823 15 8889 15 7003 15 8652 16	4718 6349 7973 9591 1208 2809 4409 6004 7592 9175 .752 2323	16 16 16
266 4882 5045 5208 5371 5584 5687 5860 6023 6186 6267 6511 6674 6836 6999 7161 7324 7486 7648 7611 7628 7811 7626 7811 7626 7648 7811 7648 7811 7626 7811 7826 7826 7826 7826 7826 7826 7826 7826 7826 7827 7820 881 1042 7827 7826 7	6349 16 7973 16 9591 16 1208 16 2809 4409 16 6004 15 7592 99175 15 .752 15 .752 15 .8889 15 7003 15 88552 15	6349 7973 9591 1208 2809 4409 6004 7592 9175 .752 2323	16 16
267 6511 6674 6836 6999 7161 7324 7486 7648 7811 268 268 8135 8297 8459 8621 8783 8944 9106 9268 9429 9 269 9752 9914 75 .236 .398 .559 .720 .881 1042 271 2969 8130 8290 8450 3610 3770 3930 4090 4249 4 272 4569 4729 4888 5048 5207 5367 5526 5685 5844 6 273 6163 6832 6481 6640 6799 6957 7116 7275 7483 274 7751 7909 8067 8226 8384 8542 8701 8859 9017 9917 276 440909 1066 1224 1381 1538 1695 1852 2009 2166 2277 2480	7973 16 9591 16 2809 4409 16 6004 15 7592 15 .752 15 8889 5449 15 7003 15	7973 9591 1208 2809 4409 6004 7592 9175 .752 2323	16 16
268 8135 8297 8459 8621 8783 8944 9106 9268 9429 928 269 9752 9914 7.75 236 398 5.59 7.20 881 1042 1 204 204 248 2642 1042 1 204 204 248 2649 2648 2648 2648 2648 2648 2648 2648 2648 2648 2648 2649 2648 2649 2648 2649 2648 2649 2649 2649 2649 2649 2649	9591 1208 1602 16004 7592 9175 1752 1752 1752 1752 18889 1503	9591 1208 2809 4409 6004 7592 9175 .752 2323	16 16
269 9752 9914 75 .236 .398 .559 .720 .881 1042 270 431364 1525 1685 1846 2007 2167 2328 2488 2649 2 271 2969 3130 3290 3450 3610 3770 3930 4090 4249 4 272 4569 4729 4888 5048 5207 5367 5526 5685 5844 273 6163 6322 6481 6640 6799 6957 7116 7275 7438 7438 7438 7437 7548 744 7751 7909 8067 8266 8384 8542 8701 8859 9017 <td< td=""><td>1208 16 2809 16 4409 16 6004 15 7592 15 .752 2323 15 3889 15 7003 15</td><td>1208 2809 4409 6004 7592 9175 .752 2323</td><td>16</td></td<>	1208 16 2809 16 4409 16 6004 15 7592 15 .752 2323 15 3889 15 7003 15	1208 2809 4409 6004 7592 9175 .752 2323	16
270 431364 1525 1685 1846 2007 2167 2328 2488 2649 272 271 2969 3130 3290 3450 3610 3770 3930 4090 4249 429 272 4569 4729 4888 5048 5207 5867 5526 5685 5685 5844 640 6799 6957 7116 7275 7433 7433 7433 7483 7483 7484 748 744 7751 7909 8067 8226 8384 8542 8701 8859 9017	2809 4409 16004 7592 9175 .752 2323 3889 5449 15 7003 15 15 15 15 15 15 15 15 15 15	2809 4409 6004 7592 9175 .752 2323	16
271 2969 8180 8290 8450 8610 8770 8930 4090 4249 2272 273 6163 6322 6481 6640 6799 6957 7116 7275 7483 7274 7751 7909 8067 8226 8884 8542 8701 8859 9017 8276 9333 9491 9648 9806 9964 122 279 437 .594 122 1381 1538 1695 1852 2009 2166 2277 2480 2637 2793 2950 3106 3263 3419 3576 3732 28 278 4045 4201 4357 4513 4669 4825 4981 5137 5293 8 280 7158 7313 7468 7623 7778 7933 8088 8242 8397 284 280 787 9341 348 9638 9787 9941 348 9638 9787 9941 <t< td=""><td>4409 16 6004 15 7592 15 9175 15 .752 15 2323 15 8889 15 7003 15 8552 15</td><td>4409 6004 7592 9175 .752 2323</td><td>-</td></t<>	4409 16 6004 15 7592 15 9175 15 .752 15 2323 15 8889 15 7003 15 8552 15	4409 6004 7592 9175 .752 2323	-
2772 4569 4729 4888 5048 5207 5367 5526 5685 5844 6 273 6163 6322 6481 6640 6799 6957 7116 7275 7483 7 274 7751 7909 8067 8226 8384 8542 8701 8859 9017 9 275 9333 9491 9648 9806 9964 1222 2.79 437 594 276 44099 1066 1224 1381 1538 1695 1852 2009 2166 2277 2480 2637 2793 2950 3106 3263 3419 3576 3732 8 279 264 4201 4357 4513 4669 4825 4981 5137 5293 8 2279 5604 5760 5915 6071 6226 6382 6587 6692 6848 2280 7158 7313 7468 7623 7778 7933<	6004 15 7592 9175 15 .752 2323 15 8889 5449 15 7003 15 8552	6004 7592 9175 .752 2323	-
273 6163 6322 6481 6640 6799 6957 7116 7275 7483 274 7751 7909 8067 8226 8384 8542 8701 8859 9017 275 27833 9491 9648 9806 9964 1222 2.79 437 594 276 44099 1066 1224 1381 1538 1695 1852 2009 2166 2277 2480 2637 2793 2950 3106 3263 3419 3576 3782 8 279 4045 4201 4357 4513 4669 4825 4981 5137 5293 8 279 5604 5760 5915 6071 6226 6382 6587 6692 6848 7 2280 7158 7313 7468 7623 7778 7933 8088 8242 8397 2848 848 9478 9633 9787 9941 4848 9484 9633	7592 9175 .752 2323 3889 5449 7003 8552	7592 9175 .752 2323	15
274 7751 7909 8067 8226 8384 8542 8701 8859 9017 2 275 9333 9491 9648 9806 9964 1.122 .279 .437 .594 2 276 440909 1066 1224 1381 1538 1695 1852 2009 2166 2 2 277 2480 2637 2793 2950 3106 3263 3419 3576 3732 2 2 278 4045 4201 4357 4513 4669 4825 4981 5137 5293 8 279 5604 5760 5715 6071 6226 6882 6537 6692 6848 2 280 7158 7313 7468 7623 7778 7933 8088 8242 8397 8 281 8706 8861 9015 9170 9324 9478 9633 9787 9941 .	9175 15 .752 2323 15 3889 5449 15 7003 15 8552	9175 .752 2323	
275 9838 9491 9648 9806 9964 122 279 437 .594 276 440909 1066 1224 1381 1538 1695 1852 2009 2166 2 277 2480 2637 2793 2950 3106 3263 3419 3576 3732 8 278 4045 4201 4357 4513 4669 4825 4981 5137 5293 8 279 5604 5760 5915 6071 6226 6382 6537 6692 6848 2 280 7158 7313 7468 7623 7778 7933 8088 8242 8397 8 281 8706 8861 9015 9170 9324 9478 9633 9787 9941 3	.752 2323 3889 5449 7003 15	.752 2323	
276 440909 1066 1224 1381 1538 1695 1852 2009 2166 2 277 2480 2637 2793 2950 3106 3263 3419 3576 3732 8 278 4045 4201 4357 4513 4669 4825 4981 5137 5293 8 279 5604 5760 5915 6071 6226 6382 6537 6692 6848 280 7158 7313 7468 7623 7778 7933 8088 8242 8397 281 8706 8861 9015 9170 9324 9478 9633 9787 9941	2323 15 3889 5449 15 7003 15 8552	2323	15
277 2480 2637 2793 2950 3106 3263 3419 3576 3782 2 278 4045 4201 4357 4513 4669 4825 4981 5137 5293 5 279 5604 5760 5915 6071 6226 6382 6587 6692 6842 280 7158 7313 7468 7623 7778 7933 8088 8242 8397 281 8706 8861 9015 9170 9324 9478 9633 9787 9941	3889 5449 15 7003 15 8552		
278 4045 4201 4357 4513 4669 4825 4981 5137 5298 5298 5915 6071 6226 6382 6537 6692 6848 6284 6892 6848 6692 6848 6892 6848 6692 6848 6892 6848 6892 6848 6892 6848 6892 6848 6892 6848 6892 6848 6892 6848 6892 6848 6892 6848 6892 6848 6892 6848 6892 6848 6892 6848 6892 6848 6892 6848 7892 6892 6848 7892 6892 6848 7892 6892 6848 7892 6892 6892 6892 6848 7892	5449 15 7003 15 8552	0000	15
279 5604 5760 5915 6071 6226 6382 6537 6692 6848 7915 7	7003 15 8552		1
280	8552	5449	15
281 8706 8861 9015 9170 9324 9478 9633 9787 9941		7003	15
		8552	
999 450940 0402 0557 0711 0965 1019 1159 1996 1450	95 15	95	15
1 ZNZ %00Z%7 V%00 V007 V/11 V000 1V10 11/2 1826 14/9	1633	1633	
		3165	15
		4692	1
285 4845 4997 5150 5302 5454 5606 5758 5910 6062 6		6214	15
		7731	
		9242	15
		.748	
	2248 15	2248	15
		3744	
	5234 14	5234	14
	6710	6719	<u> </u>
		8200	14
		9675	12
		1145	14
296 471292 1438 1585 1732 1878 2025 2171 2318 2464 2		2610	**
297 2756 2908 3049 3195 3341 3487 3633 3779 3925 4		4071	14
		5526	
		6976	14
		8422	
		9863	14
			-
N. 0 1 2 3 4 5 6 7 8			D
(165) (17) 33 50 66 83 99 116 132	149		i
164 16 33 49 66 82 98 115 131	148		
163 16 33 49 65 82 98 114 130	147		
162 16 32 49 65 81 97 113 130	146		
161 16 32 48 64 81 97 113 129	145		
1 160 16 32 48 64 80 96 112 128	144		ł
159 16 32 48 64 80 95 111 127	143		1
158 ± 16 32 47 63 79 95 111 126 157 ± 16 31 47 63 79 94 110 126 156 416 31 47 62 78 94 109 125	142		
157 2 16 31 47 63 79 94 110 126	141		l
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	140		1
	140		l
5 154 1 31 46 62 77 92 108 123	139		l
5 103 5 10 31 46 61 77 92 107 122	138		l
152 515 30 46 61 76 91 106 122	137		l
151 2 15 30 45 60 76 91 106 121	136		ı
150 15 30 45 50 75 50 105 120	135		1
149 15 30 45 60 75 89 104 119	134		1
	133		1
147 15 29 44 59 74 88 103 118	132		1
146 15 29 44 58 73 88 102 117	131		l
145 15 29 44 58 73 87 102 116	131		l
144 14 29 43 58 72 86 101 115	120	180	100

N.	0	1	2	3	4	5	6	7	8	9	D.
302	480007	0151	0294	0438	0582	0725	0869	1012	1156	1299	_
803	1443	1586	1729	1872	2016	2159	2302	2445	2588	2731	143
304	2874	3016	3159	3302	3445	3587	3730	3872	4015	4157	440
305	4300	4442 5863	4585 6005	4727 6147	4869 6289	5011	5153 6572	5295 6714	5437 6855	5579 6997	142
306 307	5721 7138	7280	7421	7563	7704	6430 7845	7986	8127	8269	8410	141
308	8551	8692	8833	8974	9114	9255	9396	9537	9677	9818	1 2 2
809	9958	99	.239	.380	.520	.661	.801	.941	1081	1222	140
310	491362	1502	1642	1782	1922	2062	2201	2341	2481	2621	1
311	2760	2900	3040	3179	8319	3458	8597	3737	3876	4015	139
812	4155	4294	4433	4572	4711	4850	4989	5128	5267	5406	
313	5544	5683	5822	5960	6099	6238	6376	6515	6653	6791	
314	6930 8311	7068 8448	7206 8586	7344 8724	7483 8862	7621 8999	7759 9137	7897 9275	8035 9412	8173 9550	138
315 316	9687	9824	9962	99	.236	.374	.511	.648	.785	.922	137
317	501059	1196	1333	1470	1607	1744	1880	2017	2154	2291	107
318	2427	2564	2700	2837	2973	3109	3246	3382	3518	3655	136
819	3791	3927	4063	4199	4385	4471	4607	4743	4878	5014	
320	5150	5286	5421	5557	5693	5828	5964	6099	6234	6370	
321	6505	6640	6776	6911 8260	7046	7181	7316	7451	7586	7721	135
322	7856	7991	8126		8395	8530	8664	8799	8934	9068	
323 324	9203	9337 0679	9471 0813	9606 0947	9740 1081	9874 1215	9 1349	.143 1482	.277 1616	.411 1750	134
325	510545 1883	2017	2151	2284	2418	2551	2684	2818	2951	3084	133
326	3218	3351	3484	3617	3750	3883	4016	4149	4282	4415	100
327	4548	4681	4813	4946	5079	5211	5344	5476	5609	5741	
328	5874	6006	6139	6271	6403	6535	6668	6800	6932	7064	132
329	7196	7328	7460	7592	7724	7855	7987	8119	8251	8382	
330	8514	8646	8777	8909	9040	9171	9303	9434	9566	9697	131
331 332	9828 521138	9959 1269	90 1400	.221 1530	. 353 1661	.484 1792	.615 1922	.745 2053	.876 2183	1007 2314	
383	2444	2575	2705	2835	2966	3096	3226	3356	3486	3616	130
334	3746	3876	4006	4186	4266	4396	4526	4656	4785	4915	100
335	5045	5174	5304	5434	5563	5693	5822	5951	6081	6210	129
336	6339	6469	6598	6727	6856	6985	7114	7243	7372	7501	
337	7630	7759	7888	8016	8145	8274	8402	8531	8660	8788	
338	8917	9045	9174	9302	9480	9559	9687	9815	9943	72	128
339 340	530200	0328 1607	0456	0584 1862	0712	0840	0968	1096	1223	1351	
341	1479 2754	2882	1734 3009	3136	1990 3264	2117 3391	2245 3518	2372 3645	2500 8772	2627 3899	127
342	4026	4153	4280	4407	4534	4661	4787	4914	5041	5167	121
343	5294	5421	5547	5674	5800	5927	6053	6180	6306	6432	126
344	6558	6685	6811	6937	7063	7189	7315	7441	7567	7693	i
N.	0	1	2	3	4	5	6	7	8	9	D.
	(144	(14	29	43	58	72	86	101	115	130	
1	148	14	29	43	57	72	86	100	114	129	
1	142 141	14 14	28 28	43 42	57 56	71	85 85	99 99	114	128 127	
ł	140	14	28	42	56	71 70	84	98	113 112	126	
	139	1 44	28	42	56	70	83	97	111	125	1
)	138	월 14	28	41	55	69	83	97	110	124	
)	gi 137	مِّ 14 م	27	41	55	69	82	96	110	123	i '
1	g 136	I 14	27	41	54	68	82	95	109	122	
	9 137 136 135 135 134	5 14	27	41	54	68	81	95	108	122	
}	134 □ 133	Proportion 13 13 13	27	40	54	67	80	94	107	121	
1	百 133 132	0 12	27 26	40 40	58 53	67 66	80 79	93 92	106 106	120 119	
	131	A 13	26	39	52	66	79	92	105	118	
	130	13	26	89	52	65	78	91	104	117	•
1	129	13	26	39	52	65	78 77	90	103	116	
	128	13	26	38	51	64	77	90	102	115	1
1	127 126	13	25 25	88 88	51 50	64	76	89	102	114	
L	(126	1 (10	ı zə	1 58	1 00	63	76	88	101	113	L

N.	0	1.	2	3	1 4	5	6	7		9	T 10
	(4	11	·	I	8		D.
345	537819	7945 9202	8071 9327	8197 9452	8322 9578	8448	8574 9829	8699	8825	8951 .204	126
346	9076	0455	0580	0705	0830	9703 0955	1080	9954 1205	1330	1454	125
347 348	540329 1579	1704	1829	1953	2078	2203	2327	2452	2576	2701	1
349	2825	2950	3074	3199	3323	3447	3571	3696	3820	3944	124
350	4068	4192	4316	4440	4564	4688	4812	4936	5060	5183	122
351	5307	5431	5555	5678	5802	5925	6049	6172	6296	6419	l
352	6543	6666	6789	6913	7036	7159	7282	7405	7529	7652	123
353	7775	7898	8021	8144	8267	8389	8512	8635	8758	8881	
354	9003	9126	9249	9371	9494	9616	9739	9861	9984	.106	ı
355	550228	0351	0473	0595	0717	0840	0962	1084	1206	1328	122
356	1450	1572	1694	1816	1938	2060	2181	2303	2425	2547	
357	2668	2790	2911	8033	8155	3276	3398	3519	3640	3762	121
358	3883	4004	4126	4247	4368	4489	4610	4731	4852	4973	
359	5004	5215	5336	5457	5578	5699	5820	5940	6061	6182	
860	6303	6423	6544	6664	6785	6905	7026	7146	7267	7387	120
861	7507	7627	7748	7868	7988	8108	8228	8349	8469	8589	
362	8709 9907	8829 26	8948 .146	9068 .265	9188 .385	9308	9428	9548	9667 .863	9787	
363		1221	1340	1459	1578	1698	.624	.743 1936	2055	.982 2174	119
364	561101					·	1817				119
365	2293	2412	2531	2650	2769	2887	3006	3125	3244	3362	
366	3481	3600 4784	3718 4903	8837	3955	4074	4192	4311 5494	4429 5612	4548	118
367 368	4666 5848	5966	6084	5021 6202	5139 6320	5257 6437	5876 6555	6673	6791	5730 6909	110
369	7026	7144	7262	7379	7497	7614	7732	7849	7967	8084	
370	8202	8319	8436	8554	8671	8788	8905	9023	9140	9257	117
371	9374	9491	9608	9725	9842	9959	76	.193	.309	.426	
372	570543	0660	0776	0893	1010	1126	1243	1359	1476	1592	
373	1709	1825	1942	2058	2174	2291	2407	2523	2639	2755	116
374	2872	2988	3104	3220	3336	3452	3568	3684	3800	8915	
375	4031	4147	4263	4379	4494	4610	4726	4841	4957	5072	
376	5188	5303	5419	5534	5650	5765	5880	5996	6111	6226	115
377	6341	6457	6572	6687	6802	6917	7032	7147	7262	7877	
378	7492	7607	7722	7836	7951	8066	8181	8295	8410	8525	
379	8639	8754	8868	8983	9097	9212	9326	9441	9555	9669	114
880	9784	9898	12	.126	.241	.355	.469	.583	.697	.811	
881	580925	1039	1158	1267	1381	1495	1608	1722	1836	1950	
382	2063	2177	2291	2404	2518	2631	2745	2858	2972	3085	
383	3199	8312	3426	3539	3652	3765	3879	3992	4105	4218	113
384	4331	4444	4557	4670	4783	4896	5009	5122	5235	5348	
385	5461	5574	5686	5799	5912	6024	6137	6250	6362	6475	110
386	6587	6700	6812	6925	7037	7149	7262	7374	7486	7599	112
387	7711	7823 8944	7935 9056	8047	8160	8272 9391	8384	8496 9615	8608 9726	8720 9838	
388 389	8832 9950	61	.173	9167 .284	9279 .396	.507	9508 .619	.730	.842	.953	
390	591065	1176	1287	1399	1510	1621	1782	1843	1955	2066	111
391	2177	2288	2399	2510	2621	2732	2843	2954	3064	3175	
N.	0	1	2	3	4	5	6	7	8	9	D.
	(125	(18	25	38	50	68	75	88	100	113	
1	124	12	25	37	50	62	74	87	29	112	
1 1	123	12	25	37	49	62	74	86	83	111	
1	122	12	24	37	49	61	73	85	98	110	
J i	121	Parts 12	24	36	48	61	73	85	97	109	
()	vi 120 € 119	E 12	24	36	48	60	72	84	96	108	
	- 110	- 1Z	24	36	48	60	71	83	95	107 106	
	ē 118	<u>6 12</u>	24	35	47	59	71	83	94		
	g 117	± 12	23	85	47	59	70	82	94	105	
1	A 116	<u>۾ 12</u>	23	35	46	58	70	81	93	104	
1 1	115	12 12 12 14 11	23	35	46	58	69	81	92	104	
	114		23	34	46	57	68	80	91	103	
	113	11 11	23 22	84 84	45 45	57 56	68 67	79 78	90 90	102 101	
	112	111	22	33	44	56	67	78	89	100	
t 1	(111	14)	1 44	1 00	77	1 00	. 07	10	. 03	100	

N.	0	1	2	3	4	5	6	7	8	9	D.
392	593286	3397	3508	3618	3729	3840	3950	4061	4171	4282	111
393	4393	4503	4614	4724	4834	4945	5055	5165	5276	5386	110
394	5496	5606	5717	5827	5937	6047	6157	6267	6377	6487	1
395	6597	6707	6817	6927	7037	7146	7256	7366	7476	7586	l '
396	7695	7805	7914	8024	8134	8243	8353	8462	8572	8681	i .
397	8791	8900	9009	9119	9228	9337	9446	9556	9665	9774	109
398	9883	9992	.101	.210	.319	.428	.537	.646	.755	.864	
399	600973	1082	1191	1299	1408	1517	1625	1734	1843	1951	l
400	2060	2169	2277	2386	2494	2603	2711	2819	2928	3036	108
401	3144	3253	3361	3469	3577	3686	3794	3902	4010	4118	
	4226	4334	4442	4550	4658	4766	4874	4982	5089	5197	
402	5305	5413	5521	5628	5736	5844	5951	6059	6166	6274	l
403	6381	6489	6596	6704	6811	6919	7026	7133	7241	7348	107
404 405	7455	7562	7669	7777	7884	7991	8098	8205	8312	8419	10,
406	8526	8633	8740	8847	8954	9061	9167	9274	9881	9488	l
407	9594	9701	9808	9914	21	.128	.234	.841	.447	.554	! '
407	610660	0767	0873	0079	1086	1192	1298	1405	1511	1617	106
		1829	1936	2042	2148	2254	2360	2466	2572	2678	100
409	1723 2784	2890	2996		3207	3313	3419	3525	3630	3736	!
410		3947	4053	3102 4159	4264	4370	4475	4581	4686	4792	
411	3842								/		
412	4897	5003	5108	5213	5319	5424	5529	5634	5740	5845	105
413	5950	6055	6160	6265	6370	6476	6581	6686	6790	6895	
414	7000	7105	7210	7815	7420	7525	7629	7734	7839	7943	
415	8048	8153	8257	8362	8466	8571	8676	8780	8884	8989	404
416	9093	9198	9302	9406	9511	9615	9719	9824	9928	32	104
417	620136	0240	0344	0448	0552	0656	0760	0864	0968	1072	
418	1176	1280	1384	1488	1592	1695	1799	1903	2007	2110	
419	2214	2318	2421	2525	2628	2782	2835	2939	3042 4076	3146 4179	100
420	3249	3353	3456	3559	3663	3766	3869	3973		5210	103
421	4282	4385	4488	4591	4695	4798	4901	5004	5107		١ .
422	5312	5415	5518	5621	5724	5827	5929	6032	6135	6238	
423	6340	6443	6546	6648	6751	6853	6956	7058	7161	7263	400
424	7366	7468	7571	7673	7775	7878	7980	8082	8185	8287	102
425	8389	8491	8593	8695	8797	8900	9002	9104	9206	9308	
426	9410	9512	9613	9715	9817	9919	21	.123	.224	.326	
427	630428	0530	0631	0733	0835	0936	1038	1139	1241	1342	404
428	1444	1545	1647	1748	1849	1951	2052	2153	2255	2356	101
429	2457	2559	2660	2761	2862	2963	3064	8165	3266	3367	
430	3468	3569	3670	3771	8872	3973	4074	4175	4276	4376	100
431	4477	4578	4679	4779	4880	4981	5081	5182	5283	5383	1,00
432	5484	5584	5685	5785	5886	5986	6087	6187	6287	6388	
433	6488	6588	6688	6789	6889	6989	7089	7189	7290	7390	
434	7490	7590	7690	7790	7890	7990	8090	8190	8290	8389	امدا
435	8489	8589	8689	8789	8888	8988	9088	9188	9287	9387	99
436	9486	9586	9686	9785	9885	9984	84	.183	.283	.382	
437	640481	0581	0680	0779	0879	0978	1077	1177	1276	1375	
438	1474	1573	1672	1771	1871	1970	2069	2168	2267	2366	
439 440	2465	2563	2662	2761 3749	2860	2959	8058	3156	3255 4242	3354 4340	98
-	8453	8551	3650		3847	3946	4044	4143			_
N.	0	_1_	2	3	4	5	6	7	8	9	D.
}	(111	(11	22	33	44	56	67	78	89	100	
(110	111	22	83	44	55	66	77	88	99	
1	109	Parts 11	22	33	44	55	65	76	87	98	
1	108	# !!	22	32	43	54	65	76 75	86	97 96	
1	107 106 105 104 104 103		21	32	43	54	64		86	95	
1	106	Proportional I	21	32	42	53	64	74	85	95	
1	2 105	5 H	21	32	42	53	63	74	84 83	95	
1	104 5 103	1 2 10	21 21	31 31	42 41	52 52	62 62	73 72	83 82	93	
1	103	P 10	20	31	41	51	61	71	82	92	
1	101	£ 10	20	30	40	51	61	71	81	91	
1	100	10	20	30	40	50	60	70	80	90	
1	100	10	20	30	40	50	59	69	79	89	
L	L		. 40	, 00,	. 30						

N.	0	1	2	3	4	5	6	7	8	9	D.
441	644439	4537	4636	4734	4832	4931	5029	5127	5226	5324	98
442	5422	5521	5619	5717	5815	5913	6011	6110	6208	6306	30
443	6404	6502	6600	6698	6796	6894	6992	7089	7187	7285	1
444	7383	7481	7579	7676	7774	7872	7969	8067	8165	8262	1
445	8360	8458	8555	8653	8750	8848	8945	9043	9140	0202	07
446	9335	9432	9530	9627	9724	9821				9237	97
447	650308	0405	0502	0599	0696	0793	9919	0987	.113 1084	.210	l
448	1278	1375	1472	1569	1666	1762	1859	1956		1181	l
449	2246	2343	2440						2053	2150	1
	3213	3309	3405	2586	2633	2730	2826	2923	3019	3116	٠.,
450				3502	3598	3695	3791	3888	5984	4080	96
451	4177	4273	4369	4465	4562	4658	4754	4850	4946	5042	1
452	5138	5235	5331	5427	5523	5619	5715	5810	5906	6002	l
453	6098	6194	6290	6386	6482	6577	6673	6769	6864	6960	
454	7056	7152	7247	7343	7438	7534	7629	7725	7820	7916	
455	8011	8107	8202	8298	8393	8488	8584	8679	8774	8870	95
456	8965	9060	9155	9250	9846	9441	9536	9631	9726	9821	
457	9916	11	.106	.201	.296	.391	.486	.581	.676	.771	ł
458	660865	0960	1055	1150	1245	1339	1434	1529	1623	1718	
459	1813	1907	2002	2096	2191	2286	2380	2475	2569	2663	
460	2758	2852	2947	3041	3135	3230	3524	3418	3512	3607	94
461	3701	8795	3889	3983	4078	4172	4266	4360	4454	4548	
462	4642	4736	4830	4924	5018	5112	5206	5299	5393	5487	
463	5581	5675	5769	5862	5956	6050	6143	6237	6331	6424	
464	6518	6612	6705	6799	6892	6986	7079	7173	7266	7360	1
465	7453	7546	7640	7733	7826	7920	8013	8106	8199	8293	93
466	8386	8479	8572	8665	8759	8852	8945	9038	9131	9224	
467	9317	9410	9503	9596	9689	9782	9875	9967	60	.153	
468	670246	0339	0431	0524	0617	0710	0802	0895	0988	1080	
469	1173	1265	1358	1451	1543	1636	1728	1821	1913	2005	
470	2098	2190	2283	2375	2467	2560	2652	2744	2836	2929	92
471	3021	3113	3205	3297	3390	3482	3574	8666	3758	3850	
472	3942	4034	4126	4218	4310	4402	4494	4586	4677	4769	
473	4861	4953	5045	5137	5228	5320	5412	5503	5595	5687	
474	5778	5870	5962	6053	6145	6286	6328	6419	6511	6602	
475	6694	6785	6876	6968	7059	7151	7242	7833	7424	7516	91
476	7607	7698	7789	7881	7972	8063	8154	8245	8336	8427	
477	8518	8609	8700	8791	8882	8973	9064	9155	9246	9337	
478	9428	9519	9610	9700	9791	9882	9973	63	.154	.245	
479	680336	0426	0517	0607	0698	0789	0879	0970	1060	1151	
480	1241	1332	1422	1513	1603	1693	1784	1874	1964	2055	90
481	2145	2235	2326	2416	2506	2596	2686	2777	2867	2957	
482	3047	3137	8227	8317	3407	3497	3587	3677	3767	3857	
483	3947	4037	4127	4217	4307	4396	4486	4576	4666	4756	
484	4845	4935	5025	5114	5204	5294	5883	5478	5563	5652	
485	5742	5831	5921	6010	6100	6189	6279	6368	6458	6547	89
486	6636	6726	6815	6904	6994	7083	7172	7261	7351	7440	
487	7529	7618	7707	7796	7886	7975	8064	8153	8242	8331	
488	8420	8509	8598	8687	8776	8865	8953	9042	9131	9220	į
489	9309	9398	9486	9575	9664	9753	9841	9930	19	.107	
490	690196	0285	0373	0462	0550	0639	0728	0816	0905	0993	
491	1081	1170	1258	1347	1435	1524	1612	1700	1789	1877	88
N.	0	1	2	3	4	5	6	7	8	9	D.
			20	29		49		69	$-\frac{5}{78}$	88	<u></u>
	98	(10	19.	29	39 39	49	59 58	68	78	87	ļ
1 1	96	£ 10	19.	29	88	49	58	67	77	86	
		E 10	19	29	38	48	57	67	76	86	
	95 94 98 99 91 91	를 9	19	28	88	47	56	66	75	85	
1 /	ē 93	ong S	19	28	87	47	56	65	74	84	
	E 92	₽ 9	18	28	37	46	55	64	74	83	
	5 91	6 9	18	27	36	46	55	64	73	82	
	7 90	Proportional Parts ceeecee	18	27	36	45	54	63	72	81	
	89	Ĕ 9	18	27	36	45	53	62	71	80	
	88	اوّا	18	26	35	44	53	62	70	79	
	(00	\ ~ !	101	20 (30		- 00		•••		

N. O				rog	AKITI	ins ()F NU	SIBE	19934			
\$\frac{493}{493}	Τ	0	1	2	3	4	5	6	7	8	9	D.
1940 32947 2935 3028 3911 3199 3287 3875 3463 3551 3639 3944 404 3727 3815 3908 3991 4078 4166 4254 4342 4430 4517 4305 4655 6444 6331 6318 6706 6793 6880 6968 7055 7142 4308 7229 7317 7404 7491 7578 7665 7752 7889 7926 8705 5744 499 8101 8188 8275 8362 8449 8555 8622 8709 8796 8883 500 8970 9057 9144 9281 9317 9404 9491 9578 9664 9751 502 700704 0790 0877 0963 1050 1136 1222 1309 1395 1482 501 3938 3924 11 1827 1913 1999 2086 2172 2258 2244 501 3251 3251 3251 3377 3463 3549 3635 3622 849 8459 5505 3291 3377 3463 3549 3635 3721 3807 3893 3819 3205 506 4151 4266 4322 408 4494 4579 4665 4642 6457 6632 509 6718 6803 6888 6974 7059 7144 7229 7315 7400 7485 509 6718 6803 6888 6974 7059 7144 7229 7315 7400 7485 509 6718 6803 6888 6974 7059 7144 7229 7315 7400 7485 511 8421 8506 8591 8676 8761 8846 8931 9015 9100 9185 511 8421 8506 8591 8676 8761 8846 8931 9015 9100 9185 512 9270 9355 9440 9524 900 9694 9779 9663 9948 33 515 7177 7202 7287 7317 4556 4665 4749 4833 4916 5000 5064 518 4330 4414 4497 4581 4665 4749 4833 4916 5000 5064 518 4330 4414 4497 4581 4665 4669 5753 5883 5892 5767 7889 7898 5892 5767 7889 789	6	91965	2053	2142	2250	2318	2406	2494	2583	2671		88
1914 3727 3815 3908 3991 4078 4166 4254 4342 4130 4317 495 4655 4655 5656 5657 5744 5882 5819 6007 6094 6182 6269 497 6356 6414 6581 6518 6706 6798 6880 6968 7055 7142 499 8101 8188 8275 8362 8419 8355 8622 8709 8796 8881 500 8970 9057 9144 9281 9317 9404 9491 5758 9640 7751 501 700704 0700 0877 0931 1050 1136 1222 12300 13957 1482 503 1568 1654 1741 1827 1913 1999 2086 2172 2258 2244 504 2431 2517 2603 2689 2775 2861 2947 3033 3119 3205 505 3291 3377 3463 3549 3635 3721 3807 3893 3979 4065 506 4151 4236 4322 4408 4494 4579 4665 4751 4837 4922 507 5008 5094 5179 5265 5350 5436 5522 6607 5693 5778 508 5864 5949 6035 6120 6206 6291 6376 6462 6547 6632 509 6718 6803 6888 6974 7059 7144 7229 7315 7400 7485 511 8421 8506 8591 8676 8761 8846 8991 9016 9185 512 9270 9355 9440 9524 9609 9694 9779 9863 9948 513 710117 0202 0287 0371 0456 0540 6025 0710 0794 0879 513 710117 0202 0287 0371 0456 0540 6026 0710 0794 0879 513 710117 0202 0287 0371 0456 0540 6025 0710 0794 0879 514 0963 1018 1132 1217 1301 1385 1470 1554 6389 1723 515 1807 1892 1976 0960 2144 2229 2813 2397 2481 2566 516 2650 2734 2818 2902 2986 3070 3154 3238 3323 3407 517 3491 3575 5835 5418 5502 5656 5669 5758 5836 5920 520 6003 6087 6170 6254 6337 6421 6504 6588 6671 6254 6337 6337 6426 6426 644	1						8287	3375			3639	
490	1			3903	3991	4078	4166				4517	
497 6536 6444 6531 6518 6706 6793 6890 6968 7055 7142 7491 7578 7665 7752 7839 7926 8014 499 8101 8188 8275 8826 8449 8355 8622 8709 8796 8883 8907 9057 9144 9231 9317 9404 9491 9578 9664 9751 9750 9704 7590 6877 9963 1050 1136 1222 1309 1395 1482 503 1568 1654 1741 1827 1913 1999 2066 2172 2258 2344 504 2431 2517 2603 2869 2775 2861 2947 3038 3119 3205 505 3291 3377 3463 3549 3635 3721 3807 3893 3979 4055 505 3291 3377 3463 3549 3635 5122 6607 5693 5778 506 4151 4236 4322 4408 4491 4579 4665 4751 4837 4922 507 5008 5094 5179 5265 5350 5436 5522 6607 5693 5778 506 5646 5949 6035 6120 6206 6291 6376 6462 6547 6652 500 67618 6803 6888 6974 7059 7144 7229 7315 7400 7485 512 9270 9355 9440 9524 9600 9694 9779 9863 9848 .33 512 9270 9355 9440 9524 9600 9694 9779 9863 9948 .33 513 710117 0202 0287 0371 0456 0540 6625 0710 0794 0879 516 2650 2734 2818 2902 2986 3070 3164 2328 3233 3416 5522 5650 2734 2818 2902 2986 3070 3164 2328 3233 3407 517 3491 3575 3659 3742 3866 3745 3893 3914 4947 538 665 4749 4833 4916 5000 5064 519 5167 5251 5838 6941 7004 7088 7171 7254 7338 7421 7504 7504 7505 7506 6656 6753 6836 6671 6754 6835 6676 6751 6752 6705 670	1		4693	4781	4868		5044					
1988 7299 7317 7404 7401 7578 7665 7765 7762 7655 7762 8014 4099 8101 8188 8275 8362 8449 8355 8622 8709 8796 8885 5000 8970 9057 9144 9281 9317 9404 9491 9578 9664 9751 501 9888 9924 11 98	1		5569	5657	5744	5832	5919					87
1998 7229 7317 7404 7491 7578 7665 7752 7839 7926 8918 8920 8970 9057 9144 9281 9317 9404 9491 9578 9604 9751 9502 700704 7590 6877 9063 1050 1136 1222 1309 1395 1482 1351 1568 1654 1741 1827 1913 1999 2066 2172 2258 2344 2351 2517 2603 2689 2775 2861 2947 3038 3119 3205 3291 3377 3463 3549 3635 3721 3807 3893 3979 4065 506 4151 4236 4322 4408 4491 4579 4665 4751 4837 4925 506 6718 6808 6974 7059 7144 7229 7365 5607 5608 5646 5949 6035 6120 6206 6291 6376 6462 6547 6632 509 6718 6808 6874 7059 7144 7229 7315 7400 7485 512 9270 3355 9440 9524 9609 9694 9779 9868 9948 .33 513 710117 0202 0287 0371 0456 0540 6025 0710 0794 0879 515 3101 7131 3101 3105 3144 3288 3323 3425 515 3414 4497 4581 4685 4479 4833 4491 4579 4678 4678 4784 4579 4678 4784 4579 4784 4579 4784 4579 4784 4579 4784 4579 4784 4579 4784 4579 4784 4579 4784 4579 4655 4751 4837 4784 4579 4655 4784 4579 4655 4751 4837 4784 4579 4655 4751 4837 4784 4794	1	6356	6111	6531		6706						
Section Sect	1	7229	7317	7404		7578						
	1		8188	8275								
Solition	1	8970	9057	9144	9231	9317	9404	9491	9578	9664	9751	
1902 700704 0790 0877 0963 1050 1136 1222 1309 1395 1482 1504 2431 2517 2603 2685 2775 2861 2947 3033 3119 3205 3201 3377 3463 3549 3635 3721 3807 3803 3979 4065 506 4151 4286 4322 4408 4494 4679 4665 4751 4887 4922 507 5008 5094 5179 5265 5350 5486 5522 5607 5693 5778 508 5864 5049 6035 6120 6206 6291 6376 6462 6547 6682 509 6718 6803 6888 6974 7059 7144 7229 7315 7400 7485 510 7570 7655 7740 7826 7911 7996 8081 8166 8251 8836 512 2927 9355 9440 9324 9609 9694 9779 9863 9948 33 512 9270 9355 9440 9324 9609 9694 9779 9863 9948 33 513 710117 0202 0287 0371 0456 0540 0626 0710 0794 0879 0540 05	-	9838	9924	11	98	.184	.271	.358	.444	.531	.617	l
1568	7				0963			1222	1309	1395	1482	86
5014 2431 2517 2603 2689 2775 2861 2947 3033 3119 3205 505 3291 3377 3463 3549 3635 3721 3807 3893 3979 4065 5066 4151 4236 4322 4408 4491 4579 4665 4751 4837 4922 507 5008 5094 5179 5265 5350 5436 5522 5607 5693 5778 508 5684 5049 6035 6120 6206 6291 6376 6462 6547 6682 509 6718 6803 6888 6974 7059 7144 7229 7315 7400 7485 7510 7400 7485 7510 7570 7655 7740 7826 7911 7906 8081 8166 8251 8336 5312 9270 9355 9440 9524 9609 9604 9779 9863 9948 33 710117 0202 0287 0371 0456 0540 0625 0710 0794 0879 0871 0456 0540 0625 0710 0794 0879 0871 0456 0540 0625 0710 0794 0879 0871 0456 0540 0625 0710 0794 0879 0871 0456 0540 0625 0710 0794 0879 0878 0	١.								2172	2258	2344	1
Section Sect	1				2689							l
506			3377	3463	3549	3635						l
507 5008 5094 5179 5265 5350 6486 5922 5607 5608 5678 6526 6549 6718 6803 6828 6974 7059 7144 7229 7315 7400 7485 510 7570 7655 7740 7826 7911 7996 881 8166 8251 8336 511 8421 8506 8591 8676 8648 8931 9015 9100 9183 512 9270 9355 9440 9524 9609 9604 9779 9863 9948 33 513 710117 0202 0287 0371 0456 0540 0625 0710 0794 0879 514 0963 1018 1132 1217 1301 1385 1470 1545 1639 9407 0879 9411 2566 5619 5191 3414 4497 4581 4665 4749 4833 <	1			4322	4408	4494						1
508			5094	5179	5265		5436					
	1	5864	5949									85
Sample			6803	6888	6974	7059	7144	7229	7315	7400	7485	İ
Sili	-	7570	7655	7740	7826	7911	7996	8081	8166	8251	8336	
Single S	1										9185	l
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	1							9779				İ
14	17		0202							0794	0879	
1807 1802 1976 2060 2144 2222 2381 2397 2481 2566 516 2650 2734 2818 2902 2986 3070 3154 3238 3323 3407 517 3491 3375 3659 3742 3826 3910 3994 4078 4162 4246 518 4330 4414 4497 4581 4665 4749 4833 4916 5000 5064 5000 5000 5064 5000 5000 5064 5000 5000 5064 5000 500	ľ											84
516				1976	2060	2144	2229	2313				
\$\begin{array}{c c c c c c c c c c c c c c c c c c c		2 650	2734	2818	2902				3238			1
		3491	3575									
Second S		4330	4414	4497	4581	4665	4749	4833	4916	5000	5084	i
Second S	-	5167	5251	5385	5418	5502	5586	5669	5753	5836	5920	i
Text	1									6671	6754	83
Separate Separate								7338			7587	
Season						8003					8419	ł
S24	ı		8585			8834		9000	9083	9165	9248	
\$\begin{array}{c c c c c c c c c c c c c c c c c c c		9331	9414	9497	9380							
S27	7	20159	0242	0325	0407	0490		0655				
528 2634 2716 2798 2881 2963 3045 3127 3209 3291 3374 529 3456 8588 8620 3702 3784 3866 3948 4030 4112 4194 530 4276 4358 4440 4522 4604 4655 4767 4849 4981 5013 531 5095 5176 5266 5340 5422 5503 5585 5667 5748 5830 532 5912 5993 6075 6156 6238 6320 6401 6483 6564 6646 534 7541 7623 7704 7785 7866 7948 8029 8110 8191 819 8273 7460 8949 9570 9651 9732 9813 983 536 9165 9246 9327 9408 9489 9570 9651 9732 9813 983 537 9974 55 136	1											82
\$\begin{array}{c c c c c c c c c c c c c c c c c c c		1811	1893	1975	2058	2140	2222	2305	2387	2469	2552	l
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	i-	2634	2716	2798	2881	2963	8045	3127	3209	3291	3374	ļ
530 4276 4358 4440 4522 4604 4685 4767 4849 4981 5018 531 5095 5176 5286 5340 5422 5503 5585 5667 5748 5830 532 5912 5993 6075 6156 6238 6320 6401 6483 6564 6646 6646 533 6727 6809 6890 6972 7053 7134 7216 7297 7379 7460 531 7541 7623 7704 7785 7866 7948 8029 8110 8191 8273 535 8841 8922 9003 9084 536 9165 9246 9327 9408 9489 9570 9651 9732 9813 9893 9673 9974 .55 1186 217 298 .378 .459 .540 621 .702 538 730782 9613 1939 1932 9813 9893 1589						3784		3948	4030	4112	4194	Į.
531 5095 5176 5226 5340 5422 5503 5585 5667 5748 5880 532 5912 5993 6075 6156 6238 6320 6401 6483 6546 6646 533 6727 6809 6890 6972 7053 7184 7216 7297 7379 7460 534 7641 7623 7704 7785 7866 7948 8029 8110 8191 8273 535 8354 8135 8516 8597 8678 8759 8841 8922 903 9084 536 9165 9246 9327 9408 9489 9570 9651 9782 9813 9883 537 9974 55 .136 .217 .298 .378 .459 .540 .621 .702 538 730782 0863 0944 1024 1105 1186 1266 1347 1428	1	4276		4440						4981	5013	
532 5912 5993 6075 6156 6238 6320 6401 6483 6564 6646 533 6727 6809 6890 6872 7053 7134 7216 7297 7379 7460 7355 7541 7623 7704 7785 7866 7948 8029 8110 8191 8273 535 8354 8435 8516 8597 8678 8759 8841 8922 9003 9084 536 9165 9246 9327 9408 9489 9570 9651 9732 9813 9893 537 9974 55 136 .217 .298 .378 .459 .540 .621 .702 .538 730782 0863 0944 1024 1105 1186 1266 1347 1428 1508 539 1589 1669 1750 1830 1911 1991 2072 2152 2233 2313 540 2394 2474 2555 2635 2715 2796 2876 2956 3037 3117 541 3197 3278 3358 3488 3518 3598 3679 3759 3839 3919 542 3399 4079 4160 4240 4320 4400 4480 4560 4640 4720 543 4800 4880 4960 5040 5120 5200 5279 5359 5439 5519 5542 5590 5679 5759 5838 5918 5988 6078 6157 6237 6317 886 19 17 26 35 44 53 62 70 79 886 19 17 26 34 43 52 60 69 77 886 19 17 26 34 43 52 60 69 77 886 19 17 26 34 43 51 60 68 77 886 17 25 34 42 50 50 559 66 75 65 78 66 74 682 28 81 7 25 34 42 50 50 559 66 75 66 74 78 78 78 78 78 78 78	l			52	5340	5422		5585	5667	5748	5830	
Total Tota	1	5912			6156	6238	6320	6401	6483		6646	
S35		6727			6972							81
186	i											
186 197 188 197 188 188 197 188	1											
186 1266 1347 1428 1508 1539 1589 1669 1750 1830 1911 1991 2072 2152 2233 2313 234 2474 2555 2635 2715 2796 2876 2956 3037 3117 541 3197 3278 3358 3488 3518 3598 3679 3759 3839 3919 542 3999 4079 4160 4240 4320 4400 4480 4560 4640 4720 543 4800 4880 4960 5040 5120 5200 5279 5355 5439 5519 5595 5679 5759 5838 5918 5988 6078 6157 6237 6317	1	9165	9246	9327	9408	9489	9570	9651	9732	9813	9893	
538 730782 0863 0944 1024 1105 1186 1266 1347 1428 1508 1589 1589 1669 1750 1830 1911 1991 2072 2152 2283 2313 540 2294 2474 2555 2635 2715 2796 2876 2956 3087 3117 541 3197 3278 3358 3498 3518 3598 3679 3759 3839 3919 542 3399 4079 4160 4210 4320 4400 4480 4560 4640 4720 544 4590 5679 5759 5838 5918 5998 6078 6157 6237 6317 1058 1	1	9974	55	.136	.217	.298	.378	.459	.540	.621	.702	
1589 1589 1669 1750 1830 1911 1991 2072 2152 2233 2313 2340 2394 2474 2505 2635 2715 2796 2876 2956 2956 3037 3117 3278 2358 3488 3518 3598 3679 3759 3839 3919 542 3999 4079 4160 4240 4320 4400 4480 4560 4640 4720 543 4800 4880 4960 5040 5120 5200 5279 5359 5439 5519 5590 5579 5759 5838 5918 5988 6078 6157 6237 6317 63	7	30782							1347			
State Stat			1669				1991					
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	1											80
543	1											
N. O 1 2 3 4 5 6 7 8 9	1											
N. 0 1 2 3 4 5 6 7 8 9	1			4960								
(88) (9) 18 26 35 44 58 62 70 79 (87) (9) 17 26 35 44 52 61 70 78 (88) (49) 17 26 34 48 52 60 69 77 (88) (49) 17 26 34 48 51 60 68 77 (88) (48) 17 25 34 42 50 59 67 76 (48) (58) (58) 17 25 33 42 50 58 66 75 (48) (58) (58) 16 25 33 42 50 58 66 75 (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (4	1	5590	5679	5759	5838	5918	5998	6078	6157	6237	6317	
(88) (9) 18 26 35 44 58 62 70 79 (87) (9) 17 26 35 44 52 61 70 78 (88) (49) 17 26 34 48 52 60 69 77 (88) (49) 17 26 34 48 51 60 68 77 (88) (48) 17 25 34 42 50 59 67 76 (48) (58) (58) 17 25 33 42 50 58 66 75 (48) (58) (58) 16 25 33 42 50 58 66 75 (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (4	T	0	1 1	2	3	4	5	6	7	8	9	D.
\begin{array}{ c c c c c c c c c c c c c c c c c c c	·i-								69			
86 H 9 17 26 84 48 52 60 69 77 86 84 48 52 60 68 77 86 84 42 50 50 67 76 84 42 50 58 66 75 84 42 50 58 66 75 84 88 17 25 33 42 50 58 66 75 86 88 17 25 33 41 49 57 66 74 81 6 8 16 24 32 41 49 57 66 73	1	87	1 10									
284 17 25 34 42 50 50 67 76 283 68 17 25 33 42 50 58 66 75 282 28 16 25 33 41 49 57 66 74 181 9 16 24 32 41 49 57 65 73	1		1 2 0		96							
284 18 17 25 34 42 50 59 67 76 283 68 17 25 33 42 50 58 66 75 32 28 16 25 33 41 49 57 66 74 181 98 16 24 32 41 49 57 65 73	1	5 QK	, a			84					77	
	1	9 84	". 8									
	1	<u>a</u> 83	28									
	1	₹ 82	58								74	
	1	T 81	1 4 8			32						
\ \\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	(80	(š	16	24	32	40	48	56	64	72	

