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TRANSLATOR S PREFACE.

IN preparing this translation of Professor Reye s Geometric der

Lage, my sole object has been to place within easy reach of the

English-speaking student of pure geometry an elementary and

systematic development of modern ideas and methods. The in

creasing interest in this study during recent years has seemed to

demand a text-book at once scientific and sufficiently comprehensive
to give the student a fair view of the field of modern pure geometry,

.and also sufficiently suggestive to incite him to investigation. The

recognized merit of Professor Reye s work in all these regards is my
only apology for offering this translation as an attempt to satisfy our

present needs.

It has been my aim to present in fair readable English the

geometric ideas contained in the text, rather than to hold myself, at

.all points, to a literal translation
; yet I trust that I have not alto

gether destroyed the charm of the original writing. Some changes

have been made; the articles have been numbered, the examples

set at the end of the lectures to which they are related and a few new

ones added, explanatory notes have been inserted where they seemed

necessary or helpful, and an index has been compiled. I have not

deemed it advisable to omit from this edition any part of the original

prefaces or introduction, even though, at this distance from their

first publication, they might not be demanded in their entirety.

For the most part I have endeavoured to hold rigorously to well-

established terminology. A few instances of deviation from this

principle, however, may be mentioned. I have preferred the terms

sheaf of rays, sheaf of planes, and bundle of rays or planes, to

the more common though I think less expressive terms, flat pencil,

axial pencil, and sheaf of lines or planes ; instead of the expression

conformal representation as an equivalent for the German l

confor?ne
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Abbildnngj I have ventured * conformal depiction. The term ideal
r

has elsewhere been applied to infinitely distant points and lines -

f

with this I have associated the word actual to apply to points and

lines of the finite region.

I desire to acknowledge my indebtedness to my colleague

Professor Henry S. White for valuable assistance; my thanks also-

and the gratitude of all who may profit by the use of this translation

are due to Dr. M. C. Bragdon of Evanston whose interest and

generosity made its publication possible.

What is commonly known as Modern Synthetic Geometry has-

been developed for the most part during the present century. It

differs from the geometry of earlier times, not so much by the

subjects dealt with and the theorems propounded, as by the processes

which are employed and the generality of the results which are

attained.

Geometry was to the ancients a subject of entrancing interest.

Its progress is prominently connected with the names of Thales

of Miletus (640-546), Pythagoras (569-500), Plato (429-348), who

cultivated geometry as fundamental to the study of philosophy,

Menaechmus (375-325), the first to discuss the conic sections, Euclid

of Alexandria (330-275), Archimedes (287-212), and Apollonius of

Perga (260-200) ;
these among others before the Christian era.

Of the numerous writings of Euclid, the Elements? in which was

collected and systematized much of the geometrical knowledge of

that time, has remained for two thousand years a marvellous monument

to his skill. Whatever may be its defects, and these have been the

subject of much discussion, it
&quot;

certainly possesses some excellent

features
;

it accustoms the mind to rigor, to elegance of demon

stration, and to the methodical arrangement of ideas
;

in these

regards it is worthy of our admiration.&quot;
2 His Porisms, which

unfortunately have been lost, are said to have contained many of

the principles that have formed the basis of modern geometry.

Ancient geometry reached its highest perfection under Archimedes

and Apollonius, the former of whom devoted much study to physical

problems by means of geometry, and the latter carried his investi-

1 For a convenient summary and characterization of Euclid s Elements, see

Professor Henrici s article on Geometry in the Encyclopedia Britannica.

2
Poncelet, Proprieties Projectiles, etc., p. 15.



TRANSLATOR S PREFACE. vii

gations upon the conic sections so far as to leave few of their

important properties undiscovered. He produced a systematic

treatise on conic sections containing his own discoveries, and

including also all previous knowledge of these curves. 1

The great geometer and commentator of the early centuries of

the Christian era was Pappus of Alexandria. In his Mathematicae

Collectiones, written toward the end of the fourth century, he collated

the scattered works of the earlier celebrated geometers and a

multitude of curious theorems from many sources, to which he

added so much of original work as to place him among the most

illustrious of ancient geometers. This work is the chief source of

information on ancient geometry. It comments so fully upon
Euclid s book of porisms that frequent efforts have been made to

restore the latter, notably by Chasles in 1860.

The work of the ancient geometers was fragmentary. Truly

remarkable discoveries were made, but general principles were not

brought into prominence ;
theorems were announced disconnectedly

as though they had been received by their authors ready made
;
the

method of their discovery was rarely, if ever, indicated
;
the demons

trations were given in the most polished and systematic form,

but the relations existing among different theorems were not shown,

and no suggestions were offered for further investigation ; special

cases of general theorems were as a rule treated as though they

were separate and independent theorems.

But, scattered here and there, throughout the great volume of

geometrical knowledge accumulated by these early geometers, is to

be found the material upon which the beautiful and symmetrical

structure of modern geometry has been founded. For example,

the property of perspective triangles of which use is made in the

geometrical definition of harmonic points, though usually credited

to Desargues, was in fact announced by Euclid. 2 Harmonic division

itself was known to Apollonius, and the fact that the anharmonic

ratio of four collinear points is unaltered by projection was demon

strated by Pappus,
3 and was probably, known much earlier. The

theorem upon which Carnot based the theory of transversals was

discovered and published by Menelaus early in the second century.

1 An edition of Apollonius Conic Sections, with notes, etc., by T. L. Heath,

M.A., has recently been published by Macmillan & Co., London.
2
Pappus, Mathematical Collectiones, preface to book VI I.

3 Mathematicae Collectiones, VI I., 129.
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As has already been suggested, modern geometry is characterized

by generality both in its processes and in its results. The founding of

modern pure geometry is usually accredited to Monge (1746-1818),

whose lectures in the Polytechnic School at Paris were published

under the title of Geometric Descriptive. These lectures, by utilizing

the theory of transversals and the principle of parallel projection,

called attention to the advantages to be gained through the applica

tion of geometrical methods, and served to revive the interest in

pure geometry, which had been dormant for so many years.

But the .generalizing processes which characterize modern geometry
were begun much earlier than the time of Monge. Desargues (1593-

1662), a contemporary of Descartes, introduced the notion of

infinitely distant points and lines, with its far reaching results,

and announced the doctrine of continuity. The methods of Pascal

(1623-1662) too, so far as it is possible to judge from the few remaining

fragments of his mathematical work, partook of the broadest

generality, and it is fair to assume that had not the work of these two

great geometers been almost entirely lost, and had not their ideas

been wholly pushed aside through the overwhelming influence of

Descartes discoveries, many of the geometrical theories and results

of the present century would have been developed long ago, and the

so-called modem geometry would have been of much earlier date.

As it was, however, pure geometry was but little cultivated for

over a hundred years before the time of Monge. Geometrical know

ledge was truly increased during this period, especially by Newton

(1642-1727), Maclaurin (1698-1746), Robert Simson (1687-1768),

and Matthew Stewart (1717-1785), but their methods could scarcely

be said to partake of the spirit of modern geometry, and differed

but little, if at all, from the methods of the ancient geometers.

The illustrious names in connection with the development of

modern pure geometery are Poncelet (1788-1867), Steiner (1796-

1863), Von Staudt (1798-1867), and Chasles (1793-1880); and if

it were permissible to add the names of living men I should mention

Cremona and Reye.
Poncelet s great work, Traite des proprietes projectives desfiguresr

etc., appeared in 1822, and at once clearly justifies any claim

that may be set up in his behalf as the leader in the so-called

modern methods. In this work the principle of continuity, the

principle of reciprocity or duality, and the method of projection

are the chief factors.
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There has been much discussion from time to time upon the

question of priority in the establishment of the principle of duality.

Poncelet used the method of polar reciprocity with respect to a

conic, and thus derived the dual of any geometrical figure, but

it is claimed for Gergonne that it was he who first established

duality as an independent principle. The name *

duality is clearly

due to Gergonne.
1

The principle of continuity, which was first assumed by Kepler and

later by Desargues, demands of the geometer as well as the analyst

the consideration of imaginary quantities. Monge discovered that

the results obtained from a geometrical construction would not be

invalidated if in a different phase of the construction certain of the

points and lines disappeared. Poncelet devoted much attention to

imaginary solutions of geometrical problems, but it remained for

Von Staudt to build up and to bring to a fair degree of perfection

a general theory of geometrical imaginaries.

A conception of the geometer s notion of imaginary quantities

can probably be best obtained from the following quotation from

Professor H. J. S. Smith: 2

&quot;All attempts to construct imaginaries have been wholly abandoned

in pure geometry ; but, by asserting once for all the principle of

continuity as universally applicable to all the properties of figured

space, geometers have succeeded, if not in explaining the nature

of imaginaries, yet, at least, in deriving from them great advantages.

They consider it a consequence of the law of continuity that if we

once demonstrate a property for any figure in any one of its general

states, and if we then suppose the figure to change its form, subject

of course to the conditions in accordance with which it was first

traced, the property we have proved, though it may become un

meaning, can never become untrue, even if every point and every

line by means of which it was originally proved should disappear.
&quot;

The line of demarcation which was visible as early as the time

of Archimedes and Apollonius between the geometers whose theories

rest upon metric properties and those whose basal notions are

purely positional was very prominent during the foundation period

in the development of modern pure geometry. Steiner and Chasles

based their investigations upon metric properties, defining the pro-

1 A tinales de Mattematiques, T. XVI., 1826.

2 Collected Papers, Vol. I. p. 4.
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jective relation by means of the anharmonic ratio; Von Staudt, on

the other hand, and after him Reye, define this relation by reference

to harmonic division, and this in turn is defined purely geometrically.

Upon such a definition of projectivity they have been able to perfect

.a complete theory without any reference to metric properties what

soever. Cremona avoids metric properties in his foundations by

defining two projective forms as the first and last of a series of

forms in perspective.

In all the recent development of synthetic geometry the effect

of contact with analysis is clearly seen. Through its influence the

foundations upon which the science rests have been carefully ex

amined, while characteristic methods of investigation have been

.acquired. The tendency toward generalization may likewise be

.attributed largely to the influence of analysis, though it is true

that some progress had been made in this direction before the

analytical methods had attained such universal sway. But, on the

other hand, geometry has done much to enliven and heighten the

interest in analysis, so that it may fairly be said that neither pure

geometry nor pure analysis can any longer boast an isolated

existence, or hope to attain its highest development independently
of the other.

THOMAS F. HOLGATE.

EVANSTON, ILLINOIS,

December 1897.

A NOTE FROM THE AUTHOR.

DEAR SIR, It is with great pleasure and satisfaction that I

greet your English translation of my Geometric der Lage, which

henceforth will take its place along with the French and Italian

translations. I trust that it may help to win for pure Geometry

many friends and investigators in the broad English-speaking
countries. I am, yours faithfully,

TH. REYE.

STRASSBURG, September 1896.



THE AUTHOR S PREFACE TO THE FIRST

EDITION OF PART I.

THE Lectures upon the Geometry of Position, which I now offer to

the public, have been written at intervals during the last two years.

I have been induced to publish them by a need which has been felt

for a long time in the technical schools of this country, and perhaps

in wider circles. The important graphical methods with which

Professor Culmann has enriched the science of engineering, and

which are published in his work, Die graphische Statik, are based

for the most part upon modern geometry, and a knowledge of this

subject has therefore become indispensable to students of engineer

ing in our institutions. In the present work I attempt to supply the

want of a text-book which offers to the student the necessary material

in concise form, and which will be of assistance to me in my oral

instruction.

I was obliged, as a matter of course, to make use of the termin

ology adopted by Culmann, and, to a certain extent, to follow the

subject matter of that complete work bearing the same title as this,

namely, The Geometry of Position, by Professor Von Staudt.

The new terms which Von Staudt added to the older ones of Steiner

are so happily chosen that I have preferred a different one in but a

single instance, the term &quot;

range of points
&quot;

(Punktreihe\ first used

by Paulus (and Gopel) instead of &quot;line form&quot; (gerades Gebilde).

The way in which Von Staudt establishes this science in contrast

with all other writers upon Modern Geometry appears to me to

.afford advantages so important that, laying aside all other consid

erations, I should prefer it to every other. Permit me, in a few

words, to assign my reasons for this preference.

To the engineer as well as to the mechanic and architect, the ability

to form beforehand a mental picture of his structure as it will appear
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in space is of great service in designing it. Suppose, for example, a

bridge is to be built across a stream. From among the different

possible modes of construction, that one must be chosen at the

outset which is best adapted to the given conditions. To this end

the engineer compares the long iron girders with the boldly swung
arch or the freely hanging suspension bridge, and endeavours to

conceive how the pressure would be exerted at this point and at that

point, and how distributed among the different members of the huge
structure. Again and again he examines and compares, goes more

and more deeply into all the details, until the whole structure stands

complete in clear outline before his mind s eye. And now the second

part of his creative work begins. The project is transferred to paper;

all details as to form and strength are completely determined. But

still the engineer, and everybody else who wishes ta become familiar

with his ideas, must continually exert his power of imagination in

order actually to see the object intended to be represented by the

lines of a drawing which is not at all intelligible to the uninitiated.

So also the mathematician and in fact any one who concerns

himself with the natural sciences must, like the technologist, bring

the imagination very frequently into play. At one time he tries to

understand a complicated piece of apparatus from an insufficient

sketch
;

at another, from a scanty description, to make intelligible

remotely connected processes of nature or complicated motions.

One principal object of geometrical study appears to me to be the

exercise and the development of the power of imagination in the

student, and I believe that this object is best attained in the way in

which Von Staudt proceeds. That is to say, Von Staudt excludes

all calculations whether more or less complicated which make no

demands upon the imagination, and to whose comprehension there is

requisite only a certain mechanical skill having little to do with

geometry in itself; and instead, arrives at the knowledge of the

geometric truths upon which he bases the Geometry of Position by
direct visualization. It cannot be denied that this method, like

every other, presents its peculiar difficulties; and, what is more, Von
Staudt s own work, evidently not written for a beginner, embodies

peculiarities which are praiseworthy enough in themselves, but which

essentially increase the difficulties of the study. It is especially

marked by a scantiness of expression, and a very condensed, almost

laconic, form of statement
; nothing is said except what is absolutely

necessary, rarely is there a word of explanation given, and it is left to-
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the student to form for himself suitable examples illustrative of the

theorems, which are enunciated in their most general form. The

material, however, is very clearly and systematically arranged; for

example, the subjects of projectivity, of the collinear and the recipro

cal relation, and of forms in involution, are completely treated before

the theories of conic sections and surfaces of the second order are

introduced, and Von Staudt thus gains the advantage of being able

to prove the properties of forms of the second order all at once ; but,

on the other hand, the presentation is so abstract that ordinarily the

energies of a beginner are quickly exhausted by his study. These

features, which, unfortunately, appear to have stood in the way of the

well-merited circulation and the general recognition of Von Staudt s

work, stamp it as a treatise on Modern Geometry of superior merit,

to which we may very appropriately refer, as did the ancient geometers
to Euclid. In my lectures written for beginners, however, I must

avoid such peculiarities in order not to become unintelligible.

There is one other difficulty inherent in the course itself which I

have purposely not avoided, since it must sooner or later be overcome

by everybody who desires to comprehend the properties of three-

dimensional figures. I refer to the difficulty already mentioned of

getting a mental picture of such figures in space, a difficulty with

which the beginner has to struggle in the study of descriptive

geometry and analytical geometry of space, the surmounting of which,

as I have already remarked, I hold to be one of the principal objects

of geometrical instruction. In order to make the accomplishment of

this end easier for the student, I have added plates of diagrams to

my lectures. Von Staudt did not make use of such expedients; in

fact, we should not be far from the truth in ascribing to him views

similar to those expressed at one time by Steiner,
&quot; that stereometric

ideas can be correctly comprehended only when they are contem

plated purely by the inner power of imagination, without any means

of illustration whatever.&quot; By disdaining to make use of these

instruments of illustration, which so far as planimetric ideas are con

cerned, are not at all likely to lead to an incorrect conception, I

should unnecessarily have increased the difficulty, on the part of the

student, of comprehending my lectures.

Since the method introduced by Von Staudt excludes numerical

computations, and investigates the metric properties of geometrical

figures apart from the general theory, it presents still another ad

vantage to which I should like to call especial attention. That
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is, it turns to account most beautifully, in all its clearness and

to its full compass, the important and fruitful principle of duality or

reciprocity, by which the whole Geometry of Position is controlled.

No method making use of the idea of measurement can boast of this

merit,&quot;and for the simple reason that in metric geometry this principle

is not in general applicable. But it must be admitted that geometry
offers nothing which is so stimulating to the beginner, and which

so spurs him on to independent research as the principle of re

ciprocity, and the earlier he is made acquainted with it the better.

The fact that this principle stands out so clearly, particularly in

geometry of three dimensions, was for me a determinative reason for

not separating the stereometric discussions from the planimetric.

Metric relations, I must add, especially those of the conic sections,

have by no means been neglected in my lectures on the contrary,

I have throughout developed these relations to a greater extent

than did either Steiner or Von Staudt, wherever they could naturally

present themselves as special cases of general theorems.

I proceed to the study of the conic sections and other forms of the

second order treated in this first part of my lectures, by a route

different from that of Steiner or Von Staudt, the latter of whom
based the theory of these forms upon the doctrine of collineation

and reciprocity. By introducing the forms of the second order

directly from a study of projective one-dimensional primitive forms,

I hope to have made the comprehension of the projective relation

easier; at the same time, I secure the advantage of being able to

prepare the beginner by degrees for the more difficult study of

collineation and reciprocity. In his highly suggestive pioneer work,

Systematische Entwickelung, etc., Steiner has furnished us with

the model which I have preferred to follow in my lectures from the

fifth to the tenth. For reasons already referred to, however, I was

obliged to refrain from defining conic sections, as did Steiner, by
means of circles.

THE AUTHOR.

ZURICH, March S//i, 1 866.



THE AUTHOR S PREFACE TO THE THIRD
EDITION OF PART I.

THIS new edition exceeds the first in extent by about two-thirds of its

number of pages. The most significant changes made in the second

edition consisted in the addition of a collection of two hundred and

twenty-three problems and theorems. A part of this collection was

originally to be found in the appendix to the second volume, but this

has been considerably enlarged by the addition of new problems and

useful theorems. The first eleven sections of this collection, with the

exception of the two upon the principle of reciprocal radii and the

ruled surface of the third order, correspond to the lectures with

the same headings, and problems and theorems which are com

paratively easy to be proved have been selected mainly with a view to

furnishing exercise for the student. I urgently advise every beginner

to actually solve the problems of construction graphically, since the

comprehension of the Geometry of Position is made very much easier

by the free use of pencil and paper.

The last four sections of the problems and theorems contain new

investigations which were not found in the first edition, and which in

more than one essential feature have been carried out by means

of synthetic geometry for the first time so far as I know in this book.

In order that the investigations upon self-polar quadrangles and

self-polar quadrilaterals and upon linear nets and webs of conic

sections might not become too voluminous, I have chosen for them

a form of statement as brief as possible. By this means and by the

introduction of a single elementary notion, I have been able, within

the narrow compass of twenty-one pages, to present the important

theories of sheaves, ranges, nets, and webs of conic sections in an

entirely new connection. By means of Stephen Smith s theorem,

the synthetic proof of which I acquired only after many fruitless
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attempts, and by the principle of reciprocity, these theories are

developed in a manner remarkable for simplicity and clearness.

I have replaced the proof of the fundamental theorem of the

Geometry of Position as given by Von Staudt by one free from

objections, making use of the remarks in that connection of F. Klein

and Darboux (Math. Annalen, Vol. XVIL). It was expressly assumed

in the second edition by the definition of &quot;

correlation,&quot; that in two

projective primitive forms a continuous succession .of elements in

the one form corresponds to a continuous succession of elements in

the other. This ,has now been proved upon the basis of Von
Staudt s definition of projectivity.

It is due to the kindly co-operation of the new publishers that this

book, like its Italian and French translations, is supplied with

engravings of the diagrams inserted in the text.

THE AUTHOR.

STRASSBURG IN ALSACE,

September 8M, 1886.
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INTRODUCTION.

1. Most of my hearers will have heard till now scarcely more

than the name of the Geometry of Position; for, unfortunately,

the knowledge of this significant creation of recent times, dis

tinguished alike by abundance of contents, clearness of form, and

simplicity of development, has been diffused but very little;

and notwithstanding the fact that modern geometry must be

accounted among the most stimulating branches of mathematical

science and admits of many beautiful applications to the technical

and natural sciences, it has not as yet found its way generally

into the schools. Perhaps, therefore, it will not be amiss if I pre
face my lectures with a word upon the place which the Geometry
of Position occupies among other branches of geometry, and if

afterwards I mention some theorems and problems which will serve

still further to characterize this science for you.

2. The pure Geometry of Position is mainly distinguished from

the geometry of ancient times and from analytical geometry, in

that it makes no use of the idea of measurement
;

in contrast

with this feature the ancient geometry may be called the geometry
of measurement, or metric geometry. In the pure Geometry of

Position nothing whatever is said about the bisection of segments
of straight lines, about right angles and perpendiculars, about ratios

and proportions, about the computation of areas, and just as little

about trigonometric ratios and the algebraic equations of curved

lines, since all these subjects of the older geometry assume measure

ment. In these lectures, however, at the end of each main division,

I shall make applications of the Geometry of Position to metric

geometry, in which I shall assume a knowledge of planimetry as well

as, in a few instances, a knowledge of the sine of an angle. We
A
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shall be concerned as little with isosceles and equilateral triangles

as with right-angled triangles ;
the rectangle, the regular polygon,

and the circle are also excluded from our investigations, except

in the case of these applications to metric geometry. We shall

treat of the centre, the axes, and the foci of so-called curves of the

second order, or conic sections, only as incidental to the general

theory ; but, on the other hand, shall become acquainted with many

properties of these curves more general and more important than

those to which most text-books upon analytical geometry are

restricted. We shall be obliged to mark out a new way of approach

to the conic sections themselves, since in the Geometry of Position

we dispense with the help of the circular cone by means of which

the ancient geometers defined these curves, and also of the algebraic

equation through which they are viewed by disciples of Descartes.

After what has been said it is scarcely necessary for me to mention

the fact that no computations will appear in my lectures
; only

once in a while in the applications to metric geometry shall we

employ the sign of equality.

3. Of the knowledge of geometry acquired in the elementary

schools, I shall therefore make very little use. On the other hand,

a certain skill in producing mental images of geometric forms without

pictorial representations would be of great service to you, inasmuch

as it will not be practicable for me to illustrate every theorem by

diagrams, especially if the theorem refers to a form in space ;

I shall often be compelled to make demands upon your imagina

tion.

Since the imagination is brought much into play in descriptive

geometry, a knowledge of this latter science would likewise stand

you in good stead
;
the converse is equally true, that the Geometry

of Position makes an excellent preliminary study for descriptive

geometry. And in general, I may say that of all branches of

geometry the descriptive is most helpful in facilitating the study

of the Geometry of Position in the first place, because it is very

closely related to the latter; and in the second place, because in

descriptive geometry relations of magnitude come less under con

sideration than do the positions of forms relatively to one another

or to the plane of projection; this relativity, to be sure, often

being defined by the use of circles and right angles.

Above all, however, you will find that perspective or central

projection plays an important part in the Geometry of Position,
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and that many forms of expression used in the latter subject are

derived from the former.

4. Pure geometry stands in a certain antithetical relation to

analytical geometry on account of its method, which, as you know
from the geometry of ancient times, is synthetic. In our study we
shall start out with a small number of primitive forms

;
the simple

relations which may be established among these will bring us to the

so-called forms of the second order, among which are found the

conic sections, and will at the same time permit the principal

properties of these forms to be easily recognized. We shall then

be able to proceed in the same way from the forms of the second

order to still other new forms. During our investigations we clearly

must avoid all processes of analysis, that powerful instrument of

modern mathematics, since we make no use of measurement, and

in order to be able to compute with forms in space, we should first

be obliged to express them in numbers, i.e. measure them.

On account of its methods pure geometry as distinguished from

analytical is often designated by the name synthetic geometry.

5. Since in the pure Geometry of Position metric relations are

not considered, its theorems and problems are very general and

comprehensive. For example, the most important of the properties

of conic sections which are proved in text-books on analytical

geometry are merely special cases of theorems with which we shall

become acquainted later. A few illustrations will serve more

exactly to characterize the material with which we shall be con

cerned in these lectures.

6. In designing architectural structures, and in drawing generally,

it is not infrequent that a solution is required of the problem :

&quot; To
draw a third straight line through the inaccessible point of inter

section of two (converging) straight lines.&quot; Metric geometry fur

nishes us with any desired number of points of such a third line

by the aid, for instance, of the property that proportional segments

are formed upon parallel lines by any three transversals which meet

in one point. The Geometry of Position affords a simpler solution,

as follows : Choose some point P outside the two given straight

lines a and b (Fig. i) and pass through it any number of

transversals. Then ascertain the point of intersection of the

diagonals in each of the quadrangles formed by two of these

transversals taken with the lines a and b\ all these points of

intersection lie upon one straight line which passes through the
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intersection of a and b.* The proof follows very simply from the

important harmonic properties of a quadrangle, which may be stated

in the following form :

FIG. i.

If we choose three points A, B, C, upon a straight line (Fig. 2),

and construct any quadrangle such that two opposite sides pass

through A, one diagonal through J3, *and the other two opposite

sides through C, then the second diagonal meets the straight line

ABC in a perfectly definite fourth point D. The points A, B,

*I strongly recommend the beginner to draw the figure illustrating this

theorem for himself, according to the statement of the text, without first having

seen the one drawn by me, and especially to do so for the subsequent

theorems which are not so simple. A diagram built up by degrees is far

easier to be comprehended, and illustrates most of the theorems to be

represented far better than does one with all its auxiliary lines ready drawn.
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C, D are called four harmonic points, and D is said to be har

monically separated from B by the points A and C.

By constructing different quadrangles satisfying the stated

conditions, you can easily obtain a confirmation of the fact that

all second diagonals do pass through this fixed fourth point D.

The problem stated above can be &quot;made use of in surveying when

it is required to extend a straight line beyond an obstacle, for

example, beyond a forest, inasmuch as it affords a means of evading

the obstacle.

7. Of theorems relating to triangles I shall mention only the

following :

FIG. 3.

If two triangles ABC and A
l
^

l
C

l
are so situated (Fig. 3) that

the straight lines joining similarly named vertices, viz. AA^ BB^,
CC

l}
intersect in one and the same point S, then the pairs of

similarly named sides AB and A^JBlt
BC and B^C^ CA and C^Alt

intersect in three points C2,
A

2,
B.

2,
which lie upon one straight line

u
;
and conversely.

The diagram illustrating this theorem is worthy of notice as

representing a class of remarkable configurations characterized by
a certain regularity of form. It consists of ten points and ten

straight lines
;
three of the ten points lie upon each of the straight

lines, and three of the ten lines pass through each of the points.

8. Another series of theorems is connected with curves of the

second order or conic sections. You know from analytical geometry,
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and will be able later to prove synthetically, that a curve of the

second order is completely determined by five points or five

tangents. But you also know the difficulty which is met with in the

actual computation and construction of a conic section determined

in this way. The Geometry of Position establishes two very im

portant theorems concerning curves of the second order, which

render it possible for us to construct with ease from five given

points or tangents of such a curve any required number of new

points or tangents, and so readily to draw the curve itself. Those of

you who are already acquainted with these two theorems will remem
ber how much preliminary knowledge is demanded for their proof

by analytical methods. The first of these, originally established by

Pascal, states that the three pairs of opposite sides of any hexagon
inscribed in a curve of the second order intersect in three points

which lie upon one straight line : according to the second, which

was first enunciated by Brianchon, the three principal diagonals

(i.e. the straight lines joining pairs of opposite vertices) of any
circumscribed hexagon pass through one and the same point. Both

theorems may easily be verified in the case of the circle. You will

notice that in these theorems nothing is said concerning the size of

the conic section, or concerning its centre or its axes or its foci. But

just on that account the theorems are of the greatest generality and

significance, so that the whole theory of conic sections can be based

upon them. In particular, the important problem of drawing a

tangent at a given point admits of solution by means of Pascal s

theorem, even when the conic section is given by only five of its

points, without supposing the whole curve to be drawn.

9. The problem of constructing tangents to a curve of the second

order may be solved in many cases by the aid of a theorem which

expresses one of the most important properties of these curves, but

which is frequently not to be found in text-books on analytical

geometry, since its analytical proof is quite complicated and is

scarcely capable of setting forth this property in its true light.

Namely, if through a point A (Fig. 4) which lies in the plane of

a curve of the second order but not on the curve, secants be drawn

to the curve, any two such secants determine four points, as K, Z,

M, N, upon the curve. Each pair of straight lines, other than the

secants, joining four such points two and two, for example, LM
and NK, or KM and LN, intersect in a point of a fixed straight

line a, which is called the polar of the given point A. If the point
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A lies outside the curve, its polar a intersects the curve in the points

of contact of the two tangents which can be drawn from A to the

curve
;

if A lies inside the curve, the latter is not cut by the polar.

You can apply this theorem in drawing tangents to a conic

section from a given point with the use of the ruler only.

FIG. 4.

Upon any secant passing through A, there are four points worthy

of notice; first, A itself; next, the first point of intersection B with

the curve
;
then follows the point of intersection C with the polar a

of A
;
and finally, the second point of intersection D with the curve.

These four points A, B, C, D are harmonic points, and the polar a

thus contains every point which is harmonically separated from A
by two points of the curve.

The important theorems relating to centres and conjugate dia

meters of conic sections are merely special cases of the theorems

just mentioned. These latter may easily be extended to surfaces of

the seer nd order, since such surfaces are in general intersected by

planes in curves of the second order.

From these few examples, which I might multiply indefinitely, you

will doubtless have observed how different from the theorems

treated in analytical geometry, for instance, are those with which
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the Geometry of Position is concerned, but certainly they are not

less important. I would remind you still further in this connection

that analytical geometry seeks to determine the positions of tangents

to a conic section, especially by means of the angles which they

form with the focal rays, or by means of the intercepts which they

determine upon the axes, thus referring the whole matter to metric

properties. Of course, reference is made here only of the elements

of analytical geometry to which most text-books on the subject are

confined, and not of the exceedingly fruitful modern methods, for

whose existence we are indebted above all to the ingenious Pliicker.



A

LECTURE I.

THE METHODS OF PROJECTION AND SECTION. THE SIX
PRIMITIVE FORMS OF MODERN GEOMETRY.

10. As is well known, the great number of concepts which are

advanced in the ancient geometry, in trigonometry, and in analytical

geometry are based for the most part upon measurement
;
accord

ingly, they can find no place in the pure Geometry of Position. It

ought not, therefore, to be surprising that modern geometry has

set forth for its purposes a considerable number of characteristic

concepts. With these you will be made acquainted in this and

in the following lecture, and thereafter they must constantly be

employed. ,

11. The point, the straight line, and the plane are the simple

elements of modern geometry.* As a rule, we shall designate

points by capital letters, lines by small italics, and planes by Greek

letters. Straight lines (or rays, as they will frequently be called)

and planes will always be considered as unlimited in extent unless

the opposite is expressly stated. We are able to combine these

elements into systems by looking upon one of them as the base

or support (Trager) of an infinite number of elements of another

sort. By this means we arrive at the so-called primitive forms

of modern geometry. Before explaining these, I shall, by way of

introduction, give a brief account of the important methods of

Projection and Section, of which frequent use is made.

12. If we look at an object, say a tree, every (visible) point of

it sends to the eye a ray which is called the projector, or the

projecting ray of this point. The projector of the whole tree

is compounded out of many rays, each of which projects one

*
It is worthy of notice that no attempt is made to define a point, straight

line, or plane. A knowledge of these as fundamental ideas is assumed. H.
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or more points to the eye. If a number of points lie in a straight

line not passing through the eye, all their projecting rays lie in

that plane which can be passed through the eye and this straight

line
; every such straight line is projected to the eye by a plane

which is called the projector, or the projecting plane of this

line. Similarly, a curve is in general projected by a conical surface.

We can now intercept, or intersect, the projector of the tree by
a plane, each projecting ray being cut in a point and each pro

jecting plane in a straight line. By this means we obtain in the

plane, as the *

section or trace of this projector, a perspective

picture, d projection of the tree, and this projection evidently

throws the same projector into the eye as the tree itself, and is

therefore quite competent to convey a notion of the latter to us.

Ordinary photographs of three-dimensional objects are essentially

such perspective, plane pictures of the objects.

Upon this kind of projection, which is known by the name of

central projection, is based the theory of perspective ;
and all

other varieties of projection which are in use in descriptive geometry

may be looked upon as special cases of this one. In orthogonal

projection, for example, in order that the projecting rays may be

parallel we need only to imagine the eye removed to an . infinite

distance. The shadows which objects throw upon planes, when

they are illuminated from a finite or infinitely distant point, are
,

nothing else than projections of these objects in which the illumi

nating point takes the place of the eye.

13. A simple example may show how we are able to discover,

and at the same time can prove, important theorems through mere

visualization, with the help of these methods of projection and section.

A system of parallel lines is projected from the eye by planes, all

of which intersect in one and the same straight line, namely, in

that parallel which passes through the eye; these projecting planes

are intersected by an arbitrary picture plane in straight lines, all

passing through one point, namely, through the trace of the line

in which the projecting planes intersect. Consequently, in the

perspective view of ,a tree or other object the projections of

parallel edges converge toward one point, their so-called vanishing

point, and only in one particular case, which you will at once

recall, are these projections also parallel. We have thus incident

ally established and proved a well-known fundamental theorem of

central projection.



THE METHODS OF PROJECTION AND SECTION. IX

14. Leaving aside all optical references, let us now further employ
the expressions just used, viz. projector, ray, to project, to

intersect, etc., where instead of the eye we shall choose an arbitrary

point S, and instead of the definite object or tree, an arbitrary

system 12 of points and straight lines in space. This system ft is

projected from S by a system of rays and planes, namely, each

point by a ray and each ray, not passing through S, by a plane.

The point S is regarded as the base of all these rays and planes

which together form the projector of the system 0. If we choose

in space an arbitrary system 2 of planes and straight lines, then

any new plane e would intersect this in a system of straight

lines and points, namely, in general, each plane in a straight line

and each straight line in a point. The plane e appears in this case

as the base of all these straight lines and points which together

make up the section (the trace
)
of the system -.

15. We can also project from and make sections by straight

lines. Thus every point lying outside a straight line g, together

with g, determines a plane, or is projected from g by a plane ;

and similarly, every plane which does not contain g is inter

sected by this straight line in a point. The straight line appears,

in the first case, as the base of planes which intersect in it; in the

second case, as the base of points which lie upon it.

1 6. Through such considerations as these we obtain the following

so-called primitive forms, which occupy an important place in

modern geometry.

The totality of points lying upon one straight line is called a range

of points (Punktreihe) or a line form (gerades Gebilde) ;
the

individual points of the straight line are the elements of the

range of points. We consider these points to be rigidly connected

with one another, so that their relative positions remain unaltered

if the straight line, their base, be moved out of its original position.

A portion of a range of points bounded by two points of the range

is called a segment.

The totality of rays passing through one point and lying in one

and the same plane we shall call a sheaf of rays (Strahlenbiischel).

The common point of intersection of the rays is called the centre

of the sheaf; the single rays, unlimited on either side of the centre,

are the elements of the sheaf. Here again we imagine the elements

to be rigidly connected with one another.

Either the centre or the plane in which the rays lie may be
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FIG. 5.

looked upon as the base of the sheaf of rays. A portion of a

sheaf of rays bounded by two rays of the sheaf as sides is

called a complete plane angle. This consists of two simple

angles which are vertically opposite to each other. In any sheaf

of rays S (Fig. 5), if four rays a, b, c, d are chosen at random,
then among these there are two pairs

of separated rays, for instance, a and

c are separated from each other by
b and d, so that we cannot pass in

the sheaf from a to c without cross

ing either b or d.

The totality of planes, unlimited in

all directions, which pass through one

straight line we shall speak of as a

sheaf of planes (Ebenenbiischel) and

the straight .line shall be called the
*
axis of the sheaf. As in the range of points, so here, we consider

the elements of the sheaf, that is its planes, to be rigidly connected

in unalterable relative positions. A portion of a sheaf of planes

bounded by two planes as faces is called a complete dihedral

angle, and consists of two simple dihedral angles which are

vertically opposite to each other. Among four planes of a sheaf

two pairs again are separated.

If no confusion is likely to be caused, a form which consists

only of discrete points and the intervening segments of a straight

line will often be called a range of points. In the same way, a form

which comprises only discrete elements and the included angles of

a sheaf will often be spoken of as a sheaf. In doing so we must

constantly bear in mind that, deviating from the ordinary definition,

we have included angles as part of a sheaf.

17. We designate the range of points, the sheaf of lines and

the sheaf of planes as one-dimensional primitive forms or primitive

forms of the first grade. The elements of a one-dimensional

primitive form, for example the planes of a sheaf, are to be

looked upon as simple elements, i.e. they are to be viewed apart

from the forms (geometrical figures, and the like) whose bases they

might be. In the case of the sheaf of rays this view is facilitated

if we distinguish the straight lines whose totality makes up the

sheaf by the name rays. For, by a ray is ordinarily meant a

straight line in itself, viewed apart from the points lying on it
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or the planes passing through it. Unfortunately, there is no

corresponding second designation for the plane available.

Of the primitive forms of the first grade, moreover, we can

imagine any one to be generated by either of the others. Thus

a range of points ABCD (Fig. 6) is projected from an outside

fa \U

FIG. 6.

point S by a sheaf of rays abed, of which the range ABCD is a

section. In the same way the range ADCB is projected by the

sheaf adcb. A sheaf of planes a/3yS is intersected by any plane not

passing through its axis in a sheaf of rays abed whose centre lies

upon the axis
; every sheaf of rays is projected from a point not

lying in its plane by a sheaf of planes. Finally, every sheaf

of planes is intersected by a straight line which does not lie in a

plane with its axis, in a range of points ;
and every range of points is

projected from an axis which does not lie in a plane with it, by
a sheaf of planes. From these relations it is certainly permissible

to characterize the range of points, the sheaf of rays, and the

sheaf of planes as primitive forms of the same, namely, of the

first grade. For, from what has been said, it is clear that a range

of points contains just as many points as a sheaf contains rays or

planes.

1 8. There are two varieties of primitive forms which are

said to be of the second grade, namely, the plane field and the

bundle of rays. The totality of points and lines which are

contained in a plane we name a plane system or field
;

the plane is the base of the system of points and

lines. In the plane field there are contained, consequently, not

only points and straight lines as elements, but also indefinitely

many ranges of points and sheaves of rays ;
for all the points
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lying on a straight line of the field taken together form a range
of points, and all the lines of the field passing through one

point form a sheaf of rays. The plane field is, therefore, justly

characterized as a primitive form of higher grade than the one-

dimensional primitive forms.

Further, we call the totality of rays and planes which pass

through any point in space (as centre) a bundle of rays

(Strahlenbiindel). In this there are contained as elements not

only straight lines and planes, but also indefinitely many
sheaves of rays and sheaves of planes. For all planes of the

bundle which intersect in one and the same axis form a sheaf

of planes ; and, in the same way, all straight lines of the bundle

which lie in one and the same plane form a sheaf of rays. Thus

the bundle of rays is in reality a primitive form of higher grade

than the one-dimensional primitive forms.

The term bundle, which is appropriate to denote a multiplicity

of higher grade than the term sheaf, was very happily chosen

by Von Staudt
;
we can, however, name the foregoing primitive

form a bundle of planes (Ebenenbiindel) with the same

propriety as a bundle of rays, since it contains planes for

elements as well as rays. According also as the points or the

straight lines come more into consideration, is the plane field

designated as a field of points or a field of rays.

It is scarcely necessary to mention that in the plane field and in

the bundle of rays, we imagine the elements of which they consist

to be rigidly connected with one another, so that in the bundle, for

example, the relative positions of the rays, planes, and sheaves con

tained therein are unaltered when the centre, which is the base of

the bundle, is moved from its original position.

We may further assert that a bundle of rays contains just as many

rays and planes as a plane field contains points and rays, and we are

therefore wholly justified in considering the two primitive forms as of

the same, viz., the second grade, since we can imagine the bundle

of rays to be generated from the plane field, and conversely. If we

project, for instance, a plane field 2 from an outside point ,
so that

each point P of 2 is projected by a ray SP of S, and each ray

of 2 by a plane of S, then we obtain a bundle of rays which

is called a projector of the field 2, and of which the field is a

section.

To aid your imagination, suppose that 2 is a plane landscape
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spread out at your feet, unlimited in extent and sparkling in

variegated colours, and that the outside point S is your eye. Each

point of the landscape, then, sends into your eye a ray of light,

each straight line of the landscape a plane of light. If now you
consider these rays and planes as unlimited in all directions, you

obviously have a bundle of rays as projector of the whole

landscape.

We may further conclude that each range of points of the plane

field is projected from 5 by a sheaf of rays, each sheaf of rays by
a sheaf of planes, each curve by a conical surface belonging to

the bundle
; or, in other words, the projectors of a range of points,

a sheaf of rays, and a curve lying in the plane field are respectively

a sheaf of rays, a sheaf of planes, and a conical surface in the

bundle of rays. Just so, each segment is projected by a plane

angle, each plane angle by a dihedral angle, etc.

Conversely, if we consider the bundle of rays as the original

form and imagine its centre to be, say, a luminous point which

sends out coloured rays on all sides, then the field may be looked

upon as a section of this bundle. In this case, each ray of the

bundle is cut in a point of the field, each plane in a straight

line, each sheaf of rays in a range of points and each sheaf of

planes in a sheaf of rays.

19* Finally, there exists a primitive form of the third grade,

namely, the space system, or unbounded space with all possible

points, lines,* and planes in it. The space system contains as

elements indefinitely many primitive forms of the first and second

grades, since each of its planes is the base of a field, each point

the centre of a bundle of rays, each straight line the base of a

range of points and at the same time the axis of a sheaf of

planes.

20. To each of the six primitive forms which I have just defined

there corresponds a distinct geometry. It will be readily conceded

that there must be just as complete a geometry for the bundle of

rays as for the plane field
; for, corresponding to every plane geome

trical figure we immediately construct a form in the bundle by

projecting the plane field from an outside point. The theorems

which may be enunciated concerning plane figures can be carried

*
Properly speaking, the space system viewed as consisting of lines is of four

dimensions. H.
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over in some manner to their projectors in the bundle of rays.

We shall have occasion to make frequent use of this process.

It is more difficult to perceive that there is also a geometry for

the one-dimensional primitive forms, for example, for the range of

points, i.e. the points of a straight line
;

but I need only to

recall the theorem upon harmonic points cited in the introduction,

in order to convince you of this fact. The statement I made

there was that the position of a fourth harmonic point is deter

mined by three points of a straight line. To show, further, that

in reality something of a geometry of one-dimensional primitive

forms can be established without the aid of measurement, let me
recall the fact that among four rays of a sheaf there are two

pairs of rays which are separated by the others.

21. The discussions up to this point make it possible for me
now to indicate the principal contents of the Geometry of Position

in a very few words. That is to say, the Geometry of Position

treats of the six primitive forms mentioned in this lecture and of

their mutual relations.



LECTURE II.

INFINITELY-DISTANT ELEMENTS. CORRELATION OF
THE PRIMITIVE FORMS TO ONE ANOTHER.

22. In the ancient geometry two straight lines are said to be

parallel if they lie in the same plane and have no point in common.

Likewise, two planes or a plane and a straight line are parallel

if no point of the one lies at the same time in the other. Modern

geometry establishes parallelism in a different manner, and it

will be my next object to make you familiar with this modern

conception which Von Staudt has called the perspective view of

parallelism. We are brought directly to this when we derive one

primitive form from another by considering the first a section

or a projector of the second.

ire

FIG. 6.

If a straight line u (Fig. 6) lies in a plane with a sheaf of

rays S without passing through its centre, then it intersects the

sheaf in a range of points, namely, each ray a, b, r,,..of S is

cut in a point A, B, C,...of //. If now by rotating about 5 in

a fixed sense abc, any ray describes the sheaf 5, its trace upon
B
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the straight line u at the same time describes the range of points

u in the sense ABC. The point of intersection moves from

the position A farther and farther out beyond B until it is lost

to view, and then returns, from an infinite distance on the

opposite side back to its original position. According to the

ancient notion the rotating ray no longer intersects the line u

in the one particular position / in which it is said to be parallel

to u, and on this account the general statement that every straight

line which lies in a plane with u has one point in common with

it is not allowable. In modern geometry the exceptional case is

removed by attributing also to two parallel lines a common point,

namely, an infinitely distant point.

23. From the perspective point of view, moreover, any straight

line has only one infinitely distant point, since, in accordance

with one of Euclid s axioms, only one straight line p can be

drawn parallel to u through a given outside point S, and to this

parallel line is attributed but one point in common with u, just as

every other ray of the sheaf S has only one point in common with

u* This conception of parallelism presents distinct advantages

over the ancient one in that, first, many theorems can be enunciated

in a perfectly general form for which, otherwise, exceptions would

need always to be cited, and second, many apparently different

theorems can in accordance with this view be comprised in a

single statement. You have already become familiar with this

idea in analytical geometry. There we are accustomed to call

straight lines which lie in one plane parallel if the coordinates

of their point of intersection are infinitely great, the point thus lying

at an infinite distance.

24. The infinitely distant point of a straight line is approached

by a point which moves continually forward upon the line either

in the one sense or in the other. Thus the infinitely distant

point lies out in both directions f upon the line, or as properly

in the one direction as in the other, and the straight line appears

to be closed, its extremities meeting in the infinitely distant

*The assumption of a single infinitely distant point on a straight line and

the definition of parallel lines as lines which intersect in a common infinitely

distant point is equivalent to the assumption of Euclid s twelfth axiom. With

this axiom as starting point, Euclid proves that one and only c ;&amp;gt;e straight line

can be drawn through a given point parallel to a given straight line. H.

term direction is used here in its colloquial sense. H.
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point. We are forced to this conclusion as soon as we admit

the assumption that every straight line contains one and only

one infinitely distant point. We shall see later that the two

branches of a hyperbola are to be considered as connected at

infinity in just the same way. Analysis leads to similar conclusions,

pointing out by frequent examples that we can pass from the

positive to the negative not only through zero but also through

infinity.

25. Since, then, we can go from one point of a straight line

to another by passing over the infinitely distant point of the

line, the following statement is true: Among four points of a

range there are only two pairs whose elements are separated

by the remaining points of the quadruple. This is strictly

analogous to the fact that among four elements of a sheaf only

two pairs of elements can be so chosen that the elements com

posing a pair are separated by the other two
;
and just as a

sheaf is divided by two of its elements into two complete angles

(these being supplementary angles), so a range of points is divided

by two of its points into two segments of which each is called

the supplement of the other. One of these two segments contains

the infinitely distant point of the line unless this point itself forms

one of the boundaries of the segments. In the latter case each

of the two segments may be called a half-ray.

26. In order to distinguish the infinitely distant point of a straight

line from the points of the line which lie in the finite region, we

shall call the former an ideal point and the latter actual

points. The modern conception of parallelism, explained at the

opening of this lecture, might also be characterized as ideal. All

the parallel lines which may be drawn in a plane in any one

direction have but one infinitely distant or ideal point in common,

namely, that point which any one of them has in common with

each of the others. These parallels may therefore be considered

as forming a sheaf whose centre is an infinitely distant point of

the plane, and such a system we shall hereafter designate as a

sheaf of parallel rays, whenever a distinction from other sheaves of

rays is desirable. Likewise under the name bundle of parallel

rays are to be comprehended all possible parallel rays in space,

having a given direction, together with all planes passing through

them. I would remind you at this point that the statements

&quot;parallel lines have the same direction&quot; and &quot;parallel
lines con-
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tain the same infinitely distant
point,&quot;

mean exactly the same thing.

Any given direction determines one infinitely distant point, and

conversely, each ideal point in space determines a single direction ;

moreover, every actual straight line determines both a direction

and an infinitely distant point, namely, the ideal point lying

upon it.

27. It is assumed of all the infinitely distant points of a plane

that they lie in an infinitely distant or ideal line.* This line must

be looked upon as a straight line, since it is intersected by every

actual straight line of the plane in only one point the infinitely

distant point of that line while curved lines may have, in common
with a straight line, more than one point.

Another reason for this view is the fact that in accordance with

the perspective idea two parallel planes must have all their infinitely

distant points in common. For, if these planes are cut by any

third plane in two actual straight lines, these lines can intersect

in no actual point ; they are therefore parallel, since they lie in

one plane, and consequently have in common an infinitely distant

point of both planes. In this manner it may be shown that every

infinitely distant point of the one plane lies also in the other.

But since, in general, any two intersecting planes have a single

straight line in common, we attribute also to two parallel planes

a single common straight line.

28. As it is said of parallel lines that they have the same

direction, so we say of parallel planes that they have the same

aspect; just as, then, in every direction there lies an infinitely

distant point, so for every aspect there is an infinitely distant

straight line. All parallel planes in space of any one aspect pass

through one and the same infinitely distant straight line, namely,

through that straight line in which some one of these planes is

intersected by each of the others. Parallel planes may therefore

be considered as forming a sheaf of planes whose axis is an

infinitely distant straight line; this we shall call a sheaf of

parallel planes.

29. Of the infinitely distant points and lines of space it is

assumed that they lie in an infinitely distant or ideal surface
;

* That is, that the infinitely distant points of a plane form a continuum. If

an actual straight line of the plane be rotated about one of its actual points

every other actual point will describe a continuous line. The same is assumed

of the infinitely distant point. H.
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this surface must be considered plane, since it is intersected by

every actual straight line in only one point and by every actual

plane in a straight line. The infinitely distant or ideal plane is

common to all bundles of parallel rays and to all sheaves of

parallel planes, since it passes through the centre of the former

and through the axis of the latter.

In the same way, the infinitely distant line in any plane is a

ray common to all sheaves of parallel rays lying in that plane,

since it passes through the centre of each of them. No definite

direction can therefore be assigned to the infinitely distant straight

line of a plane, but it possesses the direction (contains the infinitely

distant point) of every straight line of the plane.

30. Some light is thrown upon the question of infinitely distant

or ideal elements by the relations which may be established between

two primitive forms. Two forms are said to be correlated to

each other if with every element of the one is associated an element

of the other. Two elements of the forms which so appertain to

each other are called corresponding or homologous elements.

If two primitive forms are correlated to a third, then are they also

correlated to each other. For to every element of the third there

corresponds an element of each of the other two forms, and these

two elements are by this means associated with each other.

31. Two primitive forms of different kinds are correlated to each

other in the simplest and clearest manner by making the one a

section or a projector of the other. For example, if a sheaf of

rays S (Fig. 6) lies in a plane with a range of points u not passing

through its centre, we may assign to each ray of the sheaf that

point of the range which lies upon it. To the parallel ray / of S

corresponds, then, the infinitely distant point of u.

Again, if a plane field 2 is considered as being a section of a

bundle of rays ,S whose centre lies outside S, then 2 and S are

correlated to each other in such a manner that to each point of

2 corresponds the ray of S passing through it, and to each straight

line of 2 the plane of passing through it. The plane of S

parallel to 2 corresponds therefore to the infinitely distant line of

2 and to each ray of S lying in this plane corresponds its infinitely

distant point lying in 2. To each sheaf of planes in S corresponds

the sheaf of rays in which it is cut by 2; the latter is a sheaf

of parallel rays if the axis of the sheaf of planes is parallel to 2.

If S is a bundle of parallel rays, its centre lying infinitely distant,
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then to each actual point of 2 corresponds an actual ray of
6&quot;,

and to each ideal element of 2 an ideal element of S. If 2 is

the infinitely distant plane and S a point of the finite region, then

to each ray of S corresponds its infinitely distant point ;
to each

plane, its infinitely distant line
;
to each sheaf of rays, an infinitely

distant range of points ;
and to each sheaf of planes, an infinitely

distant sheaf of rays.

32. Two primitive forms of the same kind may be correlated

most simply by considering them to be sections or projectors of

one and the same third primitive form. Thus, in two sheaves of

FIG. 7.

rays, or ranges of points, which are sections of one and the same

sheaf of planes, those two rays, or points, correspond which lie

in the same plane of the sheaf. On the other hand, two sheaves

of rays S and S
1 (Fig. 7) can easily be so correlated that they

are projectors of one and the same range of points u, i.e. so that

those pairs of rays a and av b and b
lt

c and c
lt

... which intersect

in points of the range are corresponding rays. If two ranges of

points u and u^ (Fig. 8) lying in one plane be considered sections

of one sheaf of rays S, then it is worthy of notice that to the

infinitely distant point P (Q-^) of one range corresponds, in general,

a point Pl (Q) lying in the finite portion of the other.
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Two plane fields are correlated to each other if they are sections

of one and the same bundle of rays. For example, an extended

plane landscape and the perspective picture of it which we obtain

by intercepting its projector from the eye by any plane, a vertical

one, say, are so correlated that those points of the landscape and

picture correspond which lie upon the same ray of the bundle

having the eye for centre, that is, any two points of the landscape

and picture correspond which are found in a straight line with the

eye. To each straight line of the landscape corresponds a straight

line l&amp;gt;f the picture, and the two straight lines lie in a plane with

the eye. To the infinitely distant straight line of the landscape

FIG. 8.

(the horizon) corresponds, in general, an actual straight line of the

picture, another reason or warrant for considering the infinitely

distant line of a plane to be a straight line. Of two plane fields

correlated to each other in this manner we appropriately say that

one is a projection of the other, and the centre of the bundle

which is at once a projector of both fields is called the centre

of projection. If the centre lies infinitely distant, the bundle is

a bundle of parallel rays, in which case the process of projection

becomes the ordinary parallel projection of descriptive geometry.

Two bundles of rays are correlated to each other if we conceive

them to be projectors of one and the same plane field. Each

ray of the one bundle intersects, then, the corresponding ray

of the other in a point of the field; likewise, every two homo-
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logous planes of the bundles have a straight line of the field as

their intersection. The projectors of a plane landscape viewed

from two different points constitute such bundles.

33. I must leave the immediate discussion of the correlation of

primitive forms to each other for the time being to your own
efforts

;
I remark, however, that the primitive forms may be corre

lated in other and more complicated ways. For example, it is

possible to correlate two plane fields to each other by correlating

them to one and the same third field. Referring again to an

illustration which has been frequently used, you may imagine

perspective pictures of a landscape to be constructed from two

different centres of projection. Two such pictures or plane fields,

then, are correlated to each other, since each is correlated to the

landscape j and clearly, two points of these correspond if they are

projections of the same point of the landscape. A straight line

of the one picture would correspond always to a straight line of

the other. But such plane fields, in general, have no longer the

particular position with respect to each other which was previously

discussed, that namely, in which corresponding lines lie in a plane

and the joining lines of pairs of homologous points all intersect

in one point. Later, we shall have to investigate more minutely

the mutual relations of the two fields so correlated to each other.

