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TO THE READER 

I. This series of volumes, a list of which is given on pages vn and VIU, takes 
up mathematics at the beginning, and gives complete proofs. In prin­
ciple, it requires no particular knowledge of mathematics on the reader's 
part, but only a certain familiarity with mathematical reasoning and a 
certain capacity for abstract thought. Nevertheless, it is directed especially 
to those who have a good knowledge of at least the content of the first 
year or two of a university mathematics course. 

2. The method of exposition we have chosen is axiomatic and abstract, 
and normally proceeds from the general to the particular. This choice 
has been dictated by the main purpose of the treatise, which is to provide 
a solid foundation for the whole body of modem mathematics. For this 
it is indispensable to become familiar with a rather large number of very 
general ideas and principles. Moreover, the demands of proof impose 
a rigorously fixed order on the subject matter. It follows that the utility 
of certain considerations will not be immediately apparent to the reader 
unless he has already a fairly extended knowledge of mathematics; other­
wise he must have the patience to suspend judgment until the occasion 
arises. 

3. In order to mitigate this disadvantage we have frequendy inserted 
examples in the text which refer to facts the reader may already know 
but which have not yet been discussed in the series. Such examples 
are always placed between two asterisks: * ... *. Most readers will 
undoubtedly find that these examples will help them to understand the 
text, and will prefer not to leave them out, even at a first reading. Their 
omission would of course have no disadvantage, from a purely logical 
point of view. 

4. This series is divided into volumes (here called " Books "). The first 
six Books are numbered and, in general, every statement in the text 
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TO THE READER 

assumes as known only those results which have already been discussed 
in the preceding volumes. This rule holds good within each Book, but 
for convenience of exposition these Books are no longer arranged in a 
consecutive order. At the beginning of each of these Books (or of these 
chapters), the reader will find a precise indication of its logical relation­
ship to the other Books and he will thus be able to satisfy himself of the 
absence of any vicious circle. 

5. The logical framework of each chapter consists of the definitions, the 
axioms, and the theorems of the chapter. These are the parts that have 
mainly to be borne in mind for subsequent use. Less important results 
and those which can easily be deduced from the theorems are labelled as 
"propositions", "lemmas", "corollaries", "remarks", etc. Those which 
may be omitted at a first reading are printed in small type. A commentary 
on a particularly important theorem appears occasionally under the name 
of "scholium". 

To avoid tedious repetitions it is sometimes convenient to introduce 
notations or abbreviations which are in force only within a certain chapter 
or a certain section of a chapter (for example, in a chapter which is con­
cerned only with commutative rings, the word "ring" would always 
signify "commutative ring"). Such conventions are always explicidy 
mentioned, generally at the beginning of the chapter in which they occur. 

6. Some passages in the text are designed to forewarn the reader against 
serious errors. These passages are signposted in the margin with the sign 

2 ("dangerous bend"). 

7. The Exercises are designed both to enable the reader to satisfY himself 
that he has digested the text and to bring to his notice results which have 
no place in the text but which are nonetheless of interest. The most 
difficult exercises bear the sign ~. 

8. In general, we have adhered to the commonly accepted terminology, 
except where there appeared to be good reasons for deviating from it. 

9. We have made a particular effort always to use rigorously correct 
language, without sacrificing simplicity. As far as possible we have 
drawn attention in the text to abuses of language, without which any mathe­
matical text runs the risk of pedantry, not to say unreadability. 

10. Since in principle the text consists of the dogmatic exposition of a 
theory, it contains in general no references to the literature. Biblio­
graphical references are gathered together in Historical Notes, usually 
at the end of each chapter. These notes also contain indications, where 
appropriate, of the unsolved problems of the theory. 
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TO THE READER 

The bibliography which follows each historical note contains in general 
only those books and original memoirs which have been of the greatest 
importance in the evolution of the theory under discussion. It makes 
no sort of pretence to completeness; in particular, references which serve 
only to determine questions of priority are almost always omitted. 

As to the exercices, we have not thought it worthwhile in general to 
indicate their origins, since they have been taken from many different 
sources (original papers, textbooks, collections of exercises). 

11. References to a part of this series are given as follows : 
a) If reference is made to theorems, axioms, or definitions presented 
in the same section, they are quoted by their number. 
b) If they occur in another section oj the same chapter, this section is also quoted 
in the reference. 
c) If they occur in another chapter in the same Book, the chapter and section 
are quoted. 
d) If they occur in another Book, this Book is first quoted by its tide. 

The Summaries of Results are quoted by the letter R : thus Set Theory, 
R signifies "Summary oj Results oj the Theory oj Sets". 
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INTRODUCTION 

Ever since the time of the Greeks, mathematics has involved proof; and 
it is even doubted by some whether proof, in the precise and rigorous 
sense which the Greeks gave to this word, is to be found outside mathe­
matics. We may fairly say that this sense has not changed, because what 
constituted a proof for Euclid is still a proof for us; and in times when the 
concept has been in danger of oblivion, and consequently mathematics 
itself has been threatened, it is to the Greeks that men have turned again 
for modds of proof. But this venerable bequest has been enlarged during 
the past hundred years by important acquisitions. 

By analysis of the mechanism of proofS in suitably chosen mathematical 
texts, it has been possible to discern the structure underlying both voca­
bulary and syntax. This analysis has led to the conclusion that a suffi­
ciently explicit mathematical text could be expressed in a conventional 
language containing only a small number of fixed "words", assembled 
according to a syntax consisting of a small number of unbreakable rules : 
such a text is said to be formalized. The description of a game of chess, 
in the usual notation, and a table oflogarithms, are examples offormalized 
texts. The formulae of ordinary algebraic calculation would be another 
example, if the rules governing the use of brackets were to be completdy 
codified and strictly adhered to; in practice, some of these rules are never 
made explicit, and certain derogations of them are allowed. 

The verification of a formalized text is a more or less mechanical process, 
the only possible causes of error being the length or intricacy of the text : 
this is why a mathematician will normally accept with confidence the result 
of an algebraic calculation performed by another, provided he knows 
that the calculation is not unduly long and has been done with care. 
On the other hand, in an unformalized text, one is exposed to the dangers 
of faulty reasoning arising from, for example, incorrect use of intuition 
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INTRODUCTION 

or argument by analogy. In practice, the mathematician who wishes 
to satisfY himself of the perfect correctness or "rigour" of a proof or a 
theory hardly ever has recourse to one or another of the complete formali­
zations available nowadays, nor even usually to the incomplete and partial 
formalizations provided by algebraic and other calculi. In general he 
is content to bring the exposition to a point where his experience and 
mathematical flair tell him that translation into formal language would 
be no more than an exercise of patience (though doubdess a very tedious 
one). If, as happens again and again, doubts arise as to the correctness of 
the text under consideration, they concern ultimately the possibility of 
translating it unambiguously into such a formalized language : either 
because the same word has been used in different senses according to the 
context, or because the rules of syntax have been violated by the unconscious 
use of modes of argument which they do not specifically authorize, or again 
because a material error has been committed. Apart from this last possi­
bility, the process of rectification, sooner or later, invariably consists in 
the construction of texts which come closer and closer to a formalized text 
until, in the general opinion of mathematicians, it would be superfluous 
to go any further in this direction. In other words, the correctness of a 
mathematical text is verified by comparing it, more or less explicidy, 
with the rules of a formalized language. 

The axiomatic method is, stricdy speaking, nothing but this art of drawing 
up texts whose formalization is straightforward in principle. As such it 
is not a new invention; but its systematic use as an instrument of discovery 
is one of the original features of contemporary mathematics. As far as 
reading or writing a formalized text is concerned, it matters litde whether 
this or that meaning is attached to the words, or signs in the text, or indeed 
whether any meaning at all is attached to them; the only important point 
is the correct observance of the rules of syntax. Thus, as everyone knows, 
the same algebraic calculation can be used to solve problems about pounds 
weight or pounds sterling, about parabolas or motion under gravity. The 
same advantage attaches to every text written according to the axiomatic 
method, and for the same reasons: once the theorems of general topology 
have been established, they may be applied at will to ordinary space, 
Hilbert space, and many others. This faculty of being able to give differ­
ent meanings to the words or prime concepts of a theory is indeed an 
important source of enrichment of the mathematician's intuition, which is 
not necessarily spatial or sensory, as is sometimes believed, but is far more 
a certain feeling for the behaviour of mathematical objects, aided often 
by images from very varied sources, but founded above all on everyday 
experience. Thus one is often led to study with profit those parts of a 
theory which traditionally have been neglected in this theory but studied 
systematically in a general axiomatic context, of which the given theory 
is a special case (for example, properties which have their historical origin 
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in another specialization of the general theory). Moreover - and this is 
what concerns us most particularly in this series of volumes - the axio­
matic method allows us, when we are concerned with complex mathematical 
objects, to separate their properties and regroup them around a small 
number of concepts : that is to say, using a word which will receive a precise 
definition later, to classifY them according to the structures to which they 
belong. (Of course, the same structure can arise in connection with 
various different mathematical objects.) For example, some of the properties 
of the sphere are topological, others are algebraic, others again can be 
considered as belonging to differential geometry or the theory of Lie 
groups. Although this principle may occasionally become somewhat 
artificial when applied to closely interwoven structures, it is the basis of 
the division into Books of the subject-matter of this series. 

~ Just as the art of speaking a language correcdy precedes the invention 
of grammar, so the axiomatic method had been practised long before the 
invention of formalized languages; but its conscious practice can rest 
only on the knowledge of the general principles governing such languages 
and their relationship with current mathematical texts. In this Book 
our first object is to describe such a language, together with an exposition of 
general principles which could be applied to many other similar languages; 
however, one of these languages will always be sufficient for our purposes. 
For whereas in the past it was thought that every branch of mathematics 
depended on its own particular intuitions which provided its concepts 
and prime truths, nowadays it is known to be possible, logically speaking, 
to derive practically the whole of known mathematics from a single source, 
the Theory of Sets. Thus it is sufficient for our purposes to describe the 
principles of a single formalized language, to indicate how the Theory 
of Sets could be written in this language, and then to show how the various 
branches of mathematics, to the extent that we are concerned with them 
in this series, fit into this framework. By so doing we do not claim to legis­
late for all time. It may happen at some future date that mathematicians 
will agree to use modes of reasoning which cannot be formalized in the 
language described here: it would then be necessary, if not to change the 
language completely, at least to enlarge its rules of syntax. But that is 
for the future to decide. 

It goes without saying that the description of the formalized language 
is made in ordinary language, just as the rules of chess are. We do not 
propose to enter into a discussion of the psychological and metaphysical 
problems which underlie the use of ordinary language in such circum­
stances (for example, the possibility of recognizing that a letter of the 
alphabet is "the same" in two different places on the page, etc.). More­
over, it is scarcely possible to undertake such a description without making 
use of numeration. It is objected by some that the use of numbers in such 
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a context is suspect, even tantamount to petitio principii. It is clear, however, 
that in fact we are using numbers merely as marks (and that we could 
for that matter replace them by other signs, such as colours or letters), 
and that we are not making use of any mathematical reasoning when we 
number the signs which occur in an explicitly written formula. We 
shall not enter into the question of teaching the principles of a formalized 
language to beings whose intellectual development has not reached the 
stage of being able to read, write, and count. 

If formalized mathematics were as simple as the game of chess, then once 
our chosen formalized language had been described there would remain 
only the task of writing out our proofS in this language, just as the author 
of a chess manual writes down in his notation the games he proposes to 
teach, accompanied by commentaries as necessary. But the matter is 
far from being as simple as that, and no great experience is necessary to 
perceive that such a project is absolutely unrealizable : the tiniest proof 
at the beginning of the Theory of Sets would already require several 
hundreds of signs for its complete formalization. Hence, from Book I 
of this series onwards, it is imperative to condense the fonnaIized text by 
the introduction of a fairly large number of new words (called abbreviating 
symbols) and additional rules of syntax (called deductive criteria). By doing 
this we obtain languages which are much more manageable than the 
formalized language in its strict sense. Any mathematician will agree 
that these condensed languages can be considered as merely shorthand 
transcriptions of the original formalized language. But we no longer 
have the certainty that the passage from one of these languages to another 
can be made in a purely mechanical fashion : for to achieve this certainty 
it would be necessary to complicate the rules of syntax which govern the 
use of the new rules to such a point that their usefulness became illusory; 
just as in algebraic calculation and in almost all forms of notation commonly 
used by mathematicians, a workable instrument is preferable to one which 
is theoretically more perfect but in practice far more cumbersome. 

As the reader will see, the introduction of this condensed language is 
accompanied by "arguments" of a particular type, which belong to 
what is called metamathematics. This discipline ignores entirely any 
meaning which may originally have been attributed to the words or phrases 
of formalized mathematical texts, and considers these texts as particularly 
simple objects, namely as assemblies of previously given objects in which 
only the assigned order is of importance. Moreover, just as for example 
a chemistry textbook announces in advance the result of an experiment 
performed under given conditions, so metamathematical "arguments" 
usually assert that when a succession of operations has been performed on a 
text of a given type, then the final text will be of another given type. In 
the simplest cases, the assertions are indeed the purest truisms (comparable, 
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for example. to the following: "if a bag of counters contains black counters 
and white counters, and if we replace all the black counters by white 
ones, then there will be only white counters in the bag"). But very 
soon we meet examples where the argument takes a typically mathe­
matical turn, in which the use of arbitrary integers and mathematical 
induction predominates. Although we have countered the objection made 
earlier against the use of numeration in the description of a fonnalized 
language, it is no longer possible at this point to deny the danger of begging 
the question, because right from the beginning it seems that we are making 
use of all the resources of arithmetic, of which (among other things) we 
propose later to lay down the foundations. To this objection the reply 
is sometimes made that arguments of this type merely describe operations 
which can be actually carried out and verified, and for this reason carry 
conviction of another order from that which can be accorded to mathe­
matics proper. But it seems simpler to say that we could avoid all these 
metamathematical arguments if the formalized text were explicitly written 
out: instead of using the "deductive criteria", we should recommence 
each time the sequences of operations which the purpose of the criteria 
is to abbreviate by predicting their result. But formalized mathematics 
cannot in practice be written down in full, and therefore we must have 
confidence in what might be called the common sense of the mathemati­
cian: a confidence analogous to that accorded by a calculator or an 
engineer to a formula or a numerical table without any awareness of the 
existence of Peano's axioms, and which ultimately is based on the knowledge 
that it has never been contradicted by facts. 

We shall therefore very quickly abandon formalized mathematics, but 
not before we have carefully traced the path which leads back to it. The 
first "abuses of language" thus introduced will allow us to write the rest 
of this series (and in particular the Summary of Results of Book I) in 
the same way as all mathematical texts are written in practice, that is to 
say partly in ordinary language and partly in formulae which constitute 
partial, particular, and incomplete formalizations, the best-known examples 
of which are the formulae of algebraic calculation. Sometimes we shall 
use ordinary language more loosely, by voluntary abuses of language, 
by the pure and simple omission of passages which the reader can safely 
be assumed to be able to restore easily for himself, and by indications which 
cannot be translated into formalized language and which are designed to 
help the reader to reconstruct the complete text. Other passages, equally 
untranslatable into formalized language, are introduced in order to clarify 
the ideas involved, if necessary by appealing to the reader's intuition; 
this use of the resources of rhetoric is perfectly legitimate, provided only 
that the possibility of fonnalizing the text remains unaltered. The first 
examples of this will appear in Chapter III of this Book, which describes 
the theory of integers and cardinal numbers. 
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Thus, written in accordance with the axiomatic method and keeping 
always in view, as it were on the horizon, the possibility of a complete 
formalization, our series lays claim to perfect rigour : a claim which is not 
in the least contradicted by the preceding considerations, nor by the need 
to correct errors which slip into the text from time to time. 

~ We take the same realistic attitude towards the question of consistency 
(or non-contradiction). This question has been one of the main preoccu­
pations of modem logicians, and is partly responsible for the creation of 
formalized languages (cf. Historical Note). A mathematical theory is said 
to be contradictory if a theorem and its negation have both been proved 
in the theory; from the usual rules of reasoning, which are the basis of the 
rules of syntax in formalized languages, it follows then that every theorem 
is both true and false in the theory, and the theory is consequently of no 
interest. If therefore we are involuntarily led to a contradiction, we 
cannot allow it to remain without rendering futile the theory in which it 
occurs. 

Can we be certain that this will never happen? Without entering into 
a discussion - which is outside our competence - of the very notion of 
certainty, we may observe that metamathematics can set itself the task 
of examining the problems of consistency by its own methods. To say 
that a theory is contradictory means in effect that it contains a correct 
formalized proof which leads to the conclusion 0 :F O. Now metama­
thematics can attempt, using methods of reasoning borrowed from mathe­
matics, to investigate the structure of such a formalized text, in the hope of 
"proving" that such a text cannot exist. In fact such "proofs" have 
been given for certain partial formalized languages, which are less rich 
than that which we propose to introduce, but rich enough to express a 
good part of classical mathematics. We may of course reasonably ask 
what in fact has been "proved" in this way: for, if mathematics were 
contradictory, then some of its applications to material objects, and in 
particular to formalized texts, would stand in danger of being illusory. 
To escape this dilemma, the consistency of a formalized language would 
have to be "proved" by arguments which could be formalized in a 
language less rich and consequently more worthy of confidence; but a 
famous theorem of metamathematics, due to Godel, asserts that this is 
impossible for a language of the type we shall describe, which is rich 
enough in axioms to allow the formulation of the results of classical arith­
metic. 

On the other hand, in the proofS of "relative" consistency (that is 
to say, those which establish the consistency of a theory on the supposition 
that some other theory, for example set theory, is non-contradictory), 
the metamathematical part of the argument (c£ Chapter I, § 2, no. 4) 
is so simple that it seems hardly possible to deny it without renouncing 
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all rational use of our intellectual faculties. Since the various mathematical 
theories are now logically attached to the Theory of Sets, it follows that 
any contradiction encountered in one or another of these theories must 
give rise to a contradiction in the Theory of Sets itself. Of course, this is 
not an argument from which we can infer the consistency of the Theory 
of Sets. Nevertheless, during the half-century since the axioms of this theory 
were first precisely formulated, these axioms have been applied to draw 
conclusions in the most diverse branches of mathematics without leading 
to a contradiction, so that we have grounds for hope that no contradiction 
will ever arise. 