No. O	(
The color	N.	0	1	2_	3	4	5	6	7	8	9	D.
548												
548												79
550 740863 0142 0521 0500 0678 0767 0386 0915 0994 1073 1073 1075												
550 740363 0442 0521 0600 0678 0767 0836 0915 0994 1073 551 1152 1280 1389 388 1467 1546 1624 1703 1782 1860 552 1939 2018 2096 2175 2254 2332 2411 2489 2568 2647 5534 2351 2398 2375 2894 2882 2961 2898 3118 3196 3275 3853 3431 78 3510 3588 3667 3745 3823 3902 3980 4058 4136 4215 556 5675 5153 5231 5399 5887 5465 5548 5621 5699 5777 556 5507 5555 5338 6011 6089 6167 6245 6323 6401 6479 6556 6588 6634 6712 6790 6868 6945 7023 7101 7179 7256 7384 7556 7412 7489 7567 7645 7722 7800 7878 7955 8038 8110 7561 8963 9040 9118 915 9272 9350 9427 9040 9582 9569 9569 562 9736 9814 9891 9968 45 123 200 277 .354 .481 481 563 750500 0586 6663 0740 0817 0894 0971 1048 1125 1202 565 2048 2125 2202 2279 2356 2438 2509 2566 2632 2740 566 2438 4425 4501 4578 4654 4784 4807 4807 4883 4950 5036 676 6868 6742 6792 6793 670 5865 5831 5809 8382 3686 3438 4425 5401 4578 4654 4784 4807 4883 4950 5036 676 6868 6742 6792 6793 670 5866 5671 6636 6712 6788 6864 6940 7016 7092 7168 7244 7390 7578 576 6868 9743 8819 9894 9970 45 .121 196 272 478												
152												
552												
554 3510 3588 3667 3745 8823 3902 3980 4058 4136 4215 5556 5037 5158 5231 5309 5887 5465 5543 5621 6699 5777 577 577 577 578 579 5												
555												
\$\frac{555}{556}												78
556	554	8510	3588	3667	8745	3823	3902	3980	4058	4136	4215	
558	555	4293	4371	4449	4528	4606	4684	4762	4840	4919	4997	
558	556	5075	5153	5231	5309	5387	5465	5543	5621	5699	5777	
550	557		5933	6011	6089	6167	6245	6323	6401			
560	558	6634	6712	6790	6868	6945	7023	7101	7179	7256	7334	
560	559	7412	7489	7567	7645	7722	7800	7878	7955	8033	8110	
562 9786 9814 9891 9968 45 .128 .200 .277 .854 .481 563 750508 0586 0563 0740 0817 0894 0971 1048 1125 1202 565 2018 2125 2202 2279 2356 2433 2509 2586 2663 2740 566 2816 2893 2970 3047 3123 3200 3277 3553 3430 3506 567 3583 3660 3736 3813 3889 3966 4042 4119 4195 4272 588 4348 4425 4501 4578 4654 4730 4807 4883 4960 5036 570 5875 5951 6027 6103 6180 6256 6382 6408 6484 6560 571 6636 6712 6788 6864 6940 7016 7092 7168 7244 7320 572 7396 7472 7548 7624 7700 7775 7851 7927 8003 8079 573 8155 8230 8306 8382 8458 8533 8609 8685 8761 8836 574 8912 8988 9063 9139 9214 9290 9366 9441 9517 5592 575 9668 9743 8819 9894 9970 .45 .121 .196 .272 .347 576 760422 0498 0578 0649 0724 0799 0875 0950 1025 1101 577 1176 1251 1326 1402 1477 1552 1627 1709 1778 1858 579 2679 2754 2829 2904 2978 3053 3128 3203 3278 3353 580 3428 3503 3578 3653 3727 8002 3877 3952 4027 4010 581 4176 4251 4326 4400 4475 4550 6424 4699 4774 4848 582 4923 4998 5072 5147 5221 5296 5370 5445 5520 5594 583 5669 5743 5818 5892 5966 6041 6115 6190 6264 6338 745 584 6413 6487 6526 6636 6710 6785 6859 6938 7007 7082 585 7156 7230 7304 7379 7453 7527 7601 7675 7749 7823 586 738 7972 8046 8120 8194 8268 8342 8416 8490 8564 587 8638 8712 8786 8860 8934 9008 9082 9156 9230 9303 588 9377 9451 9525 9599 9673 9746 9820 9894 9968 42 599 6701 6774 6846 6919 6992 7044 7187 7509 7282 7354 79 78 18 16 24 33 34 47 55 63 707 79 78 18 16 24 33		8188	8266		8421							77
562 9786 9814 9891 9968 45 .128 .200 .277 .854 .481 563 750508 0586 0563 0740 0817 0894 0971 1048 1125 1202 565 2018 2125 2202 2279 2356 2433 2509 2586 2663 2740 566 2816 2893 2970 3047 3123 3200 3277 3553 3430 3506 567 3583 3660 3736 3813 3889 3966 4042 4119 4195 4272 588 4348 4425 4501 4578 4654 4730 4807 4883 4960 5036 570 5875 5951 6027 6103 6180 6256 6382 6408 6484 6560 571 6636 6712 6788 6864 6940 7016 7092 7168 7244 7320 572 7396 7472 7548 7624 7700 7775 7851 7927 8003 8079 573 8155 8230 8306 8382 8458 8533 8609 8685 8761 8836 574 8912 8988 9063 9139 9214 9290 9366 9441 9517 5592 575 9668 9743 8819 9894 9970 .45 .121 .196 .272 .347 576 760422 0498 0578 0649 0724 0799 0875 0950 1025 1101 577 1176 1251 1326 1402 1477 1552 1627 1709 1778 1858 579 2679 2754 2829 2904 2978 3053 3128 3203 3278 3353 580 3428 3503 3578 3653 3727 8002 3877 3952 4027 4010 581 4176 4251 4326 4400 4475 4550 6424 4699 4774 4848 582 4923 4998 5072 5147 5221 5296 5370 5445 5520 5594 583 5669 5743 5818 5892 5966 6041 6115 6190 6264 6338 745 584 6413 6487 6526 6636 6710 6785 6859 6938 7007 7082 585 7156 7230 7304 7379 7453 7527 7601 7675 7749 7823 586 738 7972 8046 8120 8194 8268 8342 8416 8490 8564 587 8638 8712 8786 8860 8934 9008 9082 9156 9230 9303 588 9377 9451 9525 9599 9673 9746 9820 9894 9968 42 599 6701 6774 6846 6919 6992 7044 7187 7509 7282 7354 79 78 18 16 24 33 34 47 55 63 707 79 78 18 16 24 33	561	8963	9040	9118	9195	9272	9350	9427	9504			
564	562	9736	9814		9968	45			.277			
566	563	750508	0586		0740				1048			
565				1433								
Texas												
567	1			2970	3047	3123						
568												
Section Sect												76
570												••
571								6339		6484		
573												
574												
574												
576										9517		
576 700422 0498 0573 0649 0724 0790 0875 0950 1025 1101												75
1776												•••
578												
579												
580												
881						29/8						
582						3/2/						
588												
S84												74
585												12
586			7990		7270				7675			
587												
588 9377 9451 9525 9599 9673 9746 9820 9894 9968 42 589 770115 0189 0263 0386 0410 0484 0557 0681 0705 0778 590 0852 0926 0999 1073 1146 1220 1293 1867 1440 1514 591 1587 1661 1734 1808 1881 1955 2028 2102 2175 2248 592 2322 2395 2468 2542 2615 2688 2762 2885 2908 2981 593 3055 3128 3201 3274 3348 3421 3494 3567 3640 3713 594 3786 3860 3933 4006 4079 4152 4225 4298 4371 4444 595 4517 4590 4663 4736 4809 4882 4955 5028 5100 5173 596 5246 5319 5392 5465 5538 5610 5683 6756 5829 5905 597 5974 6047 6120 6193 6265 6388 6411 6488 6556 6629 598 6701 6774 6846 6919 6992 7064 7137 7209 7282 7351 N.												
589												
1590												
591												
592								1293				-0
598 3055 3128 3201 3274 3348 3421 3494 3567 3640 3713 594 3786 3860 3933 4006 4079 4152 4225 4298 4371 4444 595 4517 4590 4663 4736 4809 4882 4955 5028 5100 5173 596 5246 5319 5392 5465 5538 5610 5683 5756 5529 5902 597 5974 6047 6120 6193 6265 6338 6411 6483 6556 6629 598 6701 6774 6846 6919 6992 7064 7137 7209 7282 7354												73
594 8786 8860 8933 4006 4079 4152 4225 4298 4871 4444 595 4517 4590 4663 4786 4809 4882 4955 5028 5100 5173 596 5246 5319 5392 5465 5538 5610 5683 5756 5829 5902 597 5974 6047 6120 6193 6265 6338 6411 6483 6556 6629 598 6701 6774 6846 6919 6992 7064 7137 7209 7282 7354 N.												
595						8348						
596												
Second S												
598 6701 6774 6846 6919 6992 7064 7137 7209 7282 7354												
N												
79 (8 16 24 82 40 47 55 63 71 8 8 16 23 31 89 47 55 62 70 8 77 4 8 15 23 31 89 47 55 62 69 67 6 4 8 15 23 30 38 46 53 61 68 62 74 67 15 22 80 37 44 52 59 67 67 67 73 £ 7 15 22 29 37 44 51 58 66	998	6/01	6//4	0846	6919	6992	7064	7137	1209	1282		
1.78	N.	0	1	2	3	1 4	5	6	7	8	9	D.
1.78		(79	(8)	16	24	82	40	47	55	63	71	
	1		🙀 👸									
	1		I E A									
	1	₽76	ÄÄ									
A 73 £7 15 22 29 37 44 51 58 66	1	F 75										
	1	1 ≝ 74	ĚŽ									
	1		E7									
	1		177									

N.	0	1	2	3	4	5	6	7	8	9	D.
599	777427	7499	7572	7644	7717	7789	7862	7984	8006	8079	$\frac{1}{72}$
600	8151	8224	8296	8368	8441	8513	8585	8658	8730	8802	1 12
601	8874	8947	9019	9091	9163	9236	9308	9380	9452	9524	
602	9596	9669	9741	9813	9885	9957	29	.101	.173	.245	٠.
603	780317	0389	0461	0533	0605	0677	0749	0821	0893	0965	
604	1037	1109	1181	1253	1324	1396	1468	1540	1612	1684	
605	1755	1827	1899	1971	2042	2114	2186	2258	2329	2401	1
606	2473 3189	2544 3260	2616 3332	2688 3403	2759 8475	2831 3546	2902 3618	2974 3689	8046	3117	71
608	3904	3975	4046	4118	4189	4261	4332	4403	3761 4475	£832 4546	11
609	4617	4689	4760	4831	4902	4974	5045	5116	5187	5259	!
610	5330	5401	5472	5543	5615	5686	5757	5828	5899	5970	
611	6041	6112	6183	6254	6325	6396	6467	6538	6609	6680	i
612	6751	6822	6893	6964	7035	7106	7177	7248	7319	7390	
613	7460	7531	7602	7673	7744	7815	7885	7956	8027	8098	
614	8168	8239	8310	8381	8451	852 2	8593	8663	8734	8804	
615	8875	8946	9016	9087	9157	9228	9299	9869	9440	9510	۱
616	9581	9651	9722 0426	9792	9863	9933	0707	0.74	.144	.215	70
617	790285 0988	0356 1059	1129	0496 1199	0567	0637	0707 1410	0778 1480	0848 1550	0918 1620	l
618					1269	1840		!			
619	1691 2392	1761 2462	1831 2532	1901 2602	1971	2041	2111	2181 2882	2252	2322 3022	
620 621	3092	3162	3231	3301	2672 3371	2742 3441	2812 3511	3581	2952 3651	3022 3721	1
622	3790	3860	3930	4000	4070	4139	4209	4279	4349	4418	
623	4488	4558	4627	4697	4767	4836	4906	4976	5045	5115	
624	5185	5254	5324	5393	5463	5532	5602	5672	5741	5811	1
625	5880	5949	6019	6088	6158	6227	6297	6366	6436	6505	69
626	6574	6614	6713	6782	6852	6921	6990	7060	7129	7198	
627	7268	7337	7406	7475	7545	7614	7683	7752	7821	7890	
628	7960	8029	8098	8167	8236	8305	8374	8448	8513	8582	
629	8651	8720	8789	8858	8927	8996	9065	9134	9203	9272	
630	9341	9409	9478	9547	9616	9685	9754	9823 0511	9892	9961	
631 632	800029	0098 0786	0167 0854	0236 0923	0305 0992	0373 1061	0442 1129	1198	0580 1266	0648 1835	
633	1404	1472	1541	1609	1678	1747	1815	1884	1952	2021	
634	2089	2158	2226	2295	2363	2432	2500	2568	2637	2705	
635	2774	2842	2910	2979	8047	3116	3184	8252	3321	3389	68
636	3457	8525	3594	3662	3730	3798	3867	3935	4003	4071	
637	4139	4208	4276	4344	4412	4480	4548	4616	4685	4758	
638	4821	4889	4957	5025	5093	5161	5229	5297	5365	5433	
639	5501	5569	5637	5705	5778	5841	5908	5976	6044	6112	
640	6180	6248	6316	6384	6451	6519	6587	6655	6723	6790	
641	6858	6926	6994	7061	7129	7197	7264	7832	7400	7467 8143	
642 643	7535 8211	7603 8279	7670 8346	7738 8414	7806 8481	7873 8549	7941 8616	8008 8684	8076 8751	8818	67
644	8886	8953	9021	9088	9156	9223	9290	9358	9425	9492	٧,
645	9560	9627	9694	9762	9829	9896	9964	31	98	.165	
646	810233	0300	0367	0434	0501	0569	0636	0703	0770	0837	
647	0904	0971	1039	1106	1173	1240	1307	1374	1441	1508	
648	1575	1642	1709	1776	1843	1910	1977	2044	2111	2178	
649	2245	2312	2379	2445	2512	2579	2646	2713	2780	2847	
650	2913	2980	3047	3114	3181	3247	3314	2381	3448	3514	
651	3581	3648	3714	3781	3848	3914	3981	4048	4114	4181	1
652	4248 4913	4314 4980	4381 5046	4447 5113	4514	4581 5246	4647 5312	4714 5378	4780 54 4 5	4847 5511	66 I
658 654	5578	5644	5711	5777	5179 5843	5910	5976	6042	6109	6175	•
N.	0	1	2	3	4	5	6	7	8	9	D.
	(72		14	22	29	36	43	50	58	65	
	71	r.Parts	14	21	28	86	43	50	57	64	1
	<u>5</u> 70	<u>a 7 </u>	14	21	28	35	42	49	56	63	Į
Į J	- 109 I	월 7	14	21	82	35	41	48	55	62	1
()	68	ρ. 7	14	20	27	34	41	48	54	61	l
11	(67	(7	13	20	27	84	40	47	54	60	

N.	0	1	2	3	4	5	6	7	8	9	D.
655	816241	6308	6374	6440	6506	6573	6639	6705	6771	6838	66
656	6904	6970	7036	7102	7169	7235	7301	7367	7433	7499	00
657	7565	7631	7698	7764	7830	7896	7962	8028	8094	8160	l
658	8226	8292	8358	8424	8490	8556	8622	8688	8754	8820	l
659	8885	8951	9017	9083	9149	9215	9281	9346	9412	9478	ı
660	9544	9610	9676	9741	9807	9873	9939	4	70	.136	l
661	820201	0267	0333	0399	0464	0530	0595	0661	0727	0792	1
662	0858	0924	0989	1055	1120	1186	1251	1317	1382	1448	}
663	1514	1579	1645	1710	1775	1841	1906	1972	2037	2103	65
664	2168	2233	2299	2361	2430	2495	2560	2626	2691	2756	1 00
											l
665	2822	2887	2952	3018	3083	3148	3213	8279	8344	3409	ľ
666	3474	3539	3605	3670	8735	3800	3865	3930	3996	4061	
667	4126	4191	4256	4321	4386	4451	4516	4581	4646	4711	
668	4776	4841	4906	4971	5036	5101	5166	5231	5296	5861	
669	5426	5491	5556	5621	5686	5751	5815	5880	5945	6010	
670	6075	6140	6204	6269	6334	6399	6464	6528	6598	6658	'
671	6723	6787	6852	6917	6981	7046	7111	7175	7240	7305	1 :
672	7369	7434	7499	7563	7628	7692	7757	7821	7886	7951	
673	8015	8080	8144	8209	8273	8338	8402	8467	8531	8595	64
674	8660	8724	8789	8853	8918	8982	9046	9111	9175	9239	1
675	9304	9368	9432	9497	9561	9625	9690	9754	9818	9882	
676	9947	11	75	.139	.204	.268	.332	.396	.460	:525	
677	830589	0653	0717	0781	0845	0909	0973	1037	1102	1166	
678	1230	1294	1358	1422	1486	1550	1614	1678	1742	1806	
679	1870	1934	1998	2062	2126	2189	2253	2317	2881	2445	
680	2509	2573	2637	2700	2764	2828	2892	2956	3020	3083	
681	3147	3211	3275	8338	3402	3466	3530	3593	8657	3721	
682	3784	3848	3912	3975	4039	4103	4166	4230	4294	4357	
683	4421	4484	4548	4611	4675	4739	4802	4866	4929	4993	
											40
684	5056	5120	5183	5247 5881	5310	5373	5437	5500	5564	5627	63
685	5961	5754	5817		5944	6007	6071	6134	6197	6261	
686	6324	6387	6451	6514	6577	6641	6704	6767	6830	6894	
687	6957	7020	7083	7146	7210	7273	7336	7399	7462	7525	
688	7588	7652	7715	7778	7841	7904	7967	8030	8093	8156	
689	8219	8282	8345	8408	8471	8534	8597	8660	8723	8786	
690	8849	8912	8975	9038	9101	9164	9227	9289	9352	9415	
691	9478	9541	9604	9667	9729	9792	9855	9918	9981	43	1
692	840106	0169	0232	0294	0357	0420	0482	0545	0608	0671	- 1
693	0733	0796	0859	0921	0984	1046	1109	1172	1234	1297	- 1
694	1359	1422	1485	1547	1610	1672	1735	1797	1860	1922	1
695	1985	2047	2110	2172	2235	2297	236 0	2422	2484	2547	62
696	2609	2672	2734	2796	2859	2921	2983	3046	3108	3170	- 1
697	3233	3295	3357	3420	3482	3544	3606	3669	3731	3793	
698	3855	8918	3980	4042	4104	4166	4229	4291	4353	4415	i
699	4477	4539	4601	4664	4726	4788	4850	4912	4974	5036	1
700	5098	5160	5222	5284	5346	5408	5470	5532	5594	5656	
701	5718	5780	5842	5904	5966	6028	6090	6151	6213	6275	-
702	6337	6399	6461	6523	6585	6646	6708	6770	6832	6894	1
703	6955	7017	7079	7141	7202	7264	7326	7888	7449	7511	1
704	7573	7634	7696	7758	7819	7881	7943	8004	8066	8128	
705	8189	8251	8312	8374	8435	8497	8559	8620	8682	8743	- 1
706	8805	8866	8928	8:89	9051	9112	9174	9235	9297	9358	61
707	9419	9481	9542	9604	9665	9726	9788	9849	9911	9972	ا
708	850033	0095	0156	0217	0279	0340	0401	0462	0524	0585	l
709	0646	0707	0769	0830	0891	0952	1014	1075	1136	1197	1
710.	1258	1320	1381	1442	1503	1564	1625	1686	1747	1809	
N.	0	1	2	3	4	5	6	7	8	9	D.
	(66	$\frac{1}{7}$	13	20	26	33	40	46	53	59	
l I	65	1.7	13	20	26	83	89	46	52	59	ł
1 1	64 69 69	Parte	13	19	26	32	38	45	51	58	- 1
1 1	€ 63	à 6	13	19	25	32	38	44	50	57	
{ I	F 62	ፈ 6	12	19	25	31	37	42	50	56	
, I	61	ίĞ	12	18	24	31	37	43	49	55	ļ
•	`			1							

P

N. O					·		,					
T133	N.	0	1	2	3	4	5	6	7	8	9	D.
T133	711	851870	1931	1992	2053	2114	2175	2236	2297	2358	2419	61
Till 3090 1500 2211 3272 3833 3894 3455 3616 3677 3637 3637 3637 3638 3759 3820 3881 3891 3892 4881 3497 4824 4185 4215 3216 3217												
Tito												l
Tib					2001							
Tit												
T18												l
Tis												
Times					0101	9/01						
T90				6240								, 60
T21					6910	6970						
1.723	720	7332	7393	7453	7513	7574	7634	7694	7755	7815	7875	
1.723	791	7935	7995	8056	8116	8176	8236	8297	8357	8417	8477	
1724												
T25	799											
1-25				0850								
728						0578	0627	0607	0757	0017		
1594 1594 1594 1654 1714 1778 1838 1899 1952 2012 2072 2782 2787 2847 2906 2966 3025 3085 3144 3204 3263 3382 3382 3442 3501 3561 3620 3680 3739 3799 3858 5984 3451 4570 4030 4689 4748 4808 4867 4926 4985 5045 733 5104 5163 5222 5282 5841 5400 5459 5519 5578 5637 734 5696 5755 5814 5874 5938 5992 6051 6110 6169 6228 7385 6287 6346 6405 6465 6524 6538 6642 6701 6760 6819 7377 7407 7526 7585 7644 7703 7702 7821 7880 8056 8115 8174 8233 8292 8350 8409 8488 8527 8586 739 8644 8703 8762 8821 8879 8938 8997 7998 7481 9818 9877 9935 9994 .58 .58 .59 .59 .							1996					
T28												
Table Tabl												
Table Tabl			2191									
Time												
T32	730	3323	3382	3442	3501	3561	8620	3680	3739		3858	59
T32	731	3917	3977	4036	4096	4155	4214	4274	4333	4392	4452	1
733												
784				5222	5282					5578		l
735											6228	i
786	705											
Table Tabl								7920	7901	7950		i
Record R												
Re44 8703 8762 8821 8879 8938 8997 9056 9114 9173 Re44 9232 9290 9349 9408 9466 9525 9584 9642 9701 9760 Re45 9877 9935 9994 .58 .511 .170 .228 .287 .345 Re45 870404 0462 0521 0579 0638 0696 0755 0813 0872 0930 58 Re47 1081 1690 1748 1806 1865 1923 1981 2040 2098 Re48 2156 2215 2273 2331 2389 2448 2506 2564 2622 2681 Re48 2739 2797 2855 2913 2972 3030 3088 3146 3204 3262 Re48 3902 3960 4018 4076 4134 4192 4250 4308 4366 4424 Re48 3902 3960 4018 4076 4134 4192 4250 4308 4366 4424 Re49 4482 4540 4598 4656 4714 4772 4830 4888 4945 5003 Re49 5061 5698 5766 5813 5871 5929 5987 6045 6102 6160 Re49 762 6218 6276 6333 6391 6449 6507 6564 6622 6680 6737 Re49 7637 7638 7634 7602 7637 7717 7774 7832 7887 Re49 7871 7429 7487 7544 7602 7659 7717 7774 7832 7889 Re49 756 7569 7564 5685 6910 6968 7026 7083 7141 7199 7256 7314 Re49 766 8522 8579 8637 8694 8752 8809 8866 8924 8981 9039 Re49 757 9006 9153 9211 9268 9325 9383 9140 9497 9555 9612 Re49 766 8684 8671 8688 8695 7652 2680 2688 2695 2752 2809 2866 2923 2880 3037 Re40 766 4229 4285 4342 4399 4455 4512 4569 4625 4682 4739 Petal Re40 8671 8775 8832 8888 8945 4002 4059 4115 4172 Re40 766 4229 4285 4342 4399 4455 4512 4569 4625 4682 4739 Petal 767 866 12 18 24 30 35 41 47 53 Re40 767 767 766 767 766 767 766 767 766 767 766 767 766 767 766 767 766 767 766 767 766 767 766 767 766 767 766 767 767 766 767 767 766 767 767 767 767 767 767 767 767 767 767 76												
1740 9232 9290 9349 9408 9466 9525 9584 9642 9701 9760 741 9818 9877 9935 9994 53 .111 .170 .228 .227 .315 742 870404 0462 0521 0579 0638 0696 0755 0813 0872 0930 58 743 0989 1047 1106 1161 1223 1281 1339 1398 1456 1515 744 1573 1631 1690 1748 1806 1865 1923 1981 2040 2098 745 2156 2215 2273 2331 2389 2448 2506 2564 2622 2681 746 2739 2797 2855 2913 2972 3030 3088 3146 3204 3262 747 3321 3379 3437 3495 3555 3611 3669 3727 3785 3844 748 3902 3960 4018 4076 4184 4192 4250 4308 4366 4424 749 4482 4460 4598 4656 4714 4772 4830 4888 4945 5003 750 5061 5119 5177 5235 5293 5351 5409 5466 5524 5582 751 5640 5698 5756 5813 5871 5929 5987 6045 6102 6160 6172 618 6276 6333 6391 6449 6507 6564 6622 6680 6737 7538 6795 6853 6910 6968 7026 7083 7141 7199 7256 7314 7341 7349 7487 7544 7610 7659 7717 7774 7832 7889 7557 7947 8004 8062 8119 8177 8234 8292 8349 8407 8464 5766 8522 8579 8637 8604 8752 8809 8866 8024 8981 9039 758 9669 9726 9784 9841 9998 9956 13 70 127 185 769 880242 0299 0356 0413 0471 0528 0585 0642 0699 0756 766 4229 4285 4342 4399 4455 4502 4682 4739 4766 4229 4285 4342 4399 4455 4502 4682 4739 4766 4229 4285 4342 4399 4455 4502 4682 4739 4766 4229 4285 4342 4399 4455 4512 4563 4625 4682 4739 8766 4229 4285 4342 4399 4455 4512 4563 4625 4682 4739 766 4229 4285 4342 4399 4455 4512 4563 4625 4682 4739 766 4229 4285 4342 4399 4455 4512 4563 4625 4682 4739 766 4229 4285 4342 4399 4455 4512 4563 4625 4682 473												İ
741	739	8644	8703	8762	8821	8879	8938	8997	9056	9114	9173	
741	740	9232	9290	9349	9408	9466	9525	9584	9642	9701	9760	
T42												
743					0579	0638						58
T44												•
745												
746			0015				9449					
747												
748												
749					3495	8003						
750	i 748	3902	3960		4076	4134	4192	4250	4308	4366	4424	
750	749	4482	4540	4598	4656	4714	4772	4830	4888	4945	5003	i ,
751					5235							
758												
754												
755			7490									
Total Tota						0177		9000	9940	0407		57
757 9006 9158 9211 9268 9325 9383 9440 9497 9555 9612 758												57
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
759												
759	758	9669	9726	9784	9841	9898	9956	13	70	.127	.185	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
Tell	760											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2019					9207	9354			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						9759						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
N. 0 1 2 3 4 5 6 7 8 9 D. 61 61 61 12 18 24 31 37 43 49 55 6 12 18 24 30 36 42 48 54 54 55 6 12 18 24 30 35 41 47 53 6 6 12 17 23 29 35 41 43 52 6 6 12 17 23 29 34 40 46 51									4009			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u> </u>									<u>-</u>
	- <u> </u>											<u>р.</u>
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	1	60	46									
757 £6 11 17 23 29 34 40 46 51	1	1 50 5 50	l Eg									
757 £6 11 17 23 29 34 40 46 51	1	# 150	80			69						
	1		F 2									- 1
1 (00) (0) 11 17 22 28 34 39 45 50	1		1 0									
		1 (06)	1 (0	11	1 1/	22	28	54	สบ	40	50	

N.	0	1	2	3	4	5	6	7	8	9	D.
767	884795	4852	4909	4965	5022	5078	5135	5192	5248	5305	57
768	5361	5418	5474	5531	5587	5644	5700	5757	5813	5870	
769	5926	5983 6547	6039 6604	6096	6152	6209	6265 6829	6321	6378	6434	56
770 771	6491 7054	7111	7167	6660 7223	6716 7280	6773 7336	7392	6885 7449	6942 7505	6998 7561	
772	7617	7674	7730	7786	7842	7898	7955	8011	8067	8123	1
773	8179	8236	8292	8348	8404	8460	8516	8573	8629	8685	
774	8741	8797	8853	8909	8965	9021	9077	9134	9190	9246	
775	9302	9358	9414	9470	9526	9582	9638	9694	9750	9806	
776	9862	9918	9974	30	86	.141	.197	.263	.309	.365	!
777	890421	0477	0533	0589	0645	0700	0756	0812	0868	0924	
778	0980	1035	1091	1147	1203	1259	1314	1370	1426	1482	
779	1537	1593	1649	1705	1760	1816	1872	1928	1983	2039	
780 781	2095 2651	2150 2707	2206 2762	2262 2818	2317 2873	2373 2929	2429 2985	2484 3040	2540 3096	2595	
782	3207	3262	3318	3373	3429	3484	3540	3595	3651	3151 3706	
783	3762	3817	3873	3928	3384	4039	4094	4150	4205	4261	55
784	4316	4371	4427	4482	4538	4593	4648	4704	4759	4814	
785	4870	4925	4980	5036	5091	5146	5201	5257	5312	5367	
786	5423	5478	5533	5588	5644	5699	5754	5809	5864	5920	
787	5975	6030	6085	6140	6195	6251	6306	6361	6416	6471	
788	6526	6581	6636	6692	6747	6802	6857	6912	6967	7022	
789	7077	7132	7187	7242	7297	7352	7407	7462	7517	7572	
790	7627	7682	7737	7792	7847	7902	7957	8012	8067	8122	
791 792	8176 8725	8231 8780	8286 8835	8341 8890	8396 8944	8451 8999	8506 9054	8561 9109	8615	8670 9218	
793	9273	9328	9383	9437	9492	9547	9602	9656	9164 9711	9766	
794	9821	9875	9930	9985	39	94	.149	.203	.258	.312	
795	900367	0422	0476	0531	0586	0640	0695	0749	0804	0859	
796	0913	0968	1022	1077	1131	1186	1240	1295	1349	1404	
797	1458	1513	1567	1622	1676	1781	1785	1840	1894	1948	54
798	2003	2057	2112	2166	2221	2275	2329	2384	2438	2492	
799	2547	2601	2655	2710	2764	2818	2873	2927	2981	3036	
800	3090	3144	3199	3253	3307	8361	3416	3470	3524	3578	
801	3633	3687	3741	3795	3849	3904 4445	3958 4499	4012	4066	4120	
802 803	4174 4716	4229 4770	4283 4824	4337 4878	4391 4932	4986	5040	4553 5094	4607 5148	4661 5202	
804	5256	5310	5364	5418	5472	5526	5580	5634	5688	5742	
805	5796	5850	5904	5958	6012	6066	6119	6173	6227	6281	
806	6335	6389	6443	6497	6551	6604	6658	6712	6766	6820	
807	6874	6927	6981	7035	7089	7143	7196	7250	7304	7358	
808	7411	7465	7519	7573	7626	7680	7734	7787	7841	7895	
809	7949	8002	8056	8110	8163	8217	8270	8324	8378	8431	
810	8485	8539	8592	8646	8699	8753	8807	8860	8914	8967	- 1
811	9021	9074	9128	9181	9235	9289	9342 9877	9396	9449	9503	50
812 813	9556 910091	9610 0144	9663 0197	9716	9770	9823 0358	9877 0411	9930 0464	9984 0518	37 0571	53
814	0624	0678	0731	0251 0784	0304 0838	0891	0944	0998	1051	1104	- 1
815	1158	1211	1264	1317	1371	1424	1477	1530	1584	1637	
816	1690	1743	1797	1850	1903	1956	2009	2063	2116	2169	l
817	2222	2275	2328	2381	2435	2488	2541	2594	2647	2700	
818	2753	2806	2859	2913	2966	3019	3072	3125	3178	3231	
819	3284	3337	3390	3443	3496	3549	3602	3655	3708	3761	
820	3814	3867	3920	8973	4026	4079	4132	4184	4237	4290	ļ
821	4343	4396	4449	4502	4555	4608	4660	4713	4766	4819	
822 823	4872 5400	4925 5453	4977 5505	5030 5558	5083 5611	5136 5664	5189 5716	5241 5769	5294 5822	5347 5875	
824	5927	5980	6033	6085	6138	6191	6243	6296	6349	6401	
1										9	=
N.	0	1	2	3	4	5	6	7	8		D.
	(55 ± ;54	6 45	11 11	17 16	22 22	28 27	33 32	89 88	44	50 49	1
	53		11	16	22	27	32	37	42	48	
i l	52	G 5	10	16	21	26	81	86	42	47	
		<u> </u>									

N.	0	1	2	3	4	5	6	7	8	9	D.
825	916454	6507	6559	6612	6664	6717	6770	6822	6875	6927	53
(826	6980	7033	7085	7138	7190	7243	7295	7348	7400	7453	
827	7506	7558	7611	7663	7716	7768	7820	7873	7925	7978	52
828	8030	8083	8135	8188	8240	8293	8345	8397	8450	8502	İ
829	8555	8607	8659	8712	8764	8816	8869	8921	8973	9026	l
830	9078	9130	9183	9235	9287	9340	9392	9444	9496	9549	İ
831	9601	9653	9706	9758	9810	9862	9914	9967	19	71	l
832	920123	0176	0228	0280	0332	0384	0436	0489	0541	0593	1
833	0645	0697	0749	0801	0853	0906	0958	1010	1062	1114	l
834	1166	1218	1270	1322	1374	1426	1478	1530	1582	1634	l
835	1686	1738	1790	1842	1894	1946	1998	2050	2102	2154	1
836	2206	2258	2310	2362	2414	2466	2518	2570	2622	2674	1
837	2725	2777	2829	2881	2933	2985	3037	3089	3140	3192	
838	3244	3296	3348	3399	3451	3503	3555	3607	3658	3710	
839	3762	3814	3865	3917	3969	4021	4072	4124	4176	4228	1
840	4279	4331	4383	4434	4486	4538	4589	4641	4693	4744	ĺ
841	4796	4848	4899	4951	5003	5054	5106	5157	5209	5261	l
842	5312	5364	5415	5467	5518	5570	5621	5673	5725	5776	
843	5828	5879	5931	5982	6034	6085	6137	6188	6240	6291	51
814	6342	6394	6445	6497	6548	6600	6651	6702	6754	6805	l
845	6857	6908	6959	7011	7062	7114	7165	7216	7268	7319	1
846	7870	7422	7478	7524	7576	7627	7678	7730	7781	7832	
847	7883	7935	7986	8037	8088	8140	8191	8242	8293	8345	l
848	8396	8447	8498	8549	8601	8652	8703	8754	8805	8857	l
849	8908	8959	9010	9061	9112	9163	9215	9266	9317	9368 9879	l
850 851	9419	9470	9521	9572	9623	9674 .185	9725	9776	9827	.389	l
852	9930	9981	32	0592	.134 0643	0694	.236 0745	.287 0796	.338	0898	
853	930440 0949	0491 1000	0542 1051	1102	1153	1204	1254	1305	0847 1356	1407	
854	1458	1509	1560	1610	1661	1712	1763	1814	1865	1915	•
1											i
855	1966	2017	2068	2118	2169	2220	2271	2322	2372	2423	
856 857	2474 2981	2524 3031	2575 3082	2626 3133	2677 3183	2727 3234	2778 3285	2829 3335	2879 3386	2930 3437	
858	3487	3538	3589	3639	3690	3740	3791	3841	3892	3943	
859	3993	4044	4094	4145	4195	4246	4296	4347	4397	4448	
860	4498	4549	4599	4650	4700	4751	4801	4852	4902	4953	50
861	5003	5054	5104	5154	5205	5255	5306	5356	5406	5457	- 00
862	5507	5558	5608	5658	5709	5759	5809	5860	5910	5960	
863	6011	6061	6111	6162	6212	6262	6313	6363	6413	6463	
864	6514	6564	6614	6665	6715	6765	6815	6865	6916	6966	-
865	7016	7066	7117	7167	7217	7267	7317	7367	7418	7468	
866	7518	7568	7618	7668	7718	7769	7819	7869	7919	7969	
867	8019	8069	8119	8169	8219	8269	8320	8370	8420	8470	
868	8520	8570	8620	8670	8720	8770	8820	8870	8920	8970	
869	9020	9070	9120	9170	9220	9270	9320	9369	9419	9469	
870	9519	9569	9619	9669	9719	9769	9819	9869	9918	9968	
871	940018	0068	0118	0168	0218	0267	0317	0367	0417	0467	
872	0516	0566	0616	0666	0716	0765	0815	0865	0915	0964	
873	1014	1064	1114	1163	1213	1263	1313	1362	1412	1462	
874	1511	1561	1611	1660	1710	1760	1809	1859	1909	1958	
875	2008	2058	2107	2157	2207	2256	2306	2355	2405	2455	
876	2504	2554	2603	2653	2702	2752	2801	2851	2901	2950	
877	3000	3049	3099	3148	3198	3247	3297	3346	3396	3445	49
878	3495	3544	3593	3643	3692	3742	3791	3841	3890	3939	
879	8989	4038	4088	4137	4186	4236	4285	4335	4384	4433	
880	4483	4532	4581	4631	4680	4729	4779	4828	4877	4927	
881	4976	5025	5074	5124	5173	5222	5272	5321	5370	5419	
882	5469	5518	5567	5616	5665	5715	5764	5813	5862	5912	
N.	0	1	2	3	4	5	6	7	8	9	D.
	(52		10	16	21	26	31	36	42	47	
1	₩ 51	0.5	10	15	20	26	81	26	41	46	
1	□ 50	5 م	10	15	20	25	30	35	40	45	
	(49	a. 5	10	15	20	25	29	34	59	44	

884 6452 6501 6551 6600 6649 6698 6747 6796 6845 68 85 6943 6992 7041 7090 7140 7189 7238 7287 7386 7 886 7434 7483 7532 7581 7630 7679 7728 7727 7826 7 887 7924 7973 8022 8070 8119 8168 8217 8266 8315 8 889 8902 8951 8909 9048 9097 9146 9195 9244 9292 9 890 9300 9439 9488 9536 9585 9634 9683 9731 9780 928 891 9878 9926 9975 24 73 .121 .170 .219 .267 3 891 1878 1920 0949 0997 1046 1095 1143 1192 1240 12	D.											
884 6452 6501 6501 6600 6649 6698 6747 6796 6845 68 85 6943 6992 7041 7090 7140 7189 7238 7287 7386 7 886 7434 7483 7532 7581 7630 7679 7728 7277 7826 7836 7 887 7924 7973 8022 8070 8119 8168 8217 8266 8315 8 888 8113 8462 8511 8560 8609 8657 8706 8755 8804 8 890 9390 9489 9996 9585 9634 9683 9731 9780 928 891 9878 9926 9975 24 33 .121 .170 .219 .267 38 892 950365 0414 0462 0511 0560 0608 0657 0706 0754 189 894		9	8			!!	I	3	l	1	0	N.
885	3 49	6403	6354	6305	6256	6207	6157	6108	6059	6010	945961	883
885 6948 6992 7041 7090 7140 7189 7288 7287 7786 7 886 7434 7483 7582 7581 7690 7679 7728 7777 7826 7 887 7924 7973 8022 8070 8119 8168 8217 8266 8315 888 813 8462 8511 8560 8609 8657 8706 8755 8804 8 890 9300 9439 948 9536 9585 9634 9633 9537 3731 9780 891 9878 9926 9975 24 73 .121 .170 .219 .267 892 950365 0414 0462 0511 0560 0608 0657 0706 0754 0 0 997 1046 1195 1143 1192 1240 1 893 1838 1886 1435 1483 1580 1629 1677 1726 </td <td>)4 </td> <td>6894</td> <td>6845</td> <td>6796</td> <td>6747</td> <td>6698</td> <td>6649</td> <td>6600</td> <td></td> <td>6501</td> <td>6452</td> <td>884</td>)4	6894	6845	6796	6747	6698	6649	6600		6501	6452	884
886 7434 7483 7582 7581 7630 7679 7728 7777 7826 7. 887 7924 7973 8022 8070 8119 8168 8217 8266 8315 8 888 8413 8462 8511 8506 8609 8657 8706 8755 8804 889 8902 8951 8999 9048 9007 9146 9195 9244 9292 9 9800 9309 9489 9536 9585 9634 9683 9731 9780 9 988 9536 9585 9634 9683 9731 9780 9 898 9506 9585 9634 9683 9731 9780 9 898 9586 9634 9683 9731 9780 9 898 9683 9683 9731 9780 9 898 983 9881 1883 1835 1823 1871 1900 0997 1046 1095	35	7385	7336	7287	7238	7189	7140	7090	7041	6992	6943	
888 8413 8442 8511 8560 8609 8657 8706 8755 8804 8 889 8902 8951 8999 9048 9097 146 9195 924 892 9 891 9878 9926 9975 24 73 .121 .170 .219 .267 892 95365 0534 0608 0657 0706 0754 00 893 0851 0900 0949 0997 1046 1095 1143 1192 1240 11 894 1338 1386 1435 1483 1580 1629 1677 1726 124 895 1823 1872 1920 1969 2017 2066 2114 2163 2211 2 896 2308 2356 2405 2453 2502 2550 2599 2647 2696 2 897 2792 2841	5	7875	7826	7777	7728	7679	7630	7581		7483	7434	
888 8113 8462 8511 8560 8609 8657 8706 8755 8804 8 889 8902 8951 8999 9048 9007 9146 9195 9244 9292 936 891 9878 9926 9975 24 73 .121 .170 .219 267 .	34	8364	8315	8266	8217	8168	8119	8070	8022	7978	7924	887
8890 8901 8999 9048 9007 9146 9195 9244 9292 9 890 9300 9439 9488 9536 9585 9634 9633 9731 9780 99 891 9878 9926 9975 .24 73 .121 .170 .219 .267 892 950365 0414 0462 0511 0560 0608 0657 0706 0754 00 893 0851 0900 0949 0997 1046 1095 1143 1192 1240 11 894 1338 1386 1435 1483 1532 1580 1629 1677 1726 1 895 1823 1872 1920 1969 2017 2066 2114 2163 2211 2861 2250 2590 2647 2696 2 2897 2972 2841 2889 2988 2986 3034	3	8853	8804	8755	8706	8657	8609	8560	8511	8462	8413	
S90	1	9341	9292	9244	9195	9146	9097	9048	8999	8951	8902	
891		9829										
892 950365 0414 0462 0511 0560 0608 0657 0706 0754 005883 0851 0900 0949 0997 1046 1095 1143 1192 1240 1183 1386 1435 1483 1532 1580 1629 1677 1726 1780 1823 1872 1920 1969 2017 2066 2114 2163 2211 2280 22841 2889 2938 2986 3034 3083 3131 3180 3188 3276 3325 3373 3421 3470 3518 3566 3615 3663 3889 3276 3325 3373 3421 3470 3518 3566 3615 3663 3889 3760 3825 3373 3421 3470 3518 3566 3615 3663 3889 3760 3825 3373 3421 3470 3518 3566 3615 3663 3889 3760 3825 3373 3421 3470 3518 3566 3615 3663 3899 3760 3808 3856 3905 3953 4001 4049 4098 4146 4290 4243 4291 4339 4387 4435 4484 4532 4580 4628 4491 4725 4773 4821 4869 4918 4966 5014 5062 5110 5002 5207 5255 5303 5351 5399 5447 5495 5543 5592 5009 5447 5495 5543 5592 5009 5447 5495 5648 5692 5076 6649 6697 6745 6793 6840 6886 6936 6984 7082 7090 7067 7655 7703 7751 7799 7867 7607 7655 7703 7751 7799 7847 7847 7942 7990 7988 8086 8134 8181 8229 8277 8325 8373 8421 8468 8499 8464 848 8481 8229 8277 8325 8373 8421 8468 8499 8464 8481 8481 8229 8277 8325 8373 8421 8468 8481 909 8564 8612 8659 8707 8755 803 8850 8898 8946 8191 9941 9089 9137 9185 9232 9280 9328 9375 9423 9411 9518 9566 9614 9661 9709 9757 9804 9852 9900 911 9518 9566 9614 9661 9709 9757 9804 9852 9900 911 9518 9566 9614 9661 9709 9757 9804 9852 9900 911 9518 9566 9614 9661 9709 9757 9804 9852 9900 9138 9160 9141 9089 9137 9185 9232 9360 9328 3376 3766 3766 3766 3766 3766 3766 3766 3766 3766 3766 3766 3766 3766 3766 3766 3766 3766 37		.316										
893 0851 0900 0949 0997 1046 1095 1143 1192 1240 128 1240 128 1483 1386 1445 1483 1532 1580 1629 1677 1726 1' 895 1823 1872 1920 1969 2017 2066 2114 2163 2211 2 896 2308 2356 2405 2453 2502 2550 2599 2647 2696 2 897 2792 2841 2889 2988 2986 3034 3083 3131 3180 3 898 3276 3325 3373 3421 3470 3518 3566 3615 3663 3 900 4243 4291 4339 4937 4435 4484 4532 4580 4628 4 901 4725 4773 4821 4869 4918 4966 5014 5062 5110 <td< td=""><td></td><td>0803</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		0803										
\$\begin{array}{ c c c c c c c c c c c c c c c c c c c		1289										
895 1823 1872 1920 1969 2017 2066 2114 2163 2211 2 866 2308 2356 2455 2502 2550 2599 2647 2696 2 2592 2550 2599 2647 2696 2 2592 2599 2647 2696 2 2592 2599 2647 2696 2 2599 2647 2696 2 2599 2647 2696 2 2599 2647 2696 2 2599 2647 2696 2 2590 2647 2696 2 2599 2647 2696 2 2599 2647 2696 2 2 2590 2647 2696 3 3 3421 3470 3518 3566 3615 3663 3 3663 3484 4844 4904 4049 40498 4146 44 4900 4243 4291 4339 44353 4484 4362 5014 5062<												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1775 2260	0011			1900						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2114							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2744										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3228										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3711										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4194										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4677									4243	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5158										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5640										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	6120	6072		5976	5928	5880	5832	5784	5736	5688	9.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	6601		6505	6457	6409	6361	6313	6265			904
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	7080		6984			6840	6793	6745	6697		905
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	7559	7512	7464	7416	7368	7320	7272	7224	7176		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	8038	7990	7942	7894	7847	7799	7751	7703	7655	7607	907
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	8516	8468	8421	8373	8325	8277	8229	8181	8134	8086	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	8994	8946	8898	8850	8803	8755	8707	8659	8612	8564	909
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	9471		9375	9328	9280				9089		
912 9995 42 90 .138 .185 .233 .280 .328 .376 .4 913 960471 0518 0366 0613 0661 0709 0756 0804 0851 06 914 0946 0994 1041 1089 1136 1184 1231 1279 1326 13 915 1421 1469 1516 1563 1611 1658 1703 1753 1801 13	7	9947	9900		9804	9757	9709	9661	9614		9518	
913 960471 0518 0566 0613 0661 0709 0756 0804 0851 08 914 0946 0994 1041 1089 1136 1184 1231 1279 1326 11 915 1421 1469 1516 1563 1611 1658 1703 1753 1801 18	3	.423	.376	.328	.280	.233	.185	.138	90 i	42	9995	912
914	_	0899										
915 1421 1469 1516 1563 1611 1658 1706 1753 1801 18		1374										
916 1895 1913 1990 2038 2085 2132 2180 2227 2275 23		1848										
		2322										
		2795										
		3268										
		3741										
		4212								3835		
		4684		4500								
		5155										
		5625										
924 5672 5719 5766 5813 5860 5907 5954 6001 6048 60		6095			0904							
		6564			0123							
		7033										
		7501										
		7969										
		8436										
		8903										
931 8950 8996 9043 9090 9136 9183 9229 9276 9323 93		9369										
		9835										
		.300										
934 970347 0393 0440 0486 0533 0579 0626 0672 0719 07	5 46	0765	0719				0533	0486				
		1229										
	3	1693	1647									
	7	2157	2110	2064	2018	1971	1925	1879	1832	1786	1740	937
938 2203 2249 2295 2342 2388 2434 2481 2527 2573 26		2619										
939 2666 2712 2758 2804 2851 2897 2943 2989 3035 30		3082							2758	2712	2666	
		3543				3359		3266	3220		3128	940
		4005			3866	3820	3774	3728	3682	3636	3590	941
- - - - - - - - - -	D.	9	8	7	6	5	4	3	2		0	N.
(48) (5) 10 14 19 24 29 84 38 \$\frac{1}{2}47 25 9 14 19 24 28 33 38	3	43	38	84	29		19	14		(5	(48	
\$\frac{1}{6}47 \ \frac{1}{6}5 \ \ \ \ 9 \ \ 14 \ \ \ 19 \ \ 24 \ \ 28 \ \ 88 \ \ 88 \ \ \ 88 \ \ \ \ \		42								A 5	₹ 47	
\(\frac{1}{46} \) \(\frac{1}{5} \) 9 14 18 23 28 32 37		41	97	i 20	െ	ഥരാ	1 10	1 14		. w s	7.46	

N.	0	1	2	3	4	5	6	7	8	9	D.
942		4097	4143	4189	4235	4281	4327	4374	4420	4466	46
943	4512	4558	4604	4650	4696	4742	4788	4834	4880	4926	Ì
944	4972	5018	5064	5110	5156	5202	5248	5294	5340	5386	i
945	5432	5478	5524	5570	5616	5662	5707	5753	5799	5845	l
946	5891 6350	5937 6396	5983 6442	6029 6488	6075 6533	6121 6579	6167 6625	6212 6671	6258 6717	6304 6763	l
947	6808	6854	6900	6946	6992	7037	7083	7129	7175	7220	1
949	7266	7312	7358	7403	7449	7495	7541	7586	7632	7678	l
950	7724	7769	7815	7861	7906	7952	7998	8043	8089	8135	1
951	8181	8226	8272	8317	8363	8409	8454	8500	8546	8591	
952	8637	8683	8728	8774	8819	8865	8911	8956	9002	9047	
953	9093	9138	9184	9230	9275	9321	9366	9412	9457	9503	
954	9548	9594	9639	9685	9730	9776	9821	9867	9912	9958	
955	980003	0049	0094	0140	0185	0231	0276	0322	0367	0412	45
956	0458	0503	0549	0594	0640	0685	0730	0776	0821	0867	
957	0912	0957	1003	1048	1093 1547	1139 1592	1184 1637	1229	1275	1320	
958	1366 1819	1411 1864	1456 1909	1501 1954	2000	2045	2090	1683 2135	1728 2181	1773 2226	
960	2271	2316	2362	2407	2452	2497	2543	2588	2633	2678	
961	2723	2769	2814	2859	2904	2949	2994	3040	3085	3130	
962	3175	3220	3265	3310	3356	3401	3446	3491	3536	3581	
963	3626	3671	3716	3762	3807	3852	3897	3942	3987	4032	
964	4077	4122	4167	4212	4257	4302	4347	4392	4437	4482	i
965	4527	4572	4617	4662	4707	4752	4797	4842	4887	4932	
966	4977	5022	5067	5112	5157	5202	5247	5292	5337	5382	
967	5426	5471	5516	5561	5606	5651	5696	5741	5786	5830	1
968	5875	5920	5965	6010	6055	6100	6144	6189	6234	6279	
969	6324	6369	6413	6458	6503	6548	6593	6637	6682	6727)
970 971	6772 7219	6817 7264	6861 7309	6906 7353	6951 7398	6996 7443	7040 7488	7085 7532	7130 7577	7175 7622	
											- 1
972 973	7666 8113	7711 8157	7756 8202	7800 8247	7845	7890 8836	7934 8381	7979 8425	8024 8470	8068 8514	- 1
974	8559	8604	8648	8693	8291 8737	8782	8826	8871	8916	8960	- 1
975	9005	9049	9094	9138	9183	9227	9272	9316	9361	9405	- 1
976	9450	9494	9539	9583	9628	9672	9717	9761	9806	9850	44
977	9895	9939	9983	28	72	.117	.161	.206	.250	. 294	
978	990339	0383	0428	28 0472	$0.72 \\ 0516$	0561	0605	0650	0694	0738	•
979	0783	0827	0871	0916	0960	1004	1049	1093	1137	1182	- 1
980	1226	1270	1315	1359	1403	1448	1492	1536	1580	1625	
981	1669	1713	1758	1802	1846	1890	1935	1979	2023	2067	. !
982	2111	2156	2200	2244	2288	2333	2377	2421	2465	2509	1
983	2554	2598	2642	2686	2730	2774	2819	2863	2907	2951	1
984 985	2995	3039 3480	3083	3127	3172	3216	3260	3304	3348	3392	- 1
986	3436 3877	3921	3524 3965	3568 4009	3613 4053	3657 4097	3701 4141	3745 4185	3789 4229	3833 4273	
987	4317	4361	4405	4449	4493	4537	4581	4625	4669	4713	1
988	4757	4801	4845	4889	4933	4977	5021	5065	5108	5152	
989	5196	5240	5284	5328	5372	5416	5460	5504	5547	5591	1
990	5635	5679	5723	5767	5811	5854	5898	5942	5986	6030	
991	6074	6117	6161	6205	6249	6293	6337	6380	6424	6468	1
992	6512	6555	6599	6643	6687	6731	6774	6818	6862	6906	
993	6949	6993	7037	7080	7124	7168	7212	7255	7299	7343	
994	7386	7430	7474	7517	7561	7605	7648	7692	7736	7779	
995	7823	7867	7910	7954	7998	8041	8085	8129	8172	8216	
996	8259 8695	8303 8739	8347 8782	8390 8826	8434 8869	8477 8913	8521 8956	8564 9000	8608 9043	8652 9087	
998	9131	9174	9218	9261	9305	9348	9392	9435	9479	9522	
999	9565	9609	9652	9696	9739	9783	9826	9870	9913	9957	43
N.		1	2	3	4	5	6	7	8	9	D.
	$\frac{0}{(46)}$		$\frac{2}{9}$	$\frac{3}{14}$	18	$\frac{5}{23}$	28	$\frac{7}{32}$	37	41	_
İ		6.5 6.5	9	14	18	23	27	82	36	41	- 1
l	€ 45 G 44	a 4	้	13	18	22	26	31	35	40	- 1
ł	7 43	74	9	13	17	22	26	80	34	89	ł

LOGARITHMIC

SINES AND TANGENTS

FOR EVERY DEGREE AND MINUTE OF THE QUADRANT.