Two fields may be so correlated that each straight line of the

one corresponds to a curve in the other, or that to each point

of the one field corresponds a straight line of the other, and

conversely, to each straight line of the former, a point of the

latter. For the present, however, it is left to your own ingenuity

to work out these more diverse relations of primitive forms.



LECTURE III.

THE PRINCIPLE OF RECIPROCITY OR DUALITY. SIMPLE AND
COMPLETE w-POINTS, w-SIDES, w-EDGES, ETC.

34. Before developing further the correlations which may be

established among the primitive forms of modern geometry, I

must make mention of a geometrical principle which will occupy
an important place in these lectures. This principle very greatly

simplifies the study of the Geometry of Position, in that it divides

the voluminous material of the subject into two parts, and sets

these over against each other in such a way that the one part

arises immediately out of the other. This principle of reciprocity

or duality as it is called was first established in an elementary way

by Gergonne,* Poncelet f having previously shown by means of

the polar theory that to every figure in space there can be con

structed one which corresponds to it in the dualistic sense.

35. Although the principle of duality cannot be generally

applied in metric geometry, yet there are many theorems in metric

geometry which point directly toward this principle, and which

I need only to call to mind in order to make you aware of its

existence. In three-dimensional space, the point and the plane

stand opposed to each other as reciprocal elements, so that

every theorem of the Geometry of Position finds its complement
in another which we may deduce from the first by interchanging

the terms point and plane, and hence also range of points

and sheaf of planes, segment and dihedral angle, etc. Ordin

arily we shall write two such reciprocal theorems side by side

as the two members of one theorem. For example :

*
Gergonne, Annales de Mathematiques, T. XVI., 1826.

t Poncelet, Traite des proprietes projectives des figures, Paris, 1822.
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Two points A and B determine Two planes a and /? determine

a straight line AB^ namely, the a straight line a(3, namely, their

line joining them. line of intersection.

A straight line a and a point B A straight line a and a plane (3

not lying upon it determine a plane not passing through it determine

aB which passes through both. a point a/3 which lies upon both.

Three points A, B, C\ which do Three planes a, /?, y, which do

not lie in one straight line, deter- not pass through one straight line,

mine a plane ABC (the joining determine a point a/3y (the point

plane). of intersection).

Two straight lines a and 6, which Two straight lines a and b, which

have one point in common, lie in lie in one plane, have one point ab

one plane ab. in common.

36. Incidentally you will notice from these few theorems how
useful the introduction of the infinitely distant or ideal elements

into geometry proves to be. Without these we should not have

been able to enunciate all the above theorems in a general form, but

must have called particular attention to special cases as exceptions.

The first theorem on the right for example would have read :

&quot; Two

planes a and /3 either determine a straight line a/?, or they are

parallel,&quot; while from the new point of view a straight line is also

determined in the latter case, namely, the infinitely distant straight

line of the planes. In the same way we should have been obliged to

distinguish several cases of the first theorem on the left, according

as the two given points A and B are actual points or not. It would

have read :

&quot; A straight line is determined by two given (actual)

points or by one point and a given direction
&quot;

;
from the perspective

point of view, however, the latter case is included in the former,

since among the given points infinitely distant points may also be

considered. You can yourselves easily make similar observations

upon each of the other theorems.

37. For the sake of brevity we shall call two straight lines

incident if they intersect
;
a straight line, or plane, and a point

are incident if the latter lies in the former
;
and finally, a ray, or

point, and a plane, if the latter passes through the former. Straight

lines not incident are called gauche.

38. The foregoing theorems lead now to the following problems,

the solutions of which we shall always in future consider possible :

Through two points to pass a To find the line of intersection

straight line. of two planes.
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Through a straight line and a To find the point of intersection

point not incident with it to pass of a straight line and a plane not

a plane. incident with it.

Through three points to pass a To find the common point of

plane. three planes.

Through two incident straight To find the common point of

lines to pass a plane. two incident straight lines.

39. For the sake of practice, I shall cite a few double theorems

which are in frequent use. I strongly urge you to deduce for

yourselves, from the one half of each of these, the other reciprocal

half.

If four points A, ,
Ct
D are If four planes a, (3, y, 8 are

given, and the lines AB and CD given, and the lines of intersection

intersect, then the four points lie aft and y8 intersect, then the four

in one and the same plane, so that planes pass through one and the

the lines AC and BD^ as well as same point, so that the lines ay and

AD and BC, must also intersect. (38, as well as aS and
/2y,

must also

intersect.

If of any number of straight lines each intersects every other

one while they do not all

pass through one point, then they lie in one plane, then they must all

must all lie in one plane. pass through one point.

Frequently, a theorem is reciprocal to itself as when point and

plane appear in it symmetrically ; for example, the problem : In

a plane, to draw through a given point a straight line to meet a

given straight line which neither lies in the given plane nor passes

through the given point.

Here two solutions stand reciprocally opposed to each other:

We may either join the point of or may pass a plane through the

intersection of the straight line straight line and the given point,

and plane, with the given point ;
and find its line of intersection

with the given plane.

The following problem may easily be reduced to the one just

stated :

Through a given point to draw In a given plane to draw a

a straight line which intersects two straight line which intersects two

given straight lines not lying in given straight lines not having one

one and the same plane with the and the same point in common

given point. with the given plane.
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Pass a plane through the given Determine the point of inter-

point and one of the given straight section of the given plane with

lines, one of the given straight lines,

and the problem becomes identical with the preceding one.

The problem,
&quot; To draw a straight line which intersects three

given straight lines,&quot; is likewise reciprocal to itself. We may either

choose a point in one of the straight lines or pass a plane through
one of them, and then under the conditions of the preceding

problem find a straight line which passes through this point, or

lies in this plane, and intersects the other two given straight lines.

40. The primitive forms can also be opposed reciprocally to one

another
;

for example, the plane fi^ld
and the bundle of rays are

clearly reciprocals, since their bases, namely, the plane and the

point, are reciprocal elements.

Hence, are reciprocal to

the point, the range of points, the plane, the sheaf of planes, the

the ray considered as joining two ray considered as the intersection

points, the sheaf of rays, etc., in of two planes, the sheaf of rays,

the plane field, etc., in the bundle of rays.

The observation will press itself upon you here, as in many

previous theorems, that in space of three dimensions the straight

line (or ray) is reciprocal to itself. In reality, the straight line

occupies an intermediate position between the reciprocal elements

point and plane.

41. The following serves as an example of a double theorem in

which the plane field and the bundle of rays are opposed to each

other as reciprocal forms :

If two plane fields are correlated If two bundles are correlated to

to each other by considering them each other by considering them

as sections of one and the same as projectors of one and the same

bundle, then pairs of corresponding field, then pairs of corresponding

elements (points or lines) of the elements (rays or planes) of the

fields lie upon one and the same bundles pass through one and the

element (ray or plane) of the bundle. same element (point or straight

The line of intersection of the line) of the field.

two planes coincides with its cor- The common ray of the bundles,

responding line, and hence cor- i.e. the ray which joins their centres,

responds to itself. The same is coincides with its corresponding

true of each point found in this ray, and hence corresponds to itself,

line. The two plane fields there- The same is true of each plane
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lore have a self-corresponding passing through this ray. The two

range of points. bundles therefore have a *
self-

corresponding sheaf of planes.

42. If two forms are correlated to each other, and an element

of one coincides with (i.e., is identical with) its corresponding element

in the other, then we say that this element* (double element) is a

self-corresponding element in the two forms.

43. As the point and the plane are reciprocal elements in space
of three dimensions, so in space of two dimensions, the point and

the straight line, also the range of points and the sheaf of rays,

the segment and the angle, are opposed to each other as reciprocal

forms ;
and similarly in the bundle of rays, the ray and the plane,

the sheaf of rays and the sheaf of planes, etc., are reciprocal forms.

For example :

(ttj) Any two points of a plane (04) Any two straight lines of a

determine a straight line. plane determine a point.

(a3) Any two rays of a bundle (a4) Any two planes of a bundle

determine a plane. determine a ray.

A plane curve may be looked upon

(ft) As the aggregate of the (ft) As the aggregate of the

points lying upon it. straight lines (tangents) enveloping
it (Fig. 9).

FIG. 9.

And you will find that in the modern geometry the latter con

ception is brought into use just as frequently as the former. In

the same way, a conical surface (in the bundle of rays) can be

looked upon

(ft) As the aggregate of the (ft) As the aggregate of the

rays lying upon it. planes (tangent planes) envelop

ing it.
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44. Of four theorems related to one another as are those of the

last article, the two relating to the bundle of rays can always be

deduced from the other two by projecting the plane field from

any centre. As a rule, therefore, I shall in future state only

the two planimetric theorems, and will leave you to seek out the

others for yourselves. In space, where point and plane are re

ciprocal to each other, the first and last (a x
and a

4), also the

second and third (a2 and a
3)

of any four such theorems offset

each other as reciprocal theorems.

45. The principle of reciprocity will become clearer and more

familiar to you in the course of our investigations ;
but only after

a series of developments upon the one-dimensional primitive forms,

can I demonstrate that it has general validity in the Geometry
of Position, or that in reality to every theorem there corresponds

a reciprocal theorem. In the meantime, I shall so adjust my
lectures that theorems associated reciprocally with each other will

be placed side by side, and I shall so carry out their demon

strations that the dualism will stand out very clearly. To this

end, it is necessary that I should develop beforehand some

reciprocal ideas, and in particular modify some of those geo
metrical notions which you have brought over with you from

metric geometry.

46. I refer here particularly to the conception of the polygon.

In modern geometry we understand by a simple plane ;z-point

not as a rule a portion of the plane which is bounded on all sides

by n intersecting straight lines, but a set of // points of a plane

and the n straight lines or sides, each of which joins two consecutive

points or vertices. We look upon the points as being arranged

in a definite order, and specify that no three consecutive points

shall lie in one straight line.

The simple ;z-point might also be named a simple -side,

since a simple n-side is a set of n straight lines of a plane (the

sides of the figure), and the ?i points in which two consecutive

sides intersect.

The -point and ^-side are reciprocal figures. To the lines

joining two non-consecutive vertices (i.e. to the diagonals) of a

simple -point, the points of intersection of non-consecutive sides

in the n-side are reciprocal, each to each.

47. In metric geometry where by an //-point is meant a portion

of a plane enclosed by ^-sides, the re-entrant -point, such as the
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pentagon ABCDE (Fig. 10), or the hexagon ABCDEF (Fig. n)
is generally excluded from consideration.

The -point and the /z-side of modern geometry give very little

occasion for distinction between re-entrant figures and others, since

the sides are supposed unlimited in extent. We may in fact

call any two of the 2n elements (vertices and sides taken together)

of a simple /z-point or /z-side, opposite elements, which are

separated from each other by half the number of remaining elements
;

consequently, the mih and (n + m)
ih

elements, these being reckoned

from any one element round the figure in either order, are opposite

to each other.

FIG. 10. FIG. ii.

For example, in the pentagon ABCDE (Fig. 10) a vertex and

a side lie opposite to each other in pairs, namely, the vertex A and

the side CD, B and DE, C and EA, etc.; in the hexagon or

hexalateral ABCDEF (Fig. n), on the other hand, the vertices in

pairs, and the sides in pairs, as for instance the vertices A and D,
the sides AB and DE, the vertices B and E, etc., are opposite
elements.

48. Modern geometry, however, deals not only with simple

^-points and w-sides, but also with complete ;/-points and

-sides, and in these figures the principle of reciprocity may again
be distinctly recognized. We define as follows :

A complete plane n-potnt : a set A complete plane \\-side : a set

of n points of a plane together with of n straight lines of a plane
all straight lines (sides) joining
them two and two, or what is the

same thing, a simple -point to

gether with all its diagonals.

together with all their points of

intersection (vertices), or what is

the same thing, a simple n-side

together with all the points of

intersection of its sides.
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In these definitions it is assumed that no three vertices of the

^-point lie upon the same straight line, and that no three sides

of the -side pass through the same point.

In each vertex of the com

plete 7z-point, (n- i) sides intersect

These pass through the remain

ing ( i) vertices (each of them

through a second vertex). Hence
the total number of sides of the

complete ;z-point is ^ n (n- i).

Upon each side of the com

plete &amp;gt;&amp;gt;z-side lie (n\) vertices;

through these pass the remaining

(n-i] sides (through each vertex

a second side). Hence the total

number of vertices of the complete
-side is ^ n (n- i).

49. It is readily seen that many simple ^-points and -sides

are contained in the complete figures whenever n is greater than

three. For example :

FIG. 12.

A complete quadrangle ABCD
(Fig. 12) has six sides

; any two of

these sides as AB and CD, or

AC and BD, or finally, AD and

BC, which do not pass through one

and the same vertex are *

opposite

sides of the quadrangle, so that

in a quadrangle there are three

pairs of opposite sides. Moreover,

the complete quadrangle contains

three simple quadrangles ABCD,
ACDB, and ADBC, the sides of

each consisting of two pairs of op

posite sides of the complete figure.

FIG. 13.

A complete quadrilateral abed

(Fig. 13) has six vertices
; any two

of these as ab and cd
y
or ac and

bd, or finally, ad and &r, which do

not lie upon one and the same
side are opposite vertices of the

quadrilateral, so that in a quad
rilateral there are three pairs of

opposite vertices. Moreover, the

complete quadrilateral contains

three simple quadrilaterals abed,

acdd, and adbc, the vertices of each

consisting of two pairs of opposite
vertices of the complete figure.

50. The forms in the bundle of rays which correspond to these

plane figures are most easily obtained by projecting the latter from

a point lying outside their plane. Each plane #-point gives rise by

projection to an -edged figure, or, more briefly, to an -edge,

and each plane -side, to an ;z-faced figure, or an /z-face.
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Accordingly,

A complete //-edge is a set of A complete //-face is a set of

n rays of a bundle, together with n planes of a bundle, together with

all planes (faces) passing through all their lines of intersection (edges),

them, two and two, assuming that assuming that no three of the

no three of the // rays or edges n planes or faces pass through
lie in one plane. one and the same ray.

It would be an easy matter for you to define the simple //-edge
&quot;

and simple //-face, and to develop properties of these forms in the

bundles analogous to those of the corresponding plane figures.

51. I shall conclude this series of definitions with those of the

analogous space configurations.

A *

complete three-dimensional A complete three-dimensional

//-point consists of // points (ver- //-face consists of n planes (faces)

tices) of which no four lie in one of which no four pass through one

plane, the straight limes each of point, the straight lines (edges) in

which joins two of the // points, and each of which two of the n planes
the planes each of which passes intersect, and the points (vertices),

through three of the n points. in each of which three of the

n planes intersect.

I leave the determination of the number of edges and faces of

a three-dimensional //-point, as also the edges and vertices of a three-

dimensional //-face, to your own inquiry. I remark, however, that

the three-dimensional tetragon and the tetrahedron do not differ

from flfch other any more than do the triangle and the trilateral

in the plane. That the principle of reciprocity is applicable to

the tetrahedron the following theorems among others will show :

The four vertices and six edges The four faces and six edges of

of a tetrahedron are projected from a tetrahedron are intersected by

any point which lies in none of its any plane which passes through
faces by the four edges and six none of its vertices, in the four

faces of a complete four-edge. sides and six vertices of a complete

quadrilateral.

You^-ill here observe that in space of three dimensions the

complete plane //-point is reciprocal to the complete //-face in a

bundle, and the complete plane //-side to the complete //-edge,

since point and plane are reciprocal elements.
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THE CORRELATION OF COMPLETE ^-POINTS, w-SIDES, AND
w-EDGES TO ONE ANOTHER. HARMONIC FORMS.

52. In my lectures thus far I have sought to solve but one of

the problems lying before me, namely, to make you acquainted
with the most important concepts peculiar to modern geometry.
I have no doubt that you have many times wearied of this multitude

of definitions following in quick succession, but it was necessary

to place these before you in a connected form, so that later we

might bring to light with less interruption the rich treasures which

the Geometry of Position affords.

Let us now proceed to the first real theorem of modern geometry.

The very simple propositions heretofore stated have been mentioned

as occasion might offer, more with a view to familiarizing you with

the new concepts and for completeness than because they were

all necessary for the establishment of our science.

I shall first call particular attention to the theorems upon harmonic

points, rays, and planes ;
in a word, to the theorems upon harmonic

forms in general, which I shall now develop as essentially funda

mental in the Geometry of Position.

53. The properties of harmonic forms, of which mention was

made in the Introduction, can be proved most simply by making
use of some elementary theorems upon the correlation oflfcpoints,

-sides, and ^-edges to one another.

In a way similar to that by which we have already correlated the

primitive forms, we can associate in certain figures, to each vertex,

side, or edge of one a corresponding element of another^ One

quadrangle, for example, can be correlated to a second by associat

ing with each vertex of the first a vertex of the second; and in
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consequence of this, to each side of the first there will correspond
a side of the second.

FIG., 3.

We may now state the following self-evident theorem :

If two correlated triangles ABC
and A^B^CI (Fig. 3) lie in different

planes, and each of the three pairs

of homologous sides AB and A-JB^
AC and A^C^ BC and B^C, inter

sect (necessarily upon the common
line // of the planes of the two

triangles), then the planes of the

three pairs of corresponding sides

determine a three-edged figure, of

which the two triangles are sections.

The joining lines AA^ BB^ and

CCi of the pairs of homologous
vertices intersect therefore in one

point, namely, in the vertex 5 of

the three-edge.

54. It would be an easy matter for you to enunciate the converse

of either half of this double theorem. By the help of these we find that

If two correlated three-edged (or

three-faced) figures belong to differ

ent bundles, and each of the three

pairs of homologous edges inter

sect, then the three points of inter

section determine a triangle of

which the two three-edges are pro

jectors. The lines of intersection

of the three pairs of homologous

planes (faces) of the three-edges
lie therefore in the plane of this

triangle, whose sides they form.

If two complete quadrangles
ABCD and A

1
B

1
C

1
D

1 (Fig. 14)

King in different planes whose line

of intersection // passes through

If two complete four-faced figures

belonging to different bundles of

rays whose common ray lies in

none of the eight faces, are cor-
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none of the eight vertices are cor

related to each other, and five sides

&amp;lt;*, , &amp;lt;r, d, c of the one quadrangle
intersect (upon u) the correspond

ing sides #
15 b-i, t\, d^ e

v respectively

of the other, then are the two

quadrangles sections of one and

the same complete four-edge, and

therefore their remaining two sides

/and/i also intersect upon //.

related to each other, and five

edges of the one intersect the

corresponding edges of the other,

then are the two four-faced figures

projectors of one and the same

complete plane quadrilateral, and

therefore their two remaining edges
also intersect.

FIG. 14.

According to the theorem of the

last article the lines AA
V , BB^ &amp;lt;%\,

and likewise the lines DD^ BB,
CC^, intersect in one point ; the

straight lines AA
l
and DDl

there

fore meet in the point of intersection

The five edges of the one com

plete four-face which are intersected

by the corresponding edges of the

other determine in that four-face

two three-faced figures, the faces

of each of which are intersected by
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S of BB\ and CCV the vertex of the the homologous faces of the other

four-edge mentioned in the theorem; in the three sides of a triangle

and since the straight lines/ and /i But these two triangles have two

lie in the plane determined by AA }
sides in common. They lie there-

and DDi, they must intersect. fore in one plane, and determine

the plane quadrilateral, of which

the given four-faces are projectors.

55. In order not to become too profuse I shall at this point

drop the investigations of the right-hand column and only make

use of a result obtained in the left-hand column in establishing

the theory of harmonic elements. But even so we shall very soon

reach new theorems which offset each other in just the same way
as do those already denoted as reciprocals.

56. We have just now found that

If, in hvo complete quadrangles which are correlated to each other,

Jive pairs of homologous sides intersect in points of a straight line

u which passes through none of the eight vertices, then the sixth pair
also intersect in a point of this straight line.

This theorem holds true for the case in which the quadrangles
lie in the same plane, as well as when they lie in different planes.

For if they lie in the same plane, we can immediately reduce to

the case already treated either by rotating one of the quadrangles
about the line u, out of the given plane, or by projecting it from

an arbitrary centre upon a second plane through u. In either

case it happens that through the point of intersection of u

with the sixth side of the one quadrangle, the sixth side of the

other quadrangle also passes. It may be remarked incidentally

that if u is an infinitely distant straight line our theorem would

read :

If, in two complete quadrangles which are correlated to each otJier,

five pairs of homologous sides are parallel, then the remaining two

sides are also parallel. ,

57. We may now announce the following definition :

Four points A, B, C, D of a straight line are called harmonic

points (and form a harmonic range of points) if they are so situated

that in the first and in the third of them a pair of opposite sides of
a quadrangle may intersect, while through the second and fourth

points the hvo diagonals of the quadrangle pass.

From what has already been said the following important theorem

immediately presents itself:
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Three points A, B, C of a straight line and the order of their

succession completely determine the fourth harmonic point D.

For example, we find D by constructing any quadrangle KLMN
(Fig. 15), of which a diagonal LN passes through the second point

B, two opposite sides KL and MN intersect in the first point A,
and the other two opposite sides LM and NK intersect in the

third point C
;
the second diagonal KM will then determine D.

D

FIG. 15.

If we construct another quadrangle K^L^M^N^ which is related

to the points A, B, C in a manner similar to that of the quadrangle

KLMN, then, in accordance with the theorem of the preceding

article, its second diagonal K^M^ (being sixth side of the complete

quadrangle K^L^M^N^) must also pass through D, the point of

intersection of KM and ABC.
The points B and D through which the diagonals pass, are

separated from each other by the points A and C, in which pairs

of opposite sides intersect, and are therefore said to be harmonically

separated by A and C.
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58. That the points B and D are in reality separated by the

points A and C may be demonstrated as follows :

If we project the points A, B, C, D from an arbitrary centre

upon a different straight line, then the projectors, and consequently

also the projections, of one pair of separated points are separated

from each other by the projectors (and also the projections) of the

other pair. If now Q (Fig. 15) is the point of intersection of the

diagonals KM and LN of the quadrangle KLMN, then is KQMD
a projection of ABCD from the point Z, and MQKD, a pro

jection of the same range from the point N. If A were not

separated from C, but from B, say, by the remaining two points,

then, in the one projection, Q would be separated from
A&quot;,

but

in the other projection, from M, which is impossible, since Q can

be separated from only one of the three points K, J/, D, by the

other two. If again A were separated from
Z&amp;gt;,

then would D be

separated from K and at the same time from M, which likewise

is impossible. Consequently A must be separated from C by
the points B and D.

59. From a point not lying in the plane of the quadrangle (from

your eye for instance), a complete quadrangle is projected by a

complete four-edge, the harmonic range of points by a sheaf of

four rays which shall be called four harmonic rays, or a harmonic

sheaf of rays. These have the property of being intersected by

any plane not passing through the centre, in four harmonic points

A
lt B^ C

lt
Dv For every such plane cuts the complete four-edge

in a quadrangle of which two opposite sides intersect in Av two

others in Cv and whose remaining two sides pass respectively

through B^ and DY
60. If four harmonic points are projected from an axis which

does not lie in a plane with them, we obtain four harmonic

planes, or a harmonic sheaf of planes. Any fifth plane which

contains the four harmonic points intersects the four harmonic

planes in harmonic rays ;
and it follows that this is equally true

of any intersecting plane whatsoever, which does not pass through

the axis of the harmonic sheaf of planes. For any such plane cuts

the four harmonic rays of the first intersecting plane in four

harmonic points through which its own lines of intersection with

the harmonic planes pass. From this it follows further that any

straight line gauche to the axis meets four harmonic planes in

harmonic points.
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In the same way a harmonic sheaf of lines is projected from a

point not lying in its plane by a harmonic sheaf of planes. In

general,

Four harmonic points are pro

jected from any straight line by
four harmonic planes, and from

any point by four harmonic rays.

Four harmonic rays are

Projected from any point by four

harmonic planes.

Four harmonic planes are cut by

any straight line in four harmonic

points, and by any plane in four

harmonic rays.

Cut by any plane in four har

monic points.

These several statements may be combined into a single state

ment of great importance :

From any harmonic primitive form, after projection and section

there results always another harmonic primitive form.

At the same time you perceive that by three elements of a one-

dimensional primitive form the fourth harmonic is completely,

determined if it is known from which of the three the fourth is

separated. For, if the given elements are three points of a straight

line, then the complete quadrangle yields the fourth harmonic

point. If, on the other hand, the given elements are rays or planes

of a sheaf, these may be sectioned by a straight line, and the fourth

harmonic point to the three intersection points may be found.

Through this point passes the desired fourth element of the har

monic sheaf. By this means the problem,
&quot; From three elements

of a one-dimensional primitive form to construct the fourth har

monic,&quot; is at once solved.

61. The correctness of the following theorems will be evident to

you at a glance :

If three planes a, /3, y, of a sheaf

be cut by arbitrary transversals,

and upon each transversal is found

the fourth harmonic to the three

intersection points, this being

separated from the point of inter

section with /? in each case, then

all these fourth harmonic points lie

in a plane 8, which is the fourth

harmonic plane to a, ft, y, separated
from .

If three points A, B, C, of a range
be projected from arbitrary axes,

and for each axis is found the

fourth harmonic to the three pro

jecting planes, this being separated
from the plane passed through B
in each case, then all these fourth

harmonic planes pass through one

point D, which is the fourth har

monic point to A, ff, C, separated
from B.
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To these two theorems, which offset each other reciprocally in

space of three dimensions, you will easily be able to state two

corresponding ones for the plane. In them a sheaf of rays takes

the place of the sheaf of planes. Analogous theorems may also

be stated for the bundle of rays.

62. In the definition of harmonic points A, B, C, D, by means

of the quadrangle KLMN (Fig. 15), we have made a distinction

between the two points A and C, in which the opposite sides of

the quadrangle intersect, and the two remaining points B and
&amp;gt;,

through which the diagonals pass. It may be shown, however,

that the two pairs of separated points in the harmonic range play

exactly the same part. In the first place, it is evident that of four

harmonic points two separated points may be interchanged without

destroying the harmonic relation, i.e. if ABCD is a harmonic

range of points, the same is true of ADCB, CBAD, CDAB\
for in each of these ranges two opposite sides of the quadrangle
KLMN pass through the first, and two through the third, point,

-while the diagonals pass through the second and fourth points. If

D

FIG. 16.

now through the point of intersection Q of the diagonals (Fig. 16)

the straight lines AQ and CQ be drawn, they determine upon the

sides NK) KL^ LM, and J/7V, respectively, four new points

S, T, U, and V. Of the lines ST, 777, UV, and VS, which
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are seen to be second diagonals of the quadrangles KSQT,
LTQU, MUQV, and NVQS, two opposite ones pass through B
and the remaining two through D. We thus obtain a quadrangle

STUV, of which the pairs of opposite sides pass through B and D,
and the diagonals through A and C. Hence, in a harmonic range

of points, the two pairs of separated points can also be interchanged

without destroying the harmonic relation. That is,

If ABCD is a harmonic range of points; not only are ADCB,.

CBAD, and CDAB likewise harmonic^ but so also are DCBA,
DABC, BCDA, and BADC.

This theorem of course holds good also for harmonic rays and

planes, which we have already defined by reference to harmonic

points.

63. We say of two separated elements of a harmonic form that

they are harmonically separated by the remaining two elements,

or are conjugate to each other. For brevity and simplicity of

expression we shall frequently say that two elements of a form are

harmonically separated by two other elements not belonging to

that form, if, by means of the latter elements, two belonging to the

form are determined by which the first two elements are harmonically

separated. Two points A and C, for example, are said to be

harmonically separated by two planes ft and S, if these cut the

straight line AC in two points B and D such that ABCD is a

harmonic range ;
and similarly ft and 8 are said to be harmonically

separated by A and C if they are harmonically separated by the

two planes which project the points A and C from their line of

intersection.

As an illustration of this mode of expression the following double

proposition for forms in a plane may be cited :

From two straight lines and a From a straight line and t\vo

given point outside them a third given points outside it a third point

straight line may be determined may be determined which lies on

which passes through the point of the straight line joining the given

intersection of the given lines and points, and through which passes

contains every point that is liar- every straight line that is harmoni-

monically separated from the given cally separated from the given line

point by the given lines. by the given points.

In reality this proposition is merely a repetition of that of Art. 61,

when the latter is transcribed for forms in the plane. Upon the

theorem on the left and the one next to be stated rests the solution.
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of the problem mentioned in the Introduction (Art. 6, see Fig. i),

viz.,

&quot;

Through the inaccessible point of intersection of two straight

&quot;lines to pass a third straight line.&quot;

64. After what has been said it will be an easy matter for you
now to prove the following properties of the complete quadrangle
and complete quadrilateral (see Fig. 15).

FIG. is.

In the complete plane quadrangle

any two opposite sides (as KM and

LN} are harmonically separated by
the two points A and C in which

the remaining pairs of opposite
sides intersect.

In the complete plane quadri
lateral any two opposite, vertices

(as A and C] are harmonically

separated by the two straight lines

KM and LN which join the re

maining pairs of opposite vertices.

You will notice that in Fig. 15 not only can K, Z, M, and X
be taken as vertices of a complete quadrangle, but also AL, AN,
CL, and CN can be taken as sides of a complete quadrilateral of

which A and C, K and J/, L and N are the three pairs of opposite
vertices.
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65. In the quadrangle KLMN (Fig. 15) let the two vertices

K, L, and the points of intersection A and C of two pairs

of opposite sides remain fixed, while the side MN rotates

about A, the vertices M and N moving along the straight lines

CL and CK, respectively ;
at the same time the two diagonals

will rotate about K and Z, and the points B and D will so

move along the line AC that they remain harmonically separated

by A and C, Since now no position of either point B or D
corresponds to more than one position of the other, it is im

possible that these points should move at one time in the same

sense and at another time in opposite senses along AC ; moreover,

they must always move in opposite senses since they are always

separated by A and C, and must coincide with C when the moving
line MN is brought into the position CA, or with A when brought
into the position LA.

From this it follows that

If a pair ofpoints A and C harmonically separate each of two other

pairs of points B, D and B
I}
D

1?
then are B and D not separated by

B
x
and Dr Two pairs ofpoints on a straight line which mutually

separate each other cannot therefore both be harmonically separated

by the same third pair of points.

66. To two pairs of points B, Z&amp;gt;,
and B^ Z&amp;gt;

]}
on a straight line,

which do not separate each other, there always exists (at least)

one third pair of points A, C, by which B is harmonically separated

from D and at the same time B^ from Dv
In order to prove this, we shall imagine the segment B^D^

upon which B and D do not lie to be traversed by a point P.

Of the points P^ and P
2
which are harmonically separated from

P by B
l
and Z&amp;gt;

15
and by B and

Z&amp;gt;, respectively, the first P
l

describes the supplement of the segment B^D^ and the latter /*.,

a segment B2
D

2
contained in this supplement, whose extremities

are harmonically separated from B
l

and D^ respectively, by B
and D. The points P

1
and P

2
move in the sense opposite to

that in which P moves, and must coincide at least once, since P
describes a segment within which the segment traversed by P2

is

contained. If, now, we denote by A this point of coincidence and

by C the corresponding position of the point P, then A and C

harmonically separate B from D and at the same time B
l
from Dv
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METRIC RELATIONS OF HARMONIC FORMS.

67. I ought not to close the theory of harmonic forms without

developing for you, as was suggested in the Introduction, their

most important metric relations. We approach these most simply

by means of the following theorem :

If in a straight line two points A and C have equal distances from
a third point B, then are they harmonically separated by this point
and the mfinitely distant point D of the straight line, or A, B, C, I &amp;gt;

form a harmonic quadruple.

FIG. 17.

In a plane passed through the line ABC choose two infinitely

distant points K and M (Fig. 17), and toward each of them draw

parallel lines through A and C
;
these will intersect in two new

points L and N. The straight line LN, as second diagonal of the

parallelogram ALCN, passes through the bisection point B of the

segment AC. Of the quadrangle KLMN, then, two opposite sides

KL and MN intersect in A, two others LM and NK in C, the

diagonal LN passes through B, and the second diagonal, namely,

the infinitely distant straight line KM, passes through D, so that

ABCD are in fact harmonic points.

68. Since four harmonic points ABCD are projected from a

fifth point 6&quot; by four harmonic rays, it follows that

If we draw through the vertex *S of a triangle ASC, two straight

lines, the one d parallel to the base AC, and the other b toward the
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middle point of the base, then are these harmonically separated by
the adjacent sides of the triangle.

If ASC is isosceles, then b is at right angles to AC, and con

sequently also to d\ moreover, the supplementary angles formed by
a and c are bisected by b and d. Hence :

&quot;The lines bisecting two supplementary adjacent angles are
&quot;

harmonically separated by the boundaries of these angles, and are
&quot; normal to each other.&quot;

The converse of this theorem may be stated thus :

&quot;

If, of four harmonic rays, two conjugate rays are at right angles,
&quot;

these bisect the angles between the other two.&quot;

The proof of this is derived immediately from the following

statement, which will be recognized as the converse of the one just

quoted :

&quot;

If a harmonic sheaf abed is cut by a straight line u parallel to

&quot; one of its rays, then one of the three points of intersection with the
&quot;

remaining rays bisects the segment between the other two.&quot;

The points of intersection of u with abed are four harmonic points,

and one of them lies infinitely distant.

69. These theorems, to which similar ones may be stated for

harmonic planes, can be utilized for the solution of a series of

problems. Thus, for example, the problem :

&quot; To construct the fourth harmonic to three points or rays
&quot;

admits a solution very much simpler than by means of the complete

quadrangle as soon as the construction of parallels and of equal

segments is conceded. For if to the rays b, c, d (Fig. 18), the fourth

ray a, harmonically separated from c, is required to be found, we may
intersect b and c by any straight line u parallel to d in the points B
and C, and upon this line make AB equal to BC

\
the ray a of the

sheaf bed, passing through A, is the one sought.

If, further, to the three points A, B, C (Fig. 19), the fourth point

Z&amp;gt;, harmonically separated from B, is required, we may lay off upon



HARMONIC FORMS.
47

any straight line passing through B, two equal segments A^B and

BC
l ;

then determine the point of intersection of the straight lines

AA
l
or a and CC

l
or c, and draw through this point a line d parallel

FIG. 19.

to A^BCV This straight line will cut ABC in the required point D.

For, since A^ B, C
1?
and the infinitely distant point of A^B are four

harmonic points, .S (A^BC-^D) or abed must be a harmonic sheaf,

and therefore ABCD, a section of this sheaf, is a harmonic range
of points.

70. If a segment AC and its middle point B are given, a parallel

to the line ABC can be constructed through any point .A&quot; (Fig. 20)

with the use of the ruler only, as follows :

Draw the lines KA and KC and intersect them in L and N
respectively by any straight line passed through B ;

then determine

the point of intersection M of CL and AN, and through this point

will -pass the required parallel. For, as second diagonal of the

quadrangle KLMN^ the line KM intersects the straight line ABC
in a fourth point harmonically separated from B by A and C, but

which lies infinitely distant since B bisects the segment AC.
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If, conversely, two parallel lines are given, any segment lying

upon one of them may be bisected by a linear construction. How
these constructions can be turned to account, in land surveying for

instance, will be evident to you without further comment.

-\4 B/ C/^

FIG. 20.

71. Among the segments which are formed by four harmonic

points ABCD on a straight line there exists an interesting proportion.

In order to find this, we project the harmonic points from some

centre S by a harmonic sheaf abed (Fig. 19) and then pass through

B a parallel to the ray d. This meets the rays a and c in two-

points A l
and C

lt
which are equally distant from B

;
at the same

time two pairs of similar triangles are formed, namely, AA^B
similar to ASD and BC^C similar to DSC. We obtain then the

proportions :

, BC =a
A

1
B~SD BC^ SD

If we divide the first of these by the second, and take into-

consideration that AB BC we obtain

^
BC~ CD

The segment AC is divided internally at B in the same ratio

as externally at D, B and D being harmonically separated by
A and C.

This relation is frequently taken as the definition of harmonic

points, and might be chosen as starting point in the study of

the theory of harmonic forms.
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As a consequence of this relation the point D lies out beyond
Cj if AB is greater than BC and likewise AD greater than CD ;

while, on the other hand, D lies out beyond A if AB is less than

BC; so that both B and D are nearer to A than to C, or else

both are nearer to C than to A.

72. In the above proportion, since the equal segments CD and

DC are described in opposite senses, we ordinarily write - DC
instead of CD, so that the proportion reads more symmetrically,
thus :

AB__ AD
BC~ DC

If M is the middle point of the segment BD, equation (i) may
be written :

AM-BM_AM+MD
BM- CM~ CM+MD

or if MD is replaced by BM:

_

BM- CM~ CM+BM
Clearing of fractions we obtain after a very simple reduction :

BM*=AM.CM, ........................... (2)

or the remarkable property,
&quot; BM (and similarly DM} is a mean proportional between

&quot;AM and CM.&quot;

This useful property might also be admitted as a definition of

harmonic points.

73. If we draw any circle through A and C (Fig. 19), and to this

a tangent MT from M, then by the well-known theorem upon the

segments of secants of a circle,

AM. CM= TM2
,

and hence Tlfl**BM***DM*. The point of contact T of the

tangent lies therefore upon the circle which is described with centre

M and radius BM or MD
;
and this circle cuts the other or

thogonally at T, since its radius MT is tangent to the other at T.

Thus,
&quot; In a plane, the circles which pass through two given points

&quot;A and C are cut orthogonally by any circle, the extremities of

&quot;whose diameter BD are harmonically separated by A and C&quot;

D
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The theory of harmonic points thus leads us easily to the study

of systems of circles which intersect orthogonally, and might suitably

be chosen as the starting point in the investigation of orthogonal

systems of spheres.
Z?/&quot;* /&quot;*

7~)

74. The reciprocal of equation (i), i.e. the equation n = ~rj\tAJj AJ-J

may be written :

AC-AB_AD-AC AB - AC_AC - AD
AB AD AB AD

and it is to this latter equation that the points A, B, C, D, owe the

name * harmonic points. For, as you are aware, we are accus

tomed to say of three quantities ft 7, 8 that they are in har-

monical progression, or are harmonic, if the difference between

the first two is to the first as the difference between the last two

is to the last, that is if

_
ft 8

and the equation last written involving the segments AB, AC, and

AD has exactly this form.

Performing the division indicated above we have finally the

relation :

AC AC
AB~AD I}

which may be written in the form :

.: (,)AC AB AD*

You yourselves will easily be able to clothe this very remarkable

formula in words
;

it likewise is frequently used as the definition

of harmonic points.

Similar equations might be developed for the angles formed by

four harmonic rays or planes. I prefer, however, to present these

incidentally in the supplement to the next main division of our

subject, since they have no great value for us.

75. You will observe that the principle of reciprocity is not

applicable to metric relations, or at least it applies only in indi

vidual cases. One reason for this is that in a sheaf there exists

no element which occupies a distinctive position with reference to

measurement similar to that of the infinitely distant point in the
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range of points ; while, on the other hand, we recognize in the

latter no segment which could be so defined and characterized by
measurement as can the right angle in the sheaf.

EXAMPLES.

1. To three given elements in each of the one-dimensional primitive
forms construct the respective fourth harmonic elements.

2. Through a given point draw a straight line which if produced would

pass through the inaccessible point of intersection of two given lines.

3. Without the use of circles bisect a segment AC of a straight line,

having given a parallel to this line.

4. In a plane are given a parallelogram and a segment AC of a straight
line

;
it is required, without the use of circles, to bisect AC and to draw

a parallel to A C
;
also to divide A C into ;/ equal parts.

5. If A, B, C, D, are four harmonic points of a straight line, and a circle

is described upon AC as diameter, of which S is any point, prove that

the arc subtending the angle BSD, or its supplement, is bisected at A or

at C.

6. Through a given point P draw a straight line meeting two given
lines of the plane in A and B so that (i) the segment AB shall be

bisected at
/&amp;gt;, (2) the segment AP shall be bisected at B. Under what

circumstances is the solution impossible ?

7. If two points are each harmonically separated from a third point

by a pair of opposite edges of a tetrahedron, they are harmonically

.separated from each other by the third pair of opposite edges.

[The plane of the three points intersects the tetrahedron in a complete

quadrilateral whose diagonals intersect in the three points.]

8. Given two pairs of points, A, B, and A, B^ upon the same straight

line, which do not separate each other. With the aid of circles, find two

points which harmonically separate each pair.

[Choose any point D outside the given line and describe the circles

DAB and DA
1
B

1 intersecting a second time in E. Let the straight line

DE cut the given line in O. From O draw a tangent OT to DAB or

to DA^B^. The circle whose centre is O and radius OT will cut the

given line in the required points.]

9. A straight line intersects the sides of a triangle ABC in the points
A

l9 B^ CD and the harmonic conjugates A.2, B.2 ,
C.2 ,

of these points, with

respect to the two vertices on the same side are determined, so that

AC-^BC^ BA^CA*, CB^AB*, are harmonic ranges. Show that A
lt
B.2,

C.2 ;

B\i C* -A-2 5 CH A*, B.2,
are collinear, that AA^ BB.2 , CC, are concurrent,

and that AA 2 , BB^ CC
l ;
AA BB* CC

l ; AA^ BB^ CC2,
are also con

current.



LECTURE V.

PROJECTIVE PROPERTIES OF ONE-DIMENSIONAL PRIMITIVE
FORMS.

76. In the present lecture I shall again take up and further

develop an idea which has already been mentioned, namely, the

correlation of two primitive forms so that to each element of the

one there corresponds one and only one element of the other.

As very simple methods of correlating two primitive forms of the

first grade the following have already been mentioned :

(1) A sheaf of rays or planes and a range of points (Fig. 6), or

a sheaf of planes and a sheaf of rays, are correlated to each other

if each element of the latter lies upon the corresponding element

of the former.

(2) Two ranges of points are correlated to each other if they are

sections of one and the same sheaf of rays (Fig. 8).

(3) Two sheaves of rays are correlated to each other if they are

projectors of one and the same range of points (Fig. 7), or sections

of one and the same sheaf of planes, or both.

(4) Two sheaves of planes are correlated if they are projectors

of one and the same sheaf of rays.

77. We shall hereafter speak of two one-dimensional primitive

forms which are correlated to each other in any of the ways men
tioned above, as being

*
in perspective position, or more briefly, they

shall be spoken of as being perspective to each other ; so that

of two perspective primitive forms of different kinds, the one is

always a section of the other, while on the other hand, two
c

perspective primitive forms of the same kind are always either

sections or projectors of one and the same third primitive form.

78. If two one-dimensional primitive forms are correlated per-
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spectively to one and the same third form (for example, two

ranges of points to a third), they are also correlated to each other,

but in general are not in perspective position with regard to each

other. We thus observe a second, the so-called skew position of

two correlated primitive forms, which might be obtained from the

perspective position by giving one or the other of the perspective

forms a slight displacement; then with each element of the one

form there would continue to be associated a particular element

of the other form, but in general the forms would lose their

perspective position.

79. Two primitive forms may be correlated to each other, how

ever, in numberless other ways ;
for example, two sheaves of rays

are correlated by viewing them as projectors of one and the same

curve, no matter what this curve may be. The method of correla

tion in question, however, is distinguished from all others in one

important particular, and just as clearly so, whether the forms are

in perspective or skew position ; namely, if any four harmonic

elements are selected from one of the two forms, to these

evidently correspond four harmonic elements in the other form,

since projectors and sections of harmonic forms are in turn

harmonic forms. This peculiarity is not in general found in

other methods of correlation and we are thus led to enunciate

the following definition :

Two primitive forms are said to be related
l

projectively to each

other, or, more briefly, are said to be projective] when they are so

correlated that to every set of four harmonic elements in the one

form there correspond four harmonic elements in the other.

Two perspective one-dimensional primitive forms are therefore

also projective, perspective correlation and projective correlation

being distinguished only by the relative positions of the forms.

The expressions conformal and homographic, which Paulus and

Chasles use, have the same meaning as projective. Von Staudt has

introduced the symbol 7\ for is projective to.

From the definition of the projective relation it follows im

mediately that

If two forms are each projective to a third form they are pro

jective to each other.

For example, if two ranges of points are perspective, and hence

projective, to one and the same third range, then are they pro

jective to each other, but it is only in particular cases that they
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are in perspective position relative to each other. The same is-

true of any two primitive forms of the first grade.

80. In two projective ranges ofpoints, to any four points A, B, C, D,,

of the one range, of which the first two are not separated by the last

two, there correspond always i?i the other range four points Aj, B
lr

Cj, D
1?

which are subject to the same condition.

For there are, in the first range, two points M and N by which

A is harmonically separated from B, and also C from D (Art. 66),

and in accordance with the definition of projectivity there corre

spond to these, in the other range, two points Ml
and ^ by which

A
l

is harmonically separated from BY and also C
l
from DY On

this account it is impossible for the points A
l

and B^ to be

separated from each other by Cl
and D

l (Art. 65). If A and C are

separated by B and D, then must also A
l
and C

l
be separated by

B
l
and D^, for the opposite conclusion would bring us into dis

agreement with what has just been proved.

If in the one range any number of points A, B, C, . . . P, Q, . . .

are so chosen that no two of them are separated by the one named

just before and the one just after them, there correspond to these, in

the other range, the same number of points A 19
BY C^, ... P^ Qv ...

for which the same relation holds true. If the points P, Q, R, ... of

the first range are consecutive points of the range, then must also their

corresponding points Pv Qv R, ... be consecutive points in the second

range, for if P
l
and Qlt say, were not consecutive points of this range,

there would be points /i,
VY which separate them, and it would

be necessary then that P and Q be separated from each other by
the corresponding points U and V, and they could not in that

case be consecutive points. Similar conclusions may be reached

in the case of sheaves of rays and of planes, since these are cut

by arbitrary transversals in projective ranges of points. Hence the

important theorem :

If two one-dimensional primitive forms arc projectively related,

then to every continuous succession of elements of the one form there

corresponds a continuous succession of elements of the other.

81. Two projective primitive forms of the same kind may also-

be cofijective or be superposed, that is to say, may have the same

base. Two projective sheaves of planes, for example, may be placed

with their axes coinciding, and similarly two projective ranges of

points may lie on the same straight line, so that each point of the

line must be considered twice, once as belonging to the one range,
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and again as belonging to the other range. The investigation as

to how many self-corresponding elements may exist in two pro-

jective one-dimensional primitive forms which are superposed, that

is, how many elements of one form coincide with their homologous

elements in the other, is of great importance in all that follows.

FIG. 21.

82. In the first place, that it

have either one or two such

clear from the following theorem

If in a plane there are given
two sheaves of rays S

l
and S.&amp;gt;

(Fig. 21) which are projectors of

one and the same range of points /x,

i.e. are perspective, and these are

intersected by a straight line T/,

then there are determined upon
this straight line two projective

is possible for the two forms to

self-corresponding elements is

If in a plane there are given two

ranges of points u^ and u.2 (Fig. 22)

which are sections of one and the

same sheaf 5, i.e. are perspective,

and these are projected from a

point T of the plane, then this

point becomes the centre of two

projective sheaves of rays in which
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ranges of points u and w2,
in the lines joining T with 5 and with

which the intersection of v with u u^u.^ are self-corresponding rays,

and with S\S2 are self-correspond- These two rays coincide if u^y

ing points. These two points lies upon ST.

coincide if -S^S^ passes through uv.

In the theorem on the left two points A l
and A

2
of z^ and z/

2 ,

respectively, correspond to each other if S^A^ and S
2
A

2
intersect

in a point A of u.

The three ranges of points , u^ and u
2 therefore have the

intersection point uv self-corresponding, while u^ and u
2
have also

self-corresponding the intersection point of v with the common ray

83. If, of two projective ranges of points u and u
19

the first is

described by the continuous motion of a point P, the corresponding

point Pt
at the same time moves continuously along the other

C A B

C,
u,

FIG. 23.

B C
FIG. 24.

FIG. 25. FIG. 26.

range, and if u and u^ lie upon the same straight line, the points

P and P
1 may move either in the same sense or in opposite

senses (Figs. 23 and 24) upon the line. In the case of figure 24,

in which the points move in the same sense along the line, we

shall call the ranges directly projective, in the other case (Fig. 23)

oppositely projective. We shall in the same way call two projective

sheaves of rays *S and S
l
which are concentric and lie in the same

plane (Figs. 25 and 26), or two projective sheaves of planes which
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have the same axis, directly projective (Fig. 26), or oppositely

projective (Fig. 25), according as two homologous elements in

describing the sheaves would rotate in the same or in opposite senses.

In primitive forms of the first grade, which are superposed and are

oppositely projective, the two describing elements must necessarily

coincide twice
; hence,

&quot;

Primitive forms of the first grade which are superposed and are
&quot;

oppositely projective, always have two self-corresponding elements
;

^
all other pairs of homologous elements are separated by these

&quot;

self-corresponding elements.&quot;

On the other hand, forms which are superposed and are directly

projective have two self-corresponding elements only in case a

segment AB (or an angle) of the one lies wholly within the

corresponding segment (or corresponding angle) of the other (Fig.

24); in particular cases they have only one, and may have (Fig. 26)

no self-corresponding element. Two projective ranges of points

u and u
l
which have three self-corresponding points A, B, C, must

be directly projective.

84. We can now prove the following fundamental theorem of

the Geometry of Position :

If two projective one-dimensional primitive forms have three self-

corresponding elements A, B, C, then are all their elements self-

orresponding and the forms are consequetitly identical.

Suppose, in the first place, that the projective primitive forms

are two ranges of points u and
it^ (Fig. 27). Then a point which

A P B
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reaching B in some point BY If P should move in the opposite sense

CBA, then P
l
would move in the sense CBA, and would coincide

with P in A, or before reaching A in a point Av In this way we

should obtain a segment A l
B

l
which is either equal to AB or is a

part of AB, and of which no point, except the extremities A
l
and Bv

coincides with its corresponding point. But this is impossible, since

that point which is harmonically separated from C by A
l
and B^

must coincide with its corresponding point and fall in this segment.

Hence the ranges u and
x
must have every point of the segment

AB self-corresponding, and therefore every other point Q self-

corresponding, since Q is harmonically separated from some point

of the segment AB by A and B.

The theorem may be proved in an analogous manner for the

case of two projective sheaves of rays or planes which have three

self-corresponding elements, or what is simpler, these cases may be

reduced to the one just proved by intersecting the sheaves with a

straight line. The ranges of points thus obtained would be projective

and have three self-corresponding elements
; consequently all their

elements would be self-corresponding ;
hence all the elements of the

sheaves must be self-corresponding.

85. Two projective one-dimensional primitive forms can have then

at most two self-corresponding elements, unless every element of the

one coincides with the corresponding element of the other. An

important deduction from this fundamental theorem is the following :

&quot;

If a range of points is projective to any sheaf, or a sheaf of
&quot;

rays to a sheaf of planes,, and three elements of the first form lie

&quot;upon their corresponding elements in the second form, then the

&quot;first form is a section of the second.&quot;

For it has three self-corresponding elements, with that section

of the second form which is made by its base
;
hence all their

elements are self-corresponding, and the first form is identical with

the section of the second form.

86. If two projective sheaves of If two projective ranges of points

rays S and S\ (Fig. 29) lying in u and u (Fig. 28) which lie in the

the same plane, but not concentric, same plane, but are not conjectiver

have their common ray a (or a^ have their point of intersection A
self-corresponding, then are they (or AJ self-corresponding, then are

projectors of one and the same they sections of one and the same

range of points //, and are con- sheaf of rays 5, and are conse-

sequently in perspective position. quently in perspective position.
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For if we join the points B and

(7, in which any two rays b and c

of the sheaf S are intersected by
their corresponding rays b

l
and c

l

of S
lt by a straight line //, then are

the two ranges of points in which

// cuts the sheaves .S&quot; and S
l
identi

cal, since they are projectively

related, and have three self-corre

sponding points ua, ub, and uc.

For if we join any two points B
and C of // with their corresponding

points B
l
and C\ of //, by the

straight lines b and r, and denote

the point of intersection of these

lines by S, then are the two sheaves

of rays by which the ranges of

points u and //
x
are projected from

S identical, since they are pro-

jective, and have three self-corre

sponding rays SA, SB, and SC.

FIG. 28. FIG. 29.

87. The following theorems from the geometry of the bundle

of rays are analogous to those just stated, and may be proved in

a similar manner :

If two protective sheaves of

planes whose axes intersect have

the plane of the axes self-corre

sponding, then are they projectors

of one and the same sheaf of rays,

and are consequently perspective.

For if we intersect the two

sheaves of planes with a plane

which is determined by the lines

of intersection of any two pairs of

homologous planes of the sheaves,

we obtain two project!ve sheaves

of rays which have three self-cor

responding rays, and which are

consequently identical.

If two projective sheaves of rays

which are concentric, and lie in

different planes have the line of

intersection of these planes self-

corresponding, then are they sec

tions of one and the same sheaf

of planes, and are therefore per

spective.

For if we project the two sheaves

of rays from the line of intersection

of any two planes, each of which is

determined by a pair of homologous

rays of the sheaves, we obtain two

projective sheaves of planes which

have three self - corresponding

planes, and which are consequently

identical.



60 GEOMETRY OF POSITION.

88. Two projective but not con- Two projective but not conjective

centric sheaves of rays S and S ranges of points ^l and u^ (Fig. 28)

(Fig. 29) have perspective position have perspective position if, of

if, of the points of intersection of the lines joining their homologous

pairs of homologous rays, any three, points, any three, BB
V , CC^ and

/?, C, and /?, lie in one straight DD-^ pass through one point S.

line u. For, the projective sheaves of

For, the projective ranges of rays by which the two ranges of

points in which the two sheaves points are projected from the point
of rays are cut by the straight line S have these three rays BB^ CC^
u have these three points /&amp;gt;

, C, D, DD^ and consequently all their rays
and consequently all their points self-corresponding ;

all lines joining

self-corresponding ;
all points of homologous points of u and

,

intersection of homologous rays of consequently pass through S.

the two sheaves consequently lie

upon the straight line u.

You can easily enunciate and prove the analogous theorems for

sheaves of rays and planes in the bundle of rays.

89. If two correlated sheaves of rays lie in one plane and are

not concentric, the points of intersection of pairs of homologous

rays form a continuous curve, for if a ray describes the one sheaf

by continuous rotation about its centre, the corresponding ray will

rotate continuously about the other centre, and will describe the

other sheaf; the point of intersection of the two rays will conse

quently describe a continuous line.

If now the two sheaves of rays are projectively related but are

not in perspective position, all the points of intersection of pairs

of homologous rays lie upon a curve which, in consequence of the

theorem of Art. 88, has in common with no straight line more

than two points. On account of this peculiarity we shall call this

curve a curve or range of points of the second order
;

the ordinary

range of points shall be distinguished from this, wherever it appear^

necessary, by the name range of points of the first order.

If two projective ranges of points lie in the same plane and are

not perspective, then, as in the case above, the straight lines joining

pairs of homologous points form a continuous succession of rays,

of which not more than two pass through any point of the plane.