If it should turn out otherwise, it would be that the observed contra­
diction was inherent in the fundamental principles of the Theory of Sets; 
these principles would therefore require to be modified, if possible without 
compromising those parts of mathematics we wish most to retain, and it 
is clear that the task of modification would be made easier by the use of 
the axiomatic method and formalized language, which allow us to formulate 
these principles more precisely and to separate out their consequences 
more clearly. Indeed, this is more or less what has happened in recent 
times, when the "paradoxes" of the Theory of Sets were eliminated by 
adopting a formalized language essentially equivalent to that which we 
shall describe here; and a similar revision would have to be undertaken 
if this language in its turn should prove to be contradictory. 

To sum up, we believe that mathematics is destined to survive, and that 
the essential parts of this majestic edifice will never collapse as a result 
of the sudden appearance of a contradiction; but we cannot pretend 
that this opinion rests on anything more than experience. Some will 
say that this is small comfort; but already for two thousand five hundred 
years mathematicians have been correcting their errors to the consequent 
enrichment and not impoverishment of their science; and this gives 
them the right to face the future with serenity. 

13 



CHAPTER I 

Description 
of Formal Mathematics 

1. TERMS AND RELATIONS 

I. SIGNS AND ASSEMBLIES 

The signs of a mathematical theory G (*) are the following: 

(I) The logical signs (t) : 0, 't, V, 1. 
(2) The letters. 

By letters we mean upper and lower case Roman letters, with or without 
accents. Thus A, A', An, Alii, ••• are letters. At any place in the text it 
is possible to introduce letters other than those which have appeared in 
previous arguments. 

(3) The specific signs, which depend on the theory under consideration. 

In the theory of sets we shall use only the following three specific signs : 
=, e,:::>. 

An assemb{y in G is a succession of signs of G written next to one another; 
certain signs, other than letters, may be joined in pairs by bars above the 
line, which are called links. *For example, in the Theory of Sets, in 
which e is a specific sign, 

.----Ir---L-.-' 
'tv1 eLJA' elJA" 

is an assembly.* 

(*) The meaning of this expression will become clear as the chapter progresses. 
(t) For the intuitive meanings of these signs, see no. 3, Remark. 
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I DESCRIPTION OF FORMAL MATHEMATICS 

The exclusive use of assemblies would lead to insuperable difficulties both 
for the printer and for the reader. For this reason current texts use 
abbreviating symbols (notably words of ordinary speech) which do not 
belong to formal mathematics. The introduction of such symbols is the 
object of deJinitWns. Their use is not indispensable to the theory, and can often 
lead to confusion which only a certain familiarity with the subject will 
enable the reader to avoid. 

Examples 

(1) The assembly Vl is represented by ==>. 
(2) The following symbols represent assemblies (and very long ones at 
that) : 

"3 and 4" 
1lJ 
N 
Z 

"the real line" 
"the r function" 

fog 

n=V2+V3 
le2 

"Every finite division ring is a field" 

"The zeros of te,) other than - 2, - 4, - 6, •.• lie on the line 

R(s) = 1/2". 

In general, the symbol used to represent an assembly contains all the 
letters which appear in the assembly. Nevertheless, this principle can 
sometimes be infringed without risk of confusion. *For example, "the 
completion of X" represents an assembly which contains the letter X, 
but which also contains the letter which represents the set of entourages 
of the uniform structure of X. On the other hand, 

fo11(%) dx 

represents an assembly in which the letter x (and the letter d) do not 
appear; and the assemblies represented by N, Z, "the r function" 
do not contain any letten.* 

A mathematical theory (or simply a theory) contains rules which allow us 
to assert that certain assemblies of signs are terms or relations of the theory, 
and other rules which allow us to assert that certain assemblies are theo­
rems of the theory. 
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SIGNS AND ASSEMBLIES § 1.1 

simplify the exposition it is convenient to denote such assemblies by less 
cumbersome symbols. We shall use, especially, combinations of signs 
(of a mathematical theory), bold-face italic letters (with or without indices 
or accents), and particular symbols, of which some examples will be given. 
Since OUT object is only to avoid circumlocutions (cf. note (*), § 3, no. I, p. 28) 
we shall not enunciate strict general rules for the use of these symbols; 
the reader will be able to reconstruct without trouble the assembly in 
question, in each particular case. By abuse of language we shall often 
say that the symbols are assemblies, rather than that they denote assemblies : 
expressions such as "the assembly A" or "the letter x", in the state­
ments of the following rules, should therefore be replaced by "the assembly 
denoted by A" or "the letter denoted by x". 

Let A and B be assemblies. We shall denote by AB the assembly 
obtained by writing the assembly B on the right of the assembly A. 
We shall denote by V A1 B the assembly obtained by writing, from 
left to right, the sign v, the assembly A, the sign 1, the assembly B. 
And so on. 

Let A be an assembly and let x be a letter. We shall denote by 
"tx(A) the assembly constructed as follows: form the assembly "tA, link 
each occurrence of x in A to the 't' written on the left of A, and then 
replace x everywhere it occurs by the sign O. The assembly denoted 
by 't'x(A) therefore does not contain x. 

Example. The symbol "t .. (eX)') represents the assembly 

reQy. 
Let A and B be assemblies and let x be a letter. The assembly 
obtained by replacing x, wherever it occurs in A, by the assembly B 
is denoted by (B/x) A (read: B replaces x in A). If x does not 
appear in A, then (B/x) A is identical with A; in particular, 

(B/x) "tx(A) 
is identical with 't'x(A). 

Example. If we replace x by 0 wherever x occurs in the assembly 
VeX)' = xx, we obtain the assembly V eQy = rn. 

If A is an assembly and we are interested particularly in a letter x, or 
two distinct letters x and y (which mayor may not appear in A), 
we shall often write A I x I or A! x, y I. In this case we write AI B I 
instead of (B/x) A. We denote by A I B, C I the assembly obtained by 
simultaneousfy replacing x by Band y by C wherever they occur 
in A (note that x and y may appear in B and in C); if x' and y' 
are distinct letters, other than x and y, which appear in neither A, B, 
nor C, then A I B, C! is the same as (B/x') (C/y') (x'/x) (y'/y) A. 
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&mark. When an abbreviating symbol 1: is introduced, by means of 
a definition, to represent a certain assembly, the (usually tacit) convention 
is made of representing the assembly obtained by substituting an assembly 
B for a letter % in the original assembly, by the symbol obtained by 
the replacing the letter % in 1: by the assembly B (or, more often, by 
an abbreviating symbol representing the assembly B). 
, ·For example, having defined what assembly is represented by the symbol 
E®F, where E and F are letters - an assembly which, incidentally, 
contains other letters besides E and F - the symbol Z®F can be used 
without further explanation •• 
, This rule can lead to confusions, which are avoided by the use of various 
typographical devices; the most common consists in replacing % by 
(B) in place of B. 
, *For example, M n N denotes an assembly containing the letter N. 
If we substitute for N the assembly represented by P u Q, we get an 
assembly denoted by M n (P u Q).* 

2. CRITERIA OF SUBSTITUTION 

Formal mathematics contains only explicidy written assemblies. Never­
theless, even with the use of abbreviating symbols, the development of 
mathematics stricdy in accordance with this principle would lead to 
extremely long chains of reasoning. For this reason we shall establish 
criteria relating to indeterminate assemblies; each of these criteria will 
describe once for all the final result of a definite sequence of manipulations 
on these assemblies. These criteria are therefore not indispensable to 
the theory; their justification belongs to metamathematics. 

The development of metamathematics itself requires, in practice, the 
use of abbreviating symbols, some of which have already been indicated. 
Most of these symbols are also used in mathematics. 

We shall make use of the following criteria, called the criteria of substitution: 

aSl. Let A and B be assemblies and let % and %' be letters. q %' does 
not appear in A, then (B/%) A is identical with (B/x') (%'/%) A. 

aS2. Let A, B, and C be assemblies and let x and y be distinct letters (*). 
q y does not appear in B, then (B/%) (C/y) A is identical with 

(C'/y) (B/x) A, 

where C' is tlu assemblY (B/x) C. 

(*) In accordance with what was said in no. 1, the phrase "% and y are 
distinct letters " is an abuse of language: it means that % and y tlmol8 
distinct letters in the assemblies under consideration. 
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aS3. Let A be an assembly and let x and x' be letters. q x' does not 
appear in A, then "tx(A) is identical with "tx'(A') , where A' is the assembly 
(x'ix) A. 

CS4. Let A and B be assemblies and let x and y be distinct letters. q 
x does not appear in B, then (Bly)"txA is identical with "tx(A'), where A' 
is the assembly (B/y) A. 

aS5. Let A, B, C be assemblies and let x be a letter. The assemblies 
(Clx) (1 A), (Clx) (vAB), (Clx) (=>-AB), (Clx) (sAB) (where, is a 
specific sign) are respectively identical with 1 A', V A' B', =>- A' B', ,A' B', where 
A', B' are respectively (Clx) A, (Clx) B. 

As an example, let us indicate the principle of the verification of CS2. 
Compare the operation which takes us from ..4 to (BI%) (Cly) A with 
the operation which takes us from ..4 to (C'ly) (BI%) ..4. In each opera­
tion, no sign which appears in A and is distinct from X and y is altered. 
At every place where % appears in A, we have to substitute B for % in 
the first and in the second operation; this is clear in regard to the first 
operation, and in regard to the second it follows from the fact that y 
does not appear in B. Finally, at every place where y appears in 
A, the first operation consists in replacing C for y, then B for % at 
every place where % appears in C; but it is clear that this comes to the 
same thing as substituting for y, wherever it appears in ..4, the assem­
bly (BI%) C. 

3. FORMATIVE CONSTRUCTIONS 

Some of the specific signs of a theory are called relational, and the others 
are called suhstantific. With every specific sign is associated a natural 
number called its weight (which is practically always the number 2). 
~ An assembly is said to be of the first species if it begins with a "t, or 
with a substantific sign, or if it consists of a single letter; otherwise it is 
of the second species. 
~ A formative construction in a theory G is a sequence of assemblies which 
has the following property : for each assembly A of the sequence, one of 
the following conditions is satisfied : 

(a) A is a letter. 
(b) There is in the sequence an assembly B of the second species, 

preceding A, such that A is 1 B. 
(c) There are two assemblies B and C of the second species (distinct 

or not), preceding A, such that A is V BC. 
(d) There is an assembly B of the second species, preceding A, and 

a letter x such that A is "tx(B). 
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(e) There is a specific sign s of weight n (*) in try, and n assem­
blies A1, A2, ... , All of the first species, preceding A, such that A is 
sA1A2···An• 

~ The assemblies of the first species (resp. of the second species) which appear 
in the formative constructions of f9 are called terms (resp. relations) in try. 

Example. *In the theory of sets, in which e is a relational sign of weight 
2, the following sequence of assemblies is a formative construction : 

A 
A' 
A" 

eAA' 
eAA" 

leAA' 
VleAA'eAA" 

l'VlebA'e~' 
Hence the assembly given as an example in no. 1 is a term in the theory 
of sets.* 

Remark. Intuitively, terms are assemblies which represent objects, and 
relations are assemblies which represent assertions which can be made 
about these objects. Condition (a) means that the letters represent 
objects. Condition (b) means that if B is an assertion, then 1 B, 
called the negation of B, is an assertion (which is read: not B). Condition (c) 
means that if Band C are assertions, V BC, which is called the dis­
junction of Band C, is an assertion (which is read: either B or C); 
thus==>BC is an assertion (in words: "either not B, or C", or "B 
implies C"). Condition (d) means that if B is an assertion and x 
a letter, then 'tx(B) is an object. Let us consider the assertion B as 
expressing a property of the object X; then, if there exists an object which 
has the property in question, -rx(B) represents a distinguished object 
which has this property; if not, -rx(B) represents an object about which 
nothing can be said. Finally, condition (e) means that if Al , A 2, ••• , An are 
objects, and if s is a relational (resp. substantific) sign of weight n, then 
sAl A2 ••• An is an assertion about the objects Al , ••• , An Crespo an object 
depending on Al , ••• , An). 

Examples. The symbols fl$, N, "the real line", "the r function", f Q g 
represent terms. The symbols 1t = v'2 + vg, I e 2, "every finite 

(*) As was said above, it would be possible, for the development of present-day 
mathematical theories, to limit our consideration to specific signs of weight 2, 
and consequently to avoid using the expression "natural number n" in the defin­
ition of a formative construction. 
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division ring is a field", "the zeros of ~(s) other than - 2, - 4, - 6, ... 
lie on the line 9t(s) = 1/2" represent relations. The symbol "3 and 4" 
represents neither a term nor a relation. 

The initial sign of a relation is V, 1, or a relational sign. The initial 
sign of a term is either 't or a su bstantific sign, provided that the term 
does not consist of a single letter. The latter assertion follows from the 
fact that a term is an assembly of the first species. If A is a relation, 
then A features in a formative construction, is not a letter, and does not 
begin with "t, so that three cases are possible: (1) A is preceded by 
an assembly B such that A is 1 B; (2) A is preceded by two assemblies 
Band C such that A is V BC; (3) A is preceded by assemblies AI' 
A2, ... , An such that A is SAIA2 ... An' S being a relational sign. 

4. FORMATIVE CRITERIA 

CF 1. If A and B are relations in a theory G, then V AB is a relction 
in G. 

Consider two formative constructions (in G), one of which contains A 
and the other B. Consider the sequence of assemblies obtained by writing 
first the assemblies of the first construction, then the assemblies of the second 
construction, and finally V AB. Since A and B are of the second 
species, it is immediately verified that this sequence is a formative con­
struction of G. The assembly V AB is of the second species, hence it 
is a relation in G. 

The three following criteria are established similarly: 

CF2. If A is a relation in a theory G, then 1 A is a relation in G. 

CF3. lj A is a relation in a theory G, and if x is a letter, then 'tx (A) zs 
a term zn G. 

CF4. If AI, A a, ••• , An are terms in a theory 'G, and if s is a relational 
(resp. substantific) sign ofweight n in G, then sAI A2 ... An is a relation (resp. 
a term) in G. 

These criteria immediately imply the following: 

CF5. If A and B are relations in a theory G, then => AB is a relation in G. 

CF6. Let AI> A 2, ••• , An be aformative construction in a theory G, and let x 
and y be letters. Suppose that y does not appear in atry Ai' Then (Ylx) AI) 
(ylx) A a, ••• , (ylx) An is a formative construction in 'G. 
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To prove CF6, let AI be the assembly (ylx) Ai' If Ai is a letter, then 
AI is a letter. If Ai is of the form 1 A" where A, is an assembly of 
the second species which precedes Ai in the construction, then AI is 
identical with 1 Ai by CS5, and Ai is an assembly of the second species. 
The reasoning is similar if Ai is of the form vA y4" or ,A "A Jt ••• A J".' 
8 being a specific sign of G. Iffinally Ai is of the form '[.(AJ), where 
A J is an assembly of the second species which precedes Ai in the construc­
tion, there are various cases to consider: 

(a) " is a letter distinct from x and y. Then A[ is identical with 
"t.(Ai) by OS4, and Ai is an assembly of the second species. 

(b) " is identical with x. Then Ai does not contain x, hence Ai 
is identical with Ai' that is to say with "t.x(A J); since y does not appear 
in AJ, "t.x(AJ) is identical with 'ty(AJ) by CS3. 

(c) " is identical with y. Then Ai is the assembly 'tAl' because 
y does not appear in AJ; therefore A[ is the assembly 'tAj, that is 
"ta (Ai) , where II is a letter which does not appear in A;. 

CF7. Let A be a relation (resp. a term) in a theory G, and let x and y 
be letters. Then (ylx) A is a relation (resp. a term) in G. 

Let Au A., ••. , All be a formative construction in which A appears. We 
shall show step by step that, if At is a relation (resp. a term) then (ylx)A t, 
which we shall denote by A:, is also a relation (resp. a term). Suppose 
that this point has been established for AI' Aa, ••• , Ai-I; let us prove it 
for Ai' If Ai is a letter, then AI is a letter. If Ai is preceded in the 
construction by a relation A j such that Ai is 1 A" then Ai is identical 
with 1 A} by CS5, and 1 Ai is a relation by CF2. The argument 
is similar if Ai is preceded by relations A" A" such that Ai is V AJA", 
or if Ai is preceded by terms Ab , ••• , AJm such that Ai is 8A" •.. AJm, 
where 8 is a specific sign of G of weight m. Finally, if Ai is preceded 
by a relation AJ such that Ai is 't.(A,), there are various cases to consi­
der : 

(a) Z is distinct from both x and y. Then Ai is identical with 
't.(Ai) by OS4, and we know already that Ai is a relation; hence Ai 
is a term, by CF3. 

(b) z is identical with x. Then Ai does not contain x, therefore 
Al is identical with Ai' and consequently is a term. 

(c) Z is identical with y. Then let II be a letter, distinct from both 
x and y, which does not appear in Au A., •.. , A J" By CF6, the sequence 
of assemblies (Illy) AI' ••. , (lily) AJ, which we shall denote by Af, •.. , Ai, 
constitutes a formative construction in G. Since y no longer appears 
in;this new construction, (Ylx) A:, ••. , (Ylx) Ai is a formative construction 
by CF6, so that (Ylx) Ai is a relation in G; consequently 'ta«ylx)Ai) 
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is a term of f9. But this term is identical with (Ylrr)u(Aj) by OS4, 
hence with (ylx)'tyCAj) by OS3, hence is identical with Ai' 

OF8. Let A be a relation Crespo a term) in a theory f9, let x be a letter and 
T a term in f9. Then (Tlx) A is a relation Crespo a term) in f9. 
Let At, A2, ••• , An be a formative construction in which A appears. 
Let Xt, X 2, ••• , xp be the distinct letters which appear in T. Let us 
associate with each letter Xl a letter xi, distinct from each of the letters 
XlJ ••• , xp and the letters which appear in AlJ .•• , An, in such a way 
that the letters x{, ... , Xp are all distinct. The assembly 

(xilxl)(X~lx2) ... (x~lxp) T 

is a term T' by OF7, and (Tlx)A is identical with 

CX1IxD(X2Ix~) ... CXplx~)(T'lx)A 

by application of OSl. It is therefore enough to show that (T'lx) A 
is a relation (resp. a term); in other words, we may suppose from now 
on that the letters which appear in T do not appear in At, ... , An. 
~ We shall show step by step that, if At is a relation (resp. a term), then 
(Tlx) At, which we shall denote by AI, is a relation (resp. a term). 
Suppose this point has been established for At, A2, ••• , Ai- l , and let us 
prove it for Ai' If Ai is a letter, then Ai is either the same letter or T, 
and therefore a term. If Ai is of the form 1 A j' where A j is a relation 
which precedes Ai in construction, then Ai is identical with 1 A j by OS5, 
and we know already that Ai is a relation, hence Ai is a relation by OF2. 
The proof is analogous if Ai is of the form V AjAk' or sAj, ... Ajm' 
Finally, if Ai is of the form 'tz(A j), where A j is a relation which pre­
cedes Ai in the construction, there are various cases to be considered : 

(a) Z is distinct from x and from the letters which appear in T. 
Then AI is identical with 'tz{Aj) by OS4, and we know already that 
Aj is a relation; hence Ai is a term by CF3. 