N.B.—The minutes in the left-hand column of each page, increasing downward, belong to the degrees at the top; and those in the right-hand column, increasing upward, belong to the degrees below.

(0 Degree.) LOGARITHMIC

44			Degree.	LU	GARITHM	110		
_M	Sine.	D.100".	Cosine.	D.	Tang.	D. 100".	Cotang.	
0	-Infinite		10.000000		-lnfinite		Infinite.	LU
1	6.463726	501717	000000	00	6.463726	501717	13.536274	59
2	764756	293485	000000	00	764756	293485	235244	58-
3	940847	208231	000000	00	940847	208231	059153	57
4 5	7.065786	161517	000000	60	7.065786	161517	12.934214	56
6	162696 24 1877	131968	000000	00	162696	131969	837304	55
7	308824	111578	9.999999 999999	01	241878	111578	758122	54
8	366816	96653	959999	01	308825 366817	99653	691175 683183	53 52•
9	417968	85254	999999	01	417970	85254	582030	52• 51
10	463726	76263	939998	01	463727	76263	536273	50
11	7.505118	68988	9,999998	01	7.505120	68988		
12	542906	62981	999997	Q1	542909	62281	12.494880	49 48
13	577668	57936	999997	0 1	577672	57937	457091 422328	47
14	609853	53641	999996	01	609857	53642	890143	46
15	639816	49938	999996	01	639820	49939	360180	45
13	667845	46714	999995	01	667849	46715	£32151	44
17	694173	43881	999995	01	694179	43882	305821	43
18	718997	41372	999994	01	719003	41373	280997	42
19	742478	39135 37127	999993	01 01	742484	39136	257516	41
20	764754	35315	999993	01	764761	37128	235239	40
21	7.785943		9.999992		7.785951	35156	12.214049	89
22	806146	33672	999991	01	806155	33673	193845	38
23	825451	32175	999990	01	825460	32176	174540	37
24	843934	30805 29547	939989	01	843944	30806	156056	36
25	861662	28388	999989	02 02	861674	29549 28390	138326	35
26	878695	27317	999988	02	878708	27318	121292	34
27	895035	26323	999987	02	895099	26325	104901	33
28	910879	25899	999986	02	910894	25401	089106	32
29	926119	24538	999985	02	926134	24540	073866	31
30	940842	23733	999983	02	940858	23735	059142	30
31	7.955082	22980	9.999082	02	7.955100	22981	12.044900	29
32	968870	22273	999981	02	968889	22275	031111	28
33	982233	21608	999980	02	982253	21610	017747	27
34	995198	20981	999979	02	995219	20983	004781	26
35	8.007787	20390	999977	02	8.007809	20392	11.992191	25
36	020021 031919	19831	999976	02	020044	19833	979956	24
38	043501	19302	999975	02	031945	19305	968055	23
89	054781	18801	999973 999972	02	043527 054809	18803	956473 945191	22 21
40	065776	18325	999971	02	065806	18327	934194	20
41		17872		02		17874		
41	8.076500	17441	9.999969	02	8.076531	17444	11.923469	19
43	086965 097183	17031	999968 999966	02	086997	17034	913003	18
44	107167	16639	999964	02	097217 107203	16642	902788 892797	17 16
45	116926	16265	999963	03	116963	16268	£83037	15
46	126471	15908	999961	03	126510	15910	873490	14
47	135810	15566	999959	03	135851	15568	864149	13
48	144953	15238	999958	03	144996	15241	855004	12
49	153907	14924	999956	03	153952	14927	846048	îĩ
50	162681	14622	999954	03	162727	14625	837273	10
51	8.171280	14333	9.999952	03	8.171328	14326	11.828672	9
52	179713	14054	999950	03	179763	14057	820237	8
53	187985	13786	999948	03	188036	13790	811964	7
54	196102	13529	999946	03	196156	13532	803844	6
55	204070	13280	999944	03	204126	13284	795874	5
56	211895	13041	999942	03	211958	13044	788047	5 4
57	219581	12810 12587	999940	04 04	219641	12814 - 12590	780359	3 2
58	227134	12372	999938	04	227195	12376	772805	
59	234557	12164	999936	04	234621	12168	765379	1
60	241855	11963	999934	04	241921	11967	758079	0
	Cosine.	1	Sine.		Cotang.		Tang.	M.

89 Degrees.

						egree.		
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	8.241855	*****	9.999934	04	8.241921	4400-	11.758079	60
ĭ	249033	11963	999932	04	249102	11967	750898	59
2	256094	11768	999929	04	256165	11772	743835	58
3	263042	11580	999927	04	263115	11584	736885	57
4	269881	11398	999925	04	269956	11402	730044	56
5	276614	11221	999922	04	276691	11225	723309	55
.6	283243	11050	999920	04	283323	11054	716677	54
7	289773	10883	999918	04	289856	10887	710144	53
8	296207	10722	999915	04	296292	10726	703708	52
9	302546	10565	999913	04	302634	10570	697366	51
10	308794	10413	999910	04	508884	10418	691116	50
		10266		04		10270		
11	8.314954	10122	9.999907	04	8.315046	10126	11.684954	49
12	321027	9982	999905	04	821122	9987	678878	48
13	327016	9847	999902	04	327114	9851	672886	47
14	332924	9714	999899	05	333025	9719	666975	43
15	338753	9586	999897	05	838856	9590	661144	45
16	844504	9460	999894	05	344610	9465	655390	44
17	350181	9338	999891	05	350289	9343	649711	43
18	355783	9219	999888	05	355895	9224	644105	42
19	861315	9103	999885	05	361430	9108	638570	41
20	36677 7	8990	999882	05	366895	8995	633105	40
21	8.372171	8880	9.999879	05	8.372292	8885	11.627708	39
22	377499		999876		377622		622378	88
23	382762	8772	999873	05	382889	8777	617111	37
24	387962	8667	999870	05	388092	8672	611908	36
25	393101	8564	999867	05	393234	8570	606766	35
26	398179	8464	999864	05	398315	8470	601685	84
27	403199	8366	999861	05	403338	8371	596662	33
28	408161	8271	999858	05	408304	8276	591696	32
29	413068	8177	999854	05	413213	8182	586787	31
30	417919	8086	999851	05	418068	8091	581932	30
31	8.422717	7996	9.999848	06	8,422869	8002	11.577131	29
82	427462	7909	999844	06	427618	7914	572382	28
83	432156	7823	999841	06	432315	7829	567685	27
34	436800	7740	999838	06	436962	7745	563038	26
35	441394	7657	999834	06	441560	7663	558440	25
36	445941	7577	999831	06	446110	7583	553890	24
37	450440	7499	999827	06	450613	7505	549387	23
38	454893	7422	999824	06	455070	7428	544930	22
39	459301	7346	999820	06	459481	7352	540519	21
40		7273		06		7279		20
	463665	7200	999816	05	463849	7206	536151	
41	8.467985	7129	9.999313	-06	8.468172	7135	11.531828	19
42	472263	7060	999809	06	472454	7066	52754C	18
43	476498	6991	999805	06	476693	6998	523307	17
41	480693	6924	999801	06	480892	6931	519108	16
45	484848	6859	999797	06	485050	6865	514950	15
46	488963	6794	999794	07	489170	6801	510830	14
47	493040	6731	999790	07	493250	6738	506750	13
48	497078	6669	999786	07	497293	6676	502707	12
49	501080	6608	999782	07	501298	6615	498702	11
50	505045	6548	999778	07	505267	6555	494783	10
51	8.508974	I	9.999774		8,509200		11.490800	-9.
52	512867	6489	999769	07 -	513098	6496	486902	8
53	516726	6431	999765	07	516961	6439	483039	7
54	520551	6375	999761	07	520790	6382	479210	6
55	524343	6319	999757	07	524586	6326	475414	5
56	528102	6264	999753	07	528349	6272	471651	5 4
57	531828	6211	999748	07	532080	6218	467920	ĝ
58	535523	6158	999744	07	585779	6165	464221	2
59	539186	6106	\$99740	07	539447	6113	460553	3 2 1
60	542819	6055	999735	07	543081	6062	456916	l õ l
		6004		07		6012	!	
	Cosine.	1	Sine.	1 -	Cotang.	Γ	Tang.	M
•				:	·		·	

840		(z	Degrees	.) L	OGARITH.	MIC		
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	8.542819	6004	9.999785	07	8.543084	6012	11.456916	
1	546422	5955	999731	07	546691	5962	453309	59
2	549995	5906	999726	08	550268	5914	449782	58
3 4	553539 557054	5858	999722 999717	08	553817 557336	5866	446183 442664	57 56
5	560540	5811	999713	08	560828	58 19	439172	55
6	563999	5765	999708	08	564291	5773	435709	54
! 7	567431	5719	999704	08	567727	5727	432273	50
8	5 70836	5674 5630	999699	08 08	571137	5682 5638	428863	52
9	574214	5587	999694	08	574520	5595	425480	51
10	577566	5544	999689	08	577877	5552	422123	50
11	8.580892	5502	9.999685	08	8.581208	5510	11.418792	40
12	584193	5460	999680	08	584514	5468	415486	48
13	587469 590721	5419	999675	08	587795 591051	5427	412205 408949	47
15	593948	5379	999670 999665	08	594283	5387	405717	46 45
16	597152	5339	999660	08	597492	5347	402508	44
17	600382	5300	999655	08	600677	5308	899323	43
18	603489	5261 5223	999650	08 08	603839	5270 5232	896161	42
19	606623	5186	999645	09	606978	5194	893022	41
20	609734	5149	999640	09	610094	5158	389906	40
21	8.612823	5112	9.999635	09	8.613189	5121	11.886811	39
22	615891	5077	999629	39	616262	5085	383738	38
23	618937 621962	5041	999624 999619	00	619313 622343	5050	380687 877657	37 36
24 25	624965	5006	999614	09	625352	5015	874648	35
26	627948	4972	999608	09	628340	4981	371660	34
27	680911	4938	999603	09	631308	4947	368692	33
28	633854	4904 4871	999597	09	634256	4913 4880	365744	32
29	636776	4839	999592	09	637184	4848	36 2816	31
80	639680	4806	999586	09	640093	4816	359907	30
81	8.642563	4775	9.999581	09	8.642982	4784	11.357018	29
82	645428	4743	999575	09	645853	4753	354147	28
83 84	648274 651102	4712	999570 999564	09	648704 651537	4722	351296 348463	27 26
35	653911	4682	999558	09	654352	4691	845648	25
36	656702	4652	999553	10	657149	4661	342851	24
37	659475	4622	999547	10	659928	4631	340072	23
38	662230	4592 4563	£99541	10 10	662689	4602 4573	337311	22
39	664968	4535	999535	10	665433	4544	334567	21
40	667689	4506	999529	liŏ	668160	4516	331840	20
41	8.670393	4479	9.999524	10	8.670870	4488	11.329130	19
42	673080	4451	999518	10	673563	4461	826437	18
43	675751 678405	4424	999512 999506	10	676239 678900	4434	823761 821100	17 16
45	681043	4397	999500	10	681544	4407	318456	15
46	683665	4370	999493	10	684172	4380	815828	14
47	686272	4344	999487	10	686784	4354	813216	13
48	688863	4318 4292	999481	10 10	689381	4328 4303	810619	12
49	691438	4267	999475	10	691963	4277	308037	11
_50	693998	4242	999469	10	694529	4252	805471	10
10	8.696543	4217	9.999463	11	8.697081	4228	11.802919	3
52	699073	4193	999456	ii	699617	4203	300383	8
53 54	701589 704090	4168	999450 999443	11	702139 704646	4179	297861 295354	7 6
55	704090	4144	999437	11	704040	4155	290354 292860	5
56	709049	4121	999431	11	709618	4132	290382	4
57	711507	4097	999424	11	712083	4108	287917	ā
58	713952	4074 4051	999418	11 11	714534	4085 4062	285466	3 2
59	716383	4029	999411	11	716972	4040	283028	1
60	718300	4006	999404	111	719396	4017	280604	0
	Cosine.	i i	Sine.		Cotang.		Tang.	M.
·				·				

		SINES	AND TANS	BENT	s. (o D	egrees.	,	34
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	8.718800	4006	9.999404	11	8.719396	4017	11.280604	60
. 1	721204	8984	999398	ii	721806	8995	278194	59
2 3	723595	3962	999391	ii	724204	8974	275796	58
3	725972	3941	999384	îî	726588	8952	273412	57
4 5	728337	8919	999878	ii	728959	8931	271041	56
5	730688	3898	999371	11	781317	3910	268688	55
6	733027	3877	999364	11	733663	8889	266337	54
8	785354 737667	8857	999857 999850	11	735996 788317	8868	264004	53
9	739969	8836	999343	12	740626	8848	261683	52
10	742259	3 816	999336	12	742922	3827	259374 257078	51 50
11	8.744536	8796	9.999329	12	8.745207	8807		
12	746802	8776	999322	12	747479	3788	11.254798 252521	49 48
13	749055	3756	999315	12	749740	8768	250260	47
14	751297	8737	999308	12	751989	3749	248011	46
15	753528	3717	999301	12	754227	8729	245773	45
16	755747	8698	999294	12	756453	3710	243547	44
17	757955	8680	999287	12	758668	3692	241332	43
18	760151	3661	999279	12	760872	8678	239128	42
19	762337	3642 3624	999272	12 12	763065	8655	236935	41
20	764511	8606	999265	12	765246	3636 8618	284754	40
21	8.766675	I———I	9.999257		8.767417		11.232583	39
22	768828	3588 9570	999250	12	769578	8600	230422	38
23	770970	8570	999242	12	771727	3583	228273	37
24	773101	8553 8535	999235	12 13	778866	8565	226134	36
25	775223	3 518	999227	13	775995	3548 3531	224005	35
26	777333	8501	999220	13	778114	8514	22 1886	34
27	779434	3484	999212	13	780222	8497	219778	83
28	781524	8467	999205	13	782320	8480	217680	32
29	783605	8451	999197	13	784408	8464	215592	81
30	785675	8434	999189	13	786486	8447	213514	30
31	8.787736	3418	9.999181	13	8.788554	8431	11.211446	29
32	789787	3402	999174	13	790613	8415	209387	28
33	791828	3386	999166	13	792662	8399	207338	27
34	793859	3370	999158	13	794701	8383	205299	26
35 36	795881	8354	999150	13	796731	8368	203269	25
30 37	797894 799897	8339	999142 999134	13	798752 800763	8352	201248	24
38	801892	3323	999126	13	802765	8337	199237 197235	23 22
89	803876	3 308	999118	13	804758	8322	195242	21
40	805852	8293	999110	13	806742	8307	193258	20
41	8.807819	3278	9.999102	14	8,808717	3292	11.191283	19
41	809777	3263	999994	14	810683	8277	189317	18
43	811726	3249	999086	14	812641	3262	187359	17
44	813667	3234	999077	14	814589	8248	185411	16
45	815599	8219	999069	14	816529	3233	183471	15
46	817522	3205	999061	14	818461	8219	181539	14
47	819436	8191	999053	14	820384	8205	179616	13
48	821343	8177	999044	14	822298	8191	177702	12
49	823240	8163 8149	999036	14 14	824205	8177 3163	175795	11
5 3	825130	8149 8135	999027	14 14	826103	8150	173897	10
51	8.827011		9.999019		8.827992	1	11.172008	9
52	828884	8122	999010	14	829874	3136	170126	8
53	880749	8108	999002	14	831748	8123	168252	7
54	882607	3095 8082	998993	14 14	833613	8109 8096	166387	6
55	834456	8069	998984	14	885471	8088	164529	1 5
56	836297	8056	998976	15	837321	3070	162679	4
57	838130	8043	998967	15	839163	£057	160837	3
58	889956	8030	998958	15	840998	8045	159002	2
59	841774	8017	998950	15	842825	8032	157175	1
60	843585	8005	998941	15	844644	8019	155356	0
	Cosine.		Sine.	<u> </u>	Cotang.	<u> </u>	Tang.	M.
	January.		Dine.	1	, omang.	1	Tang.	437.

			Degrees.	<u> </u>	JGARITH			
M.	Sine.	D.100".	Cosme.	D.	Tang.	D. 100".	Cotang.	
0	8.843585	3005	9.998941	15	8.844644	3019	11.155355	60
1	845387	2992	998932	15	846455	£007	155545	59
2	847183	2980	998923	15	848260	2995	151740	58
3	848971	2968	998914	15	850057	2983	149943	57
4	850751	2955	998905	15	851846	2970	148154	56
5	852525	2943	998896	15	853628	2958	146372	55 54
6	854291	2931	998887	15	855403 857171	2946	144597 142829	53
7 8	856049 857801	2919	998878 998869	15	858932	2935	141068	52
ŝ	859546	2908	998860	15	860686	2923	139314	51
10	861283	2896	998851	15	862433	2911	137567	50
		2884	9,998841	15	8.864173	2900	11.135827	49
11	8.863014 864738	2873	9.998832	15	865906	2888	134094	48
12 13	866455	2861	998823	15	867632	2877	132368	47
14	868165	2850	998813	16	869351	2866	130649	46
15	869868	2839	998804	16	871064	2854	128936	45
16	871565	2828	998795	16	872770	2843	127230	44
17	873255	2817	998785	16	874469	2832	125531	43
18	874938	2806	998776	16	876162	2821	123838	42
19	876615	2795	998766	16	877849	2811	122151	41
20	878285	2784	998757	16 16	879529	2800	120471	40
21	8.879949	2773	9.998747		8.881202	2789	11.118798	59
22	881607	2763	998738	16	882869	2779	117131	38
23	883258	2752	998728	16	884530	2768	115470	37
24	884903	2742	998718	16	886185	2758	113815	36
25	886542	2731 2721	998708	16	£87833	2747 2787	112157	85
26	888174	2711	998699	16 16	889476	2727	110524	34
27	889801	2700	998689	16	891112	2717	108888	33
28	891421	2690	998679	16	892742	2707	107258	32
29	893035	2680	998669	17	894366	2697	105634	31
30	894643	2670	998659	17	895984	2687	104016	30
31	8.896246	2660	9.998649	17	8.897596	2677	11.102404	29
32	897842	2651	998639	17	899208	2667	100797	28
38	899432	2641	998629	17	900803	2658	099197	27
34	901017	2631	998619	17	902398	2648	097602	26
35	902596	2622	998609	17	903987	2639	096013	25
36	904169	2612	998599	17	905570	2629	094430	24
37	905786	2603	998589	17	907147	2620	092853	23
38	907297	2593	998578	17	908719	2610	091281	22 21
39 40	908853	2584	908568	17	910285 911846	2601	089715 088154	20
	910404	2575	998558	17		2592		
41	8.911949	2566	9.998548	17	8.913401	2583	11.086599	19
42	913488	2556	998537	17	914951	2574	085049 083505	18 17
43	915022	2547	\$98527	17	916495	2565	081966	.16
44	916550	2538	998516	17	918034 919568	2556	081966	15
45 46	918073 919591	2529	998506 998495	18	919308	2547	078904	14
47	919991	2521	998485	18	922619	2538	077381	13
48	922610	2512	998474	18	924136	2529	075864	12
49	924112	2503	998461	18	925649	2521	074351	iĩ
50	925609	2494	998453	18	927156	2512	072844	10
51	8.927100	2486	9.998442	_18_	8.928658	2504	11.071842	9
52	928587	2477	9.998442	18	930155	2495	069845	8
53	930068	2469	998421	18	931647	2487	068353	7
54	931544	2460	998410	18	•933134	2478	066866	6
55	933015	2452	998399	18	934616	2470	065884	5
56	934481	2443	998388	18	936093	2462	068907	4
57	935942	2435	998377	18	937565	2453	062435	8
58	987398	2427	998366	18	939032	2445	060968	2
59	938850	2419	998355	18	940494	2487	059506	1
60	940296	2411 2403	9 8314	18 18	941952	2429 2421	058048	0
		4100		10		4741		-
	Cosine.	I 1	Sine.	1_	Cotang.	'	Tang.	M.

				TEME	· (• -	egrees.	,	04
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	8.940296	i 						
1	941738	2403	9.998344	18	8.941952	2421	11.058048	60
2		2394	998333	19	943404	2413	056596	59
2	943174	2887	998322	19	944852	2405	055148	58
3	944606	2379	998311	19	946295	2397	053705	57
4	946034	2371	998300	19	947734	2390	052266	56
5	947456	2363	998289	19	949168	2382	050832	55
6	918874	2355	998277	19	950597		049403	54
6 7	950287	2348	998266		952021	2374	047979	53
8	951696		998255	19	953441	2367	046559	52
9	953100	2340	998243	19	954856	2359	045144	51
10	954499	2332	998232	19	956267	2351	043733	50
	I	2325		19		2344		
11	8.955894	2317	9.998220	19	8.957674	2336	11.042326	49
12	957284	2310	998209	19	959075	2329	040925	48
13	958670	2302	998197	19	960473	2322	039527	47
14	960052	2295	998186	19	961866	2314	038134	46
15	961429	2288	998174	19	963255		036745	45
16	962801	2280	998163		964639	2807	035361	44
17	964170		998151	19	966019	2300	033981	43
18	965534	2273	998139	19	967394	2293	032606	42
19	966893	2266	998128	20	968766	2286	031234	41
20	968249	2259	998116	20	970138	2279	029867	40
		2252		20		2271		
21	8.969600	2245	9.998104	20	8.971496	2265	11.028504	89
22	970947	2238	998092	20	972855	2257	027145	38
23	972289	2231	998080	20	974209		025791	37
24	973628		998068		975560	2251	024440	86
25	974962	2224	9.)8056	20	976906	2244	023094	35
26	976293	2217	998014	20	978248	2237	021752	84
27	977619	2210	998032	20	979586	2230	020414	88
28	978941	2203	993020	20	980921	2224	019079	32
29	980259	2197	998008	20	982251	2217	017749	31
30		2190		20		2210		
	.981573	2183	997996	20	983577	2204	016423	30
81	8.982883	2177	9.997984	20	8.984899	2197	11.015101	29
32	984189	2170	997972		986217		013783	28
33	985491		997959	20	987532	2191	012468	27
84	986789	2164	997947	20	988842	2184	011158	26
35	988083	2157	997935	21	990149	2178	009851	25
36	989374	2151	997922	21	991451	2171	008549	24
87	990660	2144	997910	21	992750	2165	007250	23
38	991943	.2138	937897	21		2159		22
89		2131		21	994045	2152	005955	
	993222	2125	997885	21	995337	2146	004663	21
40	994497	2119	997872	21	996624	2140	003376	20
41	8.995768		9.997860	1	8.997908		11.002092	19
42	997036	2113	997847	21	999188	2134	000812	18
43	998299	2106	997835	21	9.000465	2127	10.999535	17
41	999560	2100	997822	21	001738	2121	998262	16
45	9.000316	2094	997809	21	003007	2115	996993	15
46	002069	2088	997797	21	003007	2109	995728	14
47	003318	2082	997784	21		2103		13
48		2076		21	005534	2097	904466	
	004563	2070	997771	21	006792	2091	993208	12
49	005805	2034	997758	21	008047	2085	991953	11
50	007044	2058	997745	21	009298	2080	990702	10
51	9.008278	l	9.997732		9.010546		10.989454	9
52	009510	2052	997719	22	011790	2074	988210	8
53	010737	2016	997706	22	013031	2068	986969	7
54	011962	2040	997693	22	014268	2062	985732	6
55	013182	2035	997680	22	015502	2056	984498	5
56		2029		22		2051		4
	014400	2023	997667	22	016732	2045	983268	4
57	015618	2017	997654	22	017959	2039	982041	8 2
58	016824	2012	997641	22	019183	2034	980817	2
59	018031	2006	997628	22	020403	2028	979597	1
60	019235	2001	907614	22	021620	2023	978380	0
·		2001		. 24			!	
	Cosine.	ı İ	Sine.	1	Cotang.	[Tang.	М.

00		(0	Degrees	., -	OGARIIH.	MIC.		
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	Γ
0	9.019235	9001	9.997614	00	9.021620	0000	10.978380	60
1	020435	2001	997601	22	022834	2023	977166	59
3	021632	1995	997588	22	024044	2018	975956	58
3	022825	1990	997574	22	025251	2012	974749	57
4	024016	1984 1979	997561	22 22	026455	2007	973545	56
5	025203	1973	997547	22	027655	2001	972345	55
6_	026386	1968	997534	23	028852	1996 1990	971148	54
7	027567	1962	997520	23	030046	1985	969954	53
8	028744	1957	997507	23	031237	1980	968763	52
9	029918	1952	997493	23	032425	1974	967575	51
10	031089	1947	997480	23	033609	1969	966391	50
11	9.032257	1941	9.997466	23	9.034791	1964	10.965209	49
12	033421	1936	997452	23	035969	1959	964031	48
13	034582	1931	997489	23	037144	1954	962856	47
14	035741	1926	997425	23	038316	1949	961684	46
15	036896 038048	1920	997411	23	039485	1943	960515	45
16		1915	997397	23	040651	1938	959349	44
17 18	039197 040342	1910	997383	23	041813	1933	958187	43
19	041485	1905	997869 997855	23	042973 044130	1928	957027	42
20	042625	1900	997841	23	045284	1923	955870 954716	41 40
	i	1895		23		1918		
21 22	9.043762 044895	1890	9.997327	23	9.046434	1913	10.953566	39
23	044895	1885	997313 997299	24	047582	1908	952418	38
24	047154	1880	997299	24	048727 049869	1904	951273 950131	37 36
25	048279	1875	997271	24	051008	1899	948992	36 35
26	049400	1870	997257	24	052144	1894	947856	34
27	050519	1865	997242	24	053277	1889	946723	33
28	051635	1860	997228	24	054407	1884	945593	32
29	052749	1856	997214	24	055535	1879	944465	31
30	053859	1851	997199	24	056659	1875	943341	30
31	9.054966	1846	9.997185	24	9.057781	1870	10.942219	29
32	056071	1841	997170	24	058900	1865	941100	28
83	057172	1836	997156	24	060016	1861	939984	27
34	058271	1832	997141	24	061130	1856	938870	26
35	059367	1827	997127	24	062240	1851	937760	25
36	060460	1822	997112	24	063348	1847	936652	24
37	061551	1818	997098	24	064453	1842	935547	23
38	062639	1813	297083	24	065556	1838	934444	22
89	063724	1809	997068	25	066655	1833	933345	21
40	064806	1804	997053	25	067752	1829	932248	20
41	9.065885	1799	9.997039	25	9.068846	1824	10.931154	19
42	066962	1795	997024	25	069938	1820	930062	18
43	068036	1790	997009	25	071027	1815	928978	17
44	069107	1786	996994	25	072113	1811	927887	16
45	070176	1781	996979	25	073197	1806	926803	15
46	071242	1777	996964	25	074278	1802	925722	14
47	072306	1773 1768	996949	25 25	075356	1798 1793	924644	13
48	073366	1764	996934	25	076432	1793	923568	12
49	074424	1760	996919	25	077505	1785	922495	11
_50	075480	1755	996904	25	078576	1780	921424	10
51	9.076533	1751	9.996889	$\frac{25}{25}$	9.079644		10.920356	9
52	077583	1747	996874	25 25	080710	1776 1772	919290	8
53	078631	1747	996858	25 25	081773	1772	918227	7
54	079676	1738	996843	26	082833	1764	917167	6
55	080719	1734	996828	26	083891	1759	916109	5
56	081759	1730	996812	26	084947	1755	915053	4
57	082797	1725	996797	26	086000	1751	914000	3
58	083832	1721	996782	26	087050	1747	912950	2
59 60	084864 085894	1717	996766	26	088098	1743	911902	1
- 00	000094	1713	996751	26	089144	1739	910856	0
	Cosine.	T T	Sine.	-	Cotang.		Tang.	M.
						·	- mug.	

83 Degrees.

			AND TANG		<u> </u>	egrees.	<i>)</i>	30
M	. Sine.	D.100".	Cosine.	D	Tang.	D.100".	Cotang.	
	9.085894	1713	9.996751	26	9.089144	1700	10.910856	60
1 1	L 086922	1700	996735	26	090187	1789 1735	909813	59
2	2 087947	1705	996720	26	091228	1781	908772	58
8	3 088970	1701	996704	26	092266	1727	907734	57
4	4 089990	1607	996688	26	098302	1723	906698	56
) (1692	996673	26	094336	1719	905664	55
) (6 092024	1680	996657	26	095367	1715	904633	54
1 3		1695	996641	26	096395	1711	903605	53
	8 094047	1681	996625	26	097422	1707	902578	52
	9 095056	1677	996610	26	098446	1703	901554	51
1	_	1673	996594	26	099468	1699	900532	50
1		1660	9.996578	27	9.100487	1695	10.899513	49
1		1665	996562	27	101504	1692	898496	48
1 1		1661	996546	27	102519	1688	897481	47
1 1		1657	996530	27	103532	1684	896468	46
1		1652	996514	27	104542	1680	895458	45
1		1650	996498	27	105550	1676	894450	44
1		1616	999482	27	106556	1673	893444	43
1			999465	27	107559	1669	892441	42
1		1688	996449	27	108560	1665	891440	41
2		_ 1 1054	996433	27	109559	1662	890441	40
2			9.996417	27	9.110556	1658	10.889444	89
2		1697	996400	27	111551	1654	888449	38
2		1692	996384	27	112543	1651	887457	37
2	4 10990	1690	996368	27	113533	1647	886467	36
2		1616	996351	27	114521	1643	885479	85
2 2			996335	27	115507	1640	884498	84
			996318 996302	28	116491	1636	883509	33 32
2		- 1009	996285	28	117472 118452	1633	882528 881548	31
1 3		7 TOOT	996269	28	119429	1629	880571	30
-		1098		28		1625		
3			9.996252 996235	28	9.120404	1622	10.879596	29
3			996219	28	121377 122348	1618	878623 877652	28 27
3		1987	996202	28	123317	1615	876683	26
3		1984	996185	28	124284	1612	875716	25
	6 12141	7 1080	996168	28	125249	1608	874751	24
3		10//	996151	28	126211	1605	873789	23
	8 12330	g 1973	996134	28	127172	1001	872828	22
	9 12424	2 1040	996117	28	128130	1598	871870	21
	0 12518	7 1966	996100	28	129087	1594	870913	20
1	1 9.12612	1003	9.996083	28	9.130041	1591	10.869959	19
	2 12706	U 1999	996066	28	130994	1588	869006	18
	3 12799	1996	999049	28	131944	1584	868056	17
	4 12892	1002	996032	29	132893	1581	867107	16
	5 12985	4 1949	996015	29	133839	1578	866161	15
	6 13078	1 7940	995998	29	134784	1574	865216	14
	7 13170	c 1042	995980	29	135726	1571	864274	13
4	8 13263	1539	995963	29 29	136667	1568	863333	12
4	9 13355		995946	29	137605	1564 1561	862395	11
5	0 13447	0 1529	995928	29	138542	1558	861458	10
5	9.13538	7 1	9.995911		9.139476		10.860524	9
5	2 13630	1526	995894	29	140409	1555	859591	8
	3 13721		995876	29 29	141340	1552	858660	7
	4 13812	8 1519	995859	29	142269	1548	857731	6 5
	5 13903	(1510	995841	29	143196	1545 1542	856804	5
	6 13994	4 1810	995823	29	144121	1539	855879	4 3
	7 14085	1506	995806	29	145044	1536	854956	8
	8 14175	4 1500	995788	29	145966	1533	854034	2
	9 14265	9 1500	995771	30	146885	1530	853115	1
6	60 14355	5 1497	995753	80	147803	1526	852197	0
F	Cosine		Sine.	 	Cotang.	 	Tang.	M.
L_	Cosme		l Pille.	I	L COMMING.	1	I rank.	m.

82 Degrees.

02		, (0	Degrees.	, .	OGARITH	MIC		
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	9.143555	1497	9.995753	30	9.147803	1500	10.852197	60
1	144453	1494	995735	30	148718	1526 1523	851282	59
2	145349	1491	995717	30	149632	1520	850 3 68	58
3	146243	1487	995699	30	150544	1517	849456	57
4	147136	1484	995681	30	151454	1514	848546	56
5	148026	1481	995664	30	152363	1511	847637	55
6 7	148915	1478	995646	30	153269	1508	846731	54
8	149802 150686	1475	995628 995610	80	154174	1505	845826	53
9	151569	1472	995591	30	155077	1502	844923	52
10	152451	1469	995573	30	155978 156877	1499	844022 843123	51 50
11		1466		30		1496		
12	9.153330 154208	1463	9.995555	30	9.157775	1493	10.842225	49
13	155083	1460	995537 995519	30	158671	1490	841329 840435	48
14	155957	1457	995501	30	159565 160457	1487	839543	47 46
15	156830	1454	995482	30	161347	1484	838653	40 45
16	157700	1451	995464	31	162236	1481	837764	44
17	158569	1448	995446	31	163123	1479	836877	43
18	159435	1445	995427	31	164008	1476	835992	42
19	160301	1442	995409	31	164892	1478	835108	41
20	161164	1439	995390	31	165774	1470	834226	40
21	9.162025	1436	9.995372	31	9.166654	1467	10.833346	39
22	162885	1433	995353	31	167532	1464	832468	38
23	163743	1430	995334	31	168409	1461	831591	37
24	164600	1427	995316	31	169284	1459	830716	36
25	165454	1425	995297	31	170157	1456	829843	35
26	166307	1422	995278	31	171029	1453	828971	34
27	167159	1419	995260	81	171899	1450	828101	33
28	168008	1416 1413	995241	31 31	172767	1447 1445	827233	32
29	168856	1410	995222	31	173634	1445	826366	31
30	16970 2	1408	995203	32	174499	1439	825501	30
31	9.170547		9.995184		9.175362		10.824638	29
32	171389	1405	995165	32	176224	1436	823776	28
33	172230	1402	995146	32	177084	1434	822916	27
34	173070	1399 1397	995127	32	177942	1431	822058	26
35	173908	1394	995108	32 32	178799	1428 1426	821201	25
36	174744	1391	995089	32	179655	1423	820345	24
37	175578	1388	995070	32	180508	1420	819492	23
38	176411	1386	995051	32	1 81360	1418	818640	22
39 40	177242	1383	935032	32	182211	1415	817789	21
·	178072	1380	995013	32	183059	1412	816941	20
41	9.178900	1377	9.991993	32	9.183907	1410	10.816093	19
42	179726	1375	994974	32	184752	1410	815248	18
43	180551	1372	994955	32	185597	1404	814403	17
41	181374	1369	994935	32	186439	1402	813561	16
45 46	182196 183016	1367	994916	32	187280	1399	812720	15
46	183834	1364	994896	33	188120	1397	811880	14
48	184651	1362	994877 994857	33	188958	1394	811042	18
49	185466	1359	994837	33	189794 190629	1392	810206	12 11
50	186280	1356	994818	33	190529	1389	809371	10
51	9.187092	1354		33		1386	808538	
52	187993	1351	9.994798	33	9.192294	1384	10.807706	9
58	188712	1349	994779	33	193124	1381	806876	8
54	189519	1346	994759 994739	33	193953 194780	1379	806017	7
55	190325	1343	994789	33	194780	1376	805220	6 5
56	191130	1341	994700	33	196430	1374	804394	4
57	191933	1338	994680	33	197253	1371	803570 802747	3
58	192734	1336	994660	33	197255	1369	801926	9
59	193534	1333	\$94640	33.	198894	1367	801106	2 1
60	194332	1331	994620	33	199713	1364	800287	ō
		1328		33		1362		
1	Cosine.		Sine.		Cotang.	I	Tang.	M.

				GENI		cgrees	7	
M.	Sine.	D.100".	Cosine.	D.	Tang.	D. 100",	Cotang.	
0	9.194332		9.994620	Ī	9.199713		10.800287	60
iii	195129	1328	994600	33	200529	1362	799471	59
	195125	1326	994580	33	201345	1359	798655	58
2		1323		33		1357		
3 4	196719	1321	994560	34	202159	1354	797841	57
4	197511	1318	994540	34	202971	1352	797029	56
5	198302	1316	994519	34	203782	1350	796218	55
6	199091	1313	9944 99	34	204592	1347	795408	54
7	199879	1311	994479	34	205400	1345	794600	53
8	200666	1309	994459	34	206207	1342	793793	52
9	201451		994438		207013		792987	51
10	202234	1306	994418	34	207817	1340	792183	50
		1304	9.994398	34	9.208619	1338	10.791381	49
11	9.203017	1301	994377	34	209420	1335	790580	48
12	203797	1299		34		1333		
13	204577	1297	994357	34	2102:0	1331	789780	47
14	205354	1294	994336	34	211018	1328	788982	46
15	206131	1292	994316	34	211815	1326	788185	45
16	2 06903	1289	994295	34	212611	1324	787389	44
17	207679		994274	34	213405	1322	786595	43
18	208452	1287	994254		214198		785802	42
19	209222	1285	994233	35	214989	1319	785011	41
20	209992	1282	994212	35	215780	1317	784220	40
		1280		35		1315		
21	9.210760	1278	9.994191	35	9.216568	1312	10.783432	₹9 90
22	211526	1275	994171	35	217356	1310	782644	38
23	212291	1273	994150	85	218142	1308	781858	37
24	213055		904129	35	218926	1306	781074	36
25	213818	1271	994108		219710	1303	780290	85
26	214579	1269	994087	35	220492		779508	34
27	215338	1266	994066	35	221272	1301	778728	88
28	216007	1264	994045	35	222052	1299	777948	82
20	216854	1262	994024	35	222830	1297	777170	31
30		1259	994003	35	223607	1295	776393	80
·~	217609	1257		35		1292		
31	9.218363	1255	9.993982	35	9.224382	1290	10.775618	29
32	219116	1253	993960	35	225156	1288	774844	28
83	219868	1251	993939	35	225929	1286	774071	27
84	220618		993918		2 26700	. 1284	7 73300	26
35	221367	1248	993897	35	227471		772529	25
36	222115	1246	993875	36	228239	1282	771761	24
37	222861	1244	993854	36	229007	1280	770993	23
38	223606	1242	993832	36	229773	1277	770227	22
39	224349	1240	993811	36	280589	1275	769461	21
40	225092	1237	993783	36	231302	1273	768698	20
		1235		36		1271		
41	9.225833	1233	9. 993768	36	9.232065	1269	10.767935	19
42	226573	1233	993746	36	232826	1267	767174	18
43	227311		993725	36	233586	1265	766414	17
44	228048	1229	993703		284845		765655	16
45	228784	1227	993681	36	235103	1263	764897	15
46	229518	1224	993360	36	235859	1261	764141	14
47	280252	1222	993638	36	236614	1259	763386	13
48	230984	1220	993616	36	237368	1256	762632	12
		1218	993594	36	238120	1254	761880	ii
49	231715	1216		36		1252	761128	10
50	232444	1214	993572	37	238872	1250		
51	9.233172	1212	9.993550	87	9.289622	1248	10.760378	9
52	233899		993528	37	240371	1246	759629	8
53	234625	1210	998506		241118	1244	758882	7
54	235349	1208	993484	37	241865		758135	6
(55	236073	1205	993462	37	242610	1242	757390	5
56	236795	1203	998440	87	243354	1240	756646	1 4 1
57	237515	1201	993418	37	244097	1238	755903	R
1 50		1199	998396	37	244839	1236	755161	3 2
58	238235	1197		37		1234	754421	ī
59	238953	1195	993374	37	245579	1232		ō
60	239670	1193	933351	37	246319	1230	753681	ا ت
<u>!</u>	=		G!	 	Cotons	 	Tong	M.
	Cosine.	1	Sine.	1	Cotang.	i	Tang.	1 176.

-		(-	o Degree	~,	LOGARIII		•	
M.	Sine.	D.100".	Cosine.	D.	Tang.	D. 100".	Cotang.	L
0	9.239670	****	9.993351	05	9.246319	1000	10.753681	60
ĭ	240386	1193	993329	37	247057	1230	752943	59
2	241101	1191	993807	87	247794	1228	752206	58
3 4	241814	1189	993284	37	248530	1226	751470	57
4	242526	1187	993262	37	249264	1224	750736	56
5	243237	1185	993240	87	249998	1223	750002	55
6	243947	1183	993217	37	250780	1221	749270	54
7	244656	1181	993195	88	251461	1219	748539	53
8	245363	1179	993172	88	252191	1217	747809	52
ğ	246069	1177	993149	38	252920	1215	747080	51
10	246775	1175	993127	88	253648	1213	746352	50
11	9.247478	1173	9.993104	. 88	9.254374	1211	10.745626	49
12	248181	1171	993081	88	255100	1209	744900	48
13	248883	1169	993059	38	255824	1207	744176	47
14	249583	1167	993036	38	256547	1205	743453	46
15	250282	1165	993013	38	257269	1203	742731	45
16		1164		88	257990	1202	742731	44
	250980	1162	992990	88		1200		
17	251677	1160	992967	88	258710	1198	741290 740571	43 42
18	252373	1158	992944	38	259429	1196		
19 20	253067	1156	992921	38	260146	1194	789854 789137	41
	253761	1154	992898	88	260863	1192		40
21	9.254453	1152	9.992875	38	9.261578	1191	10.738422	89
22	255144	1150	992852	89	262292	1189	737708	38
23	255834	1148	992829	39	263005	1187	736995	37
24	256523	1146	992806	89	263717	1185	786283	83°
25	257211	1145	992783	39	264428	1183	735572	35
26	257898	1143	992759	39	265138	1181	734862	34
27	258583	1145	992736	89	265847	1180	734153	33
28	259268	1139	992713	89	266555	1178	733445	32
29	259951	1137	992690	39	267261	1176	732739	31
30	260633	1137	992666	39 39	267967		732033	30
31	9.261314		9.992643		9.268671	1174	10.731329	29
32	261994	1133	992619	39	269375	1172	730625	28
33	262673	1132	992596	39	270077	1171	729923	27
34	263351	1130	992572	39	270779	1169	729221	26
35	264027	1128	992549	39	271479	1167	728521	25
36	264703	1126	992525	39	272178	1165	727822	24
37	265377	1124	992501	39	272876	1164	727124	23
38	266051	1122	992478	39	273573	1162	726427	22
39	266723	1121	992454	40	274269	1160	725781	21
40	267395	1119	992430	40	274964	1158	725036	20
		1117		40		1157		
41	9.268005	1115	9.992406	40	9.275658	1155	10.724342	19
42	268734	1114	992382	40	276351	1153	723649	18
43	269402	1112	992359	40	277043	1152	722957	17
44	270069	1110	992335	40	277734	1150	722266	16
45	270735	1108	992311	40	278424	1148	721576	15
46	271400	1106.	992287	40	279118	1147	720887	14
47	272064	1105	992263	40	279801	1145	720199	13
48	272726	1103	992239	40	280488	1143	719512	12
49	273388	1101	992214	40	281174	1141	718826	11
50	274049	1100	992190	40	281858	1140	718142	_10
51	9.274708		9.992166		9.282542		10.717458	9
52	275367	1098	992142	40	283225	1138	716775	. š
53	276025	1096	992118	40	283907	1136	716093	8 7
54	276681	1094	992093	41	284588	1135	715412	6
55	277337	1093	992069	41	285268	1133	714732	5
56	277991	1091	992044	41	285947	1132	714053	4 1
57	278645	1089	992020	41	286624	1130	713376	3 2
58	279297	1088	991996	41	287301	1128	712699	2
59	279948	1086	991971	41	287977	1127	712023	ĩ
60	280599	1084	991947	41	288652	1125	711848	ō l
		1082	231011	41	20002	1123		
	Cosine.		Sine.		Cotang.		Tang.	M.