We designate the totality of these joining lines as a sheaf of rays

of the second order, the ordinary sheaf of rays being hereafter de

signated a sheaf of the first order to avoid confusion.
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Curves and sheaves of rays of the second order are denned

from the nature of their formation, then, in the following manner :

Two projcctivc sheaves of rays Two projective ranges of points

(of the first order), which lie in the (of the first order], which lie in a

same plane and are neither con- plane and are neither superposed

centric nor perspective, generate nor perspective, generate
1 a sheaf

a curve or range of points of the of rays of the second order, each

second order, each ray of the one point of the one range being pro-

sheaf intersecting the corresponding jectedfrom the correspondingpoint

ray of the other in a point of this of the other by a ray of this sheaf,

curve. Not more than two rays of a

Not more than two points of this sheaf of the second order pass
curve of the second order lie upon through a?iy point,

any straight line.

Wholly analogous forms of the second order are generated in a

bundle by projective sheaves of rays and planes. All these new

forms will be investigated more closely in the next lecture.

go. The construction of curves and sheaves of rays of the second

order depends upon the following important theorem :

Two o?ie-dimensional primitive forms may always be correlatedpro-

jectively to each other so that any three elements of the one shall

correspond to three elements of the other chose?i at ra?idotti ; to any

fourth element of the one form, the corresponding element of the other

is then uniquely determined.

The proof of this theorem might be deduced directly from the

definition of projectivity and the fact that, by three elements of

a one-dimensional primitive form, a single fourth element is deter

mined, which is harmonically separated from one of these three by
the other two. From considerations similar to those of Article

84, it appears that by means of the three given pairs of homologous
elements indefinitely many such fourth pairs are correlated to each

other, and that no element of the one form is without a corre

sponding element in the other.

I shall, however, proceed to prove the theorem in a different

manner, but only for two ranges of points, since all other cases

may be easily reduced to this one. For instance, if one or each

of the two primitive forms is a sheaf, then instead of this we can

substitute its section by a straight line, which is a range of points.

91. Suppose, in the first place, that two ranges of points u and u
l

lying in one plane (Fig. 28), are so correlated projectively that they
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have the point of intersection A (or A-^ of their bases self-corre

sponding, and that the points B and C of n correspond, respectively,

to the points B^ and C^ of u^ ;
then must the one range of points

be a projection of the other from S, the point of intersection of

BB
l
and CCr To any fourth point D of u corresponds, then,

in u^ its projection Dl
from the point S.

Next, suppose that any two ranges of points u and w
x (Fig. 30),

not lying on the same straight line, are so related projectively that

FIG. 30.

the points A, B^ C, of u correspond respectively to the points

A^ B^ Cv of uv Let us now choose, upon one of the straight

lines joining two corresponding points, for example upon AA^ a

point ,S different from either A or A^ and draw through A
l

a

straight line u
2 cutting u, and different from either #j or AAY

Project now the range u upon z/
2

from the centre S, and let

A^, B^ C
2,
be the projections of A, B^ C, upon u

2
. By this means

our problem is reduced to that of the preceding paragraph. For

we have only to so correlate u^ and u
2
that they may have their point

of intersection A (or A
2) self-corresponding, and the points J3

l
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and Cj of
//j corresponding respectively to B.2 and C., of //.,. The

ranges of points u and u
l
can then be looked upon as projections

of one and the same third range of points //
2

. In order to de

termine the corresponding point Dl
in t/

1
to any point D in //,

we find first its projection D2 upon w
2, by the aid of which we can

then find D
l according to the method already pointed out.

Suppose, finally, two ranges of points lying upon the same straight

line are so correlated projectively to each other that the points

A, B, C, of u correspond respectively to the points A lt B^ Cv of UY

This case can be reduced to the preceding by first projecting u^

upon another straight line u.
2

. If any two corresponding points

coincide, for example, A and A
lt

it.
2

is drawn most advantageously

through that point, and so the problem is referred back to the first

-case considered.

92. During the process of these investigations there has arisen

the following theorem :

Two projective one-dimensional primitive forms may always be

fonsidered as the first and last of a series of forms, of which each

is perspective both to the one preceding it atid to the one following it.

Two projective ranges of points, for example, may be looked

upon as the first and last of a series of not more than four ranges

of points, of which each is a projection of the adjacent ones. This

fact justifies the use of the term projective.

93. At the same time we obtain very simply a series of ap

parently complicated theorems
;
of these I shall mention only the

following :

If the sides a
lt a*, ... an ,

of a If the vertices A^ A&amp;lt;&amp;gt;, A^ ... A n ,

variable simple //-point rotate in of a variable simple //-side move
order about n fixed points S

lt
S2 ,

in order along n fixed straight lines

... Snj while ni vertices a^a^ u
lt

u.
2y

... un,
while n I of its sides

a.,a3,
... _!, of the same move A

1
A2,

A 2A 3 ,
... A H-iA n ,

rotate

along fixed straight lines //
1} u^ ... about the fixed points 6\, S^ ...

#_!, respectively, then the remain- ^-i, respectively, then the remain

ing vertex, and likewise ever} other ing side A nAi, and likewise each

point of intersection of sides of the diagonal of the //-side, either de-

;/-point, describes either a curve of scribes a sheaf of rays of the second

the second order or a straight line
;

order or else it rotates about a fixed

a straight line certainly in case the point ;
the latter case certainly

fixed centres of rotation S
lt
52,

... happens if the straight lines u^ u^
Sn,

all lie upon one fixed straight ... /, all intersect in one fixed

line. point.
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The sides a^ #2 &amp;gt;

am describe The vertices A^ A^ ... A n ,
de-

about 6\, ^&amp;gt; 2,
...

6&quot;,,,
sheaves of rays scribe upon z/

l5 z/.,, ... un , ranges of

of which each lies perspective to points, of which each lies perspect-

the following one, the ranges of ive to the following one, while

points u
lt
#2 &amp;gt; -i&amp;gt; forming per- 6\, 52 ,

... Sn-u form the respective

spective sections of these sheaves; centres of projection ; consequently,

consequently, all pairs of these all pairs of these ranges of points,

sheaves, and in particular the first and in particular the first and last,

and last, are projectively related, are projectively related and gener-
and generate a curve of the second ate a sheaf of the second order if

order if they do not chance to they do not chance to be perspect-

be perspective. This latter case ive. This latter case happens,

happens, among other ways, if the among other ways, if the straight

centres of the sheaves all lie upon lines z/
l5 u%, ... u,n intersect in one

one straight line
;
for in that case point P, for in that case the ranges

this line would be a self-correspond- all have this point self-correspond

ing ray of all the sheaves, since in ing, since in the variation of the

the variation of the n-pomt all the n-side all the vertices at one time-

sides at one time coincide with the coincide with P.

line of centres.

These theorems, of which the one on the left is a generalization

of a theorem by Maclaurin and Braikenridge, and the other is due

to Poncelet, afford us a means of finding any desired number of

points of a curve or rays of a sheaf of the second order by linear

constructions. These constructions are simplest when n = 3.

METRIC RELATIONS OF PROJECTIVE PRIMITIVE FORMS
OF THE FIRST GRADE.

94. Among the angles and segments which are formed by any
four homologous elements in two projective primitive forms there

exists an important proportion, which in conclusion I shall now

develop. Let us set out with a sheaf of rays 6&quot; and a range of

points u perspective to it (Figs. 28 and 29). Any four rays a, b, c, */,

of -5&quot; pass through their corresponding points A, B, C, D, of u. The

triangles formed by u and two of these rays, whose common
vertex is S, have equal altitudes

;
their areas therefore vary as their

bases, so that, for example :

tASB AB_ d
kCSB ^CB

ASD
~AD a

d CSD
~
CD

But the area of a triangle is equal to half the product of two-



METRIC RELATIONS OF PROJECT!VE PRIMITIVE FORMS. 65

sides and the sine of the included angle. If we denote the angle

between two rays / and q by (pq), we obtain for the areas of the

four triangles the values :

&ASB = %AS . S3 . sin (ab) ;

&ASD = IAS.SD. sin (ad) ;

A CSB =
I CS . SB . sin (cb) ;

CSD = lcS.SD.sm (cd);

and if these values are substituted in the above equations, and

the common factors in numerator and denominator are removed,

it follows that

SB.sm(ab) AB , SB. sin(^) CB
SD . sin (ad)

~AD SD . sin (cd)

~
CD

Dividing the first of these equations by the second we obtain :

sin^ s\ncb AB CB
AD

.

C&quot;H
95. Each term of this proportion is a ratio

;
for example,

is the ratio of the two segments into which BD is divided by the

point C (which in Fig. 28 lies outside BD), and
s

.

m^ is the ratio
sin (cd)

of the sines of the two angles into which the angle (bd) is divided

by the ray c. Thus the left-hand side, and similarly the right-hand

side, of this equation is a ratio between two ratios, or a so-called

double-ratio,
-
cross-ratio, or anharmonic ratio. You will readily

observe the particular way in which these anharmonic ratios are

formed. That on the right, for example, among the segments
formed by A, B, &amp;lt;7, D, is obtained by dividing the ratio between

the segments of BD determined by one of the remaining points

A, by the ratio between the segments determined by the other

point C, these segments being taken in the same order in both

ratios. The a*nharmonic ratio among the sines of the angles is

formed in an entirely analogous manner. Moreover, it follows

from the manner of deriving our equation that it is immaterial

which segment and which angle we look upon as being divided,

if only both anharmonic ratios are formed in the same way.

A different choice of our four triangles would have yielded the

following relation :

s\r\(ad) s\n(bd) AD BD
sin(ac) sirT^)

~
~AC

~

E



66 GEOMETRY OF POSITION.

and it would not be difficult for you to produce still other similar

relations for the same points and rays.

96. It is worthy of note that this relation remains true if we

alter the position of u relative to the sheaf of rays. Hence upon

any other straight line u (Fig. 28) which cuts the rays a, b, c, d,

in points A-^ B^ Cv D^ respectively, segments are formed for

which the following relation, analogous to (i), is true :

sm(ad) sin(^) A^

and similarly if A, B, C, D, are projected from any point S
l

(Fig. 29) different from S, by four rays a
lt b^ c

ly d^, then,

AB CB / ,

~CD

An (inharmonic ratio among four elements of a range ofpoints or

of a sheaf of rays of the first order does not therefore alter its value

if these elements are replaced by the corresponding elements of a per

spective range or sheaf. (Compare Pappus, Mathematical Collec-

tiones, vn. 129.)

97. Since now we can always consider two one-dimensional

primitive forms, which are projectively related, as the first and

last of a series of primitive forms of which each is perspective to

those adjacent, it follows that

Jf two primitive forms are projective^ then every anharmonic ratio

among four elements of one of them is equal to the analogous an

harmonic ratio among the four corresponding elements of the other.

If, for example, u and u^ are two projective ranges of points, and

to the points A, B, C, D, of u correspond the points A 19
JBV Cv D^

of
j,

then there exists among the segments which are formed by

these points the proportion :

AB CB AB , ,

AD
~

Steiner used this property as definition of the projective relation,

and in this way placed the treatment of anharmonic ratios at the

foundation of his Systematische Entwickelung, etc. The theorem

holds equally well for sheaves of planes, since the angles between

the planes of such a sheaf are measured in a sheaf of rays whose

plane is at right angles to the axis of the sheaf of planes, and which

is perspective to the latter.



METRIC RELATIONS OF PROJECTIVE PRIMITIVE FORMS. 67

98. In conclusion, it would be well to state here the metric

properties of the angles of a harmonic sheaf of rays or planes. If

a, b, c, d, are four elements of such a sheaf, and A, B, C, D (Fig. 19),

the four harmonic points in which these are cut by a straight line,

we have for the latter the relation ^^= --
(Art. 72), and thereto DC

fore from equation (i) :

sin(0^)_ sin (ad)

sin(^)

.

EXAMPLES.

1. (a) Two ranges of points u and u are each perspective to a third

range u.,
; construct the sheaf of rays generated by u and u

lm
When

is this of the first and when of the second order ?

(d) Two sheaves of rays S and S
l

are each perspective to a third

sheaf S2 ; construct the range of points (curve) generated by S and S\.

When is this of the first and when of the second order ?

2. () Of two projective ranges of points u and u
lt three, pairs of

homologous points are given ;
to any fourth point D of u construct the

corresponding point Dl
of //

1}
whether // and u^ lie upon the same or

upon different straight lines.

(ff) State and perform the reciprocal operation to (a).

3. To bring two projective sheaves of rays or ranges of points into

perspective position.

4. To bring a range of points and a sheaf of rays projective to it

into perspective position.

5. In one of two given perspective sheaves of rays find two rays
normal to each other which correspond respectively to two normal rays
in the other sheaf, and hence show that in two projective sheaves of

rays whose centres do not lie infinitely distant there is always a pair
of homologous right angles.

6. If a sheaf of planes u is perspective to a sheaf of rays 5, the axis

of the sheaf of planes is normal to one of the two rays at right angles
in 5 which correspond to two planes at right angles in u. Thus we
find that each of the two following problems admits of two solutions :

Given a sheaf of rays S and a sheaf of planes u projective to it, it

is required

(1) to pass a plane through a given point which shall intersect u in

a sheaf of rays congruent to 5.

(2) to find an axis from which 5 is projected by a sheaf of planes

congruent to u.
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7. Place a sheaf of rays S and a sheaf of planes u in such relative

positions that three given planes a, /?, y, of n shall pass through three

given rays a, b, c, of S (problem 6).

8. Construct a plane cutting the lateral faces a, ft, y, of a triangular

prism in a triangle abc which is similar to a given triangle a^b-^c^

[This problem can be reduced to the preceding.]

9. Given two fixed straight lines u and u intersecting in O, and two-

points S and S collinear with O. A straight line v rotates about a fixed

point 7 and intersects 21 and u in A and A
, respectively. Show that the

locus of the point of intersection of the straight lines SA and SA is a

straight line. [Chasles, Geometric Superieure, Paris, 1880, Art. 342,

Pappus, Math. Coll., Book vil., Props. 138, 139, 141, 143.]

State also and prove the reciprocal theorem.

10. P, S, and S are three collinear points, // and it two fixed lines

which intersect in O. Through P an arbitrary straight line i&amp;gt; is drawn

which intersects u and in A and A, respectively ;
the straight lines

AS and A S intersect in M. Show that as v rotates about P, M will

move upon a straight line which passes through O. [Chasles, loc. cit.,

Art. 343-1

This proposition may also be stated as follows :

If the three sides of a variable triangle MAA rotate about three

fixed collinear points P, S
, S, respectively, while two vertices A and

A move upon two fixed straight lines which intersect in O, then the

third vertex M will describe a straight line which also passes through O.

In this form the proposition is equivalent to Desargues theorem

upon perspective triangles stated in Article 7. State the reciprocal

theorem.

11. If the four vertices A, B, C, D, of a variable quadrangle move

respectively upon four fixed straight lines which pass through one

point O, while three of the sides AB, BC, CD, rotate about three fixed

collinear points, then the remaining three sides will also rotate about

fixed points, these six fixed points forming the vertices of a complete

quadrilateral, i.e. they lie three by three upon four straight lines,

[Cremona, Protective Geometry, Oxford, 1885, Art. in.]



LECTURE VI.

CURVES, SHEAVES, AND CONES OF THE SECOND ORDER.

99. In the last lecture we reached the following important results :

If two projective sheaves of rays
lie in one plane, but are neither

concentric nor perspective, the

points of intersection of their

homologous rays form a curve or

range of points of the second

order, which has not more than

two points in common with any

straight line.

If two projective ranges of points

lie in one plane, but are neither

upon the same straight line nor

perspective, the lines joining pairs

of homologous points form a sheaf

of rays of the second order, which

has not more than two rays in

common with any sheaf of the first

order.

In order to give you a definite conception of these forms of

the second order, I shall state now, giving proofs later, that the

curve of the second order is identical with the conic section, and

hence may be obtained by intersecting an ordinary circular cone

with a plane. A sheaf of rays of the second order consists of the

system of tangents to such a conic section.

100. To the two preceding theorems from plane geometry, there

correspond the following from the geometry of the bundle of rays :

If two projective sheaves of

planes whose axes intersect are

not perspective, the lines of inter

section of their homologous planes
form a cone of the second order,

which has not more than two rays
in common with any plane. The

point of intersection of the two

axes, through which all rays of the

If two projective sheaves of rays

whose planes intersect are con

centric but not perspective, the

planes determined by pairs of

homologous rays form a sheaf of

planes of the second order, which

has not more than two elements

in common with any sheaf of

planes of the first order. The
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cone pass, is called the vertex common centre of the sheaves of

of the cone. rays, through which all planes of

the generated sheaf pass, is called

the vertex of the sheaf of planes.

The cone and the sheaf of planes of the second order may be

derived from the curve and the sheaf of rays of the second order

by projecting the latter forms from some point not lying in their

plane. For, the two projective sheaves of rays S and S
1 (Figs. 31

and 33), by which a curve of the second order is generated, are

projected from such a point O (your eye, for example) by two

projective sheaves of planes which generate a cone of the second

order having its vertex at O and passing through the given

curve. In the same way the two projective ranges of points u

and
7/j (Fig. 32) which generate a sheaf of rays of the second

order are projected from O by two projective sheaves of rays, and

these in turn generate a sheaf of planes of the second order which

passes through the given sheaf of rays and has O for vertex.

Conversely, every cone of the second order is intersected by a

plane not passing through its vertex in a curve of the second

order ; for, the two projective sheaves of planes which generate

the cone are intersected in two projective sheaves of rays which

generate the curve of section. If, then, more than two rays of the

cone were to lie in one plane, more than two points of the curve

of section would lie in one straight line, which, from the theorem

quoted at the opening of the lecture, is impossible. You will

easily be able to prove for yourselves the analogous property of a

sheaf of planes of the second order, and at the same time you
will recognize the correctness of the following statements :

Any curve or any sheaf of rays Any cone or any sheaf of planes
of the second order is projected of the second order is intersected

from a point not lying in its plane by a plane not passing through its

by a cone or by a sheaf of planes vertex in a curve or in a sheaf of

of the second order. rays of the second order.

10 1. You will observe from this that all results which are ob

tained for plane forms of the second order may be immediately
carried over by projection to the analogous forms in the bundle

of rays. I shall confine myself, therefore, in the first place to the

investigation of curves and sheaves of rays of the second order, and

shall begin with the following observation :
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The curve of the second order k2
,

which is generated by two projectile

sheaves of rays S and S
x (Fig. 31),

Passes through the centres of these

sheaves.

For to the ray SS
lt

or /, of the

sheaf
6&quot;,

i.e. to the line joining the

two centres, corresponds in the

sheaf S
l
a ray pl

different from

Si$, since the sheaves are not per

spective ;
the point of intersection

of p and /i, namely 5
1?

lies there

fore upon the curve /
2
,
and similarly

it may be shown that the centre

S is also a point of the curve.

The sheaf of rays of the second

order K2
,
which is generated by two

projective ranges of points u and
u

i (Fig. 32), contains the straight
lines u and Uj upon which the

ranges ofpoints lie.

For to the point uu
lt

or
/&amp;gt;,

of

the range u, i.e. to the point of

intersection of the two straight

lines, corresponds in u a point Pl

different from u\u, since the ranges
of points are not perspective ; the

joining line PP
l

or u^ belongs
therefore to the sheaf 1C2

,
and

similarly it may be shown that u
ikewise belongs to the sheaf.

FIG. 31.

102. In the theorem on the left, of the preceding article, the

ray /j (Fig. 31) is the only ray passing through S
1
which has but

one point, namely S
lt

in common with the curve. Any ray a^ of

the sheaf S
lt

different from p^ is intersected by its corresponding

ray a, in a second point of the curve /
2

,
not coinciding with Sr

We say therefore that the ray p l
touches the curve K1 in S

lt
or that

it is a tangent to /
2

.

Similarly, in the theorem on the right the point Pl (Fig. 32)

is the only point of
x through which there passes but one ray of

K*, namely, the ray //
T

itself. For through any other point A
l
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of u^ there passes a second ray A^A of A 2
,
since A cannot coincide

with P and hence A^A differs from ur We call P
l

therefore a

point of contact of the sheaf K^ in the ray uv Hence :

To the common ray of two pro-

jective sheaves of rays there corre

sponds in each sheaf a tangent
to the curve of the second order

which is generated by the sheaves.

To the common point of two

projective ranges of points there

corresponds in each range a point

of contact of the sheaf of the

second order which is generated

by the ranges.

FIG. 32.

103. As you know, two one-dimensional primitive forms can be

so correlated projectively to each other that to any three elements

of the one correspond three elements of the other, chosen arbitrarily,

and the correlation so established is unique.

If, then, we wish to construct a curve of the second order by
means pf projective sheaves of rays, we may not only choose at

random the centres S and S
l
of the generating sheaves (Fig. 31),

but also three of the points of the curve, namely, the points of

intersection of three pairs of corresponding rays of the sheaves.

In case one of these three points of intersection coincides with S,

the tangent to the curve at the point S may be chosen arbitrarily,

and the same thing is true for Sr
In order to construct a sheaf of rays of the second order by

means of projective ranges of points, we may not only choose at

will the bases u and u
l
of the generating ranges (Fig. 32), but also

in the plane containing u and uv three other rays of the sheaf,

namely, the lines joining any three pairs of corresponding points
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of the ranges. In case one of these joining lines coincides with

//, then the point of contact of the sheaf in the ray u may be

chosen at will, and the same thing is true for UY

Consequently the problems

To construct a curve of the To construct a sheaf of rays of

second order of which five points, the second order of which five

or four points and the tangent at rays, or four rays and the point

one of them, or three points and of contact in one of them, or three

the tangents at two of them, are rays and the points of contact in

given, two of them, are given,

admit of solution, and evidently reduce to the following problems :

Two projective sheaves of rays Two projective ranges of points
5 and S

l
are given by three pairs u and n

v
are given by three pairs

of corresponding rays a and &amp;lt;2

1?
of corresponding points A and A v

b and b^ c and c
l ;

to construct B and B^ C and C
l ;

to construct

any required number of points of any required number of rays of the

the curve of the second order k- sheaf of the second order K2 which

which these sheaves generate. these ranges generate.

104. The solution of these problems depends upon finding the

element of one primitive form which corresponds to an arbitrarily

chosen element of the other when three pairs of corresponding
elements are given, since at the same time a new element of the

resulting form of the second order is determined. I might refer

you, then, to the construction given in the last lecture (Art. 91).

I shall, however, solve the problem again and in a more sym
metrical manner, particularly since many important theorems are

connected with the solution. This solution consists in finding a

third primitive form which is perspective to each of the given

forms. Thus :

*

Through the point of intersec- In the line AA
V joining any two

tion aa-^ of any two corresponding corresponding points A and A
l
of

rays of the projective sheaves 6&quot; the projective ranges of points u

and S
1 (Fig. 33) draw two straight and u\ (Fig. 34) choose centres &amp;gt;S*

lines u and u^ of which the first and S\ of two sheaves of rays of

u cuts the sheaf S(abc] in a range which the first S(abc] projects the

of points u(ABC\ and the second range of points u(ABC\ and the

//! cuts the sheaf S^a^c^ in a second S^a^c^) projects the range

* I would again urge that the beginner draw the diagram for himself according
to the statement of the text, since by this means the comprehension of the solution

is greatly simplified.
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range of points u-^A-JB^C^. As
sections of protective sheaves the

ranges of points u and u
l
are like

wise projective to each other. But

they are, moreover, perspective,

since in their point of intersection

two homologous elements A and A
1

coincide (Art. 86). They are thus

sections of a single sheaf of rays
52 in whose centre the rays BB^
and CC^ intersect.

In order now to find for any

ray d of the sheaf S the corre

sponding ray d
1
of S

lf
we project

the point of intersection du or D
from the centre S2 upon the straight

line n
l

at D
l ;

then D^S-^ is the

required ray d
lt
and the point dd

l

or P lies upon the curve of the

second order Kl
.

UI(AI^II\ As projectors of pro

jective ranges of points these

sheaves of rays S and &\ are like

wise projective to each other. But

they are, moreover, perspective,

since in the line SS
l joining their

centres two homologous rays a and

!
coincide (Art. 86). They are

thus projectors of a single range
of points z/2 , upon which the points

of intersection bb
l
and cc lie.

&quot;

In order now to find for any

point D of u the corresponding

point Dl
of u^ we determine the

intersection of the straight line DS
or d with 2 ,

and project this point

of intersection from $\ by the ray

d
l upon the straight line u^. The

intersection of d
l

with u
l

is the

required point D
lt

and the ray

DD
l belongs to the sheaf of the

second order A 2.*

FIG. 33-

105. The following problems are solved by the same con

structions :

* In Fig. 34 the sheaf of the second order A 2
is indicated by the curve which

it envelops.
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Upon any ray of 5 (or SJ to

find the second point of inter

section with the curve of the

second order, i.e. the point different

from S (or 5,).

Through any point of u (or uj
to draw the second ray of the

sheaf of the second order, i.e. the

ray different from u (or u^).

FIG. 34.

If by the same method we construct the two rays (or points)

which correspond to the common ray of the sheaves (or to the

point of intersection of the ranges of points) we obtain a solution

for the problems :

To construct the tangents to a

curve of the second order, at the

centres of the generating sheaves

of rays.

To find the points of contact in

,a sheaf of rays of the second order,

upon the two projective ranges of

points which generate the sheaf.

1 06. Another very important result is derived from the above

construction.

If in the construction on the left (Fig. 33) we draw the ray S^
or m

lt
which is intersected by u-^

and u in M
l
and M respectively,

there corresponds to this in S the ray SM ;
for if D

1
is brought
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into the position Mv then will both D and P coincide with M.
Thus M is that point in which the curve k2

is intersected a second

time by u. Similarly the point Z
15

in which u^ cuts the curve k2

a second time, lies upon the straight line SS
2

. I would remind

you at this point that the arbitrarily chosen straight lines u and u
t

are subject to no other condition than that they intersect in a point

of the curve k2
.

On the other hand, if in the construction on the right (Fig. 34),

we join the point of intersection u^ or Ql
with 5, the point Q

of u which corresponds to Q l
of u^ will lie upon this straight line

;

or SQl
is a ray of the sheaf of the second order X2

;
and similarly,

the ray S^ which projects the point of intersection of u and u.2

from
S-L

is a ray of K2
. It will be remembered that S and S

t

were chosen arbitrarily upon a ray a of the sheaf K2
. These

phases of the general constructions give us the solution of the

problems :

Upon any straight line u which Through any point S which lies

cuts a curve of the second order upon a given ray a of a. sheaf of

/ 2 in a given point A, to find the the second order A 2
,
to draw the

second point of intersection with second ray of this sheaf,

the curve.

107. Moreover, the two exceedingly fruitful theorems of Pascal

and Brianchon, of which I made mention in the Introduction, arise

spontaneously out of these constructions.

If, on the left, from the five points S, Sv A, AT, and Z
x

of the

curve k2
,
we determine any sixth point P (Fig. 33), then in the

construction necessary to determine P it is seen that D the point

of intersection of SP and u lies in a straight line through S.
2 ,

with D
l

the point of intersection of S^P and r But D, D^
and S

2
are those points in which the three pairs of opposite sides

of the hexagon SPS
1
MAL

1
intersect.

If on the other hand, in the problem on the right (Fig. 34),

from the five rays u, uv SS^ SQV and S^ of the sheaf of the

second order K2
,
we construct any sixth ray Z&amp;gt;Z&amp;gt;

1}
then the straight

lines SD and S^D^ must intersect upon the straight line Q-^R or u
2

.

But these three straight lines passing through one and the same

point are the principal diagonals, i.e. the lines joining opposite

vertices, of the hexagon
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\Ve accordingly have the following theorems :

PASCAL S THEOREM.* BRIANCHON S THEOREM.

In any simple hexagon which is In any simple hexagon which is

inscribed in a curve of the second formed of six rays of a sheaf of

order, the three pairs of opposite the second order, the three prin-

sides intersect in three points of cipal diagonals intersect in one

one straight line. point.

1 08. To be made perfectly rigorous the demonstration of these

theorems must, I admit, be freed from certain restrictions. The
two hexagons which here come into question contain elements

which are not chosen freely ; for on the left, for example, the

vertices A, J/, Z x ,
and P were chosen at random upon the curve /-,

but the same is not true of 6&quot; and Sr It might be thought that

the centres 6&quot; and S
l
of the projective sheaves of rays by which

the curve is generated are distinguished from other points of the

curve by peculiar properties ;
for example, that Pascal s theorem

holds true only for those inscribed hexagons of which 6&quot; and S
l

are two vertices. We shall now remove this possibility by

demonstrating that any two points of the curve whatsoever might
be taken as the centres of projective sheaves of rays which generate
the curve, and hence that S and ^ may be replaced in the Pascal

hexagon by any two points of the curve chosen arbitrarily. The
same thing is true of the straight lines u and u

1
which appear as

sides in the Brianchon hexagon.

109. If in the Pascal hexagon SPS
1
MAL

1 (Fig. 33) we imagine
all the vertices except A to remain fixed while A moves along the

curve, then L^A or u^ will rotate about Zj and MA or // about M,
while the points Dl

and D move upon the fixed straight lines

d
l
and d in such a way that the straight line DD

l always passes

through the fixed point *$&amp;lt;,.
The Pascal theorem therefore holds

true for any one of the hexagons so constituted.

Now the points Dl
and D describe two perspective ranges

d^ and d, each of which is a section of the sheaf of rays &amp;gt;.
At

the same time ?/
T
and u describe about Z

x
and M, respectively,

projective sheaves of rays, these being projectors of the perspective

ranges of points d
l
and d

;
we may thus consider the curve k- to

* Pascal discovered this fundamental property of six points of a conic section

in 1639 when only 16 years of age. Brianchon published his equally fundamental

theorem in 1806 in \hz Journal de VEcole polytechnique, Vol. xm.
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be generated by the protective sheaves of rays Z
x
and J/, whose

centres have been chosen arbitrarily upon the curve.

Similarly, let us imagine the side SS
l
of the Brianchon hexagon

SS
l
jRDD

lQl (Fig. 34) to so move as to remain a ray of the sheaf

K2 while the other sides are unaltered
;
then S

l
describes a range

of points S-^-R or r
lt

and *S describes a range of points SQ l
or g

projective to rv For the point of intersection of the principal

diagonals S^D^ and SD moves upon the fixed straight line Q^
and describes in this line a range of points u.2 to which q and r^

.are perspective. We might therefore consider the sheaf of the

second order to be generated by the projective ranges of points

q and rv

Hence the Pascal and Brianchon theorems are perfectly general,

the proof of which has brought us to the following fundamental

theorems upon curves and sheaves of rays of the second order :

A curve of the second order is A sheaf of rays of the second

projectedfrom any two of its points order is cut by any two of its rays

by projective sheaves of rays, those in projective ranges of points, those

pairs of rays being homologous pairs of points being homologous
which pass through the same point which lie upon the same ray of the

of the curve. sheaf.

1 10. We shall make use of these theorems later in correlating

forms of the second order to each other and to the one-dimensional

primitive forms, in a way similar to that in which we have estab

lished projective relations among the latter forms. With this in

view and upon the basis of these theorems we propose the following

definitions :

Four points of a curve of the Four rays of a sheaf of the

second order are called harmonic second order are called harmonic

points if they are projected from rays if they are intersected by

any, and consequently from every, any, and consequently by every,

fifth point of the curve by four fifth ray of the sheaf in four har-

harmonic rays. monic points.

Thus by three points of a curve, or three rays of a sheaf, of the

second order, the fourth harmonic is determined unambiguously,

and can easily be constructed as soon as it is specified from which

of the three given points or rays it is to be separated.

in. Bearing in mind the statement of Article 102 concerning

tangents of the curve of the second order and points of contact
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of the sheaf of rays of the second order, and the results of Article

109, we conclude that

through any point of a curve of

the second order there passes one

tangent to the curve.

upon any ray of a sheaf of the

second order there lies one point
of contact of the sheaf.

Every curve of the second order, then, is enveloped by a system
of tangents, and every sheaf of rays of the second order envelops
a series of points of contact. It will be one of the problems of

my next lecture to show you that this system of tangents to a

curve of the second order is nothing else than a sheaf of rays of

the second order, and that the series of points of contact in a

sheaf of rays of the second order constitutes a curve of the second

order.

112. Other very important properties of curves and sheaves of

rays of the second order are stated in the following theorems, of

which we shall hereafter make frequent use :

Two curves of the second order

coincide if they have in common
either Jive points, or four points
and the tangent at one of them,
or three points and the tangents
at two of them.

For, if we project both curves

from one of their common points

S by a single sheaf of rays, to

this is project!ve each of the two

sheaves projecting the curves sep

arately from another common

point 5r But the latter sheaves

are identical in any of the three

cases mentioned, since in each case

they have three self-corresponding

rays, namely: (i) the rays joining
S

l
to the three common points of

the curves, different from 6&quot; and S
l ;

(2) the rays joining S\ to the two

remaining common points and to

5 if the curves have a common

tangent at 5
; and (3) the ray join

ing S
l
to the third common point,

the ray 5X
5 and the tangent at S

l

if the curves have common tangents

Two sheaves of rays of the second

order coincide if they have in com
mon either five rays, or four rays
and the point of contact in one of
them, or three rays and the points

of contact in two of them.

For, to the range of points in

which one of the common rays u

intersects both sheaves of rays, is

projective each of the ranges of

points in which the two sheaves

of rays are separately intersected

by a second common ray */j. But

the latter ranges of points are

identical in any of the three cases

mentioned, since in each case

they have three self-corresponding

points, namely: (i) the points of

intersection of /^ with the three

common rays of the sheaves, differ

ent from u and u
l ; (2) the points

of intersection of u
l
with the two

remaining common rays and with

u if the sheaves have a common

point of contact in //
;
and (3) the

points of intersection of u
l
with the
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at S and S
v

. Every ray of S there- third common ray, and with u and
fore intersects both curves a second the point of contact in n

v
if the

time in the same point, and hence sheaves have common points of

the two curves are identical. contact in it and 2/
x
. The rays of

the two sheaves, therefore, which

pass through the same point of u

coincide, and hence the two sheaves

are identical.

EXAMPLES.

1. Given five points of a curve of the second order
;
with the aid of

Pascal s theorem determine upon any straight line passed through one

of them, its second point of intersection with the curve, and so construct

any required number of points of the curve.

2. Given five rays of a sheaf of the second order
;
with the aid of

Brianchon s theorem determine the second ray of the sheaf passing

through any point of one of the given rays, and so construct any

required number of rays of the sheaf.

3. Prove that the circle is a curve of the second order, and that its

system of tangents constitutes a sheaf of rays of the second order.

What angle does that segment of a movable tangent to a circle,

which lies between two fixed tangents, subtend at the centre ? Is the

angle constant ?

4. A variable triangle ASA 1
so moves in its plane that the extremi

ties of the base A and A
1 continually lie upon straight lines u and u^

respectively, while the sides SA and SA
1
rotate about the fixed point Sy

the angle S remaining of constant magnitude. Show that the base

AA
l generates a sheaf of rays of the second order, to which u and u

l

belong. [It will be seen later that the point S is a focus of the curve

enveloped by the sheaf of rays.]

5. If two pairs of straight lines a, b and a-^ b lying in the same

plane rotate, the first pair about S, the second about 6\, so that the

angles (ab) and (a^b^ remain of fixed magnitude, and one point of

intersection aa^ of a pair of sides traverses a straight line, then each

of the three remaining points of intersection ab^ a^b, and bb^ describes

a curve of the second order passing through S and S^ [Newton s

organic method of describing a conic section.]

6. If two concentric sheaves of rays, whose planes intersect at an

oblique angle, are so correlated to each other that every ray is per

pendicular to its homologous ray, then will they generate a sheaf of

planes of the second order
;

in other words, if a right angle be

rotated about its vertex, so that one side moves in a certain fixed
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plane and the other side in a different plane, the plane of the angle
will envelop a cone of the second order, to which the two fixed planes

are tangent.

7. If from any point perpendiculars be let fall upon the tangent

planes of a cone of the second order, these will lie upon another cone

of the second order.

The tangent planes are generated by two projective sheaves of rays,

and from these can be immediately derived two projective sheaves of

planes of the first order which generate the second cone.

8. The geometrical locus of a point S, from which a plane quadrangle
KLMN is projected by a harmonic sheaf of rays S(KLMN\ is a curve

of the second order circumscribing the quandrangle (Art. no).

If we draw the fourth harmonic ray to NK, NL, and NM, this will

be tangent to the required curve at N* and hence the curve can easily

be constructed.

Ascertain whether or not there is more than one curve of the second

order satisfying the given conditions.

9. State the reciprocal of Example 8.

Remark : With Von Staudt we shall call a group of four elements

of a one-dimensional primitive form, taken in a definite order, a throw

[ Wurf\. Two throws, ABCD and abed, are said to be projective when
the two primitive forms in which they lie can be so related projectively

to each other that the elements A, B, C, D of the one correspond to

a, b, c, d of the other. Example 8 may then be generalized as follows :

Suppose abed is a given throw consisting, say, of four rays of a sheaf

of the first order ; then all points S, from which a quadrangle KLMN
is projected by a sheaf S(KLMN} projective to abed, lie upon a curve

of the second order circumscribing the quadrangle.
How would the tangent at N be constructed in this general case ?

The reciprocal theorem may be generalized in a similar way.

10. If two triangles ABC and D
1
jE

1
f

l
are inscribed in a curve of

the second order k-, they are also circumscribed to another curve of

the second order
;
and conversely.

The throws A(BCE1
F

1 } and D^BCE^}, are projective since they
consist of corresponding elements in the projective sheaves of rays

A and D^ which generate the curve. If, now, B^C^E^F-^ is the section

of the sheaf A(BCE^ made by the line E^, and BCEF that of

the sheaf D^BCE^F^ made by the line BC, then are also B^C^E^
and BCEF projective throws, and the six sides of the triangles, BC,

BB^ CQ, EiFn EE^ and FF^ are rays of a sheaf of the second

order. The converse may be proved analogously.



LECTURE VII.

DEDUCTIONS FROM THE THEOREMS OF PASCAL AND
BRIANCHON.

113. The important properties which have just been proved

concerning the hexagon in the curve and in the sheaf of rays of

the second order bring us to other theorems no less important con

cerning pentagons, quadrilaterals, and triangles, similarly described.

I must preface the deduction of these theorems with a remark

upon the tangents to the curve, and the points of contact in the

sheaf of rays.

114. Any ray/j which lies in the plane of a curve of the second

order and which has only one point S
l

in common with it (Fig.

31), has been called a tangent to the curve at the point S
lt

and we have found that through each point of the curve a single

tangent may be drawn. Any other ray a
1

of the plane passing

through 6*!
cuts the curve in a second point A. If now we rotate

the ray a
t
about S

lt
its intersection A moves along the curve and

approaches indefinitely near to the point S^ while a^ approaches

indefinitely near to the position of the tangent pv The tangent

thus presents itself as the limiting position of a straight line which

joins two points of the curve indefinitely near (consecutive] to each

other^ and this definition clearly applies to tangents not only of

curves of the second order, but of any curves whatsoever. Simi

larly, we have named any point Pl (Fig. 32), through which passes

only one ray u^ of a sheaf K*1 of the second order, a point of

contact of the sheaf in the ray u
lt

and have found that upon
each ray of the sheaf K2 there lies one, and only one, point of

contact. Through any other point A^ of u^ there passes a second

ray a of the sheaf. If we move A
l along uv a traverses the sheaf
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Kz
,
and approaches indefinitely near to the position of the ray

#! as A
l approaches indefinitely near to the point Pr In this

way the point of contact appears as the limiting position of the point

of intersection of two rays of the sheaf indefinitely near to each other.

115. If, then, in a hexagon which is inscribed in a curve of

the second order, two adjacent vertices approach indefinitely near

to each other, the side joining them assumes the position of a

tangent to the curve ; and if in a hexagon whose sides are rays

of a sheaf of the second order, two adjacent sides approach in

definitely near to each other, in the place of the vertex in which

they intersect we have a point of contact of the sheaf. The hexa

gon will become a pentagon, a quadrangle, or a triangle, according

/\

FIG. 35. FIG. 36.

as one, two, or three pairs of adjacent elements coincide. As

applied to the pentagon, the theorems of Pascal and Brianchon

read as follows :

In any pentagon inscribed in a

curve of the second order, the points

of intersection of two pairs of non-

adjacent sides lie in a straight line

-with that point in which the fifth

side is cut by the tangent at the

opposite vertex.

This double theorem affords

problems :

Given any five points of a curve

of the second order, to draw the

tangents at these points with the

use of the ruler only.

/;/ any pentagon formed from
rays of a sheaf of the second order,

tJie two straight lines which join
twopairs ofnon-consecutive vertices

intersect that straight line which

joins the fifth vertex to the point of
contact of the opposite side in one

and the same point.

the solution of the following two

Given any five rays of a sheaf of

the second order, to find their points

of contact with the use of the ruler

only.
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1 1 6. For the quadrangle and quadrilateral we obtain the following

theorems (Fig. 37) :

In any quadrangle inscribed in a

curve of the second order, the points

of intersection of pairs of opposite

sides lie in a straight line with the

points ofintersection ofthe tangents
at opposite vertices.

In any quadrilateral formed of

rays of a sheaf of the second order,

the diagonals a?id the straight lines

joining the points of contact in op

posite sides intersect in one point.

FIG. 37.

117. And finally for the triangle we have the following:

The three points in which the

sides of any triangle inscribed in a

curve of the second order are inter

sected by the tangents at the opposite

vertices lie upon one straight line.

In any triangle whose sides are

rays of a sheaf of the second ordery

the three straight lines which join
the vertices to the points of contact

on the opposite sides intersect in one

point.

118. All these theorems, which prove very useful for the solution

of a series of simple problems (in particular those of Art. 103),

admit of direct deduction without reference to the hexagon. I shall

by way of illustration give you the direct proof for the theorems

upon the quadrangle, since this proof discloses important new
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properties of protective primitive forms, and since I shall make use

of these in deducing other results.

In order readily to find in one of two projective sheaves .S

and S
l (Fig. 33) the ray corresponding to any chosen ray of the

other, we construct (Art. id^) a third sheaf of rays S* perspective

to each of the given sheaves. For this purpose we intersect

S and
.Sj

in the ranges of points u and //
1} respectively, by two

straight lines passing through A the point of intersection of any
two homologous rays a and ^ of the given sheaves

;
since these

two ranges are perspective, the sheaf S.2 of which they are sections

is the one required.

This is equally true if u coincides with a^ and u
l
with a (Fig. 38),

so that the points fra
l
and ^0, or B and B^ ca^ and ^a, or

FIG. 38.

C and C
lt etc., in which two corresponding rays a and a^ are cut

by any two others, as b and b^ c and cv alternately, lie in a

straight line with a fixed point S.
2

. If through this point S
2

a

straight line DD
l

is passed which cuts the rays a
t
and a in the

points D and D
ly respectively, then are SD and S

1
Z&amp;gt;

1 corresponding

rays of the sheaves -S and 6^. If now we bring Dl
into coincidence

with Sj SD falls upon SS
Z
or

q&amp;gt;

so that to this ray of S corresponds
the ray ^5 or q^ which joins the centres of the sheaves 5 and Sr
The straight line SS

2
or q is thus a tangent to the curve of the

second order generated by S and S
lt
and similarly S^2 or/j is also

a tangent. Consequently the fixed point S
2

is the intersection of

the two tangents q and p^ drawn at 6&quot; and Sv respectively, i.e. the

intersection of the two rays which correspond (in the two sheaves)

to the common ray 6&quot;^.
We obtain therefore the same point S2

whether we let //
x
and // coincide respectively with a and a

l
or
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with some other pair of homologous rays (as b and b^ or c and c-^,

That is to say : The straight line which joins the points in which

any two pairs whatsoever of homologous rays intersect alternately

(e.g., ab^ and a^b, ac^ and a^c, etc.), passes through the point S2
.

On the other hand, in order easil^to find the point in one of

two projective ranges u and u^ (Fig. 34) which corresponds to

any point of the other, we determine (Art. 104) a third range u%

which is perspective to each of the given ranges in the following

way : Project u and u^ by two sheaves of rays S and S^ whose

centres are chosen upon the straight line a joining any two

homologous points A and A
l

of the given ranges ;
since these

sheaves are perspective, the range u.2 of which they are both pro

jectors is the one sought.

FIG. 39.

If now we let S coincide with A^ and S\ with A (Fig. 39), u^

will pass through those two points of u and u^ which correspond

to their point of intersection. For, two arbitrary points D and

D
l
which correspond to each other are projected from A

l
and

A respectively by two rays A^D and AD
l
which intersect upon

the straight line u
2 ;

but obviously this intersection, and con

sequently also D^ coincides with the point u
t
u
2
or P

l
if D is brought

into coincidence with uu
1
or P, so that u

2 passes through one (and

similarly through the other) of the two points Pl
and Q which

correspond to the intersection point P, Qv of // and ur In other

words, 2/2 joins the points of contact of the sheaf generated by
u and u

l9 lying on these two lines. We therefore always obtain
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the same straight line u.2 whether we let the centres S
t
and S

coincide with A and A
l

or with some other pair of homologous

points, as B and B or C and Cv The point of intersection of

any two straight lines joining pairs of homologous points alternately

(e.g., the lines BC^ and ^C^lies upon the straight line u.
2

.

119. The results just obtained may be arranged in the following

double theorem so as to show their relation to each other :

The two points ab
l
and a^, in The two straight lines ABl and

which any two pairs a, a-^
and b, b

v A^B, which join any two pairs of

of homologous rays in projective homologous points A, A
l and

sheaves S and 5X intersect alter- B, B of projective ranges u and

nately, lie in a straight line with ul alternately, intersect upon the

the point S% in which the rays straight line u2 which joins those

corresponding to the common ray points of the ranges corresponding
SS

1
intersect. to the intersection point of u and uv

1 20. You will immediately recognize in these theorems those

already stated concerning the quadrangle in the curve and in the

sheaf of the second order from the following remarks :

In the curve of the second order, In the sheaf of rays of the second

which is generated by the sheaves order, which is generated by the

S and 6\, the points S, aa
lt
S

lt
and ranges of points u and

j, the rays
bb determine an inscribed quad- //, AA lt u^ and BB-^ form a quad

rangle in which a and b^ also a rangle in which A and B
lt

also A
l

and &, are opposite sides, while the and B, are opposite vertices, while

two tangents which touch the curve the two points of contact in the op-
in the opposite vertices S and S

1 posite sides u and u
l
lie upon u2.

intersect in S.,.

It is apparent that the theorems of the last Article afford a very

convenient method of determining that element in one of two pro

jective primitive forms of one dimension which corresponds to any

given element of the other. For example, if in two projective

ranges of points u and //
x (Fig. 39) three pairs of corresponding

points are given, the straight line u.
2

is obtained immediately from

these, and this in turn very simply determines the point of u
l

corresponding to any given point of u.

^ 121. The theorems upon the quadrangle in the curve and in the

sheaf of rays of the second order, proved here for a second time,

may be stated in the following general form :

If foitr points K, L, M, N, of a Iffour rays k, 1, m, n, of a sheaf
curve of the second order determine of the second order determine a
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a complete quadrangle and their

tangents k, 1, m, n, a complete quad
rilateral, the three pairs of opposite

vertices of the quadrilateral lie

upon the straight lines joining the

points X, Y, Z, in
f
which pairs of

opposite sides of the quadrangle
intersect {Fig. 37).

complete quadrilateral and their

points of contact a complete quad
rangle, the three pairs of opposite

sides ofthe quadranglepass througJi

the intersection points X, Y, Z, of
the straight lines (diagonals) join

ingpairs of opposite vertices of the

quadrilateral {Fig. 37).

For, the theorems as previously stated are true for each of the

three simple quadrangles comprised within the complete quadrangle
KLMN on the left, and for each of the three simple quadrilaterals

comprised within the complete quadrilateral klmn on the right.

,M

jn

FIG. 37.

But in this form the theorem on the left states exactly the

same thing as that on the right ;
for both state that the triangle

whose sides join the pairs of opposite vertices of the quadrilateral

is identical with the triangle XYZ, in whose vertices the pairs of

opposite sides of the quadrangle intersect.

And conversely, if a quadrangle KLMN have such position relative

to a quadrilateral klmn circumscribing it, then a curve of the second

order can be constructed which touches the straight lines k, /, m, n,
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in the points AT, Z, J/&quot;, N; or, a sheaf of rays of the second order

can be constructed which has the points A&quot;, Z, M, N, as points of

contact in the rays k, /, m, n. For in consequence of our theorem

.a curve of the second order which passes through the points

A&quot;, Z, M, N, and touches the straight line k in AT has also the

straight lines /, m, n, as tangents ;
and the sheaf of the second order,

which contains the rays k, /, m, n, and has K as point of contact

in k, has also Z, M, IV, as points of contact. Therefore four

tangents of a curve of the second order and their four points of

contact may always be looked upon as four rays of a sheaf of the

second order and their four points of contact.

A curve of the second order, which passes through three points

of contact
A&quot;, Z, J/, of a sheaf of rays of the second order, and

in two of these points K and Z has as tangents the rays k and /,

respectively, to which these points of contact belong, passes con

sequently through every fourth point of contact JV, and has the ray

of the sheaf
,
to which this point of contact belongs, as tangent

in this point. Conversely, a sheaf of rays of the second order contains

every tangent of a curve of the second order if only it contains three

of these tangents, the points of contact in two of them being points

of the curve.

We thus have the following beautiful relation between the curve

and the sheaf of rays of the second order :

The tangents of a curve of the The points of contact of a sheaf
second order form a sheaf of rays of rays of the second order form
of the second order. a curve of the second order.

122. On account of their importance we shall prove these relations

again, and by a method in which a new and interesting property

of the curve of the second order is brought to light.

Of the four vertices
A&quot;, Z, J/, N (Fig. 37), of a quadrangle

inscribed in a curve of the second order, let any one of them,

K for example, move upon the curve, while the remaining three

and their tangents do not alter their positions. Then the tangent k

of the point AT glides along the curve, and its points of intersection,

E and A, with the tangents n and /, move along these tangents.

It is easy to see that by this motion E and A describe two projective

ranges of points upon n and /, respectively, and hence that the tangent

k describes a sheaf of rays of the second order. For the two

diagonals EB and AD of the quadrilateral k, /, m, n, intersect always
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in a point Y of the fixed straight line LN, and describe in con

sequence, about the fixed vertices B and D, two perspective sheaves-

of rays ;
the ranges of points n and / described by the points

E and A are sections of these, and are therefore projective.

Hence the moving tangent generates a sheaf of rays of the second

order. That the points of contact in a sheaf of rays of the second

order form a curve of the second order may be proved in a similar

manner.

The straight line MK always passes through the point Y, and,,

by the motion of the point K, describes a sheaf of rays about

the fixed point M, which is perspective to the sheaf B described

by BE, and hence is projective to the range of points n described

by E. From this it follows as K traverses the whole curve :

Of a curve of the second order if there be given any fixed point M,
and any fixed tangent n, and we correlate to each ray through M,

projecting a point K of the curve, that point of n through which

passes the tangent at the point K, then the sheaf of rays M is pro-

jectively related to the range of points h.

This theorem, which Chasles places at the beginning of his-

treatise on conic sections, is, in the plane, self-reciprocal, since, as

was just now shown, or as follows directly from the theorem itself,

the tangents to a curve of the second order form a sheaf of rays

of the second order.

I shall only add that

The tangents at four harmonic points of a curve of the second

order are harmonic tangents.

That is to say, they are cut by any fifth tangent in four harmonic

points, since their four points of contact are projected from any
fifth point of the curve by four harmonic rays.

The fact that a sheaf of the second order is cut by any two of

its rays in projective ranges of points may now be stated thus :

&quot;The sheaf of rays formed by the tangents to a curve of the
&quot; second order is cut by any two of these tangents in projective

&quot;ranges
of

points.&quot;

123. The reciprocal relation existing between the Brianchon

theorem and the Pascal theorem may be seen directly when the

former is stated as follows :

&quot; The three principal diagonals of any hexagon circumscribed
&quot;

to a curve of the second order (i.e. whose sides are tangent to

&quot;the curve) intersect in one
point.&quot;
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So also the theorems upon the pentagon, the quandrangle, and

the triangle in a sheaf of rays of the second order may be con

veniently stated as referring to figures circumscribing a curve

of the second order.

124. I shall not do more at this point than to reproduce in

this new form a single one of the previously proved theorems relating

to forms of the second order lying in a bundle of rays, and its

reciprocal. It has already been shown (Art. 100) that any curve

or any sheaf of rays of the second order is projected from a point

not lying in the same plane by a cone or by a sheaf of planes of

the second order. Every tangent to the curve is projected by a

plane which has but one ray in common with the cone, and is there

fore called a tangent plane. Similarly every point of contact of

the sheaf of rays of the second order is projected by a so-called
* con

tact ray of the sheaf of planes, through which passes only one plane
of the sheaf. Since, then, every cone and every sheaf of planes of

the second order is cut by a plane not containing its centre, in a

curve or in a sheaf of rays of the second order, it follows that

The tangent planes of a cone of The contact rays of a sheaf of

the second order form a sheaf of planes of the second order form a

planes of the second order. cone of the second order.

The rays of a cone of the The tangent planes of a cone

second order are projected from of the second order are cut by any

any two of them by projective two of them in projective sheaves

sheaves of planes (comp. Art. 109). of rays.

125. As in Article 1 10 we may now set up the following definitions :

Four rays of a cone of the second Four tangent planes of a cone

order are called harmonic rays if of the second order are called

they are projected from any, and harmonic tangent planes if they
hence from every, fifth ray of the are cut by any, and hence by
cone by harmonic planes. every, plane tangent to the cone

in four harmonic rays.

The Pascal and Brianchon theorems may be stated thus for

the cone of the second order :

In any hexagonal pyramid in- In any hexagonal pyramid cir-

scribed in a cone of the second cumscribed to a cone of the second

order, the three pairs of opposite order, the three principal diagonal
faces intersect in straight lines planes intersect in one straight
which lie in one plane. line.
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It would be a useful exercise to transfer for yourselves the

remaining theorems which we have proved for plane figures, to the

corresponding forms in the bundle.

126. At this point I shall return to the curve of the second

order to draw some inferences concerning the forms which it takes

in the plane, from the fact that it has not more than two points

in common with any straight line. In consequence of this property

such a curve has in common with the infinitely distant line of its

plane either no point, or one point at which the line is tangent to

the curve, or, finally, two points in which it is intersected by this

line.

In the first case all points of the curve are in the finite region

of the plane, and all tangents are actual rays of the plane ;
such

a curve is called an ellipse (see Figs. 33 to 39).

In the second case the curve extends indefinitely with two

branches towards the point in which it is touched by the infinitely

distant straight line. This form is called a parabola (see

Fig. 32).

In the third case the curve consists of two curved lines, each

of which extends with two branches to infinitely distant points at

which the two curved lines are connected ;
in this case the curve

is called an hyperbola (Fig. 31).