(b) z is identical with x. Then Ai does not contain x, hence Ai 
is identical with Ai and consequently is a term. 

(c) Z appears in T. Then z does not appear in A j , so that A! 
is identical with 'tAj; hence Ai is identical with 'tAj. Now, we know 
already that Aj is a relation, and 'tAj is identical with 'tu(Aj), where u is a 
letter which does not appear in Aj; it follows by OF3 that Ai is a term. 

Intuitively, if A is a relation in f9, which we may regard as expressing 
a property of an object x, the assertion (Blx) A. amounts to saying that 
the object B has this property. If A is a term in G, it represents an 
object which depends in some way on the object denoted by x; the term 
(Blx) A. represents what the object A. becomes when we take x to be 
the object B. 
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2. THEOREMS 

From now on, if A is a relation, we shall write not(A) instead of 1 A. If A 
and B are relations, we shall write "(A) or (B)" instead of V AB, and 
(A) =>- (B) instead of -==> AB. Sometimes we shall leave out the brackets. 
In each case the reader will be able to determine without difficulty the assembly under 
consideration. 

1. AXIOMS 

We have already seen that the specific signs determine the terms and the 
relations in a theory f9. To construct 'G, we proceed as follows: 

(1) First we write down a certain number of relations in f9; these are 
called the explicit axioms of f9. The letters which appear in the explicit 
axioms are called the constants of f9. 

(2) We lay down one or more rules (*), called the schemes of f9, which 
must have the following properties: (a) the application of such a rule 9t 
furnishes a relation in f9; (b) if T is a term in f9, if X is a letter, and 
if R is a relation in f9 constructed by applying the scheme ~, then the 
relation (Tlx)R can also be constructed by applying ~. 

In all the cases we envisage, the verification of these conditions is always 
easy. 

Every relation contructed by applying a scheme of f9 is called an 
implicit axiom of f9. 

Intuitively, the axioms represent either self-evident assertions or else hypo­
theses from which one wishes to draw consequences. The constants 
represent well-defined objects for which the properties expressed by the 
explicit axioms are supposed to be true. On the other hand, if the letter 
x is not a constant, it represents a completely undetermined object; if a 
property of the object x is assumed to be true by means of an axiom, 
then this axiom is necessarily implicit, so that the property remains true 
for any object T. 

(*) For the sake of brevity, these rules are expressed by using the symbols 
mentioned in § 1, no. 1 (and especially bold-faced italic letters); but it would 
be easy to avoid the use of these symbols completely in the formulation of the 
rules (see § 3, no. 1, note (*) on p. 28). 
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2. PROOFS 

A demonstrative text in a theory 'G comprises: 

(I) An auxiliary formative construction of relations and terms in f). 

(2) A proof in 'G, that is to say a sequence of relations in 'G which appear 
in the auxiliary formative construction, such that for every relation R 
in the sequence at least one of the following conditions is satisfied : 

(al ) R is an explicit axiom of 'G. 
(a2) R results from the application of a scheme of 'G to terms or 

relations which appear in the auxiliary formative construction. 
(b) there are two relations S, T in the sequence which precede R, 

such that T is S~ R. 
~ A theorem in 'G is a relation which appears in a proof in 'G. 

This notion is therefore essentially dependent on the state of the theory 
under consideration, at the time when it is being described. A relation in 
a theory 'G becomes a theorem in 'G when one succeeds in inserting it into 
a proof in 'G. To say that a relation in D "is not a theorem in 'G" 
cannot have any meaning without reference to the stage of development 
of the theory 'G. 

A theorem in r;, is also called a "true relation in r," (or "proposition", 
"lemma", "corollary", etc.). Let R be a relation in 'G, let x be 
a letter and T a term in 'G; if (Tlx)R is a theorem in 'G, T IS 

said to satisfy the relation R in 'G (or to be a solution of R), when R IS 

considered as a relation in x. 
~ A relation is said to be false in 'G if its negation is a theorem in 'G. A 
theory 'G is said to be contradictory when one has written a relation which 
IS both true and false in ro. 

Here again, we are dealing with a notion that depends on the particular 
state of development of a theory. The reader should beware of the 
confusion (unfortunately suggested by the intuitive meaning of the word 
"false") which consists in believing that, once one has proved that 
a relation R is false in 'G, one has thereby established that R "is not 
true" in 'G (strictly speaking, this phrase has no precise meaning in 
mathematics, as we have remarked above). 

~ In what follows we shall give metamathematical criteria, called deductive 
criteria, which will allow us to shorten proofs. These criteria will be denoted 
by the letter C followed by a number. 

CI (Syllogism). Let A and B be relations in a theory 'G. If A and A ~ B 
are theorems in 'G, then B is a theorem in 'G. 
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Let Rl , R2, 0 0 0, Rn be a proof in l-:j in which A appears, and let Sl> 
S2' 0 0 0' Sp be a proof in 'G in which A => B appears. Clearly R l , 

R2, •• 0' Rn, Sl> S2' '0', Sp is a proof in 'C in which both A and A=> B 
appear. Hence 

is a proof in "0, and therefore B is a theorem in 'G. 

3. SUBSTITUTIONS IN A THEORY 

Let 'G be a theory, let A l , A2, •• 0' All be its explicit axioms, let x be 
a letter and T a term of 'G. Let (T/x)ii be the thf"ory whose signs and 
schemes are the same as those of 'G, and whose explicit axioms are 
(T/x)A l , (T/x)A 2, • 0 0' (T/x)An. 

C2. Let A be a theorem in a theory 'G, let T be a term of l:;, and let x be 
a letter. Then (T/x)A is a theorem in the theory (T/x)G. 

Let Rl , R2, • 0 ., Rn be a proof in 'G in which A appears. Consider 
the sequence (Tlx)Rl> (Tlx)R2, 00., (Tlx)Rn, which is a sequence of 
relations in 'G by reason of OF8 (§ 1, no. 4). We shall show that this 
sequence is a proofin the theory (Tlx)'G; this will establish the criterion. 
If Rk is an implicit axiom of 'G, then (T/x)Rk is again an implicit axiom 
of 'G (no. 1) and therefore of (T/x)'G. If Rk is an explicit axiom of 
'G, then (T/x)Rk is an explicit axiom of (Tlx)'G. Finally, if Rk is 
preceded by relations Rj and Rj , where Rj is Ri=>Rk' then (Tlx)Rk 
is preceded by (Tlx)Rj and (Tlx)Rj , and the latter is identical with 
(Tlx)Rj => (Tlx)Rk (criterion OS5). 

03. Let A be a theorem of a theory 'G, let T be a term of 'G, and let x be 
a letter which is not a constant of 'G. Then (Tlx)A is a theorem of 'G. 

This follows immediately from 02, because x does not feature in the 
explicit axioms of 'G. More particularly, if 'G contains no explicit 
axioms, or if the explicit axioms contain no letters, then the criterion 03 
applies without restriction on the letter x. 

4. COMPARISON OF mEORIES 

A theory 'G' is said to be stronger than a theory 'G if all the signs of 'G 
are signs of 'G', all the explicit axioms of 'G are theorems in 'G', and the 
schemes of 'G are schemes of i? 
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C4. If a theory i;' is stronger than a theory 'i?, then all the theorems of i; are 
theorems of 'G'. 

Let R1, R2, ••• , Rn be a proof in 'G. We shall show, step by step, that 
each Ri is a theorem in 'G' • Suppose that this is true for the relations 
preceding Rk. If Rk is an axiom of i;, it is a theorem in '(:)' by hypo­
thesis. If Rk is preceded by relations R, and Rj ~ Rk , we know 
already that Rj and R j ~ Rk are theorems in 'G', and therefore Rk 
is a theorem in i;' by virtue of CI. Hence, in every case, Rk is a 
theorem in '0', and the proof is complete. 

If each of two theories 'G and (j' is stronger than the other, 'G and 'G' 
are said to be equivalent. Then every theorem of 'G is a theorem of 'G', 
and vice versa. 

C5. Let 'G be a theory, let AI' A2, ... , An be its explicit axioms, a1> a2, ... , ah 
its constants, and let T1> T2, •.• , T" be terms in 'b. Suppose that 

(for z = 1, 2, ... , n) 

are theorems in a theory 'G' , that the signs oj 'G are signs oj 'i?', and that the 
schemes of G are schemes of G'. Then, if A is a theorem in G, 

is a theorem in fj'. 

For G' is stronger than the theory (Tllal) ... (Tnlan) G, and we can apply 
C2 and C4. 

When we use this procedure to deduce a theorem in '6' from a theorem 
in 'G, we say that we are applying in t;' the results qf 'G. Intuitively, the 
axioms of '6 express properties of all a2, ... , a", and A expresses a property 
which is a consequence of these axioms. If the objects T1, T2, ... , Th in '6' 
have the properties expressed by the axioms of i;, then they also have the 
property A. 
*For example, in the theory of groups '6, the explicit axioms contain two 
constants G and fJ. (the group and the law of composition). In the 
theory of sets 'G', we define two terms: the real line and addition of 
real numbers. If we substitute these terms for G and fJ. respectively 
in the explicit axioms of '6, we obtain theorems in '0'. Moreover, 
the schemes and signs of 'G and 'G' are the same. We may therefore 
"apply the results of group theory to the additive group of real numbers". 
We say that we have constructed a model for group theory in the theory 
of sets. (Note that since the theory of groups is stronger than the theory 
of sets, we can also apply the results of the theory of sets to the theory 
of groups.)* 
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Remark. Under the hypotheses of 05, if the theory '0 turns out to be 
contradictory, the same will be true of '(:)'. For if A and "not AU are 
theorems in '0, then (T1Ial)'" (Thlah)A and not(T1Ial) ... (Thlah)A 
are theorems in '0 ' . * For example, if the theory of groups were contra­
dictory, the theory of sets would also be contradictory. * 

3. LOGICAL THEORIES 

1. THE AXIOMS 

A logical theory is any theory to in which the schemes Sl to S4 below provide 
implicit axioms. 

S1. If A is a relation in '0, the relation (A or A) ==> A is an axiom of 
'0 (*). 
S2. If A and B are relations in '0, the relation A ~ (A or B) is an axiom 
oj '0. 
S3. If A and B are relations in to, the relation (A or B) ==> (B or A) zs 
an axiom oj '0. 
S4. If A, B, and C are relations in 'G, the relation 

(A ==> B) ==> ((C or A) ==> (C or B)) 

is an axiom oj 'iD. 
These rules are in fact schemes; let us verify this, for example for 82. Let 
R be a relation obtained by applying S2; then there are relations A and 
B in '0 such that R is the relation A ==> (A or B). Let T be a term 
in '0, let x be a letter, and let A I and B' be the relations (TI x)A 
and (Tlx)B; then (Tlx)R is the same as A' ==> (A' or B' ), and can 
therefore be obtained by applying 82. 

Intuitively, the rules 81 through 84 merely express the meaning which is 
attached to the words "or" and "implies" in the usual language of 
mathematics (t). 

(*) This scheme may be expressed without using the letter A or the abbrevia­
ting symbol ==> as follows : when8ver we have a relation, we obtain a theorem by writing, 
from left to right, V, 1, V, and then the given relation three times. The reader may, 
as an exercise, translate in a similar way the expressions of the other schemes. 

(t) In everyday speech, the word "or" has two different meanings, according 
to the context: when we link two statements by the word "or" we may mean to 
assert at least one of the two (and possibly both together), or we may mean to 
assert one to the exclusion of the other. 
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If a logical theory to is contradictory, every relation in to is a theorem in to. 
For let A be a relation in to such that A and "not A" are theorems in to, 
and let B be any relation in to. By S2, (not A) ~ «not A) or B) is 
a theorem in '(0; therefore, by 01 (§ 2, no. 2), "(not A) or B", that is 
to say A ~ B, is a theorem in 'CO. A second application of 01 shows 
that B is a theorem in 'CO. 

~r From now on to will denote a logical theory. 

2. FIRST CONSEQUENCES 

06. Let A, B, C be relations in '{9. if A ~ B and B ~ C are theorems 
in 'CO, then A ~ C is a theorem in '19. 

For (B~ C) ~ «A ~ B) ~ (A =+ C)) is an axiom of to, by 
replacing A by B, B by C, and C by "not A" in S4. By 01 (§ 2, no. 2), 
(A ~ B) =+ (A ~ C) is a theorem in 'CO. A further application of 01 
completes the proof. 

07. if A and B are relations in '19, then B ~ (A or B) is a theorem in to. 
For B~ (B or A) and (B or A) ~ (A or B) are axioms of to by 
virtue of S2 and S3. Now use 06. 

OS. if A is a relation in 'i9, A ~ A is a theorem in 'CO. 

For A ~ (A or A) and (A or A) ~ A are axioms, by S2 and Sl. 
Now use 06. 

09. If A is a relation and B a theorem in to, then A ~ B is a theorem in to. 
For B~ «not A) or B) is a theorem by 07, and therefore "(not A) 
or B", that is to say A ~ B, is a theorem by 01. 

010. if A is a relation in 'CO, then "A or (not A)" is a theorem in 'iV. 

For "(not A) or A" is a theorem by OS; now use S3 and 01. 
011. If A is a relation in 'CO, "A ~ (not not A)" is a theorem in 'iV. 

For this relation is "(not A) or (not not A)", and the result follows 
fromOlO. 

012. Let A and B be two relations in to. Then the relation 

is a theorem in '{9. 

For 

(A ~ B) ~ «not B) ~ (not A)) 

«not A) or B) ~ «not A) or (not not B) 
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is a theorem, by C 11, 84 and C l. On the other hand, 

«not A) or (not not B» ==> «not not B) or (not A» 

is an axiom, by 83. Therefore 

«not A) or B) >- «not not B) or (not A» 

is a theorem by C6. Hence the result. 

C13. Let A, B, C be relations in 'to. If A -==>- B is a theorem in 'iii, 
then (B ~ C) ~ (A ~ C) is a theorem in 'lO. 

For (not B) ~ (not A) is a theorem, by 012 and Cl. Therefore 
(C or (not B» ~ (C or (not A» is a t~eorem, by 84 and C1. By a 
double application of 83 and C6 we infer that 

«not B) or C) ~ «not A) or C) 

is a theorem; but this is the given relation. 

!f From now on, we shall generally use C I and C6 without quoting them 
explicitly. 

3. METHODS OF PROOF 

I. Method of the auxiliary ~othesis. This rests on the following rule : 

C14 (Criterion of deduction). Let A be a relation in 'lO, and let 'lOt be the 
theory obtained by adjoining A to the axioms of 'to. If B is a theorem in 'lOt, 
then A ~ B is a theorem in 'lO. 
Let B1, B., ... , B. be a proof in 'lOt in which B appears. We shall 
show, step by step, that the relations A ~ Bk are theorems in 'lO. 8uppose 
that this has been established for the relations which precede Bj , and let us 
~how that A ~ B j is a theorem in 'lO. If Bj is an axiom of 'lOt, then 
B j is either an axiom of'lO or is A. In both cases, A ~ Bj is a theo­
rem in 'l9 by applying C9 or C8. If B, is preceded by relations BJ and 
BJ ~ Bj, we know that A ~ Bj and A ~ (BJ ~ Bj ) are theorems 
in 'lO. Hence (Bj~ Bj ) ~ (A ~ Bj ) is a theorem in 'l9 by C13. 
Hence, by C6, A ~ (A ~ Bj), that is to say "(not A) or (A ~ Bj)", 
is a theorem in 'lO, and therefore so is "(A -==> Bj ) or (not A)" by 83. 
Now, (not A) ~ «not A) or Bj ), that is to say (not A) -+ (A ~ Bj ), 

is a theorem in 'lO, by 82. By application of 84 we see then that 

«A~ B j ) or (not A» => «A => B j ) or (A => B j» 

is a theorem in 'lO, and hence that "(A=> B j ) or (A => Bj)" is a 
theorem in 'lO. By 81 we conclude that A=> B j is a theorem in 'lO. 
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In practice we indicate that we are going to use this criterion by a phrase 
such as "suppose that A is true". This phrase means that for the time 
being the reasoning will be performed in the theory ~', until the relation B 
has been proved. When this has been achieved it has been established 
that A ~ B is a theorem in G, and one continues thereafter to reason 
in G without in general indicating that one has abandoned the theory ~'. 
The relation A introduced as a new axiom is called the auxiliary hyp0-
thesis. * For example, when we say "let :It be a real number", we are 
constructing a theory in which the relation ":It is a real number" is an 
auxiliary hypothesis. * 

II. Method of reductio ad absurdum. This is founded on the following rule : 

C15. Let A be a relation in '<0, and let '<0' be the theory obtained by adjoining 
the axiom "not AU to the axioms of '(9. if '(9' is contradictory, then A is a theorem 
in 'iD. 

For A is a theorem in '(9'; consequently (method of the auxiliary hypo­
thesis) "(not A) ~ A" is a theorem in '<0. By S4, 

(A or (not A» ~ (A or A) 

is a theorem in to; by ClO, "A or A" is a theorem in '(9. Now use S1. 

In practice, we indicate that we are going to use this criterion by a phrase 
such as "suppose that A is false". This phrase means that for the time 
being the reasoning will be performed in the theory ~', until two theorems 
of the form B and "not B" have been proved. When this has been 
achieved it is then established that A is a theorem in ~, which is generally 
indicated by a phrase such as "Now this (i.e., in the preceding notation, 
B and "not B") is absurd; hence A. is true". One then continues 
in the original theory ~. 

!! As first applications of these methods, let us establish the following 
criteria: 

016. if A is a relation in '<0, then (not not A.) ~ A is a theorem in '<0. 

For suppose that "not not A" is true; then we have to prove A. Suppose 
A is false. In the theory so defined, "not not AU and "not A" are 
theorems, which is absurd; therefore A is true. 