	Qi	T) 100//	0 1			T 1000	<u> </u>	
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	<u></u> _
0	5.280599	1082	9.991947	41	9.288652	1123	10.711348	60
1	281248	1082	991922	41	289326	1123	710674	59
3	281897	1079	991897	41	289999	1122	710001	58
3	282544	1077	991873	41	290671	1119	709329	57
4	283190	1076	991848	41	291342	1117	708658	56
5	283836	1074	991823	41	292013	1115	707987	55
6	284480	1072	991799	41	292682	1114	707318	54
7	285124	1071	991774	41	293350	1112	706650	53
8	285766	1069	991749	41	294017	1111	705983	52
9	286408	1068	991724	42	294684	1109	705316	51
10	287048	1066	991699	42	295349	1107	704651	50
11	9.287688	1064	9.991674	42	9.296013	1106	10.703987	49
12	288326	1063	991649	42	296677	1106	703323	48
13	2 88964	1061	991624	42	297339	1103	702661	47
14	289600	1059	991599	42	298001	1101	701999	46
15	29 0236	1058	991574	42	2 98662	1100	701338	45
16	290870	1056	991549	42	299322	1008	700678	44
17	2 91504	1055	991524	42	299980	1097	700020	43
18	292137	1053	991498	42	300638	1097	699362	42
19	292768	1055	991473	42	301295	1095	698705	41
20	293399	1050	991448	42	3 01951	1094	698049	40
21	9.294029		9.991422	$\frac{42}{42}$	9.302607		10.697393	39
22	294658	1048	991397		303261	1091	696739	38
23	295286	1047	991372	42 42	303914	1089	696086	37
24	295913	1045	991346		304567	1088	695433	36
25	296539	1044	991321	43 48	805218	1086	694782	35
26	297164	1042 1040	991295	43	305869	1084	694131	34
27	297788		991270	43	806519	1083	693481	33
28	298412	1039 1037	991244	43	307168	1082 1080	692832	32
29	299034	1036	991218	43	307816	1079	692184	31
30	299655	1034	991193	43	808463		· 691537	30 (
31	9.300276		9.991167		9.309109	1077	10.690891	29
32	300895	1033	991141	43	309754	1076	690246	28
33	301514	1031	991115	43	810399	1074	683601	27
34	302132	1030	991090	43	811042	1073	688958	26
35	802748	1028	991064	43	811685	1071	688315	25
36	303364	1027	991038	43	812327	1070	687678	24
37	303979	1025	991012	43	312968	1068	687032	23
38	304593	1024 1022	990986	43 43	3 13608	1067 1065	C86392	22
3.)	305207		990960	43	814247	1064	685753	21
40	805819	1021 1019	990934	44	314885	1064	685115	20
41	9.306430		9.990908		9.815523		10,684477	19
42	307041	1018	990882	44	316159	1061	683841	18
43	807650	1016	990855	44	816795	1060	683205	17
44	308259	1015	990829	44	817430	1058	682570	16
45	308867	1013	990803	44	318064	1057	681936	15
46	209474	1012	990777	44 44	818697	1055 1054	681803	14
47	310080	1010	990750	44	819330		680670	13
48	810685	1009 1007	990724	44	819961	1053 1051	680039	12
49	311289	1007	990697	44	820592	1050	679408	11
_50	311893	1006	990671	44	321222	1048	678778	10
51	9.312495		9,990645		9.321851		10.678149	9
52	813097	1003	990618	44	322479	1047	677521	8
53	313698	1001	990591	44	323106	1046	676894	7
54	814297	1000	990565	44	823733	1044	676267	6
55	814897	998	990538	44 44	824358	1043	675642	5
56	815495	997 996	990511	45	824983	1042 1040	675017	4
57	316092	994	990485	45	825607	1039	674393	8
58	316689	993	990458	45	826231	1039	673769	2
59 60	317284	991	990431	45	826853	1037	673147	1
60	817879	990	990404	45	827475	1035	672525	0
-	-	3.0	61.	1 20	Cutana	1 1000		
·	Cosine.	l	Sine.	<u> </u>	Cotang.	<u> </u>	Tang.	M.

50	(12 Degrees.) LOGARITHMIC							
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	9.317879	990	9.990404	45	9.327475	1035	10.672525	60
1	318473	989	990378	45	328095	1033	671905	59
2	319066	987	990351	45	328715	1032	671285	58
3 4	319658 320249	986	990324	45	829834	1031	670666	57
5	320249 320840	984	990297 990270	45	829958 830570	1029	670047 669430	56 55
6	321430	983	990243	45	331187	1028	C68813	54
7	822019	982	990215	45	331803	1027	668197	53
8	322607	980	990188	45 45	832418	1025 1024	667582	52
9	323194	979 977	990161	45	833033	1023	66€967	51
10	323780	976	990134	45	3 33 6 46	1023	666354	50
11	9,324366	975	9.990107	46	9.334259	1020	10.665741	49
12	824950	973	990079	46	834871	1019	665129	48
13 14	325534 326117	972	990052 990025	46	835482 836093	1017	664518	47 46
15	32670 0	970	989997	46	336702	1016	663907 663298	45
16	327281	969	989970	46	837311	1015	662689	44
17	327862	968	989942	46	337919	1014	662081	43
18	328442	966 965	989915	46 46	338527	1012 1011	661473	42
19	329021	964	989887	46	839138	1010	660867	41
20	829599	962	989860	46	339739	1008	660261	40
21	9,330176	961	9.989832	46	9.340344	1007	10.659656	39
22	330753	960	989804	46	840948	1007	659052	38
23	331329	958	989777	46	341552	1005	658448	37
24 25	331903 332478	957	989749 989721	46	342155	1003	657845 657243	36 35
26	333051	956	989693	46	842757 343358	1002	656642	34
27	333624	954	989665	46	343958 343958	1001	656042	33
28	334195	953 952	989687	47	844558	1000	655442	32
29	331767	950	989610	47 47	345157	998 997	654843	81
30	335337	949	989582	47	845755	996	654245	80
31	9.335906	948	9.989558	47	9.340353	995	10.653647	29
32	336475	947	989525	47	846949	993 993	658051	28
33 34	337043	945	989497	47	347545	992	652455	27
35	337610 338176	944	989469 989441	47	348141 348735	991	651859 651265	26 25
36	338742	943	989413	47	849329	990	650671	24
87	339307	941	989385	47	349922	988	650078	23
38	339871	940 939	989356	47 47	350514	987	6494×6	22
39	340134	938	989328	47	351106	986 985	648894	21
40	340996	936	989300	47	351697	984	648303	20
41	9.341558	935	9.989271	47	9.352287	982	10.647713	19
42	342119	934	989243	47	352876	981	647124	18
43	342679 343239	932	989214 989186	48	353465	980	646535 645947	17 16
45	343239 343797	931	989157	48	354053 354640	979	645947 645360	15
46	344355	930	989128	48	355227	978	644773	14
47	344912	929	989100	48	355813	976	644187	13
48	345469	ε27 926	989071	48 48	356398	975 974	643602	12
49	346024	925	989042	48	356982	973	643018	11
50	346579	924	989014	48	857566	972	642434	10
51	9.347134	922	9.988985	48	9.358149	971	10.641851	9
52	347687	921	988956	48	358731	969	641269	8
53 54	348240	920	988927	48	359313	968	640687	7
55	\$48792 349343	919	988898 988869	48	359893 360474	967	640107 639526	6 5
56	349893	918	988840	48	361053	966	638947	4
57.	350443	916	988811	48	361632	955	638368	8
58	350992	915	988782	48	362210	964	637790	2
59	351540	914 913	988753	49 49	362787	962 961	637213	1
60	352088	911	988724	49	363364	960	636636	0
<u> </u>	Cosine.		Sine.		Cotang.	1	Tong	M.
	Streine.		4711104		Cotang.	<u> </u>	Tang.	M.

			IND IAN		<u> </u>	regrees		
_M	Sine.	D.100".	Cosine.	D	Taug.	D.100".	Cotang.	
0	9.352088	911	9.988724	49	9.863364	960	10.636636	60
1	352635	910	988695	49	363940	959	636060	59
2	353181	909	988666	49	364515	958	635485	58
3	353726	908	988636	49	365090	957	634910	57
4	354271	907	988607	49	365664	956	634336	56
5	354815	905	988578	49	366237	954	633763	55
6	355358	901	988548	49	366810	953	638190	54
7	355901	903	988519	49	367382	952	632618	53
8	356143	902	988489	49	367953	951	632047	52
9	356984	901	988460	49	368524	950	631476	51
10	357524	900	988430	49	369094	949	630906	50
11	9.358064		9.988401		9.369663		10.630337	49
12	358603	898	988371	49	370232	948	629768	48
13	359141	897	988342	49	870799	947	629201	47
14	359678	896	988312	49	371367	945	628633	46
15	360215	895	988282	50	371933	944	628067	45
16	360752	894	988252	50	372499	943	627501	44
17	361287	892	988223	50	373064	942	626936	43
18	361822	891	988193	50	373629	941	626371	42
19	362356	890	988163	50	374193	940	625807	41
20	362889	889	988133	50	374756	939	625244	40
$-\frac{1}{21}$	9.363422	888		50		938		
22		887	9.988103	50	9.375319	937	10.624681	39
23	363954	886	988073	50	375881	936	624119	38
24	364485	884	988043	50	376442	935	623558	37
25	365016	883	988013	50	377003	933	622997	36
26	365546	882	987983	50	377563	932	622437	35
27	366075	881	987958	50	378122	931	621878	34
28	366604	880	987922	50	378681	930	621319	3 3
28	367131	879	987892	50	379239	929	620761	32
30	367659	878	987862	50	379797	928	620203	31
	368185	876	987832	51	380354	927	619646	30
31	9.368711	875	9.987801	51	9.380910	926	10.619090	29
32	369236	874	987771	51	381466	925	618534	28
33	369761	873	987740	51	382020		617980	27
34	370285	872	987710	51	382575	924 923	617425	26
35	370808	871	987679	51	383129		616871	25
36	371330	870	987649	51	383682	922 921	616318	24
37	371852	869	987618	51	384234	920	615766	23
38	372373	868	987588	51	384786	919	615214	22
39	372894	866	987557	51	385337	918	614663	21
40	373414	865	987526	51	385888	917	614112	20
41	9.373933		9.987496		9.386438	I———	10.613562	19
42	374452	861	987465	51	386987	916	613013	18
43	374970	863	987434	51	387536	915	612464	17
44	375487	862	987403	51	388084	914	611916	16
45	376003	861	987372	51	288631	913	611869	15
46	376519	860	987341	52	389178	912	610822	14
47	377035	859	987310	52	389724	910	610276	13
48	377549	858	987279	52	390270	909	609730	12
49	378063	857	987248	52	390815	908	609185	ii
50	378577	856	987217	52	391360	907	608640	10
51	9.379089	855	9.987186	52	9.391903	905	10.608097	
52	379601	854	9.987186	52		905		9
53	380113	852	987124	52	392447	\$04	607553	8 7
• 54	380624	851	987124	52	392989	903	607011	7
55	381134	850		52	393531	902	606469	6 5
56	381643	849	987061 987030	52	394073	101	605927	5
57	382152	848		52	894614	900	605386	4
58	382661	847	986998	52	395154	890	604846	3
59	383168	846	986967	52	395694	898	604306	2
60	383675	845	986986	52	396233	897	603767	1
_ 30	009019	844	986904	52	396771	897	603229	0
	Cosine.	1	. Sine.		Cotang.		Tang.	M.
	,	1		!	Occurs.	<u> </u>	rang.	167

00	(14 Degrees.) LOGARITAMIC								
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	Ι	
O	9.383675	044	9.986904	1 50	9.396771		10.603229	60	
ĭ	384182	844	986873	52	397309	897	602691	6.9	
2	384687	843	986841	53	397846	896	602154	58	
3 ·	385192	842 841	· 986809	53 53	398383	895	601617	57	
4	885697	840	986778	53	898919	894 893	601081	56	
5	386201	839	986746	53	899455	892	600545	55	
6	886704	838	986714	53	399990	891	600010	54	
7	887207	837	986683	53	400524	890	599476	53	
8	387709	836	986651	53	401058	889	598942	52	
9	388210 388711	835	986619	53	401591	888	598409	51	
1		834	986587	53	402124	887	597876	_50_	
11	9.389211	833	9.986555	53	9.402656	886	10.597344	49	
12 13	389711	832	986523	53	403187	885	596813	48	
14	390210 390708	831	986491 986459	53	403718 404249	884	596282	47	
15	891206	830	986427	53	404249	883	595751 595222	46 45	
16	391703	829	986395	53	405308	882	594692	44	
17	392199	828	986363	54	405836	881	594164	43	
18	392695	827	986331	54	406364	880	593636	42	
19	393191	826	986299	54	406892	879	593108	41	
20	893685	825	986266	54	407419	878	592581	40	
21	9.894179	824	9.986234	54	9.407945	877	10.592055	39	
22	394673	823	986202	54	408471	876	591529	38	
23	395166	822	986169	54	408996	876	591004	37	
24	395658	821 820	986137	54	409521	875 874	590479	36	
25	396150	820 819	986104	54 54	410045	873	589955	35	
26	396641	818	986072	54	410569	872	589431	34	
27	397132	817	986039	54	411092	871	588908	33	
28	397621	816	986007	54	411615	870	588385	32	
29	398111	815	985974	54	412137	869	587863	31	
30	398600	814	985942	54	412658	863	587342	_60_	
31	9.399088	813	9.985909	55	9.413179	867	10.586821	29	
32	399575	812	_ 985876	55	413699	866	586301	28	
23	400062	811	985843	55	414219	865	585781	27 26	
34 25	400549	810	985811	55	414738	865	585262		
36	401035 401520	809	985778 985745	55	415257 415775	864	584743 584225	25 24	
37	402005	808	985712	55	416293	863	583707	23	
38	402489	807	985679	55	416810	862	583190	22	
39	402972	806	985646	55	417326	861	582674	21	
40	403455	805	985613	55	417842	860	582158	20	
41	9.403938	804	9.985580	55	9.418358	859	10.581642	19	
42	401420	803	985547	55	418873	858	581127	18	
43	404901	802	985514	55	419387	857	580613	17	
44	405382	801	985480	55	419901	857	580099	16	
45	405862	800	€85447	55	420415	856	579585	15	
46	406341	799 798	985414	55 56	420927	855 854	579073	14	
47	406820	797	985381	56	421440	853	. 578560	13	
48	407299	796	985347	56	421952	852	578048	12	
49	407777	793	985314	56	422463	851	577537	11	
50	408254	795	985280	56	422974	850	577026	10	
51	9.408731	794	9,985247	56	9.423484	850	10.576516	9	
[[2	409207	793	985213	56	423993	849	576007	8	
53	409682	792	985180	56	424503	848	575497	7	
54	410157	791	985146	56	425011	847	574989	6	
55	410632	790	985113	56	425519	846	574481	5	
56 57	411106 411579	789	985079 985045	56	426027 426534	845	578978	4 3	
58	411579	788	985045 985011	56	427041	844	578466 572959	9	
59	412524	787	984978	56	427547	844	572959 572453	1	
60	412993	786	984944	56	428052	843	571948	ō	
<u> </u>	1	785		56		842	0.4040		
L	Cosine.		Sine.		Cotang.		Tang.	M.	

M.	Sine.	D.100".	Oudno	T)		13.1000	<u> </u>	
		10.100	Cosine.	D.	Tang.	D.100".	Cotang.	<u> </u>
0	9.412996	785	9.984944	57	9.428052	842	10.571948	60
1	413467	784	984910	57	428558	841	571442	59
2	413938	784	984876	57	429062	840	570938	58
3	414408	783	984842	57	429566		570434	57
4	414878	782	984808		430070	839	569930	56
5	415347		984774	57	430573	838	569427	55
6	415815	781	984740	57	431075	838	568925	54
7	416283	780	984706	57	431577	837	568423	53
8	416751	779	984672	57	432079	836	567921	52
9	417217	778	984638	57	432580	835	567420	51
10	417684	777	984603	57	433080	834	56C920	50
	9.418150	776	9.984569	57	9.433580	833		
11		775		57		823	10.566420	49
12	418615	775	984535	57	434080	832	565920	48
13	419079	774	984500	57	434579	831	565421	47
14	419544	773	984466	57	435078	880	564922	46
15	420007	772	984432	57	435576	829	564424	45
16	420470	771	984397	58	436073	828	563927	44
17	420933	770	984363	58	436570	828	563430	43
18	421395	769	984328	58	437067		562933	42
19	421857	768	984294	58	437563	827	562437	41
20	422318	767	984259	58	438059	826	561941	40
21	9.422778	I————	9.984224		9.438554	825	10.561446	39
22	423238	767	984190	58	439048	824	560952	38
23	423697	766	984155	58	439543	824		
24	424156	765	984120	58	440036	823	560457	37
25	424615	764	984085	58	440529	822	559964	36
26	425073	763	984050	58		821	559471	35
27	425530	762		58	441022	820	558978	34
		761	984015	58	441514	820	558486	83
28	425987	761	983981	58	442006	819	557994	32
29	426443	760	983946	58	442497	818	557503	31
30	426899	759	983911	58	442988	817	557012	30
31	9.427354	758	9.983875	58	9.443479		10.556521	29
32	427809	757	983840	59	443968	816	556032	28
33	428263		983805		444458	816	555542	27
34	428717	756	983770	59	444947	815	. 555053	26
35	429170	755	983735	59	445435	814	554565	25
36	429623	755	983700	59	445923	813	554077	24
37	430075	754	983664	59	446411	813	553589	23
38	430527	753	983629	59	446898	812	553102	22
39	430978	752	983594	59	447384	811	552616	21
40	431429	751	983558	£9	447870	810	552130	20
		750	THE RESERVE AND ADDRESS OF THE PARTY OF THE	59		809		
41	9.431879	750	9.983523	59	9.448856	809	10.551644	19
42	432329	749	983487	59	448841	808	551159	18
43	432778	748	983452	59	449326	807	550674	17
44	433226	747	983416	59	449810	806	550190	16
45	433675	746	983381	59	450294	606	549706	15
46	434122	745	983345	- 59	450777	805	549223	14
47	434569	745	983309	60	451260	803 804	548740	13
48	435016	744	983273	60	451743	803	548257	12
49	435462	743	983238		452225		547775	11
50	435908	742	983202	60	452706	803	547294	10
51	9.436353		9.983166	60	9.453187	802	10.546813	9
52	436798	741	983130	60	453668	801	546332	8
53	437242	740	983094	60	454148	800	545852	7
54	437686	740	983058	60	454628	800	545372	6
55	438129	739	983022	60	455107	799	544893	5
56	438572	738	982986	60	455586	798		3
57	439014	737	982950	60		797	544414	4
58	439456	736		60	456064	797	543936	3
59		736	982914	60	456542	796	543458	2
60	439897	735	982878	60	457019	795	542981	1
1 00	440338	734	982842	60	457496	794	542504	0
	Cosine.		Sine.		Cotang.		Tang.	M.
	3.2		NILLO.	ı	Journa .	ı	i inug.	141

			Degrees		JUGARITH	4		
М.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	9.440338	734	9.982842	60	9.457496	794	10.542504	60
1	440778	734	982805	60	457973	794 794	542027	59
2	441218	732	982769	61	458449	793	541551	58
3	441658	731	982733	61	458925	792	541075	57
4	442096	781	982696	61	459400	791	540600	56
5	442535	730	982660	61	459875	791	540125	55
6	442973	729	982624	61	460349	790	539651	54
7	443410	728	982587	61	460823	789	539177	53
8	443847	728	982551	61	461297	788	538703	52
9	414284	727	982514	61	461770	788	538230	51
10	444720	726	982477	61	462242	787	537758	_50
11	9.445155	725	9.982441	61	9.462715	786	10.537285	49
12	445590	724	982404	61	463186	786	536814	48
13	446025	724	982367	Gĩ	463658	785	536342	47
14	446459	723	982331	61	464128	784	535872	46
15	446893	722	982294	61	464599	783	535401	45
16	447326	721	982257	61	465069	783	534931	44
17	447759	720	982220	62	465539	782	534461	43
18	448191	720	982183	62	466008	781	533992	42
19	448623	729	982146	62	466477	781	533523	41
20	449054	718	982109	62	466945	780	533055	40
21	9.449485	717	9.982072	62	9.467413	779	10.532587	39
22	449915	717	982035	62	467880	778	532120	38
23	450345	716	981998	62	468347	778	531653	37
24	450775	715	981961	62	468814	777	531186	36
25	451204	714	981924	62	469280	776	530720	35
26	451632	713	981886	62	469746	776	530254	34
27	452060	713	981849	62	470211	775	529789	33
28 29	452488	712	981812	62	470676	774	529324	32
30	452915	711	981774	62	471141	774	528859	31
	453342	710	981737	62	471605	773	528395	_30_
31	9.453768	710	9.981700	62	9.472069	772	10.527931	29
32	451194	709	981662	63	472532	771	527468	28
33	454619	708	981625	63	472995	771	527005	27
34 35	455044	707	981587	63	473457	770	526543	26
36	455469	707	981549	63	473919	769	526081	25
37	455893 456316	706	981512	63	474381	769	525619	24 23
38		705	981474	63	474842	768	523158	23
39	456739 457162	704	981436 981399	63	475303	767	524697	21
40	457584	704	981361	63	475763	767	524237	20
		703		63	476223	766	523777	
41	9.458006	702	9.981323	63	9.476683	765	10.523317	19
42	458427	701	981285	63	477142	765	522858	18
43	458848	701	981247	63	477601	764	522399	17
45	459268	700	981209	63	478059 478517	768	521941	16
46	459688 460108	699	981171 981133	63	478517	763	521483	15 14
47	460527	698	981133	63	478975 479432	762	521025 520568	13
48	460946	698	981057	64	479482	761	520568 520111	13 12
49	461364	697	981019	64	480345	761	519655	11
50	461782	696	980981	64	480801	760	519199	10
	1	696		64		759		
51	9.462199	695	9.980942	64	9.481257	759	10.518743	9
52 53	462616	691	980904	64	481712	758	518288	8
54	463032 463448	693	930866	64	482167	757	517833	7
55	463864	693	980827 980780	64	482621	757	517379	5
56	464279	692		64	483075	756	516925	4
57	464694	691	980750 980712	64	483529 483982	755	516471 516018	3
58	465108	690	980673	64	484435	755	515565	2
59	465522	690	980635	64	484887	754	515113	1
60	465935	689	980596	64	485339	753	514661	ō
	J	688		64	400000	753	014001	
	Cosine.		Sine.	1	Cotang.	1	Tang.	M.
								

		INES A	IND TANG	12111	. (1.2	regrees	••	430
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	9.465935	688	9.980596	64	9.485339	753	10.514661	60
1	466348	688	980558	64	485791	752	514209	59
2	466761	687	980519	65	486242	751	513758	58
3	467173	686	980480	65	486693	751	513307	57
4	467585	685	980442	65	487143	750	512857	56
5 6	467996 468407	685	980403	65	487593	750	512407	55
7	468817	684	980364 980325	65	488043 488492	749	511957	54
8	469227	683	980286	65	488941	748	511508 511059	53 52
ğ	460637	683	980247	65	489390	748	510610	51
10	470046	682	980208	65	489838	747	510162	50
11	9.470455	68 1	9.980169	65	9.490286	746	10.509714	49
12	470863	681	980130	65	490733	746	509267	48
13	471271	680	980091	65.	491180	745	508820	47
14	471679	679	980052	65	491627	744	508373	46
15	472086	678	980012	65	492073	744	507927	45
16	472492	678	979973	65	492519	743	507481	44
17	472898	677 676	979934	65 66	492965	743	507035	43
18	473304	676	9~9895	66	493410	742 741	506590	42
19	473710	675	979855	66	493854	741	506146	41
20	474115	674	979816	66	494299	740	505701	40
21	9.474519	674	9.979776	66	9.494743	740	10.505257	39.
22	474923	673	979737	66	495186	739	504814	38
23	475327	672	979697	66	465630	738	504370	37
24	475730	672	979658	66	496073	738	503927	36
25	476133	671	979618	66	496515	737	503485	35
26 27	476536	670	979579	66	496957	736	503043	34
. 28	476938 477340	669	979539	66	497399	736	502601	33
29	477741	669	979499 979459	66	497841	735	502159 501718	32 31
30	478142	668	979420	66	498282 498722	734	501718	30
31	9.478542	667		66		734		
32	478942	667	9.979380 979 34 0	66	9.499163 499603	733	10.500837 500397	29 28
33	479342	666	979300	67·	500042	733	499958	27
34	479741	665	979260	67	500481	732	499519	26
35	480140	665	979220	67	500920	731	499080	25
36	480539	664	979180	67	501359	731	498641	24
37	480937	663 663	979140	67 67	501797	730	498203	23
38	481334	662	979100	67	502235	730 729	497765	22
39	481731	651	979059	67	502672	728	497328	21
40	482128	661	979019	67	503109	728	496891	20
41	9.482525	660	9.978979	67	9.503546	$-\frac{727}{727}$	10.496454	19
42	482921	659	978939	67	503982	727	496018	18
43	483316	659	978898	67	504418	726	495582	17
44	483712	658	978858	67	504854	725	495146	16
45 46	484107	657	978817	67	505289	725	494711	15
47	484501 484895	657	978777 978737	67	505724	724	494276	14 13
48	485289	656	978696	68	506159 506593	724	493841 493407	12
49	485682	655	978655	68	507027	723	492973	11
50	486075	655	978615	68	507460	723	492540	10
51	9.486467	654	9.978574	68	9.507893	722	10.492107	9
52	486860	654	978533	68	508326	721	491674	8
53	487251	653	978493	68	508759	721	491241	7
54	487643	652	978452	68	509191	720	490809	6
55	488034	652	978411	68	509622	720	490378	5
56	488424	651 650	978370	68 68	510054	719 718	489946	4
57	488814	650	978329	68	510485	718	489515	3 1
58	489204	649	978288	68	510916	717	489084	2
59	489593	648	978247	68	511346	717	488654	1
60	489982	648	978206	68	511776	716	488 224	0
	Cosine.		Sine.	<u> </u>	Cotang.		Tang.	M.

(18 Degrees.) LOGARITHMIC

02			Degrees	`') 1	OGARITH	MIC		
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	9.489982	648	9.978206	68	9.511776	710	10.488224	60
1	490871	647	978165	68	512206	716	487794	59
2 3	490759	647	978124	69	512635	716	487365	58
3	491147	646	978083	69	513064	715	486936	57
4	491535	645	978042		513493	714	486507	56
5	491922	645	978001	69 69	513921	714	486079	55
6	492308	644	977959		514349	713	485651	54
7	492695	643	977918	69	514777	713	485223	58
8	493081	648	977877	69	515204	712	484796	52
9	493466		977835	69	515631	712	484369	51
10	493851	642	977794	69	516057	711	483943	50
11	9.494236	641	9,977752	69	9.516484	710	10.483516	49
12	494621	641	977711	69	516910	710	483090	48
13	495005	640	977669	69	517835	709	482665	47
14	495388	640	977628	69	517761	709	482239	46
15	495772	639	977586	69	518186	708	481814	45
16	496154	638	977544	69	518610	708	481390	44
17	496537	638	977503	70	519034	707	480966	43
18	496919	637	977461	70	519458	707	480542	42
19	497301	636	977419	70	519882	706	480118	41
20	497682	636	977377	70	520305	705	479695	40
		635		70		705		
21	9.498064	635	9.977335	70	9.520728	704	10.479272	39
22	498444	634	977293	70	521151	704	478849	38
23	498825	623	977251	70	521573	703	478427	37
24 25	499204	633	977209	70	521995	703	478005	36
	499584	632	977167	70	522417	702	477583	35
26	499968	632	977125	70	522838	702	477162	34
27	500342	631	977083	70	523259	701	476741	33
28	500721	630	977041	70	523680	701	476320	32
29	501099	630	976999	70	524100	700	475900	31
30	501476	629	976957	70	524520	699	475480	30
31	9.501854	628	9.976914		9.524940	699	10.475060	29
32	502231		976872	71	525359		474641	28
33	502607	628	976830	71	525778	698	474222	27
34	502984	627 627	976787	71	526197	698	473803	26
35	503360		976745	71	526615	697	473385	25
36	503735	626 625	976702	71	527033	697	472967	24
37	504110		976660	71	527451	696	472549	23
38	504485	625 624	976617	71	527868	696	472132	22
39	504860	624	976574	71	528285	695	471715	21
40	505234	624	976532	71	528702	695	471298	20
41	9.505608	623	9.976489	71	9.529119	694	10.470881	19
42	505981	622	976446	71	529535	691	470465	18
43	506354	622	976404	71	529951	693	470049	17
44	506727	621	976361	71	530366	693	469634	16
45	507099	621	976318	71	530781	692	469219	15
46	507471	620	976275	71	531196	691	468804	14
47	507843	619	976232	72	531611	691	468389	13
48	508214	619	976189	72	532025	690	467975	12
49	508585	618	976146	72	532439	650	467561	11
50	508956	618	976103	72	532853	C89	467147	10
		617		72		689		
51	9.509326	617	9.976060	72	9.533266	688	10.466734	9
52	509696	616	976017	72	533679	688	466321	8
53	510065	615	975974	72	534092	687	465908	7
54	510434	615	975930	72	534504	687	465496	6
55	510803	614	975887	72	534916	686	465084	5 4
56	511172	614	975844	72 72	585328	686	464672	4
57	511540	613	975800	72	535739	685	464261	8
58	511907	612	975757	72	536150	685	463850	2
59	512275	612	975714	72	536561	684	463439	1
60	512642	611	975670	72	536972	684	463028	0
	Cosine.		Sine.		Cotana			
ــــــا	Coome.		Bille.	·	Cotang.	1	Tang.	M.

0 9.512642				O dano		· \	Og rees		
1 513009 511 975582 73 53782 682 46208 38 513741 610 975589 73 538202 683 44208 3641407 609 975492 73 538202 681 460870 682 461889 681 460871 682 461889 682 461889 673 461889 673 461889 673 461889 673 461889 673 461889 673 461889 673 461889 674 46189 6	M	Sine.	D.100".	Cosine.	D.	Tang.	D. 100".		<u> </u>
1 0.150076 611			611		73		684		60
2					73				59
3 0.18741 609 975959 73 5.88611 682 461189 5 5.14472 609 975452 73 539020 681 460890 6 514872 608 975468 73 539020 681 460961 7 515202 608 975468 73 539429 681 460671 7 515202 606 975321 73 540645 680 459347 10 515930 606 975238 73 541661 679 459347 11 9.16667 605 9.975189 73 541661 679 459347 12 5.16687 604 975017 73 540868 677 457312 13 5.1732 604 975161 73 541876 678 457719 14 51774 603 975017 73 54288 677 457312 15 518197 603	2				73				58
5 514472 609 975452 73 589020 681 460980 6 514837 608 975408 73 539429 681 460971 7 515202 608 9759585 73 539827 680 460163 8 515566 607 975921 73 540245 680 459755 10 516291 606 975233 73 541061 679 459837 11 9.516657 605 9.75189 73 541061 679 458939 12 517020 604 975013 73 541665 678 457719 13 517822 604 975013 73 541685 677 457312 14 517745 603 975013 74 543094 676 456906 16 518498 602 974925 74 548905 675 456906 18 519951 601	3	513741						461798	57
6 514422 608 975408 73 539429 681 490980 7 515202 608 975408 73 539887 681 460571 8 515566 607 975921 73 539887 680 460163 9 515090 606 975277 73 540653 680 459347 10 516291 606 975238 73 540663 679 458939 11 9.516657 605 9.975189 73 541661 679 458939 12 517020 604 975018 73 541868 673 458125 13 517382 604 975017 73 542881 677 457812 16 518468 602 974909 74 543806 675 456906 17 518829 602 974925 74 543806 675 456609 18 51991 601	4	514107		975496		538611		461389	56
6 514887 608 975408 73 539429 681 460571 7 515202 608 975408 73 539847 680 450755 8 515566 607 975237 73 540245 680 450755 680 975233 73 540245 680 450755 680 975233 73 540245 680 450755 680 975233 73 540245 680 450755 680 975233 73 540245 680 450755 680 975233 73 540245 680 450755 680 975233 73 540245 680 450755 680 975233 73 540245 680 450755 680 975233 73 540245 680 450755 680 975233 73 540245 680 450847 97511 9.516567 605 9.975189 73 541281 677 458929 11 4 517745 603 975013 74 543094 676 456906 676 456905 676 456905 676 456905 676 456809 974792 74 54304 675 455285 676 456885 677 45782 678 458915 678 458915 678 456885 676 456890 974792 74 54504 676 456885 676 456885 676 456885 676 456885 676 456885 677 45782 678 458915 678 456885 676 456885 677 45782 678 458915 678 456885 676 456885 676 456885 676 456885 676 456885 676 456885 677 457885 672 456885 676 456885 677 457885 672 456885 677 457885 672 456885 677 457885 672 456885 677 457885 672 456885 677 457885 672 456885 677 457885 672 456885 677 457885 672 456885 677 457885 672 456885 677 457885 672 456885 677 457885 672 456885 677 457885 672 456885 677 457885 672 456885 677 457885 672 456885 677 457885 672 456885 677 45686 677 457885 672 456885 677 45686 677 45686 678 456885 677 45686 678 45686 678 45686 678 678 456885 677 45686 678 45	5			975452				460980	55
8 515566 607 975321 73 540245 680 490155 9 515930 606 9775321 73 540245 680 459755 680 975321 73 540245 680 459755 680 975321 73 540245 680 459755 680 975321 73 540245 680 459347 10 516294 606 975233 73 540245 680 459347 11 9.516857 605 9.51545 73 541061 679 458939 11 51517345 604 975101 73 541268 678 458125 13 517382 604 975101 73 542281 677 457612 14 517745 604 975057 73 542288 677 457612 16 518107 603 975013 74 543849 676 456300 16 518468 602 974925 74 548905 675 456300 17 518829 602 974925 74 548905 675 456300 19 51951 600 974792 74 545110 675 456300 675 456300 19 51951 600 974792 74 545110 675 456805 675 675 456805 675 456805 675 456805 675 456805 675 456805 675 456805 675 675 456805 675 675 675 675 675 675 675 675 675 67	6	514837		975408		539429		460571	54
c 0.13060 607 9/55277 73 540636 680 439730 10 516291 606 975277 73 540636 679 4589397 11 9.516657 605 -9.975189 73 541061 679 458939 12 517020 604 975101 73 54288 677 457129 13 517322 604 975101 73 542281 677 457719 14 517745 603 975077 73 543094 676 456906 16 518468 602 974925 74 543095 676 456605 18 519190 601 974880 74 544310 675 456699 19 519951 600 974886 74 54510 674 456481 20 519911 600 974886 74 54520 673 10.454476 22 22 520631 5	7	515202		975365		539837		. 460163	53
10		515566		975321		540245		459755	52
11 9.516657 606 9.975189 73 9.541648 678 458125		515930		975277				459347	51
11 9.516665 605 9.975145 73 541468 678 458125 12.48582 458125 678 457719 458125 678 457719 458125 677 457312 457719 458125 677 457312 677 456906 456901 676 456901 456901 456901 456901 456901 456901 456901 456901 456901 456901 456901 456901 456901 456901 456901 456901 456901 456901 676 456901 676 456901 676 456901 676 456901 676 456901 676 456901 676 456901 676 456901 676 456901 676 456901 676 456901 676 456901 676 456901 676 456201 672 451218 678 451628 673 451628 674 451628 673 451672 452280 673 451072 451628 673 451072	10	516294		975233		541061		458939	50
12 517020 604 975145 73 541875 678 458125 13 517382 604 975101 73 542881 677 457312 15 15 518107 603 975013 73 542888 677 457312 15 15 518107 603 975013 73 542888 677 456906 16 168 18488 602 974999 74 548499 676 456906 17 54899 676 456905 18 519190 601 974880 74 544300 675 455690 18 519191 600 974792 74 545116 674 454881 454711 674 454881 674 454881 674 454881 674 454881 674 454881 674 454881 674 454881 674 454881 674 454881 674 454881 674 454881 678 455669 10 4546689 673 <td< td=""><td>11</td><td>9 516657</td><td></td><td>-9.975189</td><td></td><td>9.541468</td><td></td><td>10 458539</td><td>49</td></td<>	11	9 516657		-9.975189		9.541468		10 458539	49
18 517892 604 975101 73 542281 677 457719 16 518107 603 975057 73 542688 677 457312 16 518468 602 974969 74 543094 676 456906 17 518829 602 974925 74 543095 676 456906 18 519190 601 974880 74 544310 675 455690 19 51951 600 974880 74 544715 674 455285 20 519911 600 974792 74 545119 674 454881 21 9.520271 599 9.74703 74 545284 673 454072 22 520631 599 974659 74 545286 673 454072 23 520990 5974659 74 546735 672 452862 25 521349 5974817 74									48
14 517745 603 975013 73 542688 677 456906 16 518468 602 974969 74 543499 676 456501 17 518829 602 974969 74 543499 676 456501 18 519190 601 974890 74 54310 675 456809 19 519511 600 974792 74 544715 674 455285 20 519911 600 974792 74 54524 673 454881 21 9.52071 599 974478 74 545028 673 454881 21 9.52071 599 9744703 74 545028 673 454881 21 9.520631 599 9744703 74 545028 673 454681 22 520631 598 974570 74 546935 672 458265 25 521707 597 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>47</td>									47
15 518107 603 975013 74 543094 676 456501 16 518468 602 974969 74 543809 676 456501 17 518829 602 974880 74 543805 675 456609 18 51990 600 974792 74 543805 675 456609 20 519911 600 974792 74 545119 675 45528 20 519911 600 974792 74 545119 674 45481 21 9.520271 599 974708 74 545192 673 454881 22 520631 599 974659 74 546331 672 458669 24 521349 598 974670 74 547188 671 452667 26 522761 597 974436 74 547498 671 452609 27 522424 597									46
16 518468 603 974969 74 548499 676 456501 17 518829 602 974925 74 543805 676 456601 18 519190 601 974880 74 544310 675 455601 19 519515 600 974792 74 545119 674 45481 20 519911 600 974792 74 545119 674 454881 21 9.502071 599 974703 74 545928 673 454072 22 520631 599 974674 74 545928 673 454072 23 52090 598 974674 74 546733 672 453669 24 521349 598 974576 74 547188 671 452862 25 521349 596 974381 74 547943 670 45260 27 752242 596									45
17 518829 602 974925 74 54810 675 456095 456095 18 519190 601 974880 74 544310 675 455690 455690 20 519911 600 974792 74 545119 674 454881 454881 21 9.520271 599 9.974708 74 545028 673 4544715 674 454881 4672 4546881 672 458699 454672 23 520990 598 974659 74 546331 672 458669 94 4547188 672 458669 94 454748 674 545748 672 458669 94 454862 672 458669 94 454848 671 452400 671 452400 671 452400 672 45862 458265 974974 74 54748 674 454865 672 458265 974974 74 547494 671 452400 4545655 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>44</td>									44
18 519190 601 974886 74 544310 675 455285 2455285 20 519911 600 974886 74 744715 674 454881 454881 21 9.520271 599 9.74703 74 545024 673 454881 454881 22 520691 598 974614 74 545028 673 454072 22 23 520990 598 974614 74 546735 672 453669 24 26 522066 597 974525 74 546736 672 453669 24 27 522424 596 974481 74 547346 671 452460 15 245265 22 25 22781 596 974436 74 547345 670 451655 32 245285 32 54644 598 974277 75 549149 669 450851 45 450450 45 4									43
19 519551 600 974886 74 543715 674 455285 455285 20 519911 600 974792 74 545119 674 454881 4 21 9.502271 599 9.74768 74 9.545624 673 10.454476 2 22 520631 599 974659 74 546381 672 453669 2 24 521849 598 974570 74 546735 672 453669 2 26 522066 597 974525 74 547188 671 452862 2 27 52424 597 974486 74 547948 671 452862 2 28 522781 596 974436 74 548747 669 451653 2 52450 974377 75 548747 669 451253 3 3 525498 597847 75 549149 669 450851									42
20					74		675		41
21									40
22 520631 599 974708 74 545928 673 454072 23 520990 598 974659 74 546331 672 453669 24 521349 598 974570 74 546735 672 453265 25 521707 598 974570 74 547138 672 452862 12 452862 12 672 452862 12 452660 12 452862 12 12 12 12 452862 12			600		74		674		
22 520990 599 974603 74 546331 672 453669 1453669 24 521349 598 974614 74 546735 672 453669 12 25 521707 597 974570 74 546735 672 453669 12 245265 12 25 521707 597 974525 74 547540 671 452460 12 22 522266 597 974481 74 547540 671 452460 12 22 523138 596 974481 74 547540 670 451655 22 2523138 596 974347 75 549149 669 450851 36 252498 594 9.74827 75 549149 669 450851 36 2524208 593 974172 75 549551 668 450049 36 3524664 593 974172 75 550752 667 449648 34 524920 593 974172 7			599		74		673		59
24 521349 598 974614 74 546735 672 453265 25 521349 598 974570 74 547188 672 453265 26 522066 597 974525 74 547188 671 452460 72 7522424 596 974436 74 547943 670 452057 72 28 522781 596 974436 74 548747 669 451655 29 523138 595 974391 75 548747 669 451655 29 452852 594 974377 75 549149 669 450851 36 2524928 594 974277 75 549951 668 450851 36 322 524208 594 974167 75 550352 668 450499 450851 38 324564 593 974167 75 550352 667 448248 36 525275 592 974167 75 551155 666 448448 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>38</td></t<>									38
24 521349 598 974514 74 547138 671 452862 26 522066 597 974525 74 547138 671 452860 2 26 522066 597 974525 74 547540 671 452860 2 2 74 547943 670 452667 3451655 2 2 2522781 596 974436 74 548345 670 451655 2 360 523495 594 974391 75 548747 669 451253 3 30 523495 594 9.74392 75 549149 669 450851 4 3450454 598 974257 75 5499550 668 450049 33 52464 598 974257 75 550352 667 449248 34 524920 593 974167 75 550752 667 449248 34 352575 592 974077 75 551552 666 448844 37		520990							37
26 522066 597 974575 74 547540 671 452460 74 27 522424 597 974481 74 547540 671 452460 1 28 522781 596 974436 74 548345 670 451655 2 29 523138 595 974347 75 549149 669 450851 2 30 523495 594 9.74827 75 549149 669 450851 2 31 9.523852 594 9.74257 75 549951 668 450049 3 32 524208 593 974167 75 550352 667 449648 3 34 524900 593 974122 75 550152 667 449648 3 35 52575 592 974122 75 551158 666 448447 3 36 525630 591 97897									36
20 522404 597 974325 74 547943 671 432407 28 28 522781 596 974481 74 54845 670 452057 28 29 523138 596 974391 75 548747 669 451253 3 30 523495 594 9.974302 75 549149 669 450851 3 31 9.523852 594 9.974302 75 5499550 668 450849 3 32 524208 593 974167 75 550550 668 450499 3 33 524564 593 974167 75 550352 668 449648 34 524920 592 974167 75 551155 667 448447 36 525680 592 974077 75 551552 666 448448 37 3525984 591 974082 75 551552 666 447649 34 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>35</td>									35
28 522781 596 974436 74 548845 670 451655 29 523188 596 974436 74 548845 670 451655 29 451655 36 974891 75 549149 669 450851 3 30 523495 594 9.974302 75 549149 669 450851 4 3669 450851 4 3669 450851 4 3669 450851 4 3669 450851 4 3669 450851 4 3669 450851 4 3669 450851 4 3669 450851 4 46049 4 3660 449648 3 3650856 449648 367 3650856 367464 593 974167 75 550752 667 449248 3660 367464 369 374167 75 550752 667 449248 366 365069 374077 75 551552 666 448448 367 365083 590	26								34
29 523138 596 974391 75 548747 669 451253 3 30 523495 594 974391 75 549149 669 450851 1 31 9.523852 594 9.74327 75 549149 669 450851 2 32 524208 593 974257 75 549951 668 450490 9 34 524920 593 974167 75 550352 667 449648 3 35 525275 592 974122 75 551153 666 448448 3 36 525630 591 974077 75 551552 666 448448 3 37 525984 591 974072 75 551952 666 448448 3 38 526332 590 973897 75 552351 666 447649 3 39 526934 597 973852	27								33
30 523498 595 974391 75 548141 669 450851 8 31 9.523852 594 9.974302 75 549149 669 450851 8 32 524208 593 974277 75 549951 668 450490 249480 593 974127 75 550752 668 449648 450499 34964 84 524920 593 974167 75 550752 667 449248 34 524920 593 974167 75 550752 667 449248 36 525675 592 974077 75 551155 666 448447 36 525275 591 974077 75 551552 666 448448 37 352594 591 974082 75 551552 666 448448 38 526385 590 973942 75 551552 666 447649 38 366693 589 973897 75 552750 665				974436				451655	32
31 9.523495 594 9.74347 75 9.549550 669 400851 4 31 9.523852 594 9.74302 75 5499550 668 450049 2 32 524208 593 974217 75 550352 668 449048 3 34 524920 593 974167 75 550752 667 449248 3 35 525275 592 974077 75 551152 666 448847 3 36 52580 591 974082 75 551552 666 448448 3 37 525984 591 974082 75 551552 666 448448 3 38 526385 590 973942 75 552351 665 447649 3 39 52693 590 973887 75 553149 664 446851 3 41 9.527400 588 9.78852 75 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>31</td></t<>									31
31 9.523852 594 9.74302 75 549550 668 450460 254208 3974212 75 549550 668 450460 25 449648 25 34 524900 598 974112 75 550752 667 449648 249648 25 255275 592 974122 75 550752 667 449648 248647 23 26 525630 591 974077 75 551152 666 448448 248647 23 24 248448 2484848 2484848 248448 2484848 2	30	523495		974347		549149		450851	80
32 524208 594 974257 75 549951 668 450049 633 524664 598 974212 75 550352 667 449248 43648 24849648 34 524920 598 974167 75 550752 667 449248 36 525275 592 974172 75 5501552 667 449248 36 525680 591 974077 75 551153 666 448448 36 525683 591 974077 75 551552 666 448448 36 36 525683 591 974082 75 551952 666 448448 38 36 526638 590 978987 75 552750 665 447649 36 39 526693 590 97897 75 552351 665 447649 36 40 527046 589 978897 75 553449 664 446451 44651 44651 44651 44651 44651 <t< td=""><td>31</td><td>9.523852</td><td></td><td>9,974302</td><td></td><td>9.549550</td><td></td><td>10.450450</td><td>29</td></t<>	31	9.523852		9,974302		9.549550		10.450450	29
33 524564 593 974212 75 550352 667 449648 24 34 524920 593 974167 75 550752 667 449248 23 35 525275 592 974172 75 551158 666 448847 36 36 525680 591 974077 75 551552 666 44848 37 38 526381 590 973942 75 552351 665 447649 36 39 526693 590 973897 75 552750 665 447649 36 40 527460 588 9.78852 75 553149 664 446851 36 41 9.527400 588 9.78867 75 553149 664 10.446452 1 42 527753 588 973761 75 554344 663 445656 1 44 528810 586 9									28
84 524990 598 974167 75 550752 667 449248 28 85 525275 592 974122 75 551153 666 448847 36 36 525680 591 974077 75 551552 666 448448 38 37 525984 591 974082 75 551952 666 448048 38 38 526693 590 973987 75 552361 665 447649 39 40 527046 589 97897 75 558149 664 447850 39 41 9.527400 588 978897 75 558149 664 447850 39 42 527753 588 973807 75 558946 664 440651 1 44 5284105 587 973716 75 554344 663 445656 1 45 52810 586 973627							668		27
35 525275 592 974122 75 551158 666 448847 36 525680 591 974077 75 551552 666 448448 38 525984 591 974082 75 551952 666 448048 38 526932 590 978987 75 551952 666 448048 39 39 526693 590 978987 75 552750 665 447649 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>26</td>									26
36 525680 592 974077 75 551552 666 448448 237 37 525984 591 974032 75 551952 666 448048 24 38 526935 590 973942 75 552351 665 447649 24 39 526936 590 973942 75 552750 665 447649 24 40 527046 589 973887 75 553149 664 446851 24 41 9.527400 588 973807 75 553946 664 10.446452 1 42 527753 588 973807 75 553946 663 446054 1 44 528458 587 973716 75 554344 663 445656 1 45 528810 586 9735807 76 555536 662 444861 1 46 52961 586 973									25
37 525944 591 974082 75 551952 666 448048 8 38 52633c 590 973987 75 552351 666 447649 2 40 527046 589 973897 75 558149 664 447850 2 41 9.527400 588 973897 75 558149 664 446851 2 42 527753 588 973807 75 558946 664 44054 1 43 528105 587 973716 75 554741 663 445550 1 44 528410 586 973621 76 555193 662 444861 1 45 52810 586 973625 76 555536 661 44464 1 47 529513 586 973585 76 555936 661 44464 1 48 529864 585 973585									24
38 52633c 591 973987 75 552351 665 447649 2 39 526693 590 973942 75 552750 665 447620 2 40 527046 589 973897 75 553149 664 446851 2 41 9.527400 588 973807 75 553946 664 446851 2 42 527753 588 973807 75 553946 663 440054 1 43 528105 587 973761 75 554741 663 445056 1 44 528458 587 973671 76 555139 662 444861 1 45 52810 586 973580 76 555938 661 444667 1 47 529513 586 973580 76 555938 661 444667 1 48 529864 585 973449					.75				23
39 526693 590 978942 75 552750 665 447250 24 40 527046 589 978877 75 553149 664 446452 1 41 9.527400 588 9.78852 75 9.558548 664 10.446452 1 42 527753 588 978807 75 558946 663 446054 1 43 528105 587 973716 75 554344 663 445656 1 44 528458 587 973716 76 555193 662 444861 1 46 529810 586 973625 76 555536 662 444861 1 47 529513 586 973580 76 555933 661 444067 1 48 529864 585 973849 76 556329 660 443671 1 50 530665 584 97344									22
40 527046 589 978897 75 558149 664 446851 2 41 9.527400 588 9.78897 75 558946 664 10.446452 1 42 527758 588 973807 75 558946 664 44054 1 43 528105 587 973716 75 554741 663 445566 1 44 528458 587 973716 76 555129 662 44861 1 45 52810 586 973627 76 555139 662 444861 1 47 529513 586 973580 76 555938 661 444464 1 48 529864 585 973585 76 556329 660 443671 1 49 530215 584 978489 76 556725 660 442879 1 51 9.530915 583 973856 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>21</td>									21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			589	TINGET .	75				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			588		75		664		19
44 528458 587 978716 75 554741 663 445259 145259 145259 145259 145259 145259 145259 145259 145259 145259 144861 145259 144861 145259 144861 <									18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						004344			17
46 529161 586 978625 76 555586 661 444464 144667 1444667 1444667 1444667 1444667 1444667 1444667 1444667 1444667 1444667 1444667 1444667 1444667 1444667 1444667 144667<									16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									15
48 529864 585 973585 76 556329 660 443671 144007 144607 <									14
48 523664 585 973535 76 556725 660 443275 1 50 530565 584 978489 76 556725 660 442879 1 51 9.530915 583 978352 76 557121 659 442879 1 52 531265 583 978352 76 557913 659 442087 53 531614 582 973507 76 558008 659 441692 54 531963 581 973261 76 558703 658 441297 55 532312 581 978215 76 559097 658 440903 56 532661 580 973169 76 559097 657 440509 57 533009 580 973124 76 559491 657 440509 58 533357 580 973078 76 560279 656 439721					76				13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									12
50 5300915 583 9.79398 76 9.557517 659 10.442483 10.442483 52 531265 583 978352 6 57913 659 442087 53 531614 582 973507 76 558308 659 441692 54 531963 581 973261 76 558703 658 441297 55 532312 581 973169 76 559097 657 440503 56 532661 580 973124 76 559491 657 440115 58 53357 579 973082 76 560279 656 439721 59 583704 579 973082 77 561066 655 438934 60 534052 578 972986 77 561066 655 438934									11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_0G_								_10_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	9.530915		9.973398		9.557517		10.442483	9
58 581614 583 973507 76 558308 658 441692 54 531963 581 973261 76 558703 658 441297 55 532312 581 973216 76 559097 657 440903 56 582661 581 973169 76 559491 657 440509 57 533009 580 973124 76 569279 656 439721 58 533357 579 973082 76 560279 656 439721 59 583704 579 973082 77 560673 655 438937 60 534052 578 972986 77 561066 655 438934	52	531265		973352		557913			8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53								8 7
55 532312 581 978215 76 559097 658 440903 56 532661 580 978169 76 559491 657 440509 57 583009 580 978124 76 559885 657 440115 58 533857 579 978078 76 560279 656 439721 59 533704 579 978082 77 560673 655 439927 60 534052 578 972986 77 561066 655 438934	54								6
56 582661 581 973169 76 559491 657 440509 57 533009 580 973124 76 559885 657 440115 58 533357 579 973078 76 560279 656 439721 59 583704 579 973082 76 560673 656 439327 60 534052 578 972986 77 561066 655 438934									5
57 533009 580 973124 76 559885 656 440115 58 533557 580 978078 76 560279 656 439721 59 533704 579 978032 77 560673 655 439327 60 534052 578 972986 77 561066 655 438934									4
58 58357 569 978078 76 560279 656 439721 59 533704 579 978082 77 560673 655 439927 60 534052 578 972986 77 561066 655 438934					76		657		3
59 583704 579 978082 76 560673 655 439327 60 534052 578 972986 77 561066 655 438934									2
60 534052 578 972986 77 561066 655 438934									ī
978 77 603									ō
			578		77	001000	655	100001	
Cosine. Sine. Cotang. Tang. I	Ī	Cosine.		Sine.		Cotang.		Tang.	M.