Since the infinitely distant straight line of the plane cuts the

hyperbola, all tangents to this curve, in particular those at the

two infinitely distant points, are actual rays of the plane. The

tangents which touch the hyperbola in infinitely distant points

are called the asymptotes of the curve.

127. These three varieties of the curve of the second order

may be cut from any cone of the second order whose vertex

does not lie infinitely distant. A plane &amp;lt;r passed through the

vertex has, in common with the cone, either this point alone or it

touches the cone along one ray s, or, finally, it cuts the cone in

two rays / and q. Any plane o-
T parallel to o-, in the first of

these cases, cuts all rays of the cone in actual points, and the

cone itself in an ellipse. In the second case, the curve of inter

section is a parabola since the parallel ray ^ is intersected in an

infinitely distant point of
o-j ;

the line of intersection of &amp;lt;r

l

with the tangent plane cr is the infinitely distant tangent to the

parabola. Finally, in the third case the curve of intersection is

a hyperbola, since the two rays p and q are intersected by &amp;lt;r

l



THE THEOREMS OF PASCAL AXD BRIAXCHOX. 93

in their infinitely distant points. The planes which are tangent

to die cone along / and f are cut by o^ in the asymptotes to the

hyperbola; the hyperbola consists of two conned tines, since both

nappes of die cone are cut by rr We may consider a hyperbola,

tike any other variety of the carve of the second order, to be a

continuous dosed curve, -sinog anv cone by which such a &amp;lt;iirmt is

projected is a continuous closed surface,

128. Two projectrre sheaves of rays which tie in a plane and

are not perspective generate an ellipse, a parabola, or a hyperbola,

according as they have no pair, one pair, or two pairs of corre

sponding rays parallel If, now, one of these sheaves be given a

translation in the plane so that it becomes concentric with die

other without changing the direction of its rays, these concentric

sheaves wfll have in the first case no setfcorresponding rays, in

the second case one, and in the third case two such rays. The
third case always happens if the two sheaves are oppositely pro-

jective. Thus we may know immediatery in many instances whether

the curve determined by a sufficient number of given conditions,

for example, by five of its points, is an ellipse, a parabola, or a

r.&quot;J r7~ r .---

Invesogations similar to those of the preceding paragraph- become

more difficult if the curve is determined by its tangents or by two

FIG. -fa.

projective ranges of points which generate the enveloping sheaf of

rays. However, we know immediately that two projectile ranges
of points generate the system of tangents to a parabola only when
their infinitely distant points correspond to each other, for it is

only under these conditions that the infinitely distant tine of the

plane becomes a tangent to the curve. We call two projectrre

I3LDS5CS OK POilH^fc WQOQC TT^fl^rtdlV OISt2LElt POfytfS OOtTCSPOfiO tO GflfcCfl

other, similarly piojective. If two such ranges were brought into
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perspective position by causing any two actual points which cor

respond to coincide, they would appear as sections of a sheaf of

parallel rays, since their centre of projection must lie upon the

infinitely distant line, and therefore be infinitely distant.

Incidentally we have this metric relation for the tangents of

a parabola :

&quot;

Any two tangents u and u
l
of a parabola are cut proportionally

&quot;by
the remaining tangents AA lt BB^ DD^ etc.&quot; (Fig. 32). It

is from this property moreover that we derive the expression
*

similarly protective.

129. At this point the following theorems may be introduced :

&quot;If the vertices of a triangle so move upon three straight lines

&quot;

given in a plane that two sides of the triangle do not alter their

&quot;

directions, the third side either does not alter its direction or else

&quot;it describes a sheaf of rays of the second order which envelops

&quot;a parabola.&quot;

For, two of the ranges of points determined upon the three

given lines by the sheaves of parallel rays described by the first

two sides of the triangle are similarly projective to the third range,

and hence similarly projective to each other. The third side of

the triangle joins corresponding points of these two ranges.
&quot;

If a range of points u and a sheaf of rays 6&quot; which lie in the
&quot;&quot; same plane are related projectively to each other, and through each

&quot;point of u be drawn a straight line parallel to the corresponding

&quot;ray
of S, these will either intersect in one point or will envelop

&quot;a parabola.&quot;

That is, if we cut the sheaf of rays *S with the infinitely distant

line of the plane we obtain an infinitely distant range of points

which is projective to u. If this is not perspective to u it will

generate with u a sheaf of rays of the second order which con

tains the infinitely distant straight line, and consequently envelops

a parabola.

130. If we project a curve of the second order from an infin

itely distant point which does not lie in its plane, we obtain a

cone with an infinitely distant vertex whose rays therefore are

parallel. This is called a cylinder of the second order. Two

projective sheaves of planes with parallel axes generate therefore

either a sheaf of parallel rays or a cylinder of the second order.

We distinguish the cylinder as elliptic, parabolic, or hyperbolic,

according as it is cut by a plane not passing through its infinitely
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distant vertex in an ellipse, parabola, or hyperbola, or what is the

same thing, according as it contains none, one, or two infinitely

distant rays.

EXAMPLES.

1. Of a curve of the second order there are given four points and

the tangent at one of them, or three points and the tangents at two

of them
; through one of the given points a straight line is drawn at

random
;
with the aid of Pascal s theorem determine its second point

of intersection with the curve.

2. Of a sheaf of rays of the second order there are given four rays

and the point of contact in one of them, or three rays and the points

of contact in two of them ; a point is chosen at random in one of the

given rays ;
with the aid of Brianchon s theorem determine the second

ray of the sheaf passing through this point.

3. Construct a hyperbola of which there are given the asymptotes

and one point or one tangent.

4. Construct a parabola of which there are given either four tangents,

or three tangents and the point of contact in one of them, or two tan

gents and their points of contact.

5. Construct a hyperbola, having given three points and the directions

of the asymptotes.

6. Given a range of points u and a sheaf of rays of the first order 5

lying in the same plane and projectively related ; the straight lines

drawn from the points of // perpendicular to the corresponding rays of

S either envelop a parabola to which // is tangent or pass through
one point.

7. If an angle of given magnitude so moves in its plane that its

vertex describes a straight line u while one side continually passes

through a fixed point 6&quot;,
its other side will envelop a parabola to which

u is tangent.

8. The base AA of a variable triangle APA l
is of fixed length and

slides along a fixed straight line u while the other two sides AP and

A-^P pass through fixed points S and S
l respectively. The vertex P

describes a hyperbola which passes through 6&quot; and S
1
and has u for

an asymptote.

9. Show that a parabola cannot have two parallel tangents aside

from the infinitely distant line which is parallel to even- tangent.

10. If the vertices of a simple, hexagon AC^BA^CB^ lie alternately

upon two straight lines u and u
lt say A, B, C, upon u and A^ B^ Cv

upon //u then the points of intersection
A&amp;lt;& B^ C.&amp;gt;,

of the three pairs
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of opposite sides lie upon a third straight line z/2 (Art. 119). This
theorem may be found in Pappus, Math. Coll. VII. The diagram illus

trating the theorem, like that mentioned in Art. 7 (Fig. 3), is worthy
of notice on account of its regularity. It consists of nine points which
lie by threes upon nine straight lines, and these nine lines pass by
threes through the nine points. The diagram also illustrates the re

ciprocal theorem. State this.

11. If ABCD be any complete quadrangle whose six sides AB, AC,
AD, BC, BD, CD, are cut by an arbitrary straight line a in the points

P, Q, R, S, T, V, respectively, and if E, F, H, K, L, M, are the harmonic

conjugates of these points with respect to the pairs of vertices of the

quadrangle, so that AEBP, AFCQ, etc., are harmonic ranges, then a

curve of the second order may be passed through the six points E, F, H,
K, L, M, on which will also lie the three points of intersection X, Y, Z, of

the pairs of opposite sides of the quadrangle [Annals of Mathematics,

VII, p. 73].

As in Example 9, p. 51, E, F, S ; E, H, T, and all similarly situated

sets of points are collinear. Hence in the hexagon EFHMLK, the pairs
of opposite sides EF and ML intersect in S, Ftf and Z,A&quot;in V, HM and

KE in Q ;
the points S, V, Q, are collinear and therefore by Pascal s

theorem the hexagon is inscriptible in a curve of the second order.

IfX is the point of intersection of the opposite sides AB and CD, then

in the hexagon EHFKMX the pairs of opposite sides EH and KM,.
HF and MX, FK and XE, intersect in the collinear points T, V, Pr

respectively. Hence X, and similarly the other two diagonal points, lies

on the conic determined by the remaining five vertices of the hexagon,
i.e. on the conic through the six harmonic conjugate points mentioned in

the theorem.

State and prove the reciprocal theorem.

12, If a plane a cut the six edges of a tetrahedron ABCD in the points

P, Q, R, S, T, V, respectively, and the harmonic conjugates of these

points, E, F, H, K, L, M, with respect to the two vertices on the same

edge, be found, then from any point O of the plane a these six points are

projected by a cone of the second order upon which will also lie the three

rays that can be drawn from O to meet a pair of opposite edges of the

tetrahedron.

The proof of this theorem is analogous to that of the preceding one,,

and is given in the article quoted above. Special cases of both theorems

are also mentioned there.



LECTURE VIII.

POLE AND POLAR WITH RESPECT TO CURVES OF THE
SECOND ORDER.*

131. The theorems upon quadrangles inscribed or circumscribed

to a curve of the second order introduce us to a series of very

important properties of this curve, to one of which I have already

referred in the Introduction. We derive these from the following

considerations :

If in the plane of a curve of the second order there is given

a point U (Figs. 41 and 42) which does not lie upon the curve,

and through this point are drawn two straight lines AC and BD
cutting the curve, these may be considered the diagonals bf a

simple quadrangle ABCD inscribed in the curve. The two pairs

of opposite sides AB, CD and BC, AD of this quadrangle inter

sect in points P and
&amp;lt;2,

the tangents a and c at two opposite vertices

A and C intersect in a third point 7?, which three points P, Q,

and fi lie in one straight line u. Upon this line also lies the

point of intersection of the tangents b and d, which may be con

structed at the vertices B and D (compare the theorem upon the

inscribed quadrangle, Arts. 116 and 121).

If now we denote the points of intersection of u with AC and

BD, respectively, by V and W, we know immediately that V is

* The polar theory of conic sections is usually ascribed erroneously to De la

Hire. It is in reality due to Desargues. whose development of the theory was

given in his Brouillon projet d?une atteinte ..., in 1639 (compare Desargues

(Ettvres, rtunies par Pcnidra^ Paris, 1864, T. I.). Apollonius had previously

shown (Conicorum, Lib. III., prop, xxxvii.) that the point of intersection

of two tangents to a conic is harmonically separated from the points of the

chord of contact by the curve.

G
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harmonically separated from U by the points A and C. For, a

pair of opposite sides of the quadrangle ABCD intersect in A and

in C, while the diagonal BD passes through U and the diagonal

PQ through V. Similarly U and W are harmonically separated

by B and D.

FIG. 41.

The straight line u therefore might be found by passing through

U only one secant AC and determining upon it the point V which

FIG. 42.

is harmonically separated from U by the points ^4 and C of the

curve, then joining V with ^?, the point of intersection of the

tangents at A and C. In whatever position the second secant
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BD may be drawn through 7, the following points must always

lie upon the straight line u which has already been determined

by the points V and R
y

viz. :

(1) The points of intersection P and Q of the pairs of opposite

sides of the quadrangle ABCD\
(2) The point of intersection S of the tangents at B and D

;

(3) The point W which is harmonically separated from U by
B and D.

We shall call U the pole of the line // determined as above,

and conversely, the straight line u the polar of the point U. The

polar of a given point with respect to a curve of the second

order can thus be found in different ways and by linear con

structions.

132. On the other hand, the pole U of a given straight line can

be constructed by drawing from any two points R and 6&quot; of

the line, the two pairs of tangents #, c and ^, d to tfie curve

(Figs. 41 and 42). Through the pole U there pass

(1) The diagonals of the simple quadrilateral abcd\

(2) The straight lines AC and BD joining the points of contact

of these pairs of tangents ;

(3) Two rays harmonically separated from //, the one by a and

c, the other by b and d.

For U the point of intersection of AC and BD is the pole of u,

since its polar by definition, that is, the line determined by the

points of intersection of tangents at A and C and at B and
Z&amp;gt;,

coincides with //. Moreover, the straight lines RU and u are

harmonically separated by the tangents a and c, since the points

U and V are harmonically separated by the points of contact of

fe

two tangents ;
and similarly, SU is harmonically separated

L // by the tangents b and d, so that the statement (3) above

ue. The correctness of statement (i) follows immediately from

theorem upon the circumscribed quadrilateral already proved
. 116).

$3. If the polar u of a point U (Fig. 42) cuts the curve of

c^ second order, the straight lines which join the point U with

the two intersections are tangent to the curve at these points.

For, if either of these lines had a second point in common with

the curve, these two points would be harmonically separated by U
and u, and the first could then not lie upon u. The straight line u

is therefore the chord of contact for the point U, that is, the chord
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which joins the points of contact of the two tangents to the curve

drawn from U.

134. All these results may be summarized as follows :

If through a point U which lies

in the plane of a curve of the

second order, but not upon the

curve, any number of secants of

the curve be drawn and we deter

mine

(1) The points of intersection of

the pairs of opposite sides of any

simple quadrangle inscribed in the

curve which has two of these se

cants as diagonals ;

(2) The point upon any secant

which is harmonically separated
from U by the points of intersection

with the curve
;

(3) The common point of the

two tangents at the intersections

with the curve of any one of these

secants
;

(4) The points of contact of the

tangents which can be drawn to

the curve from U
;

Then all these points lie upon a

straight line u which is called the

polar of the point U with respect

to the curve of the second order.

If from each one of any number
of points of a straight line u which

lies in the plane of a curve of the

second order, but which does not

touch the curve, two tangents be

drawn to the curve and we deter

mine

(1) The diagonals of any simple

circumscribing quadrilateral whose

opposite sides form a pair of these

tangents drawn from the same

point ;

(2) For any point of z/, the

straight line which is harmonically

separated from u by the two tan

gents to the curve drawn from this

point ;

(3) The straight line which joins

the points of contact of any one of

these pairs of tangents ;

(4) If u cuts the curve, the two

tangents at the points of inter

section
;

Then all these straight lines pass

through a point U which is called

the pole of the straight line u with

respect to the curve of the second

order. jg
135. If a point A lies upon a curve of the second order, and&amp;lt;r

is the tangent at this point, then a shall be called the polar ofH
and A the pole of a. This case may be considered a limiting case

of the preceding. Thus to every point in the plane of a curve of

the second order there is correlated one polar with respect to the

curve, and conversely, to every straight line, a pole.

136. If a point is given in the plane of a curve of the second

order it is said to lie
*

outside or inside the curve according

as two tangents or no tangents* can be drawn from it to the curve.

*
Only real tangents and real points of intersection are considered in these early

lectures. H.
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All the points of a tangent thus lie
*

outside the curve, the point

of contact alone being upon the curve. Every straight line which

lies in the plane of the curve contains infinitely many points which

lie outside the curve, since it has one point in common with each

tangent ;
these points evidently form a continuous series, since the

tangents form a continuous series. All the points of a straight line

which lie inside the curve likewise form a continuous series. If,

then, the straight line joining two points which lie outside the

curve cuts the curve, these two points are not separated by the

points of intersection with the curve, but we can move along that

segment of the line which lies outside the curve from any point
A to any other point B, through the infinitely distant point if

necessary, without passing over a point of the curve. Likewise two

points lying inside the curve are not separated by the curve, but

lie upon a segment of their joining line enclosed within the curve.

On the other hand, of two points which are separated from each

other by the curve, the one lies inside and the other outside the

curve, for, from the preceding proof, they both can lie neither

inside nor outside the curve. Hence :

&quot; A plane is divided by a curve of the second order lying in it

&quot;

into two parts. From any point of one part we can pass to any
&quot;

other point of that part, but to no point of the other part, without
&quot;

crossing the curve. The points of one part lie outside the curve,
&quot; and from any one of these two tangents can be drawn to the
&quot; curve

;
the points of the other part lie inside the curve, and no

&quot;

tangents to the curve pass through them.&quot;

Accordingly a point lying inside the curve is harmonically separ

ated from every point of its polar by the curve, and every straight

,;line passing through it cuts the curve in two points, while its polar is

not intersected by the curve. On the other hand, a point R lying
- outside the curve is not separated from all points of its polar by

the curve, but if we draw from R the two tangents to the curve

these limit upon the polar the segment whose points are harmonic

ally separated from R. The curve and all of its enclosed points

are contained in one or other of the two complete angles which

are formed by any two tangents.

X37 ^ e shall make frequent use hereafter of these facts, which

perhaps have appeared to you to be self-evident, but which from my
point of view needed demonstration. At the outset I shall prove

with their help the following fundamental theorems in the polar theory.
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The polars of all the points of a

straight line u pass through the

pole U of this line.

(i) If a point P of u lies inside

the curve of the second order it is

harmonically separated from U by
the curve, and its polar p must

therefore pass through U, since

it contains all points which are

harmonically separated from P by
the curve.

(3) From a point R of u which

lies outside the curve we can draw

two tangents to the curve
;

the

straight line which joins the point
of contact of one of these tangents
\vith U is the polar of 7?, since its

pole must lie both upon u and upon
this tangent.

(5) Finally, if a point of u lies

upon the curve, the tangent at this

point is its polar ;
but this also

passes through U.

The poles ofall the straight lines

through a point U lie upon the

polar u of this point.

(2) If a ray of U cuts the curve

of the second order we determine

its pole by constructing the tangents
at the points of intersection of the

line and curve and finding their

common point. But as we have

previously shown (Art. 134),. this

point lies upon u, the polar of U.

(4) If any line through U does

not cut the curve, its pole lies within

the curve and is harmonically

separated from every point of this

line, in particular from
/, by the

curve, and hence lies upon u.

(6) Finally, if a line through U
touches the curve, the point of

contact lies upon u, and is at the

same time the pole of this line.

Hence, of huo points of the plane, either each or neither lies upon
the polar of the other ; and of any two straight lines of the plane,

either each or neither passes through the pole of the other.

138. This and preceding theorems establish the principle of

reciprocity (to which I shall return later), at least for the plane, or

in general for primitive forms of two dimensions. For, to any plane

figure we can construct, by the aid of a curve of the second

order, a reciprocal plane figure by determining for every point of

the first, its polar, and for every straight line, its pole. For this

reason it will be sufficient hereafter if of two reciprocal theorems

upon plane figures I demonstrate only one.

139. It was by means of the polar theory that Brianchon

deduced his theorem from that of Pascal. Of each side of a

hexagon inscribed in a curve of the second order he determined

the pole by constructing the tangents at the vertices and finding

their intersection (Fig. 43). The vertices and sides of the circum

scribed hexagon correspond respectively to the sides and vertices

of the inscribed hexagon ;
and the point of intersection of any two

sides of the latter has for polar the straight line joining the cor-
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responding vertices of the former. Since, now, the three points in

which the three pairs of opposite sides of the inscribed hexagon

intersect, lie in a straight line u, the three straight lines which join

the three pairs of opposite vertices of the circumscribed hexagon
must pass through one point U, the pole of the line u.

FIG. 43.

From this one application you will see what use can be made
of the polar theory. With the help of a curve of the second order,

for example, a sheaf of rays can be found which is reciprocal to

any plane curve, each point of the curve having a ray of the sheaf

as polar. To the distinctive properties of the curve there will be

corresponding properties of the sheaf of rays. Later we shall have

to investigate general relations of this kind.

140. If P and
&amp;lt;2

are any two points of a straight line //, their

polars p and q pass through U the pole of u. Let us now choose

P anywhere upon the line u, but Q at the intersection of u and p ;

then P, Q, and U are the vertices of a triangle of which /, q,

and u are the opposite sides. Such a triangle is called a self-

polar triangle with respect to the curve of the second order ;

each vertex is the pole of the opposite side.

The following double theorem is true, as is evident without

further explanation (Fig. 37) :

The three pairs of opposite sides The three pairs of opposite ver-

of any complete quadrangle which tices of any complete quadrilateral
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is inscribed in a curve of the which is circumscribed to a curve

-second order intersect in the ver- of the second order lie upon the

tices of a triangle which is self- sides of a triangle which is self-

polar with respect to the curve. polar with respect to the curve.

141. For any self-polar triangle PQU an infinite number of in

scribed quadrangles can be constructed whose three pairs of opposite

sides intersect in jP, Q, and U. If through P we pass a secant BC
to the curve (Figs. 41 and 42) and join the two curve points

B and C to the point U, while BU and CU cut the curve a

second time in D and A, respectively, then ABCD is one of

this infinite number of inscribed quadrangles, as you will easily be

able to show.

If now we let the vertices A and C and the point U of this

inscribed quadrangle remain fixed while the point P moves along

u the polar of U and the vertex B moves along the curve, then

the straight lines PB and QJB describe about the centres C and

A
9 respectively, two projective sheaves of rays, and the points P

and Q describe two projective ranges of points which are sections

of these sheaves of rays. From this we observe that the sheaf

of rays described about U by the polar of P, while P traverses the

range of points #, is projectively related to this range of points,

that is,

&quot;

If a point P traverses a range of points u, its polar p with

&quot;respect to a curve of the second order describes at the same time

&quot;a sheaf of rays U which is projectively related to this range of*

&quot;points.&quot;

This theorem shows more completely the connection between

any figure and its polar figure. From it we derive, for example,

the following :

&quot;

If in a plane there are given two curves of the second order
&quot; $ and /2

,
and we determine for each point of the one k2

its

41

polar with respect to the other /2
,

all these polars envelop a third

&quot; curve of the second order.&quot;

For if we imagine /
2 to be generated by two projective sheaves

of rays U and V^ to these will correspond two ranges of points

projective to them and consequently to each other. These ranges

of points generate the sheaf of rays of the second o^der which

envelops this third curve.

142. In the theory of curves of the second order frequent use

will be made of the following terminology :
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Two points of the plane are said Two straight lines of the plane

to be conjugate with respect to a are said to be conjugate with re

curve of the second order if one spect to a curve of the second order

and consequently each lies upon if one and consequently each passes

the polar of the other. through the pole of the other.

Thus a point is conjugate to every point of its polar, and a

straight line to every line through its pole. The vertices and like

wise the sides of any self-polar triangle are conjugate, two and two
;

a point lying upon the curve is conjugate to itself, or is self-

tonjugate, since it lies upon its own polar, namely, the tangent at

the point; and a tangent to the curve is self-conjugate since it

passes through its own pole, namely, the point of contact.

143. If the straight line joining If from the point of intersection

two points A and B, conjugate of two straight lines a and b, con-

with respect to a curve of the jugate with respect to a curve of

second order, cuts the curve, then the second order, tangents may be

A and B are harmonically sep- drawn to the curve, then a and b

arated by the two points of are harmonically separated by these

intersection of the curve and tangents.

straight line. For the pole of a lies upon ,

For the polar of A passes through and through it pass all rays which

B and contains all points which are harmonically separated from a

are harmonically separated from by two tangents to the curve.

A by two points of the curve.

One vertex, therefore, of any self-polar triangle lies inside the

curve of the second order and the other two lie outside
;

the

curve intersects two sides of the polar triangle but not the third.

From the definition of conjugate points and straight lines it

follows further that

If two points A and B are con- If two straight lines a and b are

jugate to the same third point C, conjugate to the same third line

the straight line AB is the polar f, the point of intersection of a and

of C. For the polar of C must b is the pole of c. For this pole

pass through both A and B. must lie upon both a and b.

144. If it and v are two non-conjugate straight lines of the plane,

then we know that for every point P of u there is a point Pl
of

v conjugate to it
; the ranges of points u and v are by this means

correlated to each other projectively. For v is simply a section

of the sheaf of rays U which consists of the polars of all the
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points of u and is projective to the range of points u (Art. 141).

The straight lines joining pairs of conjugate points P and P^ of

the straight lines u and v form then a sheaf of the first or second

order, according as the point of intersection of u and v is or is

not self-conjugate, i.e. according as this point does or does not lie

upon the curve. Since P is conjugate to both P
l
and 17, P^U

is the polar of P
t
and PP

1
is conjugate to the straight line P^U.

We therefore obtain this same sheaf of the first or second order

if through each point P^ of v we draw that ray which is conju

gate to the straight line P^U.

If, on the other hand, U and V are two non-conjugate points

of the plane, for every ray p of U there is a ray p l
of V conju

gate to it, and by correlating these the sheaves of rays U and V
are projectively related to each other. For, U is then the pro

jector of the range of points v formed of the poles of all the rays

through V
t
and is projective to the sheaf V. The sheaves U and V

therefore generate a range of points of the first or second order

according as the common ray UV is or is not self-conjugate, i.e.

according as this ray does or does not touch the given curve.

Since p l
is conjugate to both the rays p and v, the point of inter

section of p and v is the pole of p^ and the point p^p is conju

gate to pv. This same range of points, whether of the first or the

second order, is obtained if in each ray /of U we determine

that point which is conjugate to the intersection of p and v.

Hence the theorems :

If there be given in the plane of a curve of the second order

a straight line v and a point U not lying upon it, and

we determine in each ray of U we draw through each point of i&amp;gt;

that point which is conjugate to that ray which is conjugate to the

the intersection of this ray with ?/, line joining this point with /, then

all such conjugate points lie upon these rays envelop a curve of the

a curve of the second order
;
this second order

;
this curve touches

curve passes through the pole V of the polar u of the point /, the

the straight line v, through /, and given line T/, and the tangents at

through the points of contact of the the two points in which the given

two tangents, if any, which can be curve is cut by v, if at all. It is

drawn from U to the given curve only when U lies upon one of these

of the second order. It is only two tangents, i.e. when u and i&amp;gt;

when &quot;u passes through one of intersect in a point of the given

these points of contact, i.e. when curve, that we obtain a sheaf of

UV is tangent to the given curve, rays of the first order instead of
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that we obtain a range of points the system of tangents to a curve

of the first order instead of a curve of the second order,

of the second order.*

145. Suppose now, in the theorem of the left-hand column of

the last Article, that the given curve of the second order and the

point U remain fixed, then to every point of the plane there will

correspond one conjugate point which lies in a straight line with

it through U\ to every straight line of the plane there will corre

spond in general a curve of the second order. Similarly, if in the

theorem on the right, the given curve and the straight line v remain

fixed, to every ray of the plane there will correspond one conjugate

ray, intersecting it in a point of v
;
to every sheaf of rays of the

first order there will correspond in general a sheaf of rays of

the second order. We obtain in this way two particular cases of

the so-called geometric transformation of the second order.

146. From the demonstrations in Arts. 143 and 144 we may
derive the following theorems :

If a triangle AMBj (Fig. 44) is If a triangle UVW (Fig. 45) is

inscribed in a curve of the second circumscribed to a curve of the

order, any straight line which is second order, any point which is

conjugate to one side AB X
cuts the conjugate to one vertex W is pro-

other two sides in conjugate pointsj jected from the other two vertices

and conversely, if a straight line by conjugate rays; and conversely,

is cut by two sides of the triangle if a point is projected from two

in conjugatepoints itpasses through vertices of the triangle by conjugate

the pole of the third side. rays it lies upon the polar of the

tJiird vertex.

The ranges of pointsAM 01 u and B^M or v (Fig. 44) are perspect-

ively related to each other if to every point in u is correlated its

conjugate point in v, since the common point M of // and v is self-

conjugate. The centre 6&quot; of the sheaf of rays generated by // and v

must lie upon the tangent constructed at A, since the intersection A^

* As a special case of the theorem on the left, the following may be men

tioned :

&quot;The middle points of those chords of a curve of the second order which

converge toward any given actual point of the plane lie upon another curve

of the second order.&quot;

The straight line v in this case lies infinitely distant, and each bisection point

is harmonically separated by the curve from an infinitely distant point, and

hence is its conjugate.
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of this tangent with v is conjugate to the point A. Similarly S lies

upon the tangent at the point JB^. Consequently S is the pole of

the side AB^ and every straight line passing through S cuts u and
v in conjugate points. The theorem on the right can be proved in

an analogous manner
;

its correctness, however, follows from the

principle of reciprocity.

FIG. 44. FIG. 45-

147. I shall close this series of theorems with a proof of the

following one, which also admits a reciprocal :

FIG. 46.

If a curve of the second order is cut by two conjugate rays AC
and BD (Fig. 46), the points of intersection A, B, C, D, are four
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harmonic points, and the tangents a, b, c, d, at these points are four
harmonic tangents.

The pole Q of AC, in which the tangents a and c intersect,

must lie upon the straight line BD, since this is, by supposition,

conjugate to AC; similarly, the point of intersection R of b and d
lies upon AC. If P be the point of intersection of AC and BD,
then are P, B, Q, D, four harmonic points, and RQ, b, RP, d, four

harmonic rays. Thus, also, CA, CB, c, CD, are four harmonic

rays, and the points ca, cb, C, cd, four harmonic points; that is,

the points A, B, C, D, are projected from C, and consequently
from any other point of the curve, by four harmonic rays, and the

tangents a, b, c, d, are cut by c, and consequently by any other

tangent, in four harmonic points.

148. All these theorems which have been enunciated for the

curve of the second order may be transferred immediately to the

cone of the second order, since this is cut by any plane not

passing through its vertex in a curve of the second order. I shall

here state only the following theorem :

&quot;If there be given in a bundle of rays a cone of the second
&quot;order and a ray s not lying upon this cone, and through s are

&quot;passed any number of planes cutting the cone, and there are then
&quot; determined

&quot;

i. In each plane the ray which is harmonically separated from
&quot;s by the cone;

&quot;2. The common ray of the two planes which touch the cone
&quot;

along the lines of intersection of any plane ;

&quot;3.
The lines of intersection of the pairs of opposite faces of

&quot; a four-edge inscribed in the cone, whose diagonal planes are two
&quot; of the planes passed through s

;

&quot;4. The rays of contact of the two planes, if any, which can
&quot; be drawn through ^ tangent to the cone

;

&quot;All these rays lie in one plane o-, which is called the polar
&quot;

plane of the ray s with respect to the cone.&quot;

Simply adding that s is called the pole-ray of the plane &amp;lt;r

with respect to the cone of the second order, I shall leave you
to transcribe for yourselves the remaining theorems of the polar
theory so as to be applicable to the cone.
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EXAMPLES.

1. Construct the polar figure of any given polygon or curve lying in the

plane of a curve of the second order, with respect to that curve, i.e.

construct the polars of its points and the poles of its straight lines.

2. From any given point of a plane draw the tangents to a curve of

the second order without making use of circles, i.e. construct the two

rays of a sheaf of the second order which pass through any given

point of the plane.

3. If two tangents to a curve of the second order vary so that their

chord of contact envelops a second curve of the second order, their

point of intersection will trace a third curve of the second order
;
and

conversely.

4. By linear constructions determine the polar of a given point or

the pole of a given straight line with respect to a curve of the

second order which is given by five conditions, e.g. by five points or

five tangents, but which is not fully drawn.

5. If in a plane there are given two curves of the second order, any

point A has a polar with respect to each of them, and if these polars

intersect in A^ A and A
l
are conjugate with respect to both curves.

The polars of A
l
likewise intersect in A, and by correlating all such

pairs of points as A and A l we obtain a one to one correspondence

among the points of the plane. Similarly every straight line of the

plane may be correlated to some other line of the plane to which it

is conjugate with respect to both curves. In such a correlation,

The points of a straight line The straight lines through one

correspond, in general, to the point correspond, in general, to the

points of a curve of the second tangents to a curve of the second

order. All such curves which order. All such curves whose

correspond to straight lines of tangents are correlated to rays

the plane have in common at least through one point have in^common
one, and at most three, points, at least one, and at most three,

U, V, IV. The two polars of tangents, z/, i&amp;gt;,

w. The two poles

every such common point coincide, of every such common tangent

so that each of them is correlated coincide, so that each of them is

to all the points of a straight line. correlated to all the rays through
one point.

If the two given curves of the second order circumscribe one

quadrangle, the three pairs of opposite sides of this quadrangle intersect

in the points /, V, W. These three points are the vertices, and the

straight lines u, v, w, are the sides of a common self-polar triangle of

the two given curves.

[If the two given curves intersect in four (real) points or in no (real)

points, then, on the one hand, the curves of the second order which
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correspond to straight lines have three (real) points in common, and,

on the other hand, the curves which correspond to points, i.e., whose

tangents correspond to rays through one point, have three (real) tangents

in common ;
the self-conjugate triangle common to the two given

curves being in both of these cases wholly real. If, however, the given

curves intersect in two and only two (real) points, then of the common

self-conjugate triangle only one vertex and one side are real. H.]

6. If in a bundle of rays a cone of the second order K1 and a ray u

be chosen, a one to one correspondence may be established between

rays a and a^ of the bundle which are conjugate with respect to A^2
,

and lie in a plane with u. If a describes a plane a, a will generate a

cone of the second order which passes through u and through the

pole-ray of the plane a, and which has in common with K2
any rays

common to K* and a, and to K* and the polar plane of u. State the

reciprocal. ^
[Remark : The geometrical relations expressed in examples 5 and 6

pertain to quadratic transformations, of which the theory will be

given more fully in the second volume of these lectures. They can

be utilized in transforming simple forms into more complicated

ones. Among these transformations that known as the Principle of

Reciprocal Radii merits a particular place, and is treated in the

Appendix to this volume. It is of great importance not only in

Synthetic Geometry, but also in certain investigations of Mathematical

Physics and in the Theory of Functions.]



LECTURE IX.

DIAMETERS AND AXES OF CURVES OF THE SECOND ORDER,
THE ALGEBRAIC EQUATIONS OF THESE CURVES.

149. From the general theory of the pole and polar we derive

the following :

&quot; The middle points of parallel chords of a curve of the second

&quot;order lie upon a straight line&quot; (see Fig. 47).

FIG. 47.

For, all these middle points are harmonically separated by the

curve from the infinitely distant point of intersection of the parallel

chords, and consequently lie upon the polar of that point.

Such a line is called a diameter of the curve.

The polar of any infinitely distant point of the plane with respect

to a curve of the second order is a diameter of the curve.

A diameter bisects all chords conjugate to it.
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The points of contact also of the two tangents conjugate to

any diameter (if such there are) lie upon this diameter. The

tangents which meet the curve at the extremities of any chord

conjugate to a diameter intersect in a point of the diameter

(Art. 134).

150. We have already found (Art. 137) that the polars of the

points of a straight line intersect in the pole of that line. For the

diameters of a curve of the second order this statement becomes
&quot; The diameters of a curve of the second order intersect in one

point, namely, in the pole of the infinitely distant line.&quot;

If the curve is a parabola, the infinitely distant line is tangent

to it, and its point of contact is its pole (Art. 135); hence,
&quot; The diameters of a parabola are parallel, and pass through its

&quot;infinitely distant
point.&quot;

If, on the other hand, the curve is an ellipse or hyperbola, the

pole of the infinitely distant line is a finite point. This is known

as the centre of the curve, and possesses the following property :

&quot;

Every chord of a curve of the second order which passes

&quot;through the centre is bisected in that
point.&quot;

For the centre is harmonically separated from the infinitely

distant point of the chord by the two points which the chord has

in common with the curve.

151. The parabola has no actual centre, as is seen from the

following theorem :

&quot;

If two chords of a curve of the second order bisect each other,
&quot;

their point of intersection is the pole of the infinitely distant

&quot;straight line, and the chords themselves are diameters of the
&quot;

curve.&quot;

The correctness of this theorem follows from the fact that this

point of intersection is harmonically separated by the curve from

the infinitely distant point of each chord. Since now the pole of

the infinitely distant line with respect to a parabola is the infinitely-

distant point of the parabola, there can be no two chords of a

parabola which bisect each other.

152.
&quot; The asymptotes of a hyperbola intersect at the centre.&quot;

For the tangents at the points common to a c
t raight line and

a curve of the second order a; fa ? through the pole of the

line.

The centre of a hyperbola lies outside the curve
; that of an

ellipse, inside the curve (Art. 136).
H
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I53* To each diameter of an ellipse or hyperbola there is a

conjugate diameter
;

of two conjugate diameters, each passes

through the infinitely distant pole of the other.
&quot;

Any two conjugate diameters of an -ellipse or hyperbola form

&quot;with the infinitely distant line a self-polar triangle with respect to
&quot;

the curve.&quot;

Every chord of the curve which is parallel to one of two

conjugate diameters is bisected by the other, since it passes

through the pole of the latter.

If one of two conjugate diameters cuts the curve,* the tangents
at its points of intersection with the curve are parallel to the other

diameter. Thus the conjugate to any diameter can easily be

constructed.

154. The diagonals of any paralelogram circumscribed to a curve

of the second order are conjugate diameters of the curve.

The sides of any parallelogram inscribed in a curve of the second

order are parallel to a pair of conjugate diameters.

FIG. 48.

The diagonals of both the inscribed and circumscribed parallelo

grams (Fig. 48) are diameters of the curve, since their point of

intersection in either case has the infinitely distant line for polar

(Art. 134).

If we draw thrown Ms point of intersection two straight lines

p and q parallel to the sides of the inscribed parallelogram, each

* Note that of two conjugate lines at least one must cut the curve in real

points. H.
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of these bisects the sides parallel to the other
;
thus p and q are

conjugate diameters.

Upon p and q lie also -the poles of the four sides of the inscribed

parallelogram ;
or p and q are the diagonals of that circumscribed

quadrangle whose sides touch the curve at the vertices of the

inscribed quadrangle. But this circumscribed quadrangle is a

parallelogram, since the tangents at the extremities of a diameter

.are parallel, and it is evident that this circumscribed parallelogram

may be considered perfectly general.

155. The second theorem of the preceding article may be stated thus:

The two chords which join any point of an ellipse or hyperbola

to the extremities of a diameter are parallel to a pair of conjugate

diameters.

Hence, if there be given two pairs of conjugate diameters and

one point of a curve of the second order, five other points of the

curve can easily be found. Draw the diameter which passes through

the given point P and determine its second intersection Q with

the curve, from the fact that PQ is bisected at the centre. With

PQ as diagonal construct two parallelograms, the sides of each

parallel to one of the given pairs of conjugate diameters ;
the two

new pairs of vertices of the parallelograms so determined lie upon

the curve. In a similar way six tangents to a curve of the second

order can easily be obtained if one

tangent and two pairs of conjugate

diameters are known.

156. Jf all pairs of conjugate dia

meters of a curve of the second order are

at right angles the curve is a circle.

For under these circumstances the

adjacent sides of any inscribed parallel

ogram are at right angles ;
the parallel

ogram is thus a rectangle, and its

diagonals are equal. That is, any two

diameters of the curve, and hence all

diameters, are of equal lengths.

That the circle is a curve of the

second order follows from the fact

that angles at the circumference subtended by the same arc (as

^ASB and LAS^B, Fig. 49) are equal. By virtue of this pro

perty the circle may be generated by two sheaves of rays ,5 and S
lf

FIG. 49.
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which are equal, and hence projective. In a similar way it may
be shown directly that the tangents to a circle form a sheaf of

rays of the second order. The conic section of ancient times,

namely, the curve in which a cone having a circular base is cut

by a plane, is therefore a curve of the second order, for a circular

cone is projected from any two of its rays by projective sheaves

of planes. We shall show later that not only is every conic section

a curve of the second order, but also that every curve of the second

order is a conic section, or that through any curve of the second

order cones may be passed which have circular sections.

157. Since the projective properties of circles are easily obtained,

most authors who, like Steiner and Chasles, have based the modern

geometry upon metric relations, have chosen the circle as starting-

point for the study of curves of the second order. By choosing
this course, however, it becomes necessary to show that no other

curves of the second order than the conic sections can be generated

by projective one-dimensional primitive forms. For, if others

should exist, all theorems enunciated for the circle would need

to be investigated for them independently. For example, the

theorem that a curve of the second order is projected from any
two of its points by projective sheaves of rays, and that its

system of tangents is cut by any two tangents in projective ranges.

of points, would need to be proved separately for curves of the

second order other than the conic sections. That is to say,

theorems which have been proved for the circle can be directly

extended only to sections of a circular cone.

158. Jf a curve of the second order has more than one pair of

conjugate diameters at right angles, it must be a circle.

For, if we draw from the extremities A and B of any diameter

straight lines parallel to two normal conjugate diameters, we obtain

a rectangle, which is inscribed in the curve of the second order

and is also inscriptible in a circle of which AB is a diameter.

Any second pair of normal conjugate diameters would give rise to

a second such rectangle upon the same diagonal AB. Thus the

circle would have at least four points besides A and B in common
with the curve of the second order, and would therefore wholly

coincide with it (Art. 112).

159. If two conjugate diameters are at right angles to each other

they are called axes, and their points of intersection with the curve

are known as the vertices of the curve.



DIAMETERS AND AXES. 117

The circle alone has more than one pair of axes ; for it, any

pair of conjugate diameters being axes.

In order to construct the axes of an ellipse or hyperbola we

proceed as follows :

Construct a circle having any diameter AB of the given curve

(Fig. 50) as its diameter. This in general cuts the tangents, and

hence also the curve, at the

extremities of this diameter.

Each of the two semicircles

into which the circle is divided

by this diameter lies partly

within and partly without the

given curve, and therefore has

a second intersection with it.

The four points of intersection

of the circle with the curve

are the vertices of an inscribed

rectangle whose sides are

parallel to the required axes.

It follows from this construe- FIG. 50.

tion that there always exists

one pair of axes for an ellipse or a hyperbola.

1 60. An axis may also be defined as a diameter of the curve

which stands at right angles to the chords which are conjugate

to it, and are bisected by it. The parabola has only one axis
;

this contains the middle points of all chords perpendicular to the

common direction of the diameters.

A curve of the second order is divided into two equal symmetrical

parts by each of its axes.

161. Two conjugate straight lines are harmonically separated by
the tangents to the curve, which can be drawn from their point

of intersection (Art. 143). Hence,
&quot;

Any two conjugate diameters of a hyperbola are harmonically
**

separated by the asymptotes. One of these diameters, therefore,
&quot;

cuts the curve, the other does not. The axes of a hyperbola bisect
&quot;&quot; the angles between the asymptotes

&quot;

(Art. 68).

162. Upon any straight line which is parallel to one of two

conjugate diameters of a hyperbola, a segment is included between

the asymptotes whose middle point lies upon the other diameter

(Art. 68). If the straight line intersects the curve, or is tangent
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to the curve, the middle point of the chord, or, in the latter case,

the point of contact of the line, coincides with the middle point

of this segment. Hence,
&quot;The two segments of any secant of a hyperbola which lie

&quot;between the curve and its asymptotes are
equal.&quot;

&quot;That segment of a tangent to a hyperbola which lies between

&quot;the asymptotes is bisected at the point of contact.&quot;

The first of these theorems furnishes a very simple construction

for a hyperbola of which the asymptotes and one finite point are

given. By it the second point of the hyperbola which lies upon

any secant through the given point can be found immediately.

163. The hyperbola is intersected by but one of its axes r

consequently it has two vertices
;

the ellipse has four vertices

since it is intersected by both of its axes
;

the parabola has only
one actual vertex, being cut by its axis a second time in the infinitely

distant point.

164. A hyperbola is said to be equilateral if its asymptotes are

at right angles to each other; the angles between any two conjugate

diameters of an equilateral hyperbola are consequently bisected

(Art. 68) by the asymptotes. Accordingly, if a diameter of this

curve rotates about the centre, its conjugate diameter will rotate

about the same point in the opposite sense, the two sheaves described

by the diameters thus being equal.

The sheaves of rays by which an equilateral hyperbola is projected

from the extremities of any diameter are also equal to each other
;

for any two corresponding rays are parallel to two conjugate

diameters (Art. 155), since they intersect in a point of the

hyperbola.

165. The straight line joining the middle point D of a chord

AB of a parabola (Fig. 51) to the point of intersection C of the

tangents constructed at A and B is a diameter of the parabola,

since it is the polar of the infinitely distant point of AB (Art. 134).

But C and D are harmonically separated by the two points of inter

section of CD with the parabola, and one of these intersections

is infinitely distant
;
the other, therefore, bisects the segment CD, or,

&quot; The straight line, which joins the pole of any chord of a

&quot;parabola with the middle point of the chord, is bisected by the

&quot;parabola.&quot;

It may be shown, in a similar manner, that each of the two

straight lines which can be drawn from any point of the plane to-
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its polar, parallel to the asymptotes of a hyperbola, is bisected by

the hyperbola.

1 66. These are some of the most important of the metric relations

which are derived from the polar theory of curves of the second

/I)

FIG. 51.

order. But from the theorems upon inscribed and circumscribed

quadrangles and triangles there may be deduced other relations not

wholly unimportant in particular from the theorem of Art. 116,

which may be stated as follows :

&quot;The two diagonals of a quadrangle BB^D^D circumscribed
&quot;

to a curve of the second order intersect in a point S, which lies in

&quot; a straight line with the points of contact of either pair of opposite

&quot;sides.&quot;

If the curve is a hyperbola, and the two pairs of opposite sides

of the quadrangle are formed by the asymptotes and any other

two tangents (as in Fig. 52), then S lies upon the infinitely distant

straight line, and the two diagonals BDl
and B^D are parallel.

The triangles D^DB and D^B^B, which have the same base D^B,
are consequently equal in area, as are also the triangles

and B^AB, which differ from these only by the triangle

Therefore,

The triangles which are formed by the asymptotes of a hyperbola

and a variable tangent are all of the same area.
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The parallel diagonals BD^ B^D, and the centre A determine

proportional parts upon the segments ;
that is,

AB : AD
l
=AD : AB

l
or AB . AB

l
=AD . ADY

In other words, the product of the segments which a tangent BBl

(or DD^ makes upon the two Asymptotes is constant.

Now draw through P, the point of contact of the tangent, a

straight line PQ parallel to the other asymptote and meeting it

in Q.

/ u,

FIG. 52.
*

Since P bisects the segment BB^ of the tangent (Art. 162),

QP ory = %A lt
and AQ or x = \AB.

Since now AB . AB
l

is constant for all positions of the tangent

BB^ the product xy is constant wherever the point P may be

chosen upon the hyperbola. Hence

If we choose the asymptotes of a hyperbola for axes of a system

of coordinates, the equation of that curve is

xy = a constant.

By this m^ans the synthetic theory of the hyperbola is brought
into touch with the analytical theory.

167. In the elements of analytical geometry we are accustomed

to refer the ellipse and hyperbola to two conjugate diameters as
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axes of coordinates, and treating our curves of the second order

in the same way, we are able without difficulty to prove their

identity with the analytical curves of the second order represented

by equations.

Of the conjugate diameters OX and OY (Fig. 53) at least one,

OX say, cuts the curve (Art. 161), and the tangents u and u at

the points of intersection A and C^ are parallel to the other

diameter O Y. We shall first prove the following theorem :

&quot;The product of the segments AB and C
l
B

l
which any tangent

&quot;

BB^ of the curve of the second order determines upon two parallel
*

tangents u and uv is constant.&quot;

C A&quot;

FIG. 53.

The three tangents //, //
1?
and BB

l
form with any fourth tangent

^
a quadrangle circumscribing the curve, whose diagonals BDl

and B^D intersect in a point 5&quot; of the diameter AC
lt

and from

the proportion
AB: C^D^ = AD: C^v

which is readily obtained, it follows that

and hence is constant.

This constant product is positive (equal to + #-, say) if the

curve is an ellipse ;
and in this case b is the semidiameter of the

ellipse lying upon OY, as we readily find by drawing DDl parallel

to OX.

In the case of the hyperbola AB . C
l
B

l
is negative (equal

to - fr
2
, say) since the segments AB and C^B^ have opposite



122 GEOMETRY OF POSITION.

senses
; here b is the absolute value of the length of the segment

which each of the two asymptotes determines upon the parallel

tangents u and ur
The three tangents u, uv and BB^, the latter of which touches

the curve in the point P, form a circumscribed triangle, of which

B) jB
l
and the infinitely distant point of the diameter O Y are the

vertices
; consequently, the three straight lines which join the

vertices with the points of contact of the opposite sides intersect

in one point (Art. 117).

That is, the point of intersection R of the straight lines C
l

and B^ lies upon the ordinate y or PQ of the point P. But since

AB~ AC^~ BB^~AB

then must QR =RP=\QP=\y.
We obtain the equation of the curve of the second order

immediately if we multiply together corresponding sides of the

equations

^ andAB ACi C
l
B

l

and then make QR =
\y, A.Cl l=P, AC

l
= 2.AO=2a and

OQ = x, hence QC1
= a x and AQ = a + x.

This gives us

y
2 a 2 x2 x2

y
2

.1* ~___ _ /-\t* _ -4- __ _ T
79 o Ui 9 79 A

j

4^
2

4a
2 a 2 ft

in which the upper sign is to be used for the ellipse and the

lower sign for the hyperbola. This equation is satisfied by the

coordinates x, y, of any point P of the curve of the second order

when it is referred to two conjugate diameters as axes.

1 68. If the curve is a parabola it is customary to choose as

axis of ordinates an arbitrary tangent OY (Fig. 54), and as axis-

of abscissae the diameter OX which passes through O, the point

of contact of OY. Any other two tangents AP and AP
l
which

intersect OY in B and B^ respectively, form two opposite sides

of a circumscribed quadrangle of which OY and the infinitely

distant line of the plane are the other two sides; consequently,

the point of intersection S of the two diagonals of this quadrangle
lies upon the two straight lines PP

1
and OX which join the

points of contact of the two pairs of opposite sides.



ALGEBRAIC EQUATIONS. 123

Since, therefore, the quadrangle ABSBl
is a parallelogram and

the triangles BPS and B^SPl
are similar, and, moreover, the

ordinates PQ and Q^, or y and \\ of the points P and /\,

respectively, are parallel, we have

and likewise,

yl
SP

l

y BS

If now ^4A is drawn parallel to 6LY, meeting (9 F in
A&quot;,

we have

AK_
OQl

y . OQ BP y- *_ O T-lH *- -_ _ -/_

r AK AB~
combine these by multiplication, and

_ v x __= cr ~
;

that is, the abscissae x and .V
T

of two points P and P^ of a

parabola bear the same ratio to each other as do the squares of

the ordinates. For convenience we write this equation of the

parabola in the form y- = 2px, where 2p =
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Incidentally it appears that

BP_ AB l
a

__
a

}~~ ~~

and from this follows the theorem already proved, namely, that

any two tangents AP and AP
l

of a parabola are cut proportion

ally by the remaining tangents (Art. 128).

EXAMPLES.

1. Suppose a curve of the second order is given by five conditions,

e.g. four points and the tangent at one of them or three points and

the tangents at two of them, draw any required number of diameters of

the curve and find its centre.

2. Draw the chord of a given curve of the second order which is

bisected at a given point.

3. Prove that the chords of a given curve of the second order which

are bisected by any given chord envelop a parabola.

4. Of an ellipse or hyperbola there are given two pairs of conjugate
diameters and either one point or one tangent; construct any required

number of points or tangents.

5. Of a curve of the second order there are given (
I ) two points or two

tangents and one pair of conjugate diameters, or (2) three points or

three tangents and the centre
;
construct the curve.

6. Construct a parabola, having given three points or three tangents
and the direction of its diameters, or two points or tangents and the axis.

7. Given four tangents of a parabola ;
construct its axis.

8. Construct a curve of the second order, having given three points
or tangents and one axis.

9. Construct a hyperbola, having given its asymptotes and one point
or one tangent.

10. In determining a curve of the second order for how many con

ditions (points or tangents) does each of the following parts count: (i)

the centre
; (2) an axis

; (3) a pair of conjugate diameters
; (4) a self-

polar triangle ; (5) a point and its polar ; (6) a pair of conjugate points

or lines
; (7) a diameter ?

n. If perpendiculars be let fall from a point P upon the planes of a

sheaf
,
the points in which the perpendiculars meet the planes all lie

upon a circle which has ,the perpendicular from P to a as diameter, and

whose plane is normal to a. Hence

12. If we pass through the sides a and a\ of an oblique angle all

possible pairs of normal planes, these intersect in the rays of a cone
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of the second order of which a and a
l

are rays. Any plane normal

to a or a
l
intersects this cone in a circle, and any plane normal to the

plane aa
l
intersects it in a curve of the second order of which an axis

lies in aav

13. We also obtain the cone mentioned in the last example with the

Kelp of a plane a which is normal to a at the point aav Thus, if we

let a right angle whose vertex is aa
l
so move that its plane constantly

passes through the line
,
while one side describes the plane a, then

the other side must describe the required cone.

14. If perpendiculars are dropped from any point S upon the

diameters of a curve of the second order kl
,
these meet the conjugate

diameters in the points of an equilateral hyperbola, which passes through
_V and through the centre of k~, and whose asymptotes are parallel

to the axes of k-. The extremities of the normals to & which pass

through 5 lie upon this hyperbola (Apollonius). From no point of

its plane, therefore, can more than four normals be drawn to a curve

of the second order.

15. Suppose S and S\ are two points of a curve of the second order

lying upon the same diameter, and that if and u
1
are two straight

lines of the plane parallel to a pair of conjugate diameters
; if, now,

the curve is projected from S and S
l upon u and u

lt respectively, we

obtain two similar projective ranges of points u and //
:
which are there

fore proportional. A well-known simple construction for an ellipse or

hyperbola is based upon this theorem.

16. If we project a parabola from one of its points upon any diameter

//, and also from its infinitely distant point upon any other straight line

//!, we obtain in u and u
l
two similar projective ranges of points. From

this there follows a very simple construction for a parabola.

17. In the plane of a curve of the second order k-, a one to one corre

spondence may be established among lines which are perpendicular to

each other and conjugate with respect to the given curve. To the rays

pHissing through an actual point S, which does not lie upon an axis of
2
,
would thus be correlated the tangents to a parabola which is touched

by the polar of 5 and by the axes of kz
(Example 6, p. 95). The tangents

which are common to the parabola and k~ touch the latter at the ex

tremities of the perpendiculars drawn from S to k- (comp. Example u).



LECTURE X.

THE REGULUS AND RULED SURFACE OF THE SECOND ORDER.

169. Thus far we have obtained only curves, sheaves of rays

and planes, and cones of the second order, from projective one-

dimensional primitive forms which either lie in the same plane
or belong to the same bundle of rays. Let us now investigate

whether or not other forms of the second order can be generated

by means of two such projective primitive forms. In the first

place we find that

A sheaf of rays S generates with A sheaf of rays S generates with

a range of points u projective to a sheaf of planes u projectiv.e to it,

it, the same sheaf of planes of the the same range of points of the first

first or second order as with the or second order as with the sheaf

sheaf of rays by which u is pro- of rays in which u is cut by the

jected from the centre of S, For, plane of S. For, the point, in

the plane which joins any point of which any plane of u is cut by the

n with the corresponding ray of the corresponding ray of the former

former sheaf passes also through sheaf lies also upon the corre-

the corresponding ray of the latter spending ray of the latter sheaf,

sheaf.

Two projective sheaves of rays which lie arbitrarily in space

generate (at least immediately) no new forms. For, in general, two

corresponding rays will not lie in the same plane, and hence will

have no point of intersection. Similarly, a range of points and a

sheaf of planes projective to it generate no new forms, since a

point of the former and a corresponding plane of the latter

determine no third element.