CI 7. if A and B are relations in to, then 

((not B) ~ (not A» =+ (A ~ B) 

is a theorem in '<0. 
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For suppose that (not B) => (not A) is true. We have to show that 
A => B is true. Suppose that A is true, and let us show that B is 
true. Suppose "not B" is true. Then "not A" is true, which is absurd. 

III. Metfwd of disjunction of cares. This rests on the following rule : 

018. Let A, B, C be relations in 'l5. If "A or B" A=> C, B=> C 
are theorems in 'l5, then C is a theorem in 'CD. 

For, by S4, "(A or B) => (A or C)" and "(C or A) => (C or C)" 
are theorems in 'lO. By S3 and Sl, it follows that (A or B) => C is a 
theorem in 'lO; hence the result. 

To prove C it is therefore enough, when we have at our disposal a theorem 
"A or B", first to prove C by adjoining A to the axioms of G, and 
then to prove C by adjoining B to the axioms of G. The interesting 
feature of this method lies in the fact that if "A or B" is true, we cannot 
in general assert either that A is true or that B is true. 

In particular, by 010, if "A => C" and "(not A) => C" are both 
theorems in 'l5, then C is a theorem in 'lO. 

IV. Method of the auxiliary constant. This is founded on the following rule : 

019. Let X be a letter and let A and B be relations in 'l5 such that: 

(1) the letter X is not a constant of 'lO and does not appear in B; 
(2) there is a term T in 'l5 such that (Tlx)A is a theorem in 'lO. 

Let 'lO' be the theory obtained by adjoining A to the axioms of to. if B is a 
theorem in 'l5', then B is a theorem in 'lO. 

Indeed, A=> B is a theorem in 'lO (criterion of deduction). Since X 

is not a constant of 'lO, (TI x) (A => B) is a theorem in 'lO by virtue 
of 03. Since x does not appear in B, (Tj x)(A => B) is identical with 
((TjX)A) => B, by aS5 (§ 1, no. 2). Finally, (Tjx)A is a theorem 
in 'lO, and therefore so is B. 
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Intuitively, the method consists in using, in order to prove B, an arbi­
trary object x (the auxiliary constant) which is supposed to be endowed 
with certain properties, denoted by A. * For example, in a proof in 
geometry which involves, among other things, a line D, we may "take" 
a point x on this line; the relation A is then xeD. * In order that 
one should be able to use an object endowed with certain properties during 
the course of a proof, it is clearly necessary that such objects should exist. 
The theorem (Tlx)A, called the theorem of legitimation, guarantees this 
existence. 
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In practice we indicate that we are going to use this method by a phrase 
such as "let x be an object such that A". By contrast with the method 
of the auxiliary hypothesis, the conclusion of the argument does not in­
volve x. 

4. CONJUNCTION 

Let A, B be assemblies. The assembly 

not ((not A) or (not B» 

will be denoted by "A and B". 

OS6. Let A, B, T be assemblies and x a letter. Then the assembly 

(Tlx)(A and B) 

is identical with "(Tlx)A and (Tlx)B". 

This is an immediate consequence of OS5 (§ 1, no. 2). 

OF9. If A, B are relations in to, then "A and B" is a relation in to (called 
the conjunction of A and B). 

This follows immediately from OFI and OF2 (§ 1, no. 4). 

020. If A, B are theorems in to, then "A and B" is a theorem in to. 

Suppose that "A and B" is false, that is to say, 

not not «not A) or (not B» 

is true. By 016, "(not A) or (not B)", that is to say, A ==> (not B) 
is true, hence "not B" is true; but this is absurd. Hence "A and B" 
is true. 

021. If A, B are relations in la, then 

(A and B) ==> A, (A and B) ==> B 

are theorems in to. 
The relations (not A) ==> (not A) or (not B», (not B) ==> «(not A) 
or (not B» are theorems in to, by S2 (no. 1) and 07 (no. 2). Now 
((not A) or (not B» ==> (not (A and B» is a theorem in to by OIl. 
Hence (not A) ==> (not (A and B», (not B» ==> (not (A and B» 
are theorems in to. The result follows by applying 017. 
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~ We shall denote by "A and Band e" Crespo "A or B or e") the rela­
tion "A and (B and C)" (resp. "A or (B or e)"). More generally, if 

AI' A 2, ... , An 

are relations, we denote by "AI and As, and ... and AP" a relation which 
is constructed step by step by means of the convention that "AI and A2 
and ... and A,t denotes the same relation as "AI and (As and ... and 
Ala)". The relation "AI or As or ... or Ala" is defined similarly. The 
relation "AI and As and ... and Ala" is a theorem in l!) if and only 
if each of the relations AI' A 2, ••• , Ala is a theorem in l!). 

It follows that every logical theory G is equivalent to a logical theory G' 
which has at most one explicit axiom. This is clear if G has no explicit 
axiom. If G has explicit axioms AI, As, •.. , Ala' let G' be the theory 
which has the same signs and schemes as G, and the explicit axiom "AI 
and A. and ... and Ala". It is immediately seen that every axiom 
of G (resp. G') is a theorem of G' (resp. G). 

Let Go be the theory with no explicit axioms which has the same signs 
as 'G and 81, 82, 83, 84 as its only schemes. Then the study of G reduces, 
in principle, to the study of Go : for the relation A to be a theorem 
in 'G it is necessary and sufficient that there exist axioms AI. A •• ... , Ala 
of G such that (AI and A. and ... and Ala) ~ A is a theorem in Go. 
This condition is evidently sufficient. 8uppose conversely that A is a 
theorem in G, and let Au A., ... , Ala be the axioms of G appearing 
in a proof in G which contains A. Let G' (resp. G") be the theory 
constructed from Go by adjoining the axioms AI, A., ... , Ala (resp. the 
axiom "AI and A. and ... and Ala"). The proof of A in G is a proof 
of A in G', therefore A is a theorem in G' and consequently in G", 
because (as we noted. above) G' and G" are equivalent. By the criterion 
of deduction, (AI and AI and ... and A~ ~ A is a theorem in Go. 
lf G is contradictory, then it follows from what has been said that there 

exists a conjunction A of axioms of G and a relation RinG such that 
A ~ (R and (not R» is a theorem in Go. Therefore 

«not R) or (not not R» ~ (not A) 

is a theorem in Go, and since "(not R) or (not not R)" is a theorem 
in Go, "not A" is a theorem in Go. Conversely, if there exists a conjunc­
tion A of axioms of G such that "not A" is a theorem in Go' then A 
and "not A" are theorems in G, so that G is contradictory. 

5. EQUIVALENCE 

Let A and B be assemblies. The assembly 

(A =+ B) and (B =+ A) 

will be denoted by A +> B. 

34 



EQ,mVALENCE § 3.5 

CS7. Let A, B, r be assemblies, and let x be a letter. Then the assembly 
(rlx)(A ~ B) is identical with (rlx)A ~ (Tlx)B. 

This follows immediately from OS5 (§ 1, no. 2) and CS6 (no. 4). 

OFIO. if A and B are relations in ~, then A ~ B is a relation in T. 

This follows immediately from OF5 (§ 1, no. 4) and OF9 (no. 4). 

~ If A ~=> B is a theorem in ~, we shall say that A and B are equivalent 
in ~; if x is a letter which is not a constant of ~, and if A and Bare 
considered as relations in x, then every term in ~ which satisfies one 
also satisfies the other. 
~ It follows from the criteria 020, 021 (no. 4) that in order to prove a 
theorem in to of the form A ~ B, it is necessary and sufficient to be 
able to prove A ~ Band B ~ A in to. This is often done by proving 
B in the theory deduced from ~ by adjoining the axiom A, and then 
by proving A in the theory deduced from ~ by adjoining the axiom B. 
These remarks lead immediately to the following criteria, whose proofs 
we leave to the reader: 

C22. Let A, B, C be relations in to. If A ~ B is a theorem in to, then 
B ~ A is a theorem in '(9. if A ~ B and B ~ C are theorems in ~, 
then A ~ C is a theorem in ~. 

023. Let A, B be equivalent relations in ~, and let C be a relation in 'iD. 
Then the following are theorems in to : 

(notA) ~ (not B); (A~C) ~ (B~C); 
(C~A) ~ (C~B); 

(A and C) ~ (B and C); (A or C) ~ (B or C). 

C24. Let A, B, C be relations in~. Then the following are theorems in 13 : 

(not not A) ~ A; (A ~ B) ~ «not B) ~ (not A»; 
(A and A) ~ A; (A and B) ~ (B and A); 

(A and (B and C) ~ «A and B) and C); 
(A or B) ~ not «(not A) and (not B)); 

(A or A) ~ A; (A or B) ~ (B or A); 
(A or (B or C) ~ «A or B) or C); 

(A and (B or C) ~ «A and B) or (A and C»; 
(A or (B and C) ~ «A or B) and (A or C)); 

(A and (not B» ~ not (A ~ B); 
(A or B) ~ «not A) ~ B). 

C25. if A is a theorem in ~ and B is a relation in ~, then 

(A and B) ~ B 
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is a theorem in~. If "not A" is a theorem in ~, then (A or B) ~ B is 
a theorem in ~. 

~ In principle, from now on throughout the rest of this series, criteria Cl through 
C25 will be used without reference. 

4. QUANTIFIED THEORIES 

1. DEFINITION OF QUANTIFIERS 

The only logical signs which played a role in § 3 are 1 and v. The 
rules we shall now state are essentially concerned with the use of the 
logical signs 't and O. 
~ If R is an assembly and x a letter, the assembly ('tx(R)/x)R is denoted 
by "there exists x such that R", or by (3x)R. The assembly 

"not «3x) not R)" 

is denoted by "for all x, R", or by "given any x, R", or by (Vx)R. 
The abbreviating symbols 3 and V are called respectively the existential 
quantifier and the universal quantifier. The letter x does not appear in the 
assembly denoted by 't' x( R) and therefore does not appear in the assemblies 
denoted by (3x)R and (Vx)R. 

eS8. Let R be an assembly and let x and x' be letters. If x' does not 
appear in R, then (3x)R and (Vx)R are respectively identical with (3x')R' 
and (Vx')R', where R' is (x'/x)R. 

For ('tx(R)/x)R is identical with ('t'x(R)/x')R' by CSt (§ 1, no. 2), and 
'tx(R) is identical with 'tx'(R') by CS3 (§ 1, no. 2). Hence (3x)R is 
identical with (3x')R'. It follows that (Vx)R is identical with (Vx')R'. 

CS9. Let R and U be assemblies and let x and y be distinct letters. If X 
does not appear in U, then (Uly)(3x)R and (U/y)(Vx)R are respectively 
identical with (3x)R' and (Vx)R', where R' is (U/y)R. 

For, by CS2 (§ 1, no. 2), (U/y)('t'x(R)lx)R is identical with 

(Tlx)(Uly)R, 

where Tis (Uly)'t'x(R), that is 'tx(R') , by CS4 (§l, no. 2). Hence 
(Uly)(3x)R is identical with (3x)R', and consequendy (UIY)(Vx)R 
is identical with (Vx)R'. 
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CFII. If R is a relation in a theory 'fu and if x is a letter, then (3x)R 
and (V x)R are relations in 'fu. 

This follows immediately from CF3, CF8, and CF2 (§ I, no. 4). 

Intuitively, let us consider R as expressing a property of the object denoted 
by x. From the intuitive meaning of the term 't.x(R) , the assertion 
(3x)R means that there is an object which has the property R. The 
assertion "not (3x) (not R)" means that there is no object which has 
the property "not R", and therefore that every object has the property R. 

In a logical theory 'fu, if we have a theorem of the form (3x)R, in which 
the letter x is not a constant of 'fu, this theorem can serve as a theorem 
of legitimation in the method of the auxiliary constant (§3, no. 3). because 
it is identical with ('t.x(R)lx)R. Let 'fu' be the theory obtained by 
adjoining R to the axioms of 'fu. If we can prove a relation S, in which 
x does not appear, in the theory 'ii)', then S is a theorem in ~. 

C26. Let 'fu be a logical theory, let R be a relation in ~, and let x be a letter. 
The relations (Vx)R and ('t.xCnot R)lx)R are then equivalent in 'fu. 

For (VX)R is identical with "not ('t.xCnot R)lx)(not R)" and there­
fore with "not not ('t.x(not R)lx)R". 

C27. If R is a theorem in a logical theory 'fu in which the letter x is not a 
constant, then (Vx)R is a theorem in 'fu. 

For ('t.x(not R)IX)R is a theorem in 'ii), by C3 (§2, no. 3). 

On the other hand, if x is a constant of G, the truth of R does not 
imply that of (V x)R. Intuitively, the fact that R is a true property 
of x, which is a definite object of G, clearly does not imply that R is a 
true property of every object. 

C28. Let '(9 be a logical theory, let R be a relation in ~, and let x be a letter. 
Then the relations "not (Vx)R" and (3x)(not R) are equivalent in 'fu. 

For "not (Vx)R" is identical with "not not (3x)(not R)". 

2. AXIOMS OF QUANTIFIED THEORIES 

A quantified theory is any theory 'fu in which the schemes 81 to 84 (§3, no. 1) 
and the scheme 85 below provide implicit axioms. 

85. If R is a relation in 'fu, if T is a term in 'fu, and if x is a letter, then the 
relation (T/x)R ~ (3x)R is an axiom. 
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This rule is indeed a scheme. For let A. be an axiom of 'iV obtained by 
applying 85; there is then a relation R in 'iV, a term T in 'iV, and a 
letter x such that A. is (Tlx)R =+- (3x)R. Let U be a term in 'i9 and 
let y be a letter. We shall show that (U/y)A. can also be obtained by 
applying 85. Using CSI (§ 1, no. 2) and CS8 (no. I), we can confine 
ourselves to the case in which x is distinct from y and does not appear 
in U. Let R' be the relation (Uly)R and T' the term {U/y)T. The 
criteria C82 (§I, no. 2) and C89 (no. I) show that (UIY)A. is identical 
with (T'/x)R' =+- (3x)R'. 

The scheme 85 says that if there is an object T for which the relation R, 
considered as expressing a property of x, is true, then R is true for the 
object 'r x(R); this accords with the intuitive meaning we have attributed 
to 'tx(R) (§ 1, no. 3, Remark). 

3.PROPERTmS OF QU~ 

From now on we shall have to consider only quantified theories. For the 
rest of this section, 'i9 will denote such a theory, and 'i90 will denote the 
theory without explicit axioms which has the same signs as 'i9 and whose 
only schemes are S 1 through 85. 'i9 is stronger than 'i90• 

C29. Let R be a relation in 'i9 and let x be a letter. Then the relations 
"not (3x)R" and (Vx)(not R) are equivalent in 'i9. 

It is sufficient to prove the criterion in the theory 'i90 in which x is not 
a constant. The theorem R -+=> (not not R) gives us, by C3 (§2, no. 3), 
the theorems 

(3x)R =+- ('tx(R)lx)(not not R) 
and 

(3x) (not not R) =+- ('tx(not not R)IX)R. 

Applying 85, we deduce the theorems in 'i90 

(3x)R =+- (3x) (not not R), (3x) (not not R) =+ (3x)R, 

whence the theorem (3x)R -+=> (3x) (not not R). Now 

(3x) (not not R) 

is equivalent in 'Go to "not not (3x) (not not R)", that is to "not 
(Vx)(not R)". Hence the result. 
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The criteria C28 and C29 enable us to deduce properties of one of the 
quantifiers from properties of the other. 
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C30. Let R be a relation in '0, let T be a term in '0, and let X be a letter. 
Then the relation (Vx)R ~ (Tlx)R is a theorem in '0. 

By S5, (Tlx) (not R) => ('t'x(not R)lx) (not R) is an axiom. This rela­
tion is identical with 

(not (Tlx)R) => not('t'x(not R)IX)R). 

Hence ('t'x(not R)IX)R => (Tlx)R is a theorem in '0. Now use C26 
(no. 1). 

Let R be a relation in ii. By C26, C27, and C30 it is the same (provided 
the letter x is not a constant of ii) whether we state the theorem R 
in ii, or the theorem (Vx)R, or the metamathematical rule: if T is any 
term in ii, then (Tlx)R is a theorem in ii. 

C31. Let Rand S be relations in '(0, and let X be a letter which is not a 

constant of '(0. If R => S (resp. R ~ S) is a theorem in '(0, then 

(Vx)R => (Vx)S, 
[resp. (Vx)R ~ (Vx)S, 

are theorems in '(0. 

(3x)R => (3x)S 
(3x)R ~ (3x)S] 

Suppose that R => S is a theorem in '0. Let us adjoin the hypothesis 
(Vx)R (in which x does not appear). Then R, hence S, and therefore 
also (Vx)S, are true. Consequently (Vx)R => (Vx)S is a theorem 
in '(0. It follows that if R ~ S is a theorem in '(0, then so is 

(Vx)R ~ (Vx)S. 

The rules relating to 3 can now be deduced by using C29. 

C32. Let Rand S be relations in '0, and let x be a letter. Then the rela-
tions 

(Vx)(R and S) ~ (Vx)R and (Vx)S), 
(3x)(R or S) ~ «3x)R or (3x)S) 

are theorems in '(0. 

It is sufficient to prove these criteria in '00' in which x is not a constant. 
If (Vx)(R and S) is true, then "R and S" is true, and therefore each 
of the relations R, S is true. Consequently each of the relations (Vx)R, 
(Vx)S is true, and hence "(Vx)R and (Vx)S" is true. Similarly one shows 
that if "(Vx)R and (Vx)S" is true, then (Vx) (R and S) is true. 
Hence the first theorem. The second follows by applying C29. 
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It should be noted that if (V x) (R or S) is a theorem in G, we may not 
conclude that «Vx)R or (Vx)S) is a theorem in 'G. Intuitively, to say 
that the relation (Vx) (R or S) is true means that for each object x, 
at least one of the relations R, S is true; but in general only one of the 
two will be true, and whether it is R or S will depend on the choice 
of x. Likewise, if «Vx)R and (3x)S) is a theorem in G, we may not 
conclude that (3x)(R and S) is a theorem in G. However, there is the 
following criterion : 

C33. Let Rand S be relations in 'lO, and let x be a letter which does not 
appear in R. Then the relations 

are theorems in 'lO. 