(20 Degrees.) LOGARITHMIC

04		(20	Degrees	•, •	OGARITH	MIC		
M.	Sine.	D.100".	Cosine.	D	Tang.	D. 100".	Cotang.	
0	9.534052	578	9.972986	77	9.561066	655	10.438934	60
1	534399	578	972940	77	561459	654	438541	59
, 2	584745	577	972894	77	561851	654	438149	58
3 4	535092	577	972848	77	562244	654	437756	57
	535438	576	972802	77	562636 563028	653	437364	56
5 6	535783	576	972755 972709	77	563419	653	436972 436581	55 54
7	536129 536474	575	972663	77	563811	652	436189	53
8	536818	575	972617	77	564202	652	435798	52
9	537163	574	972570	77	564593	651	485407	51
10	537507	574	972524	77	564983	651	435017	50
11	9.537851	578	9.972478	_77	9.565373	650	10.434627	49
1 12	538194	573	972431	77	565763	650	484237	48
13	538538	572	972385	77	566158	649	433847	47
14	538880	571	972338	78	566542	649	433458	46
15	539223	571	972291	78	566932	649	433068	45
16	539565	570 570	972245	78 78	567320	648 648	432680	44
17	539907	569	972198	78	567709	647	432291	43
18	540249	569	972151	78	568098	647	431902	42
19	540590	568	972105	78	568486	646	431514	41
20	540931	568	972058	78	568873	646	431127	40
21	9.541272	567	9.972011	78	9.569261	646	10.430739	89
22	541618	567	971964	78	569648	645	430352	38
23	541953	566	971917	78	570035	645	429965	37
24	542293	566	971870	78	570422	644	429578	86
25	542632	565	971823	78	570809	644	429191	35
26 27	542971	565	971776	78	571195	643	428805	34
28	543310 543649	564	971729 97168 2	79	571581 571967	643	428419 428033	33 32
20	543987	564	971685	79	572352	643	427648	31
30	544325	563	971588	79	572738	642	427262	80
31	9.544663	563	9.971540	79	9.578128	642	10.426877	29
32	545000	562	971493	79	578507	641	426493	28
33	545338	562	971446	79.	573892	641	426108	27
34	545674	561	971398	79	574276	640	425724	26
35	546011	561	971851	79	574660	640	425340	25
36	546347	560 560	971803	79	575044	640 639	424956	24
37	546683	559	971256	79 79	575427	639	424573	23
38	547019	559	971208	79	575810	638	424190	22
3%	547854	558	971161	79	576193	638	423807	21
40	547689	558	971113	79	576576	637	428424	20
41	9.548024	557	9.971066	-60	9.576959	637	10.423041	19
42	548359	557	971018	80	577841	637	422659	18
43	548693	556	970970	80	577723	636	422277	17
44	549027	556	970922	80	578104	C36	421896	16
45 46	549360	555	970874	80	578486 578867	635	421514 421133	15 14
47	549693 550026	555	970827 970779	80	579248	625	420752	13
48	550359	555	970779	80	579629	634	420771	12
49	550692	554	970683	80	580009	684	419991	ii
50	551024	554	970635	80	580389	684	419611	iò
51	9.551356	553	9.970586	80	9.580769	653	10.419231	9
52	551687	553	970538	80	581149	683	418851	8
53	552018	552	970490	80	581528	632	418472	7
54	552349	552	970442	80	581907	632	418093	6 1
55	552680	551	970394	80	582286	632	417714	5
56	553010	551 550	970345	80	582665	631	417335	4
57	553341	550 550	970297	81 81	583044	631 630	416956	3
58	553670	549	970249	81	583422	630	416578	2
59	554000	549	970200	81	583800	630	416200	1
60	554329	548	970152	81	584177	629	415823	0
-	Cosine.		Sine.		Cotang.		Teng	
	OOFING.		Bille.		Corang.	1	Tang.	171.

•	8	INES A	ND TANG	ENTS	. (21 D	egrees	.)	36
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	9.554329	E40	9.970152	01	9.584177		10.415823	60
1	554658	548 548	970103	81 81	584555	629 629	415445	59
2	554987	547	970055	81	584932	628	415068	58
3 4	555315	547	970006	81	585309	628	414691	57
4	555643	546	9 69957	81	585686	627	414314	56
5	555971	546	969909	81	586062	627	413938	55
6	556299	545	969860	81	586439	627	413561	54
7	556626	545	969811	81	586815	626	413185	53
8 9	556953	544	969762	81	587190	626	412810	52
10	557280 557606	544	969714 969665	81	587566 587941	625	412434 412059	51 50
		544		82		625		
11	9.557932	543	9.969616	82	9.588316	625	10.411684	49
12 13	558258 558583	543	969567 969518	82	588691 589066	624	411309 410934	48 47
14	558909	542	969469	82	589440	624	410560	46
15	559234	542	969420	82	589814	623	410186	45
16	559558	541	969870	82	590188	623	409812	44
17	559883	541	969321	82	590562	623	409438	43
18	560207	540	969272	82	590935	622	409065	42
19	560531	540	969223	82	591308	622	408692	41
20	560855	539	969173	82 82	591681	622 621	408319	40
21	9.561178	539	9.969124		9.592054		10.407946	89
22	561501	588	969075	82	592426	621	407574	38
23	561824	538	969025	82	592799	620	407201	37
24	562146	537	968976	82 83	593171	620 620	406829	36
25	562468.	5 37 537	968926	83	593542	619	406458	35
26	562790	536	968877	83	593914	619	406086	34
27	563112	536	968827	83	594285	618	405715	23
28	563433	535	968777	83	594656	618	405344	-32
29	563755	535	968728	83	595027	618	404973	81
80	564075	534	968678	83	595398	617	404602	30
31	9.564396	534	9.968628	83	9.595768	617	10.404232	29
82	564716	533	968578	83	596138	616	403862	28
33	565036	533	968528	83	596508	616	403492	27
84 85	565356	532	968479	83	596878	616	403122 402753	26 25
86	565676 565995	532	968429 968379	83	597247 597616	615	402755	20
37	566314	532	968329	83	597985	615	402015	23
88	566632	531	968278	83	598354	615	401646	22
39	566951	531	968228	84	598722	614	401278	21
40	567269	530	968178	84	599091	614	400909	20
41	9.567587	530	9.968128	84	9.599459	613	10.400541	19
42	567904	529	968078	84	599827	613	400173	18
43	568222	529	968027	84	600194	613	899806	17
44	568539	528	967977	84	600562	612	399438	16
45	568856	528	967927	84	600929	612 612	399071	15
46	569172	528 527	967876	84	601296	611	898704	14
47	569488	527	967826	84	601663	611	398337	13
48	569804	526	967775	84	602029	610	397971	12
49	570120	526	967725	84	602395	610	397605	11
50	570435	525	967674	84	602761	610	897239	10
51	9.570751	525	9.967624	84	9.603127	609	10.396873	9
52	571066	524	967578	85	603493	609	396507	8 7
53	571380	524	967522	85	603858	609	396142	7
54	571695	524	967471	85	604223	608	895777	6 5 4
55	572009	523	967421	85	604588	608	395412	1 2
56 57	572323 572636	523	967370 967319	85	604953 605317	607	395047 - 394683	4
58	572950	522	967319	85	605682	607	394318	8 2
59	573263	522	967217	85	606046	607	898954	í
60	573575	521	967163	85	606410	606	393590	Ô
		521		85		606		L
	Cosine.		Sine.		Cotang.		Tang.	M.

(22 Degrees.) LOGARITHMIC

366		(22	2 Dégrees	3.) 1	LOGARITE	IMIO	•	
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	9.573575	521	9.967166	85	9.606410	606	10.393590	60
1	573888	520	967115	85	606773	606	393227	59
2	574200	520	967064	85	607137	605	392863	58
8	574512	520	967013	85	607500	605	892500	57
5	574824	519	.96 6961	85	607863	605	392137	56
6	575136 575447	519	966910 966859	85	608225	604	891775	55
7	575758	518	966808	86	608588 608950	604	891412	54
ا ۾	576069	518	966756	86	609312	603	391050 390688	53
8 9	576379	517	966705	86	609674	603	890326	52 51
10	576689	517	966653	86	610036	603	389964	50
11	9.576999	517	9.966602	86	9.610397	602	10.389603	49
12	577809	516	966550	86	610759	602	389241	49
13	577618	516	966499	86	611120	602	388880	47
14	577927	515	966447	86	611480	601	388520	46
15	578236	515	966395	86	611841	601	388159	45
16	578545	514	966344	86	612201	601	387799	44
17	578853	514	966292	86	612561	600	887439	43
18	579162	514	966240	86	612921	600	387079	42
19	579470	513 513	966188	86 86	613281	600	386719	41
20	579777	512	966136	87	613641	599 599	386359	40
21	9.580085		9.966085		9.614000		10.386000	89
22	580392	512	966033	87	614359	598	385641	38
23	580699	511	965981	87	614718	598	385282	37
24	581005	511 511	965929	87 87	615077	598	884923	36
25	581312	510	965876	87	615435	597 597	384565	35
26	581618	510	965824	87	615793	597 597	384207	34
27	581924	509	965772	87	616151	596	383849	33
28	582229	509	965720	87	616509	596	3 83491	32
29	582535	509	965668	87	616867	596	383133	31
30	582840	508	965615	87	617224	595	382776	30
81	9.583145	508	9.965563	87	9.617582	595	10.382418	29
32	583449	507	965511	87	617939	595	382061	28
33	583754	507	965458	87	618295	594	881705	27
34	584058	506	965406	88	618652	594	3 81348	26
35 36	584361	506	965853	88	619008	594	380992	25
37	584665	506	965301	88	619364	593	380 63 6	24
38	584968 585272	505	965248 965195	88	619720 620076	593	380280	23
89	585574	505	965143	88	620432	593	879924 879568	22 21
40	585877	504	965090	88	620787	59 2	879213	20
41	9.586179	504		_88		59 2		
42	586482	501	9.965037	88	9.621142	592	10.378858	19
43	586783	503	964984 964931	88	621497	591	378503 979149	18
44	587085	503	964879	88	621852 622207	591	878148 877793	17 16
45	587386	502	964826	88	622561	591	877439	15
46	587688	502	964773	88	622915	590	377085	14
47	587989	501	964720	88	623269	590	376731	13
48	588289	501	964666	88	623623	590	876377	12
49	588590	501 500	964613	89 89	623976	589	876024	11
50	588890	500	964560	89 89	624330	589	875670	10
51	9.589190		9.964507		9.624683	589	10.875317	9
52	589489	499	964454	89	625036	588	374964	8
53	589789	499	964400	89	625388	588	874612	7
54	590088	499 498	964347	89 89	625741	588	374259	6
55	590387	498 498	964294	89	626093	587	873907	5
56	590686	497	964240	89	626445	587 587	878555	4
57	590984	497	964187	89	626797	587 586	873203	3
58	591282	497	964133	89	627149	586	872851	2
59	591580	496	964080	. 89	627501	586	372499	1
60	591878	496	964026	89	627852	585	372148	0
-	Cosine.		Sine.		Cotang.		Tene	M.
	1 20011101		Dille.		onang.	ii	Tang.	M.

	. 8	INES A	ND TANG	ENTS	. (23 D	egrees	.)	36
M.	Sine.	D.100".	Cogine.	D.	Tang.	D.100".	Cotang.	
0	9.591878	496	9.964026	89	9.627852	585	10.372148	60
$\begin{array}{c c} 1 \\ 2 \end{array}$	592176 592473	495	963972 963919	89	628203 628554	585	871797	59
3	592770	495	963865	90	628905	585	871446 871095	58 57
4	593067	495 494	963811	90	629255	584	870745	56
5	593363	494	963757	90 90	629606	584 584	370394	55
6	593659	493	963704	90	629956	583	870044	54
8	593955 594251	493	963650 963596	90	630306 630656	583	869694	58
9	594547	493	963542	90	631005	583	369344 368995	52 51
10	594842	492 492	963488	90 90	681855	582 582	868645	50
11	9.595137	491	9.963434	90	9.631704		10.368296	49
12	595432	491	963379	90	632053	582 581	367947	48
13 14	595727	491	963325	90	632402	581	367598	47
15	596021 596315	490	963271 963217	90	632750 633099	581	367250	46
16	596609	490	963163	90	633447	580	366901 366553	45 44
17	596903	489 489	963108	91 91	633795	580	866205	43
18	597196	489	963054	91	634143	580 579	365 857	42
19 20	597490	488	962999	91	6344 90	579	365510	41
	597783	488	962945	91	634838	579	365162	40
21 22	9.598075 598368	488	9.962890 962836	91	9.635185	578	10.364815	39
23	598660	487	962781	91	635532 635879	578	864468 864121	38 37
24	598952	487	962727	91	636226	578	863774	36
25	599244	486 486	962672	91	636572	577	863428	35
26	599536	486	962617	91 91	636919	577 577	863081	34
27 28	599827	485	962562	91	637265	577	862735	33
29	600118 600409	485	962508 962453	91	637611	576	862389	32
30	600700	484	962398	91	637956 638302	576	862044 861698	31 30
31	9.600990	481	9.962343	92	9.638647	576	10.361353	29
32	601280	484	962288	92	638992	575	361008	29
33	601570	483 483	962233	92 92	639337	575	860663	27
34	601860	482	962178	92	639682	575 574	860318	26
35 36	602150	482	962123	92	640027	574	859978	25
37	602439 602728	482	962067 962012	92	640371 640716	574	3 59629 3 59284	24 23
38	603017	481	961957	92	641060	578	858940	23
39	603305	481	961902	92	641404	573	858596	21
40	603594	481 480	961846	92 92	641747	573 573	858253	20
41	9.603882	480	9.961791	92	9.642091	572	10.857909	19
42	604170	479	961735	92	642434	572	357566	18
43	604457	479	961680	93	642777	572	857223	17
45	604745 605032	479	961624 961569	93	643120 643463	571	3 56880 3 56537	16 15
46	605319	478	961513	93	643806	571	856194	14
47	605606	478	961458	93	644148	571	855852	13
48	605892	478 477	.961402	93 93	644490	570 570	855510	12
49 50	606179	477	961346	93	644832	570	355168	11
	606465	476	961290	93	645174	569	854826	10
51 52	9.606751 607036	476	9.961235	93	9.645516	569	10.354484	9
53	607322	476	961179 961123	93	645857 646199	569	854143 853801	8 7
54	607607	475	961067	93	64 6540	569	353460	6
55.	607892	475 475	961011	93 93	646881	568	353119	5
56	608177	474	960955	93	647222	568 568	852778	4
57 58	608461	474	960899	94	647562	567	852438	3
59	608745 609029	473	960848 960786	94	647903 648243	567	352097 351757	2
60	609313	473	960730	94	648583	567	851417	0
		473		94		566		
$ldsymbol{ldsymbol{eta}}$	Cosine.	l	Sine.		Cotang.	l	Tang.	M.

(24 Degrees.) LOGARITHMIC

08 (24 Degrees.) LOGARITHMIC .								
M.	Sine.	D.100".	Cosine.	D.	Taug.	D.100".	Cotang.	
0	9.609313	479	9.960730	04	9.648583	F.C.C	10.351417	60
1	609597	473 472	960674	94 94	648923	56 6	351077	59
2	609880	472	960618	94	649263	566	350737	58
3	610164	472	960561	94	649602	566	350398	57
4	610447	471	960505	94	649942	5 65	350058	56
5	610729	471	960448	94	650281	565	349719	55
6 7	611012 611294	470	960392	94	650620	565	849380	54
8	611576	470	960335 960279	94	650959 651297	564	349041	53 52
9	611858	470	960222	94	651636	564	348703 348364	51
10	612140	469	960165	94	651974	564	348026	50
11	9.612421	469	9.960109	94	9.652312	564	10.347688	49
12	612702	469	960052	95	652650	563	347350	48
13	612983	468	959995	9 5	652988	563	347012	47
14	613264	468	959938	95	653326	563	346674	46
15	613545	468	959882	95	653663	562	346337	45
16	613825	467	959825	95	654000	562	346000	41
17	614105	467 466	959768	95 95	654337	562	345663	43
18	614385	466	959711	95	654674	562 561	845326	42
19	614665	466	959654	95	655011	561	344989	41
20	614944	465	959596	95	655348	561	344652	40
21	9.615223	465	9.959539	$-\frac{55}{95}$	9.655684	560	10.344316	89
22	615502	465	959482	95 95	656020	560	343980	38
23	615781	461	959425	95 95	656356	560	343644	37
24	616060	464	959368	96	656692	560	343308	36
25	616338	461	959310	96	657028	559	842972	35
26 27	616616	463	959253	96	657364	559	842636	34 -
28	616894 617172	463	959195 959138	96	657699	559	342301	33
29	617450	463	959080	96	658034 658369	558	341966	32 31
30	617727	462	959023	96	658704	558	841631 841296	30
31	9.618004	462		96		558		
32	618281	461	9.958965 958908	96	9.659039	558	10.340961	29
33	618558	461	958850	96	659373 659708	557	340627 3402 92	28 27
34	618834	461	958792	96	660042	557	839958	26
35	619110	460	958784	96	660376	557	359624	25
86	619386	460	958677	96	660710	556	839290	24
37	619662	460	958619	96	661043	556	338957	23
38	619938	459 459	958561	96 97	661377	556 556	338623	22
89	620213	459	958503	97	661710	555	338290	21
40	620488	458	958445	97	662043	555	3 3795 7	20
41	9.620763	458	9.958387	-97 -	9.662376	555	10.337624	19
42	621038	458	958329	97	662709	554	337291	18
43	621313	457	958271	97	663042	551	3 36958	17
44	621587	457	958213	97	663375	554	336625	16
45	621861	457	958154	97	663707	554	336293	15
46 47	622135 622409	456	958096	97	664039	553	335961	14
48	622682	456	958038 957979	97	664371 664703	553	835629 205907	13 12
49	622956	455	957921	97	665035	553	885297 834965	12 11
50	623229	455	957863	. 97	665366	553	334634	10
51	9.623502	455	9.957804	97		552	10.334302	
52	623774	454	957746	98	9.665698 666029	552	333971	9
53	624047	454	957687	98	666360	552	333640	7
54	624319	454	957628	98	666691	551	333309	6
55	624591	453	957570	98	667021	551	532979	5
56	624863	453	957511	· 98	667352	551	332648	4
57	625135	453	957452	98	667682	551	332318	3
58	625406	452	957393	98	668013	550 550	831987	2
59	625677	452 452	957335	98 82	668343	550 550	331657	1
60	625948	451	957276	98	668673	550	331327	0
-	Cosine.	301	Sine.	1 00	()00	1 000	m-	3,
L	Cosine.	L	pine.		Cotang.	l	Tang.	M.

				ENIS	. (egrees	•,	90
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	9.625948	451	9.957276	98	9.668673	550	10.331327	60
1	626219	451	957217	98	669002	549	330998	59
2	626490	451	957158	98	669332	549	330668	58
8	626760	450	957099	98	669661	549	330339	57
4	627030 627300	450	957040	98	669991	548	330009	56
5 6	627570	450	956981 956921	99	670320 670649	548	329680 329351	55 54
7	627840	449	956862	99	670977	548	829023	53
8	628109	449	956803	99	671306	548	828694	52
9	628378	449	956744	99	671635	547	328365	51
10	628647	448	956684	99	671963	547	328037	50
11	9.628916	448	9.956625	99	9.672291	547	10.327709	49
12	629185	448	956566	99	672619	547	827381	48
13	629453	447	956506	99	672947	546	327053	47
14	629721	447.	956447	99	673274	546	826726	46
15	629989	447 446	956387	99 99	673602	546 546	326398	45
16	630257	446	956327	99	673929	545	326071	44
17	630524	446	956268	99	674257	545	325743	43
18	630792	445	956208	100	674584	545	325416	42
19	631059	445	956148	100	674911	545	325089	41
20	631326	445	956089	100	675237	544	324763	40
21	9.631593	444	9.956029	100	9.675564	541	10.324436	39
22	631859	444	955969	100	675890	544	324110	38
23	632125	444	955909	100	.676217	543	323783	37
24	632392	443	955849	100	676543	543	323457	36
25	632658	413	955789	100	676869	543	323131	35
26 27	632923 633189	443	955729	100	677194	543	322806 322480	34 33
28	633454	442	955669 955609	100	677520 677846	542	322154	32
29	633719	442	955548	100	678171	542	321829	31
30	633984	442	955488	100	678496	542	821504	30
31	9.634249	441	9.955428	100	9.678821	542	10.321179	29
32	634514	441	955368	101	679146	541	320854	28
33	634778	441	955307	101	679471	541	320529	27
84	635042	440	955247	101	679795	541	320205	26
35	635306	440 440	955186	101 101	680120	541 540	819880	25
36	635570	439	955126	101	680444	540	819556	24
87	635834	439	955065	101	680768	540	819232	23
38	636097	439	955005	101	681092	540	318908	22
39	636360	438	954944	101	681416	539	318584	21
40	636623	438	954888	101	681740	539	318260	20
41	9.636886	438	9.954823	101	9.682063	539	10.317937	19
42	637148	437	954762	101	682387	539	317613	18
43	637411	437	954701	101	682710 683033	538	317290 216067	17 16
44	637673 637935	4:37	954640 954579	102	683356	528	316967 316644	15 15
46	638197	436	954518	102	683679	538	316321	14
47	638458	436	954457	102	684001	538	315999	13
48	638720	436	954396	102	684324	537	315676	12
49	638981	435	954335	102	684646	537	315354	îī.
50	639242	435 435	954274	102 102	684968	537	315032	10
51	9.639503		9.954213		9.685290	537	10.314710	9
52	639764	434	954152	102	685612	536	314388	8
53	640024	434	954090	102	685934	536	814066	7
54	640284	434 433	954029	102 102	686255	536 536	313745	6
55	640544	433	953968	102	686577	535	813423	5
56	640804	433	●5 3906	102	686898	535	313102	4
57	641064	432	953845	102	687219	535	312781	3
58	641324	432	953783	103	687540	535	312460	2 1
59	641583	432	953722	103	687861	534	312139	0
60	641842	432	953660	103	688182	534	311818	ן ט
	Cosine.		Sine.	Ī	Cotang.	1	Tang.	M.

70	(26 Degrees.) LOGARITHMIC									
M.	Sine.	D.100".	Comine.	D.	Tang.	D.100".	Cotang.			
0	9.641842	432	9.953660	108	9.688182	534	10.311818	60		
1	642101	431	953599	103	688502	534	311498	59		
3	642360 642618	431	953537 953475	103	688823 689143	534	311177	58		
4	642877	431	953413	103	689463	534	310857 3 10537	57 56		
1 5	643135	430	953352	103	689783	533	310217	5 5		
1 6	643393	430 430	953290	103 103	690103	533	309897	54		
7	643650	429	953228	103	690423	533 533	809577	53		
8	643908	429	953166	103	690742	532	309258	52		
10	644165	429	953104	103	691062	532	308988	51		
1	614423	428	953042	103	691381	532	308619	50		
11 12	9.644680 644936	428	9.952980 952918	104	9.691700 692019	532	10.308300	49		
13	645193	428	952855	104	692338	531	307981 307662	48		
14	645450	427	952793	104	692656	531	307344	46		
15	645706	427	952731	104	692975	531	307025	45		
16	645962	427 426	952669	104 104	693293	531	306707	44		
17	646218	426	952606	104	693612	530 530	306388	43		
18	616474	426	952544	104	693930	530	806070	42		
19 20	646729	426	952481 952419	104	694248	530	305752	41		
21	646984	425		104	694566	529	305434	40		
21 22	9.647240 647494	425	9.952356 952294	104	9.694883	529	10.305117	39		
23	647749	425	952231	104	695201 695518	529	304799 £04482	38 37		
24	648004	424	952168	104	695836	529	304164	36		
25	648258	424	952106	105	696153	529	803847	35		
26	648512	424 428	952043	105 105	696470	528 528	303530	84		
27	648766	423	951980	105	696787	528	303213	33		
28 29	649020	423	951917	105	697103	528	802897	32		
30	649274 649527	422	951854	105	697420	527	802580	31		
		422	951791	105	697736	527	302264	80		
31 32	9.649781 650034	422	9.951728 951665	105	9.698053	527	10.301947	29		
33	650287	422	951602	105	698369 698685	527	301631 301315	28 27		
34	650539	421	951539	105	699001	526	800999	26		
35	650792	421 421	951476	105	699316	526	300684	25		
36	651044	421	951412	105 106	699632	526 5 26	300368	24		
37	651297	420	951349	106	699947	526	800053	23		
38	651549	420	951286	106	700263	525	299737	22		
40	651800 652052	419	951222 951159	106	700578 700898	525	299422	21		
41	9.652304	419	9.951096	106	9.701208	525	299107	20		
42	652555	419	951032	106	701208	525	10.298792 298477	19		
43	652806	418	950968	106	701323	524	298163	18 17		
44	653057	418 418	950905	106	702152	524	297848	16		
45	653308	418	950841	106 106	702466	524 524	297534	15		
46	653558	417	950778	106	702781	524 523	297219	14		
47	653808	417	950714	106	703095	523	296905	13		
48	654059 654309	417	950650 950586	106	703409 703722	523	296591	12		
50	654558	416	950522	106	703,22	523	296278 295964	11 10		
51	9.654808	416	9.950458	107	9.704350	523	10.295650			
52	655058	416	950394	107	704663	522	295337	9 8		
53	655307	415	950330	107	704976	522	295024	7		
54	655556	415 415	950266	107 107	705290	522	294710	7 6		
55	655805	415	950202	107	705608	522 521	294897	5		
56	656054	414	950138	107	705916	521	294084	4 8		
57 58	656302	414	950074	107	706228	521	298772	8		
59	656551 656799	414	950010 949945	107	706541 706854	521	293459 293146	2		
60	657047	413	949881	107	700654	521	292834	9		
		413		107		520				
	Cosine.		Sine.	1	Cotang.		Tang.	M.		

				1214 1 1	(egrees	•,	01
M.	Sine.	D.100".	Cosine.	D.	Taug.	D.100".	Cotang. ,	
0	9.657047		9.949881	T	9.707166			
i	657295	413	949816	107	9.707100	520	10.292834	60
2	657542	413	949752	107	707478 707790	520	292522	59
2	657790	412		107		520	292210	58
3 4	658037	412	949688	108	708102	520	291898	57
1 2		412	949623	108	708414	519	291586	56
5 6	658284	412	949558	108	708726	519	291274	55
6	658531	411	949494	108	709037	519	290963	54
7	658778	411	949429	108	709349	519	290651	53
8	659025	411	949364	108	709660	519	290340	52
9	659271	410	949300	108	709971	518	290029	51
10	659517	410	949235	108	710282	518	289718	50
11	9,659763		9.949170		9.710593		10.289407	49
12	660009	410	949105	108	710904	518	289096	48
13	660255	410	949040	108	711215	518	288785	47
14	660501	409	948975	108	711525	518	288475	46
15	660746	409	948910	108	711836	517	288164	45
16	660991	409	948845	108	712146	517	287854	44
17	661236	408	948780	109	712456	517		
18	661481	408	948715	109		517	287544	43
19	661726	408		109	712766	516	287234	42
20		407	948650	109	713076	516	286924	41
	661970	407	948584	109	713386	516	286614	40
21	9.662214	407	9.948519	109	9.713696	516	10.286304	39
22	662459	407	948454		714005		285995	38
23	662703	406	948388	109	714314	516	285686	37
24	662946	406	948323	109	714624	515	285376	36
25	663190		948257	109	714983	515	285067	35
26	663433	406	948192	109	715242	515	284758	34
27	663677	405	948126	109	715551	515	284449	33
28	663920	405	948060	109	715860	515	284140	32
29	664163	405	947995	109	716168	514	283832	31
30	664406	405	947929	110	716477	514	283523	30
31	9.661648	404		110		514		
32	664891	404	9.947863	110	9.716785	514	10.283215	29
33		404	947797	110	717093	514	282907	28
34	665133	403	947731	110	717401	513	282599	27
35	665375	403	947665	110	717709	513	282291	26
	665617	403	947600	110	718017	513	281983	25
36	665859	403	947533	110	718325	513	281675	24
37	666100	402	947467	110	718633	512	281367	23
38	666342	402	947401	110	718940	512	281060	22
39	666583	402	947335	110	719248	512	280752	21
40	666824	401	947269	110	719555	512	280445	20
41	9.667065		9.947203	ı	9.719862		10.280138	19
42	667305	401	947136	110	720169	512	279831	18
43	667546	401	947070	111	720476	511	279524	17
41	667786	401	947004	111	720783	511	279217	16
45	668027	400	946937	111	721089	511	278911	15
46	668267	400	946871	111	721396	511	278604	14
47	668506	400	946801	111	721702	511	278298	13
48	668746	399	946738	111	722009	510	277991	12
49	668986	399	946671	111	722315	510	277685	11
50	669225	390	946604	111	722621	510		
		399		111		510	277379	10
51	9.669464	398	9.946538	111	9.722927	510	10.277073	9
52	669703	398	946471	111	723232	509	276768	8
53	669942	398	946404	111	723538	509	276462	7
54	670181	897	946337	111	723844	509	276156	6 1
55	670419	897	946270	112	724149	509	275851	5
56	670658	397	946203	112	724454	509	275546	4
57	670896	897	946136	112	724760	509	275240	8
58	671134	896	946069	112	725065	508	274935	2
59	671372	896	946002	112	725370	508	274630	1
60	671609	396	945935	112	725674	508	274326	0
	Class		- G!	114			<u> </u>	
L1	Cosine.	l}	Sine.	l	Cotang.	l	Tang.	M.

•	-	(26 Degrees.) LOGARITHMIC								
\Box	М.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.		
ĺ	0	9.671609	896	9.945935	112	9.725674	508	10.274326	60	
	1	671847	896	945868	112	725979	508	274021	59	
١	2 8	672084	395	945800	112	726284	507	273716	58	
l	4	672321 672558	395	945733 945666	112	726588 726892	507	273412 273108	57 56	
1	5	672795	895	945598	112	727197	507	272803	55	
ĺ	6	673032	394	945531	112	727501	507	272499	54	
í	7	673268	394	945464	112	727805	507	272195	53	
l	8	673505	894 894	945396	113 113	728109	506 506	271891	52	
1	9	673741	893	945328	113	728412	506	271588	51	
L	10	673977	893	945261	113	728716	506	271284	50	
١	11	9.674213	393	9.945193	113	9.729020	506	10.270980	49	
١	12	674448	393	945125	113	729323	505	270677	48	
١	13 14	674684 674919	392	945058 944990	113	729626 729929	505	270374 270071	47	
1	15	675155	392	944922	113	730283	505	269767	45	
ı	16	675390	392	944854	113	730585	505	269465	44	
ı	17	675624	891	944786	113	730838	505	269162	•43	
ı	18	675859	391 391	944718	113 113	731141	504 504	268859	42	
1	19	676094	391	944650	113	731444	504	268556	41	
L	20	676328	390	944582	114	731746	504	268254	40	
Γ	21	9.676562	390	9.944514	114	9.732018	504	10.267952	39	
ı	22	676796	390	914446	114	732351	504	267649	38	
1	23	677030	890	944377	114	732653	503	267347	37	
١	24 25	677264 677498	889	944509 944241	114	732955 733257	503	267045 266743	36 35	
١	26	677731	389	944172	114	733558	503	266442	34	
١	27	677964	389	944104	114	733860	503	266140	33	
١	28	678197	388 388	944036	114	734162	503 502	265838	32	
١	29	678430	388	943967	114 114	734463	502	265537	31	
L	80	678663	388	943899	114	734764	502	265236	30	
Γ	31	9.678895	387	9.943830	114	9.735066	502	10.264934	29	
I	32	679128	387	943761	114	735367	502	264633	28	
l	33	679360	387	943693	115	735668	501	264332	27	
1	34 35	679592 679824	387	943624 943555	115	735969 736269	501	264031 263731	26 25	
1	8 6	680056	386	943486	115	736570	501	263430	24	
1	37	680288	386	943417	115	736870	501	263130	23	
1	38	680519	386	943348	115	737171	501 500	262829	22	
١	89	680750	386 385	943279	115 115	787471	500	262529	21	
L	40	680982	385	943210	115	737771	500	262229	20_	
1	41	9.681213	385	9.943141	115	9.738071	500	10.261929	19	
1	42	681443	384	943072	115	738371	500	261629	18	
1	43	681674	384	943003	115	738671	500	. 261329	17	
1	44 45	681905 682135	384	942934 942864	115	738971 739271	499	261029 260729	16 15	
1	46	682365	384	942795	116	739570	499	260430	14	
1	47	682595	383	942726	116	739870	499	260130	13	
1	48	682825	883	942656	116	740169	499 499	259831	12	
Į	49	683055	383 383	942587	116 116	740468	499	259532	11	
1	50	683284	382	942517	116	740767	498	259238	10	
I	51	9.683514	882	9.942448	116	9.741066	498	10.258934	9	
l	52	683743	382	942378	116	741365	498	258635	8	
I	53 54	683972	382	942308 942239	116	741664 741962	498	258336 258038	7	
١	54 55	684201 684430	881	942239	116	741962	498	257739	5	
1	56	684658	381	942099	116	742559	497	257441	5 4	
1	57	684887	881	942029	116	742858	497	257142	3 2	
١	58	685115	380 380	941959	116 117	743156	497 497	256844	2	
1	59	685343	380	941889	117	743454	497	256546	1	
1	60	685571	380	941819	117	743752	496	256248	0	
ŧ		Cosine.	i	Sine.	i -	Cotang.	i	Tang.	M.	
t						,				

						egrees		-01
_M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
O	9.685571	000	9.941819		9.743752		10.256248	60
1	685799	380	941749	117	744050	496	255950	59
3	686027	879	941679	117	744348	496	255652	58
3	686254	379	941609	117	744645	496	255355	57
4	686482	879	941539	117	744943	496	255057	56
5	686709	379	941469	117	745240	496	254760	55
6	686936	378	941398	117	745538	496	254462	54
8	687163	378	941328	117	745835	495	254165	53
1 8	687389	378	941258	117	746132	495	253868	52
9	687616	378	941187	117	746429	495	253571	51
10	687843	377	941117	117	746726	495	253274	50
_		377		118		495		
11	9.688069	377	9.941046	118	9.747023	494	10.252977	49
12 13	688295	377	940975	118	747319	494	252681	48
	688521	376	940905	118	747616	494	252384	47
14	688747	376	940834	118	747913	494	252087	46
15	688972	376	940763	118	748209	494	251791	45
16	689198	376	940693	118	748505	494	2 51495	44
17	689423	375	940622	118	748801	493	251199	43
18	689648	875	940551	118	749097		250903	42
19	689873	375	940480	118	749393	493	250607	41
20	690098	375	940409		749689	493	250311	40
21	9.690323		9.940338	118	9.749985	493	10.250015	39
22	690548	374	940267	118	750281	493		38
23	690772	374	940196	118	750576	493	249719	
24	690996	374	940125	119		492	249424	87
25	691220	374		119	750872	492	249128	36
26		373	940054	119	751167	492	248833	35
27	691444	873	939982	119	751462	492	248538	34
	691668	373	939911	119	751757	492	248243	33
28	691892	373	939840	119	752052	491	247948	32
29	692115	372	939768	119	752347	491	247653	81
30	692339	372	939697	119	752642		247358	30
81	9.692562		9.939625		9.752937	491	10.247063	29
32	692785	372	939554	119	753231	491	246769	28
33	693008	371	939482	119	753526	491	246474	27
34	693231	371	939410	119	753820	491	246180	26
35	693453	871	939339	119	754115	490		
86	693676	371	939267	120		490	245885	25
37		870	939195	120	754409	490	245591	24
38	693898	370		120	754703	490	245297	23
39	694120	370	939123	120	754997	490	245003	22
	694342	370	939052	120	755291	49J	244709	21
40	694564	369	938980	120	755585	489	244415	20
41	9.694786		9.938908		9.755878		10.244122	19
42	695007	369	938836	120	756172	489	243828	18
43	695229	369 .	938763	120	756465	489	243535	17
44	695450	869	938691	120	756759	489	243241	16
45	695671	368	\$38619	120	757052	489	242948	15
46	695892	368	988547	120	757345	489	242655	14
47	696113	36 8	938475	120	757638	488	242362	13
48	696334	368	938402	121	757931	488	242362	12
49	696554	367	938330	121	757951.	488	242069 241776	11
50	696775	867	938258	121		488		
		867		121	758517	488	241483	10
51	9.696995	867	9.938185	121	9.758810	488	10.241190	9
52	697215	867	938113	121	759102	487	240898	8
53	697435	866	938040	121	759395	487	240605	7
54	697654	866	937967	121	759687		240313	6
55	697874	366	937895		759979	487	240021	5
- 56	698094		937822	121	760272	487	239728	4
57	698313	866	937749	121	760564	487	239436	ā
58	698532	865	937676	121	760856	487	239144	3. 2
59	698751	365	937604	121	761148	486	238852	ĩ
60	698970	365	937531	121	761439	486	238561	ō
l		365		122		486		
	Cosine.	1	Sine.	1	Cotang.		Tang.	M.

74	(30 Degrees.) LOGARITHMIC								
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.		
0	9.698970	365	9.937531	122	9.761439	486	10.238561	60	
1	699189	364	937458	122	761731	486	238269	59	
2	699407	364	937385	122	762023	486	237977	58	
3	699626	364	937312	122	762814	486	237686	57	
4	699844	361	937238	122	762606	485	287394	56	
5	700062	363	937165	122	762897	485	237103	55	
6 7	700280	363	937092	122	763188	485	236812	54	
	700498	363	937019 986946	122	763479 768770	485	236521 236230	53 52	
8 9	700716	363	936872	122	764061	· 485	235939	51	
10	700933 701151	362	936799	122	764352	485	235648	50	
		362		122		484	10.235357	49	
11	9.701368	362	9.936725	122	9.764643	484	235067	48	
12	701585	362	936652 936578	123	764933 765224	484	234776	47	
18 14	701802 702019	861	936505	123	765514	484	234486	46	
15	702019	361	936431	123	765805	484	284195	45	
16	702452	361	936857	123	766095	484	233905	44	
17	702669	361	936284	123	766385	484	233615	43	
18	702885	360	936210	123	766675	483	233325	42	
19	703101	360	936136	123	766965	483	233035	41	
20	703317	360	936062	123	767255	483 483	232745	40	
21	9.703533	360	9.935988	123	9.767545	l	10.232455	39	
22	703749	359	935914	123	767834	483	232166	.38	
23	703964	859	935840	123	768124	483	231876	37	
24	704179	859	935766	123	768414	482	281586	36	
25	704395	359	935692	124	768703	482 482	231297	35	
26	704610	859	935618	124	768992	482	231008	34	
27	704825	358	985543	124	769281	482	230719	33	
28	705040	358 358	935469	124 124	769571	482	230429	32	
29	705254	358	935395	124	769860	481	230140	31	
80	705469	357	935320	124	770148	481	229852	30	
31	9.705683		9.935246		9.770437	l	10.229563	29	
82	705898	357	935171	124	770726	481 481	229274	28	
33	706112	857	935097	124 124	771015	481	228985	27	
84	706326	357 356	935022	124	771303	481	228697	26	
35	706539	356	934948	124	771592	481	228408	25	
36	706753	356	934873	125	771880	480	228120	24	
87	706967	356	934798	125	772168	480	227832	23	
38	707180	355	934723	125	772457	480	227543	22	
39	707393	855	934649	125	772745	480	227255	21 20	
40	707606	355	934574	125	773033	480	226967		
41	₹.707819	355	9.934499	125	9.778321	480	10.226679	19	
42	708032	354	934424	125	773608	480	226392	18	
43	708245	354	934349	125	773896	479	226104	17	
44	708458	354	984274	125	774184	479	225816	16	
45	708670	351	934199	125	774471	479	225529	15	
46	708882	354	934123	125	774759	479	225241 224954	14 13	
47	703094 709306	353	934048 933973	125	775046 775333	479	224934 224667	12	
49	709506	353	933898	126	775621	479	224879	11	
50	709730	853	933822	126	775908	478	224092	10	
		353	9.933747	126	9.776195	478	10.223805	9	
51 52	9.709941 710153	352	9.933747	126	776482	478	223518	8	
53	710153	352	933596	126	776768	478	223232	7	
54	710575	852	933520	126	777055	478	222945	6	
55	710786	352	933445	126	777342	478	222658	6 5	
56	710997	851	933369	126	777628	478	222372	4	
57	711208	351	933293	126	777915	477	222085	3	
58	711419	851	933217	126	778201	477	221799	2	
59	711629	351 951	933141	126	778488	477	221512		
60	711889	351 350	933066	126 127	778774	477 477	221226	0	
l		990		121	<u> </u>	411	<u> </u>		
	Cosine.		Sine.		Cotang.		Tang.	M.	

	-	JIM EG A	IND IAMO		. (egrees	• /	01
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
				1		<u> </u>		CO
0	9.711839	350	9.933066	127	9.778774	477	10.221226	60
1	712050	350	932990	127	779060	477	220940	59
2	712260	350	932914	127	779346	477	220654	58
3	712469	350	932838	127	779632	476	220368	57
4	712679	849	932762	127	779918	476	220082	56
5	712889	349	932685	127	780203	476	219797	55
6	715098	349	932609	127	780489	476	219511	54
7	713308	349	982533	127	780775	476	219225	53
8	713517		932457	127	781060		218940	52
9	713726	348	932380	127	781346	476	218654	51
10	713935	348	932304		781631	475	218369	50
1	9.714144	348	9.932228	127	9.781916	475	10.218084	49
11		348		127		475		
12	714352	347	932151	128	782201	475	217799	48
13	714561	847	932075	128	782486	475	217514	47
14	714769	347	931998	128	782771	475	217229	46
15	714978	347	931921	128	783056	475	216944	45
16	715186	347	931845	128	783341	474	216659	44
17	715304	346	981768	128	783626	474	216374	43
18	715602		931691	128	783910		216090	42
19	715809	346	931614		784195	474	215805	41
20	716017	346	931537	128	784479	474	215521	40
		346	9.931460	128	9.784764	474	10.215236	39
21	9.716224	345		128		474	10.210200	
22	716432	345	931383	128	785048	474	214952	38
23	716639	345	931306	128	785332	473	214668	37
24	716846	345	931229	129	785616	473	214384	36
25	717053	345	931152	129	785900	473	214100	35
26	717259		931075	129	786184	473	21 3816	34
27	717466	344	930998		786468		213532	33
28	717673	344	930921	129	786752	478	213248	32
29	717879	344	930843	129	787036	473	212964	31
30	718085	344	930766	129	787319	473	212681	30
1		343		129		472		
31	9.718291	343	9.930688	129	9.787603	472	10.212397	29
32	718497	343	930611	129	787886	472	212114	28
33	718703	343	930533	129	788170	472	211830	27
84	718909	843	930456	129	788453	472	211547	26
35	719114		930378		788736		211264	25
36	719320	342	930300	129	789019	472	210981	24
37	719525	342	930223	130	789302	472	210698	23
38	719730	342	930145	180	789585	472	210415	22
39	719935	342	930067	130	789868	471	210132	21
40	720140	841	929989	130	790151	471	209849	20
		341		130		471		
41	9.720345	341	9.929911	130	9.790434	471	10.209566	19
42	720549	341	929833	130	790716	471	209284	18
43	720754		929755	130	790999	471	209001	. 17
44	720958	341	929677		791281		208719	16
45	721162	340	929599	130	791563	471	208437	15
46	721366	340	929521	120	791846	470	208154	14
47	721570	340	929442	120	792128	470	207872	13
48	721774	340	929364	130	792410	470	207590	12
49	721978	339	929286	131	792692	470	207308	11
50	722181	839	929207	131	792974	470	207026	10
		339		131		470		
51	9.722385	339	9.929129	131	9.793256	470	10.206744	9
52	722588	339	929050	131	793538	469	206462	8
53	722791	338	928972		793819	469	206181	7 6 5
54	722994		928893	131	794101		205899	6
55	723197	338	928815	131	794383	469	205617	5
56	728400	338	928736	131	794664	469	205336	4
57	723603	338	928657	131	794946	469	266054	4 3 2
58	723605	887	·928578	131`	795227	469	204773	ž
59	724007	337	928499	131	795568	469	204492	ĩ
60	724210	337	928420	131	795789	469	204211	ō
ן טט	124210	337	02042U	132	190100	468	203211	١ '
-	Cosine.		Sine.		Cotang.		Tang.	M.
لنسا	COBINE.					1	1 rong.	
				Degre				

10		(02	Degrees	•, •	.UGARII H	MILO		
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
U	9.724210	337	9.928420	132	9.795789	468	10.204211	60
1	724412	837	928342	132	796070	468	203930	59
2	724614	3 36	928263	132	796351	468	203649	*58
3 4	724816	3 36	928183	132	796632	468	208368	57
4	725017	886	928104	132	796913	468	203087	56
5 6	725219	336	928025	132	797194	468	202806	5 5
6	725420	335	927946	132	797474	468	202526	54
7	725622	835	927867	132	797755	468	202245	53
8	725823	335	927787	132	798036	467	201964	52
9	726024	835	927708 927629	132	798316	467	201684	51
l	726225	335		132	798596	467	201404	50
11	9.726426	334	9.927549	133	9.798877	467	10.201123	49
12	726626	884	927470	133	799157	467	200843	48
18	726827 727027	834	927390 927310	133	799437 799717	467	200563	47
14 15	727228	834	927231	133	799997	467	200283 200003	46
16	727428	334	927151	133	800277	466	199723	45 44
17	727628	333	927071	133	800557	466	199443	43
18	727828	833	926991	133	800836	466	199164	42
19	728027	333	926911	133	801116	466	198884	41
26	728227	333	926831	133	801396	466	198604	40
21	9.728427	332	9.926751	133	9.801675	466	10.198325	
22	728626	332	9.926731	133	801955	466	198045	39 38
23	728825	332	926591	133	802234	466	197766	37
24	729024	332	926511	134	802513	465	197487	36
25	729223	332	926431	134	802792	465	197208	35
26	729422	331	926351	134	803072	465	196928	24
27	729621	831	926270	134	803351	465	196649	83
28	729820	831	926190	134	£03630	465	196370	32
29	780018	331 331	926110	134	803909	405	196091	31
30	730217	830	926029	134 134	804187	465 465	195813	30
31	9.780415	l	9.925949		9.804466		10.195534	29
32	780613	830	925868	134	804745	464	195255	28
33	730811	330	-925788	134	805023	464	194977	. 27
34	731009	830	925707	134	805302	464 464	194698	26
35	731206	329	925626	134	805580	464	194420	25
36	731404	329 329	925545	135 135	805859	464	194141	24
37	731602	329	925465	135	806137	464	193863	23
38	781799	329	925384	135	806415	464	193585	22
39	731996	328	925303	135	806693	463	193307	21
40	732193	328	925222	135	806971	463	198029	20
41	9.732390	328	9.925141	135	9.807249	463	10.192751	19
42	732587	328	925060	135	807527	463	192478	18
43.	732784	328	924979	135	807805	463	192195	17
44	732980	327	924897	135	808083	463	191917	16
45	733177	327	924816	135	808361	463	191639	15
46	733373	327	924735	136	808638	463	191362	14
47	733569	327	924654	136	808916	462	191084	13
48	73376 i 733961	327	924572 924491	136	809193	462	190807	12
50	734157	326	924491	136	809471	462	190529 190252	11 10
		826		136	809748	462		
51	9.734353	826	9.924328	136	9.810025	462	10.189975	9
52	734549	326	924246	136	810302	462	189698	8
53 54	734744 734939	826	924164 924083	136	810580 810857	462	189420 18914 3	7
55	735135	825	924083	136	810857	462	189145	6 5
56	735330	325	923919	136	811410	461	188590	4
57	785525	825	923837	136	811687	461	188313	4 3
58	785719	325	923755	136	811964	461	188036	9
59	735914	324	923673	137	812241	461	187759	2
60	786109	324	928591	137	812517	461	187483	ō
-	1	324		137		461		
L	Cosine.	li	Sine.		Cotang.		Tang.	M.