170. Consequently new forms are generated only by two pro

jective ranges of points or two projective sheaves of planes which

lie arbitrarily in space. If u and u
l

are two projective ranges of
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points not lying in one plane, they generate a system of straight

lines V, each line of which joins two homologous points of the

ranges. No two straight lines of this regulus
*

lie in one plane ;

FIG. 55 . FIG. 56.

for, otherwise, two points of u and their corresponding points in

uv and consequently u and u^ themselves, would lie in one plane

contrary to supposition. All the rays of this regulus lie upon a

curved surface, called a ruled surface, which is marked by the

following characteristics, namely :

The surface is covered by a second system of straight lines 7,

each line of the one system being intersected by every line of

the other system, while no two straight lines of the same system
intersect each other.

Every point which lies upon a Every plane which passes

ray gf one system lies also upon through a ray of one system
a ray of the other. contains also a ray of the other.

For instance, suppose that v, v
l}

v.
2,

are any three ~rays of the

system V, so that each of these rays joins two corresponding points

of u and
//!,

and let u.
2
be a straight line which also cuts these

three rays v, If, then, we project the ranges of points u

and u
l
from the axis u.2,

we obtain two projective sheaves of planes

which have the three planes u
2v, u

z
v

lt
u
zv^ and consequently

all their planes self-corresponding (compare Art. 84). Thus every

* The term *

regulus is used by Salmon to denote a single infinity of straight

lines forming a regular system Geotn. of Three Dimensions
&amp;gt; 4th ed., p. 417. H
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pair of homologous points of u and ^ lie in a plane with #
2 ,
and

therefore u% is intersected by every ray of the regulus V. The same

holds true of any other straight line ?/
3
which cuts the three rays

v, z&amp;gt;

1}
v
2

. Hence
&quot; The regulus U consists of all straight lines which cut any three

&quot;

rays v, vv v
z,

of the system V. Similarly the regulus V consists
&quot;

of all straight lines which intersect three rays ,
u

lt
u9t of the

&quot;system U&quot;

Since any straight line which cuts more than two rays of either

regulus must cut every ray of that regulus, each is called a regulus

of the second order. Any ray of one regulus is a director of

the other. Also either system of rays may be called the director

system of the other.

171. The ruled surface can thus be traversed in either of two ways

by a straight line sliding along three given fixed straight lines, no two

of which lie in the same plane. The three fixed lines are directors

of the regulus which is described by the moving line. The moving
line passes over each point of a director once, and lies once in each

plane which can be passed through a director (compare Art. 39).

172. Two projective sheaves of planes u and u
l
whose axes do not

lie in the same plane likewise generate a regulus V of the second

order. This might be obtained from those projective ranges of

points u and u
lt

the first of which is a section of the sheaf u
l by

the axis u, and the second a section of the sheaf u by the axis u
l

for each straight line in which two corresponding planes of the

sheaves intersect joins two corresponding points of the ranges.

173- A regulus of the second A regulus of the second order

order is cut by any two of its is projected from any two of its

directors in projective ranges of directors by projective sheaves of

points. planes.

Let ?.
,
wv and w,

2
be three directors of the regulus so that

every ray of the latter is intersected by these three rays. We then

obtain any desired number of rays of the regulus either by passing

planes through w2
and joining the two points in which each plane

is cut by iv and w
lt

or by choosing points in w% and finding

the line of intersection of the planes which each point deter

mines with w and ze/r The regulus is thus cut by the two

directors w and w
l

in two ranges of points which are perspective

to the sheaf of planes w
2 ;

at the same time it is projected from
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w and u\ by two sheaves of planes which are perspective to the

range of points w.
2l

and consequently are projective to each other.

174. Four rays of a regulus of the second order are called

harmonic rays if they are cut by any, and hence by every,

director of the system in four harmonic points, or are projected

from any director by four harmonic planes.

That is to say, if w and w
l

are two directors of this regulus,

the ranges of points w and iv
l

are related projectively to each

other by the regulus ; and if any four rays of the regulus are

intersected by w in four harmonic points, their intersections with

it\ are also harmonic points. But at the same time the four rays

are projected from w
l by harmonic planes since these planes pass

through four harmonic points lying in w.

175. To three arbitrary rays a, b, c, in space, of which no two

lie in the same plane, a fourth ray d may be determined which

is harmonically separated from one of the three by the other two.

If upon any straight line which intersects the three given rays

we find the fourth harmonic point to the three points of inter

section, this point lies upon the required ray d. In general d is

a fourth ray of the regulus of the second order to which the rays

a, b, c, belong, and considered as such is harmonically separated

from b by a and c.

176. If a straight line has more than two points in common
with the ruled surface here considered it lies wholly upon the

surface
;
for in that case it cuts more than two rays of one of the

reguli lying upon the surface, is therefore a director of that regulus,

and consequently belongs to the other regulus. On account of this

property the surface is called a ruled surface of the second order/

A plane which cuts the ruled surface along a ray // of one

regulus lying upon it, and consequently (Art. 170) contains a ray

v of the other regulus, has no point in common with the surface

outside the straight lines u and v. Otherwise, every straight line

of the&quot; plane passing through such a point would intersect u and v in

points of the surface, and the whole plane would thus lie upon the

surface, which is impossible. Since now a third line of the plane
which passes through the intersection of u and v has only this

point uv in common with the surface, it is tangent to the surface

at this point, and we shall say that &quot;the surface is touched by
the plane of u and v in the point uv

&quot;

or &quot; the plane is tangent
to the surface at this

point.&quot;

i
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177. &quot;The number of planes tangent to a ruled surface of the
&quot; second order, which can be passed through a given straight line,
&quot;

is equal to the number of points which the straight line has in

&quot; common with the surface. The surface is thus of the second
&quot;

class.&quot;

For since in every such tangent plane there is contained a ray

of one regulus lying upon the surface (and also a ray of the

other), the given straight line has a point of intersection with this

ray, and no two such points of intersection with rays of the same

regulus can coincide, since no two rays of the same regulus lie in

one plane. Hence there cannot be more tangent planes passed

through the line than the number of its intersections with the

f) surface.. At every intersection with the surface the given line

meets a ray of each regulus. The plane of the given line and

either of these rays is tangent to the surface at some point along
the ray; it thus contains also a ray of the other regulus, and

these second rays in the two planes must intersect in a point of

the given line. Hence the number of tangent planes through any
line is just equal to the number of intersections of the surface and

line. From this it follows that if through a straight line there can

be passed more than -two planes tangent to the surface, the line

lies wholly on the surface.

178. If we consider a regulus of the second order to be gener

ated by two projective sheaves of planes and these to be cut by
an arbitrary plane cr, there appear in this plane two projective

sheaves of rays such that every point of intersection of homolo

gous rays of the sheaves lies upon a ray of the regulus.

If, on the other hand, we consider the regulus to be generated

by two projective ranges of points and these to be projected from

an arbitrary point S, there will arise two concentric and projective

sheaves of rays such that every plane containing a pair of homo

logous rays of these sheaves contains also a ray of the regulus.

From this follows the first part of each of the following theorems :

A regulus of the second order is A regulus of the second order is

intersected by any plane a- which projected from any point S which

contains none of its rays in a curve lies upon no one of its rays by a

of the second order. The planes sheaf of planes of the second order,

which are tangent to the ruled sur- The points in which the surface is

face in the points of such a curve touched by the planes of such a

form a sheaf of the second order. sheaf lie upon a curve of the

second order.
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In order to prove the second half of the theorem on the right,

we pass a plane through three of the points of contact. This

cuts the sheaf of planes in a sheaf of rays of the second order,

of which the three chosen points are points of contact and which

envelops a curve of the second order. But this curve is identical

with that in which the plane cuts the regulus, since these two

curves have the three points of contact and the tangents at these

points in common. The theorem on the left is proved in an

analogous way by constructing a sheaf of planes tangent to the

surface, whose centre is the point of intersection of any three

planes which touch the surface at points of the given curve.

179. A ruled surface of the second order is called a simple

hyperboloid or a hyperboloid of one sheet (Fig. 55) if it contains

no infinitely distant line but is intersected by the infinitely distant

plane in a curve of the second order. On the other hand, it is

called a hyperbolic paraboloid (Fig. 56) if one and conse

quently (Art. 170) each regulus lying upon it contains an infinitely

distant ray, , Each of the two reguli of a hyperbolic paraboloid is

cut by any two of its directors in similar protective ranges of

points, i.e. in ranges whose infinitely distant elements correspond
to each other. Thus a hyperbolic paraboloid is described by a

straight line which slides along two fixed straight lines u and u
l

gauche to each other
(i.e. non-intersecting), and remains parallel

to a fixed plane not parallel to either u or UY For, the moving
line intersects not only u and u

l
but also the infinitely distant line

of the given plane ;
it describes therefore a ruled surface upon

which lies one and consequently a second infinitely distant ray.

The hyperbolic paraboloid is cut by an arbitrary plane which

contains none of its rays in a hyperbola, but when the plane is

parallel to a particular straight line the section is a parabola.

Any curve of section passes through the two points in which the

infinitely distant rays of the surface are cut by the plane of

section, and these points coincide only in case the plane contains

the common point of the infinitely distant rays.

1 80. The hyperboloid of one sheet is not, like the hyperbolic

paraboloid, touched by the infinitely distant plane, but, as we said,

is cut by it in a curve of the second order. The tangent planes
at the infinitely distant points of the hyperboloid are therefore

actual planes which (Art. 178) intersect in one point 5 and form

a sheaf of the second order. The cone of the second order
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enveloped by this sheaf converges toward the hyperboloid along
its infinitely distant curve and is called its asymptotic cone/

An arbitrary plane which contains no ray of a hyperboloid of one

sheet cuts the surface in a hyperbola, parabola, or an ellipse,

according as it has in common with the infinitely distant curve

of the surface two, one, or no points, or, what is the same thing,

according as it is parallel to two, or to only one, or to no rays

of the asymptotic cone.

181. I shall add only the following theorem, which appears

directly from what has already been said :

&quot;

If straight lines be drawn through any given point parallel to
&quot;

the rays of a regulus of the second order, these all lie in one
&quot;

asymptotic plane or upon a cone of the second order, according
&quot;

as the regulus lies upon a hyperbolic paraboloid or a hyperboloid
&quot;

of one sheet.&quot;

182. A hyperbolic paraboloid is called *

equilateral if the rays

of its two reguli are parallel respectively to two planes at right

angles. Each regulus of an equilateral paraboloid contains one

ray which is perpendicular to a directing plane and hence to each

ray of the other regulus.

EXAMPLES.

1. Show that the locus of the vertex of a cone of the second order, to

which the six sides of a gauche hexagon are tangent, is a ruled surface

of the second order determined by the three principal diagonals of the

hexagon.

2. The three principal diagonals of a gauche hexagon whose six sides

lie upon a ruled surface of the second order intersect in one point.

3. Suppose that a range of points u and a sheaf of rays of the first

order S, not lying in parallel planes, are related projectively to each

other
;

if rays be drawn through the points of u parallel to the corre

sponding rays of S, they will constitute one regulus of a hyperbolic

paraboloid.

4. Suppose a range of points u and a sheaf of planes v are related

projectively to each other, their bases not being at right angles ;
the

perpendiculars let fall from the points of u to the corresponding planes

of v form one regulus of a hyperbolic paraboloid.

5. If at the points of a straight line lying upon a ruled surface of

the second order, normals are erected to the surface, these form one

regulus of an equilateral hyperbolic paraboloid (Example 4).
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6. If planes are passed through any chosen point normal to the rays

of a regulus of the second order, these form a sheaf of the first or the

second order according as the regulus belongs to a hyperbolic para
boloid or to a hyperboloid of one sheet.

7. The planes which pass through a fixed point and intersect a given

hyperboloid of one sheet in parabolas envelop a cone of the second

order, each ray of which is parallel to a ray of the asymptotic cone of

the hyperboloid.

8. Construct a ruled surface of the second order of which there are

given two rays a and b not lying in the same plane, and either three

points outside a and b or three tangent planes not passing through
a or b.

9. What is the locus of a point which is harmonically separated from

a given point A by a ruled surface of the second order ? What sort

of intersection has this locus with a plane passing through A ?



LECTURE XL

PROJECTIVE RELATIONS OF ELEMENTARY FORMS.

183. As has been shown, five forms of the second order can be

generated by projective one-dimensional primitive forms.; namely,

the curve or range of points of the second order, the sheaf of

rays and the sheaf of planes of the second order, the cone of the

second order, and the regulus of the second order. It will be

convenient for us, with Von Staudt, to group these five forms of

the second order and the three one-dimensional primitive forms

under the common name elementary forms. Among the element

ary forms, then, there are two which consist of points, namely,

the ranges of points of the first and the second orders; next, two

which consist of planes, the sheaves of planes of the first and the

second orders
;
and finally, four which consist of rays, namely,

the sheaves of rays of the first and the second orders, the cone

of the second order, and the regulus of the second order.

In the present lecture I shall undertake to show you that these

elementary forms can be correlated to each other, two and two,

in a manner analogous to that employed with the one-dimensional

primitive forms. By so doing, the realm of our investigations is

considerably enlarged; for instance, you will observe immediately

that we can obtain a large number of new forms consisting of

points, rays, and planes, which possess just as noteworthy proper

ties as do those hitherto considered. At the same time we are

made aware of other important theorems concerning the forms of

the second order, which by this means may be obtained very easily,

but otherwise with considerable difficulty.

184. Let me remind you, at the outset, of the following theorems

which have been previously enunciated, and which may be fixed
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upon as the definitions of harmonic quadruples in forms of the

second order :

Four harmonic points of a curve Four harmonic planes of a sheaf

of the second order are projected of the second order are intersected

from any fifth point of the curve by any fifth plane of the sheaf in

by four harmonic rays (Art. 1 10). four harmonic rays (Art. 125).

Four harmonic rays of a cone of Four harmonic rays of a sheaf

the second order are projected of the second order are cut by
from any fifth ray of the cone by any fifth ray of the sheaf in four

four harmonic planes (Art. 125). harmonic points (Art. no).

Four harmonic rays of a regulus of the second order are cut

by any director of the regulus in four harmonic points, and are

projected from any director by four harmonic planes (Art.

174).

185. We may now extend the definition of the projective relation

for primitive forms (given in Art. 79) so as to apply to elementary

forms in general, thus

Two elementary forms are said to be projectively related to each

other if they are so correlated that any four harmonic eleme?its of the

one form correspond to four harmonic elements of the other.

It follows from this definition that two elementary forms are

projective to each other as soon as they are projective to one and

the same third form.

Moreover, we may extend the idea of the perspective relation

between two one-dimensional primitive forms so as to apply to

elementary forms in general. Thus,

Two unlike projective elementary forms are said to be in perspective

position if each element of the one form lies in the corresponding element

of the other.

A range of points of the second order, for example, is perspective

to a cone passing through it if each ray of the latter is correlated

to the point of the former which lies upon it. A range of points

of the second order is projected from any one of its points by a

sheaf of rays perspective to it; a sheaf of rays of the second

order is cut by any one of its elements in a range of points per

spective to it
;

a regulus of the second order is intersected by
each of its directors in a range of points perspective to the

regulus, etc. Two elementary forms, the one of which is derived

from the other by projection or section, are obviously projectively

related, since four harmonic elements of the one correspond
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always to four harmonic elements of the other, and when corre

sponding elements are superposed the forms are perspective to

each other.

If to each point of a curve of the second order is correlated

the tangent at this point, then is the curve related perspectively

to the sheaf of rays enveloping it; for, the curve is touched in

any four harmonic points by four harmonic rays of the sheaf

(Art. 122). Two curves of the second order are therefore related

projectively to each other if the two sheaves q^rays enveloping
them are projective to each other.

*

1 86. Two forms of the second order may be conveniently corre

lated projectively by establishing a projective relation between

two one-dimensional primitive forms perspective to them. Two

projective elementary forms may consequently (as in Art. 92)

always be considered as the first and last of a series of elementary
forms of which each is perspective to the one following.

Moreover, two elementary forms can be so correlated to each

other, that three given elements of the one correspond respec

tively to three given elements of the other, in only one way; this

has already been proved (Art. 90) for one-dimensional primitive

forms, and the proof holds equally well for elementary forms in

general.

For example, if it is required to correlate projectively to each

other the two ranges of points of the second order, & and k1
l

(Fig. 57), which lie in one plane, so that to the points A, B, C,

of Kl
correspond the points A

19 B^, Cv of &\, we may denote

by S and T
I} respectively, the points of K2 and /

2
1 ,

which are

projected from A and A^ by the ray AA lt
and then project the

given ranges of points from the centres .S
1

and T^ by two sheaves

of rays S(ABC...} and T
l (A l

B
l
C

l ...). These are projective

to the given ranges of points and consequently to each other.

They are, moreover, perspective since they have the ray AA^ self-

corresponding. Any two homologous points D and D
l

of the

two ranges of points -are therefore projected from S and Tv
respectively, by two rays which intersect upon a fixed straight

line u.

187. If two projective elementary forms of the same kind, e.g.,

two ranges ofpoints of the second order, are superposed, then all their

elements are self-corresponding, or else at most two. Elementary

forms which are identical are, at the same time, projective.
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Two curves of the second order

which lie in the same plane and

have one point S in common are

correlated projectively to each

other if those points of the curves

are made to correspond, which lie

in a straight line with S. For both

curves are then perspective to the

sheaf of rays S. Every common

point of the curves different from S
is self-corresponding ;

the point S
is likewise self-corresponding if the

curves have a common tangent in

this point, i.e. if they touch each

other at S.

Two curves of the second order

which lie in the same plane and

have a common tangent s are

correlated projectively to each

other if those tangents of the two

curves are made to correspond,
which intersect in a point of s.

For the sheaves of the second order

which envelop the curves are then

perspective to the range of points s.

Every common tangent of the

curves different from s is self-

corresponding ;
but s itself is self-

corresponding only if the curves

have a common point of contact in s.

FIG. 57.

Two different curves of the second order which are correlated

in the manner indicated on the left have at most three self-

corresponding points. For, if they have beside S four common

points, or three common points and a common tangent in S, then

are they identical (Art. 112). Similarly, the two curves on the

right have at most three self-corresponding tangents.

1 88. We are thus brought to the following reciprocal theorems :

If two projectively related curves

of the second order have four self-

If two projectively related curves

of the second order have four self-
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corresponding points, then all their corresponding tangents, then all

points are self-corresponding and their tangents are self-correspond-
the curves are consequently iden- ing and the curves are consequently
tical. identical.

The theorem on the left may be proved as follows : The two

curves can be correlated to each other in only one way so that

the three points A, B, C, of the one correspond to the same three

points A, B, C, of the other. But this happens if we relate the

two curves perspectively to the sheaf of rays S. Suppose now
that the curves have the point S also self-corresponding, then

they must have a common tangent at this point and are conse

quently identical (Art. 112). The theorem on the right may be

derived from that on the left by the application of the principle

of reciprocity which we have demonstrated for the plane (Art. 138) ;

however, I recommend to you as useful practice an attempt at a

direct proof.

If the curves are projected from an arbitrary centre by two

projectively related cones, we obtain for these wholly analogous

theorems.

189. If a curve of the second order is projectively related to

a regulus or to a cone of the second order, and more than three

points of the curve lie upon the rays corresponding to them, then

the curve is perspective to the regulus or cone
; for, it is identical

with the section of the regulus or cone which lies in its plane,

since it is projective to this section and has with it more than

three self-corresponding points.

Similarly, a sheaf of planes of the second order is perspective

to a regulus or to a sheaf of rays of the second order, which is

projectively related to it, if more than three of its planes pass

through the rays corresponding to them. If we project, for in

stance, either of the latter forms from the centre of the sheaf

of planes we obtain a second sheaf of planes which is identical

with the first; for it is projectively related to the first sheaf and

has with it more than three self-corresponding elements.

190. At this point the following theorems may be introduced :

Two cones of the second order Two curves of the second order

which have different vertices and which lie in different planes and

which are touched by the same which are tangent to the line of

plane along the line ^ joining their intersection s of their planes at

vertices, intersect in a curve of the the same point, lie upon a cone

second order. of the second order.
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If each of the cones is correlated

perspectively to the sheaf of planes

If the sheaves of rays of the

second order which envelop the

whose axis is s, they will have the curves be correlated perspectively

ray s self- corresponding ;
even to the range of points s, the ray

other pair of homologous rays of s will be a self-corresponding ray

the cones will intersect since they

lie in one plane passing through

(compare Art. 187) ; every other

pair of homologous rays of the

s. The plane determined by any sheaves determine a plane, since

three points of intersection of the rays intersect in a point of s.

homologous rays intersects the From the point of intersection of

cones in two projectively related any three of these planes the two

curves of the second order which sheaves of rays may be projected

are identical, since they have self- by two projectively related sheaves

corresponding not only these three of planes of the second order which

intersection points but also a point are identical, since they have self-

of s. corresponding these three planes

and also a plane passing through s.

The proof of these theorems may however be made much

simpler. In the theorem on the left, if a plane be passed

through any three points common to the two cones, the two

curves of section lying in it have these three points in common

and also the point of intersection with s
;

since both curves are

tangent at the latter point to the straight line in which the

common tangent plane of the cones is intersected, these curves

of section must coincide (Art. 112). The theorem on the right

may be proved in a similar way.

191. It follows incidentally that any curve of the second order

may be considered as a section of a circular cone. For a circle

and a given curve of the second order can be brought in an

unlimited number of ways into such position that they touch each

other and lie in different planes, and hence lie upon one and

the same cone. Curves of the second order are thus identical with

the conic sections of ancient times, and may hereafter be desig

nated by that name.

192. Ifa sheafof rays ofthefirst If a range of points of the first

order S lies in the plane of a conic order lies in the plane of a sheaf
section k2 which is projectively re- of rays of the second order which

lated to it, but not in perspective is projectively related to it, but not

position, then at most three rays in perspective position, then at

of the sheafpass through the points most three points of the range lie

of the cun e corresponding to them, upon the rays of the sheaf corre-

and at least one. sponding to them, and at least one.
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For every sheaf of rays S
l perspective to the curve & is pro-

jective to the sheaf S, and with it generates, in general, another

curve of the second order, which must have in common with the

first curve every point which lies upon the ray of .5&quot; corresponding
to it. If more than three rays of should pass through the

points of k2

corresponding to them, the two curves would have

beside S
1

at least four common points, hence would be identical,

and S would be perspective to &. Since every curve of the

second order divides its plane into two parts, these two curves,

in case they do not coincide, must either touch each other in the

point S
}
or must intersect in ^ and at least one other point P,

so that each curve lies partly within and partly without the other.

In the latter case the rays SP and S^P correspond to each other,

and consequently SP passes through the point P of the curve k^

corresponding to it
;
in the former case, to the ray SS^ of S, there

corresponds the common tangent in S
l
and hence also the point

S
l

of the curve k2
. Thus at least one point of the curve lies

upon the ray of the sheaf corresponding to it.

Wholly analogous theorems are true for the forms of the first

and second orders, in the bundle of rays.

193. We conclude that

If a one-dimensional primitive form and an elementary form of
the second order are related projectivelv to each other, and more than

three elements of the one form pass through or lie upon the elements

of the other which correspond to them, then the tivo forms are in

perspective position, that is, each element of the one form passes

through or lies upon the element of the other corresponding to it.

If the form of the second order is a regulus and the other

either a range of points or a sheaf of planes of the first order, it

can be seen immediately that these are perspective to each other

if three rays of the regulus pass through the three corresponding

points of the range or lie in the three corresponding planes of

the sheaf. For the base of the range of points or axis of the

sheaf of planes is then a directing ray of the regulus (Art. 170)

since it intersects three rays of the latter.

194. The importance of these theorems may be judged from

the following :

A sheaf of planes of the first A range of points of the first

order and a regulus or a cone of order and a regulus or a sheaf of

the second order projectively re- rays of the second order projec-
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lated to it generate, in general, a lively related to it generate, in

gauche curve of the third order. general, a sheaf of planes of the

This has at least one and at most third order. At least one and at

three points in common with any most three planes of this sheaf

plane. pass through any point.

For, a plane cuts the regulus or the cone in a range of points-

of the second order perspective to it, of which in general and at

most three points lie upon the corresponding planes of the sheaf.

If a range of points u of the If a sheaf of rays of the first

first order and a range k- of the order and one of the second order

second order projectively related projectively related to it lie in one

to it lie in one plane, the straight plane, the points of intersection of

lines joining homologous points homologous rays form a line or

form a sheaf of rays of the third curve of the third order
; this

order
;
at least one and at most curve is intersected by any straight

three rays of this sheaf pass through line of its plane in at least one

any point of its plane. and at most three points.

For if 6&quot; is any sheaf of rays of the first order perspective to //,

and consequently protective to k-, at most three rays of 6&quot; pass

through the corresponding points of /-, and at least one ray.

195. If the ranges of points u and k- of the first and second

orders, respectively, have a self-corresponding point P, then every

ray passing through P must be considered as a line joining two

(coincident) homologous points, and the sheaf of rays of the third

order includes the sheaf P of the first order as a part of it. The

following theorems are therefore not to be considered exceptions

to, but as particular cases of, the theorems just now proved.

If a range of points u of the If a sheaf of rays of the first

first order and a range k- of the order and a sheaf of rays of the

second order, projectively related, second order, projectively related,

have two self-corresponding points have two self-corresponding rays,

A and B, they generate a sheaf of they generate a range of points

rays of the first order. of the first order. *-.

Suppose that to the point C of n the point C
l
of k- corresponds,

and let S be that point of k- which is projected from C^ by the

ray C^C. If now we relate u and k- perspectively to sheaves of

rays Sj these will be so related projectively to each other that to

the three points A, B, C, of u will correspond the three points

A, B) C
lt respectively, of k-. But since (Art. 186) the projective

relation of u and k- is determined uniquely by the three pairs
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of homologous points, the lines joining pairs of homologous points

clearly form a sheaf of rays 6
1

of the first order whose centre lies

upon the curve k 1
.

196. A curve of the second order

and two straight lines a and b each

having one point in common with

the curve, but which neither lie in

a plane with the curve nor with

each other, determine a regulus of

the second order perspective to the

curve and of which the two straight

lines are directors.

The two sheaves of planes a and

b perspective to the curve generate

the regulus.

A sheaf of planes of the second

order and two straight lines a and
b each lying in a plane of the sheaf,

but which neither intersect nor pass

through the centre of the sheaf,

determine a regulus of the second

order perspective to the sheaf and
of which the two straight lines are

directors.

The two ranges of points a and b

perspective to the sheaf of planes

generate the regulus.

The director system of this regulus contains the rays a and
/&amp;gt;,

and is likewise perspective to the curve or to the sheaf of planes,

as the case may be.

If a range of points of the first

order and a curve of the second

order not lying in the same plane

are projectively related and have a

point A self-corresponding, they

generate a regulus of the second

order perspective to both.

If two sheaves of planes of the

first and second orders respectively

not belonging to the same bundle

are projectively related and have

one self-corresponding plane, they

generate a regulus of the second

order perspective to both.

In the theorem on the left, suppose that to the points A, B, C,

of the range of points correspond the points A, B^ Cv of the

curve
;

then the regulus determined by the curve and the two

straight lines BB^ CC^ is perspective not only to the curve but

also to the given range of points, since the three points A, B, C,

of the latter lie in those rays of the regulus which correspond to

them. The proof of the theorem on the right is wholly analogous.

197. From an arbitrary point not in the plane of the curve, the

conic of the last article is projected by a cone of the second order,

and the regulus, by a sheaf of planes of the second order. This

sheaf of planes is cut by an arbitrary plane in a sheaf of rays of the

second order and the regulus, in a range of points of the second

order. Hence it follows :

If a range of points of the first

order and a cone of the second

If a sheaf of planes of the first

order and a sheaf of rays of the



PKOJECTIVE RELATIONS OF ELEMENTARY FORMS. I43

order are protectively related, and second order are projectively re-

one point of the former lies upon lated, and one plane of the former

the corresponding ray of the latter, contains the corresponding ray of the

the two forms generate a sheaf of latter, these two sheaves generate a

planes of the second order per- range of points of the second order

spective to both. perspective to both.

This theorem brings us immediately to the following if we

remember that any curve of the second order may be looked upon
as a section of a cone of the second order :

If a range of points of the first If two sheaves of rays of the

order and a curve of the second first and second orders, respectively,

order lying in the same plane are pro- lying in the same plane are pro

jectively related and have one self- j actively related and have one self-

corresponding point, they generate corresponding ray, they generate a

a sheaf of rays of the second order curve of the second order per-

perspective to both. spective to both.

Two projective reguli of the second order abc and ct^\c^ of

which each is the director system of the other, generate a curve

of the second order and a sheaf of planes of the second order,

both of which are perspective to the reguli.

The two reguli can be related projectively to each other in only

one way so that to the rays #, b, c, of the one system correspond

au ^i&amp;gt;

c
\&amp;gt;

respectively, of the other system. But this happens if those

two rays are correlated to each other which intersect the plane

determined by the points aa^ bb^ cc^ in one and the same point,

or which are projected from the point determined by the planes

aav bb^ cc^ by one and the same plane.

198. Of two projective reguli or cones of the second order, at most

four pairs of ho?nologous rays intersect unless all such pairs of rays

intersect.

If any two homologous rays in two projective reguli of the second

order lie in a plane e, the two systems may be projected from their

directors lying in e by two sheaves of planes. In case the two

directors do not coincide, these sheaves of planes generate a sheaf

of rays 6&quot; of the first order, since they have e as a self-corresponding

plane. Each ray of 5 intersects two homologous rays of the

reguli, and the reguli themselves are intersected by the plane of *S

in two projective curves of the second order, which have at most

three self-corresponding points unless all their points are self-

corresponding ;
but these self-corresponding points are points of
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intersection of homologous rays of the reguli, and conversely. In

case the two directors coincide, they cut the reguli in two projective

ranges of points which have either at most two, or else all, of their

points self-corresponding. At the same time the reguli are pro

jected from these two coincident rays by two projective sheaves of

planes which have either at most two, or else all, of their planes

self-corresponding. In each of these planes, as well as in each

of the self-corresponding points, two homologous rays of the reguli

intersect. The theorem may be proved in an analogous way if

for either or both of the reguli a cone of the second order be

substituted.

199. From this it is clear that

There are in general and at Of four projective ranges of

most four points through which points situated arbitrarily- in space,,

pass four homologous planes in there are in general and at most

four projectively related sheaves of four sets of four homologous points

planes of the first order which are which lie in one plane,

situated arbitrarily in space.

The sheaves of planes taken in pairs generate projectively related

reguli or cones of the second order to which the preceding theorem

is applicable. Every set of four homologous planes has a common

point as soon as there exist five or more such sets.

200. Two projective curves of Two projective sheaves of rays

the second order which are super- of the second order which are

posed either generate a sheaf of superposed either generate a curve

rays of the second order perspective of the second order perspective to

to both curves, or else there exists both sheaves, or else there exists a

a point which lies in a straight straight line upon which every pair

line with every pair of homologous of homologous rays of the sheaves

points of the curves. intersect.

Every regulus perspective to the one curve generates with its

director system, which may be related perspectively to the other

curve, a sheaf of planes of the second order perspective to all four

forms; and according as the centre of this sheaf lies without or

within the plane of the curves does the first or the second of the

two cases mentioned in the theorem occur. If, then, of the straight

lines joining pairs of homologous points of the curves any three

pass through one and the same point U, all such lines intersect

in that point (Figs. 60 and 61, p. 150).
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201. Two projective curves of the Two projectively related sheaves

second order ABCD and ABC^D^ of planes of the second order which

which have two self-corresponding have two self-corresponding planes,,

points A and B, but which do not but which are not concentric,

lie in the same plane, generate a generate a form of the second

form of the second order perspective order perspective to both, namely,
to both, namely, either a regulus or either a regulus or a sheaf of rays
a cone of the second order. of the second order.

For, the regulus or cone perspective to the curve ABCD and

containing the rays CC^ and DD
l

is perspective also to the curve

ABC
1
D

1 (Art. 189). The curves generate a cone if their tangents

at C and C^ intersect the straight line AB in one and the same

point. Otherwise they would generate a regulus, and the plane of

these tangents would also contain, besides the ray CC^ a director

of the regulus, (Art. 170), and therefore would have common with

one or both of the curves a point different from either C or C^

lying upon this director, which is impossible.

From this it follows that

Two conies which lie in different Two cones of the second order

planes, and intercept the same having different vertices, and lying

segment AB upon the line of in one and the same dihedral angle,,

intersection of these planes, can be intersect in one or other of two-

made to lie upon either of two conies,

cones of the second order.

For, the conies can be correlated projectively in a twofold manner

so that they have the extremities of their common chord as self-

corresponding points, while the tangents at two other homologous

points intersect the line AB in one point.

202. We are now prepared to prove the following theorem upon
the perspective position of elementary forms of the second order :

If a curve and a sheaf of rays of the second order, or a cone and
a sheaf of planes of the seco?id order, or, in fact, any two of these

four forms, are projectively related, and five elements of the one form
lie in the corresponding elements of the other, then the two forms are

in perspective position,

We shall choose, as the first form, a curve of the second order u2
,

and for the other a sheaf of planes of the second order S-, so situated

that five points A, B, C, D, E, of the former lie in the corresponding

planes a, /?, y, 8, e, of the latter ; all other cases can be reduced to

this one. It need only be shown, then, that a rectilinear form
K
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can be constructed which is perspective both to the curve and to

the sheaf of planes ;
for with this it will be proved that each point

of the curve lies in the plane of the sheaf corresponding to it.

If the plane o- of the curve is an element of the sheaf .S&quot;

2
,
then we

obtain in it (as section of S2
)
a sheaf of rays of the first order

&amp;lt;r(abcde] perspective to S2
,
which is also perspective to the curve

v(ABCDE\ since more than three of its rays pass through the

points of the curve corresponding to them (Art. 193); the point

S therefore lies upon the given curve.

And conversely, if 6&quot; lies upon the curve, from this point the

curve is projected by a sheaf of rays of the first order S(ABCDE}
which is perspective to a sheaf of planes ^(a/^ySe), since more than

three of its rays lie in the corresponding planes of S 2
;
the plane u

therefore is an element of the sheaf S2
.

But if the centre S does not lie upon the curve, and consequently

the plane of the curve is not an element of the sheaf, let A
l
be that

point of the curve which is projected from A by the plane a, that

is, A 1
is the second point of intersection of a with the curve and

will coincide with A only if a is tangent to the curve. Through
A

l draw, in the plane a, a straight line g different from AA
lt
and

with this as axis project the given curve by a sheaf of planes of

the first order g(ABCDE}. This is protectively related to the

given sheaf of planes S2 and generates with it a regulus perspective

to both sheaves (Art. 196), since a is a self-corresponding plane
in the two sheaves

;
this regulus is also perspective to the given

curve, since four of its rays pass through the corresponding points

of the curve (Art. 189). The curve u2 and the sheaf of planes S2

thus being both perspective to the regulus are perspective to each

other.

203. If a curve of the second If a sheaf of planes of the second

order ABCDE and a regulus of order and a regulus of the second

the second order abode are pro- order are project!vely related to

jectively related to each other, but each other, but are not in per-

are not in perspective position, and spective position, and two planes

two points A and B of the curve of the sheaf pass through the corre-

lie upon the corresponding rays a, b, spending rays of the regulus, these

of the regulus, these two forms two forms generate a range of

generate a sheaf of planes of the points of the second order per-

second order perspective to both. spective to both.

The three planes, Gr, Dd, Ee, which are determined by the points
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C, &amp;gt;, E, of the curve and their corresponding rays c, d, e, of the regulus,

intersect in one point ;
the sheaf of planes which projects the regulus

abcde from this point is perspective also to the curve ABODE.

204. Two projectively related Two projectively related sheaves

curves of the second order which of rays of the second order which

lie in the same plane and have have two self-corresponding rays

two self-corresponding points either either generate a range of points of

generate a sheaf of rays of the the second order perspective to

second order perspective to both, both, or else there exists a straight

or else there exists a point lying line belonging to neither of the

on neither of the two curves which sheaves upon which every pair of

is in a straight line with every pair homologous rays of the sheaves

of homologous points of the curves. intersect.

Namely, any regulus of the second order which is perspective

to the one curve generates with the other a sheaf of planes of the

second order, and this in general is cut by the plane of the curves

in a sheaf of rays of the second order. It is only when the centre

of the sheaf of planes lies in the plane of the curves that the last

case of the theorem occurs.

205. If two projectively related curves of the second order lie

in one plane and have no self-corresponding points, they generate

a sheaf of rays of higher order than the second, of which in general

and at most four rays pass through one point. If through any

point ,5* more than four rays of the sheaf should pass, then through
this point would pass an infinite number of such rays, since a

sheaf of planes which has its centre at and is perspective to

one of the two curves (projects a regulus which is perspective to

the curves say) is perspective also to the other.

Similarly, two projectively related sheaves of rays of the second

order which lie in one plane generate a curve of higher (viz. the

fourth) order, which in general has not more than four points in

common with any straight line. We must, however, refrain from

entering further into the discussion of these or other products of

projectively related forms of the second order.

EXAMPLES.

1. To three given elements of any one of the elementary forms of the

second order construct the fourth harmonic element.

2. Let S be the vertex of an angle of given magnitude which lies upon a

curve of the second order and AB the chord of the curve subtended bv
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the angle. If the angle be rotated about S the chord AB will generate a

sheaf of rays of the second order. In case the given angle is a right

angle the sheaf of rays generated by AB is of the first order.

3. A triangle ABP is circumscribed to a curve of the second order

so that its base AB lies in a given tangent to the curve and is of given

length ;
show that the locus of the point P is another curve of the second

order.

4. If two tangents to a parabola make a constant angle with each

other, show that the locus of their intersection is a hyperbola, and that

their chord of contact generates a sheaf of rays of the second order.

An exception is made in case the angle between the tangents is a right

angle.

5. Suppose there are given a cone of the second order and two non-

intersecting straight lines a and b which are either parallel to two rays

or perpendicular to two tangent planes of the cone. If a third straight

line moves so as always to intersect a and b and remain parallel to some

fixed ray of the cone, or, in the second case, remain perpendicular to

some fixed tangent plane of the cone, it will generate a hyperboloid of

one sheet.



LECTURE XII.

THE THEORY OF INVOLUTION.

206. If two elementary forms of the same kind u and jtv for

example, two ranges of points, are projectively related and lie

upon the same base, any element P of their common base may
be considered as belonging either to the one form // or to the

other uv and there correspond to it consequently two other

elements, one in u^ and the other in u. In general, these two

elements corresponding to P are different from each other, as in

! FIG. 58.

FIG. 59.

Fig. 58, where to the points P, Q, 7?, of // correspond /\, (?lf ^,
respectively, of ^ ; however, it is possible for them to coincide (as

in Fig. 59), so that to the element P another element P
l

corre

sponds doubly ;
that is, to P considered as an element of the first

form u there corresponds the element P
l
of the second form u

lt

and to P considered as an element of the second form u^ there

corresponds Pl
of the first ;/.

207. If the elements of two projective forms u and u^ which

are superposed are not all self-corresponding, but to each element

another corresponds doubly, then we say that the forms have in-

volutory position, or that they are in involution. Two projective

u
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forms of different kinds are said to be in involution if one of

them is in involution with a section or a projector of the other.

Two projectively related ranges of points of the second order

which lie upon the same conic are in involution (Figs. 60 and 61)
if three and consequently (Art. 200) all straight lines joining pairs

of homologous points intersect in one point ;
on the other hand.

they are not in involution if they generate a sheaf of rays of the

second order perspective to both of them. If to each point of a

straight line which lies in the plane of a curve of the second order

but which does not touch it, we correlate its polar with respect to

the curve, we obtain a sheaf of rays which is not only projectively

related to the range of points but is in involution with it

(Arts. 137 and 141).

208. We can now prove the following theorem :

Two ranges of points of the second order ivhich lie upon the

same conic are in involution if to any one point A of the curve

another point A1 corresponds doubly.

FIG. 60. FIG. 61.

Let B and B^ (Figs. 60 and 61) be any two homologous points

of the ranges, so that to the points A, Av B, of the one range

there are correlated the points A lt A, Bv of the other
;
let U be the

point of intersection of AA
l
and BB^ and let u be its polar with

respect to the conic. The two sheaves of
^rays B^(AA^B} and

which project the two ranges of points AA^B- and

from B
l
and B respectively are perspective to the range

of points u. For they are projective to the ranges of points
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of the second order and consequently to each other, and since

they have a self-corresponding ray BBl they project one and the

same range of points of the first order
;
but this must lie upon u

since (Art. 134) the point of intersection of the homologous rays

B^A and BA^, and likewise that of B
l
A

l
and BA^ lies upon

this line. Any other pair of points of the conic, as C and C
19

which lie in a straight line with U are, in the same manner,

projected from B and l$
l by either of two pairs of homologous

rays of the sheaves perspective to z/, and are therefore doubly

corresponding points of the given ranges of the second order.

From this and from theorems previously stated (Art. 134) it

follows that

If two projectively related curves of the second order are in

involution^ all straight lines joining pairs of homologous points

intersect in one and the same point U, and all points of intersection

of pairs of homologous tangents lie upon the polar u of this point.

The straight line u is called the axis of the involution] and the

point U the
l
centre of the involution?

209. The two sheaves of rays of the second order by which

two conies in involution are enveloped are themselves in involu

tion, for the tangents at any two corresponding points also

correspond to each other doubly. These sheaves are therefore

cut by any one of their rays in two ranges of points of the first

order in involution.

Likewise two conies in involution /are projected from any one

of their points by two sheaves of rays o/ the first order which are

in involution, and from any point outside their plane by two

cones in involution. A regulus of the second order which is

perspective to the one curve is in involution with the other, and

so on.

With this we may extend the preceding theorem to all element

ary forms, thus :

Two elementary forms of the same
ki?id&amp;gt;

which are projectively

related and are superposed^ are in involution if any two of their

elements correspo?id doubly.

If the two superposed elementary forms consist of rays, we

may construct two coincident ranges of points of the second order

perspective to them, and since these latter are in involution, two

of their points corresponding doubly, the two given forms must

themselves be in involution. But if the elementary forms are two
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sheaves of planes or ranges of points, we may construct two super

posed rectilinear forms perspective to them, and since these latter

are in involution, as was just now shown, so also are the former.

210. Two forms of the same kind in involution are very

frequently spoken of as a single involution form, or a so-called

* involution
;

the elements of this involution are said to be

coordinated to one another two and two, or conjugate two

and two, or paired in involution. Thus, for example, the points

of a straight line u which is chosen arbitrarily in the plane of a

curve of the second order are paired in involution if every two of

its points which are conjugate with respect to the curve are associ

ated with each other (Art. 207). Similarly, the pairs of conjugate

diameters of a conic form an involution sheaf. And further :

In an involution curve of the In an involution cone of the

second order (Figs. 60 and 61) second order any two conjugate

any two conjugate points lie in a rays lie in a plane with a fixed

straight line with a fixed point line not lying upon the cone, and

not lying on the curve, and any any two conjugate tangent planes
two conjugate tangents intersect intersect upon the polar plane of

upon the polar of this point with this fixed line with respect to the

respect to the given curve. cone.

The theorem on the left is only a repetition of that proved in

Art. 208
;
and the theorem on the right is derived from it by

projection. That is to say, if two elementary forms are in per

spective position and the elements of the one are paired in

involution, so also are the elements of the other.

211. In order to establish an involution among the elements of any

elementary form, two pairs of conjugate elements A, Av and B, B^, may
be chosen at random ; but this being done the involution is determined,

and to every element of the form one and only one other is correlated.

The involution consists, namely, of two superposed forms related

protectively to each other in such a way that to the three elements

A, A^, B, of the one correspond the elements A
lt A, B^, respectively

of the other. But this relation is possible in only one way.

If the involution considered is among the elements of a range

of points of the second order, the point C
l conjugate to any fifth

point C can easily be found with the help of the centre of involution

U (Figs. 60 and 61), in which AA
19 BB^, and CC^ intersect, or

with the help of the axis of involution. An analogous statement

is true for the cone of the second order.
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\

If it is required to establish an involution among the rays of a

regulus of the second order we may intersect the regulus in a

conic and then need only to establish an involution among the

points of the conic.

The rays of a sheaf of the first order S (Fig. 62) are paired in

involution by constructing a curve of the second order perspective

to the sheaf, for example, a circle

passing through the centre S, and

then coordinating the points of this

curve to one another two and two.

We can proceed in a similar way
with any other elementary form.

An involution may, however, be

established among the elements of

a one-dimensional primitive form

without the aid of a form of the

second order.

212. Two elementary forms of

the same kind in involution, for

example, two ranges of points of

the second order (Figs. 60 and 61),

are directly or oppositely projective according as two conjugate
elements A and A

l
are or are not separated by two other conjugate

elements B and BY In the first case (Fig. 61) two homologous
elements, of which the one describes the range AA^B while the

other describes the range A^AB^, move along the base in the same

sense, and can never coincide; in the latter case (Fig. 60) they
move in opposite senses and must coincide twice. We shall call

each self-corresponding element which occurs in two forms in

involution a double element or a focal element of the involution.

Hence the theorem :

An involution has either two double elements or none, and is in

consequence called hyperbolic or elliptic, according as two conjugate
elements in it are not or are separated by two other conjugate elements.

In each double element of the involution two conjugate elements coincide.

If the centre of involution U of an involution curve of the second

order lies outside the curve (Fig. 60) the involution has two double

points M and N, namely, the points of contact of the two tangents
which can be drawn from U to the curve. The axis of involution

u cuts the curve in these points since u is the polar of U (Art. 134).

FIG. 62.
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213. The double elements M and N of an involution are harmonic

ally separated by every other pair of conjugate elements A, A r

It will be sufficient if this theorem is proved for an involution

curve of the second order, since every other case can be reduced

to this one.

Let
, BV be any other pair of conjugate points (Fig. 60) ;

then

the pairs of opposite sides of the simple quadrangle ABA^B^
intersect in two points, conjugate with respect to the curve (Art. 142),

which are harmonically separated by M and N. Thus the rays

BA, BM, BA^ BN, are harmonic since they project four harmonic

points, and consequently the singular points M and N are harmonic

ally separated by the points A and Ar The same thing follows

directly from the theorem of Art. 147, since MN and AA
l

are

conjugate rays.

214. In establishing an involution among the elements -of any

elementary form we might choose at pleasure the two double

elements M and N or one double element M and a pair of con

jugate elements A and A^ ;
but by so doing the conjugate of every

element would be fully determined. For, in the first case, any

two elements of the form would be conjugate which are harmonically

separated by M and N; in the second case, the other double

element TV could be immediately determined, since it is harmonically

separated from M by A and A
1
and this case would thus be

reduced to the preceding.

215. The theorems upon forms in involution which have thus

far been given are of such importance, and will find such frequent

application, that it seems desirable to demonstrate some of them

again and in a more elementary manner, especially as new and

useful theorems arise from the process. To this end we shall set

out with the following definition (Art. 92) :

&quot;Two forms ABODE ... and A^B1C^D^E1 ..., which are com-
&quot;

posed of sets of elements in two elementary forms u and uv shall

&quot; be called projective if the forms u and u
1
can be correlated by

&quot;projection
in such a way that to the elements A, B, C, &amp;gt;,... of

&quot;u correspond Av B^ C
lt

Z&amp;gt;

lt ^...respectively of ur
&quot;

We shall make use of the sign 7\ to denote projectivity. For

example, if u and u
l

are two ranges of points of the first order

which lie in the same plane, but not upon the same straight line,

then ABODE ... &quot;A
A

1
B

1
C

1
D

1
E

1
. . .

only if the straight lines AAV BB^ CCV DD^ EEl
. . . pass through
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one and the same point or are tangent to a conic, to which u and

u
l
are also tangent.*

A set offour elements ABCD /;/ definite order; chosen arbitrarily

from an elementaryform (a throw
),

is projective to every permutation

of these elements in which one pair and also the other pair are inter

changed.

That is,

ABCD 7\ BADC A CDAB A DCBA.

Suppose, for example, ABCD is a throw upon a straight line,

all other cases being reducible

to this one, and let it be re

quired to show that

Project ABCD from an arbi

trary point ^ (Fig. 63) upon a

straight linJIpassing through A,

denoting the projection by

AEFG. 4
Let T be the intersection of CF and DE.

Then,
ABCD is the projection of AEFG from the centre S,

AEFG CTFS D,
CTFS * CDAB E.

Hence, ABCD 7\ AEFG 7\ CTFS 7\ CDAB,
and consequently, ABCD 7\ CDAB
The other relations may be proved in a similar way. We infer

from this that

&quot;

If abcd~RABCD then also abcdl\BADd\CDAB~j\DCBA.&quot;i

* The relation ABCD f\ A^B^C-^D^ also signifies, as has already been shown

(Art. 97), that among the segments of the straight line u and
: there exists

AB CB A^B^ C^B^
the following proportion :

-
: = .

x

fl 2-J C- J-S ./i -i &amp;gt; -i

t With the help of this important theorem the following among other remark

able relations may be proved :

The six vertices of any two self-

polar triangles of a conic & lie upon a

second conic, to which an infinite

number of self-polar triangles of the

first can be inscribed.

The six sides of any two self-polar

triangles of a conic touch a second

conic, to which an infinite number of

self-polar triangles of the first can be

circumscribed.

For suppose ABC and DEF to be the two self-polar triangles, no three
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216. The theorem of Art. 209, already proved in a different

manner, viz., &quot;two superposed elementary forms which are pro-

&quot;jectively related are in involution if any two elements A and A
l

&quot;

correspond doubly,&quot; results directly from the relation proved in the

last article. For, if to any element B of the one form the element

B^ of the other corresponds, so that to the elements A, A^ B, of

the former correspond the elements Av A, B^ respectively of the

latter, it follows, since

by virtue of permutation, that to the element J3
l

of the first form

the element B of the second corresponds, or that any two elements

B and JB
l correspond to each other doubly.

A consequence which might have been stated earlier is this :

&quot;A range of points of the first order u and a sheaf of rays S

&quot;projective to it are in involution if the centre of the sheaf lies

&quot;

outside u, and, of two points P and P
l
of the range, e^ch lies upon

&quot;that ray of the sheaf which corresponds to the other.&quot;

For the section of the sheaf of rays made by the straight line

u is projective to the range of points upon u and is in involution

with it, since the points P and jP, correspond to each other

doubly. In a similar way we determine when a sheaf of planes

is in involution with a range of points or with a sheaf of rays.

217. The fact that any two conjugate elements A, Av of an

involution are harmonically separated by the double elements M
and JV, if such appear, may also be proved in an elementary way.

Let the involution MNAA^ consist of two superposed projective

ranges of points of the first order. Then to the points J/, A, JV, A^
of the one range correspond the points M, Av JV, A, of the other,

of whose six vertices lie in one straight line. Then the sheaves of rays

A(BCEF) and D(CBFE] are protectively related (Art. 144), since to the

four rays AB, AC, AE, AF, of the first sheaf, the rays DC, DB, DF, DE,
of the second are conjugate with respect to the conic &amp;gt;

2
. But from the

relation A(BCEF) ~f\ D(CBFE) it follows that A(BCEF) ~J\D(BCEF) and

therefore the six points A, B, C, /&amp;gt;, , F, lie upon a curve of the second

order as the theorem on the left asserts. If now D and E are two points of

this curve which are conjugate with respect to the first-named conic 2
,
and

consequently vertices of a self-polar triangle D E F ,
the third vertex F lies also

upon the conic through A, B, C, D, E, F; for the conic passing through A, B, C,

D
, ,

F
,
has five points in common with that through A, B, C, D, , F, and

hence coincides with it.

The theorem on the right is proved in a similar way.
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since the double points J/and Ware self-corresponding, and A and

A
l correspond doubly. That is,

MANA^ A&quot; MA^NA.

If now we project MANA l
from an arbitrary point S (Fig. 64}

upon a straight line passing through J/&quot;,
and denote the projec

tion by MRKT, then this

is protectively related to

MANA^ and consequently

to MA^NA.
But these projective forms

have the point M self-corre

sponding and consequently
are

in perspective position, that is,

the straight lines RA^ KN,
TA, intersect in one and the

same point Q. By this means

we obtain a quadrangle QRST of which two pairs of opposite

sides intersect in A and A^ while the diagonals pass through M
and N respectively thus the points MANA^ are clearly harmonic

points.

218. A group of three pairs of elements AA
l

. BB
l

. CC^ of an

involution is sometimes called an involution in the original and

strict sense of the word. These six elements are not inde

pendent, since in an involution the conjugate to any element is

determined as soon as two pairs of conjugate elements are given,

and since any two forms which are composed of elements chosen

from these six symmetrically, as, for instance, AA^BC and

A^AB^CV or AB^C^C and A^BCC^ are projectively related.

Conversely, it follows from the relation AA^BC 7\ A l
A

l
C

l

that the three pairs of elements A, A
l B, B l ; C, C

l
form an

involution AA^.BB^.CC; for, in the projective forms AA^BC
and A^AB^Cv the elements A and A

l correspond doubly, and

consequently the elements B, B^, and C, C\, must correspond

doubly.

A double element M or N can take the place of a pair of

elements in the involution
; thus, for example, M . AA^ . JBB

l
is

an involution if MAA^B ~/\ MA^ABY Similarly, M . N. AA
l

is

an involution if MANA^ is projective to MA^NA, the four ele

ments thus forming a harmonic quadruple.
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219. We can now prove the following theorems :

The three pairs of opposite sides

of a complete quadrangle QRST
(Fig. 65) are cut by any straight

line which lies in the plane of the

quadrangle and passes through

none of its vertices, in three pairs

of points in involution.

The three pairs of opposite ver

tices of a complete quadrilateral

are projected from any point which

lies in the plane of the quadri

lateral but upon none of its sides,

by three pairs of rays in invo

lution.

FIG. 65.

Let u (Fig. 65) cut the sides RT and SQ, ST and QR, QT
and RS, in the points A and A

lt
B and B^ C and Cv respect

ively, and let O be the point of intersection of QS and RT,

Then ATOR is a projection both of ACA
l
jB

l
from the centre

Q and of ABA^C^ from the centre S, and therefore,

ACA
1
B

1 ~KATOR ~R ABA^CV
Moreover, by interchanging A with A

l
and B with C

l
we obtain

(Art. 215) ABA^1\A
Therefore ACA^ 1\ A l

and hence AA^ . BB^ . CC^ is an involution.

For, if two ranges of points lying in u are so related projectively

that to the points A, C, Av of the first correspond Av C^ A,

respectively, of the second, the two forms are in involution since

A and A
l correspond doubly ;

B and
l
are conjugate elements of

the involution on account of the relation ACA
1
JB

1 ~J\ A l C^AB.
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If, now, of a range of points u in involution, two pairs of points

A) A^ and
, B^ are given and it is required to find the point Cl

conjugate to any fifth point C, we can proceed without making
use of the form of the second order in the following manner.