(Vx)(R or S) ~ (R or (Vx)S), 
(3x) (R and S) ~ (R and (3x)S) 

It is sufficient to establish the criterion in 'lOo, in which x is not a constant. 
Let 'lO' be the theory obtained by adjoining (Yx) (R or S) to the 
axioms of 'lOo. In 'lO', "R or S", and therefore (not R) ~ S, are 
theorems. If "not R" is true (a hypothesis in which x does not feature), 
then S and therefore also (Vx)S are true. Consequently 

(not R) ==> (Yx)S 

is a theorem in 'lO', and hence (Yx)(R or S) ==> (R or (Vx)S) is a 
theorem in 'lOo. Likewise, if "R or (Y x)S" is true, then "R or S" 
and therefore (Vx)(R or S) are true. Consequently 

(R or (Vx)S) ==> (Yx)(R or S) 

is a theorem in 'lOo' The rule relating to 3 follows by applying C29. 

C34. Let R be a relation and let x and y be letters. Then the relations 

are theorems in 'lO. 

(Vx) (Vy)R <=> (Yy)(Yx)R, 
(3x)(3y)R <=> (3y)(3x)R, 
(3x)(Yy)R ~ (Yy)(3x)R 

It is sufficient to prove these theorems in 'lOo, in which x and yare not 
constants. If (Vx)(Vy)R is true, then (Vy)R, and therefore R, hence 
(Vx)R, hence (Yy) (Vx)R, are true. Likewise, if (Vy)(Yx)R is true, 
then (Yx)(Yy)R is true; and the first theorem follows. The second 
now follows by use of C29. Finally, since (Y y)R ==+- R is a theorem 
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in 1.00 , so is (3x)(Vy)R=> (3x)R by C3I; if (3x)(Vy)R is true, then 
(3x)R is true, and therefore so is (V y) (3x)R. Hence the third theorem. 

On the other hand, if (V y) (3x)R is a theorem in G, we may not conclude 
that (3x)(Vy)R is a theorem in G. Intuitively, to say that the relation 
(Vy)(3x)R is true means that, given any object y, there is an object x 
such that R is a true relation between the objects x and y. But in 
general the object x will depend on the choice of the object y, whereas 
to say that (3x) (V y)R is true means that there is a fixed object x such 
that R is a true relation between this object and any object y. 

4. TYPICAL QUANTIFIERS 

Let A and R be assemblies and let x be a letter. We denote the 
assembly (3x)(A and R) by (3Ax)R, and the assembly 

"not (3 Ax) (not R)" 

by (V Ax)R. The abbreviating symbols 3A and V A are called typical 
quantif;ers. Observe that the letter x does not appear in the assemblies 
denoted by (3Ax)R, (V Ax)R. 

eSIO. Let A and R be assemblies and let x and x' be letters. If x 
appears neither in R nor in A, then (3 Ax)R and (V Ax)R are respectively 
identical with (3A.x' )R' and (V A,x')R', where R' is (x'ix)R and A' is (x'ix)A. 

eSIl. Let A, R, U be assemblies, and let x, y be distinct letters. If x 
does not appear in U, the assemblies (Uiy)(3 Ax)R and (Uiy)(V Ax)R are 
respectively identical with (3A.x')R' and (V A.x')R', where R' is (Uiy)R and 
A' is (Uiy)A. 

These rules are immediate consequences of criteria CS8, eS9 (no. 1), 
eS5 (§ 1, no. 2), and CS6 (§3, no. 4). 

CFI2. Let A and R be relations in 1.0, and let X be a letter. Then 

and 
are relations in 1.0. 

This follows directly from CFII (no. 1), CF9 (§3, no. 4), and CF2 (§ 1, 
no. 4). 

Intuitively, consider A and R as expressing properties of x. It may 
happen that in a series of proofs, we are concerned only with objects 
satisfying A. To say that there exists an object satisfying A such that R 
means that there exists an object such that "A and R"; whence the 
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definition of 3A. To say that all objects which satisfy A have the pro­
perty R means that there is no object satisfying A such that "not R"; 
whence the definition of V A. In practice, these signs are replaced by 
various phrases, depending on the nature of the relation A. * For 
example: "for all integers x, R"; "there exists an element % of the 
set E such that R"; and so on. * 

035. Let A and R be relations in fO, and let x be a letter. Then the rela­
tions (V Ax)R and (Vx) (A ~ R) are equivalent in 'G. 

For the relation (V Ax)R is identical with 

"not(3x) (A and (not R))". 

Now, "A and (not R)" is equivalent in fOo to "not (A ~ R)"; 
therefore "not (3x)(A and (not R»" is equivalent in fOo to 

"not (3x) (not (A ~ R»", 
by 031 (no. 3), and the latter relation is identical with (Vx) (A ~ R). 
The criterion is therefore established in fOo, and consequently in YO. 

We shall often have to prove relations of the form (VAX)R; generally 
we shall use one of the following two criteria : 

036. Let A and R be relations in fO, and let x be a letter. Let fO' be the 
theory obtained by adjoining A to the axioms of 'lO. If x is not a constant of 
'lO, and if R is a theorem in 'lO', then (V Ax)R is a theorem in 'lO. 

For A =+ R is a theorem in fO, by the criterion of deduction, therefore 
(V Ax)R is a theorem in 'lO by 027 (no. 1) and 035. 

In practice, we indicate that we are going to use this rule by a phrase such as 
"Let x be any element such that A". In the theory G' so defined, 
we seek to prove R. Of course, we cannot assert that R itself is a theorem 
in G. 

037. Let A and R be relations in 'lO and let x be a letter. Let 'lO' be the 
theory obtained by adjoining the relations A and "not R" to the axioms of 'lO. 
If x is not a constant of 'lO, and if 'lO' is contradictory, then (V Ax)R is a theorem 
in 'lO. 

For the theory to' is equivalent to the theory obtained by adjoining 
"not (A ~ R)" to the axioms of fO. By the method of reductio ad 
absurdum, A =+ R is a theorem in 'lO, and therefore so is (V Ax)R by 
027 (no. I) and 035. 
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In practice we say : "Suppose that there exists an object x satisfying A 
for which R is false", and seek to establish a contradiction. 

The properties of typical quantifiers are analogous to those of quantifiers : 

C3S. Let A and R be relations in 1O, and let x be a letter. Then the rela­
tions 

are theorems in 1O. 

not (V Ax)R ~ (3Ax)(not R), 
not (3Ax)R ~ (V AX) (not R) 

C39. Let A, R, and S be relations in to, and let X be a letter which is not 
a constant of 1O. If the relation A ~ (R ~ S) [resp. A -=+ (R .. S)] 
is a theorem in 1O, then the relations 

(3Ax)R =+ (3Ax)S, 
[resp. (3Ax)R ~ (3Ax)S, 

are theorems in 1O. 

(V Ax)R =+ (V AX)S 
(V Ax)R ~ (V AX)S] 

C40. Let A, R, and S be relations in 1O and let x be a letter. Then the 
relations 

(V Ax)(R and S) ~ «V Ax)R and (V AX)S), 
(3Ax)(R or S) ~ «3Ax)R or (3Ax)S) 

are theorems in 1O. 

C41. Let A, R, and S be relations in 1O, and let x be a letter which does 
not appear in R. Then the relations 

are theorems in 1O. 

(V Ax)(R or S) ~ (R or (V AX)S), 
(3Ax)(R and S) ~ (R and (3Ax)S) 

C42. Let A, B, R be relations in 1O and let x and Y be letters. If x does 
not appear in B, and if Y does not appear in A, then the relations 

are theorems in 1O. 

(V AX)(V By)R ~ (V BY)(V Ax)R, 
(3A)x(3By)R ~ (3By)(3Ax)R, 
(3Ax)(VBy)R =+ (VBy)(3Ax)R 
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By way of example, let us prove part of C42. The relation 

(3Ax)(3B y)R 

is identical with (3x)(A and (3y)(B and R)), and therefore (because 
y does not appear in A) is equivalent in ~o to 

(3x) (3y) (A and (B and R» 

by C33 and C3l. Likewise, (3B x)(3Ay)R is equivalent to 

(3y)(3x)(B and (A and R». 

Now apply C31 and C34 (no. 3). 

* As an example of the application of these criteria, consider the following 
relation : "the sequence of real-valued functions (/,J converges uniformly 
to 0 in [0, I]". This means "for each e> 0 there exists an integer n 
such that for each x e [0, 1] and each integer m ~ n we have 11m (x) I ~ e". 
Suppose we wish to take the negation of this relation (for example, to 
obtain a proof by contradiction); the criterion e38 shows that this negation 
is equivalent to the following relation : " there exists an e > 0 such that 
for each integer n there exists an x e [0, 1] and an m ~ n for which 
I/m(x) I > e". 

5. EQUALITARIAN THEORIES 

1. THE AXIOMS 

An equalitarian theory is a theory iO which has a relational sign of weight 2, 
written = (read "equals"), and in which the schemes Sl through S5 (§§3 
and 4), together with the schemes S6 and S7 below, provide implicit 
axioms. If T and U are terms in ~, the assembly = TU is a relation 
in iO (called the relation of equality) by virtue of CF4; in practice it is 
denoted by T = U or (T) = (U). 

S6. Let X be a letter, let T and U be terms in ~, and let R I X t be a rela­
tion in iO; then the relation (T = U) =+ (R I Tt ~ R I ut) is an axiom. 

S 7 • If Rand S are relations in ~ and if X is a letter, then the relation 
«Vx)(R ~ S» =+ ('tx(R) = 'tx(S» is an axiom. 

To show that the rule S6 is a scheme, let A be an axiom of iO, obtained 
by applying S6; then there is a relation R in iO, terms T and U in ~, 
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and a letter x, such that A is (T=U) ==> «Tlx)R ~ (U/x)R). We 
shall show that if y is a letter and V a term in ~, the relation (V/x)A can 
be obtained by applying S6. By means of aSI (§l, no. 2) we may assume 
that x is distinct from y and does not appear in V. Let T', U', R' 
denote the assemblies (V/y)T, (VIY)U, (Vly)R respectively. By aS2 
and aS5 (§l, no. 2), (Vly)A is identical with 

(T' = U') ==> «T'lx')R' ... (U'lx')R') 

and the proof is complete. The verification that S7 is a scheme is similar. 

Intuitively, the scheme S6 means that if two objects are equal, they have the 
same properties. Scheme 87 is more remote from everyday intuition; 
it means that if two properties R and S of an object x are equivalent, 
then the distinguished objects 'tx(R) and 'tx(S) (chosen respectively 
from the objects which satisfy R, and those which satisfy S, if such 
objects exist) are equal. The reader will note that the presence in 87 
of the quantifier Vx is essential (cf. Exercise 7). 

The negation of the relation = TU is denoted by T:F U or (T) :F (U) 
(where the sign :F is read "is different from"). 

~ From 86 we deduce the following criterion : 

C43. Let x be a letter, let T and U be terms in 10, and let R I x! be a 
relation in '(0. Then the relations 

(T = U and Rl TD, (T = U and R IUD 
are equivalent. 

For if we adjoin the hypotheses T = U and R I T I, then R I U I is true 
by S6; therefore (T = U and R I U I) is true. 

When a relation of the form T = U has been proved in a theory G, 
it is often said (by abuse of language) that T and U "are the same" 
or are "identical". Likewise, when T:F U is true in G, we say that 
T and U "are distinct" in place of saying that T is different from U. 

2. PROPERTIES OF EQUALITY 

From now on we shall consider only equalitarian theories. Let '(0 be 
such a theory, and let 'lOo be the theory whose signs are those of 'lO and 
whose only axioms are those provided by schemes SI through S7. The 
theory 'l9o is weaker than '(0 (§2, no. 4) and has no constants. The fol­
lowing three theorems are theorems in 'lOo. 
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THEOREM 1. X = x. 

Let S denote the relation x = x in '00 • By 027 (§4, no. 1), for every 
relation R in '00, (Vx)(R ~ R) is a theorem in '00, and therefore, by 
S7, 't:z:(R) = 't:z:(R), that is to say ('t:z:(R)lx)S, is a theorem in '00• 

Taking R to be the relation "not S" and considering 026 (§4, no. 1), 
we see that (Vx)S is a theorem in '00• By 030 (§4, no. 3), S is therefore 
a theorem in '00 • 

The relation (Vx)(x = x) is also a theorem in Go; and if T is a term in 
Go, then T = T is a theorem in Go (cf. §4, no. 3). It is possible to 
transform later theorems in the same way into theorems in which no 
letter appears or into metamathematical criteria. From now on we shall 
not explicitly perform these transformations, but we shall often implicitly 
make use of them. 

THEOREM 2. (x = y ) ~ (y = x). 

Suppose that the relation x = y is true. By S6, the relation 

that is 
(x = y) ~ «xIY )(y = x) ~ (y IY)(Y = x», 

(x = y) ~ «x = x) ~ (y = x», 

is true. Therefore (x = x) ~ (y = x) is true. By Theorem 1 it fol­
lows that y = x is true, and the theorem is proved. 

THEOREM 3. «(x = y) and (y = z) ~ (x = z). 

Let us adjoin the hypotheses x = y, y = z to the axioms of '00• By S6 
the relation ex = y) ~ «x = z) ~ (y = z)) is true. Hence 

(x = z) ~ (y = z), 

and consequendy x = Z, are true. 

044. Let x be a letter and let T, U, V I x I be terms in '00 • Then the 
relation (T = U) ~ (V! T I = V! U!) is a theorem in '00• 

For let y and z be two distinct letters which are distinct from x and 
from the letters which appear in T, U, V. Adjoin the hypothesis y = z. 
Then, by S6, 

«Ylz)(J'lyl = J'lz!) ~ (J'\yl = J'\zj), 

that is to say (J'ly! = J'IY!) ~ (J'lyl = J'lz!), is true. Now, 
J' ! y I = J'! y I is true by Theorem 1; hence J'! y ! = J'l z I is true. 
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From all this it follows that (y = z) ==> (V I y! = V! z I) is a theorem 
in '(00' say A. But (Tly)(Ulz)A is precisely 

~ A relation of the form T = U, where T and U are terms in '(0, is called 
an equation; a solution (in '(0) of the relation T = U, considered as an 
equation in a letter x, is therefore (§2, no. 2) a term V in '(0 such that 
T I V! = U I V! is a theorem in '0. 
~ Let T and U be two terms in '(0, and let Xl' X 2, ••• , XII be the letters 
which appear in T but not in U. If the relation 

is a theorem in '(0, we say that U can be put in the form T (in '(0). Let 
R be a relation in '0 and let y be a letter. Let V be a solution (in '(0) 
of R, considered as a relation in y. If every solution (in '(0) of R, 
considered as a relation in y, can be put in the form V, then V is said 
to be the complete solution (or general solution) of R (in '(0). 

3. FUNCTIONAL RELATIONS 

Let R be an assembly and X a letter. Let y and z be distinct letters 
which are distinct from X and which do not appear in R. Let y', Z' 
be two other letters with the same properties. By OS8, OS9 (§4, no. I), 
OS2, OS5 (§I, no. 2), and CS6 (§3, no. 4), the assemblies 

(Vy)(Vz)«(Ylx)R and (zlx)R) ==> (y = z» 
and 

(Yyl)(Yz1)«(y1Ix)R and (zllx)R) ==> (y' = Zl» 

are identical. If R is a relation in '(0, the assembly thus defined is a 
relation in '(0 which is denoted by "there exists at most one X such 
that R"; the letter X does not appear in this relation. When this 
relation is a theorem in '(0, R is said to be single-valued in X in '(0. To 
prove that R is single-valued in the theory '(0, it is enough to prove 
y = z in the theory obtained by adjoining to '(0 the axioms (Ylx)R 
and (zlx)R, where y and z are distinct letters which are distinct from X 

and appear neither in R nor in the explicit axioms of '(0. 

045. Let R be a relation in '(0, and let X be a letler which is not a constant 
of '(0. If R is single-valued in x in '(0, then R ==> (x = 'tx(R» is a theo­
rem in '(0. Conversely if, for some term T in '(0 which does not contain x, 
R ==> (x = T) is a theorem in '(0, then R is single-valued in x in '(0. 
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Suppose R is single-valued in x in 'CO, and let us show that 

R ==> (x = "tJe(R» 

is a theorem in 'CO. Adjoin the hypothesis R. Then ("tJe(R)lx)R is true 
by S5, and hence "R and ("tJ[(R)lx)R" is true. Now, since R is single­
valued in x, 

(R and ("tJ[(R)lx)R) ==> (x = "tJ[(R» 

is a theorem in 'CO by C30 (§4, no. 3). Therefore x = "tJ[(R) is true. 

~ Conversely, suppose that R ==> (x = T) is a theorem in 'CO. Let y, z 
be distinct letters which are distinct from x and which appear neither 
in R nor in the explicit axioms of 'CO. Since x is not a constant of 'CO 
and does not appear in T, the relations 

(Ylx)R ==> (y = T), (zlx)R==> (z = T) 

are theorems in to. Adjoin the hypotheses (ylx)R and (zlx)R. Then 
y = T and z = T are true, hence y = z is true. 

~ Let R be a relation in 'CO. The relation 

"(3x)R and there exists at most one x such that R" 

is denoted by "there exists exactly one x such that R". If this relation 
is a theorem in 'CO, R is said to be afunctional relation in x in the theory to. 

C46. Let R be a relation in fO, and let x be a letter which is not a constant 
oj fO. g R is junctional in x in to, then R ~ (x = 'tJe(R» is a theorem 
in fO. Conversely, if for some term T in to which does not contain x, 

R~(X=T) 

is a theorem in to, then R is functional in x in 'CO. 

Suppose R is functional in x in 'CO. Then R ==> (x = 'tJe(R» is a theo­
rem in to by C45. On the other hand, (3x)R is a theorem in T. By S6 
the relation 

(x = 'tJ[(R» => (R ~ (3x)R) 

is a theorem in to. If we adjoin the hypothesis x = "tJ[(R), it follows 
that R is true. Therefore (x = 'tJ[(R» ==> R is a theorem in to. 
~ Conversely, if R ~ (x = T) is a theorem in to, then R is single­
valued in x in to, by 045. Moreover, (Tlx)R ~ (T = T) is a theo­
rem in 'CO; hence (Tlx)R and therefore (3x)R are theorems in to. 
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~ If a relation R is functional in x in T, then R is equivalent to the 
relation x = "'x(R), which is often more manageable. Generally an 
abbreviating symbol ~ is introduced to represent the term "'x(R). Such 
a symbol is called a functional symbol in 'G. 