	•	2174 1772 1	IND IANO	MINIC	. (00 1	egrees	•)	
M.	Sine.	D.100".	Cosine.	D.	Taug.	D.100".	Cotang.	
0	9.736109		9.923591		9.812517		10.187483	60
Ĭ	736303	324	923509	137	812794	461	187206	59
2	736498	324	923427	137	813070	461	186930	58
3	736692	324	923345	137	818347	461	186653	57
4	736886	323	923263	137	- 813623	460	186377	56
5	737080	323	923181	137	813899	460	186101	55
6	737274	323	923098	137	814176	460	185824	54
1 7	737467	323	923016	137	814452	460	185548	53
8	737661	323	922933	137	814728	460	185272	52
9	737855	322	922851	137	815004	460	184996	51
10	738048	322	922768	138	815280	460	184720	50
1	I	322		138		460		
11	9.738241	322	9.922686	138	9.815555	460	10.184445	49
12	738434	322	922603	138	815831	459	184169	48
13	738627	321	922520	138	816107	459	183893	47
14	738820	321	922438	188	816382	459	183618	46
15	739013	321	922355	138	816658	459	183342	45
16	739206	321	922272	138	816933	459	183067	44
17	739398	321	922189	138	817209	459	182791	43
18	739590	320	922106	138	817484	459	182516	42
19	739783	320	922023	138	817759	459	182241	41
20	739975	320	921940	138	818035	459	181965	40
21	9.740167		9.921857		9.818310	l	10.181690	39
22	740359	320	921774	139	818585	458	181415	38
23	740550	320	921691	139	818860	458	181140	37
24	740742	819	921607	139	819135	458	180865	36
25	740934	319	921524	139	819410	458	180590	35
26	741125	319	921441	139	819684	458	180316	34
27	741316	319	921357	139	819959	458	180041	33
28	741508	319	921274	139	820234	458	179766	32
29	741699	318	921190	139	820508	458	179492	31
30	741889	318	921107	139	820783	457	179217	30
31	9.742080	318	9.921023	139		457		29
		318		139	9.821057	457	10.178943	
32	742271	318	920939	140	821332	457	178668	28
33	742462	317	920856	140	821606	457	178394	27
34	742652	317	920772	140	821880	457	178120	26
35	742842	317	920688	140	822154	457	177846	25
36	743033	317	920604	140	822429	457	177571	24
37	743223	317	920520	140	822703	457	177297	23
38	743413	316	920436	140	822977	456	177023	22
39	743602	316	920352	140	823251	456	176749	21
40	743792	316	920268	140	823524	456	176476	20
41	9.743982		9.920184		9.823798		10.176202	19
42	744171	316	920099	140	824072	456	175928	18
43	744361	316	920015	140	824345	456	175655	17
44	744550	315	919931	141	824619	456	175381	16
45	744739	315	919846	141	824893	456	175107	15
46	744928	315	919762	141	825166	456	174834	14
47	745117	315	919677	141	825439	456	174561	13
48	745306	315	919593	141	825713	455	174287	12
49	745491	314	919508	141	825986	455	174014	11
50	745683	314	919424	141	826259	455	173741	10
51-	9.745871	314	9.919339	141	9.826532	455	10.173468	9
52		314		141		455		
52	746060	314	919254	141	826805	455	178195	8
54	746248	813	919169	141	827078	455	172922	7
	746436	313	919085	141	827351	455	172649	6
55	746624	313	919000	142	827624	455	172376	5
56	746812	313	918915	142	827897	455	172103	4
57	746999	313	918830	142	828170	454	171830	8
58	747187	312	918745	142	828442	454	171558	2
59	747374	312	918659	142	828715	454	171285	1
€0	747562	312	918574	142	828987	454	171013	0
-	Cosine.		Sine.		Cotang.		Tang	м.
<u>-</u>	Cosine.	1	enie.	l	Cotang.	l	Tang.	TAT.

		•	Degrees	,				
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	9.747562	242	9.918574	1 440	9.828987	1	10.171013	60
ĺĬ	747749	812	918489	142	829260	454	170740	59
2	747936	312	918404	142	829532	454	170468	58
8	748123	312	918318	142	829805	454	170195	57
4	748310	811	918233	142	830077	454	169923	56
5	748497	311	918147	142	830349	454	169651	55
5 6	748683	311	918062	142 143	830621	454 453	169379	54
7	748870	311	917976	143	830898	453	169107	53
8	749056	311 310	917891	143	831165	453 453	168835	52
9	749243	310	917805	143	831437	453	168563	51
10	749429	310	917719	143	831709	453	168291	50
11	9.749615		9.917634	143	9.831981	453	10.168049	49
12	749801	310	917548	143	832253	453 453	167747	48
13	749987	310	917462	143	832525	453	167475	47
14	750172	309 309	917376	143	832796	453	167204	46
15	750358	309	917290	143	833068	452	166932	45
16	750543	309	917204	143	833339	452	166661	44
17	750729	309	917118	144	833611	452	166389	43
18	750914	309	917032	144	833882	452	166118	42
19	751099	308	916946	144	834154	452	165846	41
20	751284	308	916859	144	834425	452	165575	40
21	9.751469	308	9.916773	144	9.834696	452	10.165304	39
22	751654	308 308	916687	144	834967	452 452	165033	38
23	751839	308	916600	144	835238	452	164762	37
24	752023	307	916514	144	835509	452	164491	36
25	752208	307	916427	144	835780	451	164220	35
26	752392	307	916341	144	836051	451	163949	34
27	752576	807	916254	144	836322	451	163678	33
28	752760	307	916167	145	836593	451	163407	32
29	752944	306	916081	145	836864	451	163136	31
30	753128	306	915994	145	837134	451	162866	_30_
31	9.753312	306	9.915907	145	9.837405	451	10.162595	29
32	753495	306	915820	145	837675	451	162325	28
83	753679	306	915733	145	837946	451	162054	27
34	753862	305	915646	145	838216	451	161784	26
35	754046	805	915559	145	838487	450	161513	25 24
36 37	754229 754412	305	915472 915385	145	838757 839027	450	161243 160973	23
38	754595	305	915297	145	839297	450	160703	22
39	754778	805	915210	145	839568	450	160432	21
40	754960	304	915123	146	839888	450	160162	20
1		304		146		450	10.159892	
41	9.755143	304	9.915035	146	9.840108	450		19
42	755326	304	914948	146	840378 840648	450	159622 159352	18 17
44	755508 755690	304	914860 914773	146	840917	450	159352	16
45	755872	304	914685	146	841187	450	158813	15
46	756054	303	914598	146	841457	449	158543	14
47	756236	303	914510	146	841727	449	158273	13
48	756418	303	914422	146	841996	449	158004	12
49	756600	303	914334	146	842266	449	157734	iĩ
50	756782	303	914246	146	842535	449	157465	10
51	9.756963	302	9.914158	147	9.842805	449	10.157195	9
52	757144	302	914070	147	843074	449	156926	8
53	757326	302	913982	147	843343	449	156657	7
54	757507	302	913894	147	843612	449	156388	6
55	757688	302	913806	147	843882	449	156118	5
56	757869	301	913718	147	844151	449	155849	4
57	758050	301	913630	147	844420	448	155580	ŝ
58	758230	301	913541	147	844689	448	155311	2
59	758411	301	913453	147	844958	448	155042	1
60	758591	301 301	913365	147 147	845227	448 448	154773	0
<u> </u>		901		141	<u> </u>	940		
L	Cosine.	i	Sine.	l	Cotang.	1	Tang.	M.

55 Degrees.

	-	INES W	AD IANG	ENIS	. (30 2	regrees	•,	31
М	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
U	9.758591	901	9.913365	147	9.845227	440	10.154773	60
1	758772	301 300	918276	147 148	845496	448	154504	59
2	758952	800	913187	148	845764	448 448	154236	58
8	759132	300	913099	148	846033		158967	57
4	759312	300	913010	148	846802	. 448 448	153698	56
5	759492	300	912922	148	846570		153430	55
6	759672	299	912833	148	846839	448 448	153161	54
7	759852	299 299	912744	148	847108	448	152892	53
8	760031	299 299	912655	148	847376	447	152624	52
9	760211	209	912566	148	847644	447	152356	51
10	760390	299	912477	148	847913	447	152087	50
11	9.760569		9.912388		9.848181		10.151819	49
12	760748	299	912299	148	848449	447	151551	48
13	760927	298	912210	149	848717	447	151283	47
14	761106	298	912121	149	848986	447	151014	46
15	761285	298	912031	149	849254	447	150746	45
16	761464	298	911942	149	849522	447	150478	44
17	761642	298	911853	149	849790	447	150210	43
18	761821	297	911763	149	850057	446	149943	42
19	761999	297	911674	149	850325	446	149675	41
20	762177	297 297	911584	149	850593	446	149407	40
21	9.762356		9.911495	149	9.850861	446	10.149139	39
22	762534	297	911405	149	851129	446	148871	38
23	762712	296	911315	149	851396	446	148604	37
24	762889	296	911226	150	851664	446	148336	36
25	763067	296	911186	150	851981	446	148069	85
26	763245	296	911046	150	852199	446	147801	34
27	763422	296	910956	150	852466	446	147534	33
28	763600	296	910866	150	852733	446	147267	32
29	763777	295	910776	150	853001	446	146999	31
30	763954	295	910686	150	853268	445	146732	30
31	9.764131	295	9.910596	150	9.853535	445		
32	764308	295	910506	150	853802	445	10.146465	29
33	764485	295	910415	150	854069	445	146198	28
34	764662	294 -	910325	151	854336	445	145931	27
35	764838	294	910235	151	854603	445	145664 145397	26
36	765015	294	910144	151	854870	445	145130	25 24
37	765191	294	910054	151	855137	445	144863	23
38	765367	294	909963	151	855404	445	144596	22
39	765544	294	909873	151	855671	445	144329	21
40	765720	293	909782	151	855938	445	144062	20
41		298		151		444		
42	9.765896	293	9.909691	151	9.856204	444	10.143796	19
42	766072	293	909601	151	856471	444	143529	18
44	766247	293	909510	151	856737	444	143263	17
45	766423 766598	293	909419	152	857004	444	142996	16
46	766774	292	909328 909237	152	857270 857537	444	142780	15
47	766949	292	909237	152		444	142463	14
48	767124	292		152	857803	444	142197	13
49	767300	292	909055 908964	152	858069 858336	444	141931	12
50	767475	292	908873	152	858602	444	141664	11
		291		152		444	141398	10
51	9.767649	291	9.908781	152	9.858868	443	10.141132	9
52	767824	291	908690	152	859134	443	140866	8 .
53	767999	291	908599	152	859400	443	140600	7 6
54	768173	291	908507	152	859666	443	140334	6
55	768348	291	908416	153	859932	443	140068	5 4
56	768522	290	908324	158	860198	443	139802	4
57	768697	290	908283	153	860464	443	139536	8
58	768871	290	908141	153	860730	443	139270	2
59 60	769045	290	908049	153	860995	443	139005	1
00	769219	290	907958	153	861261	443	138739	0
	Cosine.		Sine.		Cotang.		Tang.	M.
	Courting.		inities,	I	COUNTY.	i	Tang.	107.

				Degrees		OGARIIH			
L	M.]	Sine.	D.100".	Cosine.	D.	Tang.	D. 100".	Cotang.	
f	0	9.769219	200	9.907958		9.861261		10.138739	60
1	ĭ	769393	290	907866	153	861527	443	138473	59
١	2	769566	289	907774	153	861792	443	138208	58
١	3	769740	289	907682	153	862058	443	137942	57
ı	4	769913	289	907590	153	862323	442	137677	56
١	5	770087	289	907498	153	862589	442	137411	55
١	5 6	770260	289	907406	153	862854	442	137146	54
1	7	770433	289	907314	154	868119	442	136881	53
١	8	770606	288	907222	154	863385	442	136615	52
١	9	770779	288	907129	154	863650	442	136350	51
١	10	770952	288	907037	154	863915	442	136085	50
ı			288		154		442		
ı	11 12	9.771125	288	9.906945	154	9.864180	442	10.135820	49
1	13	771298	288	906852	154	864445 864710	442	185555	48
-		771470	287	906760	154		442	135290	47
١	14	771643	287	906667	154	864975 865240	442	135025	46
١	15	771815	287	906575	154	865505	441	134760 134495	45
- 1	16	771987	287	906482	154		441		44
1	17	772159	287	906389	155	865770	441	134230	43
١	18	772831	286	906296	155	866035	441	133965	42
١	19	772503	286	906204	155	866300	441	133700	41
- [20	772675	286	906111	155	866564	441	133436	40
١	21	9.772847	286	9.906018	155	9.866829	441	10.133171	89
١	22	773018	286	905925	155	867094	441	132906	38
- 1	23	773190	286	905832	155	867858	441	132642	37
١	24	773361	285	905739	155	867623	441	132377	36
-	25	773533	285	905645	155	867887	441	132113	35
١	26	773704	285	905 552	155	868152	441	131848	34
١	27	773875	285	905459	156	868416	440	131584	33
-1	28	774046	285	905366	156	868680	440	131320	32
1	29	774217	285	905272	156	868945	440	131055	31
1	30	774388	284	905179		869209		130791	30
1	31-	9.774558		9.905085	156	9.869473	440	10.130527	29
. [32	774729	284	904992	156	869737	440	130263	28
١	33	774899	284	904898	156	870001	440	129999	27
J	34	775070	281	904804	156	870265	440	129735	26
-1	35	775240	284	904711	156	870529	440	129471	25
- [36	775410	284	904617	156	870793	440	129207	24
Į	37	775580	283	904523	156	871057	440	128943	23
- [38	775750	283	904429	156	871321	440	128679	22
1	39	775920	283	904335	157	871585	440	128415	21
١	40	776090	283	904241	157	871849	440	128151	20
ŀ	41		283		157		439		
1	41	9.776259	283	9.904147	157	9.872112	439	10.127888	19
1	42	776429	282	904053	157	872376	439	127624	18
1	44	776598	282	903959	157	872640	439	127360	17
1	44	776768	282	903864	157	872903	439	127097	16
ł	46	776937	282	903770	157	873167	439	126833	15
١	47	777106 777975	282	903676	157	873430	439	126570	14
ł	48	777275	281	903581	157	873694	439	126306	13
١	48 49	777444	281	903487	158	873957	439	126043	12
1	50	777613	281	903392	158	874220	439	125780	11
1		777781	281	903298	158	874484	439	125516	_10
١	51	9.777950	281	9.903203	158	9.874747	439	10.125253	9
1	52	778119	281	903108	158	875010	439	124990	8 7
1	53	778287	280	903014	158	875273	439	124727	7
١	54	778455	280	902919	158	875537	438	124463	6
١	55	778624	280 280	902824	158	875800	438	124200	5
١	56	778792	280	902729	158	876063	438	123937	I 4
١	57	778960	280 280	902634		876326	438	123674	3 2
1	58	779128		902589	158	876589	438	123411	2
١	59	779295	280	902444	158	876852		123148	1
1	60	779463	279 279	902349	159	877114	438	122886	0
١			219		159		438		<u></u> ,
١	1	Cosine.		Sine.		Cotang.		Tang.	M.

						5.000	٠,	
M.	Sine,	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
Ú	9.779463		9.902849		9.877114	i	10.122886	60
i	779631	279	902253	159	877377	438	122623	59
2	779798	279	902158	159	877640	438	122360	58
3	779966	279	902063	159	877903	438	122097	57
4	780133	279	901967	159	878165	438	121835	56
5	780300	279	901872	159	878428	438	121553	
6	780467	278	901776	159	878691	438	121372	55
7	780634	278	901681	159	878953	438	121047	54
8	780801	278	901585	159	879216	437	120784	53 52
9	780968	278	901490	159	879478	437	120784	52 51
10	781134	278	901394	160	879741	437	120322	50
-		278		160		437		
11	9.781301	277	9.901298	160	9.880003	437	10.119997	49
12	781468	277	901202	160	880265	437	119735	48
18	781634	277	901106	160	880528	437	119472	47
14	781800	277	901010	160	880790	437	119210	46
15	781966	277	900914	160	881052	437	118948	45
16	782132	277	900818	160	881314	437	118686	44
17	782298	276	900722	160	881577	437	118423	43
18	782464	276	900626	160	881839	437	118161	42
19	782630	276	900529	160	882101	437	117899	41
20	782796	276	900433	161	882363	487	117637	40
21	9.782961		9.900337		9.882625	1	10.117875	39
22	783127	276	900240	161	882887	436	117113	38
23	783292	276	900144	161	883148	436	116852	37
24	783458	275	900047	161	883410	436	116590	36
25	783623	275	899951	161	883672	436	116328	35
26	783788	275	899854	161	883934	436	116066	34
27	783953	275	899757	161	884196	436	115804	33
28	784118	275	899660	161	884457	436	115543	82
29	784282	275	899564	161	884719	436	115281	81 81
30	784447	274	899467	161		436		80
		274		162	884980	436	115020	
31	9.784612	274	9.899370	162	9.885242	436	10.114758	29
82	784776	274	899273	162	885504	436	114496	28
33	784941	274	899176	162	885765	436	. 114235	27.
84	785105	274	899078	162	886026	436	113974	26
35	785269	273	898981	162	886288	436	113712	25
36	785433	273	898884	162	886549	435	113451	24
87	785597	273	898787	162	886811	435	113189	23
38	785761	273	898689	162	887072	435	112928	22
39	785925	273	898592	162	887333	435	112667	21
40	786089	273	898494	163	887594	435	112406	20
41	9.786252		9.898397		9.887855		10.112145	19
42	786416	272	898299	163	888116	435	111884	18
43	786579	272	898202	163	888378	435	111622	17
44	786742	272	898104	163	888639	485	111361	16
45	786906	272	898006	163	888900	435	111100	15
46	787069	272	897908	163	889161	435	110839	14
47	787232	272	897810	163	889421	435	110579	13
48	787395	271	897712	163	889682	435	110318	12
49	787557	271	897614	163	889943	435	110057	
50	787720	271	897516	163	890204	436	100796	10
		271		164		435		
51	9.787883	271	9.897418	164	9.890465	434	10.109535	9
52	788045	271	897320	164	890725	434	109275	8
53	788208	270	897222	164	890986	434	109014	7
54	788370	270	897123	164	891247	434	108753	6
55	788532	270	897025	164	891507	434	108493	5
56	788694	270	896926	164	891768	434	108232	4
57	788856	270	896828	164	892028	434	107972	8
58	789018	270	896729	164	892289	484	107711	2 1
59	789180	270	896631	164	892549	434	107451	
60	789342	260	896532	165	892810	434	107190	0
-	Cosine.		Sine.		Cotone	 	Tang.	М.
	COMITIE.		Sine.		Cotang.		Tang.	Mr.

02	(56 Degrees.) LOGARTHMIC								
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.		
0	9.789342	269	9.896532	165	9.892810	434	10.107190	60	
1	789504	269	896433	165	893070	434	106930	59	
2	789665	269	896335	165	893331	434	106669	58	
3 4	789827 789988	269	896236 896137	165	893591 893851	434	106409	57	
5	790149	269	896038	165	894111	434	106149 105889	56 55	
6	790310	269	895939	165	894372	434	105628	54	
7	790471	268	895840	165	894632	434	105368	53	
8	790632	268 268	895741	165 165	894892	434 433	105108	52	
9	790793	268	895641	165	895152	433	104848	51	
10	790954	268	895542	165	895412	433	104588	50	
11	9.791115	268	9.895443	166	9.895672	433	10.104328	49	
12	791275	267	895343	166	895932	438	104068	48	
13 14	791486 791596	267	895244 895145	166	896192 896452	433	103808	47	
15	791757	· 267	895045	166	896712	433	103548 103288	46 45	
16	791917	267	894945	166	896971	438	103029	44	
17	792077	267	894846	166	897231	433	102769	43	
18	792237	267 266	894746	166 1 6 6	897491	483	102509	42	
19	792397	266	894646	166	897751	433 433	102249	41	
20	792557	266	894546	166	898010	433	101990	40	
21	9.792716	266	9.894 44 6	167	9.898270	433	10.101730	39	
22	792876	266	894346	167	898530	433	101470	38	
23 24	793035	266	894246	167	898789	433	101211	37	
25	793195 798354	266	894146 8940 4 6	167	899049 899308	433	100951	36	
26	793514	265	893946	167	899568	432	100692 100432	35 34	
27	793673	265	893846	167	£99827	432	100173	33	
28	793832	265 265	893745	167	900087	432	099913	32	
29	793991	265	893645	167 167	900346	432 432	099654	31	
30	794150	265	893544	167	£00605	432	099895	80	
31	9.794308	261	9.893444	168	9.900864	432	10.099136	29	
32	794467	264	893343	108	901124	432	098876	28	
33 34	794626 794784	264	£93243	168	901383	432	098617	27	
35	794942	264	893142 893041	168	901642 901901	432	098358	26 25	
36	795101	264	8 92 940	168	902160	432	098099 097840	23 24	
87	795259	264	892839	168	902420	432	097580	23	
38	795417	263	892739	168	902679	432	(97321	22	
39	795575	263 263	892638	168 168	902938	432 432	097062	21	
40	795733	263	892536	168	903197	432	096803	20	
41	9.795891	263	9.892435	169	9.903456	432	10.096544	19	
42	796049	263	892334	169	903714	481	· 096286	18	
43	796206 796364	263	892233 892132	169	903973 904232	431	096027	17	
45	796521	262	892132 892030	169	904282	431	095768 095509	16 15	
46	796679	262	891929	169	£04750	481	095505 095 2 50	14	
47	796836	262	891827	169	905008	481	094992	13	
48	796993	262 262	891726	169 169 t	905267	431 431	094733	12	
49	797150	262 262	891624	169	905526	481	094474	11	
50	797807	261	891523	169	905785	431	094215	10	
51	9.797464	261	9.891421	170	9.906043	431	10 .093957	9	
52 53	797621	261	891319 801917	170	906302	431	('93698	8	
54	797777 797934	261	891217 891115	170	906560 906819	431	093440	7	
55	798091	261	891013	170	907077	431	093181 092923	6 5	
56	798247	261	890911	170	907336	431	092664	4	
57	798403	261 260	890809	170	907594	431	092406	3	
58	798560	260 260	890707	170 170	907853	431 431	092147	2	
59	798716	260	890605	170	908111	431	091889	1	
60	798872	260	890503	171	908369	430	091631	0	
	Cosine.		Sine.		Cotang.		Tang.	M	
				_					

			ND IANG			egrees	·/	90
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
Q	9.798872	260	9.890503	171	9.908369	430	10.091631	60
1	799028	260	890400	171	908628	430	091372	59
2	799184	260	890298	171	908886	480	091114	58
3	799339	259	890195	171	909144	430	090856	57
4	799495	259	890093	171	909402	430	090598	56
5	799651	259	889990 889888	171	909660	430	090340	55
6	799806	259	889785	171	909918	430	090082	54
7	799962	259	889682	171	910177	430	089823	53
8 9	800117 800272	259 ·	889579 ·	171	910435 910693	430	089565 089307	52 51
10	800272	259.	889477	171	910951	430	089049	50
		258	9.889374	172		430		
11	9.800582	258	889271	172	9.911209	430	10.088791	49
12	800737	258	889168	172	911467	430	088533	48 47
13	800892	258	889064	172	911725 911982	430	088275 088018	46
14 15	801047 801201	258	888961	172	912240	430	087760	45
16	801356	258	888858	172	912498	430	087502	44
17	801511	257	888755	172	912756	430	087244	43
18	801665	257	888651	172	913014	430	086986	42
19	801819	257	888548	172	913271	430	086729	41
20	801973	257	888444	172	913529	429	086471	40
21	9.802128	257	9.888341	173	9.913787	429	10.086213	39
22	802282	257	888237	173	914044	429	085956	38
23	802436	257	888134	173	914302	429	085698	37
24	802589	256	888030	173	914560	429	085440	36
25	802743	256	887926	173	914817	429	085183	35
26	802897	256	887822	173	915075	429	084925	34
27	803050	256	887718	173	915332	429	084668	33
28	803204	256	887614	173	915590	429	084410	32
29	803357	256 255	887510	173	915847	429	084153	31
30	803511	255 255	887406	173	916104	429	083896	30
81	9.803664		9.887302	174	9.916362	429	10.083638	29
82	803817	255	887198	174	916619	429	083381	28
33	803970	255	887093	174	916877	429	083123	27
34	804123	255	886989	174	917134	429	082866	26
35	804276	255	886885	174	917391	429	082609	25
36	804428	255 254	886780	174	917648	429	082352	24
37	804581	254	886676	174 174	917906	429 429	082094	23
38	804734	254	886571	174	918163	429	081837	22
39	804886	254	886466	175	918420	428	081580	21
40	805039	254	886362	175	918677	428	081323	20
41	9.805191	254	9.886257		9.918934		10.081066	19
42	805343	253	886152	175	919191	428	080809	18
43	805495	253 253	886047	175 175	° 919448	428 428	080552	17
44	805647	253	885942	175	919705	428	080295	16
45	805799	253	885837	175	919962	428	0 800 38	15
46	805951	253	885732	175	920219	428	079781	14
47	806103	253	885627	175	920476	428	079524	13
48	806254	253	885522	175	920733	428	079267	12
49	806406	252	885416	176	920990	428	079010	11
50	806557	252	885311	176	921247	428	078753	10
51	9.806709	252	9.885205	176	9.921503	428	10.078497	9
52	806860	252	885100	176	921760	428	078240	8 4
53	807011	252 252	884994	176	922017	428	077983	7 6
54	807163	252	884889	176	922274	428	077726	6
55	807314	252	884783	176	922530	428	077470	5
56	807465	251	. 884677	176	922787	428	077213	4
57	807615	251	884572	176	923044	428	076956	8
58	807766	251	884466	176	923300	428	076700	5 4 3 2 1
59 60	807917 808067	251	884360 884254	177	923557	428	076443	0
00	000007	251	004204	177	923814	428	076186	'
	Cosine.		Sine.	1	Cotang.	1	Tang.	M.
					,			

U- T		(Degrees	•, -	OGAMIII			
M.	Sine.	D.100".	Cosine.	D.	Tang.	D. 100".	Cotang.	
U	9.808067		9.884254	ı	9.923814		10.076186	60
ĭ	808218	251	884148	177	924070	428	075930	59
2	808368	251	884042	177	924327	427	075673	58
3	808519	251	883936	177	924583	427	075417	57
4		250		177	924840	427		
	808669	250	883829	177		427	075160	56
5 6	808819 808969	250	883723 883617	177	925096 925352	427	074904 074648	55 54
7		250		177		427		
8	809119	250	883510	177	925609	427	074391	53
9	809269	250	883404	178	925865	427	074135	52
10	809419	249	883297	178	926122	427	073878	51
	809569	249	883191	178	926378	427	073622	50
11	9.809718	249	9.883084	178	9.926634	427	10.073366	49
12	809868	249	882977	178	926890	427	073110	48
13	810017	249	882871	178	927147	427	072853	47
14	810167	249	882764	178	927403	427	072597	46
15	810316	249	882657	178	927659	427	072341	45
16	810465	248	882550	178	927915	427	072085	44
17	810614	248	882443	178	928171	427	071829	43
18	810763	248	882336	179	928427	427	071578	42
19	810912	248	882229	179	928684	427	071316	41
20	811061	248	882121	179	928940	427	071060	40
21	9.811210		9.882014		9.929196		10.070804	39
22	811358	248	881907	179	929452	427	070548	38
23	811507	248	881799	179	929708	427	070292	37
24	811655	247	881692	179	929964	427	070036	36
25	811804	247	881584	179	930220	427	069780	35
26	811952	247	881477	179	950475	426	069525	34
27	812100	247	881369	179	930731	426	069269	33
28	812248	247	881261	180	930987	426	069013	32
20	812396	247	881153	180	981248	426	068757	31
30	812544	247	881046	180	931499	426	068501	30
		246		180		426		
31	9.812692	246	9.880938	180	9.931755	426	10.068245	29
32	812840	246	880830	180	932010	426	. 067990	28
88	812988	246	880722	180	932266	426	067734	27
34	813135	246	880613	180	932522	426	C67478	26
85	813283	246	880505	180	932778	426	067222	25
36	813430	246	880397	180	933033	426	066967	24
37	813578	245	880289	181	933289	426	066711	23
38	813725	245	880180	181	933545	426	C66455	22
39	813872	245	880072	181	933800	426	066200	21
40	814019	245	879963	181	934056	426	065944	20
41	9.814166		9.879855		9.934311		10.065689	19
42	814313	245	879746	181	934567	426	065433	18
43	814460	245	879637	181	934822	426	065178	17
44	814607	245	8795 29	181	935078	426	064922	16
45	814753	244	879420	181	935333	426	064667	15
46	814900	244	879311	181	935589	426	064411	14
47	815046	244	879202	182	935844	426	064156	13
48	815193	244	879093	182	936100	426	063900	12
49	815839	244	878984	182	936355	426	063645	11
50	815485	244	878875	182	936611	426	063389	10
		244		182		426		
51	9.815632	213	9.878766	182	9.936866	425	10.063134	9
52	815778	243	878656	182	937121	425	062879	ğ
53	815924	243	878547	182	937377	425	062623	7
54	816069	243	878438	182	937632	425	062368	Ü
5.5	816215	243	878328	183	937887	425	062113	5
56	816361	243	878219	183	958142	425	061858	8 7 6 5 4 3
57	816507	243	878109	183	938398	425	061602	3
58	816652	242	877999	183	938653	425	061347	2
59	816798	242	877890	183	938908	425	061092	1
60	816943	242	877780	183	939163	425	060837	0
-	l (log)			1000	0.4		M	
L	Cosine.		Sine.	l	Cotang.	L	Tang.	M.

	•	JA11 20 1	IND IMMO	13374 7 7	" (***	egrees	•)	30
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	7
0	9.816943	0.10	9.877780		9.939163		10.060837	60
1	817088	242	877670	183	939418	425	060582	59
2	817233	242	877560	183	939673	425	060327	58
3	817379	242	877450	183	939928	425	060072	57
4	817524	242 242	877340	183	940183	425	059817	56
5	817668	242	877230	184 184	940439	425 425	059561	55
6	817813	241	877120	184	940694	425	059306	54
7 8	817958	241	877010	184	940949	425	059051	53
	818103	241	876899	184	941204	425	058796	52
9	818247	241	876789	184	941459	425	058541	51
10	818392	241	876678	184	941713	425	058287	50
11	9.818536	241	9.876568	184	9.941968	425	10.058032	49
12	818681	240	876457	184	942223	425	057777	48
13	818825	240	876347	184	942478	425	057522	47
14	818969	240	876236	185.	942783	425	057267	46
15	819113	240	876125	185	942988	425	057012	45
16	819257	240	876014	185	943243	425	056757	44
17	819401	240	875904	185	943498	425	056502	43
19	819545	240	875793	185	943752	425	056248	42
20	819689 819852	239	875682	185	944007	425	055993	41
		239	875571	185	944262	425	055738	40
21	9.819976	239	9.875459	185	9.944517	425	10.055483	39
22	820120	239	875348	185	944771	424	055229	38
23	820263	239	875237	186	945026	424	054974	37
24 25	820406	239	875126	186	945281	424	054719	36
26	820550 820693	239	875014	186	945535	424	054465	85
27	820836	238	874903	186	945790	424	054210	34
28	820979	238	874791	186	946045	424	053955	38
29	821122	238	874680 874568	186	946299 946554	424	053701	82 31
30	821265	238	874456	186	946808	424	053446 053192	80
31	9.821407	238		186		424		
32	821550	238	9.874344	186	9.947063	424	10.052937	29
33	821693	238	874232	187	947318	424	052682	28
34	821835	237	874121 874009	187	947572	424	052428 052173	27
35	821977	237	873896	187	947827 948081	424	051919	26 25
36	822120	237	873784	187	948335	424	051665	20
37	822262	237	873672	187	948590	424	051410	23
38	822404	237	873560	187	948844	424	051156	22
39	822546	237	873448	187	949099	424	050901	21
40	822688	237	873335	187	949353	424	050647	20
41	9.822830	237	9.873223	187	9.949608	424	10.050392	19
42	822972	236	873110	187	949862	424	050138	18
43	825114	236	872998	188	950116	424	049884	17
44	823255	236	872885	188	950371	424	049629	16
45	823397	236	872772	188	950625	424	049375	15
46	823539	236	872659	188	950879	424	049121	14
47	823680	236	872547	188	951133	424	048867	13
48	823821	236	872434	188	951388	424	048612	12
49	823963	235 235	872321	188	951642	424	048358	ii
50	824104	235	872208	188 188	951896	424	048104	10
51	9.824245	f	9.872095	1	9.952150	424	10.047850	9
52	824386	235	871981	189	952405	424	047595	8
53	824527	235	871868	189	952659	424	047341	7
54	824668	235 235	871755	189	952913	424	047087	6
55	824808	235	871641	189 189	953167	424	046833	Š
56	824949	234	871528	189	953421	424 424	046579	4
57	825090	234	871414	189	953675	424	046325	8
58	825230	234	871301	189	953929	423	046071	2
59	825371	234	871187	189	954183	423	045817	1
60	825511	234	871073	190	954437	423	045568	0
	Cosine.		Sine.		Cotang.		To-	-
	L CORING.	<u>. </u>	Dille.	1	cotang.	1	Tang.	M.

			Degrees		JUGARITH			
M.	Sine.	D.100".	Cosine.	D.	Tang.	D.100".	Cotang.	
0	9.825511	234	9.871073	190	9.954437	423	10.045568	60
1	825651	234	870960	190	954691	423	045309	59
2	825791	233	870846	190	954946	423	045054	58
8	825931	233	870732	190	955200	423	044800	57
4	826071	233	870618	190	955454	423	044546	56
5	826211	233	870504	190	955708	423	044292	55
6	826351	233	870390	190	955961	423	044039	54
	826491 826681	233	870276 870161	190	956215 956469	423	043785 043531	53
8	826770	233	870047	190	956723	423	043277	52 51
10	826910	233	869933	191	956977	423	043023	50
		232		191		423		
11 12	9.827049	232	9.869818	191	9.957231	423	10.042769 042515	49 48
13	827189 827328	232	869704 869589	191	957485 957739	423	042313	47
14	827467	232	869474	191	957993	423	042201	46
15	827606	232	869360	191	958247	423	041753	45
16	827745	232	869245	191	958500	423	041500	44
17	827884	232	869130	191	958754	423	041246	43
18	828023	231	869015	191	959008	423	040992	42
19	828162	231	868900	192	959262	423	040738	41
20	828301	231	868785	192	959516	423 423	010184	40
21	9.828439	231	9.868670	192	9.959769		10.040231	39
22	828578	231	868555	192	960023	423	039977	38
23	828716	231	868440	192	960277	423	039723	37
24	828855	231	868324	192	960530	423	039470	36
25	828993	230	868209	192	960784	423 423	039216	35
26	829131	230 230	868093	192 193	961038	423	038962	34
27	829269	200	867978	193	961292	423	038708	33
28	829407	230	867862	193	961545	423	038455	32
29	829545	230	867747	193	961799	423	038201	81
80	829683	230	867631	193	962052	423	037948	80
81	9.829821	230	9.867515	193	9.962306	423	10.037694	29
82	829959	229	867399	193	962560	423	037440	28
38	830097	229	867283	193	962813	423	037187	27
84	830234	229	867167	193	963067	423	036933	26
85	830372	229	867051	194	963320	423	036680	25
86 87	830509	229	866935	194	963574	423	036426	24
88	830646	229	866819 866703	191	963828 964081	423	036172	23 22
89	830784 830921	229	866586	194	964835	423	035919 035665	22
40	831058	228	866470	194	964588	423	035412	20
		228		194		422		
41 42	9.831195	228	9.866353	194	9.964842	422	10.035158	19
42	831332 831469	228	866237 866120	194	965095 965349	422	034905 034651	18 17
44	831606	228	866004	194	965602	422	034398	16
45	831742	228	865887	195	965855	422	034145	15
46	831879	228	865770	195	966109	422	033891	14
47	832015	228	865653	195	966362	422	033638	13
48	832152	227	865556	195	966616	422	033384	12
49	832288	227	865419	195	966869	422	033131	11
50	832425	227	865302	195	967123	422	032877	10
51	9.832561	227	9.865185	195	9.967376	422	10.032624	9
52	832697	227	865068	195	967629	422	032371	8
53	832833	227	864950	195	967883	422	032117	7
54	832969	227	864833	196	968136	422	031864	6
55	833105	226	864716	196	968389	422 422	031611	6 5
56	833241	226 226	864598	196 196	968643	422 422	031357	4
57	833377	226	864481	196	968896	422	031104	3
58	833512	226	864363	196	969149	422	030851	2 1
59	833648	226	864245	196	969403	422	030597	
60	833783	226	864127	196	969656	422	030344	0
~	Cosine.		Sine.		Cotang.	 	Tang.	M.
	1 Coninc.	I	Dino.	1	l Octang.	l	I Tank.	745

-		25.20.00				25.000	<u></u>	
М.	Sine.	D.100".	Cosine.	υ.	Tang.	D.100".	Cotang.	
0	9.883783	222	9.864127		9.969656	100	10.030344	60
Ĭ	833919	226	864010	196	969909	422	030091	59
2	834054	226	863892	196	970162	422	029838	58
3	834189	225	863774	197	970416	422	029584	57
4	834325	225		197		422		
1 2		225	863656	197	970669	422	029331	56
5	834460	225	863538	197	970922	422	029078	55
6	834595	225	863419	197	971175	422	028825	54
7	884730	225	863301	197	971429	422	028571	53
8	834865	225	863183	197	971682	422	028318	52
9	834999	225	863064	197	971935	422	028065	51
10	835134	224	862946		972188	422	027812	50
11	9.835269		9.862827	198	9.972441		10.027559	49
12	835403	224	862709	198	972695	422	027305	48
13	835538	224	862590	198	972948	422	027052	47
		224	862471	198		422		46
14	835672	224		198	973201	422	026799	
15	835807	224	862353	198	973454	422	026546	45
16	835941	224	862234	198	973707	422	026293	44
17	836075	223	862115	198	973960	422	026040	43
18	836209	223	861996	198	974213	422	025787	42
19	836343	223	861877		974466	422	025534	41
20	836477	223	861758	199	974720		025280	40
21	9.836611		9.861638	199	9.974978	422	10.025027	39
22	836745	223	861519	199		422	024774	38
		223		199	975226	422		
23	836878	223	861400	199	975479	422	024521	37
24	837012	223	861280	199	975732	422	024268	36
25	837146	222	861161	199	975985	422	024015	35
26	837279	222	861041	199	976238	422	023762	34
27	837412	222	860922	199	976491	422	023509	33
28	837546	222	860802		976744		023256	32
29	837679	222	860682	200	976997	422	023003	31
30	837812	222	860562	200	977250	422	022750	30
		222		200		422		
81	9.837945	222	9.860442	200	9.977503	422	10.022497	29
82	838078	222	860322	200	977756	422	022244	28
83	838211	221	860202	200	978009	422	021991	27
84	838344	221	860082	200	978262	422	021738	26
35	838477	221	859962	200	978515	422	021485	25
36	838610	221	859842		978768		021232	24
87	838742		859721	201	979021	422	020979	23
88	838875	221	859601	201	979274	422	020726	22
39	839007	221	859480	201	979527	422	020473	21
40	839140	221	859360	201	979780	422	020220	20
		220		201		422		
41	9.839272	220	9.859239	201	9.980033	422	10.019967	19
42	839404	220	859119	201	980286	422	019714	18
43	839536	220	858998	201	980538	422	019462	17
44	839668	220	858877	201	980791	422	019209	16
45	839800		858756		981044	421	018956	15
46	839932	220	858635	202	981297		018703	14
47	840064	220	858514	202	981550	421	018450	13
48	840196	220	858393	202	981803	421	018197	12
49	840328	219	858272	202	982056	421	017944	ii
50	840459	219	858151	202	982309	421	017691	10
		219		202		421		
51	9.840591	219	9.858029	202	9.982562	421	10.017438	9
52	840722	219	857908	202	982814	421	017186	8
53	840854	219	857786	202	983067	421	016933	7
54	840985		857665	203	983320		016680	6
55	841116	219	857543		983573	421	016427	5
56	841247	219	857422	203	983826	421	016174	4
57	841378	218	857300	203	981079	421	015921	ã
58	841509	218	857178	203	984332	421	015668	3 2
59	841640	218	857056	203	984584	421	015416	ĩ
60		218		203		421	015163	0
1 00	841771	218	856934	203	984837	421	019109	v
	Cosine.		Sine.		Cotang.	 	Tang.	M.
	COBINE.		Bille.	1	Cotang.		1 rang.	143.

38	588 (44 Degrees.)		LOGARIT	нміс	SINES .	AND TA	NGENTS.		
	M.	Sine.	D.100".	Cosine.	D.	Tang.	D. 100".	Cotang.	
- 1	0	9.841771	218	9.856934	208	9.984837	421	10.015168	60
- 1	1 2	841902 842038	218	856812	204	985090	421	014910	59
- 1	3	842163	218	856690 856568	204	985343 985596	421	014657 014404	58 57
1	4	842294	218 217	856446	204	985848	421	014152	56
	5	842424	217	856323	204 204	986101	421 421	013899	55
	6 7	842555 842685	217	856201	204	986354	421	013646	54
	8	842815	217	856078 855956	204	986607 986860	421	013393 013140	53 52
	ğ	842946	217	855833	204	987112	421	012888	51
	10	843076	217 217	855711	204 205	987365	421 421	012635	50
	11	9.843206	217	9.855588	205	9.987618	421	10.012382	49
	12	843336	216	855465	205	987871	421	012129	48
	13 14	843466 843595	216	855342 855219	205	988123 988376	421	011877	47
	15	843725	216	855096	205	988629	421	011624 011371	46 45
	16	843855	216 216	854973	205 205	988882	421 421	011118	44
	17	843984	216	854850	205	989134	421	010866	43
	18 19	844114 844243	216	85472 7 854603	206	989387	421	010613	42
	20	844372	216	854480	206	989640 989893	421	010360 010107	41 40
	21	9.844502	215	9.854356	206	9.000145	421	10.009855	89
	22	844631	215	854233	506	990398	421	009602	88
	23	844760	215 215	854109	206 206	990651	421 421	009349	87
	24	844889	215	853986	206	990903	421	009097	86
	25 26	845018 845147	215	853862 853738	206	991156 991409	421	008844	35
	27	845276	215	853614	206	£91662	421	008591 008338	34 33
	28	845405	215 214	853490	207	991914	421	C08086	82
	29	845533	214	853366	207 207	992167	421 421	C07833	81
	30	845662	214	853242	207	992420	421	007580	_30
	31 32	9.845790	214	9.853118	207	9.992672	421	10.007328	29
	33	845919 846047	214	852994 852869	207	992925 993178	421	007075	28
	34	846175	214	852745	207	\$93431	421	006822 C06569	27 26
	35	846304	214 214	852620	207 208	993683	421 421	006317	25
	36	846432	213	852496	208	993936	421	C06064	24
	37 38	846560 846688	213	852371 852247	208	994189	421	005811	23
	89	846816	213	85212 2	208	994441 994694	421	C05559 005306	22 21
	40	846944	213	851997	208	994947	421	C05053	20
	41	9.847071	213	9.851872	208	9.995199	421	10.004801	19
	42	847199	213 213	851747	208	995452	421 421	004548	18
	43	847327	213	851622	200	995705	421	C04295	17
	44 45	817454	212	851497 951270	209	995957	421	004043	16
	46	847582 847709	212	8513 72 851246	209	\$96210 996463	421	003790 003537	15 14
	47	847836	212	851121	209	996715	421	003285	13
	48	847964	212 212	850996	209 209	996968	421 421	003032	12
	49	848091	212	850870	209	997221	421	002779	11
	50	848218	212	850745	209	997473	421	002527	10
	51 52	9.848345 848472	212	9.850619	210	9.997726	421	10.002274	9
	53	848599	211	850493 850868	210	997979 998231	421	002021 001769	8 7
	54	848726	211	850242	210	998484	421	001516	6
	55	848852	211 211	850116	210 210	998737	421 421	001268	5
	56 57	848979	211	849990	210	998989	421	001011	4
	58	849106 849232	211	849864 849738	210	999242 999495	421	000758 000505	3 2
	59	849359	211	849611	210	999747	421	000253	1
	60	849485	211 211	849485	210 210	10.000000	421 421	000000	ō
		Cosine.		Sine.		Cotang.		Tang.	M.

APPENDIX.

This Appendix contains a collection of miscellaneous propositions which will be found useful to those who wish to extend their studies beyond the range which is usually prescribed in a college course, and it includes brief notices of various topics which have not hitherto been generally admitted into the Elements of Geometry. Most of these topics are embraced under the comprehensive term of Modern Geometry, since they were either entirely unknown or had attracted but little attention until recent times.

The treatise on Descriptive Geometry by Monge, published in 1794, gave a new impulse to the study of pure geometry. In 1803 Carnot published his Geometry of Position, and in 1806 an Essay on Transversals. In 1817 Brianchon extended this theory and that of harmonic pencils, applying them to the Conic Sections. In 1822 Poncelet published his treatise on the projective properties of figures, in which work he treated of Poles and Polars, Centres of Similitude, and, indeed, nearly every branch of Modern Geometry. Since that time the same subjects have been further developed by Steiner, Poinsot, Cayley, Chasles, Salmon, Cremona, and many other mathematicians.

I take pleasure in acknowledging my obligations to Prof. H. A. Newton and Prof. J. E. Clark, to each of whom I am indebted for important assistance in preparing this Appendix.

E. L.

CONTENTS OF APPENDIX.

	Page
Miscellaneous Propositions	3 91
Tangents treated by the Method of Limits	402
Plane Loci	403
Loci in Space	406
Symmetrical Figures	408
Symmetrical Polyedrons	410
Maxima and Minima of Plane Figures	413
Transversals	417
Harmonic Proportion and Harmonic Pencils	420
Poles and Polars with Respect to an Angle	424
Poles and Polars with Respect to a Circle	
Radical Axis of Two Circles	428
Centres of Similitude	430
Orthogonal Projection	432
Perspective or Conical Projection	436
Spherical Projection	441

APPENDIX.

MISCELLANEOUS PROPOSITIONS.

Proposition I.

1. If the diagonals of a quadrilateral bisect each other, the figure is a parallelogram.

Let ABCD be a quadrilateral whose diagonals AC, D BD bisect each other; then will ABCD be a parallelogram.

Because AE=EC, and EB=ED, and the angles AEB, DEC, being opposite, are equal to each other, therefore the two triangles AEB and DEC are equal to each other (B. I., Pr. 6), and the angle EAB is equal to the angle ECD. Therefore AB is parallel to CD (B. I., Pr. 22). In like manner it may be proved that AD is parallel to BC, and therefore ABCD is a parallelogram.

2. Cor. If the diagonals of a quadrilateral bisect each other at right angles, the figure is a rhombus.

Proposition II.

3. The diagonals of a rectangle are equal.

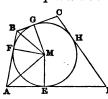
Let ABCD be a rectangle; then will its diagonals AC, p BD be equal to each other.

Since the right angle ADC is equal to the right angle BCD, also the side AD is equal to BC, and CD is common A to the two triangles ADC, BCD, therefore these two triangles are equal to each other, and hence AC=BD.

4. Cor. The diagonals of a square are equal; they bisect each other at right angles, and they also bisect the angles of the square.

Proposition III.