Construct a complete quadrangle of which two opposite sides pass

through A and A
l respectively, two others through B and B

l

respectively, and a fifth side through C
;
then the sixth side will

intersect the given line in the required point Cr
Two quadrangles QRST and Q^R^T^ constructed as above

have essentially different positions with respect to the involution

AA
l

. BB
l

. CC^ if the sides passing through A, B, C, in the one

quadrangle intersect in a point T, while in the other they form

.a triangle Q^^, their sixth side in both cases passing through

C\ (Fig. 65). If the two quadrangles lie in different planes their

eight vertices form two tetrahedra QRST-^ and Q^S^T which

are both inscribed and circumscribed to each other. If the one

tetrahedron is given the other can be easily constructed in an

infinite number of ways.

If two points M and N of the straight line u are har

monically separated by A and A^ and also by B and B-^ that

is, by two pairs of opposite sides of the quadrangle QRST, then

are they also harmonically separated by C and C\, that is, by the

third pair of opposite sides of the quadrangle. For, in this case,M and N are the double points of the involution AA
l

. BB^ . CCY

FIG. 66.

220. &quot;

If a curve of the second order is circumscribed about

a simple quadrangle QRST (Fig. 66) the three pairs of points
&quot;in which any straight line u passing through no vertex of the
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&quot;

quadrangle is cut by the curve and by the two pairs of opposite
&quot;

sides of the quadrangle form an involution
&quot;

(Desargues theorem).

Suppose the chosen line u is cut by the sides TQ, QR,
RS, and ST in the points A, B, Av B^ respectively, and by the

curve in the points P and Pr Then the two sheaves of rays

by which the points P, R, Pv T, of the curve are projected from

Q and 6* are projectively related, and consequently the ranges

PBP^A and PA
l
P

l l
in which these sheaves are cut by the straight

line u are also projectively related. Since now PA
1
P

1
B

1 7\

(Art. 215) it follows that

\

i.e. PP
l

. AA
l

. BB^ is an involution.

A wholly analogous theorem holds for the curve of the second

order which is inscribed in a simple quadrilateral.

221. Since an involution in a one-dimensional form is com

pletely determined by two pairs of elements A, Av and B, B^
we have the following theorems :

The curves of the second order The pairs of tangents to the

circumscribed about any fixed curves of the second order in-

quadrangle are intersected by a scribed in any fixed quadrilateral,

straight line u which lies in the which pass through one point S

plane of the quadrangle, but which lying in the plane of the quadri-

passes through none of its vertices, lateral but upon no one of its

in point-pairs of an involution. sides, form an involution sheaf.

The straight line is touched by The double rays of this involution

two of these curves in the double touch two of the conies in S.

points of the involution.

There are either two or no curves of the second order which

are

circumscribed to the quadrangle inscribed to a quadrilateral and at

and at the same time are touched the same time pass through the

by the given straight line, given point,

according as these double elements do or do not appear.

Thus the problem to construct the conies which pass through

four given points and touch a given line, or which touch four

given lines and pass through a given point, is reduced to finding

the double elements of an involution. We shall be concerned with

this problem of the second order in a subsequent lecture.
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If, in the left hand theorem above, the straight line u lies infinitely

distant, this particular case presents itself:

&quot;Through four actual points of a plane there can be passed

&quot;either two or no parabolas.&quot;

EXAMPLES.

1. If an involution be chosen upon a tangent to a conic section and

from the pairs of conjugate points new tangents to the conic be

drawn, all such pairs of tangents will intersect upon a definite

straight line.

2. The vertices of all right angles whose sides are tangent to a

given parabola lie upon a fixed straight line. Also, the vertices of all

isosceles triangles whose bases lie upon a fixed tangent to a parabola
and whose sides touch the parabola, lie upon a fixed straight line.

3. The vertices of all triangles circumscribed to a conic, whose bases

remain on a fixed tangent and are bisected by its point of contact A,
lie upon the diameter of the curve passing through A. The straight

lines which in the several triangles join the points of contact of the

other two sides are parallel to the base.

4. If two planes rotate about two fixed straight lines in such a way
as always to be parallel respectively to conjugate diameters of a given

conic, their line of intersection will describe a ruled surface, or else a

cone of the second order, upon which the two fixed lines lie.

5. Two projectively related sheaves of rays or sheaves of planes

being given, how can they be brought into such a position as to form

an involution ? & ao o^o CTL****~ e
6. Of an involution upon a straight line there are given two pairs of

conjugate points A, A^ and J5, B\. Construct by means of the com

plete quadrangle the conjugate C
l

to any fifth point C
; and, in par

ticular, determine the centre of the involution, i.e. the point whose

conjugate lies infinitely distant.

7. Two pairs of conjugate diameters of a conic section are known,
draw the conjugate to any fifth diameter.

8. If through any point straight lines be drawn parallel to the three

pairs of opposite sides of a complete quadrangle they form an involution.

Hence :

9. If two pairs of opposite sides of a complete quadrangle intersect

at right angles, so also does the third pair. Or, the three perpen
diculars let fall from the vertices of a triangle upon the opposite sides

intersect in one point, the so-called orthocentre of the triangle.

10. All curves of the second order which pass through the three

vertices and the orthocentre of a triangle are equilateral hyperbolas.
L
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An equilateral hyperbola can always be circumscribed to any quad

rangle : this passes through the orthocentres of the four triangles

formed by the vertices of the quadrangle.

11. The sides of any triangle form with the infinitely distant line of

the plane a complete quadrilateral whose three pairs of opposite ver

tices are projected from the orthocentre of the triangle by three pairs

of rays at right angles.

12. The two tangents to a parabola which can be drawn from the

orthocentre of a circumscribed triangle intersect at right angles. Con

sequently the orthocentres of all triangles circumscribed to a parabola
lie upon a fixed straight line. (Ex. 2.) In particular, the orthocentres

of the four triangles formed by the sides of any complete quadrilateral

lie upon one straight line.

13. If a rectangle ABCD is circumscribed to an ellipse or a hyper

bola, the tangents which can be drawn from any point vS of the circle

through the vertices A, B, C, D, intersect at right angles ;
for the two

pairs of opposite vertices of the rectangle are projected from .9 by two

pairs of normal rays. Hence we conclude that &quot; the vertices of all

right angles whose sides are tangent to an ellipse or hyperbola lie

upon a circle.&quot; This might be looked upon as a special case of the

following :

14. Any two tangents to a conic Any two points of a conic section

section k^ which pass through two kz which lie upon two conjugate

conjugate points of a given involu- rays of a given involution sheaf S,

tion range u intersect, in general, are in general upon the same ray of

upon another fixed conic. a sheaf of the second order.*

An exception arises if the curve & is touched by the straight line u

(Ex. i). In general the conic can be circumscribed by a quadrilateral

abed of which two opposite vertices ac and bd coincide with two con

jugate points P and P
1
of the involution n. If now two tangents to kz

which pass through two other conjugate points Q and Q l
of u inter

sect in a point 5, then these tangents SQ and SQ^ together with the

rays SP and SP^ and with that third pair of rays by which two

opposite vertices R and R^ of the quadrilateral, different from P and

/\, are projected from S form an involution (Art. 220), and conse

quently SR and SR^ pass through two conjugate points of the

involution u. If then we correlate the sheaves R and R
l

to each

other projectively so that homologous rays pass through conjugate

points of u, they will generate a curve of the second order which is

the locus of the point S.

* This sheaf of the second order degenerates into two sheaves of the first

order in case the conic is touched by two conjugate rays of the involution S.
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The theorem on the left might be stated :

&quot; The pairs of tangents

to a curve of the second order which are harmonically separated by

two given points intersect in general upon another curve of the second

order.&quot; Thus expressed it becomes a special case of the following,

the proof of which is left to the student :

The pairs of tangents to a curve The pairs of points of a curve of

of the second order, which are con- the second order, which are con

jugate with respect to a second jugate with respect to a second

curve of the second order, intersect curve of the second order, lie in

in general in the points of a third general upon the tangents to a

curve of the second order. third curve of the second order.

It is easily seen that the third curve (on the left) passes through the

points of contact of each of the tangents common to the first two.

15. If, of the three circles which have the diagonals of a complete

quadrilateral for diameters, any two intersect, the third passes through

their points of intersection. The sides of any right angle which has

its vertex at one of these points of intersection touch a curve of the

second order inscribed to the quadrilateral.

1 6. All hyperbolas circumscribing a quadrangle whose vertices lie

upon a circle have parallel axes
;
the directions of these axes bisect

the angles which the pairs of opposite sides make with each other.

For, the double rays of an involution of which three pairs of conju

gate rays are parallel to the three pairs of opposite sides of the

quadrangle are at right angles to each other.

17. If through the middle point M of a given chord of a curve of

the second order two secants of the curve be drawn, these determine

an inscribed quadrangle whose other two pairs of opposite sides inter

cept segments of the given chord which are likewise bisected at

the point _U.



LECTURE XIII.

METRIC PROPERTIES OF INVOLUTIONS. FOCI OF CURVES
OF THE SECOND ORDER.*

222. Let A, A l ; B, Bl ; C, C^ (Figs. 67 and 68), be three pairs

of points of a range in involution, so that (Art. 219) among -others

FIG. 67.

we have the relation AA
1
J3C

1 A A^AB^C ; then, for the segments

*The more important focal properties of conic sections, aside from those re

lating to the directrices and the fundamental properties which we use as the

definition of foci, were known to Apollonius. (Compare Conicorum, Liber in.,.

Prop. 45. et sequitur. )
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which the six points determine upon the line we have the following

proportion, viz. :

AA, BA, A,A B,A
AC, C,~A,C

:

,C

Instead of this we may write :

AA, BA
l = AA, AB,.

AC, ~BC,~ CA, ~CB\

for A,A = - AA, ;
A

1
C= -

CA,, etc., since two such segments are

of equal length, but are taken in opposite senses. If all denomina

tors and the common factor AA
l
are removed, we have the equation

AB,.BC,. CA, = AC,.BA,. CB, ................ (i)

This relation is found incidentally in the Collections of Pappus,

Liber VIL, Prop. 130.

The relation AA,BC, &quot;A&quot; A,AB,C does not lose its validity if

two conjugate points are interchanged. The same thing is true

therefore in equation (i).

By interchanging C and Cv for example, we obtain the equation

AB
l
.BC. C,A, = AC .BA,. C,B,, ............... (10)

and by making different interchanges other similarly constructed

equations would result from (i). Wholly analogous equations may
be expressed for the sines of the angles which six elements of an

involution sheaf of rays of the first order form with one another.

223. Equations (i) and (la) assume a much simpler form if one

of the six points (for example, C,) becomes infinitely distant. Its

conjugate point C in this case becomes coincident with the so-called

centre of the involution, that is, with that point O which is co

ordinated to the infinitely distant point.

At the same time the ratios

BC, =AC,-AB _AB
AC,~ AC, AC,

and ,,^,,-A,B,^ i
A,B,

C
\
B

\
C

\
B

\

approach indefinitely near to the value unity, since AC, and C,B,
increase indefinitely, while AB and A,If, are finite segments.

Equations (i) and (la) thus take the form

AB^ . OA, = BA^ . OB^
and AB, . BO =AQ BA,



1 66 GEOMETRY OF POSITION.

respectively. Dividing the first of these by the second we obtain

Ak-Q?i
BO

~
AO

or OA . OA
l
= OB . OB

l (2)

That is,
&quot; The product of the two segments determined by the

&quot;

centre and any two conjugate points of an involution range of the

&quot;first order is constant.&quot;

If the range has two double points M and N (Fig. 68), in each

of which two conjugate points coincide, it follows from (2) that

OA.OA^OM^ON* (3)

The centre O thus bisects the segment MN between the double

points. At the same time this equation expresses the fact (Art. 72)

that M and N are harmonically separated by A and ^,-as we

already know.

According as the product OA . OA
l

is positive (equal to a square

OM2
}

or negative, do the double points appear or not. In the

former case A and A
l

lie upon the same side of the centre O, in

the latter upon opposite sides. This same conclusion is reached

in a previous theorem (Art. 212).

224. If a circle be described upon each segment AA^ BB^ CC^
etc., which is determined by a pair of conjugate points of an in

volution, as diameter, and the radius of any one of these circles,

say that upon AAV be denoted by r, while d denotes the distance

of its centre from O, then (Figs. 67 and 68)

OA = OK-AK =d-r
and OA

l
= OK+ KA^ = d+r;

consequently,

OA . OA
l
= (d-r)(d+r) = d2 - r2

.

If the involution has double points J/, JV (Fig. 68), that is, is

hyperbolic, then O lies outside the circles and d~ - r2
is equal to

the square on the tangent /, which can be drawn from O to the

circle
;
for / and r are the sides of a right-angled triangle, of which

d is the hypotenuse.

The length of this tangent is, from equation (3), the same for

all circles constructed upon the segments, and is equal to half

the length of the segment MN between the double points of the

involution.
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If, then, a circle is described upon MN with centre O, it cuts

all circles described upon AA
lt BB^, CCV etc., at right angles.

It may be shown, moreover, that the latter circles are cut ortho

gonally by every circle passing through M and N.

When the involution is elliptic, i.e. has no (real) double points

(Fig. 67), its centre O lies within the circle described upon AA
19

and d* - r2
is negative.

If now through O, at right angles to AAV a chord PQ of this

circle be drawn, either half of it, OP or OQ, forms one side of a

right-angled triangle of which d is the other side and r the

hypotenuse, so that ^+OP-=r2
,

or d2 - r- = - OP- = - OQ2
.

But from equation (2) of the last article the expression d- - r 2 is

constant, hence the length of this half chord remains the same

for all circles constructed upon the segments AA lt BB^, CCV etc.,

and consequently, these circles all pass through the two points P
and Q. The angles APA^ BPB^ CPC

19 etc., are therefore right

angles, and we obtain the theorem :

If an involution range of the first order has no double points,

in any plane containing the range there are two points P and Q, from
which it may be projected by a sheaf of rays in involution, such that

any two conjugate rays of the sheaf are at right angles to each other.

That the circles described upon AA
lt BB^, CCV etc., all pass

through the points of intersection of any two of them may also be

concluded from the following statement :

&quot; An involution in a sheaf of rays is rectangular if any two of its

&quot;rays
a and b are at right angles to their conjugates a

l
and r

&quot;

The correctness of this assertion follows from the fact that the

rays of a sheaf 6* can be paired in involution in only one way so

that its rays a and a
l

as well as b and b^ are conjugates. But

this happens if to each ray is coordinated the ray at right angles to it.

225. At this point we may insert the following theorem :

If a right-angled triangle inscribed in a curve of the second order

be permitted to vary in any manner so that its vertex remains fixed,

its hypotenuse will constantly pass through a fixed point.

The points of the curve are paired in involution by the rays of

the rectangular involution sheaf S^ (comp. Art. 210).

226. If in the plane of a curve of the second order K2
,
a sheaf

of rays of the first order U whose centre does not lie upon the

curve is given, the rays of U are paired in involution if all pairs

of rays conjugate with respect to k~ are correlated to each other
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(Art. 207). If the involution thus constituted is rectangular its

centre has a particular significance for this curve, and is called a

focus of the curve.

We may then state the following definition :

A focus of a curve of the second order is such a point of the plane
that any two rays through it which are conjugate with respect to

the curve are at right angles.

227. A focus cannot lie outside the curve, for then the involution

whose centre it is would have two double rays, namely, the two

tangents to the curve which pass through it.

Every focus F lies upon an axis of the curve, in other words, the

diameter passing through F is an axis, since it is perpendicular to

its conjugate chord passing through F.

The straight line joining two foci, F and F-^ is an axis of the

curve, since it is conjugate to the two perpendiculars which can

be erected to it in F and F
t

its pole thus being the infinitely

distant point of intersection of these perpendiculars (Art. 160).

228. The centre of a circle is a focus. Two rays which are

conjugate with respect to a circle intersect at right angles only if

one or both are diameters
;
whence it is easily seen that a circle

has no focus except the centre. The circle, consequently, will

be excluded from the following investigation.

FIG. 69.

229. To any straight line p lying in the plane of a curve of the

second order there is a conjugate normal straight line p l (Fig. 69),

namely, the perpendicular which can be let fall upon it from its pole.

Let now a be an axis of a given conic and let it be cut obliquely
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by / and p^ in the points P and P
l respectively. Then each ray

of the sheaf P stands at right angles to its conjugate ray of the sheaf

Pr For the sheaves P and P
l
are projectively related if to each

ray of the one sheaf the conjugate ray of the other is correlated

{Art. 144); but since, if A denote the infinitely distant pole of

the axis a, the three rays a, PA, p, of P intersect their conjugate

rays P^A, a, pv of P
l

at right angles, the sheaves P and P
l

generate a circle upon PP
l

as diameter, and hence any two

conjugate rays of these sheaves are at right angles to each

other. From this there results the first half of the following

theorem :

Corresponding to any point P in an axis a. of a curve of the second

arder there is a point P
l
such that conjugate rays through P and P

15

respectively, intersect at right angles. If all such pairs of points
are coordinated they form an involution on the axis a..*

The second half of the theorem arises from the following con

siderations :

The two sheaves of parallel rays of which the one has the direction

of the ray p and the other that of the ray p l
are related projectively

to each other (Art. 144) by correlating to each ray of the one sheaf

the ray of the other conjugate to it. The straight line a is cut by
these sheaves in two project!ve ranges of points, but these are in

involution since any two of its points as P and P
l correspond to

each other doubly, f

If this involution a has two double points, each of these is a focus

of the curve
; J if a has no double points, then each of the two points

from which a is projected by a rectangular involution sheaf (Art. 224)
is a focus of the curve

; for, every pair of conjugate rays through
such points intersect at right angles.

In the latter case the foci lie in the axis of the conic different

from a and form the double elements of an involution lying upon

* That there can be but one such involution established upon the axis a follows

from the fact that any ray/ has but one conjugate normal /j. H.

t Any ray through P is conjugate to its normal through Pr The ray through P
having the direction of/ is conjugate therefore to the ray through Pl having the

direction offa, and also the ray through P having tlje direction of fa is conjugate
to the ray through Pl having the direction of/. The points / and P

l therefore

correspond doubly in the projective ranges of points which 4brm sections of the

parallel sheaves of rays. H.

+ The involution cannot have more than two double points, hence there cannot

be more than two foci upon one axis. H.
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this second axis, which may be constructed in the same way as

was the first.

230. No curve of the second order has more than two foci
;

for any straight line joining two foci is an axis of the curve (Art. 227),

hence all foci must lie upon one axis or upon the other, and it was

shown in the last article that not more than two foci can lie upon
one axis. That a conic in general has two foci is clear from the

fact that if the involution considered in Article 229 has no real

double points, then two points exist on the other axis answering
the conditions for foci (Art. 224).

That axis a of an ellipse or hyperbola upon which the two

foci of the curve lie is called the principal or major axis, the

other the conjugate or minor axis.

231. If about a right-angled triangle, whose hypotenuse lies in the

minor axis of a curve of the second order, and whose other sides are

polar conjugates with respect to the curve, a circle be circumscribed, it

intersects the major axis in the foci of the curve.

This theorem follows immediately from the preceding article.

232. The hyperbola is intersected by its principal axis
;
for upon

that axis by which it is not cut the foci could not lie, since they

lie within the curve. The foci of an ellipse or a hyperbola are

equally distant from the centre of the curve (Art. 223); for in

the involution a, whose double points the foci are, the centre

is conjugate to the infinitely distant point, since the minor axis

is conjugate to all straight lines normal to it. In general, the

foci are harmonically separated by any two conjugate lines which

are at right angles to each other.

If the curve of the second order is a parabola and a its axis,

the two projectjve sheaves of parallel rays of which we have

already spoken have the infinitely distant straight line as a self-

corresponding ray, since it Is self-conjugate, being tangent to the

parabola. In the involution a, therefore, one double point coincides

with the infinitely distant point, which, accordingly, is looked upon
as a focus (ideal) of the parabola. The parabola has therefore

only one actual focus which, as second double point of the involu

tion a, bisects the segment between any two coordinated points

P and Pv

233. Suppose now F and J\ are the two foci of a curve of the

second order, of which in the case of the parabola the one lies

infinitely distant in the direction of the parallel diameters. Any
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two conjugate lines SP and SP
l
which are perpendicular to each

other (Fig. 69) are harmonically separated by the points F and F
lt

and hence by the lines SF and SF^ ; they therefore bisect the angles

between SF and SF-^ (Art. 68). If 6* is a point of the curve one

of the straight lines SP, SP
lt

touches the curve; if 6&quot; lies out

side the curve, then SP and SP
l

bisect also the angles between

the two tangents which can be drawn from 6&quot; to the curve, since

these likewise are harmonically separated by SP and SP
l (Art. 143).

Thus we obtain the theorems :

Any tangent to a curve of the second order forms equal a?igles

with the two straight lines which join its point of contact to the foci

of the curve. If two conies, therefore, have the same foci (are confocal)

the two tangents at a real poi?it common to both conies intersect at

right angles.

If the point of intersection of two tangents to a conic be joined to

its foci, the one line forms with one tangent the same angle as the

other line forms with the other tangent.

234. The polar / of a focus F of a curve of the second order

is called a directrix of the curve. There are two directrices for

FIG. 70.

the ellipse and the hyperbola, and one actual directrix for the

parabola. For the latter this theorem holds true :

Two tangents to a parabola PA and PB are perpendicular to

each other if their point of intersection P is on the directrix.
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In this case, namely, the polar of P passes through the focus F
(Fig. 70) and contains the points of contact A and B of the two

tangents, and each of these tangents forms the same angle with

AB as with an arbitrary diameter. Consequently, in the triangle

APB the sum of the angles A and B equals the sum of the angles
which PA and PB make with the diameter PC passing through

P, i.e. equal to the angle P; and since the angles A, B, and P
together make up two right angles, then must P be a right angle.

235. Other properties of the focus of a curve of the second order

worthy of note arise from its definition, in accordance with which

any two conjugate rays through a focus intersect at right angles,

among them the theorem :

&quot; The segment of a tangent which lies between its point of contact

&quot;and a directrix is subtended at the corresponding focus by a right
&quot;

angle.&quot;

That is to say, the straight lines bounding this angle are conjugate

rays through the focus F, since the point in which the tangent is

cut by the directrix f has the straight line joining F to the point

of contact as its polar.

236. Let TA and TB be any two tangents to a curve of the

second order (Fig. 71), so that AB is the polar of the point T;
then the point of intersection P of AB and the directrix f is the

pole of the straight line TF, and PF is at right angles to TF since

these two lines are conjugate. At the same time FA and FB are

harmonically separated by FT and FP, since A and B are

harmonically separated by P and FT. Consequently the supple

mentary angles formed by FA and FB are bisected by FT and

FP (Art. 68) ; or,
&quot;

If a focus of a curve of the second order be joined to the points

&quot;of contact of two tangents to the curve, and to their point of
&quot;

intersection, this latter line makes equal angles with the two former.&quot;

If through A and B (Fig. 71) straight lines be drawn parallel to

FT which cut -the directrix f in the points A 1
and B

l respectively,

then AI and B^ are harmonically separated by P and FT. The

angles between FA
1
and FB

lt therefore, are also bisected by FT
and FP. From this it follows that the triangles A^AF and B^BF
are mutually equiangular and hence similar, so that

The segments AA l
and BB^ form equal angles with the directrix
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ft
and are therefore proportional to the perpendiculars which can

be let fall from A and B upon /
Hence, also, FA : AA.

2
= FB : BB.^

Since A and B are two points of the curve chosen at random,
we have the theorem:

The distances of a?i arbitrary point of a curve of the second order

from a focus and from the corresponding directrix have a constant

ratio to each other (Pappus).

FIG. 71.

In the parabola the value of this ratio is unity, /&amp;gt;.,
the two

distances are equal; for the vertex is just as far distant from the

focus as from the directrix, since it is harmonically separated by
them from the infinitely distant point of the parabola. By making
use of the vertex it is easily shown that this ratio is less than unity
in the ellipse and greater than unity in the hyperbola; and since
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a curve of the second order is divided into two symmetrical parts

by either of its axes, the ratio has the same value for the one

focus and its directrix as for the other. If then r and r^ are

the distances of any point of the curve A from the two foci

F and F
1 (Figs. 72 and 73), d and d

l
its distances from the two

corresponding directrices / and fv then

-,= -r = constant,d d
l

wherever the point A may lie.

FIG. 73 .

Also the quantity =-l equals this same constant ratio. But in

the ellipse d+dlt
and in the hyperbola d-dv is constant, namely,

it is the distance between the two directrices. Therefore the sum
r -f r^ must be constant in the ellipse and the difference r - r

}

constant in the hyperbola, that is to say :

The sum of the distances of any point of an ellipse from the foci is

constant.

The difference of the distances of any point of an hyperbola from
the foci is constant.

It may be found without difficulty that this constant sum or

difference is equal to the segment 2a between the extremities of

the major axis, and that the ellipse encloses a greater segment
of its major axis than of its minor axis.

237. If two points are symmetrically situated with respect to a

straight line, i.e. if the straight line joining them is at right angles
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to the given line and is bisected by it, then either of these is

called the inverse of the other with respect to the straight line.

The following theorem, then, is true for the ellipse and the

hyperbola :

&quot;The points inverse to a focus F
l

with respect to the several

41

tangents to an ellipse or hyperbola lie upon a circle of radius 2a

&quot;whose centre is the other focus F.&quot;

FIG. 74.

If, namely, G is the inverse of F^ with respect to an arbitrary

tangent whose point of contact is A (Fig. 74), then F
t A, and G

lie in one straight line, since AF^ and consequently also AG, forms

with the tangent the same angle as does AF (Art. 233). And

moreover, since the points F^ and G are equally distant from A,
then is FG equal to the sum (or difference) of FA and J^A, i.e.

equal to the constant 20, as was shown above.

If N be the foot of the perpendicular let fall from /^ upon
the tangent, it is the middle point of F^G, and the centre M of

the curve bisects the segment F^F\ consequently, MN is parallel

to FG and equals \FG or a
;

that is to say,

&quot;The points of intersection of all tangents to an ellipse or
&quot;

hyperbola with the perpendiculars let fall upon them from a focus,

&quot;lie upon a circle which has the major axis as diameter.&quot;

238. If the parabola is regarded as the limiting case of an

ellipse or hyperbola, for example, as an ellipse one of whose foci

lies infinitely distant, we obtain the following theorem :

&quot;The points of intersection of all tangents to a parabola with
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&quot;the perpendiculars let fall upon them from the focus F lie uporr

&quot;the tangent at the vertex of the parabola.&quot;

In order to prove this draw through N, the point of intersection

of an arbitrary tangent with the tangent at the vertex (Fig. 75),.

a line NF
l parallel to the axis, and draw the straight line NF to

the focus; then the angles FNA and SNF^ are equal (Art. 233),

since NF
l passes through the second (infinitely distant) focus ;

and since SNF^ is a right angle, FNA must be also.

s

FIG. 75-

This theorem gives us a very simple means of constructing the

focus of a parabola.
A simple construction for the foci of an

ellipse or hyperbola is the following:

Draw the tangents at the extremities of the major axis; these

intersect any third tangent in two points P and Q, which are

projected from any point of the major axis by two conjugate

rays (Art. 146). In order, then, to obtain the foci, at either of

which these two conjugate rays are perpendicular to each other,

we describe a circle upon PQ as diameter; the points of inter

section of this circle with the major axis are the required foci

(Apollonius).

239. If two tangents TA and TB of a curve of the second

order are cut by a third tangent in the points A l
and Bv respect

ively, A, B, and C being the three points of contact, and F an

actual focus of the curve (Fig. 76), then for the angles subtended
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at F by segments of the tangents the following equations are

true :

consequently, -B
lFC+-CFA l

= (-BFC+ -CFA),
or LB

I
FA

I
= -BFT = 1TFA.

FIG. 76.

If, then, the first two tangents TA and TB remain fixed, the

angle B^FA^ subtended at F by the segment of the third tangent

lying between the first two, has a constant magnitude however
this third tangent may be chosen. If the third tangent glides

along the curve, A
l
and B^ describe two projective ranges of

points upon the fixed tangents, while the rays FA^ and FB^
describe projective sheaves of rays about F; therefore,

&quot;The projective ranges of points in which any two tangents of

&quot;a curve of the second order are cut by the remaining tangents are
&quot;

projected from either focus of the curve by two equal and directly

&quot;projective sheaves of
rays.&quot;

This theorem holds true also if the curve be a parabola or a

circle, and one focus be the infinitely distant point of the former
or both coincide in the centre of the latter. If, then, three

tangents and a focus of a curve of the second order be given;

any required number of other tangents can be easily constructed.

If the given curve is a parabola the moving tangent A l
B

l may
II
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become infinitely distant, in which case, the straight lines FA
l

and FB
l
form the same angle with each other as do the fixed

tangents TA and TB. The quadrangle B^TA^F may therefore

be inscribed in a circle, and hence,

&quot;The circle which is circumscribed to any tangent triangle of a

&quot;

parabola passes through the focus.&quot;

If, then, we circumscribe circles about the four triangles which

are formed of the sides of a quadrilateral, these have one point

in common, namely, the focus of the parabola inscribed to the

quadrilateral.

If the curve of the second order is a hyperbola and the two

fixed tangents TA and TB are its asymptotes, then A and B are

infinitely distant points, hence TB and FB are parallel and the

angle Bl
FA

l (= BFT) is equal to one of the two angles which

the asymptote TB makes with the major axis FT; the other is

equal to the angle A^F^B^ which A
l
B

l
subtends at the second

focus Fv Consequently, B^FA^ and A^F^B-^ are supplementary

angles and B^FA^\ may be inscribed in a circle. Hence :

&quot;The two foci of a hyperbola lie upon a circle with the points
&quot;

in which an arbitrary tangent is cut by the two asymptotes. The
&quot;

centre of this circle and the centre of the hyperbola lie upon a

&quot;second circle with these same two intersections.&quot;

EXAMPLES.

1. To construct the focus of a parabola :

(a) The focus lies upon that perpendicular to any tangent which

can be drawn from its point of intersection with the tangent

at the vertex (Art. 238).

() The focus bisects that segment of the axis which lies be

tween any two conjugate lines at right angles to each other

(Art. 233).

(c) Any tangent to a parabola forms the same angle with a

diameter as with the line joining its point of contact to the

focus (Art. 233).

(d) Any circle which is circumscribed about a triangle whose

sides are tangent to a parabola passes through the focus

(Art. 239).

2. To construct the directrix of a parabola :

(a) The directrix is the polar of the focus.
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() Pairs of tangents at right angles to each other intersect on

the directrix (Art. 234).

(c) The orthocentres of all circumscribed triangles lie upon the

directrix (Example 12, p. 162).

3. The directrices of all parabolas which can be inscribed in a triangle

pass through the orthocentre of that triangle, and their foci lie upon
the circumscribed circle. If perpendiculars be dropped from any point

of this circle to the sides of the triangle, their points of intersection with

the sides lie in a straight line, viz. the tangent at the vertex of one

of the inscribed parabolas.

4. To construct the two foci of an ellipse or hyperbola :

(a) As double points of an involution lying upon the major axis

(Art. 229).

(b} By means of the tangents at the extremities of the major
axis. These determine upon any third tangent a segment
which subtends a right angle at either focus (Art. 238).

(c) By means of the circle which touches the curve at the ex

tremities of the major axis. If perpendiculars be drawn to

any tangent at the points in which it intersects this circle,

they will pass through the two foci (Art. 237).

(//) By constructing a right-angled triangle whose hypotenuse
lies in the minor axis and whose sides are conjugate. The
circle circumscribing such a triangle intersects the major
axis in the two foci (Art. 231).

(e) With the aid of the theorem that the sum (or difference) of

the focal distances of a point of the curve is constant

(Art. 236).

5. Construct a curve of the second order having given one focus,

the corresponding directrix, and one point or one tangent.

6. Construct a curve of the second order having given one focus

and (i) three tangents, or (2) two tangents and the point of contact in

one of them (Art. 239). In either case the second focus can be

immediately determined.

7. If in a plane the foci of any curve of the second order inscribed

to the triangle ABC are correlated to each other, an involution of the

second order is established among the points of the plane, of which

A, B, and C are the three singular points ;
that is, if the one focus

describes a straight line u the other will describe a conic passing through

A, B, and C, and projective to u (Art. 233). The straight lines

bisecting the angles of the triangle are coordinated to themselves.

Every straight line of the plane is an axis of one of the inscribed

curves.
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8. Construct a curve of the second order having given the two foci

and one point or one tangent.

9. The angles made by the two tangents from a point P to the

several curves of the second order of a confocal system are all bisected

by two fixed straight lines at right angles, namely, by the tangents to

the two curves of the system which pass through P.

10. The poles of a straight line g with respect to a system of con-

focal conies lie in a straight line perpendicular to g. This line is

harmonically separated from g by the two foci.

11. Each pair of opposite sides of a quadrangle determined by the

three vertices of a self-polar triangle of a curve of the second order

and its orthocentre, are harmonically separated by the foci of the curve.

12. Given two points, A and ./?, and one focus F of a curve of the

second order, the other focus fi\ lies upon one of the two conies passing

through F, of which A and B are the foci. For, since AF BF is given,

AF
l

BF
l
must be of constant magnitude.

The directrix corresponding to F intersects the straight line AB in

one or other of the two points through which pass the lines bisecting

the angles formed by FA and FB.

13. The product of the distances of a focus from two parallel tan

gents to an ellipse or hyperbola is constant (Art. 237) ;
so also is

the product of the distances of the two foci from one tangent.

14. Construct an ellipse with axes of given length (a) after the

method proposed in Ex. 15, p. 125 ; (&) by making use of the tangents
at the four vertices

; (c) with the aid of the foci, which may be deter

mined when the lengths of the axes are given.

15. Construct a parabola having given the focus and the directrix,

or the focus, the axis, and one point or one tangent.

16. The centres of all circles which touch two given circles lie upon
twp confocal curves of the second order (compare Art. 236). The
centres of the two given circles are the foci of these two curves.

17. All points of a plane which have equal distances from a straight

line and a circle lie upon either one or the other of two parabolas

(compare Ex. 16).

18. If one side of an angle of given magnitude constantly touches a

curve of the second order while the other rotates about one of its foci,

the vertex of the angle describes a circle which touches the curve at

two points (Art. 237) ; if, however, the given curve is a parabola the

vertex describes a straight line tangent to the curve.



LECTURE XIV.

PROBLEMS OF THE SECOND ORDER. IMAGINARY ELEMENTS.

240. Our investigations have often brought us to problems which
admit in general of two solutions, and which cannot be solved by
the exclusive application of linear constructions, but require the

use of a form of the second order. To this class belong among
others the problems &quot;to determine the self-corresponding points
in two projective ranges which are superposed,&quot; and &quot;to determine

the double elements of a form in involution.&quot;

All such problems may be reduced to the following:
Two ranges of points k- and k\ of the second order lie upon

the same curve and are projectively related : it is required to

determine their self-corresponding

points.

Let A, B, C(Fig. 77), be any
three points of 2

,
and Av B^ Cv

the corresponding points of k\.
If we project the range k~^ from

A and the range k- from A
l

we obtain two projective sheaves

A(A l l
C

l )
and A^(ABC) which

have the ray AA } self-correspond

ing. The points of intersection of

pairs of homologous rays of these

sheaves lie consequently upon a FIG.

straight line u, namely, upon that

line which joins the intersection of AB^ and A^B with the inter

section of AC^ and A^C. The points which // has in common
with the curve of the second order are the required points, for in the
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ranges & and k\ these points are self-corresponding. According,

then, as u cuts, touches, or does not meet the curve do we obtain

two, one, or no such self-corresponding points.

In accordance with Pascal s theorem the intersection of the

straight lines jBC
l
and B^C also lies upon the straight line u

;

for upon this line the three pairs of opposite sides of the

hexagon AB^CA^BC^ which is inscribed in the conic, intersect.

We obtain this same straight line, then, by projecting the ranges
k2

l
and &2 from the points B and B^ or from C and C

lt respectively.

If in general P and Q are any two points of & and P
l
and Ql

the corresponding points of k\, then the points of intersection

of PQl
and P-^Q lie upon the straight line u. If then three points

of k2
together with the corresponding points of k*

l
are given, the

straight line u can be constructed without difficulty.

241. If the ranges $ and k\ are in involution, u is the axis of

involution, and the curve is cut by u in the two double points,

if such there are. In this case we need to know only two pairs

of coordinated points A, A
lt

and B, B^ in order to construct u -

7

for, to the points A, B, Av of k2
correspond the points A lt

Bv A,

respectively, of k*
lt

and u passes through the two points in which

the straight lines AB
l
and AB are cut by the straight lines A^B

and A^BV respectively (Figs. 60 and 61).

The pole of u, in which AA- and BB^ intersect, is the centre

of involution, and if from this point two tangents can be drawn

to the curve, these touch the curve in the double points of the

involution.

242. The different cases of the following general problem may
easily be reduced to the preceding :

&quot;To determine the self-corresponding elements of two projective
&quot;

elementary forms which are superposed.&quot;

If, for example, the elementary forms are two cones or two

reguli of the second order, they may be cut by an arbitrary

plane in two projective ranges of points which lie upon the same

curve of the second order; if they are two sheaves of rays of the

second order, then the curves of the second order which are

enveloped by them are also superposed and are projective, so

that we need only determine the points which the curves have

self-corresponding in order to obtain immediately the two self-

corresponding rays, the tangents at these points.

If two projective sheaves of rays of the first order are concentric
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and lie in one plane, and are intersected by a curve of the second

order passing through their common centre, in two projective

ranges of points k2 and &\, the two rays which are self-corresponding

in the sheaves pass through the two points which $ and y
2
x
have

self-corresponding.

If the two elementary forms to be considered are ranges of

points v and v^ (Fig. 78) which lie
&quot;upon

the same straight line,

the case can be reduced to the preceding one by projecting the

ranges from any point S. Pass, then, through 6&quot; a conic (for

example, a circle), in the plane Sv, and project any three points

FIG. 78.

A, B, C, of v and their corresponding points A
lt B^ Cv of z\

from the point S upon this curve. By this means we obtain the

curve points A
,
B

, C, and A\, B\, C\, and can determine

immediately the straight line u upon which the points of inter

section of AB\ and A\B ,
of B C\ and B\C ,

and of C A\ and

C\A lie. If, then, the conic is cut by // in two points M and N
,

and we project these from the point upon the straight line z,

we obtain the two points M and N of v which coincide with their

corresponding points Ml
and N^ of i\.

If the conic has only one point or no point common with ?/,

there is only one or no self-corresponding point of the ranges

v and z\.
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For the sheaf and the cone of the second order the general

problem might be solved directly, without the use of the curve of the

second order
;
the general problem stated above can therefore be

solved for the case of any of the one-dimensional primitive forms

with the help of any one of the elementary forms of the second

order. The most convenient solution, however, is the one just

given, since curves of the second order (circles in particular) may

easily be constructed.

243. As is well known, many of the advances in mathematics

are intimately connected with the effort to remove exceptional

cases from general theorems and principles, and with the attempt

to reconcile different theorems to the same point of view, by
immediate extension or by the introduction of new concepts.

Thus arithmetic was essentially enriched by the introduction

of negative, of irrational, and, finally, of imaginary numbers
;

without the latter the important theorem, &quot;an equation of the nth

order has n roots,&quot; with its numerous applications (for example,

in analytical geometry) would be wholly false. In the same way
the introduction of infinitely distant elements into modern geometry
has proved fruitful in the highest degree.

Problems of the second order have given the first occasion for

the introduction into synthetic geometry of imaginary points,

lines, and planes; and, to have founded the purely geometric theory

of imaginary elements and to have brought it to a high degree of

completeness is undoubtedly one of the greatest services which

Von Staudt has rendered. From the nature of the subject this

theory must, in synthetic as well as in analytical geometry, give

up all claim upon the powers of intuition
; consequently, I shall

confine myself at this point to the presentation of only the first

principles of the theory of geometric imaginaries.

244. We shall define imaginary elements by the following

proposition which, at the same time, summarizes the results of

earlier investigations :

Two projective elementary forms which are superposed but are not

identical have two * rear or two conjugate imaginary
1

self-corre

sponding elements. If the self-corresponding elements are real they

may coincide.

We say that the self-corresponding elements are imaginary

whenever they do not really appear. In all my previous lectures

only real elements have been considered. An involution always
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has from this point of view two (real or imaginary) double elements.

Moreover, we can say that

A curve of the second order has Two tangents to a curve of the

two points in common with every second order pass through every

real straight line of its plane ;
real point of its plane ;

and only when the different cases comprised under these theorems

are to be distinguished from each other do we add

These two points are imaginary, These two tangents are imagin-

or real, or they coincide, according ary, or real, or they coincide, ac-

as the straight line lies wholly out- cording as the point lies within, or

side, or cuts, or touches the curve. without, or upon the curve.

If the curve and the straight line are completely given we shall

always regard their common points as being determined. But if,

for example, only five points A, B, C, D, E, of the curve are

given, we imagine it to be generated by two projective sheaves of

rays A(CDE) and B(CDE] ;
these are intersected by the straight

line in two projective ranges of points which have the required

points of intersection with the curve as self-corresponding points.

The two points can be determined by the method given above

{Art 242) if any one curve of the second order is completely

known. We can also ascertain by this means to which variety a

conic determined by five points belongs ; for, a curve of the second

order is a hyperbola, ellipse, or parabola according as the two points

which it has in common with the infinitely distant straight line

are real and different, imaginary, or coincident.

The following problem of the second order may be solved by
the same method :

Of a curve of the second order there are given

Four points and the tangent at Four tangents and the point of

one of them, or three points and contact on one of them, or three

the tangents at two of them
;

it tangents and the points of contact

is required to determine the two on two of them
;

it is required to

points which the curve has in com- determine the two tangents which

mon with any given real straight pass through any given real point
line of its plane. of its plane.

If it is required to determine the common points of a straight

line and a curve of the second order of which five tangents are

given, we find first the points of contact in these tangents and

so reduce this problem to the one just solved.
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245. Von Staudt distinguished between the two conjugate

imaginary double elements of an elliptic involution AA^ BB^
... by connecting with the form a determining sense ABA^ or

A^BA.
Without going into the matter more minutely we can enunciate

the following theorems and definitions upon the basis of what has

already been said :

An imaginary point always lies An imaginary plane always passes

upon a real straight line
;
this line through a real straight line

; through
also contains the conjugate imagin- this straight line passes also the

ary point. conjugate imaginary plane.

An imaginary straight line of the first kind always passes

through a real point and lies in a real plane with its conjugate

imaginary line
; namely, the point and the plane are the bases of

the projective sheaves of the first order which have the two con

jugate imaginary straight lines self-corresponding.

Two projective reguli of the second order which are superposed
have two real straight lines, which may however coincide, or

two conjugate imaginary straight lines of the second kind, self-

corresponding. These imaginary lines of the second kind are

distinguished from the imaginary lines of the first kind in that they

can be cut by no real plane in real points and can be projected

from no real point by real planes. A real plane, namely, cuts

the two projective reguli in two projective ranges of points of the

first or second order which lie upon the same base and have real

self-corresponding points only if the reguli have real self-corre

sponding lines (passing through them). Thus there exists only

one kind of imaginary points or planes, but, on the other hand,

two kinds of imaginary straight lines.

246. Whenever we make mention simply of points, straight

lines, and planes, we shall refer as heretofore to real elements,

unless the contrary is expressly stated or is evident from the con

text. This applies in particular to the following problem of the

second order :

&quot; In a plane there are given two simple polygons ;
it is required

&quot;

to construct a third polygon which is inscribed to one of these
&quot; and circumscribed about the other.&quot;

Or to speak more definitely,

&quot;To construct an ^-point whose vertices lie in order upon n
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&quot;

given straight lines u u, //3,
. . . un,

and whose sides pass in order

&quot;through n given points S^ -S2,
S3,

... Sn ,
of a

plane.&quot;

Project the range of points ^ from the point Sl upon the straight

line #.7 ; next, project the range . i.e. the projection of u
l9

from

S
2 upon the straight line //

3 ,
then the range u

3
from the point S3

upon the straight line ?/
4 ,

and so on, till finally we project the

range // from the point Sn upon the straight line ur By this means

we obtain // + i projective ranges of points of which each is a pro

jection of the preceding, and of which the first and last lie upon
one and the same straight line //r Each point which the first

and last ranges have self-corresponding can be chosen as the first

vertex of the required -point, and a solution of the problem

immediately presents itself.

In general there are then at most two /z-points which satisfy

the conditions of the problem.

If in particular cases the two projective ranges lying in ^ have

more than two and consequently all their points self-corresponding,

then there is an infinite number of solutions of the problem.

The condition that the straight lines uv u^ //
3,

... //, shall lie

in one and the same plane with the points Sv S^ S
3 ,

... Sn ,
is

moreover not necessary ;
it is sufficient if S

l
lies in a plane with

u^ and w
, -5*2

m a plane with //
2
and

3 ,
and so on, till finally

Sn lies in a plane with un and itr The two resulting ^-points

would then be gauche.

247. In this connection belongs also the problem, &quot;To find a
&quot;

straight line which intersects four given straight lines a, b, c, d,
&quot; when no two of them lie in one

plane.&quot;

Relate the sheaves of planes a and b perspectively to the range of

points fj and let d intersect them in two projective ranges of points.

Through each of the points which these ranges have self-corresponding

a straight line passes which is cut also by a, b, and c, since it lies

in two homologous planes of the sheaves a and b. If the straight

lines (2, b, c, d, belong to one and the same regulus, then the

problem has an infinite number of solutions
;

in general, however,

there are but two. This problem might be stated thus :

&quot;A ruled surface of the second order is given by three straight
&quot;

lines #, ,
c

t
of one of its reguli ;

it is required to find the points

&quot;which it has in common with any fourth line d&quot;

248. One of the most important problems of the second order

is the following :
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*\J

FIG. 79.

&quot;Two involutions lie upon the same base; it is required to
&quot; determine two elements which are coordinated to each other in

&quot;both involutions.&quot;

Suppose the two involutions lie on the same curve of the

.second order, and, in the one involution, to some two points a

and ft of the curve the points 04

and
/3j respectively are coordin

ated, while in the other involu

tion, to the points A and B are

coordinated the points A l
and

JB
lt respectively ;

then we seek

the two centres of involution

U and V, so that all pairs of

conjugate points of the one

involution lie in a straight line

with U, and all pairs of such

points of the other lie in a

straight line with V. If, then,

the straight line UV intersects the curve in two points X and Xv
these points will be coordinated to each other in both involutions.

If UV touches the curve, the point of contact is a double point
of each involution. Finally, if UV lies wholly outside the curve,

there is no real point which is coordinated either with itself or

with a single other point in both involutions.

This latter case can happen, however, only when each of the

two involutions has two real double points, i.e. both are hyperbolic,

since only then do both points U and V lie outside the curve; and

further, when the polars of U and V intersect within the curve,

namely, in the pole of
UV&amp;gt;

i.e. when the double points of the

one involution are separated by those of the other.

If the problem should relate to two concentric sheaves of rays in

involution we may intersect them with a curve of the second

order which passes through the common centre, and in a similar

way can reduce any chosen case of the general problem to that

just now treated.

The result last obtained holds good, therefore, not only for

two point involutions which lie upon the same curve of the second

order, but it can be stated for a general case thus :

&quot;

If two involutions are superposed there will always be two

&quot;elements which are coordinated to each other in the one involution
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&quot;

as well as in the other
;
these elements are (conjugate) imaginary

&quot;

only in case both involutions are hyperbolic and the double

&quot;elements of the one are separated by the double elements of the

&quot;other. If the two doubly conjugate elements coincide, the

&quot;involutions have one double element in common.&quot;

Suppose, for example, the involutions are two sheaves of rays
of the first order and one of them is rectangular (Art. 224), then

this theorem follows as a special case :

&quot;In any sheaf of rays of the first order in involution there are

&quot;always two real conjugate rays which are at right angles; these

&quot;are called the axes of the involution sheaf.&quot;

249. We have thus proved in an entirely different manner the

theorem that an ellipse or hyperbola has two conjugate diameters-

at right angles, i.e. two axes (compare Art. 159); for, its diameters-

form an involution if pairs of conjugate diameters are coordinated

to each other.

This result naturally belongs to metric geometry, as does also

the allied problem :

&quot;To construct the axes of a curve of the second order of which
&quot; two pairs of conjugate diameters are

given.&quot;

FIG. 80.

3E

Through the centre S of the curve (Fig. 80) in which the given
diameters intersect, pass an arbitrary circle; let this cut the one

pair of conjugate diameters in the points A and A
lt

the other

pair in the points B and BY Then the points of the circle are

paired in involution by means of the sheaf of diameters, and
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the point U in which AA
l
and BB

l
intersect is the centre of

involution with which each pair of coordinated points of the circle

lie in a straight line. If then we pass a straight line through U
and the centre C of the circle, this will cut the circle in two

coordinated points X and X
l
which are projected from 5 by the

required axes SX and SXr
If U lies outside the circle there exist two real double points

of the involution M and N; these are projected from U by two

tangents to the circle, but from S by the asymptotes of the hyperbola

to which the given conjugate diameters belong (Art. 161). How
could the axes be constructed if instead of the circle an arbitrary

curve of the second order passing through S were given?

250. In what follows we shall many times need to solve the

problem :

&quot;In a sheaf of rays in involution to determine two conjugate
&quot;

rays which are harmonically separated by two given points in the
&quot;

plane.&quot;

In order that this problem may not be impossible we assume that

the given points M and N do not lie in a straight line with the

centre of the sheaf, and that through neither of them passes a double

ray of the sheaf. If then we project the involution range of points,

of which M and N are the double points, from S by a second

involution sheaf, we shall have only to find those two rays which

are coordinated to each other in both sheaves, and these will be

the rays required.

This problem may be carried over to other elementary forms

and stated in different ways. Instead of the sheaf S, for example,

might be given an involution range upon the straight line MN\
if in this case one of the given points, say N, lies infinitely

distant the problem becomes :

&quot; In a point involution of the first order it is required to determine
&quot; two conjugate points which have equal distances from a given
&quot;

point M of the straight line.&quot;

251. A triangle ABC and an A triangle and a point involution

involution sheaf of rays of the first of the first order, of which no

order F, of which no double ray double point lies upon a side of

passes through a vertex of the the triangle, are given in a plane,

triangle, are given in a plane. It is It is required so to inscribe a curve

required so to circumscribe a curve of the second order to the triangle

of the second order about the tri- that all pairs of corresponding
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angle that all pairs of corresponding points of the involution are con-

rays of the involution are con- jugate with respect to the curve,

jugate with respect to the curve.

In order that the problem may be possible it is necessary that

the centre of the involution F should coincide with no vertex of

the triangle ABC (Art. 142) ;
we assume therefore that at least

two of the sides of the triangle, say AB and AC, do not pass

through F (Fig. 81). Upon each of these sides AB and AC there

\

FIG. 81.

must lie one point whose polar with respect to the required curve,

in case the latter exists, passes through F; and since a point is

harmonically separated from its polar by the curve, while, on the

other hand, all pairs of corresponding rays of F are by assumption

conjugate with respect to the required curve, these points may be

determined as follows :

Determine in the involution F two corresponding rays p and / 1?

which are harmonically separated by the points A and B, and

two others q and q^ harmonically separated by A and C (Art. 250).

If these rays are imaginary, then no real curve of the second order

exists which fulfils the given conditions, but this case can only

happen if the involution F has two real double rays which are

separated by A and B or by A and C (Art. 248). Let the straight

line AB be cut by the rays / and p^ in the points P and Pv
respectively, and let AC be cut by q and ql

in the points Q
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and Qv respectively. Then we must make one or other of the

following suppositions :

(1) P and Q are the poles of pl
and q^ respectively;

(2) P and Q l
are the poles of p^ and g, respectively ;

(3) Pl
and Q are the poles of p and qv respectively ;

(4) P^ and Ql
are the poles of p and g, respectively.

Each of these four suppositions yields a solution of the given

problem. If, for example, the first supposition is made, we should

seek upon the straight line PC the point C which is harmonically

separated from C by P and its polar p^ and similarly upon QB
the point B which is harmonically separated from B by Q and

its polar qv That curve of the second order which passes through

the five points ABCB C
,
and of which any number of points

can be determined by previously given methods, fulfils, then, . all

the given conditions. For, it is circumscribed to the triangle

ABC, and since two pairs of points of the curve, A, B, and C, C
}t

are harmonically separated by P and /15
then is P the pole of p l

and the ray FP or p is conjugate to / 3 ,
and likewise the ray q is-

conjugate to gv so that all pairs of corresponding rays of the

involution F are conjugate with respect to the curve.

252. If the involution F has two real double rays, these of

necessity being tangent to the required curve, we can state the

problem thus :

About a given triangle to cir- In a given triangle to inscribe a

cumscribe a curve of the second curve of the second order which

order which shall touch two given shall pass through two given points

lines in the plane. in the plane.

The above construction shows that each of these reciprocal

problems has four and only four real solutions if, in the one case,

the two given straight lines are separated by no two vertices of

the triangle, and in the other case, if the two given points are

separated by no two sides of the triangle ; otherwise, there is no

real solution.

253. If the double rays of the involution F are imaginary the

problem has four solutions. This case happens, among other
ways&amp;gt;

if the involution is rectangular and consequently F a focus of the

required curve (as was supposed in Fig. 8 1
) ; incidentally, then,

we have solved the problem :
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&quot; To determine the four curves of the second order which circum-
&quot;

scribe a given triangle and have a given point as focus.&quot;

254. In conclusion, a problem may here be inserted which is

clearly not of the second order, but which is closely related to

the one last discussed, namely,

In a plane are given a triangle

ABC and an involution point-range
of the first order n, so situated

that neither double point of if lies

on a side of the triangle and
u passes through no vertex of the

triangle. It is required so to circum

scribe a conic about the triangle

that all pairs of corresponding

points of u are conjugate with

In a plane are given a triangle

and an involution sheaf of rays of

the first order 5, so situated that

neither double ray of S passes

through a vertex of the triangle

and the centre S lies upon no side

of the triangle. It is required so to

inscribe a conic in the triangle

that all pairs of corresponding

rays of 6 are conjugate with respect

to the curve.respect to the curve.

Let the points K and M (Fig. 82), in which u is cut by the

lines AB and BC respectively, be coordinated in the involution

FIG. 82.

u to the points K^ and Mv and let K.
2
be that point of AB

which is harmonically separated from K by the points A and B
of the curve, and M.

2
that point of BC which is harmonically

separated from M by B and C. With respect to the required

conic, K^KI is the polar of the point K, since both K^ and K%
are conjugate to K\ similarly, M1

M
2 is the polar of M. If then

C is the point which is harmonically separated from C by K
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and A&quot;A*r and A the point which is harmonically separated

from A by M and M^M^ the required curve passes through, and

is determined by, the five points A, B, (7, A, C. Evidently the

points K and K^ (and similarly, M and J/j) are conjugate with

respect to this curve as was required, since K is the pole of

K^KZ&amp;gt; being harmonically separated from the straight line K^K.2
both by the points A, B, and C, C .