Intuitively, l: represents the unique object which has the property defined 
by R. • For example, in a theory where "y is a real number ~ 0" 
is a theorem, the relation "x is a real number ~ 0 and y = x·" is 
functional in x. The corresponding functional symbol is taken to be 
either Vy or yl/2 •• 

C47. Let x be a letter which is not a constant of 'G, and let R I x! and S I x ! 
be two relations in 'G. If R I x! is functional in x in 'G, then the relation 
SI"'x(R)! is equivalent to (3x)(Rlx! and Six!). 

For it follows from C46 and C43 that (Rlxl and Six!) is equivalent 
to (Rlxl and SI"'x(R) i); since SI'tx(R)! does not contain x, 

(3x)(Rlx! and SI"'x(R) D 
is equivalent to (S I "',x{R)! and (3x)R) by C33 (§ 4, no. 3); and the 
result follows from the fact that (3x)R is true, because R is functional 
in x. 
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APPENDIX 

CHARACTERIZATION OF TERMS 
AND RELATIONS 

Metamathematics, when it goes beyond the very elementary level of the 
present chapter, makes considerable use of the results of mathematics, 
as we remarked in the Introduction. The purpose of this Appendix is 
to give a simple example of this type of reasoning (*). We shall begin 
by establishing certain. results which belong to the mathematical theory 
of free semigroups; we shall then use these results in a metamathematical 
" application " to obtain a characterization of the terms and relations in a 
theory. 

1. SIGNS AND WORDS 

* Let S be a non-empty set, whose elements will be called signs (this 
terminology being appropriate to the metamathematical application we 
have in mind). Let Lo(S) be the free semigroup generated by S; the 
elements of 1.o(S) are called words and are identified with finite sequences 
A = (Si)O~I~1I of elements of S. The law of composition in Lo(S) will 
be written multiplicatively, so that AB is the sequence obtained by 
juxtaposition of A and B. The empty word fJ is the identity element 
of 1.o(S). We recall that the length leA) of a word A e 1.o(S) is the 
number of elements in the sequence A; thus I(AB) = leA) + I(B), and 
the words of length 1 are the signs. Let L(S) denote the set of non-empty 
words in 1.o(S). 
~ Suppose, moreover, that we are given a mapping s -+ n(s) of S into 

(*) The results established in this Appendix will Dot be used anywhere else 
in this series. 
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the set N of integers ~ O. For each non-empty word A = (Si)O~i~1e of 
L(S), we put 

Ie 
n(A) = ~ n(si) 

1=0 

and n(pi) =0. n(A) is called the weight of A. Clearly n(AB)=n(A)+n(B). 
~ If A=A'BA", the word B is said to be a segment of A (a proper segment 
if also B =F A). If A' (resp. AN) is empty, B is said to be an initial 
(resp. final) segment of A. If leA') = k, then B is said to begin at the 
(k + I)th place. 
~ If A = BCDEF (where the words B, C, D, E, F may be empty) the 
segments C and E of A are said to be disjoint. 

1. SIGNIFICANT WORDS 

A significant sequence is any sequence (Aj)l~j~n of words of 1.o(S) with the 
following property : for each word Ai of the sequence, one of the following 
two conditions is satisfied : 

(1) Ai is a sign of weight O. 

(2) There exist p words Ai" Ai., ... , Aip in the sequence, with indices 
less than i, and a sign f of weight p such that 

Ai = f Ai,Ai • ... Aip' 

Words which appear in significant sequences are called significant words. 
Then we have: 

PROPOSITION 1. If AI> A2, ••• , Ap are p significant words and iff is a sign 
of weight p, then the word f AlA • ... Ap is significant. 

3. CHARACTERIZATION OF SIGNIFICANT WORDS 

A word A e Lo(S) is said to be balanced if it has the following two proper­
ties: 

(I) leA) = n(A) + I (which implies that A is not empty). 

(2) For every proper initial segment B of A, I(B) ~ nCB). 

PROPOSITION 2. A word is significant if and on~ if it is balanced. 

Let A be a significant word belonging to a significant sequence 
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We shall show by induction on Ie that each Ale is balanced. Suppose 
that this has been established for the A j with index j < Ie, and let us 
show that it is true for Ale' If Ale is a sign of weight 0 (which is the only 
possibility when Ie = 1), Ale is balanced because 

and 

If Ale is not a sign of weight 0, then Ale = fBIBa ... Bp, where f is a 
sign of weight p, and the B j are of the form Ai, where i j < Ie, and are 
therefore balanced words by the inductive hypbthesis. We have 

Let C be a proper initial segment of A, and let fJ be the largest of the 
integers m < p such that Bm is a segment of C, so that 

C =fBlBs ... BqD, 

where D is a proper initial segment of Bg+l ' Then 

I(C) = I + I(Bl) + I(Bs) + ... + I(B,) + leD) 
~ 1 + (n(Bl) + 1) + (n(B.) + 1) + ... + (n(B,) + I) + neD) 
~ p + n(Bl) + ... + nCB,) + neD) = n(C). 

Hence Ale is balanced. 
~ To prove that, conversely, every balanced word is significant, we 
need the following two Ienunas : 

LEMMA I. Let A be a balanced word. Tlzen for each integer Ie such tkat 
o ~ Ie < leA) there exists exact~ one balanced segment S oj A which begins at 
the (Ie + I)th place. 

The uniqueness of S is an inunediate consequence of the following remark : 
if T is a balanced word, then by definition no proper initial segment 
of T is balanced. Let us prove the existence of S. Write A = BC where 
I(B) = Ie. For each i such that 0 ~ i ~ fJ = 1(C), let Cj be the initial 
segment of C of length i. Since B is a proper initial segment of A, 
we have 

I(C,) = leA) -ICB) ~ n(A) + I - nCB) = n(C,) + 1. 

On the other hand, we have 0 = I(Co) ~ n(Co) = O. Let i be the 
largest of the integers j < q such that I(Ch) ~ n(Ch) for 0 ~ h ~ j; then 
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we have I(Gi) ~ n(Gi) and l(q+!) ~ n(q H) + 1. We show that Gi+1 

is balanced : the condition relating to proper initial segments is satisfied 
by reason of the definition of i; on the other hand, we have 

so that I(Gi+!) = n(Gi+1) + I, and the proof of Lemma 1 is complete. 

LEMMA 2. Every balanced word A can be put in the form 

A =f AlAs ... Ap, 

where the Ai are balanced and n(f) = p. 

Let f be the initial sign of A. By Lemma 1, A can be written as 

f AlAs··· Ap, 

where the Ai are balanced : we need only define Ai inductively as the 
balanced segment of A which begins at the k(i)th place, where 

k(i) = 2 + ~ I(Aj)' 
J<i 

Moreover, we have 

I +l(AI) + ... + leAp) = leA) = n(A) + I 
= n(f) + neAl) + ... + neAp) + I 
=n(f) + (I(AI)-I)+ ... +(l(Ap)-I) +1, 

from which it follows that n(f) = p. 

~ Now that the two lemmas have been proved, it is obvious by 
induction on the length of A that every balanced word A is significant, 
by reason of Lemma 2 and Proposition 1. 

COROLLARY I. Let A be a significant word. For each integer k such that 
o ~ k < leA) there is exactly one significant segment of A which begins at the 
(k + I)th place. 

COROLLARY 2. Every significant word may be written in exactlY one way in the 
form f AlAs ... A p, where the Ai are significant and n(f) = p .• 

4. APPLICATION TO ASSEMBLIES IN A MATHEMATICAL THEORY 

Suppose that the set S is the set of signs ofa mathematical theory iD. We 
put nCO) = 0, n('t) = n(l) = 1, n( V) = 2, n(x) = 0 for every letter X; 
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and finally, for every specific sign s of to, n(s) is the weight of s, which 
is fixed when to is given. 

~ Let A be an assembly in~. We denote by A* the word obtained by 
deleting the links in A, and we shall say that A is balanced if A* is 
balanced [in 1.0(8)]. A segment of A is any assembly obtained by replac­
ing, in a segment S of A*, the links which, in A, join pairs of signs in S. 

CRITERION 1. If A is a term or a relation in to, then A is balanced. 

Let AI> A., ... , A" be a formative construction in to, in which A 
appears. Let us argue by induction and suppose that we have proved 
that the AJ of indices j < i are balanced; then we have to prove that Aj 
is balanced. The proof goes just as in the first part of the proof of Propo­
sition 2, except when Ai is of the form 'tx(B) with B = AJ and j < i. 
In this case, let C be the assembly obtained by replacing x, wherever it 
occurs in B, by D. The word A~ is then identical with 'tC*; now B* 
is balanced, and therefore C* is balanced (because n(D) = n(x) = 0). 
Consequendy Ai is balanced. 

~ We have thus obtained a necessary condition for an assembly in to to be 
a term or a relation. But this condition is not sufficient, as we shall see. 
~ Let A be a balanced assembly in to. If A begins with a letter or a 0, 
then A must consist of this sign alone (Proposition 2, Corollary 2). For 
all other cases, we shall now define the assembly or assemblies antecedent 
to A. 

(1) If A begins with a 1, or a V, or a specific sign, then A* can 
be put in exactly one way in the form I BIB • ... Bp, where I is a sign of 
weight p ;;:; 1 and the B j are balanced (Proposition 2, Corollary 2). 
The segments AI' As, ... , Ap of A which correspond to the segments 
Bl , B., ... , Bp of A* are called the assemblies antecedent to A. More­
over, we shall say that A is perfectly balanced if A is identical with 

I AlA • ... Ap , 

in other words if no link in A joins I to one of the B j , or joins two 
distinct Bj • 

(2) If A begins with a 't, then A * is of the form 'tB, where B is 
balanced (Proposition 2, Corollary 2). In this case an assembly antecedent 
to A is any of the assemblies Al defined as follows : replace the signs 0 
in B which are linked in A to the initial 't by a letter x distinct from 
the other letters which appear in B, and replace the links which join two 
signs of B in A. (If, instead of x, we substitute a letter y which also 
does not appear in B, we obtain an assembly which is just (ylx)A1.) 

Moreover, we shall say that A is perfectly balanced if A is identical with 
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'tX(Al)' in other words if no link joins the initial 't to any sign of Bother 
than a O. 
~ We can now state the following criterion: 

CRITERION 2. Let A be a balanced assemblY in 10. 
~ For A to be a term it is necessary and szifficient that one of the following conditions 
be satisfied: (1) A consists of a single letter; (2) A begins with a 't, is perfectlY 
balanced, and its antecedent assemblies are relations (by CF8, it is enough to 
verify that one antecedent assembly is a relation); (3) A begins with a 
substantific sign, is perfectlY balanced, and its antecedent assemblies are terms. 
~ For A to be a relation it is necessa~y and sufficient that one of the following 
conditions be satisfied : ( 1 ) A begins with a V or a 1, is perfectlY balanced, and 
its antecedent assemblies are relations; (2) A begins with a relational sign, is 
perfectlY balanced, and its antecedent assemblies are terms. 

The criteria CFl to CF4 (§ 1, no. 4) show that the conditions are sufficient. 
Let us show that they are necessary. We have already seen (§ 1, no. 3) 
that if A is a relation, then A begins with a V, or a 1, or a relational 
sign. The reasoning is similar in each of the three cases. If, for example, 
A begins with a V, then A is of the form V BC, where Band C are 
relations, so that Band C are the assemblies antecedent to A; hence A 
is perfectly balanced. If A is a term, then there are two cases : it consists 
of a single letter, or it begins with either a substantific sign or a 'to In 
the second case, we argue as above. If A begins with a 't, the definition 
of a formative construction shows that A is of the form 'tx(B), where B 
is a relation and X a letter, so that we may take B as assembly antecedent 
to A, and A is perfectly balanced. 

When we wish to test whether a given assembly A (not consisting of a 
single letter) is a relation (resp. a term) in G, we first verify that A is 
balanced and that it begins with a V, a 1, or a relational sign (resp. 
with a 't or a substantific sign). Then we form the antecedent assembly 
or assemblies, and verify (if appropriate) that A is perfectly balanced. 
Having done this, we are left with an analogous problem relating to 
shorter assemblies. Thus, step by step, we come down to assemblies 
each of which consists of a single sign, for which the solution is immediate. 

Remark. Except in certain mathematical theories which are particularly 
weak in axioms (cf. Exercise 7) we have no general procedure of this type 
to enable us to test whether or not a given relation R in a theory G is a 
theorem in 'G. 
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§ I 

I. Let 'CO be a theory with no specific signs. Show that no assembly 
in 'CO is a relation, and that the only assemblies in 'CO which are terms are 
assemblies consisting of a single letter. 

2. Let A be a term or a relation in a theory 'CO. Show that every sign 
o in A (if there is any) is linked to a single sign 't situated to its left. 
Show that every sign 't in A (if there is any) is either not linked at all 
or else is linked to certain signs 0 situated to its right. Show also that 
no other sign is linked. 

3. Let A be a term or a relation in a theory 'CO. Show that every 
specific sign, if there is any, is followed by D, or 't, or a letter, or a 
substantific sign. 
~ 4. Let A be a term or a relation in a theory 'CO, and let B be an 
assembly in 'CO. Show that AB is neither a term nor a relation in 'CO. 
(Use induction on the number of signs in A.) 

5. Let A be an assembly in a theory 'CO and let x be a letter. Show 
that if 'tx(A) is a term in 'CO, then A is a relation in 'CO. 

6. Let A and B be assemblies in a theory 'CO. If A and ==> AB 
are relations in 'CO, prove that B is a relation in 'CO (use Exercise 4). 

§ 2 

1. Let 'CO be a theory, let AI> A2, ••• , An be its explicit axioms and 
"1' "2' ... , ala its constants. 

(a) Let 'CO' be the theory whose signs and schemes are those of 'CO, and 
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whose explicit axioms are AI' As, ... , A"-l' The axiom All is said to be 
independent of the other axioms of ~ if~' is not equivalent to~. This 
will be so if and only if A" is not a theorem of ~'. 

(b) Let ~" be a theory whose signs and schemes are the same as those 
of~. Let Tu Til, ... , Th be terms of ~ such that 

is a theorem of ~" for i = 1, 2, ... , n - 1, and such that "not 
(TII"I)(Tsl"z) ... (Thl"h)A,," is a theorem of ~". Then either A" is 
independent of the other axioms of~, or else ~" is contradictory. 

§ 3 

1. Let A, B, C be relations in a logical theory~. Show that the 
following relations are theorems in ~ : 

A~(B~A), 

(A => B) ~ «B ~ C) ~ (A => C», 
A => «not A) ~ B), 

(A or B) ~ «A ~B) =>B), 
(A ~ B) ~ «A and B) or «not A) and (not B»), 

(A ~ B) ~ not «not A) ~ B), 
(A => (B or (not C») ~ «C and A) => B), 

(A => (B or C» ~ (B or (A => C», 
(A => B) => «A ~ C) => (A => (B and C»), 
(A => C) ~ «B~ C) => «A or B) => C», 

(A ~ B) ~ «A and C) ~ (B and C», 
(A => B) ~ «A or C) ~ (B or C». 

2. Let A be a relation in a logical theory~. If A +=> (not A) 
is a theorem of~, then ~ is contradictory. 

3. Let AI> As, ... , A" be relations in a logical theory ~. 
(a) To prove the relation "AI or All or ... or All" in ~, it is 

enough to prove An in the theory obtained by adjoining to ~ the axioms 
not Au not All, ... , not An-I' 

(b) If "AI or All or ... or An" is a theorem in ~, then to prove a 
theorem A in ~ it is sufficient to prove the theorems 
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4. Let A and B be relations in a logical theory iO. Let AlB denote 
the relation "(not A) or (not B)". Prove the following theorems 
in 'iD: 

(not A) <==> (AlA), 
(A or B) ~ «AIA)I(BIB)), 

(A and B) ~ (A B) (A B», 
(A ~ B) <==> (AI (BIB»). 

5. Let iO be a logical theory with explicit axioms AI> A 2, ••• , An. 
Then An is independent of the other axioms of iO (§ 2, Exercise) if and 
only if the theory whose signs and schemes are the same as those of 'iD, 
and whose explicit axioms are AI' A 2, ••• , An-I, "not An", is not 
con tradictory. 

§ 4 

In all the Exercises fOT § 4, 'iD denotes a quantified theory. 

1. Let A and B be relations in 'iD, and let x be a letter which does 
not appear in A. Then (Vx)(A ~ B) <==> (A ~ (Vx)B) is a theo­
rem in 'iD. 

2. Let A and B be relations in 'iD, and let x be a letter, distinct from 
the constants of 'iD, which does not appear in A. If B ~ A is a theo­
rem in iO, then «3x)B) ~ A is a theorem in 'iD. 

3. Let A be a relation in iO and let x and y be letters. The rela­
tions 

(Vx) (Vy)A ~ (Vx) «xly)A), (3x)«xly)A) ~ (3x)(3y)A 

are then theorems in 'iD. 
4. Let A and B be relations in 'iD and let x be a letter. Show that 

the relations 
(Vx)(A or B) ~ «Vx)A or (3x)B), 
(3x)A and (Vx)B~ (3x)(A and B) 

are theorems in 'iD. 
5. Let A and B be relations in 'iD, and let x and y be letters. If 

x does not appear in B, nor y in A, then 

(Vx)(Vy)(A and B) ~ «Yx)A and (Yy)B) 

is a theorem in 'iD. 
6. Let A and R be relations in 'iD, and let x be a letter. Then the 

relations (3Ax)R ~ (3x)R, (Vx)R ~ (V Ax)R are theorems in 'iD. 
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7. Let A and R be relations in '0, and let x be a letter distinct from 
the constants of '0. If R ~ A is a theorem in '0, then 

is a theorem in '0. If (not R) ~ A is a theorem in '0, then 

is a theorem in '0. In particular, if A is a theorem in '0, 

and 

are theorems in '0. 
8. Let A and R be relations in '0, let T be a term in '0 and let x 

be a letter. If (Txl)A is a theorem in '(0, then (Tlx)R ~ (3Ax)R 
and (V Ax)R ~ (Tlx)R are theorems in '0. 

§5 

In all the Exercises for § 5, '0 denotes an equalitarian theory. 

1. The relation x = y is functional in x in '(9. 

2. Let R be a relation in '(0 and let x, y be distinct letters. Then 
the relations (3x)(x = y and R), (Ylx)R are equivalent in '0. 