5. The straight line which joins the middle points of any two sides of a triangle is parallel to the third side, and is equal to one half of that side.


In the triangle ABC, let D be the middle point of AB, and E the middle point of AC; then will DE be parallel to BC, and will be equal to one half of BC.

Through E draw EF parallel to AB; then in the triangles ADE, EFC we have AE=EC; also AD is equal to DB, which is equal to EF (B. I., Pr. 30); and the angle DAE is equal to the angle FEC (B. I., Pr. 23); therefore the angle AED is equal to the angle ECF (B. I., Pr. 6), and DE is parallel to BC (B. I., Pr. 22). Also FC is equal to DE, which is equal to BF; and therefore DE is one half of BC.

6. Cor. If a straight line drawn parallel to the base of a triangle bisects one of the sides, it also bisects the other side.

Proposition IV.

7. If a quadrilateral be described about a circle, the sum of two opposite sides is equal to the sum of the other two opposite sides.

Let ABCD be a quadrilateral described about a circle; the sum of two opposite sides, as AB and CD, is equal to the sum of the other two sides, BC and AD.

Let E, F, G, H be the points at which the sides of the quadrilateral touch the circle. Let M be D the centre of the circle, and join ME, MA, MF.

The triangles MAE, MAF, being right-angled, are equal (B. I., Pr. 19); hence AE=AF. For a like reason we have

BF = BG; CG = CH; and DE = DH.

Adding the corresponding members of these four equations, we have AF+BF+CH+DH=AE+DE+BG+CG;

that is,

AB+CD = AD+BC.

Proposition V.

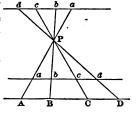
8. If the sum of two opposite sides of a quadrilateral is equal to the sum of the other two sides, a circle can be inscribed within the quadrilateral.

Let ABCD be a quadrilateral, having the sum of the sides AB and CD equal to the sum of the sides BC and AD; a circle can be inscribed within the quadrilateral.

By the method employed in B. V., Pr. 15, we may describe a circle touching any three straight lines which do not pass through the same point, and which are not parallel to one another. Describe a circle touching the three sides of the quadrilateral BC, CD, and AD, in the points G, H, and E. Join M, the centre of the circle, with G, B, A, and E, and draw MF perpendicular to AB. Then will MF be equal to the radius of the circle.

Since by hypothesis, AB+CD=BC+AD, and by the last Proposition, CD=CG+DE, therefore AB=BG+AE.

Since the hypothenuse AM is common to the two right-angled triangles AME, AMF, and the hypothenuse BM is common to the two right-angled triangles BMF, BMG, if MF were less than ME or MG, BF and AF, that is, AB, would be greater than BG+AE (B. IV., Pr. 11); but if MF were greater than ME or MG, AB would be less than BG+AE. Now it has been proved that AB is equal to BG+AE; hence MF is equal to ME or MG. Therefore F is on the circumference of the circle which passes through E, G, and H; and the line AB touches the circle because the angle at F is a right angle (B. III., Pr. 9). Hence the circle touches each of the sides of the quadrilateral.


Proposition VI.

9. If two parallel straight lines are cut by several straight lines drawn through a common point, the corresponding segments of the parallels are proportional.

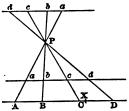
Let the two parallel lines AD, ad be cut by the lines PA, PB, PC, PD, drawn through the common point P; then will AD and ad be divided proportionally.

The triangle Pab is similar to the triangle PAB (B. IV., Pr. 16); also Pbc is similar to PBC, and Pcd to PCD. Hence we have

AB: ab:: PB:: Pb:: BC: bc.
Also, BC: bc:: PC:: Pc:: CD: cd.
Hence AB: ab:: BC: bc:: CD: cd.

PROPOSITION VII.

10. If three or more straight lines divide two parallel lines proportionally, they pass through a common point.

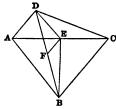

Let the two parallel lines AD, ad be divided a proportionally by the lines Aa, Bb, Cc, and Dd; these lines, produced if necessary, meet in a common point.

Let the lines Aa and Bb meet in P. If the straight line Cc does not pass through the point P, join Pc and produce it to meet AD in X, a point supposed to be different from C. Then by the preceding Proposition we have

A B C D

ab: AB::bc: BX.

But by hypothesis we have ab:AB::bc:BC.


Hence BC \equiv BX; that is, the point X coincides with C; therefore Cc passes through P. In the same manner it may be shown that Dd passes through P.

11. Scholium. If the two lines AD, ad remain

fixed in position while the point P recedes from them, the lines ab and AB will approach to equality; and when P has receded to an infinite distance, ab will be equal to AB, and Aa will be parallel to Bb. Hence every system of lines passing through a common point at an infinite distance is a system of parallel lines; and conversely every system of parallel lines may be regarded as a system of lines passing through

Proposition VIII.

12. In any quadrilateral, the sum of the squares of the four sides is equal to the sum of the squares of the diagonals plus four times the square of the line which joins the middle points of the diagonals.

Let ABCD be any quadrilateral, and let E and F be the middle points of its diagonals. Join EB, EF, and ED.

Because E is the middle point of AC, we have (B.IV., Pr. 14) AB²+BC²=2AE²+2BE².

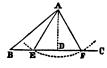
Also, AD'+CD'=2AE'+2DE'.

Hence, by addition,

 $AB^2+BC^2+CD^2+AD^2=4AE^2+2BE^2+2DE^2$.

Because F is the middle point of BD, we have

a common point at an infinite distance.


 $BE^3+DE^3=2BF^3+2EF^3$.

Hence $AB^2+BC^3+CD^3+AD^2=4AE^2+4BF^2+4EF^2$. But $4AE^3=AC^3$ (B. IV., Pr. 8, Cor.); and $4BF^2=BD^3$. Hence $AB^2+BC^2+CD^2+AD^4=AC^2+BD^2+4EF^2$.

PROPOSITION IX.

13. If two sides and an angle opposite one of them in one triangle are equal to two sides and an angle opposite the corresponding side in another triangle, the angles opposite the other equal sides in the two triangles are either equal or one is the supplement of the other.

This Proposition follows from Problem 11, B. V.

When the side opposite the given angle is less than the other given side, we may construct two triangles, ABE, ABF, having two sides and an angle of the one equal to two sides and an angle of the other; but the angle AEB is the supplement of AEF. or its equal, AFE. The angles opposite the other equal sides may therefore be supplements of each other.

But when the side opposite the given angle is not less than the other given side, the two triangles are equal and the corresponding angles are equal. In this case, the angles opposite the other equal sides are equal to each other.

Proposition X.

14. To divide a given straight line in extreme and mean ratio, either internally or externally.

In B.V., Pr. 20, it was shown how to divide a straight line internally in extreme and mean ratio.

Produce AB to G, making & AG equal to AE; then (B. IV.,

Pr. 29) we shall have

AD:AB::AB:AE.

By composition we have

AB:AD+AB::AE:AB+AE.

But Also. AD+AB=AD+DE=AE=AG. AB+AE=AB+AG=BG.

Hence

AB:AG::AG:BG.

Therefore the line AB is divided at F internally and at G externally, in extreme and mean ratio.

15. Scholium. By B. V., Pr. 20, Sch. 2, AC= $\frac{a}{5}\sqrt{5}$.

But

$$AG = AE = AC + CB = AC + \frac{a}{2}.$$

Hence

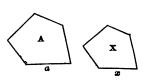
$$AG = \frac{a}{2} (\sqrt{5} + 1).$$

Proposition XI.

16. If the three sides of a right-angled triangle are the homologous sides of similar polygons described upon them, then the polygon described on the hypothenuse is equivalent to the sum of the polygons described upon the other two sides.

Let ABC be a right-angled triangle, having a right angle at C, and let x denote the area of a polygon described upon the hypothenuse AB, and let y and s denote the areas of similar polygons described upon the other two sides of the triangle. Then, by B. IV., Pr. 27, we have

 $z:y::AC^2:BC^2$.


Hence, by composition, $y+z:y:AC^2+BC^3$ (=AB2): BC2.

Also we have Hence

 $x:y::AB^2:BC^2$. x=y+z

Proposition XII.

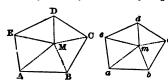
17. To construct a polygon similar to a given polygon, and such that their areas shall have a given ratio to each other.

Let A be the given polygon, and let the given ratio be that of m to n. Let X be the required polygon similar to A. Let a be a side of the given polygon, and let x be the homologous side of the required polygon. Then we have (B. IV., Pr. 27)

 $A:X::a^2:x^3$.

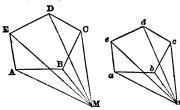
But, by hypothesis,

A:X::m:n. $m:n::a^2:x^2$.


Hence

Find x by B. V., Pr. 30, and upon x construct the polygon X similar to P (B.V., Pr. 26); this will be the polygon required.

18. Def. In similar polygons, any points or lines similarly situated in each are called homologous. The ratio of a side of one polygon to its homologous side in the other is called the ratio of similitude of the polygons.


PROPOSITION XIII.

19. Two similar polygons may be divided into similar triangles by lines drawn from any two homologous points.

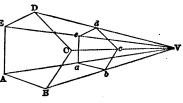
Let ABCDE, abcde be two similar polygons, and let M be any point in the plane of the first polygon. Draw MA, MB, MC, etc. In the polygon abcde draw am, making the angle bam equal to the angle BAM, and draw bm,

making the angle abm equal to the angle ABM. The point m thus determined is homologous to M, and if we draw the lines cm, dm, and em, the triangles abm, bcm, etc., may be shown to be similar to the triangles ABM, BCM, etc.

If the point M is taken without the polygon, and its homologous point m be found as before, the two polygons will be decomposed into triangles partly additive and partly subtractive. Thus the polygon ABCDE is equal to the sum of the m three triangles MAE, MED, and

MCD, diminished by the triangles MAB and MBC; and the polygon

abcde is equal to the sum of the triangles mae, med, and mdc, diminished by the triangles mab and mbc.


Homologous lines in the two polygons are lines joining pairs of homologous points, such as AM and am, BM and bm, etc. Any two such homologous lines have the same ratio as any two homologous sides; that is, they have the same ratio as the ratio of similitude of the polygons.

Proposition XIV.

20. To construct a polygon similar to a given polygon, the ratio of similitude of the two polygons being given.

Let ABCDE be the given polygon, and let the given ratio of \mathbf{E} similitude be as m to n.

Take any point V either within or without the given polygon, and from V draw a straight line to each of the vertices of the polygon. Upon any one of these lines, as AV, take the point a such that

VA:Va::m:n.

Also on B take a point b, such that

VB:Vb::m:n;

and in the same manner determine the points c, d, and e. Join ab, bc, cd, etc.; then will abcde be the polygon required.

For since VA:Va::m:n::VB:Vb,

ab is parallel to AB (B. IV., Pr. 16), and the angle VBA is equal to Vba. In the same manner it may be proved that be is parallel to BC, and the angle VBC is equal to Vbc. Therefore the angle ABC is equal to aba. In like manner it may be proved that the angle BCD is equal to bcd, and so on for the other angles.

Also we have

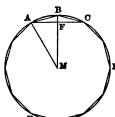
AB:ab::BV:bV,

and

BC:bc::BV:bV. AB:ab::BC:bc;

Hence

and in like manner it may be proved that the other sides about the equal angles are proportional. Hence the two polygons are similar; and the


homologous sides are in the ratio of m to n.

21. The point V in the preceding figure is called the centre of similitude of the two polygons.

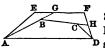
Proposition XV.

22. The area of a regular dodecagon inscribed in a circle is equal to three times the square of the radius.

Let a regular hexagon be inscribed in a circle; by bisecting the arcs

subtended by the sides, we may construct a regular dodecagon ABCDE.

Let AC be a side of the inscribed hexagon, and AB a side of the dodecagon. Draw the radii D MA, MB.


The area of AMB= $\frac{1}{2}$ AF. MB= $\frac{1}{4}$ AC. MB= $\frac{1}{2}$ MB². Therefore twelve times AMB equals three times MB².

But twelve times the triangle AMB is equal to the area of the dodecagon. Hence the dodecagon is equal to three times the square of the radius.

23. Scholium. Besides the polygons mentioned in Scholium, B. VI., Pr. 5, Gauss proved that a regular polygon of 257 sides may be constructed by the use of straight lines and circles only; and, in general, a polygon of any number of sides which can be expressed by 2^n+1 , provided n is an integer and 2^n+1 is a prime number.

Proposition XVI.

24. A convex polygonal line is less than any other line which envelops it and has the same extremities.

Let ABCD be a convex polygonal line (B. I., Def. 36), that is, such that it can not be cut by a straight line in more than two points, and let it have the pasme extremities, A and D, as the line AEFD which

envelops it; that is, it is wholly included within the space bounded by AEFD and the straight line AD; then is the polygonal line ABCD less than the polygonal line AEFD.

Produce AB and BC to meet the enveloping line in G and H. Then AG is less than AE+EG (B. I., Def. 8); hence AGFD is less than AEFD. So also BH is less than BG+GF+FH; therefore ABHD is less than AGFD, and therefore less than AEFD. Also CD is less than CH+HD; therefore ABCD is less than ABHD, and therefore less than AEFD. Hence ABCD is less than any enveloping line which has the same extremities.

25. Scholium. This proposition is true when the enveloping line is a curve line of any species whatever.

26. Cor. The circumference of a circle is greater than the perimeter of any polygon inscribed in it.

27. Diedral angles. When two planes intersect, the space about the line of intersection is divided into four portions called diedral angles.

Thus the planes ABCD, EFGH, intersecting in the line MN, form four diedral angles. The planes MBCN, MFGN are called the *faces* of the included diedral angle, and the line MN is called the *edge* of the angle.

When several diedral angles have the same edge, each of them is designated by four letters, of which the two middle ones are on the edge of the angle, and the extremes consist of one letter on each face. Thus the four diedral angles of the annexed figure are denoted by AMNG, FMNC, BMNH, and EMND.

When there is but one diedral angle formed at the same edge, it may be denoted by two letters on its edge.

28. The angle AMF formed by two straight lines, AM, MF, drawn one in each face of the diedral angle perpendicular to its edge MN, from any point in that edge, is called the *plane angle* corresponding to the diedral angle.

It may be proved that any two diedral angles have the same ratio as their plane angles; hence the plane angle is taken as the measure of the diedral angle.

29. Polyedral angles. When three or more planes meet in a common point they form a polyedral angle. Thus the figure V-ABCD, formed by the planes VAB; VBC, VCD, VAD, meeting in the common point V, is a polyedral angle. The point V is called the vertex of the angle; the intersections of the planes are called the edges of the angle, and the angles formed by the edges are called the faces, or the plane angles of the solid angle. A polyedral angle is said to be convex when it lies wholly

A triedral angle is a polyedral angle having but three faces, which is the least number of faces that can form a polyedral angle.

Proposition XVII.

30. The sum of the squares of the four diagonals of a parallelopiped is equal to the sum of the squares of its twelve edges.

Let ABGH be a parallelopiped. Draw the diagonals of the parallelopiped and also the diagonals of its opposite faces.

on one side of each of its faces.

Because ACGE is a parallelogram, we have (B. IV., Pr. 15)

 $AG^2+CE^2=2AE^3+2AC^2$; and because BDHF is a parallelogram, we have $BH^2+DF^2=2BF^2+2BD^2$.

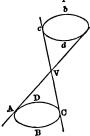
Adding, we have

 $AG^2+CE^2+BH^2+DF^2=2AE^2+2BF^2+2AC^2+2BD^2$.

But $AC^2+BD^2=2AB^2+2AD^2$; also AE=BF. Hence $AG^2+CE^2+BH^2+DF^2=4AE^2+4AB^2+4AD^2$. 31. The cylinder. Def. A cylindrical surface is a curved surface generated by a straight line which moves always parallel to a fixed straight line and intersects a given curve in space.

A D C

Thus if the straight line Aa moves in such a manner as to be always parallel to a fixed straight line, and always intersects the given curve ABCD, the convex surface ABCD abcd is a cylindrical surface.


The moving line is called the *generatrix*, and the curve which it always intersects is called the *directrix*. The directrix may be any curve whatever; but in elementary geometry it is assumed to be a circle.

32. The space bounded by a cylindrical surface and two parallel planes, ABCD, abcd, cutting the surface is called a cylinder. Its plane surfaces, ABCD, abcd, are called its bases. A cylinder whose base is a circle is called a circular cylinder. A right cylinder is one whose generatrix is perpendicular to its base.

33. A right cylinder with a circular base is called a cylinder of revolution, because it may be generated by the revolution of a rectangle about one of its sides as an axis.

The cylinder treated of in Book X. is the cylinder of revolution.

34. The cone. Def. A conical surface is a curved surface generated by a straight line, which moves so as always to pass through a fixed curve and a fixed point not in the plane of the curve.

Thus if the straight line VA moves so as always to pass through a fixed point V, and a fixed curve ABCD, the surface V-ABCD is a conical surface.

The moving line is called the *generatrix*; the fixed point is called the *vertex*; and the fixed curve is the *directrix*.

If the generatrix is of indefinite extent in both directions, the whole surface generated consists of two symmetrical portions lying on opposite sides of the vertex, as V-ABCD, and V-abcd,

which are called nappes; one being the upper and the other the lower nappe.

35. The space bounded by a conical surface and a plane, ABCD, cutting the surface is called a *cone*. The plane surface, ABCD, is called its base.

A cone whose base is a circle is called a *circular cone*. The straight line drawn from the vertex of a circular cone to the centre of its base is the *axis* of the cone.

36. A right circular cone is a circular cone whose axis is perpendicular

to its base. It is called a *cone of revolution*, because it may be generated by the revolution of a right-angled triangle about one of its perpendicular sides as an axis.

An oblique circular cone is a cone in which the directrix is a circle, but the straight line drawn from the vertex to the centre of the directrix is not perpendicular to the plane of the directrix.

The cone treated of in Book X. is the cone of revolution.

Proposition XVIII.

37. The volume of a spherical segment with two bases is equal to the half sum of its bases multiplied by its altitude, plus the volume of a sphere whose diameter is the altitude of the segment.

Let AD be the diameter of a circle; draw BE and CF perpendicular to AD, and let the semicircle ACD be revolved about its diameter; the figure BEFC will generate a spherical segment with two bases.

Represent CF by R, and AF by H; also BE by r and AE by h; then the volume of the spherical segment generated by the figure ABCF is (B. X., Pr. 9)

$$\frac{1}{6}\pi(3R^3H+H^3);$$

and the volume of the segment generated by the figure ABE is

$$\frac{1}{8}\pi(3r^2h+h^3).$$

Let V represent the volume of the spherical segment generated by the revolution of the figure BEFC, and we shall have

$$V = \frac{1}{6}\pi (3R^2H - 3r^2h + H^3 - h^3). \tag{1}$$

Draw the lines AB, AC, BD, CD; then (B. IV., Pr. 23) we have

$$AD = \frac{AB^2}{AE} = \frac{AC^2}{AF};$$

$$x^2 \perp h^2 \quad R^2 \perp H^2$$

that is,

$$\frac{r^2+h^2}{h} = \frac{R^2+H^2}{H}.$$
 $r^2H+h^2H=R^2h+H^2h,$

Hence or

$$3Hr^2 + 3Hh^3 - 3hR^3 - 3hH^3 = 0.$$
 (2)

Adding equations (1) and (2), we have

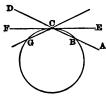
$$V = \frac{1}{6}\pi (3HR^2 + 3Hr^2 - 3hR^2 - 3hr^2 + H^3 - 3H^2h + 3Hh^2 - h^3),$$

or
$$V = \frac{1}{2}\pi (R^2 + r^2)(H - h) + \frac{1}{6}\pi (H - h)^3$$
.

If we substitute A for H-h, the altitude of the proposed segment, we have $V = \frac{1}{2}\pi (R^2 + r^2)A + \frac{1}{6}\pi A^3$,

which corresponds with the proposition above enunciated, since πR^2 and

 πr^2 represent the areas of the two bases of the segment; and $\frac{1}{6}\pi A^3$ represents a sphere whose diameter is A.


38. Cor. If the upper base becomes zero, the solid generated becomes a segment of one base. In this case r=0, and we have

$$V = \frac{1}{2}\pi R^2 A + \frac{1}{4}\pi A^3$$
,

which corresponds with Prop. 9, B. X.

TANGENTS TREATED BY THE METHOD OF LIMITS.

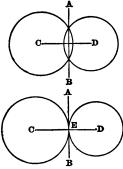
39. Let ABCD be a straight line meeting the circumference of a circle

in two points, B and C. If this line be supposed to revolve about the point C, its second point of intersection, B, will move along the circumference and approach nearer and nearer to C. When the second point comes into coincidence with C, the revolving line ceases to be strictly a secant, according to Def. 9, B. III., and becomes the tangent ECF.

If the line continues to revolve in the same direction, it will again meet the circumference in a second point on the other side of C, as at G.

As long as the two points B and C do not coincide, the line which passes through them both is a secant line, according to Definition 9; but when the two points coincide, the secant becomes a tangent, for it meets the circumference in but one point. The tangent is therefore the limit toward which the secant continually approaches, as the second point of intersection approaches the first, and the tangent may be regarded as a secant whose two points of intersection coincide. A secant may therefore be regarded as a line drawn through any two points of the curve; and a tangent is the special case of such a line in which the two points coincide. By means of this principle the properties of a tangent may be deduced from those of a secant.

40. Ex. 1. By Prop. 15, B. III., an inscribed angle BAC is measured by half the intercepted arc BC.


Let the line AB remain fixed, while the line AC revolves about A until it arrives at the position of the tangent DA. The point of intersection C will move along the circumference, and when the line AC becomes a tangent, the point C will coincide with A, and the intercepted are becomes ACB, half of

which measures the angle BAD. Thus Prop. 16, B. III., becomes a particular case of Prop. 15.

Ex. 2. In Prop. 11, B. III., it is proved that if two circumferences cut each other, the straight line joining their centres bisects their common chord at right angles. Suppose one of the circles to move so as to

cause the points of intersection to approach each other; these points will ultimately meet on the line joining the centres, and unite in a single point, E, common to the two circumferences. The perpendicular to CD erected at E will then be a common tangent to the two circumferences, and take the place of the common chord. Thus Prop. 12, B. III., becomes a particular case of Prop. 11.

Ex. 3. At every point on the circumference of a circle the tangent is perpendicular to the radius (B. III., Pr. 9). This may be proved as follows:

Let AD be a line meeting the circumference of a circle in two points, B and C. Draw the radii MB, MC; then, since the triangle MBC is isosceles, the two

since the triangle MBC is isosceles, the two external angles MBA, MCD are always equal; they are therefore equal in the particular case when B coincides with C; in which case MB coincides with MC, and the angle MBA with the angle MCA. In this case the angle MBA MBD are equal

the angle MBA with the angle MCA. In this case the angles MBA, MBD are equal, and therefore the radius MB is perpendicular to the tangent AD.

The principle here illustrated is applicable not only to the circle, but to any curve whatever, and often affords the most convenient method of deducing the properties of a tangent line.

PLANE LOCI.

41. A locus, in Plane Geometry, is a line every point of which satisfies certain conditions, which conditions no other point of the plane satisfies.

The nature and use of loci will be understood from the following examples.

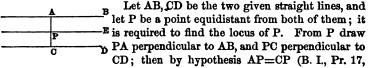
PROPOSITION I.

42. Required the locus of all points which are equidistant from two given points.

Let A and B be the two given points, and let P be a point equidistant from A and B, so that PA=PB; it is required to find the locus of P.

Join AB, bisect AB in C, and join PC. Then PC produced is the locus required.

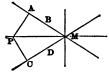
In the triangles ACP, BCP, because AC=BC by con-



struction, AP=BP by hypothesis, and PC is common to both triangles, therefore the angle ACP=the angle BCP (B. I., Pr. 15), and therefore PC is at right angles to AB (B. I., Def. 19); that is, every point equidistant from A and B lies on the line which bisects AB at right angles; or the line which bisects AB at right angles is

the locus of all points equidistant from A and B.

Proposition II.


43. Required the locus of all points which are equidistant from two given straight lines.

Cor. 1). If the given straight lines are parallel, then through P draw PE parallel to AB or CD, and it will be the locus required.

For AB and PE are every where equidistant from each other (B. I., Pr. 25); also CD and PE are every where equidistant from each other; and the distance of PE from AB is equal to the distance of PE from CD. Hence the required locus is a straight line which is parallel to each of the given lines, and bisects the distance between them.

If AB and CD are not parallel, let them be produced to meet in M, and join PM.

Then in the triangles PAM, PCM, because the angles PAM, PCM are by construction right angles; also by hypothesis the side PA is equal to PC, and the hypothenuse PM is common to both triangles, therefore the triangle PAM is equal to the triangle PCM (B. I., Pr. 19), and the angle AMP is equal to

the angle CMP. Therefore the point P is in the straight line which bisects the angle AMC; that is, the locus of all points which are equidistant from two intersecting straight lines is the straight line which bisects the angle between the lines.

If the lines AB and CD are produced indefinitely, four angles will be formed at their point of intersection; and the line which bisects either of these angles is the locus of all points equidistant from the two given straight lines.

Proposition III.

44. Required the locus of the middle points of parallel chords in a circle.

Let AB, CD be parallel chords in the circle ABE; it is required to find the locus of the middle points of all the chords parallel to AB.

Let M be the centre of the circle, and through M draw a diameter, EM, perpendicular to AB; it will also be perpendicular to CD and every chord parallel to AB (B. I., Pr. 23, Cor. 1). This diameter bisects each of the chords AB, CD, and every chord parallel to AB (B. III., Pr. 6); that is, the locus of the middle points of parallel chords in a circle is the diameter perpendicular to these chords.

Proposition IV.

45. Required the locus of the vertices of all triangles upon the same base and upon the same side of it, and having equal vertical angles.

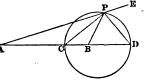
Let AB be the given base, let ACB be the given vertical angle, and let P be any point in the locus. Join PA, PB. Then because the angle APB is by hypothesis equal to the angle ACB, the point P is on the circumference of a circle passing through A, B, and C (B. III., Pr. 15, Cor. 1); that is, the arc of a circle passing through

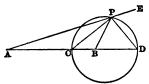
C and having AB for its chord is the locus of the vertices of all triangles upon the base AB, and upon the same side of it, and having a vertical angle equal to ACB.

Proposition V.

46. Required the locus of the vertices of all equivalent triangles upon the same base and upon the same side of it.

Let AB be the given base; let ABC be a triangle chaving the given area, and let it be situated on the given side of the base AB, and let P be a point in the locus. Join PA, PB, and PC. Then because the triangle PAB is equivalent to the triangle CAB, both tri-




angles have the same altitude (B.IV., Pr. 6, Cor. 2), and since they are on the same base, AB, the line CP must be parallel to AB (B. I., Pr. 25); that is, the point P lies in a straight line drawn through C parallel to AB. Hence the line drawn through C parallel to AB is the locus of the vertices of all triangles situated upon the base AB, and upon the same side of it, and whose area is equal to CAB.

Proposition VI.

47. Required the locus of all the points whose distances from two given points are in a given ratio.

Let A and B be the given points, and let the given ratio be M:N. Suppose P is a point of the required locus. Divide AB at C so that AC:CB::M:N(B.V., Pr. 17); and A produce AB to D so that AD:BD::M:N. Join PA, PB, PC, and PD. Then because

in the triangle PAB the line PC divides the base into two segments which are proportional to the adjacent sides, it bisects the vertical angle APB (B. IV., Pr. 17). Also because the line PD divides the base, AB produced, into segments which are proportional to the sides of the triangle APB,

it bisects the exterior angle BPE (B. IV., Pr. 18). Therefore the angle CPD is equal to half the sum of the angles APB, BPE; that is, to the half of two right angles, or to one right angle. And because CPD is a right angle, the point P lies in the circumference of a circle described upon the diameter CD (B. III., Pr. 15, Cor. 3).

Hence we have the following construction. Divide AB at C into parts having the given ratio, and produce AB to D, so that the segments produced shall also have the given ratio. Upon CD as a diameter describe a circumference; this circumference is the required locus.

Proposition VII.

48. Required the locus of the vertices of all triangles on a given base, AB, such that the square on the side terminated at A may exceed the square on the side terminated at B by a given square.

Let P be a point on the required locus, and from P draw PC perpendicular to AB, or AB produced. Then the square on AP is equal to the sum of the squares on AC and PC, and the square on BP is equal to the sum of the squares on BC and PC. Therefore the square on AP exceeds the square on BP by as much as the square on AC exceeds the square on BC. Hence C is a fixed

point either in AB or in AB produced through B; and the required locus is the straight line drawn through C at right angles to AB.

LOCI IN SPACE.

49. Def. In the geometry of space a geometric locus is the assemblage of all the points of space which satisfy one or more given conditions. This locus may be either a line or a surface.

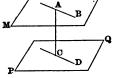
Thus the line drawn through the centre of a circle perpendicular to its plane is the locus of all points which are equally distant from all points of the circumference; and the surface of a sphere is the locus of all points situated at a given distance from a given point.

PROPOSITION I.

50. The locus of straight lines which cut a given straight line at right angles and at a given point is a plane.

Let the lines BC, BD, BE, etc., be perpendicular to AB at A the point B; they will all lie in one plane.

For, if possible, suppose that the plane which contains BC and BE does not contain BD. Through AB and BD pass a second plane, which shall intersect the plane CBE in the line BF, different from BD. Then, by Prop. 4, B. VII., AB, which is perpendicular to BC and BE, will be perpen-


dicular to BF. But, by hypothesis, AB is perpendicular to BD. We have then two straight lines, BF, BD, perpendicular to the same line AB at the same point and in the same plane, which is impossible (B. I., Pr. 1). Hence BC, BD, and BE lie in the same plane; and in the same manner it may be proved that all lines drawn through the point B, perpendicular to AB, lie in the same plane.

Proposition II.

51. The locus of all the straight lines drawn through a given point parallel to a given plane is a plane passing through the point parallel to the given plane.

Let A be the given point and PQ the given plane; then every straight line, AB, drawn through A parallel to the plane PQ lies in the plane MN, MA which passes through A and is parallel to PQ.

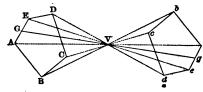
Through AB pass a plane intersecting the plane PQ in the straight line CD. Then AB is parallel to CD, for although produced indefinitely, it can not meet CD, since it can not meet the plane in which CD lies. But CD is parallel to the plane MN, since it is in the plane PQ, which is

parallel to MN, and therefore can not meet MN. Now a plane passing through CD and A intersects the plane MN in a line parallel to CD (B.VII., Pr. 12); and since there can not be two parallels to CD drawn through the same point A in the plane ACD, there-

fore AB must be this line of intersection; that is, it lies in the plane MN. Proposition III.

52. The locus of the points in space which are equally distant from two given points is the plane that bisects at right angles the line joining the two points. (To be proved.)

Proposition IV.


53. Find the locus of the points which are equally distant from three given points.

SYMMETRICAL FIGURES.

I. SYMMETRY WITH RESPECT TO A CENTRE.

54. Def. Two points, A and a, are said to be placed symmetrically with respect to a fixed point, called the centre of symmetry, when this centre bisects the straight line Aa, which joins the two points.

Any two polygons, ABCDE, abcde, are said to be symmetrical with respect to a centre when every point of one polygon has its symmetrical point on the other polygon.

If in the two polygons ABCDE, abcde the straight lines joining the vertices A and a, B a and b, C and c, etc., all pass through the same point V, and are bisected by it, the two polygons are said to be symmetrical

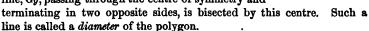
with respect to the point V, and V is called their centre of symmetry.

Proposition I.

55. If two polygons are symmetrical with respect to a centre, any two corresponding sides are equal and parallel, and point in opposite directions; also any straight line passing through the centre of symmetry and terminating in two opposite sides is bisected by this centre.

The two triangles VAB, Vab have an equal angle contained by equal sides; therefore AB is equal to ab. Also the angle VBA is equal to the angle Vba, and therefore AB is parallel to ab. In the same manner it may be proved that BC is equal and parallel to bc, CD to cd, etc.

Also any straight line, Gg, passing through V and terminating in two opposite sides, is bisected in V. For since AE is parallel to ae, the triangles VAG, Vag are equiangular; and since AV is equal to aV, VG must be equal to Vg.


56. Scholium 1. When two polygons have their corresponding sides equal, parallel, and pointing in opposite directions, they have a centre of symmetry. For since AB is equal and parallel to ab, the lines Aa, Bb are the diagonals of a parallelogram, and therefore bisect each other (B. I., Pr. 33). So also Cc, Dd, etc., bisect each other; that is, all the straight lines, Aa, Bb, Cc, etc., are bisected in the same point.

57. Scholium 2. When two polygons are symmetrical with respect to a centre, one of them may be made to coincide with the other by revolving it about the centre, through two right angles in their common plane.

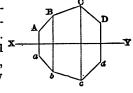
58. Def. A polygon, ABCDabed, is said to be symmetrical with respect to a centre, V, when its vertices taken two and two are symmetrical with

respect to V; that is, when the line joining A and a passes through V, and is bisected by it; also the line joining B and b, C and c, etc.

It is evident that any two opposite sides of this polygon are equal and parallel, and also any straight line, Gg, passing through the centre of symmetry and

It is evident that any polygon having a centre of symmetry must have an *even* number of sides. Every parallelogram has a centre of symmetry, but no other quadrilateral figure has one. Any regular polygon having an even number of sides has a centre of symmetry, which is also the centre of the polygon.

II. SYMMETRY WITH RESPECT TO AN AXIS.

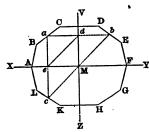

59. Def. Two points, A and a, are said to be placed symmetrically with respect to a straight line, XY, called the axis of symmetry, when this axis is perpendicular to the line which joins the two given points and divides the line into two equal parts.

Any two polygons, ABCDE, abede, are said to be symmetrical with respect to an axis, XY, when this axis is perpendicular to the lines which join the vertices A and a, B and b, etc., of the two polygons, and divides each x of these lines into two equal parts.

If the part of the plane which is above the line XY be turned over upon the part which is below XY, the polygon ABCDE may be superposed upon the polygon abcde, and the

vertices of the one polygon be made to correspond with the vertices of the other polygon.

60. Def. Any polygon is said to be symmetrical with respect to an axis, when it is divided by that axis into two symmetrical figures. Thus the polygon ABCDdcba is symmetrical with respect to the axis XY when its vertices, taken two and two, are placed symmetrically with respect to that axis.



The line which bisects the vertical angle of an isosceles triangle is an axis of symmetry with respect to the two parts of the triangle; the line which bisects an angle of a regular polygon is an axis of symmetry with respect to the two halves of the polygon; the diameter of a circle is an axis of symmetry for the two halves of the circle; and the line which

joins the centres of two circles is an axis of symmetry with respect to the halves of both of the circles.

Proposition II.

61. Every figure which has two axes of symmetry perpendicular to each other is also symmetrical with respect to the point of intersection of these axes as a centre of symmetry.

Let the figure ABDHL be symmetrical with respect to the two axes XY, VZ, which are perpendicular to each other; it will also be symmetrical with respect to their point of intersection, M, as a centre of symmetry.

Let a be any point in the perimeter of the figure; draw adb perpendicular to VZ, and aec perpendicular to XY. Join cM, bM, and ed.

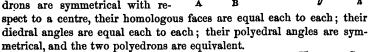
Since the figure is symmetrical with respect to XY, ae is equal to ee; and since dM is equal and parallel to ae, it is equal and parallel to ee; therefore de and eM are also equal and parallel. In the same manner it may be proved that de is equal and parallel to bM; therefore bM is equal to eM; and since eM and eM are both parallel to the same straight line, and pass through the same point, eM, they can not intersect (B. I., eM x. 12), but form one straight line. Therefore any straight line, eM, drawn through eM is bisected at eM, and hence eM is the centre of symmetry of the figure (Prop. I.):

62. Scholium. The two rectangular axes XY, VZ divide the figure ACEHL into four equal parts. The adjacent parts may be superposed by revolving about one of the axes; the opposite parts may be superposed by revolving through two right angles in the plane of the figure.

There are then two kinds of symmetrical position in a plane, one with respect to a point, the other with respect to a straight line.

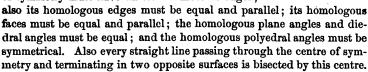
SYMMETRICAL POLYEDRONS.

I, SYMMETRY WITH RESPECT TO A CENTRE.


63. Def. Any two polyedrons are said to be symmetrical with respect to a centre, when each vertex of one polyedron has its symmetrical vertex on the other polyedron.

If in the two polyedrons AB-GH, ab-gh the straight lines joining the vertices A and a, B and b, C and c, etc., all pass through the same point

E


V, and are bisected by it, the two polyedrons are said to be symmetrical with respect to the point V, and V is called their centre of symmetry.

It is evident that if two polyedrons are symmetrical with re-

64. Def. A polyedron, AB-GH, is said to be symmetrical with respect to a centre, V, when its vertices, taken two and two, are symmetrical with respect to V; that is, when the line joining A and G passes through V and is bisected by it; also the line joining C and E, D and F, etc.

It is evident that a polyedron which has a centre of symmetry must have an even number of edges;

A prism whose bases are polygons which are symmetrical with respect to a point, has a centre of symmetry: viz., the middle of the straight line which joins the centres of the two bases.

A parallelopiped has a centre of symmetry: viz., the centre of figure.

II. SYMMETRY WITH RESPECT TO AN AXIS.

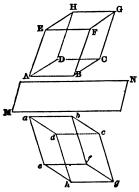
65. Def. Any two polyedrons are said to be symmetrical with respect to an axis, when this axis bisects at right angles the straight lines which join the corresponding vertices of the two polyedrons.

66. Def. Any polyedron is said to be symmetrical with respect to an axis, when this line bisects at right angles the lines which join its corresponding vertices taken two and two.

Thus the polyedron ACE—ace is symmetrical with respect to the axis Mm when this axis is perpendicular to the lines a which join the vertices A and D, a and d; B and E, b and c, etc., and divides each of these lines into two equal parts.

A right prism whose bases are symmetrical with respect to a centre has an axis of symmetry: viz., the straight line which joins the centres of symmetry of the two bases.

A rectangular parallelopiped has three axes of symmetry:


viz., the straight lines which join the centres of its opposite faces. If the base is a square, it has two other axes of symmetry: viz., the lines which join the middle points of its opposite lateral edges.

A regular pyramid which has an even number of lateral faces has an

axis of symmetry: viz., the axis of the pyramid.

III. SYMMETRY WITH RESPECT TO A PLANE.

67. Def. Two points, A and a, are said to be symmetrical with respect to a plane, MN, when this plane bisects at right angles the straight line, Aa, which joins the two points.

Two polyedrons are said to be symmetrical with respect to a plane when this plane bisects at right angles the straight lines which join their corresponding vertices, taken two and two.

The two polyedrons AB-GH, ab-gh are symmetrical with respect to the plane MN when this plane bisects at right angles the lines which join the vertices A and a, B and b, C and c, etc., of the two polyedrons.

It is evident that if two polyedrons are symmetrical with respect to a plane, their homologous faces must be equal each to each; their diedral angles must be equal each to each; their polyedral angles must be sym-

metrical; and the two polyedrons must be equivalent.

The symmetrical solid corresponding to any polyedron with respect to a plane is similar and equal to the solid which is symmetrical to the same polyedron with respect to a centre.

68. Def. A polyedron is said to be symmetrical with respect to a plane, when that plane divides it into two polyedrons which are symmetrical with respect to the plane.

Thus the regular octaedron ABCDEF is symmetrical with respect to the plane BCDE, since this plane divides the polyedron into two pyramids which are symmetrical with respect to this plane.

If a regular dodecaedron be cut by a plane passing through the centre and any one of its edges, it will be divided into two polyedrons which are symmetrical with

respect to that plane.

If a polyedron has two planes of symmetry which are perpendicular to each other, their common intersection is an *axis* of symmetry; and if a polyedron has three planes of symmetry, the point common to the three planes is a *centre* of symmetry.

MAXIMA AND MINIMA OF PLANE FIGURES.

69. Def. A variable magnitude is said to be a maximum when it is the greatest of its kind, or the greatest under certain conditions; and it is called a minimum when it is the least of its kind, or the least under certain conditions.

Thus the diameter of a circle is a maximum among all straight lines joining two points of the circumference; and among all the lines drawn from a given point to a given straight line the perpendicular is a minimum.

When two figures have equal perimeters they are called isoperimetric,

Proposition I.

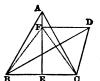
70. The perimeter of an isosceles triangle is less than that of any other equivalent triangle standing upon the same base.

Let the triangles ABC, DBC have equal areas, and let them have the same base, BC, and let the triangle ABC be isosceles; the triangle ABC has a less perimeter than the triangle DBC.

The two triangles must have equal altitudes (B. IV., Pr. 6, Cor. 2), and the straight line AD joining their vertices must be parallel to BC (B. I., Pr. 25). Draw

CF perpendicular to AD produced, and let it meet BA produced in F. Join DF, and let AD meet CF in E.

Since the angle EAC is equal to ACB (B. I., Pr. 23), which is equal to ABC (B. I., Pr. 10), which is equal to FAE, the two triangles AEC, AEF, having also each a right angle and one side common, are equal to each other; therefore AE is perpendicular to CF at its middle point E. Hence AF=AC and DF=DC (B. I., Pr. 18).


But BF<BD+DF (B. I., Pr. 8); that is, BA+AC<BD+DC. Hence, adding BC to each, the perimeter of ABC is less than the perimeter of BDC.

71. Cor. Of all triangles having the same area, that which is equilateral has the least perimeter. For the triangle having the least perimeter with a given area must be isosceles whichever side be taken as the base; therefore the triangle of least perimeter has each pair of its sides equal and consequently is equilateral.

PROPOSITION II.

72. Of all triangles having the same base and equal perimeters, the isosceles triangle has the greatest area.

Let ABC, DBC be two triangles standing on the same base, BC, and having equal perimeters, of which ABC is isosceles and DBC is not isos-

celes; then the area of ABC is greater than the area of DBC.

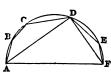
Through A draw AE perpendicular to BC, and through D draw DF parallel to BC. Join FB, FC. The triangles DBC, FBC, having the same base, BC, and equal altitudes, have equal areas (B. IV., Pr. 6); but the triangle FBC is isosceles (B. I., Pr. 18); there-

fore the triangle FBC has a less perimeter than the triangle DBC (Prop. I.), or than the triangle ABC by hypothesis. Therefore BF is less than BA, and consequently FE is less than AE (B. I., Pr. 17); that is, the altitude of the triangle DBC is less than the altitude of the triangle ABC; and since these triangles have the same base, the area of ABC is greater than that of DBC.

78. Cor. Of all triangles having the same perimeter, that which is equilateral has the greatest area. For the triangle having the greatest area, with a given perimeter, must be isosceles whichever side is taken as the base.

Proposition III.

74. Of all triangles having two sides of the one equal to two sides of the other, each to each, that in which these sides are perpendicular to each other is the greatest.


Let ABC, DBC be two triangles, having the sides AB, BC respectively equal to DB, BC; then if the angle ABC is a right angle, the area of the triangle ABC is greater than that of the triangle DBC.

For, taking BC as the common base, the two triangles ABC, DBC are as the altitudes AB, DE (B. IV., Pr. 6, Cor. 1); but the perpendicular DE is

shorter than the oblique line DB (B. I., Pr. 17), or its equal AB. Therefore the triangle ABC is greater than the triangle DBC.

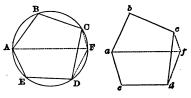
Proposition IV.

75. If all the sides of a polygon except one be given, the area will be the greatest when the figure may be inscribed in a semicircumference of which the undetermined side is the diameter.

Let ABCDEF be the greatest polygon that can be contained by the sides AB, BC, CD, DE, EF given in magnitude, and another side whose length is not given. Draw the diagonals AD, DF. Then if the angle ADF were not a right angle, by making it a right angle (Prop. 3) we

should enlarge the triangle ADF, without changing the parts ABCD, DEF, and consequently we should enlarge the entire polygon. But the

polygon is supposed to be a maximum, and can not therefore be enlarged; therefore the angle ADF is a right angle. In the same manner it may be proved that each of the angles ABF, ACF, AEF is a right angle; therefore all the angles of the maximum polygon are inscribed in a semi-circumference of which the unknown side AF is the diameter.


76. Scholium. There is but one semicircle which will contain the maximum polygon. For suppose ABCDEF to be a semicircle containing it; the angles at its centre subtended by the chords AB, BC, etc., amount to two right angles, which would no longer be the case were the radius made either greater or less; since if the same chord AB subtends arcs described with different radii, the angle at the centre corresponding to this chord will be smallest in that circle whose radius is greatest.

Proposition V.

77. Of all polygons which have their sides equal, each to each, the greatest is that which can be inscribed in a circle.

Let ABCDE, abcde be two polygons having the side AB=ab, BC=bc, etc., and let the first be inscribed in a circle, while the other is not capable of being inscribed in one; the inscribed polygon is greater than the other.

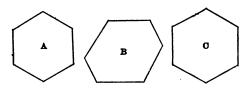
Draw the diameter AF, and join CF, DF. On cd, which is equal to CD, construct the triangle cfd equal to CFD, and join af. The line af divides the figure abcfde into two parts, of which one at least, by supposition, can not be inscribed in a

semicircle. Therefore one at least of these two figures is smaller than the corresponding part of the figure ABCFDE. Therefore the whole figure ABCFDE is greater than the whole figure abefde; and if from these there be taken away the respective triangles CFD, efd, which are equal by construction, there will remain the polygon ABCDE greater than the polygon abcde.

78. Scholium. It is plain that the area of the inscribed polygon will be the same in whatever order the sides are arranged. For these sides are chords in a circle, and in whatever order they are arranged they will cut off equal segments; and the polygon is the part of the circle remaining when these segments are taken away.

PROPOSITION VI.

79. Of all polygons having equal perimeters and the same number of sides, the regular polygon has the greatest area.

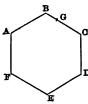

The polygon ABCDEF can not be a maximum among all polygons of equal perimeters and the same number of sides unless it be equilateral. For if any two of the sides, as AB, BC, are unequal, on AC describe the isosceles triangle AGC, having the sum of its sides AG, GC equal to the sum of AB, BC. The triangle AGC is greater than ABC (Prop. 2); and therefore the polygon

AGCDEF is greater than the polygon ABCDEF. Hence the latter is not a maximum; and the same may be shown in a similar manner, unless the sides are all equal.

The polygon which is a maximum is therefore equilateral, and by Prop. V. it can be inscribed in a circle; it must therefore be equiangular (B. VI., Pr. 2, Sch. 2). Hence it is a regular polygon.

PROPOSITION VII.

80. A regular polygon has a less perimeter than any other polygon of equal area and the same number of sides.



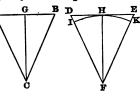
Let A and B be two polygons having the same number of sides and containing equal areas, and let A be a regular polygon, while B is an irregular polygon. The perimeter

of A is less than that of B. For let C be a regular polygon having the same perimeter and the same number of sides as B. Then (Prop. VI.) C>B; but B=A by hypothesis; therefore C>A. But C and A are similar figures (B. VI., Pr. 1); consequently, perimeter of C>perimeter of A. Now by hypothesis, perimeter of C=perimeter of B; hence perimeter of B>perimeter of A.

Proposition VIII.

81. Of all regular polygons having equal perimeters, that which has the greater number of sides has the greater area.

Let ABCDEF be a regular polygon of six sides.
On one of its sides, as BC, take any point G; we may
regard the given polygon as an irregular polygon of
seven sides, in which the sides BG, CG make an angle
with each other equal to two right angles. This irregular polygon is less than a regular polygon of seven
sides and having the same perimeter (Prop. VI.); that
is, a regular polygon of six sides is less than a regular


polygon of seven sides having the same perimeter. In the same manner

it may be proved that a regular polygon of seven sides is less than a regular polygon of eight sides having the same perimeter, and so on.

Proposition IX.

82. A circle is greater than any regular polygon of the same perimeter.

Let AG be half the side of any regular polygon, and let C be the centre of the polygon. In a circle having an equal perimeter, take the angle IFH=ACG; the arc IH will therefore be equal to the half side AG. We therefore have

Polygon: circle::triangle ACG: sector IFH;

:: 1 AG.CG: 1 IH.HF; :: CG: FH.

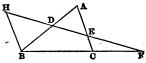
At the point H draw the tangent HD, meeting FI produced in D. The similar triangles ACG, DFH give the proportion

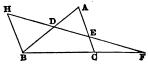
CG:FH::AG(=IH):DH.
Polygon:circle::IH:DH;

Therefore

But JH.FH is the measure of the sector IFH (B. VI., Pr. 12, Cor.); and JDH.FH is the measure of the triangle DFH. Now the triangle is greater than the sector; hence the circle is greater than the polygon; that is, the circle is greater than any regular polygon of the same perimeter.

TRANSVERSALS.


83. Def. Any straight line cutting a system of lines is called a transversal.


A transversal to a triangle is any straight line drawn to intersect its three sides or sides produced.

Proposition I.

84. If a straight line cut the sides of a triangle, or the sides produced, the product of three alternate segments of the sides is equal to the product of the other three segments.

Let ABC be a triangle, and let a straight H line be drawn cutting the side AB at D, the side AC at E, and the side BC produced at F. Then AD and DB are called segments of the side AB; AE and EC are

called segments of the side AC; and BF and CF are called segments of the side BC. The segments EC, AD, and BF are called alternate segments, or non-adjacent, since they have no extremity in common. So

also the segments AE, BD, and CF are alternate, or non-adjacent segments.