This problem might also be stated as follows (compare Art. 244) :

Through five points of a plane To a plane pentagon, three of

of which three are real and the whose sides are real and the other

other two either are real or are two either are real or are conjugate

conjugate imaginaries, and of which imaginary lines, to inscribe a curve

no three lie in one straight line, of the second order,

to describe a curve of the second

order.

Each of the reciprocal parts of this problem has one solution.

EXAMPLES.

1. In a given curve of the second order inscribe a simple w-point

whose sides in order pass through n given points of the plane, none

of which lie upon the given curve.

2. About a given curve of the second order circumscribe a simple

./z-point whose vertices in order lie upon n given straight lines of the

plane, none of which touch the curve.

3. In a plane there is given a simple pentagon : it is required to

draw a second pentagon which is both inscribed and circumscribed to

the given one.

4. Through a given point it is required to draw two straight lines

which will intercept equal segments upon two given lines.

5. Choose a point in each of two given straight lines so that the

line joining them subtends a right angle at either of two given points.

6. Upon a given straight line determine a segment which subtends

a given angle at either of two given points.

7. Through a given point draw a straight line which bisects a given

triangle, or which forms with two given straight lines a triangle of

given area.

8. Circumscribe a triangle about a given triangle so that two of

its vertices shall lie upon two given straight lines and the angle at

the third vertex shall be of given magnitude.
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9. In two projective sheaves of rays find a pair of rays at right angles
in the one, which correspond, each to each, to a pair at right angles in

the other (Ex. 5, p. 67).

10. In two projective ranges of points upon the same straight line

find a pair of homologous points which are a given distance apart; or,

in two concentric sheaves of rays projectively related find two

homologous rays making a given angle with each other.

11. In two projective ranges of points of the first order find a pair

of homologous segments of given lengths.

12. A curve of the second order has in general one pair of conjugate
diameters which are parallel to two conjugate diameters of another

curve -of the second order lying in the same plane. Two hyperbolas,
the directions of whose asymptotes separate each other, make an

exception to this statement (Art. 248).

13. About a given quadrangle circumscribe a curve of the second

order which shall touch a given straight line (Art. 221) ; or, to a given

quadrilateral inscribe a curve of the second order which shall pass

through a given point

14. In the plane of two curves of the second order there is at least

one real point U which has the same polar u with respect to both curves

(Ex. 5, p. no). The two real or conjugate-imaginary points of u which

are conjugate with respect to both curves (see Art. 248) form with U
a. common self-polar triangle of the two curves. Two curves of the

second order lying in the same plane, therefore, have in general one

common self-polar triangle ; this has at least one real vertex and one
real side.



LECTURE XV.

PRINCIPAL AXES AND PLANES OF SYMMETRY, FOCAL AXES
AND CYCLIC PLANES, OF CONES OF THE SECOND ORDER.

255. The polar theory of cones of the second order follows by

projection, as has already been said (Art. 148), from that of curVes

of the second order, but it is further concerned with certain

theorems of metric geometry which can be developed out of the

polar theory, though they can in no way be transferred from the

curve to the cone by methods of projection and section
; they

are in part of different nature for the cone, and for it must be

developed independently. Our previous investigations, however, will

frequently serve us as models and furnish suggestions for further

developments.

256. If a cone of the second order is chosen in a bundle of

rays, all planes which pass through a ray e of the bundle are con

jugate with respect to the cone to a certain plane e also belonging
to the bundle, where e is the pole-ray of e. The ray e and that

ray of the bundle which is normal to e determine a plane e which

is normal and at the same time conjugate to e. In general there

is only one such *

conjugate normal plane for each plane e of the

bundle
;
but if a plane a is at right angles to its pole-ray a all its

conjugate planes a are normal to it. In this case a and a bisect

the angles which are formed by any two rays of the cone lying

in a plane with a
; for a and a are normal to each other and

harmonically separate the two rays (Arts. 68 and 148). The rays

of the cone are thus symmetrical, two by two, with respect to the

plane a, and we may call a a plane of symmetry for the cone ; its

pole-ray is usually designated a principal axis of the cone. A
plane of symmetry for the cone thus stands perpendicular to the

corresponding principal axis, i.e. perpendicular to its pole-ray.
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257. If a plane rotates about a ray s of the bundle, its pole-

ray e describes a sheaf of rays in the polar plane of s while its normal

ray describes a sheaf in the plane normal to s. The two sheaves

of rays thus described are projectively related to the sheaf of

planes s and consequently also to each other, and generate in

general a sheaf of planes of the second order. Hence :

&quot;

If, of two conjugate normal planes of the bundle, the one t

&quot;

rotates about an axis s, the other e will describe in general a sheaf
&quot; of the second order which contains the polar plane of s with

&quot;&quot;

respect to the given cone and the plane of the bundle normal

to s.&quot;

The plane e rotates about an axis s only if the two projective

sheaves of rays have perspective position, that is, have a self-

corresponding ray a. In this case s lies in a plane of symmetry
a of which a is the pole-ray (the corresponding principal axis) ;

and since a js the conjugate normal plane of the plane sa, s

must also lie in a. That is,

&quot; In a plane of symmetry a for a cone of the second order each
&quot;

ray s of the bundle is coordinated to a ray s so that any two
&quot;

planes of the sheaves s and s normal to each other are conjugate
&quot; with respect to the cone.&quot;

This theorem is the analogue of that by the help of which

(Art. 226) we obtained the foci of a curve of the second order.

It brings us to the so-called focal axes of the cone of the second

order, but we must first decide the question whether planes of

symmetry really exist for such a cone, and if so, how many.

258. We shall show in the first place that the cone has at least

one plane of symmetry.
Let ^ be the sheaf of planes which is formed by the conjugate

normals of all planes passing through a ray s of the bundle. If

this is of the first order, the existence of a plane of symmetry is

evident. We shall suppose therefore that - is of the second order.

To this sheaf of planes belongs every plane of symmetry for the

given cone as conjugate normal to the plane passing through s

and the corresponding principal axis. Now the planes 77 which cut

the cone enveloped by - in two rays are separated from the re

maining planes &amp;lt;/&amp;gt;

of the bundle by the tangent planes of the cone

(compare Art. 136). If then t is the straight line in which the

conjugate normal of one of the planes 7; and a plane &amp;lt;f&amp;gt; intersect,

the conjugate normals of all planes passing through / form a sheaf
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T of the first or second order which has at least two and at most

four real planes in common with 2. One of these common planes

is the conjugate normal of st
;
but every other is normal to two

different planes conjugate to it, namely, to a plane in each of the

sheaves s and /, and hence is normal to its pole-ray in which

these two planes intersect. And since any plane normal to its

pole-ray is a plane of symmetry for the cone, there exists at least

one, but in general and at most three, planes of symmetry.

259. For every cone of the second order there exists then at

least one plane of symmetry a and a principal axis a corresponding

to it
;
but it can easily be . shown that in the principal axis a two

planes of symmetry always intersect at right angles. Namely, if

we coordinate, two and two, those rays of the bundle lying in the

plane of symmetry a which are conjugate with respect to the cone,

we obtain an involution whose axes b and c are principal axes- of

the cone
; for, the ray b, for example, is conjugate and at the same

time normal to c and to a
;

its polar plane ca is consequently normal

to
&amp;lt;,

and hence is a plane of symmetry of the cone. In particular, if

the involution a is rectangular each of its rays is a principal axis

and every plane through a is a plane of symmetry. We are easily

convinced that in this special case the cone of the second order

is a cone of revolution, that is, an ordinary circular cone which has

a as its axis of rotation.

We have thus shown that

&quot;A cone of the second order has in general three planes of
&quot;

symmetry which intersect at right angles in the three principal
&quot; axes

, , c, and thus form a rectangular self-polar three-edge of

&quot; the cone. The cone of revolution alone has not only three

&quot; but an infinite number of planes of symmetry which with one
&quot;

exception pass through the axis of rotation.&quot;

260. We shall now return to the theorem which suggested the

theory of foci of curves of the second order. In the first place

let us define :

The axis f of any sheaf of planes of the first order in which

planes perpendicular to each other are conjugate with respect to

a cone of the second order shall be called a focal axis of the cone.

If a plane rotates about a focal axis / its conjugate normal plane

at the same time describes the sheaf/ and this axis must conse

quently (Art. 257) lie in a plane of symmetry for the cone. As

is easily seen, a principal axis is at the same time a focal axis only
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if the cone is a cone of revolution and the principal axis its axis of

rotation. Cones of revolution, which we shall hereafter exclude

from our discussions, have moreover only one focal axis, namely,

the axis of rotation.

The plane of two real focal axes / and / is a plane of symmetry

for the cone, since it is conjugate to the two planes through / and /
which are normal to it. No real plane tangent to the cone can

be passed through a focal axis (compare Art. 227).

261. A plane of symmetry a for a cone of the second order is

cut by any two conjugate normal planes in two rays s and s such

that every plane passing through s is normal and conjugate to

one passing through s (Art. 257). The two sheaves of conjugate

normal planes s and s are projectively related, and are cut by a

second plane of symmetry /3 in two projective sheaves of rays.

These are in involution since any two homologous rays stand to

each other in the same relation as do s and s, and the double rays

of this involution are focal axes of the cone. If the double rays

are imaginary, there are two rays from which the involution /? is

projected by sheaves in which corresponding planes are at right

angles (compare Art. 229) and which are real focal axes of the

cone. The cone cannot have more than two real focal axes since

the plane of two real focal axes is always a plane of symmetry
and a plane of symmetry cannot contain more than two focal

axes, and also since a focal axis is also a principal axis only for

the cone of revolution.

262. Any two conjugate normal planes are harmonically separated

by the two real focal axes f and f of a cone of the second order ;

for two such planes intersect the plane of symmetry ff in two con

jugate rays of the involution, of which f and f are the double

rays. In particular, the other two planes of symmetry are harmonic

ally separated by / and / ; consequently, the angles formed by

f and f are bisected by two principal axes.

We can now distinguish the three principal axes as follows :

the first is perpendicular to the plane ff and lies outside the

cone ;
the second lies inside, the third outside the cone, and both

in the plane ff . The first of the three planes of symmetry contains

the two real focal axes, the second lies wholly outside the cone,

while the third, like the first, cuts the cone in two real rays through

the vertex; the second and third planes of symmetry each contain

two conjugate imaginary focal axes.
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263. The planes bisecting the angles which are formed by two

tangent planes to the cone are conjugate normal planes, and as

such are harmonically separated by the two focal axes / and / ;

they therefore bisect the angles made by the two planes which are

determined by the line of intersection t of the tangent planes and

the focal axes f and f.

Similarly we may prove the theorem (comp. Art. 223):

&quot;Every tangent plane of a cone of the second order forms
&quot;

equal angles with the two planes determined by its ray of contact
&quot;&quot; and the focal axes of the cone. Two confocal cones of the second
&quot; order make right angles with each other along their common
&quot;

rays.&quot;

264. If g is the inverse ray of / with respect to one of two

tangent planes which intersect in a ray /, and g the inverse of f
with respect to the other, the planes tg and tf form the same

angle with each other as do the planes tf and tg\ and since the

angle tg equals the angle tf and the angle tf equals the angle tg
f

t

the three-edges gtf and ftg are congruent and may be brought
into coincidence by a rotation about their common edge /; the

face angles gf and fg are therefore equal ; only one of these angles

however alters its position as one of the two tangent planes glides

around the cone, hence they are of constant magnitude.

From this it follows that
&quot; The inverse rays of a focal axis f with respect to the tangent

&quot;

planes of a cone of the second order lie upon a cone of revolution

&quot;which has the other focal axis for axis of rotation.&quot;

In accordance with the theorem of Art. 263, each of these

inverse rays must lie in a plane with the other focal axis and the

ray of contact of the corresponding tangent plane ;
and since the

ray of contact forms the same angle with the first focal axis as

with its inverse ray, we have
&quot; The sum, or the difference, of the two angles which an arbitrary

&quot;ray
of the cone makes with the two focal axes /&quot;and/ ,

is constant.&quot;

A constant sum or a constant difference is obtained according

as we use the one or the other of the supplementary angles which

a ray makes with one of the focal axes. Hence it follows that

the cone encloses a greater angle of its first plane of symmetry
than of the third.

265. The cone is cut by a plane perpendicular to the focal axis /
in a curve of the second order of which one focus lies upon f\ for
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any two rays through this point, which are conjugate with respect

to the curve, intersect at right angles, since they lie in two conjugate

normal planes through f. We can therefore transfer to the cone

without further demonstration two previously demonstrated theorems

^ Arts. 236 and 239) in the following forms :

&quot;

If planes be passed through a focal axis and each of the rays
* of contact and the line of intersection of two tangent planes, the

&quot;plane through the line of intersection makes equal angles with
* those through the rays of contact.&quot;

&quot;The projective sheaves of rays in which two tangent planes

&quot;of a cone of the second order are cut by the remaining tangent

&quot;planes are projected from either focal axis of the surface by two

&quot;equal and directly projective sheaves of planes.&quot;

Let k2 be the curve in which the cone is cut by a plane normal

to f, t a tangent, and F the focus lying upon f. A plane passed

through f at right angles to / cuts / in a point of the circle which

touches k- at the extremities of its major axis (Art. 237) ; at the

same time it cuts the tangent plane of the cone passing through /

in the orthogonal projection of f. Hence :

&quot;

If the focal axes f, f, of a cone of the second order /
2 be

&quot;

projected orthogonally upon the tangent planes, all these projec-
&quot;

tions lie upon a cone of the second order which touches k- along
&quot; the two vertex rays of the plane ff ,

and is cut by a plane
&quot; normal to either f or f in a circle.&quot;

266. We shall turn now to the cyclic planes of a cone of

the second order, which in a certain sense are reciprocal to the

focal axes and may be defined as follows :

The plane of any sheaf of rays of the first order, in which rays

perpendicular to each other are conjugate with respect to a cone

of the second order, is called a cyclic plane of the cone.*

The name cyclic is applied to such a plane, since every section

of the cone parallel to it is a circle
; namely, the section is a curve

of the second order whose centre lies upon the pole-ray of the

plane, and all pairs of conjugate diameters of the curve are at right

angles, since they are parallel to two conjugate rays in the plane.

A plane of symmetry is therefore a cyclic plane only for a cone

of revolution in which the axis of rotation is the principal axis

* The plane passes through the vertex of the cone and conjugate rays lie in

conjugate planes. H.
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normal to the plane of symmetry. The cone of revolution, which

we shall again exclude, has only this one cyclic plane.

267. A cyclic plane can have no real rays in common with the

cone, since no real ray of the plane is self-conjugate. Two cyclic

planes intersect in a principal axis, namely, in a straight line to

which in each of the planes a ray is conjugate and normal.

If we denote in general two rays of the bundle to which the

cone belongs as conjugate normal rays when they are normal to

each other and conjugate with respect to the cone, then it is easy

to see that to any ray / of the bundle (the three piincipal axes

excepted) only one conjugate normal ray / exists
;
in /

, namely,
the polar plane and the normal plane of / intersect.

If now the ray / describes in the bundle an arbitrary sheaf of

rays e, its polar and its normal planes describe two sheaves of

planes projective to e, and hence :

&quot;

If a ray / of the bundle in which a cone of the second order

&quot;lies,
moves in a plane e, its conjugate normal ray / describes

&quot;in general a cone of the second order of which the pole-ray and
&quot; the normal ray of e are elements, as are also the three principal

&quot;axes of the given cone. The conjugate normal describes a sheaf
&quot; of the first order e only when e passes through one of the three

&quot;principal axes, and in this case e also contains this principal

&quot;axis.&quot;

In this special case the two sheaves of planes projective to e

are perspective to each other. The relation between the conju

gate normal rays of the bundle is an involution of the second

order which can be used, just as was that between the conjugate
normal planes, to determine the principal axes of the cone.

This involution determines all cyclic planes of the cone, i.e., all

those planes e which coincide with their corresponding planes .

268. The planes through a principal axis a are correlated two

and two, so that two conjugate normal rays /, /
, always lie in

two corresponding planes e, e
,
of a

;
the two sheaves e,

e
,
of con

jugate normal rays, obtained as above, are clearly projectively

related to each other. These sheaves of rays are projected from

a second principal axis b by two projective sheaves of planes

which are in involution, for any two homologous planes stand in

the same relation to each other as do the planes e and e . The

two double planes of this involution b are cyclic planes for the

given cone, as is easily seen without further explanation.
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Thus through each of the three principal axes there are two

cyclic planes; these are however conjugate imaginaries for two of

the principal axes, and it is only in the third principal axis that

two real cyclic planes k and k intersect (compare Art. 262). For

if there were more than two, say three, real cyclic planes, they would

intersect two and two in the three principal axes, and so coincide

with the planes of symmetry, which has already been shown impos

sible. Thus

&quot;There are two sheaves of parallel planes which cut a cone of

&quot;the second order in circles; each of these sheaves contains one
&quot;

of the two real cyclic planes of the cone.&quot;

269. Two principal axes and in general all pairs of conjugate

normal rays are harmonically separated by the cyclic planes k and

k
;
for they He in pairs of conjugate planes of the involution of

which k and k are the double elements. Of the three planes of

symmetry for the cone, two therefore bisect the dihedral angles

formed by the two cyclic planes k and
,

the third is normal

to these planes.

270. Since the lines which bisect the angles formed by any two

rays of the cone are conjugate normal rays, and hence are har

monically separated by k and #, we have this theorem :

&quot;

If the plane of any two rays of a cone intersects two cyclic

&quot;planes, the angle which the one line of intersection makes with

&quot;one ray equals the angle which the other line of intersection

&quot; makes with the other
ray.&quot;

Similarly, it is easily shown that

&quot;The plane angle which the cyclic planes determine upon any
&quot;

tangent plane of the cone is bisected by the ray of contact. Two

&quot;concyclic cones therefore touch each of their common tangent
&quot;

planes along rays at right angles to each other.&quot;

Two conjugate normal rays are harmonically separated by the

tangent planes along any two rays of the cone which lie in a plane

with one of them. From this fact we can without difficulty deduce

the following :

&quot;

If a cyclic plane intersects two tangent planes and the plane

&quot;of their rays of contact, the line of intersection with the latter

&quot;forms equal angles with the lines of intersection with the two
&quot;

former.&quot;

If now we introduce a third variable tangent plane (analogous

to Art. 239) we can further conclude that
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&quot; The planes by which a variable ray of a cone of the second
&quot; order is projected from two fixed rays of the cone determine

&quot;angles of constant magnitude upon each of the two real cyclic
&quot;

planes. Two projective sheaves of planes which generate the cone
&quot; are consequently cut by each cyclic plane in two equal projective
&quot; sheaves of

rays.&quot;

271. Most of these theorems upon cyclic planes and many others

may be deduced directly from analogous theorems upon focal axes,

if we bring to our aid bundles of rays related orthogonally to each

other. Two bundles S and S
1
are said to be related orthogonally

to each other if every plane of one is correlated to its normal ray

of the other, and thus to each sheaf of planes in one a sheaf of

rays projective to it in the other, the plane of the latter sheaf

being normal to the axis of the former. Four harmonic planes of

one bundle correspond therefore always to four harmonic rays of

the other which are respectively normal to these planes. Two
elements of the bundle S form the same angle with each other as

do their corresponding elements of the bundle
*Sj.

To the rays of a cone of the second order in the bundle S

correspond then the tangent planes to a cone of the second order

in S
l ,

if we look upon the former as being generated by two

projective sheaves of planes, the latter will appear as being generated

by the corresponding two projective sheaves of rays. Moreover,

to any two rays which are harmonically separated by elements

of the one cone correspond two planes which are harmonically

separated by two tangent planes of the other cone
;

from which

it follows that in general conjugate elements correspond to con

jugate elements.

Two rays or planes normal to each other, which are conjugate

with respect to one cone, correspond therefore to two planes or

rays normal to each other, which are conjugate with respect to the

other cone. Each cyclic plane of the one cone consequently corre

sponds to a focal axis of the other, and likewise each plane of

symmetry to a principal axis. We can therefore transfer the

properties of focal axes without further comment to cyclic planes,

and thus obtain, for example, the theorem (compare Art. 264) :

&quot;The sum or difference of the angles which an arbitrary tangent
&quot;

plane of the cone makes with the two cyclic planes is constant.&quot;

272. If there are given two cones of the second order correlated

orthogonally to each other, to every plane through the vertex, but
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containing no ray, of the one cone there corresponds a ray normal

to it, which passes through the vertex and lies within the other

cone. If of all plane angles which lie within the second cone

that is greatest in which the real focal axes f, f, lie, then of all

dihedral angles which lie without the first cone that is greatest

within which its cyclic planes lie. Since now, in fact, a cone of

the second order does .define a greater angle upon its first

plane of symmetry ff than upon its third (Art. 264), we learn

that

&quot;The cyclic planes k and k of a cone of the second order
&quot;

intersect in the third principal axis
;

this lies in a plane with

&quot;the second principal axis and the two focal axes, but outside

&quot;the cone.&quot;

The first two planes of symmetry of the cone therefore bisect

the dihedral angles formed by k and k
,
while the third plane of

symmetry is normal to k and k .

273. A cone of the second order and a sphere concentric with

it have in common a sphero-conic section. The sphere cuts

each plane of symmetry of the cone in an axis of the sphero-

conic, each cyclic plane in a cyclic line, each tangent plane in

a tangent, each principal axis in two centres, and each focal

axis of the cone in two foci of the sphero-conic.

The sphero-conic is a twin curve, that is, it consists of two-

separate equal lines whose points lie two and two diametrically

opposite upon the sphere. In general it has three pairs of centres

in which its three axes intersect at right angles, also two real

cyclic lines and two pairs of real foci. The first axis passes-

through the four foci and the two centres in which the cyclic

lines intersect
;

the second axis lies wholly outside the conic, and

has these two centres in common with the first
;

the third axis

intersects the two cyclic lines perpendicularly, and like the first

contains two pairs of real vertices of the conic. In a particular

case the sphero-conic consists of two equal sphero-circles.

274. All those properties of the cone of the second order which

refer to planes of symmetry, principal axes, focal axes, and cyclic

planes, can be transferred directly to the sphero-conic section. By
this means we obtain among others the following theorems :

&quot;If one vertex of a spherical triangle moves upon the sphere
&quot; so that the perimeter of the triangle remains constant, it describes

&quot;a sphero-conic section of which the other two vertices are foci.&quot;
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&quot;

If one side of a spherical triangle moves so that the area of the
&quot;

triangle remains constant, it envelops a sphero-conic section of
&quot; which the other two sides of the triangle are the cyclic lines.&quot;

EXAMPLES.

1. If a given dihedral angle is rotated about its edge s, the plane of

the two lines in which the faces of the given angle are cut respectively

by two fixed planes passing through a point of s envelops a cone of

the second order touched by the fixed planes, of which s is a focal

axis (Art. 265). State the reciprocal theorem.

2. The angles which the tangent planes normal to the plane of the

real focal axes f and f define upon the remaining tangent planes are

projected from the focal axes f and f by right dihedral angles.

3. The real cyclic planes k and k of a cone of the second order

intersect every dihedral angle whose faces are determined by the &quot;two

rays of the cone normal to the intersection of k and k and any third

ray of the cone, in a right angle.

4. All dihedral angles whose faces are tangent to one or another

of a system of confocal cones and pass through a fixed point P are

bisected by two fixed planes at right angles.

5. Besides the cone of revolution, special mention should be made

of the following cones of the second order :

(a) The equilateral cone (Schroeter) to which right-angled three-

edges can be inscribed.

(8) That to which right-angled three-edges can be circumscribed.

(c) The orthogonal cone (Schroeter) whose cyclic planes are

normal to two rays of the cone.

(d} That whose focal axes are normal to two tangent planes.

(e) Pappus cone, which is cut by the planes through two

special lines in rays at right angles to each other (the

special lines are the pole-rays of the cyclic planes).

(/) Hachette s cone, for which the tangent planes passed through

two special rays are normal to each other.

(g) and (k} Those whose focal axes or whose cyclic planes are

normal to each other.

6. The lines bisecting the supplementary angles formed by two straight

lines, one of which g remains fixed while the other moves in a plane y,

generate a Pappus cone. The plane y is a cyclic plane of the cone

.and g its pole-ray.

From a point P of a sphere the great circles of the sphere are

projected by Pappus cones.



APPENDIX.

THE PRINCIPLE OF RECIPROCAL RADII.

I. Two points P and P^ are said to be *

inverse with respect

to a circle of radius r and with centre M, if they lie in a straight

line with M and are conjugate with respect to the circle. They
are harmonically separated by the extremities of the diameter

through them, and consequently (Art. 72)

The product of the radii vectores of two inverse points is thus

constant, or the radius vector of any point P is inversely propor
tional to that of its inverse point PY In consequence, this

phase of inversion has obtained* the name The Principle of

Reciprocal Radii
;
M is called the * inversion centre, and r-

the power of the reciprocal radii.

To every point within the curve a point outside the curve is

inverse, and to every infinitely distant point of the plane the

centre is inverse
; the points of the circle are inverse to themselves.

2. The polar of a point P with respect to the given circle is

perpendicular to MP at the inverse point Pv The inverse points

Pv &amp;lt;21? -A?!
. . . of any given points P, Q, R ... of a straight line g

are found by dropping perpendiculars from G the pole of g upon
the straight lines MP, MQ, MR . . . respectively. Hence

&quot; The inverse of any straight line g is a circle y the extremities
&quot; of whose diameter normal to g are the centre M and the pole G
&quot; of the given line.&quot;

Conversely, the inverse of a circle passing through M is a straight

* Liouville in the Journal de Mathtmatiques, I. Serie, T. xii., p. 265.
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line
g&quot; for, to the straight line joining two points A and B whose-

inverse points A
l
and B^ lie upon y a circle is inverse, which

passes through Av B^ and M and is consequently identical with y.

On account of this characteristic Moebius* called this quadratic

transformation a circular transformation.

3. If through the inversion centre M we draw a parallel to

the straight line g, this will touch the circle y inverse to g at Mr

since it is perpendicular to the diameter MG ofy.

From this we conclude :

&quot;

Any two straight lines of the plane f and g intersect at the
&quot; same angle as do their inverse circles

&amp;lt;f&amp;gt;

and
y.&quot;

Two indefinitely small inverse triangles have therefore equal

angles and are similar
;

or in other words,
&quot;

By inversion the plane is transformed into itself so that the

&quot;infinitesimal portions of two inverse figures are similar.&quot;

This theorem is applicable at all points of the plane except for

the indefinitely small portion which lies about the centre M.

4. Since a straight line can be looked upon as a circle of

infinite radius, we may consider the theorem &quot;to every circle

passing through M a straight line is inverse,&quot; and its reciprocal

( 2) as special cases of the following theorem :

&quot;To every circle k a circle k
l

is inverse; M is a centre of

&quot;similitude for k and kr
&quot;

In order to prove this general theorem we choose upon k a

fixed point P and a movable point Q and mark their two inverse

points with P^ and Qlt
and the points in which k is intersected by

the secants MP and MQ a second time, with P and Q , respectively.

Then, from the nature of the segments of secants of circles,

MP. MP =MQ.MQ ,

and from the principle of reciprocal radii,

MP. MP
l
=MQ . MQ,( = r1

}

consequently, MP : MP
l
=MQ : MQ l

and the triangles MP Q and MP
1Ql

are similar.

If then Q, and at the same time Q ,
traverses the circle k

t Q l

describes a curve similar and similarly situated to k, that is,

describes a circle kY Evidently M is a centre of similitude, while

* Moebins in the Abhandhmgen der Konigl. Sachs. Gesellschaft der Wissenschaften,.

Leipzig, 1855, Bd. n., S. 531-595, and in the reports of the proceedings of the

same Society for 1853, pp. 14-24.
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Q and Qv also P1

and P^ are homologous points of the two

circles k and r

5.
&quot;

Any circle which passes through two inverse points P and /\
&quot;

is inverse to itself and intersects the assumed circle whose points
&quot; coincide with their inverse points orthogonally.&quot;

For it has in common with the circle inverse to it the points

P and P
l

inverse to each other and two points inverse to them

selves in which it is touched by straight lines through M, since

6. If we assume two systems of points Pt Q, R ... and P
ly

Qv Rl
... inverse to each other in a plane, and one system rotates

about the centre M till each of its points has described a semi

circle, the pairs of inverse points P and Pv Q and Qlt
etc. are

again in straight lines with M, but now lie upon opposite sides

of M. As before,

MP.MP^ = MQ.MQ l
= MR.MR^ = ... = a constant;

but the power, that is, the product of the radii vectores of inverse

points, has no longer a positive value but is now negative.

Thus we obtain a second case of inversion which is distinguished
from the first by having no point of the plane coincident with its

inverse point. In this second case also the plane is transformed

into itself conformally ;
to each line a circle through M is inverse,

and in general, to each circle k a circle k^ ; here again the centre

of reciprocal radii is a centre of similitude of two inverse circles.

7. The points of space can likewise be coordinated two and

two so that each is the inverse of the other, the centre M and a

positive or negative value of the power being chosen at pleasure.

This can be accomplished most easily by first coordinating to each

other, two and two, the points of any plane through M and then

rotating this plane about some axis through M. Two inverse

points of the plane indicate in each position of the plane two

inverse points of space.

$8. If we rotate the plane about the line of centres of two

inverse circles, which passes through J/, the circles will describe

two spheres ; hence,
&quot; The inverse of any sphere k is a sphere k^ ;

M is a centre of
&quot;

similitude of k and kv Any plane y is inverse to a sphere which
&quot;

passes through M and which is touched in M by a plane parallel
&quot;

to
y.&quot;

o
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The last part of this theorem may be looked upon as a special

case of the first part, or it may easily be proved independently.
And further,

&quot;Any two planes in space intersect at the same angle as do
&quot; the spheres inverse to them.&quot;

Two indefinitely small tetrahedra which are inverse to each other

have therefore equal dihedral angles and hence equal face angles ;

they are, as a little reflection will show, similar if the power of the

reciprocal radii is negative, and symmetrical if the power is positive.

Since, therefore, their homologous faces are always similar,

&quot;Two inverse surfaces are depicted conformally upon each
&quot;

other.&quot;

9. In order, then, to depict a sphere k conformally upon a plane

s, choose as centre of inversion M one of the two points of k whose

tangent planes are parallel to s and fix the power equal to, the

product of the two segments MP and MP
l
which k and 5 determine

upon any straight line passed through M. The plane s is thus in

verse to a sphere which has in common with the given sphere k

the points P and M and the tangent plane at M, and which conse

quently coincides with k. Hence :

&quot;

If a sphere k is projected (stereographically) from one of its

&quot;

points M upon a plane s which is parallel to the tangent plane at

&quot;J/,
the surface k will be depicted conformally upon the plane s.&quot;

Much use is made of this stereographic projection, which was

known as early as the time of the astronomer Ptolemy, in the con

struction of geographical maps. By this means it is ensured that

the most minute angles upon the map have the same size as the

angles corresponding to them upon a globe ;
the lengths of different

lines upon the globe are always represented upon the map according

to a variable scale, since a sphere cannot be flattened out upon
a plane without distortion.

10. The inverse of any circle is always a circle
;
two spheres

intersect in the latter, which are inverse to two spheres through

the former. If, in particular, the one circle passes through Jlf, the

other becomes a straight line. The meridians and parallels of

latitude upon a globe transform therefore by stereographic pro

jection into two systems of orthogonal circles
;
the projections of

the meridians are circles which intersect in two points (the north

and south poles), and to these the projections of the parallels of

latitude, which have no real point in common, are at right angles.
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Only the circles of the sphere which pass through M are repre

sented upon the plane of projection by straight lines.

If the centre of projection M\s placed at the north or south pole,

the parallels of latitude will be depicted as a system of concentric

circles and the meridians as their diameters.

11. For any three given spheres there can in general be found

a circle which intersects all three at right angles ;
it lies in the

plane of centres and its centre is the radical centre of the three

circular sections. The construction for this circle is only impossible

when the spheres have either one or two points in common.

If now we choose a point of this orthogonal circle as centre of

inversion, the circle itself is transformed into a straight line and

the spheres into three spheres which are cut orthogonally by
this straight line and whose centres consequently lie upon the line.

Three spheres can therefore always be transformed by inversion

into three others whose centres lie in one straight line, except when

the three given spheres have a point in common, in which case

they can be transformed into three planes.

12. A system of spheres which is described by the continuous

motion of a variable sphere envelops in general a surface F
which has a system of circular lines of curvature. Each sphere

of the generating system touches the surface F along the circle

which it has in common with the next consecutive sphere of the

system ;
and since the normals to F in the points of this line

intersect in the centre of the sphere, the circle is a line of curvature

of F. If now the surface F is transformed by inversion into another

surface Fv these lines of curvature become circular lines of curva

ture of fv since F
l

is enveloped by that system of spheres which

is inverse to the system enveloping F. All surfaces inverse to

surfaces of revolution have therefore a system of circular lines of

curvature.

13. One of the most remarkable of these surfaces is the

cyclide discovered by Dupin. This is generated by a variable

sphere which constantly touches three given spheres. The theory
of this cyclide can be developed easily upon the basis of the

preceding paragraphs, at the same time proving the following

statements :

A Dupin s cyclide is always transformed by inversion into a

cyclide; if the centre of inversion is properly chosen it can be

transformed into a rotation cyclide which is generated by a sphere
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or a plane rotating about an axis. The cyclide therefore com

prises two systems of circular lines of curvature and is touched

along these by two systems of spheres ;
the centres of these spheres

and lines of curvature lie in two planes of symmetry of the cyclide,

which are normal to each other and in each of which two lines

of curvature lie. Every sphere of the one system touches all

spheres of the other system along the points of a circular line of

curvature. A sphere can be passed through two lines of curvature

if they belong to the same system ;
if to opposite systems they

intersect in one point at right angles.

14. The cyclide has either no (real) double point, or two

conical-points in which all lines of curvature of one system intersect,,

or a cuspidal point in which all lines of curvature of one system
are tangent to each other. Essentially different forms of these

three principal varieties are obtained if we transform the corre

sponding rotation cyclide by reciprocal radii whose centre is

chosen (i) inside, (2) upon, and (3) outside the rotation cyclide.

The last two principal varieties can be depicted conformally by
inversion upon a right cone and a cylinder, respectively.

The planes in which the lines of curvature of either system

lie, two and two, all intersect in one straight line. This lies in

the one plane of symmetry, and is perpendicular to the other.

Each of two planes touches the surface along the points of a circle.

If spheres be passed through the lines of curvature of either

system and a fixed point M, these will all intersect in one circle*

If a cyclide extends to infinity, as may happen in any one of

the three varieties, it must have two right lines of curvature which

are perpendicular to each other. The planes of all remaining lines

of curvature pass partly through one and partly through the other

of these two gauche lines.

RULED SURFACES OF THE THIRD ORDER.

15. A range of points u of the first order and a range k~ of

the second order which are projective, but neither lie in the same

plane nor have a self-corresponding point, generate a system of

straight lines which we shall call a regulus of the third order.

Any straight line g intersects at least one and at most three

lines of this system, as is easily seen (Art. 194) if we project the

range u from the axis g by a sheaf of planes. The regulus of the
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third order is in general projected from an arbitrary point by a

sheaf of planes of the third order.

1 6. Every plane passing through u which cuts the curve Kl

contains two rays of the regulus. If now from
Z&amp;gt;,

the intersection

of two such rays, we project the two ranges of points u and k-,

we obtain a sheaf of rays of the first order and a cone of the

second order which are projectively related and have two rays self-

corresponding, and which generate (Art. 195) a sheaf of planes d

of the first order. All pairs of rays of the regulus which lie in a

plane through // intersect therefore in the points of a straight

line
&amp;lt;/,

and from each of these points of intersection the regulus

is projected by a sheaf of planes of the first order perspective to

the ranges u and k~. We may call the straight lines u and d
*
directors of the regulus, since they intersect all rays of the

system. The straight line d coincides with u only when u intersects

the curve k-
;

in this special case the director u is also a ray of

the regulus.

17. From a point 6&quot; which lies upon a ray a of the regulus,

but upon neither director, the ranges u and k- are projected by a

sheaf of the first order and a cone of the second order which

have the ray a self-corresponding, and consequently (Art. 197)

generate a sheaf of planes of the second order perspective to u

and &. The regulus, therefore, is projected from any point 6&quot;

lying upon it by a sheaf of planes of the second order. Since

this sheaf is projective to the sheaf of planes d, which in turn is

perspective to the ranges u and 2
,

1 8. The regulus of the third order may be generated by a

sheaf of planes d of the first order, upon whose axis the rays of

the system intersect, two and two, and a sheaf of planes S of the

second order projective to the sheaf d, whose centre may be

chosen anywhere upon the regulus.

This second method of generating the regulus is reciprocal to

the method first stated, and the regulus of the third order is

consequently self-reciprocal.

From the second method too we obtain properties which are

reciprocal to those just deduced, among others :

The regulus of the third order The regulus of the third order

is projected from any point which is intersected by any plane which

lies upon one of its rays by a sheaf passes through one of its rays in a

of planes of the second order
;

curve of the second order
;
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and all such projecting sheaves and curves of section are pro-

jective to one another, to the range of points u and to the sheaf of

planes d. The curves of section are perspective to the sheaf d
and to all sheaves of planes of the second order projecting the

regulus.

19. The regulus of the third order lies upon a ruled surface

of the third order F^ which is intersected by any straight line in

at most three points, and is cut by any plane in a curve of the

third order. The surface F^ passes twice through the director d,

and of any plane section of the surface either an actual or

an isolated double point lies upon this director. Planes passed

through a ray of the regulus intersect the ruled surface in that

ray and a curve of the second order
;

the curve is intersected

by the ray in two points, one of which lies upon the double line d,

while at the other the plane of section is tangent to the surface.

All planes passing through the rays of the regulus are thus tangent
to the surface of the third order

;
the planes through the director u,

in each of which two rays of the surface lie, are doubly-tangent

planes of the surface.

20. Three varieties of the ruled surface of the third order

may be distinguished. Any one of the curves k- of the second

order which lie upon the surface F3
may either enclose the point

in which its plane cuts the axis u of doubly-tangent planes, or this

point may lie outside the curve, or it may lie upon the curve
;
and

whatever be the relation between this one curve and point, the

same relation will exist between any other such curve and

corresponding point lying upon the same surface.

In the first case (as is seen from the method of generating the

surface given in 15) two rays of the regulus lie in each plane

through u, and at the same time intersect in a point of d. In

the second case the so-called cuspidal planes of the surface, which

pass through u and are tangent to the curve ft
1
, separate the

actual doubly-tangent planes and the actual double points of the

surface from the isolated doubly-tangent planes which pass

through u and the isolated double points which lie upon d. The

third case is to be looked upon as the limiting case between the

first two
;
here the two directors /^ and d (and also the two cuspidal

planes) coincide.

2O. Suppose there are given two gauche lines u and d and a

conic section K2 which is met in a point by the one straight line d
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but which lies in a plane with neither of the lines, and let a

straight line g move so as constantly to intersect #, d, and Kl
; this

line will describe a ruled surface of the third order of which d
is a double line and whose doubly-tangent planes pass through u.

State the reciprocal of this theorem.

QUADRANGLES AND QUADRILATERALS WHICH ARE SELF-
POLAR WITH RESPECT TO CONIC SECTIONS.

21. A complete quadrangle is called a self-polar quadrangle
with respect to a conic section y- if each of its six sides is conjugate
with respect to y- to its opposite side. Similarly, a complete quadri

lateral is called a *

self-polar quadrilateral if each of its six vertices

is conjugate to its opposite vertex. The polars of the vertices of a

self-polar quadrangle form a self-polar quadrilateral ; the six sides of

the quadrangle pass through the six vertices of the quadrilateral.

22. If two pairs of opposite sides of a complete quadrangle
consist of conjugate rays with respect to a conic y-, the same is

true of the third pair, and the quadrangle is self-polar with respect

to y
2

. For the polar of any vertex intersects the quadrangle in

an involution (Art. 219) in which these two pairs of opposite sides,

and hence all three pairs, pass through conjugate points.

The reciprocal theorem, viz., a complete quadrilateral is self-polar

if two pairs of opposite vertices are conjugate with respect to a conic,

is proved in a similar manner.

23. If the vertices A, B, C, of a triangle be joined to the poles of

their opposite sides, the three joining lines will pass through one

point D which taken with A, B and C forms a self-polar quadrangle
with respect to the conic y- (22). Three vertices A, B, C, of a self-

polar quadrangle, chosen arbitrarily, thus determine the fourth vertex

D
;
in particular, if A and B are conjugate with respect to y

2
they

form with D a self-polar triangle of y
2

. A quadrangle which consists

of a self-polar triangle and any fourth point of the plane is a self-

polar quadrangle with respect to y
2

( 21). Improper self-polar

quadrangles of which three vertices lie in one straight line or two

vertices coincide may also arise.

24. If the three sides a, b, c, of a triangle are made to intersect

the polars of their opposite vertices, the three points of intersection

will lie upon one straight line d, which taken with #, b and c forms

a self-polar quadrilateral of the conic (22). Three sides of a self-
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polar quadrilateral thus determine the fourth side
\

it is only when
the three sides form a self-polar triangle that the fourth side can

be chosen arbitrarily.

25. Iftwoself-polarquadrangles If two self-polar quadrilaterals of

ABCD and ABCD of a conic y
2 a conic y

2 have two sides in corn-

have two vertices A and B in com- mon, their six sides are tangent to a

mon, their six vertices lie upon a curve of the second class, z&amp;gt;., they
curve of the second order, which belong to a sheaf of rays of the

may however degenerate into the second order, which may however

two straight lines AB and CD. degenerate into two points.

Since the sheaves of rays A and B are related projectively to each

other when to each ray of A is correlated its conjugate ray of B,

then

A(CDCD ) 7\ B(DCDC\
and hence (Art. 215)

A(CDC D ) J( B(CDCD \

as is asserted in the theorem on the left.

26. Since a self-polar triangle of y
2

is converted into a self-polar

quadrangle by the addition of any point of the plane, we derive the

following theorems from those just stated :

If a self-polar triangle and a self- If a self-polar trilateral and a self-

polar quadrangle have one vertex polar quadrilateral have one side in

in common, their six vertices lie common, their six sides are tangent

upon a curve of the second order. to a curve of the second class.

Any two self-polar triangles of a conic y
2 can be inscribed in a

curve of the second order and circumscribed to a curve of the

second class (compare Art. 215, note). But these curves may

degenerate into two straight lines and two points, respectively.

27. Two conies y
2 and y

2
T
which lie in the same plane have

an infinite number of self-polar quadrangles and self-polar quadri

laterals in common. Two sides a and b of any such quadrangle may
be chosen at random. The opposite sides a

l
and b^ join their two

yyles with respect to the given conies y
2 and y

2
r

If two self-polar quadrangles If two self-polar quadrilaterals

ABCD and AB C D common to common to y
2 and y\ have one

y
2 and y

2
l
have one vertex A in side in common, their seven sides

common, their seven vertices lie touch a curve of the second class,

upon a curve of the second order.
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If, namely, ABB Pis a self-polar quadrangle of y
2

,
and ABBQ, a

-self-polar quadrangle of y\, the conies ABCDBP and ABCDB Q
have five points in common and therefore coincide with the conic

ABBPQ\ in the same way, the conies AB C DBP and

ABCDBQ coincide with ABB PQ.
28. With respect to three given conies y

2
, y\, y

2
.2,

of a plane, a

straight line a has three poles which in general do not lie upon one

straight line. If a describes a sheaf of rays (7, its poles describe

three ranges of points u, u
lt

//. protective to U and hence to each

other
;
of the rays which join homologous points of u and uv at most

three and at least one passes through the corresponding point of u
2

(Art. 192) and is conjugate to a ray of U with respect to all three

of the conies y
2

, y\, y
2
2

. From this we derive the first of the

following reciprocal theorems :

In a plane there is an infinite In a plane there is an infinite

number of pairs of rays which are number of pairs of points which

conjugate with respect to three are conjugate with respect to three

given conic sections. These pairs given conic sections. The locus of

of rays in general envelop a curve these pairs of points is in general a

of the third class, and any two of curve of the third order, and any
them form two pairs of opposite two of them form two pairs of oppo-
sides of a self-polar quadrangle site vertices of a self-polar quadri-
common to the three given conies lateral common to the three conies.

( 22). Three tangents which can Three points in which any one

be drawn from a point U to the straight line intersects the curve

curve of the third class form with of the third order form with the

their three conjugate tangents the points of the curve conjugate to

three pairs of opposite sides of a them the three pairs of opposite

self-polar quadrangle common to vertices of a self-polar quadrilateral
the three conic sections. common to the three conic sections.

NETS AND WEBS OF CONIC SECTIONS.

29. If a conic section k- is circumscribed to a quadrangle
which is self-polar with respect to another conic section y-, the

two curves y
2 and K* have the following remarkable relations to

each other :

(a) Any three points of k2 deter- (aj Any three tangents to y
2

mine a self-polar quadrangle of y
2 determine a self-polar quadrilateral

( 2 3) whose fourth vertex also of 2 whose fourth side is also a

lies upon k~. tangent to y
2

.
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(b] If k2
is intersected by two

straight lines which are conjugate
with respect to y

2
,
the points of

intersection are the vertices of a

quadrangle which is self-polar with

respect to y
2

.

(c} To the curve /

2 there can

therefore be inscribed an infinite

number of quadrangles and an

infinite number of real triangles

which are self-polar with respect

to y
2

; every point of Kl enclosed

by y
2

is a vertex of one of these

self-polar triangles.

(//) The polar of a point of k2

with respect to y
2 intersects either

one or both of the curves in two

real points which are conjugate
with respect to the curve upon
which they do not lie.

(e) Two tangents to y
2

,
whose

points of contact are conjugate
with respect to &amp;gt;

2
, always inter

sect in a point of /

2
.

(^) If tangents be drawn to y
2

&quot;

from two points which are con

jugate with respect to /C
2

,
the four

lines so drawn are the sides of a

quadrilateral which is self-polar

with respect to /
2

.

fo) To the curve y
2 there can

therefore be circumscribed an

infinite number of quadrilaterals,

and in general an infinite number

of real triangles which are self-polar

with respect to k2
; every tangent

to y
2 which lies wholly outside /

2

is a side of one of these self-polar

triangles.

(d^) From the pole with respect

to k2
,
of a tangent to y

2
,
there can

be drawrn to one or to both curves

two real tangents which are con

jugate with respect to the conic not

touched by them.

(^) Two points of &amp;gt;

2
,
the tangents

at which are conjugate with respect

to y
2
, always lie upon the same

tangent to y
2

.

(/ and /j) The curve &2 lies either wholly outside y
2 or partly

outside and partly inside
;
neither of the two curves wholly encloses-

the other.

30. The following will be sufficient proof of these theorems :

Two vertices of the self-polar quadrangle of y
2 to which the conic

k1
is circumscribed determine, with any third point A of /

?
,
a

second self-polar quadrangle of y
2 which is inscribed to Kl

( 23

and 25); from this second self-polar quadrangle a third can be

derived in the same way, of which two vertices A and B are

chosen arbitrarily upon
2

,
and this third yields a fourth self-polar

quadrangle of y
2 inscribed to /

2
,
which has three vertices A, B&amp;gt; C,

arbitrarily chosen upon K1
. This proves theorem (a), and from

it (&} follows immediately.

Let a be the polar of A with respect to y
2

,
and if this should

have no real point in common with y
2
,
A lies inside y

2
;

the polar

a intersects the opposite sides of the self-polar quadrangle of y
2

which has one vertex at A, in pairs of points conjugate with
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respect to y- (22), while the involution so determined upon n is

elliptic, /&amp;gt;.,
has no real double elements. The conic sections

which can be circumscribed to any one of these self-polar quad

rangles must therefore intersect the straight line a in two real

conjugate points which, taken with A^ form a real self-polar triangle

of y- ; for, these conies form a continuous series, an infinite number

of them have two real conjugate points in common with the involu

tion a (Art. 221), and it is impossible that one of them should

have imaginary points of intersection, since then between this

conic and those having real intersections there would lie a conic

tangent to a at a real double element of the involution. Thus

theorems (c) and (f) are proved, and from these (d) and (e) follow

easily.

.^31. Theorems (a^) to (yj) of 29 can be proved in the same

way as those numbered from (a) to (/) as soon as it is shown

that to the conic y- some one quadrangle can be circumscribed

which is self-polar with respect to k-. In order to show this,

choose three points P, Q, R, upon /-
,
whose joining lines lie

outside y-, this being always possible ( 29/). These determine

a quadrangle PQRS self-conjugate with respect to y- and inscribed

to k-, whose opposite sides intersect in three points U, F, U\ lying

outside y- these three points are conjugate two and two with

respect to k1
,
and two of them lie outside k-. If now from

U and V pairs of tangents be drawn to y
2
,
these harmonicalh

separate the pairs of opposite sides of the self-polar quadrangle

PQJZS (Art. 143); consequently, these four tangents form a

quadrilateral whose opposite vertices are harmonically separated

by the pairs of opposite sides of the quadrangle PQRS, and since

one of the six vertices of the quadrilateral, as is easily seen, lies

within k1
,

it must also be harmonically separated from its opposite

vertex by the curve k- (Art. 220). Two opposite vertices of the

quadrilateral are thus conjugate with respect to k-
;

this quadrilateral

circumscribing y
2

is consequently self-polar with respect to k-.

32. Of two conic sections k- and y
2
,
of which the one k2

is

circumscribed to a self-polar quadrangle of the other 7-, or of

which y
2

is inscribed to a self-polar quadrilateral of 2
,
we say*

that &quot;the curve of the second order k- supports or carries the

*
Compare my article in Crelle-Borchardt

sy&amp;lt;?//r;/fl//w&amp;gt;
die reineund angrwandtt

Mathematik, Bd. 82.
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curve of the second class y
2

,&quot; or, on the other hand,
&quot;

y
2

is supported

by or rests upon kl &quot;

If k~ breaks up into two straight lines, or y
2

into two points, we say accordingly,

A line-pair* supports the curve A point-pair* rests upon the

of the second class y
2

if its rays are curve of the second order & if its

conjugate with respect to y
2

. points are conjugate with respect

to k\

And since a straight line is conjugate to itself with respect to y
2

only when it touches y
2

,
we add,

A two-fold line supports the curve A two-fold point rests upon the

of the second class y
2 if it is tan- curve of the second order kl if it is

gent to y
2

. a point of kz
.

33. All conies which support a given curve of the second

class y
2 and pass through three given points chosen at random,

are circumscribed to the self-polar quadrangle of y
2 which is

determined by these points ( 290) ; through an arbitrary fourth

point of the plane there passes therefore only one of these conies.

Hence :

The conic sections ft* which The conic sections y
2 which

support a given curve of the second rest upon a given curve of the

class y
2 form a manifold of four second order k- form a manifold

dimensions which we shall call a of four dimensions which we shall

net of conies of the fourth grade call a web of conies of the fourth

(lineares Kegelschnitt-System vier- grade (lineares Kegelschnitt-
ter Stufe). About an arbitrary Gewebe vierter Stufe). To an

quadrangle there can be circum- arbitrary quadrilateral there can

scribed in general only one conic be inscribed in general only one

of this net
;

for the quadrangle conic of this web
;

for a quad-
becomes self-polar with respect to rilateral becomes self-polar with

y
2

,
and all conies circumscribed respect to 2

,
and all conies in-

about it belong to the net, as soon scribed in it belong to the web,
as any two of them support the as soon as any two of them rest

curve y
2

. upon the curve k-.

34- Of the conic sections which support two given curves of

the second class y
2 and y

2

1?
in general only one passes through

three given points A, B, C, of the plane. This conic also passes

* A curve of the second order which breaks up into two straight lines will

be spoken of as a line-pair, while a curve of the second class which breaks up
into two points will be called a point-pair. H.
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through the two points which with A, B, and C form self-polar

quadrangles of y~ and y
2
p respectively. In general then we may say :

The conic sections k- which The conic sections y- which are

support two, three, or four curves supported by two, three, or four

of the second class, chosen arbi- curves of the second class, chosen

trarily in a plane, form a triply, arbitrarily in a plane, form a triply,

doubly, or singly infinite manifold, doubly, or singly infinite manifold,
which we shall call a net of conies which we shall call a web of conies

of the third, second, or first grade, of the third, second, or first grade,
as the case may be. as the case may be.

For particular relative positions of the given curves these state

ments are subject to exceptions which are quite apparent. The
number indicating the grade does not merely suggest of how many
dimensions the net or web of conies is, but it is also, as we shall

see ( 45 and 51), equal to the number of points or tangents by
r

which one of its conies is determined.

35. The net of conies of the first grade is ordinarily called

a sheaf of conies, and whenever the term net of conies is used

without specifying the grade it is to be understood that the net

is of the second grade ; the reciprocal forms bear the names

range of conies, and web of conies, it being understood in the

latter that, as before, the web is of the second grade unless other

wise specified. To be sure, we are accustomed elsewhere to

define the sheaf of conies and the range of conies as the totality

of conies which circumscribe a quadrangle and are inscribed

in a quadrilateral, respectively, but these definitions are contained

in the above, as the following theorems will show :

If two conies of a net of any If two conies of a web of any
grade are circumscribed to a quad- grade are inscribed in a quadri-

rangle, this quadrangle is self-polar lateral, this quadrilateral is self-

with respect to all curves of the polar with respect to all curves of

second class which are supported the second order which support
by the net ( 33), and consequently the web

( 33), and consequently
all conies which circumscribe the all conies inscribed in the quadri-

quadrangle belong to the net. lateral belong to the web.

$36. The theory of nets of conies of the fourth grade is not

essentially different from the polar theory of the curve of the second

class y
2 which rests upon all conies of the net. We shall therefore

only call attention to the fact that the net is a special one if y
2

reduces to two points P and Q, or to a two-fold point P. Thus,
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All conies of the plane which All conies of the plane which

pass through a given point /&amp;gt;,
or touch a given straight line, or with

with respect to which two points P respect to which two straight lines

and Q are conjugate, form a special are conjugate, form a special web
net of conies of the fourth grade. of conies of the fourth grade.

For example, all parabolas of a plane form a special web of

conies of the fourth grade. To what two imaginary points does

the curve of the second class y
2 which rests upon the equilateral

hyperbolas of a plane reduce ? The conies of a plane, of

which one axis has a given direction, form a special net of the

fourth grade to which belong all circles of the plane: a circle

can be circumscribed about any quadrangle which is common to

two of these conies.

NETS AND WEBS OF CONICS OF THE FIRST AND THIRD
GRADES.*

37. If there are given two vertices A and B of a self-polar quad

rangle of a curve of the second class y
2

,
and the side // conjugate to

AJB, upon which the other two vertices C and D lie, these latter

vertices are a pair of coordinated points of an involution upon //.