3. Let Rand S be relations in '0, let T be a term in '(9, and let x 
and y be distinct letters. Suppose that y is not a constant of T and 
that x does not appear in T. Let '0' be the theory obtained by adjoining 
S to the axioms of '0. If R is functional in x in '(0', and if (TIY)S is a 
theorem in '(9, then the relation (Tly)R is functional in X in '0. 

4. Let Rand S be relations in '0, and let x be a letter which is not 
a constant of '0. If R is functional in x in '0, and if R ~ S is a 
theorem in '(9, then S is functional in x in '0. 

5. Let R, S, T be relations in '0 and let x be a letter. If R is func­
tional in x in '(9, show that the following relations are theorems in '(9 : 

(not (3x)(R and S» ~ (3x)(R and (not S», 

(3x)(R and (S and T» ~ (3x) (R and S) and (3x)(R and T», 
(3x)(R and (S or T» ~ «3x)(R and S) or (3x)(R and T». 

6. Show that if the scheme (3x)R ~ R provides implicit axioms in 
'(9, then x = y is a theorem in '(9 (cf. Exercise 1). 

59 



DESCRIPTION OF FORMAL MATHEMATICS 

7. Show that if the scheme (R -<==> S) ==> ('[x(R) = '[xeS)) provides 
implicit axioms in G, then x = y is a theorem in G. (Take R to be the 
relation x = x, S the relation x = y, and then substitute x for y in the 
axiom thus obtained.) (*) 

APPENDIX 

1. Let S be a set of signs, let A be a word in Lo(S), and B, G be two 
significant segments of A. Then either B is a segment of G, or G is a 
segment of B, or else Band G are disjoint. 

2. Let S be a set of signs, let A be a significant word in Lo(S), and 
suppose that A = A'BA", where B is significant. Show that, if G is a 
significant word, then the word A'GA' is significant. (Use Exercise 1.) 

3. Let E be a set and let / be a mapping of E X E into E ("internal 
law of composition"). Let S be a set of signs which is the disjoint union 
of E and the set consisting of the single element J. Put n(/) = 1, and 
n(x) = 0 for all x e E. 

(a) Let M be the set of significant words of Lo(S), Show that there is 
a unique mapping v of Minto E satisfying the following conditions : 
(1) vex) = x for all x e E; (2) if A and B are two significant words, 
then v(/AB) =/(v(A), v(B». 

(b) For each word A = (Si)O~i~" in Lo(S) let A* be the word (Silt), 
where the ik are the indices i such that Si :F J, arranged in ascending 
order. Two words A, B of Lo(S) are said to be similar if A* = B*. 
Show that if the law of composition / is associative, i.e., if 

/(/(x, y), z) =/(x, fey, z», 

then v(A) = v(B) whenever A and B are similar significant words 
("general theorem of associativity"). (A significant word 

A = (Si)O~i~B" 

is said to be normal if Si =/ for i = 0, 2, 4, ... , 2n - 2, and Si #=/ 
for the other indices. Show that every significant word is similar to a 
unique normal word A', and prove that v(A) = veA') by induction on 
the length of A.) 
!f 4. Let A be a term or a relation in a theory G. Consider the 
sequence of assemblies defined as follows. First of all, write A. If A 

(*) We shall see that in the theory of sets (3x) (311) (x #= y) is a theorem (Chapter 
II, § 1, Exercise 2). . 
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consists of a single letter, stop there. If not, write next the assembly 
or assemblies antecedent to A (if A begins with a 't', choose one of the 
antecedent assemblies arbitrarily). Then write the assembly or assemblies 
antecedent to those of the preceding assemblies which do not consist of a 
single letter; and so on. 

(a) If we reverse the order of this sequence of assemblies, we get a for­
mative construction. 

(b) Let B be a balanced segment of A such that no sign of B is 
linked in A to a sign outside B. Show that B is either a term or a rela­
tion (use (a) and Exercise I). 

(c) Replace B in A by a term (resp. a relation) if B is a term (resp. 
a relation). Show that the assembly thus obtained is a term if A is a 
term, a relation if A is a relation. 

5. Let A be an assembly in a theory 'iV, let T be a term in 'iV, and 
let x be a letter. If (Tlx)A is a term (resp. a relation), then A is a 
term (resp. a relation). (Use Exercise 4.) 

6. A relation in a theory 'iV is said to be logically irreducible if it begins 
with a relational sign. Let R I , R 2, ••• , Rn be distinct logically irredu­
cible relations in 'iV. A logical construction with base R I , R 2, ••• , Rn is 
any sequence AI' A 2, ••• , Ap of assemblies in 'iV such that each Ai satis­
fies one of the following conditions : (I) Ai is one of the relations 
R I , R 2, .•• , Rn; (2) there exists an assembly A j preceding Ai such 
that Ai is lA j ; (3) there exist two assemblies Aj and Ak preceding Ai 
such that V Ai is A jA k • 

(a) Show that the assemblies in a logical construction with base 

are relations in (0. A relation which appears in such a logical construc­
tion is said to be logically constructed from R1, R 2, ••• , Rn. 

(b) If Rand S are logically constructed from RI , R 2, ••• , Rn, then 
so are lR, V RS, ~ RS, "R and S", R ~ S. 

(c) Let R be a relation in 'iV. Consider the sequence of relations 
defined as follows. First of all, write R. If R is logically irreducible, 
stop there. If not, write next the assembly or assemblies antecedent to 
R (which are well determined relations). Then write the assembly or 
assemblies antecedent to those of the preceding assemblies which are not 
logically irreducible; and so on. Let R I , R 2, ••• , Rn be the distinct 
logically irreducible relations which arise from this construction; they are 
called the logical components of R. Show that R is logically constructed 
from its logical components, but that if one of the relations of the sequence 

61 



I DESCRIPTION OF FORMAL MATHEMATICS 

R1, R B, 0 0 0, R,. is omitted, then R is not logically constructed from the 
remaining (n - 1) relations. 

(d) Let R be a relation and let Ru Ra, 0 0 0, R,. be distinct logically 
irreducible relations such that (1) R is logically constructed from 
Ru R a, 0 0 0' R,,, (2) if we omit one relation from the sequence 
Ru R 2, 0 0 0, Rn, then R is not logically constructed from the remaining 
relations. Show that Rl> R B, 0 0 0' Rn are the logical components of R. 
~ 7. Let Ru R a, ••• , Rn be distinct logically irreducible relations 
(Exercise 6) in a theory '(0. Let Au AB, ••• , Am be a logical construc­
tion with base Ru Ra, ••• , R,.. Suppose that each RJ is endowed with 
one of the signs 0, 1. Then we give each Ai one of the signs 0, 1 accord­
ing to the following rules: (1) if Ai is identical with RJ, give Ai the 
same sign as RJ; (2) if Ai is identical with lAJ, where AJ precedes Ai, 
then give Ai the sign 1 (resp. 0) if AJ has the sign 0 (resp. 1); (3) if 
Ai is identical with vA JA k , give Ai the sign 1 if A J and Ak both have 
the sign 1; otherwise give Ai the sign O. (We are applying the following 
"symbolical rule" : 

10 = 1, 11 = 0, V 11 = 1, VIO = VOl = vOO = 0.) 

(a) Show that there is only one way of attributing a sign to each A, 
in accordance with these rules. 

(b) If R is logically constructed from Rl> RB, ••• , R,., then the sign 
carried by R is independent of the logical construction, with base 

R1, RB, ••• , RII, 

in which R appears. 
(c) If Rand S are logically constructed from R1, Ra, 000, R,., and if 

the signs carried by R and ~ RS are 0, then the sign carried by S 
is O. 

(d) Suppose from now on that the onry axioms of '(0 are those provided 
from the schemes SI through S4. Let R be a theorem in '(0, and let 
Ru Ra, ••• , R,. be its logical components. Show, however, that the 
signs 0 and 1 are given to R 1, Ra, 0 0 0, Rn, and the sign carried by 
R is O. (Prove this first for the case when R is an axiom of '(0; in the 
general case, consider a proof of R, and apply (c» '(0. 

(e) Let R be a logically irreducible relation in '(0. Show that neither 
R nor "not R" is a theorem in '(0. In particular, '(0 is non-contradict­
ory (use (d». 

(f) Let R1, Ra, 0 0 0' Rn be distinct, logically irreducible relations in '(0. 
Consider all relations of the form "R~ or R~ or 0 o. or R~" where, for 
each i, Ri is one of the two relations Ri , "not Rt. Let SI' S2; 0 0 0' Sp 
be these relations. Let Tu TB, • 0 ., Tq be the relations of the form 
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~'Sit and Sit and ... and Sj ", where iI, is, ... , ir is any strictly increas-
109 sequence of indices. r Finally, let To be the relation "R1 or 
(not R1)", which is a theorem in 'iii. Show that every relation logically 
constructed from R 1, R a, ... , Rn is equivalent in 'iii to exactly one of 
the relations To, TI , ... , Tq• (Show first that every relation R j is equi­
valent in 'iii to one of the relations To, TI , ... , Tq• If R is logically 
constructed from R1, Ra, ... , Rm argue step by step on a logical con-
struction with base Ru R a, ... , Rn which contains R. Finally, use (d) 
to prove uniqueness.) 

(g) Let R be a relation in 'iii, and let Ru R z, ... , Rn be its logical 
components. Then R is a theorem in 'iii if and only if, however the 
signs 0 and 1 are assigned to R1, Ra, .•• , Rn> the corresponding sign 
carried by R is O. 

" 8. Let Ru R s' ... , Rn be the logically irreducible relations in a 
theory '(0 (Exercise 6). Assign to each of the relations Rj one of the signs 
0, 1, 2. To each relation in a logical construction with base Ru Rs, ... , Rn 
we assign one of the signs 0, 1, 2 in accordance with the following sym­
bolical rules (Exercise 7) : 

10=1, 11=0, 12=2; 
V 00 = VOl = V 02 = V 10 = V 20 = V 22 = 0; 

V 11 = 1, V 12 = v21 = 2. 

(a) If R is logically constructed from Rl> R s, ... , Rn, the sign carried 
by R is independent of the logical construction, with base Rl> R 2, ••• , R n, 
in which R appears. 

(b) Suppose that the only axioms of 'iii are those provided by the 
schemes S2, S3, S4. Let R be a theorem in 'iii. Show that however the 
signs 0, 1, 2 are assigned to the logical components of R, the correspond­
ing sign carried by R is O. On the other hand, if S is logically irreduc­
ible and has sign 2, then the sign carried by (S or S) => S is 2. 
Deduce that 'iii is not equivalent to the theory which has the same signs 
as 'iii and whose axioms are provided by the schemes Sl, S2, S3, S4. 

(c) Establish an analogous result for theories based only on the schemes 
SI, S3, S4, or on the schemes SI, S2, S4. (Use respectively the following 
rules : 

10 = 1, 11 = 0, 12 = 2, vOO = vOl = V 10 = v02 = v20 = 0, 
V 11 = 1, V 12 = V 21 = 1, V 22 = I; 

10=1, 11=2, 12=0, 
vOO = vOl = V 10 = v02 = v20 = v21 = 0, 

vII = V 12 = I, V 22 = 2.) 
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(d) Establish an analogous result for a theory based only on the schemes 
SI, S2, S3. (Use four signs 0, 1, 2, 3 and the following rules : 

10 = 1, 11 = 0, 12 = 3, 13 = 0, 
VOO= vOl = VIO= v02= v20= v03= V30= v23 = v32=O, 
vll = 1, VI2 = v21 = v22 = 2, vI3 = v31 = v33 = 3.) 
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CHAPTER II 

Theory of Sets 

1. COLLECTIVIZING RELATIONS 

1. THE THEORY OF SETS 

The theory of sets is a theory which contains the relational signs =, 
e and the substantific sign ::> (all these signs being of weight 2); in 
addition to the schemes SI to S7 given in Chapter I, it contains the scheme 
S8, which will be introduced in no. 6, and the explicit axioms Al (no. 3.) 
A2 (no. 5), A3 (§ 2, no. 1), A4 (§ 5, no. 1), and A5 (Chapter III, § 6, no. 1), 
These explicit axioms contain no letters; in other words, the theory of 
sets is a theory without constants. 

Since the theory of sets is an equalitarian theory, the results of Chapter I 
are applicable. 
~ From now on, unless the contrary is expressly stated, we shall always 
argue in a theory which is stronger (Chapter I, § 2, no. 4) than the theory 
of sets; if the theory is not mentioned, it is to be assumed that 
the theory of sets is implied. It will be evident in many cases that this 
hypothesis is superfluous, and the reader should have no difficulty in deter­
mining in what theory weaker than the theory of sets the results stated 
are valid. 

If T and U are terms, the assembly e TU is a relation (called the 
relation if membership) which in practice we write in one of the following 
ways: T e U, (T) e (U), "T belongs to U", "T is an element of U". 
The relation "not (T e U)" is written T. U. 

From a "naive" point of view, many mathematical entities can be 
considered as collections or "sets" of objects. We do not seek to for­
malize this notion, and in the formalistic interpretation of what follows, 
the word "set" is to be considered as strictly synonymous with "term". 
In particular, phrases such as "let X be a set" are, in principle, quite 
superfluous, since every letter is a term. Such phrases are introduced 
only to assist the intuitive interpretation of the text. 
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2. INCLUSION 

DEFINITION 1. The relation denoted by (V z) ( (z ex) => (z e y) ) , in which 
only the letters X and y appear, is written in one of the following ways : x c y, 
y::J x, "x is contained in y", ')I contains x", "x is a subset of y". The 
relation "not (x c y )" is written x ¢ y or y:l> x. 

In accordance with the conventions mentioned in Chapter I, § 1, no. 1, 
this definition entails the following metamathematical convention. Let 
T and U be assemblies; if we substitute T for x and U for y in the 
assembly x cy, we obtain an assembly which is denoted by T c U; if 
we denote by x, Y letters which are distinct from x, y and distinct from 
each other, and which appear neither in T nor in U, the assembly 
Tc U is then identical with (Tlx)(Uly)(xlx)(YIY)(xcy,) and hence by 
csa, CS9 (Chapter I, §4, no. 1), and CSS (Chapter I, §l, no. 2) with 
(Vz)(ze T) => (ze U)), provided that z is a letter which appears 
neither in T nor in U. 

From now on, whenever we state a mathematical definition, we shall not 
mention the metamathematical convention which it entails. 

CS12. Let T, U, V be assemblies and let x be a letter. Then the assembly 
(Vlx)(Tc U) is identical with (Vlx)Tc (Vlx)U. 

This follows immediately from CS9 (Chapter I, § 4, no. 1) and CS5 (Chap­
ter I, § 1, no. 2). 

eF13. If T and U are terms, Tc U is a relation. 

This follows immediately from CF8 (Chapter I, § 1, no. 4). 

~ Every relation of the form Tc U (where T and U are terms) is 
called an inclusion relation. 

From now on we shall no longer write down explicitly the criteria of substi­
tution and the formative criteria which should follow the definitions. 
It should be noted, however, that these criteria will often be used impli­
citly in proofs. 

To prove the relation x cy in a theory 1O, it is enough, by C27 (Chapter I, 
§ 4, no. 1), to prove that z e y in the theory obtained by adjoining z e x 
to the axioms of 1O, where z is a letter distinct from x, y and the con­
stants of the theory. In pratice we say "let z be an element of x", 
and we attempt to prove Z ey. 
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PROPOSITION 1. xc x. 

Obvious. 

PRoposmON 2. (x cy and y c z) =+- (x c z). 

Adjoin the hypotheses x cy, y c z, and u e x. Then the relations 

(uex) =+- (uey), (u e y) ~ (u e z), 

are true, and therefore the relation u e Z is true. 

3. THE AXIOM OF EXTENT 

The axiom of extent is the following axiom : 

AI. (Vx)(V y) «x c y and y c x) =+- (x = y)). 

§ 1.4 

Intuitively, this axiom expresses the fact that two sets which have the same 
elements are equal. 

To prove that x = y it is therefore enough to prove Z ey in the theory 
obtained by adjoining the hypothesis z e x, and z e x in the theory 
obtained by adjoining the hypothesis z e y, where z is a letter dis­
tinct from x, y, and the constants. 

C48. Let R be a relation, x a letter, and y a letter distinct from x which 
does not appear in R. Then the relation (Vx)«xey) ~R) is single­
valued in y. 

Let z be a letter distinct from x which does not appear in R. Adjoin 
the hypotheses 

(Vx)(xe y) ~ R), (Vx)«xe z) ~ R). 

Then we have successively the theorems 

(Vx)«(x e y) ~ R) and «x e z) ~ R)), 
(Vx)«xey) ~ (xez)), 

ycz, zcy. 

By Al we have then y = z. This proves C48. 

4. COLLECTIVIZING RELATIONS 

Let R be a relation and let x be a letter. If y and y' denote letters 
distinct from x which do not appear in R, then the relations 

(3y)(Vx)«xey) ~R), (3y')(Vx)«xey') ~R) 
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are identical by CSS (Chapter I, §4, no. 1). The relation thus defined 
(which does not contain x) is denoted by ColIxR. 

~ If ColIxR is a theorem in a theory 15, R is said to be collectivizing in x 
in 15. When this is so, we may introduce an auxiliary constant a, dis­
tinct from x and the constants of 15, and which does not appear in R, 
with the introductory axiom (Vx)«xea)~R), or equivalently (if 
x is not a constant of 15) (x e a) ~ R. 

Intuitively, to say that R is collectiving in x is to say that there exists 
a set a such that the objects x which possess the property R are precisely 
the elements of a. 

Examples 

(1) The relation xe y is clearly collectivizing in x. 

(2) The relation x ... x is not collectivizing in x; in other words, (not ColIol: 
(x ... x» is a theorem. Let us argue by contradiction and suppose that 
x ... x is collectivizing. Let a be an auxiliary constant, distinct from x 
and the constants of the theory, with the introductory axiom 

(Vx) «x ... x) ~ (x e a». 
Then the relation 

is true by C30 (Chapter I, §4, no. 3). The method of disjunction of cases 
(Chapter I, §3, no. 3) shows first that the relation a ... a is true, and then 
that the relation a e a is true, which is absurd. 

C49. Let R be a relation and x a letter. If R is collectivizing in x, the 
relation (V x) «x e y) ~ R), where y is a letter distinct from x which does 
not appear in R, is functional in y. 
This follows immediately from C48. 