Through B draw a straight line parallel to AC, meeting DF produced

in H.

Then by similar triangles, BH: AE:: BD: AD;

or BH.AD=AE.BD. (1)
Also by similar triangles, CE:BH::CF:BF;

Also by similar triangles,

BF.CE=BH.CF. (2)

Multiplying (1) by (2), and dividing by the common factor BH, we have AD.BF.CE=AE.CF.BD.

This theorem was known to Menelaus, A.D. 80.

Proposition II. (Converse of Prop. I.)

85. If three points are taken on the sides of a triangle (one of the points, or all three lying in the sides produced), so that the product of three alternate segments of the sides is equal to the product of the other three segments, the three points lie in the same straight line.

Let the points D and E be taken upon the sides AB and AC of the triangle ABC, and let the point F be taken on the side BC produced, so that AD.BF.CE=AE.CF.BD; the points D, E, and F are in the same straight line.

Join DE; and if DE produced does not pass through F, let it meet BC produced in a point which we will call F'. Then by Prop. I. we have

But, by hypothesis, we have

Dividing (1) by (2), and omitting the common factors, we have

$$\frac{\mathbf{BF'}}{\mathbf{BF}} = \frac{\mathbf{CF'}}{\mathbf{CF}};$$

or

BF:BF::CF:CF.

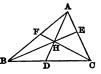
Hence by division (since F is on BC produced),

BC:BC::CF':CF.

Therefore

CF'=CF,

or the point F coincides with F, and therefore the three points D, E, and F are in the same straight line.


This theorem was known to Menelaus.

Proposition III.

86. If three straight lines be drawn from the angles of a triangle to the opposite sides, and meet at the same point, the product of three non-

adjacent segments of the sides is equal to the product of the other three segments.

Let ABC be a triangle, and from the angular points to the opposite sides let the straight lines AD, BE, CF be drawn, passing through the point H; then the product AF.BD.CE will be equal to the product AE.CD.BF.

(1)

The triangle BCE is cut by the transversal AHD; hence by Prop. I. we have

BD.CA.EH=EA.CD.BH.

Also the triangle BAE is cut by the transversal CHF; hence we have AF.BH.EC=EH.BF.AC. (2)

Multiplying (1) by (2), and omitting the common factors, we obtain AF.BD.CE=AE.CD.BF.

87. Scholium. We have supposed the point H to be within the triangle; if it be without the triangle, two of the points D, E, F will fall on the sides produced.

PROPOSITION IV. (Converse of Prop. III.)

88. If three straight lines be drawn from the angles of a triangle to meet the opposite sides, making the product of three non-adjacent segments of the sides equal to the product of the other three segments, then the three straight lines so drawn will pass through the same point.

Let AD, BE intersect each other in the point H, and let F be such a point in AB that AF.BD.CE=AE.CD.BF. Join CH; then CH produced passes through the point F.

If CH produced does not pass through the point F, let it pass through F, some other point in AB. Then by Prop. III. we have

$$AF'.BD.CE = AE.CD.BF'.$$
 (1)

But, by hypothesis, we have

$$AF.BD.CE = AE.CD.BF.$$
 (2)

Dividing (1) by (2),

$$\frac{AF'}{AF} = \frac{BF'}{BF};$$

or

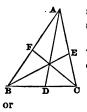
AF': AF :: BF': BF.

Hence, by composition,

AB:AB::BF':BF.

Therefore

BF'=BF;


or the point F coincides with F, and therefore CHF coincides with CHF, and the three lines AD, BE, CF pass through the same point H.

Proposition V.

89. The three bisectors of the angles of a triangle pass through the same point.

Let ABC be a triangle, and let AD, BE, CF be drawn bisecting the

or

angles A, B, and C; these three lines will intersect in the same point.

For since AD bisects the angle BAC (B. IV., Pr. 17),

BD:AB::CD:AC; we have or

BD.AC=AB.CD.

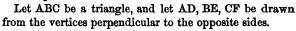
For a similar reason

CE:BC::AE:AB; CE.AB=BC.AE.

Also, AF:AC::BF:BC;

(2)

(1)


(3)

AF.BC=AC.BF. Multiplying together (1), (2), and (3), and omitting the common factors, we have AF.BD.CE=AE.CD.BF.

Therefore, Prop. IV., the three lines AD, BE, CF pass through the same point.

Proposition VI.

90. The three perpendiculars drawn from the vertices of a triangle to the opposite sides meet in a point.

The triangle ABC is divided into six right-angled triangles, three of which are similar to the other three. Hence we have the proportions

AF: AE:: AC: AB; BD:BF::BA:BC;

CE:CD::CB:CA.

Multiplying together the corresponding terms of these three proportions, and observing that the third and fourth terms of the resulting proportion are equal, we have

AF.BD.CE=AE.CD.BF.

Hence (Prop. IV.) the three lines AD, BE, CF meet in a point.

91. Scholium. The three points D, E, and F are all on the sides of the triangle if all its angles are acute. If one angle is obtuse, two of the three points are on the sides produced, as required by Scholium of Prop. III.

HARMONIC PROPORTION AND HARMONIC PENCILS.

92. Def. Three quantities are said to be in harmonic proportion when the first is to the third as the difference between the first and second is to the difference between the second and third. Thus 6, 4, 3 are in harmonic proportion, for 6:3::6-4:4-3.

Proposition I.

93. When a straight line is divided internally and externally in the same ratio, it is divided harmonically.

Thus let AB be divided internally at C, and ex- A C B D ternally at D in the same ratio, so that

AD:BD::AC:CB; or AD:AC::BD:CB.

Since BD=AD-AB, and CB=AB-AC, we have AD: AC:: AD-AB: AB-AC.

Hence AD, AB, and AC are in harmonic proportion, and the line AB is said to be divided harmonically in C and D.

94. Since the ratio of the distances of A from C and D is equal to the ratio of the distances of B from C and D, the line CD is divided harmonically at A and B.

The four points A, B, C, D are called harmonic points. The points A and B are called conjugate points with respect to C and D; also the points C and D are conjugate with respect to A and B.

Since AD: BD::AC: CB, we have AD.CB=AC.BD; that is, when a line is divided harmonically into three parts, the rectangle under the whole line and the middle part equals the rectangle under the extreme parts; and, conversely, when a line is divided into three parts, such that the rectangle under the whole line and the middle part equals the rectangle under the extreme parts, the line is divided harmonically.

95. In Art. 47 we found AC:CB::AD:BD; or AC.BD=CB.AD; hence AD is divided harmonically in C and B; that is, the bisectors of the internal and external angles of a triangle divide the base harmonically.

Proposition II.

96. If A, C, B, D form an harmonic system, and AB is bisected in M, then MC.MD=MB². For since AC.BD=AD.CB, we have

AC:CB:;AD:BD.

By composition and division,

$$\frac{AC-CB}{2}:\frac{AC+CB}{2}::\frac{AD-BD}{2}:\frac{AD+BD}{2};$$

or

MC:MB::MB:MD;

that is,

 $MC.MD=MB^{\bullet}$.

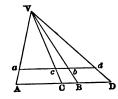
Hence, the half of a straight line, AB, is a mean proportional between the distances of the middle point M of this line from the two points C and D which divide it harmonically.

97. Conversely, if we have given AB, and its middle point M, and if C and D are so taken that MB²=MC.MD, then A, C, B, and D are four harmonis points.

For since

MC:MB::MB:MD,

by composition and division,


MB+MC:MB-MC::MD+MB:MD-MB;

that is.

AC:CB::AD:BD.

98. Scholium. Let AB be a given segment and M its middle point, and let C move along the line AB. The conjugate point D will then also move along the same line. When C is at B, D is at the same point. As C moves toward M, the motion of D from B is at first very little greater than that of C; but as C approaches M, D moves more rapidly, and when C is indefinitely near to M, the distance of D is infinite. When C is to the left of M, D is to the left of A, and the two points approach A simultaneously. If C is in AB produced, D is on the segment AB.

99. Def. A system of straight lines diverging from a point is called a pencil; each diverging line is called a ray, and the point from which they diverge is called the vertex of the pencil.

If from the point V straight lines be drawn to four harmonic points, A, C, B, D, the four lines, VA, VC, VB, VD, form an harmonic pencil.

It is evident that if AB is divided harmonically by the pencil, any straight line, acbd, drawn parallel to AD will also be divided harmonically by the pencil.

Proposition III.

100. Every straight line which cuts an harmonic pencil is divided harmonically by the pencil.

Let the pencil V.ACBD divide the transversal ACBD harmonically, so that AC.BD=AD.CB; then will it divide any other transversal afgh harmonically.

Through the point a draw ad parallel to AD. Since the triangle agb is cut by the transversal VC, we have (Art. 84)

 $af.bc.g\nabla = fg.ac.b\nabla$. (1)

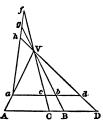
And since the same triangle is cut by the transversal Vd, we have gh.ad.bV = ah.bd.gV. (2)

Multiplying together (1) and (2), and omitting common factors, we have af.gh.bc.ad=ah.fg.ac.bd.

But since ad is parallel to AD, we have

ad.cb = ac.bd.

Hence


af.gh = ah.fg;

that is, ag is divided harmonically.

101. Hence the rays VA, VB are called conjugate rays with respect to

the rays VC, VD, and are said to divide the angle AVB harmonically; also the rays VC, VD are conjugate rays with respect to the rays VA, VB, and divide the angle AVB harmonically.

102. Scholium. The preceding demonstration applies when the transversal cuts one or more of the rays on opposite sides of the vertex, as in the annexed figure.

Proposition IV.

103. Three straight lines of an harmonic pencil being given, it is required to find the fourth ray of the pencil.

Let VA, VB, VC be three rays of an harmonic pencil; it is required to find the fourth ray VD, conjugate to VC.

On VC take any point C, and draw CE parallel to VA. Take EF equal to VE; join CF, and produce it to G; and through V draw VD parallel to GF.

The line VD is conjugate to VC.

Since the triangles AGC, AVD are similar, we have

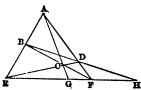
GC:VD::AC:AD.

Also, since the triangles CFB, VBD are similar, we have VD: CF:: BD: CB.

Multiplying together these proportions, and observing that GC=CF, since VE=EF, we have AC.BD=AD.CB.

Hence AD is divided harmonically in C and B, and the ray VD is conjugate to the ray VC.

104. Def. If the opposite sides of any quadrilateral be produced to meet, the figure thus formed is called a complete quadrilateral.


Let ABCD be any quadrilateral, and let its opposite sides be produced to meet in E and F; the line EF is called the *third diagonal* of the quadrilateral, and the whole figure formed by the four lines meeting in six points forms a complete quadrilateral. The complete quadrilateral has three diagonals: viz., two interior, AC, BD, and one exterior, EF.

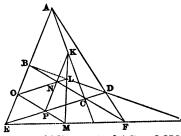
PROPOSITION V.

105. Each diagonal of a complete quadrilateral is harmonically divided by the two other diagonals.

Let ABCDEF be a complete quadrilateral, and let AC, BD, EF be its diagonals; any one of them, as EF, is divided harmonically by the two others in the points G and H.

The triangle AEF cut by the transversal BDH (Art. 84) gives

In the same triangle the straight lines AG, ED, BF, drawn from the vertices and intersecting in C (Art. 86), give the equation


FG.AD.EB=EG.FD.AB. (2)

Multiplying together (1) and (2), and omitting the common factors, we have EH.FG=FH.EG.

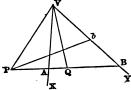
In a similar manner it may be proved that each of the diagonals AC, BD is harmonically divided by the two other diagonals.

Proposition VI.

106. The middle points of the three diagonals of a complete quadrilateral are in a straight line.

Let K, L, M be the middle points of the three diagonals of the complete quadrilateral ABCDEF, and let N, O, P be the middle points of the sides of the triangle BEC. Since OP bisects BE and CE, it is parallel to BC, and therefore passes through M, the middle point of EF. For a similar reason NP passes through

K, the middle point of AC, and NO passes through L, the middle point of BD.


If we regard ADF as a transversal of the triangle BCE, we obtain (Art. 84) AB.DE.FC=AE.DC.FB.

Dividing each factor by 2, and observing that $\frac{1}{2}AB=KN$, $\frac{1}{2}DE=LO$, $\frac{1}{2}FC=MP$, etc., we have KN.LO.MP=KP.LN.MO.

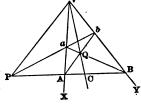
Therefore the points K, L, M, lying in the sides of the triangle NOP, satisfy Art. 85, and are in the same straight line.

POLES AND POLARS WITH RESPECT TO AN ANGLE.

107. Def. If through a fixed point, P, a line, PAB, be drawn cutting

the two sides of an angle, XVY, and if on PB a point Q be taken, which is the harmonic conjugate of P with respect to the points A and B, the line VQ is called the polar of the point P with respect to the sides of the angle XVY, and P is called the pole of VQ.

Proposition I.


108. Any straight line drawn through a pole to meet the sides of an angle is divided harmonically by these lines and the polar.

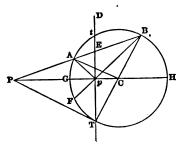
Let P be the pole and VQ the polar with respect to the lines VX, VY, and let A and B be the points in which a straight line drawn through P meets the two lines. Since VQ is the polar of the point P, the points P, A, Q, and B form an harmonic system; and if we draw the line VP, the lines VP, VA, VQ, VB form an harmonic pencil, and any straight line Pb drawn through P will be divided harmonically by the pencil (Prop. 100).

Proposition II.

109. A point P and an angle XVY being given, if from P we draw two lines cutting the sides of the angle in A, B, a, b, and if we draw the diagonals Ab, Ba intersecting in Q, the line VQ will be the polar of the point P with respect to the lines VX, VY.

If we consider the complete quadrilateral VaQb, AB, we find the diagonal AB to be divided harmonically in P and C by the two other diagonals ab, VQ (Art. 105); hence the four lines VP, VX, VQ, VY form an harmonic pencil, and the straight line VQ is the polar pof the point P with respect to the two lines VX, VY.

110. Scholium. The polar of any given point with respect to an angle may also be found by the method of Art. 103.


POLES AND POLARS WITH RESPECT TO A CIRCLE.

111. Def. If from a fixed point P a line be drawn to C, the centre of a circle, and on CP a point p be taken such that CP.Cp is equal to the square of the radius of the circle, the straight line Dp perpendicular to the line CP at the point p is called the polar of P with respect to the circle, and the point P is called the pole of Dp with respect to the circle.

Proposition I.

112. Any straight line drawn through the pole to meet a circle is divided harmonically by the circle and the polar.

Let P be the pole and pD be the polar, and let A and B be the points in which a straight line drawn through P meets the circumference. Join CA, CB, pA, pB, and produce Bp to meet the circumference in F.

Then, since $CP.Cp = CB^3$, we have CP:CB::CB:Cp;

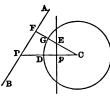
and therefore the angle \overrightarrow{CBP} is equal to the angle CpB (B. IV., Pr. 21).

Also, since $CP.Cp=CA^3$, we have CP:CA:CA:Cp;

and therefore the angle CAP is equal to the angle CpA. But CBP is equal to CAB, which is the supplement of CAP; therefore CpB is the supple-

ment of CpA. Hence CpB, which is equal to PpF, is equal to PpA. Also ApD and BpD are equal, being the complements of ApP and BpC. Therefore Dp bisects the vertical angle of the triangle ApB, and Pp bisects the exterior angle of the same triangle; hence the line AB is divided harmonically (Art. 95) in P and E.

113. Cor. 1. To find the pole of a given straight line DT, draw a djameter GH perpendicular to the given line intersecting it in p, and on this diameter produced, take P such that CP.Cp=CG³; the point P is the pole of DT with respect to the circle.


114. Cor. 2. When the point P is without the circle, its polar is the line Tt joining the points of contact of the tangents from P. For let T and t be the points where Dp intersects the circumference, then, since $CP.Cp = CT^2$, we have CP:CT:CT:Cp.

Hence the two triangles CPT, CpT are similar; therefore CTP is a right angle, and PT is a tangent to the circle at the point T. For the same reason a line drawn from P to the point t is a tangent to the circle.

115. Cor. 3. If the point P approaches the circumference of the circle, the point p will also approach it, and when PC becomes equal to the radius of the circle, Cp will also be equal to the radius of the circle; therefore the polar of any point on the circumference is the tangent at that point.

Proposition II.

116. The polars of all the points of a straight line pass through the pole of that line.

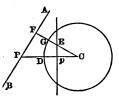
Let AB be any straight line, and P any point in it. Draw CP, and take p such that $CP.Cp=CD^3$, the straight line pE perpendicular to CP will contain the pole of the straight line AB.

Draw CF perpendicular to AB cutting Ep in E. Then, since the triangles CpE, CFP are similar, we have

CF.CE = CP.Cp. $CP.Cp = CD^{2}.$

But

Therefore


CF.CE=CD2;

and therefore the point E is the pole of AB (Art. 113).

PROPOSITION III. (Converse of Prop. II.)

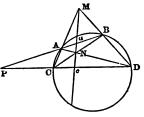
117. The poles of all the straight lines which pass through a given point are situated on the polar of that point.

Let P be the given point, and AP any straight line passing through it. In order to find the pole of AP, we draw CF perpendicular to AP, and on CF take the point E such that CF.CE=CG². Join PC, and draw Ep perpendicular to CP. Then, by similar triangles,

CP: CF:: CE: Cp; $CP.Cp = CF.CE = CG^2.$

Therefore Ep is the polar of the point P, and the pole of the line AP is situated on the polar of P.

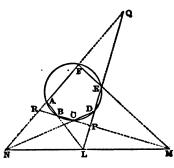
118. Cor. The pole of a straight line is the intersection of the polars of any two of its points.


119. Scholium. If P be any point within or without a given circle, and PA a line which revolves about the point P, the pole of AP will move along the polar of P; that is, the polar of a given point is the locus of the poles of all the lines passing through the given point.

Proposition IV.

120. If through a fixed point P in the plane of a circle any two secants, PAB, PCD, are drawn, also the chords AD, BC are drawn intersecting in N, and the chords AC, BD are produced to meet in M, the straight line which joins the points M and N is the polar of the fixed point P.

Let a be the point in which the line MN intersects AB, and c the point in which it intersects CD.


Since MANBDC is a complete quadrilateral, the diagonal AB is divided harmonically in P and a (Art. 105), and the diagonal \widetilde{P} CD is divided harmonically in P and c. Therefore ac is the polar of the point P (Art. 112).

Proposition V.

121. If a hexagon be inscribed in a circle, the points of intersection of the three pairs of opposite sides will lie in a straight line.

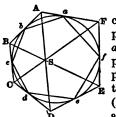
Let ABCDEF be a hexagon inscribed in a circle, and let the opposite sides AB, DE be produced to meet in L; also the sides BC and EF to meet in M, and the sides CD and AF to meet in N. The points L, M, and N lie in a straight line.

The triangle PQR, formed by the alternate sides BC, DE, FA produced, is cut by the transversals ABL, DCN, and FEM. Hence (Art. 84)

PE.QF.RM=PM.RF.QE; QA.RB.PL=QL.PB.RA; PD.QN.RC=PC.RN.QD.

Multiplying together these equals, and observing that PE.PD=PB.PC (B.IV., Pr.29, Cor.2);

QF.QA=QE.QD; RB.RC=RA.RF;


we have

RM.PL.QN=PM.QL.RN.

Hence the points L, M, N are situated on a straight line (Art. 85). This theorem is due to Pascal.

Proposition VI.

122. If a hexagon be described about a circle, the three diagonals which join the opposite vertices intersect in the same point.

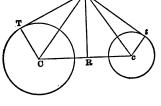
Let ABCDEF be a hexagon described about a scircle; let the side AB touch the circle in the point b, the side BC in the point c, etc., and join ab, bc, etc. The straight line ab is the polar of the point A (Art. 114); so also ed is the polar of the point D. Hence, if ab and ed be produced to meet, their point of intersection will be the pole of AD (Art. 118). So also the point of intersection of be and ef will be the pole of BE, and the point of in-

tersection of cd and af will be the pole of CF. But these three points of intersection are situated in a straight line (Art. 121). Hence the polars AD, BE, CF of these points intersect in a point S, which is the pole of the line joining these three points of intersection (Art. 116).

This theorem is due to Brianchon.

RADICAL AXIS OF TWO CIRCLES.

Proposition I.


128. Required the locus of a point from which tangents drawn to two given circles are equal.

Let C and c be the centres of the given circles, and P any point from which equal tangents, PT, Pt, are drawn. Draw PR perpendicular to the

line joining the centres, and join CT, ct. Then, since PT and Pt are supposed equal, we have

or
$$CP^2-CT^2=PT^2=cP^2-ct^2$$
;
 $CT^2-ct^2=CP^2-cP^2$.

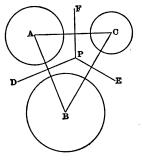
The first member of this equation is a given quantity; therefore the second member is a given quantity; and since Cc is also given, the required locus is

the straight line PR, perpendicular to Cc, and cutting it so that $CR^2-cR^2=CT^2-ct^2$ (Art. 48).

124. Def. The straight line PR is called the radical axis of the two circles.

125. We thus see that the radical axis of two circles is a straight line perpendicular to the line joining the centres of the circles, and dividing this line so that the difference of the squares of the two segments is equal to the difference of the squares of the radii.

If the two circles have no point in common, the radical axis does not intersect either of them.

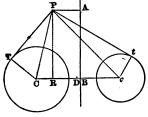

If the circles touch each other, either externally or internally, their common tangent at the point of contact is their radical axis.

If the circles intersect, their common chord is their radical axis.

Proposition II.

126. The radical axes of a system of three circles, taken two and two, meet in a point.

Let A, B, C be the centres of three circles. Let DP be the radical axis of A and B, and EP be the radical axis of B and C. The three centres, A, B, and C, not being in the same straight line, the axes DP, EP, which are perpendicular to the intersecting lines AB, BC (B. III., Pr. 7), will meet in a point which we designate by P. The tangents drawn from P to the circles A and B are, by definition, equal; also the tangents drawn from P to the circles B and C are equal. Hence the tangents drawn from P to the circles A and C are also equal and therefore the radical axis of A and



equal, and therefore the radical axis of A and C passes through P.

127. If the three circles intersect, the radical axis of any two of them is their common chord; hence the common chords of every pair of three intersecting circles meet in a point.

Proposition III.

128. The difference of the squares of the tangents from any point to two circles is equal to twice the rectangle under the distance between the centres of the circles, and the distance of the point from their radical axis.

Let C and c be the centres of two circles, AB their radical axis, P any point in the plane of the circles, PT, Pt the tangents drawn from P to the two circles. Draw PA perpendicular to AB, and PR perpendicular to Cc, and bisect Cc in D. Then (B. IV., Pr. 11, Cor. 1)

 $Pt^2=Pc^2-ct^2$, and $PT^2=PC^2-CT^2$.

Therefore

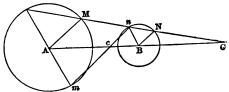
$$Pt^{2}-PT^{2}=(Pc^{2}-PC^{2})+(CT^{2}-ct^{2}).$$

But Pc2-PC2=cR2-CR2=2Cc.DR (B. IV., Pr. 10).

And by Art. 123, $CT^2-ct^2=CB^2-cB^2=2Cc.BD$. Therefore $Pt^2-PT^2=2Cc(DR+BD)$:

$$Pt^2-PT^2=2Cc(DR+BD);$$

=2Cc.BR;


=2Cc.AP.

CENTRES OF SIMILITUDE.

129. Def. If the straight line joining the centres of two circles is divided externally and internally into segments proportional to the corresponding radii, the former point of section is called the external, and the latter the internal centre of similitude of the two circles.

PROPOSITION I

130. If in two circles two radii are drawn parallel to each other and in the same direction, the straight line joining their extremities passes through the external centre of similitude; but if the parallel radii are drawn in opposite directions, the straight line joining their extremities passes through the internal centre of similitude.

Let AM, BN be two parallel radii drawn in the same direction, and let the line MN intersect the line AB produced in C.

Since BN is parallel to AM, we have

AC:BC::AM:BN;

and therefore, by the definition, C is the external centre of similitude.

If the parallel radii Am, Bn are drawn in opposite directions, and the line mn intersects the line AB in c, by similar triangles we have

Ac:Bc::Am:Bn;

and therefore c is the internal centre of similitude.

131. Cor. 1. If any transversal is drawn through a centre of similitude, the radii drawn to the points in which it cuts the circumferences will be parallel, two and two.

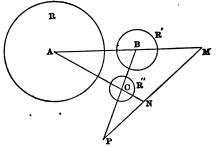
132. Cor. 2. If a transversal drawn through a centre of similitude is a tangent to one of the circles, it is also a tangent to the other; therefore, when one circle is wholly without the other, the centres of similitude are the intersections of the pairs of external and internal common tangents.

133. If the circles touch each other externally, the point of contact is their internal centre of similitude; if they touch internally, the point of contact is their external centre of similitude. Hence, if any number of circles touch each other at the same point, and a straight line is drawn through it cutting the circles, the straight lines joining each point of intersection with the centre of the corresponding circle will be all parallel.

Proposition II.

134. The external centres of similitude of three circles, taken two and two, are in a straight line.

Let A, B, C be the centres of three circles; R, R', R" their radii; and let M be the external centre of similitude of the circles whose centres are A and B; N the external centre of similitude of the circles A and C; and P that of B and C.


By the definition, we have

AM:BM::R:R';

BP:CP::R':R";

CN:AN::R":R.

Hence

Multiplying these proportions together, term by term, we have AM.BP.CN: BM.CP.AN:: R.R'.R'': R'.R''.R.

AM.BP.CN=BM.CP.AN.

Therefore the points M, N, P are in a straight line (Art. 85).

135. Cor. 1. In like manner it may be shown that the straight line passing through any two internal centres of similitude of three circles, taken two and two, also passes through the external centre of similitude of the other pair of circles.

136. Cor. 2. Hence the six centres of similitude of three circles, taken two and two, are situated three and three on four straight lines. These lines are called axes of similitude.

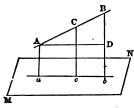
PROJECTIONS.

137. Projection is the delineation on a given plane of any figure situated out of this plane.

We shall consider two modes of projection, one called *orthogonal* projection, and the other *perspective* or *conical* projection.

ORTHOGONAL PROJECTION.

138. Def. The orthogonal projection of a point upon a plane is the foot of the perpendicular let fall from that point upon the plane. The plane to which the perpendicular is drawn is called the plane of projection.


The orthogonal projection of a line upon a plane is the line which contains the projections of all the points of the first line.

The orthogonal projection of a plane figure is that surface in the plane of projection that is inclosed by the projection of the perimeter of the original figure.

In the twelve following Articles the term projection will be used as equivalent to the term orthogonal projection.

Proposition I.

139. The projection of a straight line upon a plane is a straight line.

Let AB be the given straight line, and MN the given plane. From any point, A, in the straight line draw a perpendicular to the plane MN, meeting it in a. Let a plane pass through AB and Aa, and let its intersection with the plane MN be ab. Then ab is a straight line (B. VII., Pr. 3), and it is to be proved that ab is the projection of AB.

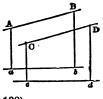
In AB take any point C; and in the plane BAa draw Cc parallel to Aa, meeting ab at c. Then Cc is perpendicular to the plane MN (B. VII., Pr. 9, Cor. 1); hence c is the projection of C; that is, every point in the line AB is projected into some point on the line ab.

140. Scholium. If the given straight line be perpendicular to the plane of projection, its projection is a point.

Proposition II.

141. The projection of a straight line of given length is equal to the length of the original straight line multiplied by the cosine of the angle between the straight line and its projection.

Let AB be any straight line, and ab its projection. Draw AD parallel to ab, meeting Bb at D. Then we have


 $ab = AD = AB \cos BAD$ (Trig., Art. 45).

142. Scholium. Since a straight line makes equal angles with all parallel lines which it intersects (B. I., Pr. 23), the angle between the straight line AB and its projection is understood to mean the angle between AB and any straight line, AD, parallel to its projection; that is, BAD is the angle between AB and ab.

Proposition III.

143. The projections of parallel straight lines are themselves parallel straight lines.

Let AB and CD be parallel straight lines; also let a be the projection of A upon a given plane, and let c be the projection of C upon the same plane. Since Aa is parallel to Cc (B. VII., Pr. 9), the plane BAa is parallel to the plane DCc (B. VII., Pr. 15); also the intersections of these planes with the plane of projection are parallel (B. VII., Pr. 12), and these intersections are the projections of AB and CD (Art. 138).

Proposition IV.

144. If any plane figure be projected upon a plane, the area of the projected figure is equal to the area of the original figure multiplied by the cosine of the angle between the two planes.

Case 1. Let the figure be a triangle having one side in the plane of projection.

Let ABC be a triangle having the side AC in the plane of projection; and let b be the projection of B. Draw BD perpendicular to AC, and join bD.

Since Bb is perpendicular to the plane ADb, it is perpendicular to the two lines Ab and Db. Hence we have (B. IV., Pr. 11)

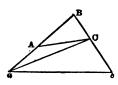
A D

В

$$AD^2 = AB^2 - BD^3 = Ab^2 + Bb^2 - (Db^2 + Bb^2) = Ab^2 - Db^2.$$

Therefore ADb is a right angle (B. IV., Pr. 11), and therefore BDb is the angle of inclination of the plane of the triangle to the plane of projection (B. VII., Def. 4).

Now the area of and the area of


$$ABC = \frac{1}{2}AC.BD,$$

$$AbC = \frac{1}{2}AC.bD;$$

therefore,

$$\frac{\text{area of A}bC}{\text{area of A}BC} = \frac{bD}{BD} = \cos BDb.$$

Case 2. Let the figure be any triangle.

Let ABC be any triangle, and let its plane, if produced, meet the plane of projection in the straight line ac. Jion aC, and let x denote the angle between the plane of the triangle and the plane of projection. Then, by Case 1, the area of projection of aBc = area of $aBc \times cos. x$; (1)

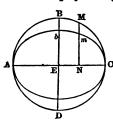
the area of projection of aCc=area of aCc×cos. x. (2)

Subtracting (2) from (1), we have

area of projection of aBC=area of aBC × cos. x.

Hence the proposition is true for any triangle which has one angular point in the plane of projection; therefore it is true for the triangle aAC; and therefore by subtraction it is true for the triangle ABC.

Case 3. Let the figure be any polygon.


The polygon may be decomposed into triangles, and since the proposition is true for each triangle, it is true for the whole figure.

Case 4. Let the figure be bounded by curved lines.

We may inscribe in the figure any rectilinear polygon, and the proposition will be true of the polygon. By increasing the number of sides of the polygon, and diminishing the length of each side, the area of the polygon can be made to differ as little as we please from the area of the figure. Hence the proposition is also true for the area bounded by the curved lines.

Proposition V.

145. The projection of a circle is an ellipse.

or

First, let the plane of projection pass through the centre of the circle, and cut the circle in the diameter AC; and let BD be that diameter which is perpendicular to AC. On the circumference of the circle take any point M, and draw MN perpendicular to AC. Let b denote the projection of B, and m the projection of M, and let x denote the angle of inclination of the two planes.

Then the projection of BE will be BE cos. x:

and the projection of MN will be MN cos. x.

MN:BE::MN.cos.x:BE.cos.x::mN:bE;Hence MN:mN::BE:bE.

Therefore m is a point on an ellipse whose semi-minor axis is bE= BE cos. x, and whose semi-major axis is BE or AE (Prop. 14, Ellipse).

Second, if the plane of projection does not pass through the centre of the circle, let a plane be drawn through the centre parallel to the plane of projection. AC will be equal and parallel to its projection, and we shall still have the same proportion given above.

146. Scholium 1. The centre of the circle is projected into the centre of the ellipse.

Scholium 2. The cosine of the angle between the plane of the circle and the plane of the ellipse is $\frac{bE}{AE}$.

Proposition VI.

147. To find the area of an ellipse.

Let a denote half the major axis of the ellipse, and b half the minor axis.

By Art. 145 the ellipse may be regarded as the projection of a circle whose radius is a.

By Art. 144 the area of the ellipse=area of circle × cos. x.

But the area of the circle= πa^2 (B. VI., Pr. 13, Cor. 3).

Also,
$$\cos x = \frac{b}{a}$$
 (Art. 146).

Hence the area of the ellipse= $\pi a^3 \times \frac{b}{a} = \pi ab$.

Proposition VII.

148. The projection of the tangent at any point of a curve is the tangent at the corresponding point of the projection of the curve.

Let A and B be any two points on a curve, and let a and b be their projections. Then (Art. 139) the straight line drawn through a and b is the projection of the straight line through A and B. Let A move along the curve to B; then the limiting position of the secant through A and B is the tangent to the curve at B. Now as A moves to B along the curve, a moves to b along the projection of the curve, and the limiting position of the secant through a and b is the tangent at b to the projection of the curve. Hence tangents are projected into tangents.

Proposition VIII.

149. Conjugate diameters of an ellipse are the projections of diameters of a circle which are perpendicular to each other.

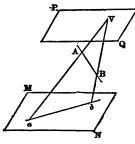
If two diameters of a circle are perpendicular to each other, each diameter is parallel to the tangent at the extremity of the other diameter. Hence, by Arts. 143 and 148, the projection of each diameter is parallel to the tangent to the projection of the circle at the extremity of the other diameter. Therefore, by Def. 12, Ellipse, the projections of diameters of the circle which are perpendicular to each other are conjugate diameters of the ellipse.

150. Cor. Since the area bounded by two radii of a circle which are perpendicular to each other, and the intercepted are of the circle is one

fourth of the area of the circle, therefore the area bounded by two conjugate semi-diameters of an ellipse and the intercepted arc of the ellipse is one fourth of the area of the ellipse.

Proposition IX.

151. The parallelogram formed by drawing tangents through the vertices of two conjugate diameters is equal to the rectangle of the axes.


The rectangle constructed upon the two axes of an ellipse may be regarded as the projection of a square circumscribing a circle whose diameter is the major axis of an ellipse. Also, the parallelogram formed by tangents drawn through the vertices of two conjugate diameters may be regarded as the projection of another square circumscribing the same circle. Since the areas of these squares are equal, the areas of their projections upon the same plane are also equal (Art. 144).

152. Scholium. We thus see that certain properties of the ellipse may be deduced from corresponding properties of the circle by considering the ellipse as the projection of a circle upon a plane. Such properties are called projective properties, and it is evident that a large part of the properties enumerated in the Chapter on the Ellipse are of this description.

PERSPECTIVE OR CONICAL PROJECTION.

153. Definitions. The perspective projection of a point upon a plane is the intersection of the plane by a straight line drawn through the point from a fixed point in space.

The perspective projection of a line upon a plane is the line which contains the projections of all the points of the given line.

Let MN be a plane given in position, and V be a given point without it; then, if through any point, A, a straight line be drawn from V to meet the plane MN in a, the point a is called the perspective or conical projection of the point A upon the plane MN.

The given plane MN is called the *plane of* projection; the fixed point V is called the vertex, and the plane PQ, which is drawn through the point V parallel to MN, is called

the vertex plane.

A plane figure is said to be projected upon a plane when its several lines are projected; and the figure which is contained by the projected bounding lines is called the perspective projection of that figure.

154. Scholium. It is obvious that the shadow formed on any plane by a figure when light falls on it from a point, is the perspective projection

of that figure corresponding to that point as a vertex. Also, if one point or line or surface is the projection of a second point or line or surface, the second is the projection of the first.

In the next thirty-three Articles the single term projection will be used to denote perspective projection.

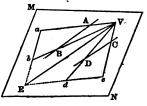
Proposition I.

155. The projection of a straight line upon a plane is a straight line.

For suppose a point to move along the line AB (prec. fig.); its projection on MN will always be in the intersection of the plane VAB with the plane MN, and this intersection is a straight line (B. VII., Pr. 3).

- 156. Scholium. If the given straight line passes through the vertex, its projection on any plane not passing through the vertex is a point.
- 157. Cor. 1. The projection of a straight line which is parallel to the plane of projection is parallel to its original.
- 158. Cor. 2. If any number of straight lines meet in one point not in the vertex plane, their projections form a group of diverging rays all passing through one point. For, the point common to the given lines being projected into a point in the plane of projection, this second point must be common to the projections of the several given lines.
- 159. Cor. 3. If a point be situated in the vertex plane, the straight line which is drawn through it from V can not meet the plane MN, because it lies in a plane which is parallel to MN. Therefore no point in the vertex plane can be projected from V upon the plane MN. If a point is indefinitely near to the vertex plane its projection is at an indefinitely great distance. Hence we say that points in the vertex plane are projected to infinity.
- 160. Cor. 4. Conversely, if the projection of a point is at an infinite distance, that point must be in the vertex plane. Points on the other side of the vertex plane from MN are projected by lines produced through V.

Proposition II.


161. If two or more straight lines intersect in the vertex plane, their projections are parallel straight lines.

For the projections are straight lines in a plane, and can not meet because the point at which the original lines meet is projected to infinity (Art. 159).

162. Scholium. Since a group of lines intersecting in a point not in the vertex plane is projected into diverging rays (Art. 158), and a group of lines intersecting in a point in the vertex plane is projected into parallel lines (Art. 161), it is convenient to conceive of parallel lines as meeting at infinity, and to regard a group of parallel lines as a special case of diverging rays.

PROPOSITION III.

163. Two or more parallel straight lines which cut the plane of projection are projected into diverging rays.

Let AB and CD be any two parallel straight lines, and let ab and cd be their projections on the plane MN. Through V draw VE parallel to AB and CD, meeting the plane MN in E.

The line VE must be in the plane VAB (B.VII., Pr. 2, Cor. 2), and also in the plane VCD, and hence it is the line of intersection

of these two planes. Therefore ab and cd must meet in E. In the same manner it may be proved that the projection of any other straight line which is parallel to AB or CD will pass through the point E.

Or, since the given parallel lines meet in a point at infinity in their common direction, they will be projected into a group of diverging rays (Art. 158).

164. Cor. 1. If a group of parallel lines be projected into a group of diverging rays, the common point of the rays is the point E, where the line drawn from the vertex parallel to the given lines meets the plane of projection.

165. Cor. 2. The projections of parallel lines that are also parallel to the plane of projection are parallel straight lines. This follows from Art. 157; or otherwise, since the given lines meet in a point at infinity in the vertex plane, their projections meet in the projection of that point, that is, at infinity.

166. Cor. 3. Any quadrilateral may be projected into a parallelogram. For the two points of intersection of the opposite sides may be placed in the vertex plane, and the figure then projected.

Proposition IV.

167. The projection of any plane figure on a parallel plane is similar to the original figure.

Let ABCDE be any plane figure; let MN be a plane parallel to ABCDE; let *abcde* be the projection of ABCDE upon the plane MN, and let V be the vertex.

Since AB and ab are the intersections of two parallel planes by a third plane, they are parallel (B. VII., Pr. 12).

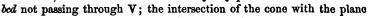
Also, bc is parallel to BC, cd to CD, etc. Hence

AB:ab::VB:Vb::BC:bc.

Also the angle ABC=angle abc (B. VII., Pr. 15).

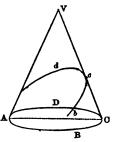
The same may be proved of the other sides and angles of the polygons ABCDE, abcde. Hence these polygons are similar.

168. Def. Similar curves are such that any rectilinear figure being inscribed within the one, a similar rectilinear figure may be inscribed within the other. Similar curves may be regarded as the limits of similar polygons having an infinite number of sides which are indefinitely small.


169. Scholium. By the method employed in Art. 144, the demonstration of Prop. IV. may be extended to figures bounded by curve lines.

PROPOSITION V.

170. The projections of four harmonic points are harmonic points.


Let A, C, B, D be four harmonic points, and let a, c, b, d be their projections. The four lines VA, VC, VB, VD form an harmonic pencil (Art. 99), and this pencil is divided harmonically by the plane of projection (Art. 100).

171. Definition. Let VABC be a cone with a circular base, and let its surface be cut by any plane A

is called a *conic section*, or, more simply, a *conic*. Every conic may be regarded as the projection of a circle upon a plane.

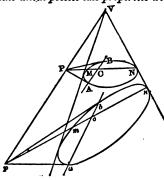
172. Scholium. On pp. 215, 236, and 257 the intersection of a right circular cone with a plane is shown to be a parabola, an ellipse, or an hyperbola, as these terms had been previously defined. It may be easily shown that any parabola, ellipse, or hyperbola can be the section of some right cone; also, that the sections of an oblique cone of circular base with a plane, or the sections of any cone hav-

ing a parabola, ellipse, or hyperbola for its base, made by a plane not passing through the vertex, will be a parabola, an ellipse, or an hyperbola. It will be a parabola if the plane through the vertex parallel to the cutting plane touches the cone; it will be an hyperbola if the plane through the vertex cuts the cone; and it will be an ellipse if the plane through the vertex does not cut the cone.

In the following propositions some properties of conics will be deduced from the above definition, without using the definitions and properties proved in pp. 215–262.

Proposition VI.

173. A tangent to the circle is projected into a tangent to the conic. This may be proved in the same manner as in Art, 148.


174. Cor. 1. A conic can be met by a straight line in only two points.

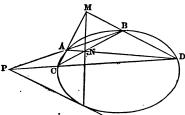
175. Cor. 2. From a point without a circle two tangents and only two

can be drawn to the circle; hence from a point without a conic two tangents, and only two, can be drawn to the conic.

Proposition VII.

176. A pole and polar of a circle are projected into a point and straight line which possess like properties with regard to the conic.

If the circle MN be projected into the conic mn, the pole P and its polar AB will be projected into a point pand a right line ab, in the plane of the conic, such that if any transversal be drawn through p cutting ab in c, and the conic in m and n, the four points m, n, c, and p will form an harmonic couple; that is,


cm:cn::mp:pn.

For the transversal pn is the projection of a transversal PN in the plane of the circle, and the four points m, n,

c, and p are the projections of the four harmonic points (Art. 112) M, N, C, and P, and hence they are harmonic points (Art. 170).

177. Def. The point p and the line ab are called a pole and its polar with respect to the conic.

178. Cor. 1. Props. 1, 2, and 3 (Arts. 112-117) for the circle are true for any conic, since in each case the figure in the circle is projected into the corresponding figure for the conic.

179. Cor. 2. Hence, a pole P being given, the polar with respect to a conic may be constructed. Through P draw the transversals PB, PD, cutting the conic in A and B, C and D; draw AD and CB to meet in N, and produce CA and DB to meet in M, and join MN; MN will be the polar of P.

180. Cor. 3. Hence, also, if a line be given in the plane of a conic, its pole with respect to the conic may be constructed. For if two points be taken on the line, and their polars be constructed (Cor. 2), these polars will pass through the pole of the given line (Art. 116).

181. Cor. 4. If the pole be without the conic, its polar cuts the conic; if the pole be within, its polar does not cut the conic.

182. Cor. 5. Hence, also, to draw tangents to the curve from a given point without the conic, construct the polar of the point, and from

the given point draw lines to the intersections of the polar with the conic.

183. Cor. 6. If the point P be projected to infinity, its polar is a diameter; that is, it bisects all the parallel chords drawn in the direction of p. For, pn:pn::en:mc; hence, when p is at infinity, en=mc.

[Compare Props. 11 and 12 of Parabola, and Props. 7 and 21, Cor. 1,

of Ellipse and Hyperbola.]

184. Cor. 7. If AB be projected to infinity, p is a centre; that is, every chord of the conic through p is bisected at p. For, pn:mp::cn:cm; and when c is at infinity, pn=mp.

[Compare Prop. 4 of Ellipse and Hyperbola.]

185. Cor. 8. Let o be the middle point of the chord mn, then will om²=oc.op (Art. 96).

[Compare Props. 11 and 20 of Ellipse and of Hyperbola, as special cases of this Proposition.]

Proposition VIII.

186. If a hexagon be inscribed in a conic, the points of intersection of the pairs of opposite sides will lie in a straight line.

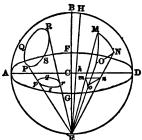
This Proposition has been proved for a circle (Art. 121); and since straight lines are projected into straight lines (Art. 155), the projections of the points L, M, and N will lie in a straight line.

187. Cor. Hence we can construct a conic which shall pass through five given points, no three of the points being in the same straight line. Let A, B, C, D, F be the given points. Construct a figure as in Art. 121. On BC produced take any point M, and join FM. Let DC and FA meet in N, and join NM. Let AB meet NM in L, and draw LD to meet FM in E; then will E be a point on the conic.

Proposition IX.

188. If a hexagon be described about a conic, the three diagonals which join the opposite vertices intersect in the same point.

This Proposition has been proved for a circle (Art. 122), and the demonstration may be extended to a conic, as in Prop. VIII.

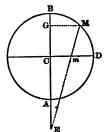

SPHERICAL PROJECTIONS.

189. Spherical projections are representations of portions of a spherical surface upon a plane. In order to represent a spherical surface upon a plane, various modes of projection are employed, such as the orthographic, stereographic, globular, etc.

190. In the orthographic projection, all points of a hemisphere are referred to the plane of projection by perpendiculars let fall upon the plane; so that the hemisphere is represented as it would appear to an

eye placed at an infinite distance. In this projection only the central portions are represented of their true forms, while those portions which are near the margin of the map are compressed so that their form is very much distorted. Hence the orthographic projection is of little use for representing large portions of the earth's surface.

191. The stereographic projection is in a measure free from this defect.



Let ABD be a hemisphere, and let it be required to project its convex surface upon its base, AFDG. Draw the diameter, BCE, perpendicular to the plane AFDG, and conceive the eye to be placed at E. The point m, where the line EM meets the plane AFDG, is the projection of the point M. In the same manner the point N is projected into n, and the point O into o, and the figure MNO is projected into the figure mno.

Any minute triangle, MNO, on the surface

of the sphere is represented by a similar triangle, mno, in the projection; and a small circle, PQRS, on the sphere is represented by a circle, pqrs, in the projection. Great circles passing through the vertex, B, are, however, projected into straight lines traversing the centre, C. Thus the semi-circumference ABD is projected into the straight line ACD. By this method an entire hemisphere may be projected in a single map without very great distortion of figure. There is, however, a gradual diminution in the projected dimensions of figures from the circumference, AFDG, to the centre, C. On the margin of the chart, figures are represented without any reduction in their dimensions, while at the centre the dimensions of figures upon the surface are reduced one half.

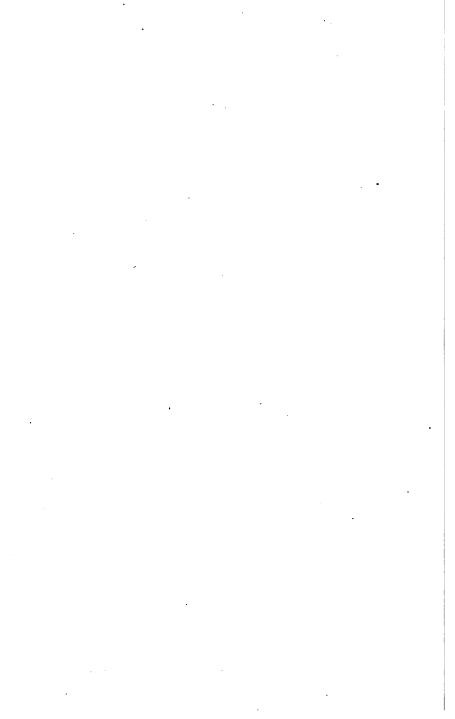
192. To avoid the inequality of the stereographic projection, the point of sight is sometimes taken without the sphere, and at a distance from it equal to the sine of 45° , $= R\sqrt{\frac{1}{4}}$. This mode of projection is called *globular*.

Bisect the quadrant BD in M; draw MG perpendicular to BC; produce BA to E, making AE equal to MG, and let E be the point of sight. Then m will be the projection of M, and Cm will be equal to mD.

For since EG:GM::EC:Cm,

$$Cm = \frac{CE \times GM}{EG}.$$
 (1)

Also, since $GM=GC=AE=R\sqrt{\frac{1}{2}}$, we have $CE=R+R\sqrt{\frac{1}{2}}$, and $EG=R+2R\sqrt{\frac{1}{2}}$.


Substituting these values in (1), and reducing, we

$$Cm = \frac{R}{2} = mD;$$

that is, the equal arcs BM, MD are projected into equal straight lines, and it may be shown that the projections of any other two equal arcs of the quadrant are very nearly equal.

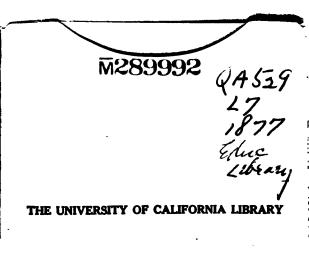
In the construction of maps, various other modes of projection are frequently employed. Mercator's projection is extensively used for purposes of navigation. See Trigonometry, p. 153.

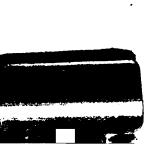
THE END.

• •* •

14 DAY USE

RETURN TO DESK FROM WHICH BORROWED EDUGATION LIBRARY


This book is due on the last date stamped below, or on the date to which renewed.


Renewed books are subject to immediate recall.

7 DAY USE	DURING
SUMMER	SESSIONS
June 16, 1959	

LD 21-50m-8,'57 (C8481s10)476 General Library University of California Berkeley

YB 35964