This involution is obtained if to any ray AC or AD of A is correlated

the ray BD or BC conjugate to it of B and then the intersections

with u of pairs of corresponding rays of the two sheaves A and B
thus related protectively to each other are noted. If now we wish

to construct a common self-polar quadrangle of two conies y
2 and y

2
p

having the points A and B for vertices, the straight line u upon
which the other two vertices C and D lie must pass through the two

poles of AB with respect to the conies y
2 and y\ ;

the points C and

D are coordinated to each other in each of two involutions lying

upon u, and are therefore uniquely determined (Art. 248), unless, as

an exceptional case, the two involutions are identical. The double

elements of each of these involutions are conjugate with respect to

all conies which can be circumscribed to the self-polar quadrangle

ABCD\ and, if C and D are imaginary there is always one of these

conies which passes through any chosen point P, as was shown

in Art. 254.

*
Compare Schroter, Die Theorie der Kegelschnitte, II. ed., pp. 224-403 (Leipzig,

1,876).
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Hence (compare 34),

3& All conies which support All conies which rest upon two
two curves of the second class curves of the second order k- and

y
2 and y\ and pass through two k\ and touch two real lines are

real points are circumscribed to a inscribed to a common self-polar
common self-polar quadrangle of y

2
quadrilateral of k- and K2

^ whose
and

y-\, whose remaining two ver- remaining two sides may however
tices may however be conjugate- be conjugate-imaginary,

imaginary.

We may consider this self-polar quadrangle fully known (Art.- 244)

if, besides its two real vertices A and B, there be given any one of its

circumscribed conies and the straight line u upon which the other

two vertices lie. If two circumscribed conies are given, project all

the points of one of them both from A and from B upon the other,
and we obtain upon this latter curve two projective ranges of points
in which C and

Z&amp;gt;,
the remaining vertices of the inscribed quadrangle,

-are the self-corresponding points ; the straight line u is thus deter

mined by a known construction, even if C and D are imaginary (Art.

240). The self-polar quadrangle then is determined as well by two
of its circumscribed conies

;
all conies circumscribing the quadrangle

support both y
2 and y-r

39- Upon the basis of the two preceding sections and the

theorems of 35 we can now prove the following important theorems,
which most intimately connect the net and web of conies of the

third grade with those of the first grade.*

With a net of conies of the third With a web of conies of the third

.grade there is always connected a grade there is always connected a

range of conies, in such a manner sheaf of conies, in such a manner
that each curve of the range rests that each curve of the sheaf sup-

upon every curve of the net. ports all curves of the web.

Suppose that y- and y-^ are the two curves of the second class

which rest upon all conies of the net of the third grade and determine

it
( 34)- Choose four conies k, /, m, n, in the net so that k, /, and

;;/ pass through any chosen real point and intersect two and two in

the vertices of three different self-polar quadrangles (/), (km), (lm\
common to y- and y\ ; the fourth conic ;/ does not pass through P

* These theorems originated with Mr. H. J. S. Smith ; compare the article

by Rosanes,
&quot; Ueber Systeme von Kegelschnitten

&quot;

in Math. Annalen, vol. 6,

page 264.
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but is intersected by k in a self-polar quadrangle (k-n) common to y
2

and y
2
15
which has either two or four real vertices. Finally, denote

by S2 any one of the conies of the range, different from y
2 and y

2
lr

which rests upon k, /, m, n ( 34, 35).

The theorem on the left is then proved by showing that upon

any conic of the net of the third grade, for example, upon that one

which passes through some three real points A, B, C
( 34), there

always rests, besides y
2 and y

2
p also S2 .

40. The quadrangles (kl\ (km), (lm\ and (kri) are self-polar

with respect to S2
,
since S2 rests upon each of the four conies k, /, m,

n
j consequently, S2 rests upon the four conies which are circum

scribed to these four self-polar quadrangles and pass through any
chosen point A. Three of these new conies are circumscribed to

the self-polar quadrangle common to y
2 and y

2
15
determined by P

and A
( 38) ;

the fourth does not pass through P if, as we may

specify, A does not lie upon k
;

it therefore intersects the first three

in three different self-polar quadrangles common to y
2

, y
2
]5
and S2

.

Among the four conies which pass through the point B and are

circumscribed to these three self-polar quadrangles and to that deter

mined by P and A, common to y
2

, y
2
1?
and S2

,
there are therefore at

least two different ones supporting the curves y
2

, y\, and S2
;
these

intersect in the common self-polar quadrangle of y
2 and y

2
T
of which

A and B are two real vertices, and which is thus self-polar also with

respect to S2
; consequently, the conic passing through the point C

and circumscribed to this latter self-polar quadrangle supports the

curve S2 . Thus the theorem on the left of 39 is proved.

41. Two curves of the second Two curves of the second order

class y
2 and y

2
j lying in the same P and k\ lying in the same plane

plane thus determine not only a net determine not only a linear web of

of conies of the third grade, but also conies of the third grade, but also a

a range of conies to which these sheaf of conies to which these two

two belong, whose curves rest upon belong, upon whose curves all

all curves of the net. curves of the web rest.

The net contains an infinite number of conies which break up into

pairs of straight lines
; any straight line s of the plane together with

that straight line s which joins its poles with respect to y
2 and y-j

form one such line-pair. This degenerate conic supports all curves

of the range of conies and its rays are conjugate with respect to each

curve of the range (32).
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Hence,

The poles of a straight line s with The polars of a point S with

respect to all curves of a range of respect to all curves of a sheaf of

conies lie upon a straight line s
;

conies pass through one point S ;

these rays s and s constitute a these points S and S constitute a

line-pair (degenerate curve of the point-pair (degenerate curve of the

second order) of the associate net of second class) of the associate web
the third grade. of the third grade.

In particular, the centres of all conies of the range lie upon one

straight line.

42. If s is a common tangent of y- and y\ it coincides with /
and is thus a two-fold line of the net. It is self-conjugate with

respect to all curves of the range. Thus,

A straight line which touches any A point through which two conies

two conies of a range is a common of a sheaf pass is a common point

tangent of all curves of the range of all curves of the sheaf and a two-

and a two-fold line of the associate fold point of the associate web of

net of conies of the third grade. conies of the third grade. All the

All the conies inscribed in a quadri- conies circumscribed to a quad-
lateral form a range of conies

;
the rangle form a sheaf of conies

;
the

associate net of the third grade associate web of the third grade
contains all conies for which the contains all conies for which the

quadrilateral is self-polar ($ 35). quadrangle is self-polar.

43. If a straight line s rotates about a point A its poles with

respect to y- and y
2
j
describe two ranges of points a and a

l project-

ive to the sheaf A, and the line S joining these poles describes in

general a sheaf of rays of the second order. This contains all rays

which are conjugate to the rays through A with respect to the range
of conies

( 41) ;
it contains also the polars #, a^ ... of A with respect

to y-, y
2
15
and every other curve of the range. These polars can be

constructed by determining the poles of any two rays g and h through

A, with respect to each of the curves of the range, and joining these

pairs of poles. Since the lines joining these poles form a sheaf of

the second order, we have (compare 41)

The poles of any two straight The polars of any two points with

lines g and // with respect to the respect to the curves of a sheaf of

curves of a range of conies are conies are homologous rays of two

homologous points of two project- projective sheaves of rays of the

ive ranges of points of the first first order, and the poles ofa straight

order gl
and h-^ and the polars of a line a lie in general upon a curve of
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point A lie in general in a sheaf of the second order whose points are

the second order whose rays are conjugate to the points of a, with

conjugate to the rays through A, respect to the sheaf of conies,

with respect to the range of conies.

The centres of the curves of a sheaf of conies lie therefore

in general upon a curve of the second order. In particular, the

points of bisection of the six sides of a quadrangle and the points

of intersection of the three pairs of opposite sides lie upon a

-conic.

In conformity with these theorems we may establish the following

definitions :

Four conies of a range are said Four conies of a sheaf are said

to be harmonic if the poles of any to be harmonic if the polars of

straight line with respect to them any point with respect to them are

are harmonic points. four harmonic rays.

With these definitions it becomes possible to correlate ranges and

sheaves of conies protectively to each other and to the elementary
forms.

44. Through a point A there pass in general two rays which are

conjugate with respect to a range of conies
( 43).

Hence,

The pairs of tangents which can The pairs of points in which any
be drawn from any point A to the straight line a intersects the curves

curves of a range of conies form an of a sheaf of conies form an invo-

involution. The two double rays lution. The two double elements

of this involution are conjugate with of this involution are conjugate with

respect to the range of conies, and respect to the sheaf of conies, and in

each touches a conic of the range each of them a touches a conic of

at A. the sheaf.

45. A range of conies is determined by any four conies of a net

of the third grade upon which, it rests ( 34, 39), in particular

by four line-pairs of the net. If we choose these line-pairs so that

their four points of intersection lie upon one straight line /, it appears

immediately that / is touched by a single curve of the range ;
for a

ourve which touches / must also touch the four rays which are har

monically separated from / by the four chosen pairs of rays (32).
If two curves y

2 and y\ of the range are given, the second tangent to

this third curve, from any point A of /, can easily be drawn in accord

ance with the last section
( 44).
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From this it follows that

An arbitrary straight line of the Through an arbitrary point of the

plane is touched by only one conic plane there passes only one conic

of a range ;
but through an arbi- of a sheaf

;
but an arbitrary straight

trary point two conies of the range line can be touched by two of these

can pass ( 44). conies.

A range of conies therefore contains one, and only one, parabola

unless all its curves are parabolas ; the sheaf of conies contains

two parabolas.

46. A straight line it whose poles with respect to y
2 and y

2
l

coincide at a point U (p. no Ex. 5) forms with each ray through

/a degenerate conic of the net of the third grade and is the polar

of U with respect to all curves of the range of conies (compare 41).

Hence (p 195, Ex. 14),

The curves of a range (or of a sheaf) of conies have in general

a common self-polar triangle.

This is real and is easily constructed if any two of the conies have

four real points or tangents in common (Art. 140) ;
it has in any case

at least one real side u and one real vertex U. If the conies y
2 and

y
2
!
do not touch each other, U cannot lie upon its own polar ;

and if

the common self-polar triangle UVW Q{ y
2 and y\ is imaginary, the

points V and W of u, which are conjugate with respect to the two

conies, are imaginary. The pairs of points then in which y
2 and y

2
l

are intersected by u must in this case be real and must separate each

other (Art. 248), and each of the conies y
2 and y

2
x
must enclose a

portion of the other.

From this, and from what has previously been said, it easily

follows that

If the common self-polar triangle of a range or a sheaf of

conies is imaginary, the conies themselves intersect by pairs in

two and only two real points, and have two and only two real

common tangents. These two tangents intersect upon the real

side u of the self-polar triangle, and the two points lie in a

straight line with the real vertex of the triangle.

For, otherwise, the intersection with // of the line joining

the two points would be conjugate, with respect to the two conies,

to the point U and also to a point of the joining line, and a

second real vertex of the triangle would exist, hence the triangle

itself would be real.

47. If a straight line s rotates about a point P of the straight
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line u, its two poles with respect to y
2 and y\ describe two pro-

jective ranges of points which have the point U self-corresponding,

and, consequently, the line joining these two poles rotates about a

point P ; since the two poles of PU lie upon u, P must

also be a point of u. If now a conic k2 which supports the two-

conies y
2 and y\ is passed through P, it must also pass through P -

f

for any two conjugate rays of P and P intersect kl in a self-polar

quadrangle common to y
2 and y

2
x (29 ),

and since at least

two sides of this quadrangle, different from u
t pass through Py

the opposite sides conjugate to them (and hence also k2

)
must

pass through P . Since now u is cut in an involution by a sheaf

of conies which is circumscribed to any self-polar quadrangle of

the conies y
2 and y

2
^ it follows that

Each real side u of the common From each real vertex U of the

self-polar triangle of a range of common self-polar triangle of -a

conies intersects the curves (and sheaf of conies there can be drawn

line-pairs) of the associate net of as tangents to the curves (and point-

conies of the third grade, in pairs pairs) of the associate web of conies,

of points P, P ,
of an involution. pairs of rays of an involution. The

The double elements of this involu- double rays of this involution IT

tion u constitute a degenerate constitute a degenerate conic of

conic of the range, since they are the sheaf, since they are conjugate

conjugate with respect to all curves with respect to all curves of the

of the net. web.

48. The sheaves of rays P and P (47) are projectively

related if to each ray of the one is correlated the ray of the other

conjugate to it with respect to y
2 and y\ ; they generate a curve

of the second order which is touched in P and P by P[7a,nd P 17,

respectively. If the common self-polar triangle is real, this curve

passes through the double points of the two involutions v and w
which arise upon the other two sides of the triangle; and if the

double points of the involution u are imaginary, as when P and

P are separated by v and w, one of the involutions v, w, has two

real double points lying upon this curve of the second order, and

the other, two imaginary double points. The rays through a real

double point O of u, v, or w are paired in involution in such a

way that any two conjugate rays of the involution are polar con

jugates with respect to both conies y
2 and y

2
^ while O is the

point of intersection of two common tangents (real or imaginary)

of these conies, for instance, of the two double rays of the involution..
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If the common self-polar triangle of y~ and y
z
l

is imaginary,

two real common tangents of y- and y
2
T

intersect in a point O
of its real side // (46), from which it follows that the involution u

in this case has two real double points O.

Out of all this we have

A range of conies contains at

least one, but in general and at

most three, real point-pairs ;
these

three point-pairs, whether real or

imaginary, lie upon the three sides

of the self-polar triangle of the

range, and form the three pairs of

opposite vertices of a real or

imaginary quadrilateral to which

the range of conies is inscribed.

A sheaf of conies contains at

least one, but in general and at

most three, line-pairs ;
these three

pairs of rays intersect in the three

vertices of the self-polar triangle of

the sheaf, and form the three pairs

of opposite sides of a real or

imaginary quadrangle to which the

sheaf of conies is circumscribed.

49. Besides the different limiting varieties whose curves touch

or osculate in one point, we distinguish

Three principal classes of ranges
of conies, according as the curves

of the range have four, or two, or

no real common tangents. An

imaginary self-polar triangle occurs

only in the second of these classes

(Si 46), and the three real point-

pairs occur only in ranges of the

first class. Two conies of a range
of the first or the third class have

either four or no real points of

intersection
;
two conies of a range

of the second class always have

two real points of intersection (46).
If all curves of a range of conies

degenerate into point-pairs, as is

possible in a range of the second

class, the range is a special one
;

it

is likewise special if it contains a

two-fold point.

Accordingly, all conies which

pass through the real or imaginary
double points of an involution, or

with respect to which any one point
has a given polar, constitute a

Three principal classes of sheaves

of conies, according as the curves

of the sheaf have four, or two, or no

real points of intersection. An

imaginary self-polar triangle occurs

only in the second of these classes,

and the three real line-pairs occur

only in sheaves of the first class.

Two conies of a sheaf of the first

or the third class have either four

or no real common tangents ;
two

conies of a sheaf of the second

class always have two real common

tangents.

If all curves of a sheaf of conies

degenerate into line-pairs, the sheaf

is a special one
;

it is likewise

special if it contains a two-fold

line.

Accordingly, all conies which

touch the real or imaginary double

rays of an involution, or with

respect to which any one straight

line has a given pole, constitute a

special web of conies of the third
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special net of conies of the third grade ;
a web of conies is likewise

grade ;
a net is likewise special if special if all its conies have one

its conies all pass through one point. common tangent.

50. The circles of a plane form a special net of the third grade ;

the associate range of conies consists of the pairs of points of the

involution in which the infinitely distant straight line cuts an ortho

gonal involution-sheaf. Confocal conies form a range of the third

class
;
their two foci constitute the one real point-pair of the range,

and the associate net of conies of the third grade consists of all

equilateral hyperbolas with respect to which the two foci are con

jugate. The circles which pass through two real points form a

sheaf of conies of the second class, and the circles orthogonal to

them form a sheaf of the third class. A special web of the third

grade is formed by the conies which have a given point F for

focus
;

the conies of the associate sheaf degenerate into line-pairs

which intersect at right angles in F.

NETS AND WEBS OF CONICS OF THE SECOND GRADE.*

51. Three curves of the second Three curves of the second order

class y
2
, y

2
l5 y

2
2 ,

which lie in one which lie in one plane but do not

plane but do not belong to a range belong to a sheaf of conies, de-

of conies, determine a net of conies termine a web of conies of the

of the second grade (or briefly, a second grade (or briefly, a web of

net of conies) upon whose curves conies) whose curves rest upon

they rest (34, 35)- them -

All conies of the net which support, in addition to these three,

an arbitrarily chosen fourth curve of the second class, for example

a twofold point, form (34) a sheaf of conies.

Hence (45),

Through every point of the plane Every straight line of the plane

there passes one sheaf of conies touches one range of conies belong-

belonging to the net
; through two ing to the web

;
two lines chosen

points chosen arbitrarily there arbitrarily touch in general only

passes in general only one conic one conic of the web.

of the net.

52. Any two of the three curves y
2

, y
2
15 y

2
2 ,

determine a net

of conies of the third grade containing the net of the second grade,,

*
Compare Schroter, Die Theorie der Kegelschnitte, II. ed., pp. 500-535 (Leipzig,.

1876).
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and at the same time a range of conies whose curves rest upon
all curves of the first net, hence also upon all curves of the second

net (41). The net of the second grade therefore supports the

three ranges of conies determined by y
2

, y
2
1? y

2
2 ,

and also every

fourth range which contains any two curves of these first three

ranges. All these ranges lie in the web of the second grade which

is determined by three curves of the net chosen arbitrarily, for

they rest upon these three curves
;

it may further be shown with

out difficulty that each curve of the web belongs to an infinite

number of these ranges, and consequently rests upon every curve

of the net of the second grade.

Hence the important theorem :

&quot; With a net of conies there is always connected a web of conies

&quot;

in such a way that each curve of the web rests upon every curve

&quot;of the net, and conversely. Three curves of the net or of

&quot;the web are sufficient in general to determine both these

&quot;manifolds of conies.&quot;

The net and the web of which we shall speak in the following

sections are so connected that the web rests upon the net.

53. A net of conies contains an infinite number of line-pairs

which in general envelop a curve of the third class G3
,
and in

tersect by twos in self-polar quadrangles common to y
2

, y
2
j, y

2
2,

and the associate web of conies (28). The rays of any such

line-pair are conjugate with respect to the web, i.e., with respect to

all curves of the web (32), and the poles of one of these rays all

lie upon the other. Any two self-polar quadrangles of the web

are always inscribed to one curve of the net; for that conic which

is circumscribed to one of these quadrangles and passes through

one vertex U of the other must belong to that sheaf of the net

which passes through C7, and therefore must pass through the

remaining three vertices of the second quadrangle.

Similarly,

54. A web of conies contains an infinite number of point-

pairs ; these lie in general upon a curve of the third order C3
,

and any two of them are pairs of opposite vertices of a self-polar

quadrilateral of the associate net of conies. The points of such a

pair are conjugate with respect to the net, i.e., with respect to all

curves of the net, and the polars of one of these points all pass

through the other. Each point-pair of the web is harmonically

separated by every line-pair belonging to the net. Any two self-
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polar quadrilaterals of the net are always circumscribed to one

curve of the web. Of two conies, if one describes a sheaf the

straight lines joining their points of intersection in general envelop
a curve of the third class (52, 53); and, if one describes a range
the points of intersection of their common tangents in general

move upon a curve of the third order.

55. A net of conies, together with its associate web of conies,

is determined by three pairs of rays chosen arbitrarily which do not

form the three pairs of opposite sides of a complete quadrangle

(52). If a sheaf of conies is circumscribed to the self-polar

quadrangle of the web, in which two of these pairs of rays intersect,

and we determine the intersections of the curves of this sheaf

with the third pair of rays, we obtain all self-polar quadrangles
of the web whose vertices lie upon these three pairs of rays (53),
and at the same time all line-pairs belonging to the net and the

curve of the third class G3
enveloped by them. Since now the

third pair of rays may be any line-pair whatsoever of the net,

and since its rays intersect the sheaf of conies in two point involu

tions (Art. 221),

&quot;Any tangent to the curve of the third class G3
is intersected

&quot;

by the conies of the net in pairs of points of an involution. The
&quot;double points of this involution form a point-pair of the web and

&quot;lie upon the curve of the third order CV
For they are conjugate with respect to all curves of the net,

since they are harmonically separated by three of these curves

chosen arbitrarily.

56. In the same way, a web of conies together with its associate

net is determined by three pairs of points chosen arbitrarily which

do not form the three pairs of opposite vertices of a complete

quadrilateral, and from these all remaining point-pairs of the web,

and the curve of the third order C3
upon which they lie, can be

derived.

The pairs of tangents which can be drawn from any point

P of the curve of the third order C3 to the conies of the web

form an involution. The double rays of this involution constitute

a line-pair of the net and touch the curve of the third class G3
.

From a point P chosen arbitrarily By an arbitrary tangent to the

upon the curve C3 the point-pairs curve Lr3 the line-pairs belonging

of the web are projected by an to the net are cut in -the points of

involution sheaf. an involution.
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The points of intersection of all line-pairs of the net lie upon
&amp;lt;7

3
; on the other hand, C7

3
is enveloped by the joining lines of

point-pairs of the web (compare 6 1
).

57. The points of C3 are conjugate, two and two, with respect

to the net, and the tangents to G3 are conjugate, two and two,

with respect to the web (53, 54).

We shall now define as follows :

Three points of C3
,
whose con- Three tangents to G3

,
whose con

jugates lie upon one straight line, jugates pass through one point,

shall be called a point-triple shall be called a tangent-triple

of C3
. of G3

.

Since two point-pairs of the web always form two pairs of opposite

vertices of a self-polar quadrilateral of the net determined by them

{ 54)) we nave immediately :

The three tangents of any tan

gent-triple of c73
, together with

their conjugate tangents, form the

three pairs of opposite sides of a

self-polar quadrangle of the web ;

every self-polar quadrangle of the

web contains four tangent-triples

of G3. Any two tangents of G3

which intersect upon a given tan

gent /\ of G3 form with the con

jugate tangent to /j a tangent-triple

of G3
.

58. The two triangles formed by any two point-triples of Cz

are always circumscribed to a conic of the web
( 54) since they lie

in two self-polar quadrilaterals of the net (57).
But from this it follows (see p. 81, Ex. 10) that

The three points of any point-

triple of C3
, together with their

conjugate points, form the three

pairs of opposite vertices of a self-

polar quadrilateral of the net
; every

self-polar quadrilateral of the net

contains four point-triples of C 3
.

Any two points of C 3 whose joining

line passes through a given point

P
l
of C3 form with the conjugate

point P of PI a point-triple of C 3
.

Any two point-triples of C 3 are

inscribed in a curve of the second

order.

If then a conic is circumscribed

to a point-triple of C 3 and passes

through two other points P and Q
of the curve, it is also circumscribed

to the point-triple of C3 determined

by P and Q.

Any two tangent-triples of c7 3

are circumscribed to a curve of the

second class.

If then a conic is inscribed in a

tangent-triple of G3 and touches

two other tangents p and q of

C7 3
,

it is also inscribed in the

tangent-triple of G3 determined by

p and q.

59. The second triple in the theorem on the left of the last
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section coincides with the first if P and Q approach indefinitely
near to two points of the first triple. Hence,

To every point-triple of C 3 a To every tangent-triple of G3 a
conic can be circumscribed which conic can be inscribed which touches
touches the curve C3 in the three the curve G3 at the points of con-

points of the triple. tact of these tangents.

From the theorems of 57 we further obtain corollaries as follows :

The tangents at P and Plt two The points of contact of two

conjugate points of C3
,
intersect in conjugate tangents / and A of G3

a point Q of C3 which with P and He upon that tangent of G3 which

PI constitute a point-triple of C*. together with / and A constitute a

tangent-triple.

60. It follows from 59 and the concluding statements of 57
that

Any two points of C3 whose join- Any two tangents to G3 which

ing line passes through a given intersect upon a given tangent /j

point PI of C3
lie upon a conic of of G3 touch a conic of that range

that sheaf which is circumscribed which is inscribed in the quad-
to the quadrangle formed by an rilateral formed by an arbitrary

arbitrary point-triple of C3 and P tangent-triple of G3 and the tan-

the conjugate point of PI. gent / conjugate to /j.

In the theorem on the left, the sheaf of rays Pl
and the sheaf

of conies are so related protectively to each other that they generate

the curve C3
,
and similarly, in the theorem on the right, the range

of points ^ and the range of conies generate the curve GB
. But

it is not my intention to prove the truth of this statement at this

point.

61. The sides of the self-polar triangle common to two conies k1

and k?
l
of a net belong to and determine a self-polar quadrilateral of

any third conic /
2
2
of the net

( 24). This is then a self-polar quad
rilateral of /

2
,

/
2
15
and /

2
2 ,
and hence of the net (compare 57).

The vertices of a self-polar tri- The sides of a self-polar tri

angle common to any two conies angle common to any two conies

of the net always form a point- of the web always form a tangent
-

triple of the curve C3
. In par- triple of the curve G3

. In par

ticular, the three pairs of opposite ticular, the three pairs of opposite

sides of any self-polar quadrangle vertices of any self-polar quad-
of the web intersect in a point- rilateral of the net lie upon a

triple of C3
. tangent-triple of G3

.
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The first half of this theorem is converse to itself. It is easily

proved further that every point whose polars with respect to two

curves of the net coincide lies upon C3
,
and that every straight

line whose poles with respect to two curves of the web coincide

is tangent to the curve G3
.

62. The straight lines which The points from which tangents

intersect any three given conies of to any three given conies of a plane
a plane in three pairs of points in form three pairs of rays in involu-

involution envelop a curve of the tion lie upon a curve of the third

third class G3 (55); this curve order C3
(56); this curve passes

also touches the lines joining the through the points of intersection

points of intersection of the conies, of tangents common to the conies,

two and two ( 53). two and two ( 54).

63. Since two conjugate points Q and Ql
of the curve C3 are

harmonically separated by all pairs of conjugate tangents to the

curve G3
( 54), and since to the point Ql

of C3
,
which lies in a

straight line with two conjugate points P and P
} ,

is conjugate the

point of intersection Q of the tangents at P and P
l (57, 59),

Any tangent to C3 and the three Any point of G3 and the three

straight lines which can be drawn points in which the tangent at this

from its point of contact P to touch point intersects C3 form a harmonic

G3 form a harmonic sheaf of rays ; range of points ;

and the tangent to C3
is harmonically separated from PP^ by

two conjugate tangents to the curve G3
. If P

l
is a point of in

flexion of C3
, Q coincides with Pv and PP

l
is tangent to C3 at

PI and conversely. But in accordance with the theorem on the

right, the point in which G3
is met by the tangent PP^ coincides

with P. Hence the theorem :

&quot;The curves C3 and G3 touch each other at all common points;

&quot;the tangent at any common point P intersects the curve C3 at

&quot;one of its points of inflexion P
l
and is intersected at P by an

&quot;inflexional tangent of the curve G3
.&quot;

64. In the web of conies there is contained one range of

parabolas (51); the foci of the parabolas in this range lie upon
a circle, while their directrices intersect in a point K (compare

p. 179 Ex. 3). The net contains in general one circle (centre

at K\ one sheaf of equilateral hyperbolas, and an infinite number

of parabolas of which not more than two pass through any .one

point (45&amp;gt; 5 1
)-

65. Nets of conies may be divided into four main classes,
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between which a number of varieties of special nets form a

transition. We distinguish these main classes by the aid of the

involutions in which the net is cut by the straight lines of its

degenerate conies (55). If these involutions are in part elliptic

and in part hyperbolic, i.e., if some of the involutions have

imaginary and some real double points, their bases envelop two

different branches of the curve G3
;

for the net is intersected by
successive tangents to this curve in involutions of the same

kind since the double elements lie upon the curve C3
. The two

branches of G3 have a common tangent ^ only when the two

double points of the involution upon ^ coincide
;
but since these

double points are conjugate with respect to all conies of the

net, the conies in the assumed case all pass through one (self-

conjugate) point and the net is of a special character.

66. A non-special net of conies is either cut by both lays

of all its degenerate colics in hyperbolic involutions, or by the

rays of some of them in elliptic involutions, or, finally, by one

ray of each pair in a hyperbolic involution and by the other

in an elliptic involution. I shall call the net in the first case

hyperbolic, in the second elliptic, and in the third dual. A net is

hyperbolic if it contains a sheaf of conies of the third class
( 49),

or, in general, two conic sections which have no real points in

common
; for, a sheaf of the third class is intersected by the lines

of the plane in hyperbolic involutions. The conies of an elliptic

or dual net intersect, two and two, in at least two real points.

67. If the net is given by three of its degenerate conies, we

can select two of these as two pairs of opposite sides of a quad

rangle contained in the net. By the third pair, and in general

by any conic of the net, either one vertex or no vertex of this

quadrangle is separated from the remaining three, according as

the net is dual or hyperbolic. On the other hand, if the net

is elliptic, either two or no vertices of the quadrangle are

separated from the others by the third line-pair, and in general

by the cohics of the net; certainly two, if any pair of opposite

sides of the quadrangle intersect the net in elliptic involutions.

68. A dual net is cut by the two rays of any of its line-pairs

in involutions of different kinds, while, on the contrary, a hyper

bolic or elliptic net is cut in involutions of the same kind.

Every quadrangle contained in a dual net has one vertex which

is separated from the remaining three by the line-pairs and the
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conies of the net
;
the three sides of the quadrangle which pass

through this vertex intersect the net in elliptic involutions, the

remaining three sides in hyperbolic involutions.

In an elliptic net there is an infinite number of quadrangles,
of which two pairs of opposite sides intersect the net in elliptic

involutions, and the remaining pair in hyperbolic involutions. The
two pairs of vertices of such a quadrangle which lie upon the

latter two sides are separated by the conies of the net.

In a hyperbolic net there is no quadrangle whose vertices are

separated by any conic of the net.

vj 69. A web of conies is projected from the points P of its

point-pairs by involution sheaves, i.e. through each of these

points P there pass pairs of tangents to the conies which form

an involution. In particular, the point-pairs of the web are

projected from the points P by pairs of rays of these involutions.

If some of the involutions are elliptic and others hyperbolic, their

centres P lie upon different branches of the curve of the third

order C3
,
and only in special cases are these two branches con

nected in a double point (compare 65). If all of these involutions

are hyperbolic, we call the web hyperbolic ;
if they are in pairs

partly elliptic and partly hyperbolic, the web is said to be elliptic i

if, finally, the web is projected from one point of any point-pair,

and hence of every point-pair, by an elliptic involution and from

the other by a hyperbolic involution, it is called a dual web.

70. I shall denote the dual net of conies as a net of the

first kind. Its curve of the third class G3 consists of an odd
and an even branch. The net is cut by the tangents of the even

branch in hyperbolic involutions, and by those of the odd branch

in elliptic involutions; from a vertex of any quadrangle contained

in the net there can be drawn one or three tangents to the odd

branch, and to the even branch either two or none
( 68). Two con

jugate tangents to G3 never touch the same branch of the curve;

if they simultaneously glide along G3 their point of intersection

describes the curve C3
,
which is unicursal, i.e., it consists of

only one real branch. In every real point P of C3 two real

conjugate tangents of G3
intersect, and the web resting upon the

net is accordingly projected from the points P of its point-pairs

by hyperbolic involutions of which the pairs of real conjugate

tangents to G3 are the double rays. The dual net is therefore

the support of a hyperbolic web, whose point-pairs lie upon a
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unicursal curve of the third order C3
. The tangents to the

even branch alone of G3 connect two real conjugate points of C8
.

71. The elliptic net of conies is designated a net of the

second kind. Its curve of the third class G3 consists of an odd

and an even branch; the net is intersected by the tangents of the

even branch in elliptic involutions and by those of the odd branch

in hyperbolic involutions. Either two opposite sides only, or else

all sides of a quadrangle contained in the net, intersect the net

in hyperbolic involutions, so that through each vertex of the

quadrangle there pass either one or three bases of hyperbolic

involutions, and either two or no bases of elliptic involutions. Of

two conjugate tangents to G3
,
either both touch the odd branch

or both the even branch of the curve
;
in the first case, their point

of intersection lies upon the even branch of the curve C3
,
in the

second case, upon the odd branch of C 3
,
with which they now have

no other real points in common. The curve of the third order

C3 thus consists, for the net of the second kind, of two different

branches, and in each real point P of the curve two real conjugate

tangents of G3 intersect. It follows from this (compare 70) that

the elliptic net is the support of a hyperbolic web. The tangents

to the odd branch alone of G3 connect two real conjugate points

of C3
,
and it is evident that one of these two points lies upon the

odd branch and the other upon the even branch of C3
.

72. A hyperbolic net of conies shall be called a net of the

third or fourth kind, according as the web resting upon it is dual

or elliptic.

The net of the third kind is therefore the reciprocal of a web

which rests upon a net of the first kind. Its line-pairs envelop a

unicursal curve G3
,
while C3 consists of two different branches.

Every real tangent of G3
joins two real conjugate points of C3

which are distributed upon both branches of C 3
; through a real

point of C3
,

on the other hand, there pass two real or two

imaginary conjugate tangents of G3
, according as the point lies

upon the even or upon the odd branch of C3
. The net contains

sheaves of conies of the first, second, and third classes
;

the web

resting upon it contains ranges of conies of the first and second

classes, but none of the third class.

73. The net of the fourth kind is the reciprocal of a web

which rests upon a net of the second kind. The associate curves

C3 and G3 consist therefore of two different branches each (71).
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Every real tangent to G3
joins two real conjugate points of C3

these lie upon the odd or the even branch of C3
according as the

tangent touches the even or the odd branch of G3
. Through a

real point of C3 there pass two real or two imaginary conjugate

tangents to G3
, according as the point lies upon the odd or upon

the even branch of C3
. The net contains sheaves of conies of all

three classes; the web resting upon it contains ranges of only the

first and second classes.

74. No others than the four principal kinds of nets of conies

mentioned above can exist, since a hyperbolic net is never the

support of a hyperbolic web. In a hyperbolic net, for instance,

there are always imaginary line-pairs with real intersections P; but

from such a point P the associate web is projected by an elliptic

involution sheaf of which this imaginary line-pair forms the double

rays, and the web accordingly is not hyperbolic.

If a non-special net supports a web, then of these two manifolds

of conies, the one is always hyperbolic and the other either elliptic

or dual (70 to 73). Both or at least one of the two associate

curves G3 and C3 consists of two branches.

75. The web is a special one if it contains a two-fold point Z; such

a point becomes a double point of C3 and through it pass all the

conies of the associate net, which is likewise a special one, and

the curve G3 breaks up into the sheaf of rays Z and that curve

of the second class G~ whose tangents are conjugate to the rays
of Z with respect to any two curves of the web. The sheaf of

rays Z and the sheaf of tangents to G2 are projectively related

and generate the curve C3
( 56).

The web and the net are again special if the net contains a

two-fold line z\ this line is a double tangent to G 3 and touches

all the conies of the web
;

the curve C3
,
in this case, degenerates

into this twofold line and a curve of the second order.

76. The web is also special if it contains all pairs of points
of an involution u. In this case the conies of the net all pass

through the two double points of u, the curve G3
degenerates into

these two double points and the pole U of u with respect to any
curve y- of the web, and C3

degenerates into the straight line //

and a curve of the second order (compare p. 162, Ex. 14). The

straight line u is conjugate, with respect to the web, to all rays of

the sheaf
/&quot;,

and through U there passes a common chord of every

pair of conies of the net. If, in particular, the involution u is the
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section of an orthogonal involution sheaf made by the infinitely

distant line, then the net consists wholly of circles (compare 50).

77. The circles which support a given curve of the second class

y
2

, i.e., which can be circumscribed to its self-polar triangles and

quadrangles, form a special net of conies. The chords which are

common to these circles two and two intersect in the centre U of y
2

;.

they are parallel if y
2

is a parabola. If y
2

is an ellipse or hyperbola,

and hence the product of the segments of the secants drawn to the

circles from the centre U, constant, the circles have equal powers
at U and there exists a circle (imaginary, however, for obtuse-

angled hyperbolas) concentric with y
2 which intersects all circles of

the net orthogonally. If on the other hand y
2

is a parabola, the

centres of all circles of the net lie upon one straight line. Each

point of this straight line, or of the orthogonal circle concentric with

y
2

, may be considered an indefinitely small circle of the net, and

from this we conclude that the tangents from any one of these

points to y
2 are at right angles to each other.

The theorems of this section were discovered by Faure.

78. From the reciprocal to 76 we have, among other things,:

the following :

The conies which have a given point F for focus and rest upon
a curve of the second order K1 form a special web. The two 1

real tangents which any two of them have in common always

intersect upon the polar f of F with respect to /

2
. The curve G3

breaks up into F and a curve of the second class
;
C \ on the

other hand, breaks up into / and the two imaginary double rays

of the orthogonal involution sheaf F. Two opposite sides of each

self-polar quadrangle of the web intersect at right angles in F-r
the points of intersection of the remaining two pairs of opposite

sides lie upon f. In general, f is the polar of F with respect to

all conies of the net upon which the web rests.

79. The conies which can be circumscribed to a triangle ABC
form a highly specialized net

;
of the curves of the associate web,

ABC is a common self-polar triangle ;
the curves C3 and G3

reduce,

respectively, to the three sides and the three vertices of the triangle.

The conies of which ABC is a self-polar triangle form not only a

highly specialized web, but a highly specialized net as well; upon this

net rests the web which can be inscribed in the triangle.
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on two non-conjugate lines form pro
jective ranges, 105.

on one straight line form an involution,
I 52 -

Conjugate lines, harmonically separated
by the tangents through their inter

section, 105.

Conjugate lines, through two non-conju
gate points form projective sheaves,
1 06.

two, intersect the curve in harmonic

points, 108.

through one point form an involution,

167.

Conjugate diameters, defined, 114.

diagonals of a circumscribed parallelo

gram are, 114.

two, form with the infinitely distant lint

a self-polar triangle, 114.

sides of inscribed parallelogram arc

parallel to, 114.

construction for, 115.

of a hyperbola are harmonically separ
ated by the asymptotes, 117.

form an involution, 152.

Construction for the fourth element of a
harmonic form, 4, 43.

for the points harmonically separated
by each of two pairs of points,

Si- 54-

for pairs of corresponding elements in

two projective forms when three are

given, 62, 73.

of a triangle self-polar with respect to a

conic, 103.

of conjugate diameters, 114.

of the axes of an ellipse or a hyperbola,
117, 189.

for the double elements of an involution,

5L 153.

of the sixth element of an involution,

153. J S9-

for the foci of an ellipse or a hyperbola,
170.

for the focus of a parabola, 178.

for the self-corresponding elements of

two superposed projective forms, 182.

of a polygon whose sides pass through
given points, and whose vertices lie

upon given lines, 186.

for the pair of corresponding elements
common to two superposed involu

tions, 1 88.

of a conic, given three real and two

imaginary elements, 194.

Correlation, defined, 21.

methods of, 21, 22, 23, no, in.

Cremona, 68.

Cross-ratio defined, 65.

Curve of the second order, defined, 61.

how constructed, 73.

given three real and two imaginary
elements, 194.

passes through the centres of the gener
ating sheaves, 71,
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Curve of the second order, projected from

any two of its points by projective
sheaves of rays, 78.

inside and outside of, defined, 100.

when perspective to a regulus or cone,

138.

generated by a sheaf of planes of the

first order and a sheaf of rays of the

second order, 142.

generated &quot;by projective sheaves of rays
of the first and second orders, 143.

generated by a sheaf of planes and a

regulus of the second order, 146.

Curves of the second order, when two
coincide, 79.

are sections of a cone of the second

order, 92.

two, how related projectively, 136,

137.

two projective, have at most three self-

corresponding points or tangents,
137-

identical with the conic sections, 139.

properties of two projective, super
posed, 144.

when two, in different planes, lie upon
the same cone, 145.

two, projective, generate a regulus or

cone, 145.

two, projective, generate other plane
curves, 147.

involution properties of two, circum-
scril&amp;gt;ed or inscribed to a quadrilateral,
1 60.

Curve of the third class, related to self-

polar quadrangles of three conies,

217.

envelope of the line-pairs of a net of

conies, 231.

Curve of the third order, gauche, how
generated, 141.

plane, how generated, 141.

related to self-polar quadrilaterals of
j

three conies, 217.

locus of point-pairs of a web of conies,
|

231.

Curves of the third order and class, re-
;

ciprocally correlated, 232.

tangent in inflexional elements, 235.

doubly degenerate, 240.

Cyclic planes of a cone of the second
order, 196, 201.

two real, 203.

intersect in a principal axis, 203.

reciprocal to focal axes, 204.

Cyclide, Dupin s, 211, 212.

Cylinder of the second order defined,

94-

De la Hire, 97.

Depiction, conformal, a consequence of

inversion, 210.

Desargues, 68, 97, 160.

Desargues theorem, 160.

Diagonals of a complete quadrangle,
each cut harmonically by the other

two, 43.

of a circumscribed parallelogram are

conjugate diameters, 114.

Diagonal triangle of the complete quad
rangle determined by four points of

a conic is identical with the diagonal

triangle of the complete quadrilateral
formed by the tangents at these

points, 88.

Diameter of a conic defined, 112.

Diameters, of a parabola are parallel,

H3v
conjugate, 114.

Directly projective forms defined, 56.

equal sheaves of rays, generate a circle,

&quot;5-

Directrix of a curve of the second order,
defined as the polar of a focus, 171.

relation of the curve to a focus and,

173-

Directrix of a parabola, locus of the inter

sections of orthogonal tangents, 171.

passes through the orthocentre of a

tangent triangle, 179.

Double elements of an involution, 153.

harmonically separate pairs of corre

sponding elements, 154, 166.

construction for, 51, 153.

Duality, the principle of, 25-33.

Elementary forms, defined, 134.

when in perspective position, 135, 145.

projectively related, 135, 136.

when superposed have at most two self-

corresponding elements, 136.

Ellipse, defined, 92.

equation of, referred to a pair of con

jugate diameters as axes, 122.

Envelope of a system of spheres, 211.

Equation of an ellipse referred to a pair
of conjugate diameters, 122.

of a hyperbola referred to its asymptotes,
120.

of a hyperbola referred to a pair of con

jugate diameters, 122.

of a parabola, 123.

Equilateral hyperbola, defined, 118.

projected from the extremities of a

diameter by equal sheaves, 118.

Euclid, 18.
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Faure, 240.

Focal axes of a. cone defined, 198.

two real, 199.

Focal axes of a cone, properties of, 201.

reciprocal to cyclic planes, 204.

Focal radii of an ellipse or hyperbola,
their sum or difference constant,

174-

Foci of a curve of the second order,
defined as points in which conjugate
lines intersect orthogonally, 168.

must lie inside the curve, 168.

are the double elements of an involution

formed upon an axis by pairs of con

jugate normal rays, 169.

two for an ellipse or hyperbola, 170.

of a parabola, one at infinity, 170.

the centre the only focus of a circle,

168.

constructions for, 170, 176, 179.

of a hyperbola, lie upon a circle with
the intersections of the asymptotes
and a tangent, 178.

Focus, property of a, with respect to two

tangents, 172.

a tangent and directrix, 172.

three tangents, 176.

inversion of, with respect to a variable

tangent, 175.

Focus of a parabola, construction for,

176, 178.

lies on the circle circumscribing a tan

gent triangle, 178.

Geometry of Position, defined, i, 16.

Geometric transformation of the second

order, 107, in.

Gergonne, 25.

Hachette s cone, 206.

Harmonic forms defined, 37, 39, 78, 91,

129, 226.

points separated, two and two, 39.

points permutable, two and two, 41.

properties of complete quadrangles and

quadrilaterals, 43.

forms, metric relations of, 45.

Homographic forms defined, 53.

Homologous elements, 21.

Hyperbola, defined, 92.

centre lies outside of, 113.

has one pair of axes, 117.

is cut by only one of two conjugate
diameters, 117.

Hyperbola, secant of a, segments between
the asymptotes and curve are equal,
118.

segment of a tangent intercepted be

tween the asymptotes, bisected at the

point of contact, 118.

construction for a, 118.

equilateral, 118.

equation of, referred to its asymptotes,
120.

referred to a pair of conjugate dia

meters, 122.

Hyperbolas, equilateral, in a net of conies,

235.

Hyperbolic paraboloid, 131.

Hyperboloid of one sheet, 131.

Ideal points, 19.

Imaginary elements, 181, 184.

lines, two kinds, 186.

elements in the construction of a conic,

190.

focal axes of a cone, 199.

Infinitely distant points of a plane, all in

one straight line, 20.

of space, all in one plane, 20.

Infinitely distant line, direction of, 21.

tangent to a parabola, 92.

Inversion, of a focus, with respect to a

variable tangent, 175.

with respect to a circle, 207.

transforms circles into circles, 208.

does not alter angles, 208.

with respect to a sphere, 209.

with respect to an imaginary circle, 209.

Involution, defined, 149.

superposed projective forms are in,

when two elements correspond doubly ,

15. 157.

of two superposed conies, 151, 152.

axis and centre of, 151, 165.

determined by two pairs of elements,

152.

of two kinds, elliptic and hyperbolic,

153-

double elements of, 153.

construction for the double elements,

153. 181.

for the sixth element, 153, 159.

formed by points of a line or lines

through a point, conjugate with re

spect to a conic, 152, 167.

properties of a quadrangle and a quadri
lateral, 158.

of a conic and an inscribed or a circum

scribed quadrilateral, 159, 160, 226.
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Involution, double elements harmonically

separated by all pairs of conjugates,

154, 156, 1 66.

metric properties, 164.

product of segments constant, 166.

double elements, when real, 166.

circles described upon segments inter^

sect in two points, 167.

properties of a right-angled triangle
inscribed in a conic, 167.

pair of conjugates common to two,
188.

in a sheaf of rays determined by a range
of conies, 226.

in a range of points determined by a

sheaf of conies, 226.

Lines conjugate to one side of an inscribed

triangle cut the other two sides in

conjugate points, 107.

Lines of curvature on cyclides, 211.

Locus of the middle points of parallel

chords, 112.

of the middle points of chords which
meet in a point, 107.

of the point of intersection of ortho

gonal tangents to a parabola, 171.

of the inverse of a focus with respect to

a tangent, 175.

of the foot of the perpendicular from
the focus on a tangent, 175.

of the poles of a straight line with re

spect to a range of conies, 225.

of the poles of a straight line with re

spect to a sheaf of conies, 225.

Maclaurin, 64.

Major and minor axes, 170.

Middle points, of concurrent chords lie on
a curve of the second order, 107.

of parallel chords lie on a straight line,

112.

Moebius, 208.

Net of eonics, defined, 220, 221.

of the third grade, has an associate

range, 223.

of the second grade, has an associate

web, 231.

of four kinds, 237, 238.

Newton s organic method of describing a

conic, 80.

Opposite elements of a simple -side de

fined. 31.

Oppositely projective forms, 56.

Oppositely projective sheaves of rays

generate a hyperl&amp;gt;ola, 93.

Orthocentres of triangles circumscribed
to a parabola lie on the directrix,

179-

Pair of points harmonically separating
each of two other pairs, 44, 51.

Pappus, 66, 68, 96, 165, 173, 206.

Pappus cone, 206.

Parabola, touched by the infinitely distant

line, 92.

two fixed tangents of, cut proportion

ally by remaining tangents, 94,

124.

diameters of, are parallel, 113.

property of chords and their poles, 118.

equation of, 123.

property of tangent at the vertex, 175.

constructions for, 93, 178.

property of the focus and directrix,

173-

Parabolas, two pass through four given

points, 161.

of a plane, form a web, 222.

only one in a range of conies, 227.

two occur in a sheaf of conies, 227.

range of, contained in a web of conies,

235.

Parallel lines defined, 18.

Parallelogram inscribed or circumscribed
to a conic, 114.

Pascal s theorem, 6, 77.

deduced, 76.

utilized to draw tangents to a curve o
the second order, 83.

reciprocal to Brianchon s theorem, oo.

for the cone of the second order, 91.

Paulus, 53.

Pentagon inscribed or circumscribed to

a curve of the second order, 83.

Perpendicular from a focus on a tangent,
the locus of their intersection is a

circle, 175.

Perspective position, defined, 52.

primitive forms in, also projective, 53.

condition that projective primitive forms

may be in, 58, 59, 60.

of elementary forms, 135, 145.

Planes of symmetry of a cone, 196.

Plucker, 8.

Point of contact in a ray of a sheaf of the

second order, how constructed, 72,

75- 83-

the intersection of two consecutive rays,
82.
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Points, infinitely distant, 18, 26.

ideal and actual, defined, 19.

two, separated by two others, 19.

four harmonic, 37.

conjugate to one vertex of a circum
scribed triangle are projected from
the other two vertices by conjugate
rays, 107.

Points of contact in a sheaf of rays of the
second order form a curve of the
second order, 89.

Polar of any point on a line passes
through the pole of the line, 102.

reciprocal of one conic witb respect to

another, 104.

Pole of any line through a point lies on
the polar of the point, 102.

Pole and polar relation defined, 99.

projectively related, 104.

with respect to a cone of the second
order, 109.

Poles of a straight line with respect to the
conies of a sheaf or a range, 225.

Polygon inscribed to one and circum
scribed to another given polygon,
186.

Poncelet, 25, 64.

Primitive forms, the six, 12, 13, 15.

in perspective position, 52.

projectively related, 53.

Principle of reciprocity or duality, 25-33.

Projective relation defined, 53, 154.

Projective forms, continuous succession
of elements in one corresponds to a
continuous succession in the other,

54.

self- corresponding elements in two
superposed, 55, 57.

two superposed, identical if three self-

corresponding elements exist, 57.

in perspective when their common
element is self-corresponding, 58, 59.

three elements in each may be chosen
at random, 61.

the first and last of a series of perspec
tive forms, 63.

metric relations of, 64.

are equi-anharmonic, 66.

Projective ranges of points, two, generate
a sheaf of rays of the second order,

60, 69.

generate a regulus of the second order,
126.

Projective sheaves of rays, two, generate
a curve of the second order, 60, 69.

generate a sheaf of planes of the second
order, 69.

Projective sheaves of planes, two, generate
a cone of the second order, 69.

generate a regulus of the second order
128.

Projectivity of a form with those derived
from it by permutation, 155.

Quadrangle, complete, defined, 32.

two, in perspective, 35, 37.

harmonic properties of, 43.

inscribed in a conic, 84.

sides cut by a straight line in an in

volution, 158.

self-polar with respect to a conic,
2I 5-

an infinite number self-polar with re

spect to two conies, 216.

Quadrilateral, complete, defined, 32.

harmonic properties of, 43.

circumscribed to a conic.. 8j.

vertices projected from a point by an
involution, 158.

self-polar with respect to a conic, 215.

Range of points, defined, n, 60.

two projective, three elements in each

may be chosen at random, 62.

and sheaf of rays, projectively related,

properties of, 139.

four projectively related, properties of,

144.

two in involution, 150.

Reciprocal elements in space duality,
25.

in pkine duality, 29.

Reciprocal primitive forms, 28, 29.

Reciprocal radii, principle of, 207.

Regulus of the second order generated bv
two projective ranges of points upon
gauche lines, 126.

lies on a ruled surface of the second
order, 127, 129.

has a director regulus on the same
surface, 127.

generated by three gauche lines, 128.

generated by two projective sheaves of

planes, 128.

intersected by any two of its directors
in projective ranges of points, 128.

projected from any two of its directors

by projective sheaves of planes,
128.

intersected by an arbitrary plane in a
conic, 130.

projected from an arbitrary point by a

sheaf of planes of the second order,

130.
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Regulus of the second order generated
by a conic or a sheaf of planes of

the second order and two straight
lines, 142.

generated by a range of points of the

first order and a conic, projectively
related, 142.

generated by sheaves of planes of the

first and second orders, projectively
related, 142.

generated by two conies or two sheaves

of planes of the second order, pro
jectively related, 145.

Ruled surface of the second order covered

by two reguli of the second order,

128.

tangent plane defined, 129.

tangent plane contains a ray of each

regulus, 129.

is of the second class, 130.

Ruled surface of the third order, 212.

Schroeter s equilateral cone, 206.

orthogonal cone, 206.

Secant of a hyperbola, segments between
the curve and its asymptotes are

equal, 118.

Self-corresponding elements defined, 29.

construction for, in superposed projec-
tive forms, 182.

Self-polar triangles, defined, 103.

how situated with respect to the curve,

105.

vertices of two, lie on a conic, 155.

sides of two, touch a conic, 155.

Sheaf of rays of the first order, defined,

ii, 60.

and a conic, projectively related, pro
perties of, 139.

Sheaf of rays of the second order, defined,

60, 61.

how constructed, 73.

to find the point of contact in a ray of a,

75- 83-

cut by any two of its rays in projective

ranges, 78.

points of contact form a curve of the

second order, 89.

generated by a range of points of the
first order and a conic projectively
related, 143.

generated by sheaves of planes of the
second order projectively related,

145-

Sheaves of rays of the second order, when
two coincide, 79.

two, projectively related, properties of,

144, 147.

Sheaves of rays of the secon order, two
in involution, 151.

Sheaf of rays of the third order, 141.

Sheaf of planes of the first order, defined,
12.

four, projectively related, properties of,

144.

Sheaf of planes of the second order,

generated by two consecutive sheaves
of rays, 69.

generated by a range of points of the

first order and a cone of the second
order projectively related, 142.

generated by a conic and a reguius of

the second order, 146.

two, projectively related, generate a

regulus or sheaf of rays of the second

order, 145.

Sheaf of planes of the third order, 141.

Similar projective ranges of points, de
fined, 93.

generate tangents to a parabola, 93.

Spheres, envelope of a system of, 211.

three transformed into three others with
centres collinear, 211.

Sphero-conics, 205.

Steiner, 66, 116.

Stereographic projection, a case of in

version, 210.

Surface, ruled, of the second order, 127.

of the third order, 212.

how generated, 213.

varieties of, 214.

Symmetry, planes of, for a cone, 196.

contain focal axes, 199.

bisect angle between real cyclic planes,
203.

Tangents to a curve of the second order,

defined, 71, 82.

how constructed, 75, 83.

form of a sheaf of rays of the second

order, 89.

at harmonic points are harmonic, 90.

form equal angles with the focal radii,

171.

Tangents to a parabola, generated by
similar projective ranges, 93.

two, cut proportionally by the remain

ing tangents, 94.

from a .point of the directrix are at

right angles, 171.

Tangent to a hyperbola, intercepted by
asymptotes, bisected at the point of

contact, 1 1 8.

Tangent planes to a ruled surface of the
second order defined, 129.
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Von Staudt, 14, 17, 53, 134, 184.

Tetrahedra, two, inscribed and circum-
I Triples of tangents to a curve of the third

scribed to each other, 159. class, 233.

Triangle, inscribed or circumscribed to a
conic, properties of, 84, 107.

self-polar to a range or sheaf of conies,

227.

Triangles, two, in perspective, 5, 35.

two, self-polar with respect to the same
conic, 155.

Triples of points on a curve of the third

order, 233.

Web of conies, defined, 220, 221.

of the third grade, has an associate
sheaf, 223.

of the second grade, has an associate
net, 231.
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