Very often in what follows we shall have at our disposal a theorem of the 
form CollxR. To represent the term 

'ty(Vx)«xey) ~ R), 

which does not depend on the choice of the letter y (distinct from x 
and not appearing in R), we shall introduce a functional symbol 8x(R); 
the corresponding term does not contain X. This term is denoted by 
"the set of all x such that R". By definition (Chapter I, §4, no. 1) the 
relation 

(Vx)«(xe8x(R» ~ R) 
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is identical with GollxR; consequently the relation R is equivalent to 

G50. Let R, S be two relations and let X be a letter. if R and S are 
collectivizing in X, the relation (V x) (R ~ S) is equivalent to 

0x (R) C 0x (S), 

and the relation (Vx)(R ... S) is equivalent to 0x CR) = 8x (S). 

This follows immediately from the preceding remark and from Definition 1 
and axiom AI. 

5. THE AXIOM OF THE SET OF TWO ELEMENTS 

A2. (Vx)(Vy) Gollz<z = x or Z =y). 

This axiom says that if x and y are objects, then there is a set whose only 
elements are x and y. 

DEFINITION 2. The set 0% (z = x or Z = y), whose only elements are x and 
y, is denoted by {x, y}. 

The relation z e {x, y} is therefore equivalent to "z = x or Z = y" ; 
it follows from G50 that {y, x} = {x,y}. 

Let R I z t be a relation and let x, y be letters distinct from z. From 
the criteria C32, C33 (Chapter I, §4, no. 3), and C43 (Chapter I, §S. no. 1) 
it follows easily that the relation (3z)«ze {x, y}) and Rill) 
is equivalent to "R! x t or R! y I "; consequently the relation 
(Vl)«le{x, y})=>Rjzl) is equivalent to "R!xl and R!yl". 

The set {x, x}, which is denoted simply by {x}, is called the set whose 
only element is x; the relation ze {x} is equivalent to z=x, and the rela­
tion x e X is equivalent to {x} C X. 

6. THE SCHEME OF SELECIION AND UNION 

The scheme of selection and union is the following : 

S8. Let R be a relation, let X and y be distinct letters, and let X and Y be 
letters distinct from x and y which do not appear in R. Then the relation 

(1) (Vy)(3X)(Vx)(R=+ (xeX»=>(VY) Gollx«3y)«ye Y) andR» 
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. . 
IS an axzom. 

Let us first show that this rule is indeed a scheme. Let S denote the 
relation (I), and let us substitute a term T for a letter: in S; by CS8 
(Chapter I, §4, no. I) we may suppose that x, y, X, Yare distinct 
from: and do not appear in T. Then (T/:)S is identical with 

(Vy)(3X)(Vx)(R' ~ (xeX» ~ (VY) Collx (3y)«ye Y) and R'», 

where R' is (T/z)R. 

Intuitively, the relation (Vy)(3X)(Vx)(R~ (xeX» means that 
for every object y there exists a set X (which may depend on y) such 
that the objects x which are in the relation R with the given object y 
are elements of X (but not necessarily the whole of X). The scheme of 
selection and union asserts that if this is the case and if Y is any set, then 
there exists a set whose elements are precisely the objects x which are in 
the relation R with at least one object y of the set Y. 

C51. Let P be a relation, let A be a set, and let x be a letter which does 
not appear in A. Then the relation "P and X e A" is collectivizing in x. 

Let R denote the relation "P and X = y", where y is a letter dis­
tinct from x which appears neither in P nor in A. The relation 

(Vx)(R~ (xe {y}» 

is true by C27 (Chapter I, §4, no. I). Let X be a letter distinct from 
x and y which does not appear in P. The preceding relation is identical 
with ({y}/X)(Vx)(R ~ (x e X») (because x is distinct from y), and 
therefore the relation (Vy)(3X)(Vx)(R~ (xeX» is true by virtue of 
S5 and C27 (Chapter I, §4, nos. I and 2). If follows from S8 and C30 
(Chapter I, §4, no. 3) that the relation 

(AI Y) Collx(3y)(ye Y and R) 

(where Y is a letter which does not appear in R) is true, and this relation 
is identical with ColIx(3 y) (yeA and R) (because neither X nor y 
appears in A). Finally, the relation "yeA and R" is equivalent to 
"x = y and x e A and P" by C43 (Chapter I, §5, no. I); since X 

appears neither in P nor in A, the relation 

(3y) (x = y and x e A and P) 

is equivalent to "( (3y) (x = y» and x e A and P" by C33 (Chapter I, 
§4, no. 3) and therefore to "P and x e A" because (3y) (x = y) is 
true. 
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~ The set 0x (P and x e A) is called the set of all x e A such that P (* thus 
we may speak of the set of all real numbers such that P *). 

C52. Let R he a relation, A a set, and x a letter which does not appear in A. 
If the relation R => (x e A) is a theorem, then R is collectivizing in x. 

For R is then equivalent to "R and x e A". 
Remark. Let R be a relation which is collectivizing in x, and let S 
be a relation such that (Vx)(S=> R) is a theorem. Then S is collec­
tivizing in x; for R is equivalent to x e 0x (R), so that 

is a theorem, and the assertion follows from C52. Notice also that in this 
case we have 0X(S) C 0x(R) by C50. 

C53. Let T be a term, A a set, x and y distinct letters. Suppose that x 
does not appear in A and that y does not appear in A nor in T. Then the 
relation (3x) (y = T and x e A) is collectivizing in y. 

Let R be the relation y = T. The relation (Vy)(R=> (ye {T}) is 
true, hence so is (Vx) (3X) (Vy) (R => (yeX»), where X is a letter, 
distinct from y, which does not appear in R. By virtue of S8, the 
relation (3x) (x e A and R) is collectivizing in y, and C53 is proved. 

~ The relation (3x) (y = T and x e A) is often read as follows: "y can 
be put in the form T for some x belonging to A". The set 

0y «3x)(y = T and x e A») 

is generally called the set of objects of the form T for x e A. The assembly 
so denoted contains neither x nor y, and does not depend on the choice 
of the letter y satisfying the conditions of C53. 

7. COMPLEMENT OF A SET. THE EMPTY SET 

The relation (x EI: A and x e X) is collectivizing in x by C51. 

DEFINITION 3. Let A be a subset of a set X. The set of elements of X which 
do not belong to A, that is to say the set &x (x EI: A and x e X), is called the 
complement of A in X, and is denoted by CxA or X - A (or by CA if there 
is no risk of confusion). 

Let A be a subset of a set X; the relations "x e X and x EI: A" and 
x e CxA are then equivalent. Consequently the relation "x e X and 
x EI: CxA" is equivalent to "x e X and (x EI: X or x e A)", hence to 
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X e A. In other words, A = CxCCxA) is a true relation. Similarly, one 
shows that if B is a subset of X, the relations A c Band CxB c CxA 
are equivalent. 

THEOREM 1. The relation (Vx)(x 41; X) is functional in X. 

For the relation (V x)(x 41; X) implies (VY)(X c Y); by virtue of the 
axiom of extent, the relation (V x) ex 41; X) is therefore single-valued in X. 
On the other hand, the relation (V x) (x 41; CT Y) is true, which proves that 
(3X) (Vx)(x 41; X) is true. 

" The term 'ta;CCVx)(x 41; X» corresponding to this functional relation is 
represented by the functional symbol fJ, and is called the empty set C*); 
the relation (Vx)(x4I; X), which is equivalent to X =fJ, is read as follows: 
"the set X is empty". We have the theorems x 41; fJ, fJ c X, CxX = ~, 
C~ = X. The relation Xc fJ is equivalent to X =~. If R! x ! is a 
relation, the relation (V x) «(x e~) ~ R I x!) is true. 

Remark. There exists no aet of which every object is an clement; in other 
words, "not (3X)(Vx)(xeX)" is a theorem. For if there were such 
a act, then by C52 every relation would be collectivizing. But we have 
seen (no. 4) that the relation x4I;x is not collectivizing. 

2. ORDERED PAIRS 

1. 'I1IE AXIOM OF THE ORDERED PAIR 

As we have said in §1, no. 1, the sign:> is a substantific sign of weight 2 
in the theory of sets. If T, U are terms, then :>TU is a term, which in 
practice is denoted by CT, U). In this notation, the axiom of the ordered 
pair is the following : 

A3. (Vx)(Vx')(Vy)(Vy')«(x, y) = (x', y'» =+ (x = x' and y =y'». 

Since the relation "x = x' and y = y'" implies (x, y) = (x', y') by C44 
(Chapter I, § 5, no. 2), the relation (x, y) = (x', y') is equivaknt to 
"x = x' and y = y"'. 

(*) The term denoted by flJ is therefore ~111 e~ll e~. 
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~ The relation (3x)(3y)(~ = (x,y» is written "~ is an ordered pair". If ~ 
is an ordered pair, the relations 

(3y)(z = (x,y», (3x)(z = (x,y» 

are functional with respect to x and y respectively; this is an immediate 
consequence of A3. 

The terms 

"ta:«3y)(z = (x,y») and "t, «3x)(z = (x,y))) 

are denoted by prlZ and pr~, respectively, and are called the first coor­
dinate (or first projection) and the second coordinate (or second projection) of ~. 
If ~ is an ordered pair, the relation (3y)(z = (x, y» is equivalent to 
x = pr1z, and the relation (3x)(~ = (x, y» to y = pr~ (Chapter I, §5, 
no. 3). 

~ The relation Z = (x, y) is equivalent to "z is an ordered pair, and 
x = prlZ and y = pr~"; for the latter relation is equivalent to 

(3x')(3y')(3x")(3y")(z = (x',y') and Z = (x, y") and Z = (x",y»; 

by A3, "z = (x', y') and Z = (x, y") and Z = (x", y)" is equivalent to 
"z = (x, y) and x = x' and x = x" and y = y' and y = y""; hence 
by C33 (Chapter I, §4, no. 3), "z is an ordered pair, and x = prlZ and 
y = pr~" is equivalent to 

z=(x,y) and (3x')(3y')(3x")(3y")(x=x' and x=x" and y-y' and y-y"), 

which proves our assertion. Evidendy we have 

and the relation Z = (pr1(z), pr2(z» is equivalent to "z is an ordered 
pair". 

~ Let R I x, y { be a relation, where the letters x and y are distinct and 
appear in R. Let z be a Jetter, distinct from x and y, which does 
not appear in R. Let S I z { denote the relation 

(3x)(3y)(z = (x, y) and Rlx, y\); 

this is a relation which contains one letter fewer than R, and which is 
equivalent to "z is an ordered pair and R! pr l.t, pr sZ I ", this follows 
from the fact that z = (x, y) is equivalent to "z is an ordered pair and 
x = prIX and y = pr2Z'" and from criteria C33 (Chapter I, §4, no. 3) 
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and C47 (Chapter I, §5, no. 3). It follows immediately that Rlx, yl 
is equivalent to S I (x, y) I, and also to 

(3,)(: = (x, y) and S I'D 
by C47. 

This means that we may interpret a relation between the objects x and y 
as a property of the ordered pair formed by these objects. 

2. PRODUCT OF TWO SETS 

THEOREM 1. The relation 

(VX)(VY)(3Z)(Vz)«zeZ) ~ (3x)(3y)(z= (x,y) andxeXandyeY) 

is true. In other words, for all X and all Y the relation "z is an ordered 
pair and prlZ e X and pr.z e Y" is collectivizing in z. 

Let Al denote the set of all objects of the form (x, y) for x eX (c£ §l, 
no. 6, criterion C53). Let R be the relation zeAl' which is equivalent 
to (3x)(z = (x,y) and x e X). It is clear that the relation 

(Vy)(3A)(Vz)(R=+- (zeA» 

is true, by virtue of 85 (Chapter I, §4, no. 2). It then follows from sa 
that the relation (3y)(ye Y and R) is collectivizing in z. But this 
relation is equivalent to (3x)(3y)(y e Y and x e X and Z = (x, y»; 
hence the result. 

DEFINITION 1. Given two sets X and Y, the set 

&z((3x)(3y)(z = (x,y) and x e X and ye Y» 

is called the product of X and Y and is denoted by X X Y. 

The relation Z e X X Y is thus equivalent to "z is an ordered pair and 
prlZ e X and pr.z e Y". The sets X and Y are called the first and 
second factors of X X Y. 

PROPOSITION 1. if A', B' are non-empty sets, the relation A' X B' c A X B 
is equivalent to "A' c A and B' c B". 
In the first place, the relation Z e A' X B' is equivalent to "z is an 
ordered pair and prlZ e A' and pr.z e B"'; therefore, without any restric­
tion on A' and B', the relation "A' c A and B' c: B" implies 

A' X B'cA X B. 
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Conversely, let us first show that if B' i= fiS (without restriction on N), 
the relation N X B' c A X B implies N c A. Let x be an element 
of N; since B' i= !li, there is an object y which is an element of B'; we 
have (x, y) eA' X B', hence (x, y) eA X B, and consequently xeA; 
thus N c A. Similarly, if N #: !li, the relation N X B' c A X B implies 
B' c B. Hence the result. 

PROPOSITION 2. Let A and B be two sets. The relation A X B = fiS is 
equivalent to "A = !li or B = fiS". 
For the relation ~ e A X B implies prl~ e A and pr.z e B; hence A i= !li 
and B i= fiS. Conversely, the relation "x e A and ye B" implies 
(x, y) e A X B and hence A X B #: fiS. In other words, the relation 
A X B i= fiS is equivalent to "A i= !li and B i= !li"; hence the result. 

If A, B, C are sets, we write 

(A X B) X C = A X B X C; 

an element ((x, y), z) of Ax B X C is written (x, y, z) and is called a 
triple. Again, if A, B, C, D are sets, we write 

(A X B X C) X D = A X B X C X D; 
and so on. 

3. CORRESPONDENCES 

1. GRAPHS AND CORRESPONDENCES 

DEFINITION 1. G is said to be a graph if every element oj G is an ordered pair, 
i.e., if the relation 

(V z) (z e G ~ (z is an ordered pair» 
is true. 

If G is a graph, the relation ex, y) eGis expressed by saying that 
']I corresponds to x under G". 

Let R I x, y I be a relation, where x and yare distinct letters. 
Let G be a letter, distinct from x and y, which does not appear 
in R. If the relation 

(3G)(G is a graph and (Vx)(Vy)(R ~ «x, y) e G») 

is true, the relation R is said to have a graph (with respect to the letters x 
and y). The graph G is then unique by virtue of the axiom of extent, 
and is called the graph of R with respect to X and y. 
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~ Let Z be a letter, distinct from x and y, which does not appear 
in R. If the relation 

(3Z) (Vx)(Vy) (R ~ ((x, y) e Z» 

is true, then R has a graph; we may take this graph to be the set of ordered 
pairs Z such that z e Z and R! prIz, przZ! (z being a letter distinct 
from x, y, Z which does not appear in R). This condition is satisfied 
if we know a term T, which does not contain either x or y, such that 
R~ (x, y) e T) is true. 

PROPOSITION 1. Let G be a graph. There exists exact?, one set A and 
exactly one set B with the following properties : 
(1) the relation (3y)((x, y) e G) is equivalent to x e A; 
(2) the relation (3x)«(x, y) eG) is equivalent to yeB. 

For it is sufficient to take A (resp. B) to be the set of all objects of the form 
prlZ (resp. przZ) , where ze G (§ I, no. 6). Precisely, 

A = 0(C«3y) «x,y) e G») and B = 0,«3x)(x, y) e G»); 

these sets are called respectively the first and second projections of the graph G, 
or the domain and range of G; they are denoted by pr1<G) and pr2<G) 
(or by prIG and pr2G if there is no risk of confusion). It is immediately 
verified that G c (prIG) X (pr2G); every set of ordered pairs is therefore 
a subset of a product, and conversely. If one of the two sets prlG, pr2G 
is empty, we have G = P (§ 2, Proposition 2). 

Remark. The relation x = y has no graph, for the first projection of the 
graph, ifit existed, would be the set of all objects (cf. § I, no. 7, Remark). 

DEFINlTION 2. A correspondence between a set A and a set B is a triple 

r = (G, A, B), 

where G is a graph such that prIG c A and pr2G c B. G is said to be the 
graph of r, A is the source, and B the target of r. 
If (x, y) e G, we say that "y corresponds to x in the correspond­
ence r". For each x e prIG the correspondence r is said to be defined 
at x, and prIG is called the domain of r; each y e przG is said to be a 
value taken by r, and prsG is called the range of r. 
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say that R is a relation between an element of A and an element of B (with 
respect to the letters x, y). The correspondence r = (G, A, B) is said 
to be the correspondence between A and B defined by the relation R 
(with respect to x and y). 

Let G be a graph and let X be a set. The relation 

xeX and (x, y) eG 

implies (x, y) e G and therefore has a graph G'. The second projec­
tion of G' consists of all the objects which correspond under G to objects 
ofX. 

DEFINITION 3. Let G be a graph and X a set. The set of all objects which 
correspond under G to elements of X is called the image of X under G and 
is denoted by G(X) or G(X). 
~ Let r = (G, A, B) be a correspondence and let X be a subset of A. The set 
G(X) is also denoted by r(X) or reX) and is called the image of X under r. 

Remarks 
(1) Precisely, G(X) denotes the set g,«3x)(xeX and (x,y) eG». 
From now on we shall not usually translate our definitions into formal 
language. 

(2) The notations G(X) and reX) can occasionally lead to confusion 
with the notation introduced later (cf. no. 4, Remark following Defini­
tion 9). 

Let G be a graph. Since the relation (x, y) e G implies y E prlP, we 
have G<X) c pr2G for every set X. Since (x, y) e G implies x e prIG, 
we have G<prIG) = pr,P. We have G<~) =~, since x" ~ is a theo­
rem. If Xc pr1G and X =fi ~, we have G<X) =fi ~. 

PROPOSITION 2. Let G be a graph and let X, Y be two sets,' then the relation 
Xc Y implies G(X) c G(Y). 

This is an immediate consequence of the definitions and ofC50 (§ 1, no. 4). 

COROLLARY. If A:> prIG, we have G<A) = pr2G. 

DEFINITION 4. Let G be a graph and x an object. The set G({x}) (which 
is sometimes denoted by G(x), by abuse of language) is called the section 
of G at x. 

It follows immediately from C43 (Chapter I, § 5, no. 1) that the relation 
ye G({x}) is equivalent to (x, y) e G. If G and G' are two graphs, 
the relation G c G' is thus equivalent to 

(Vx) (G({x}) c G'<{x}». 
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If r = (G, A, B) is a correspondence between A and B, then for every 
x e A the section of G at x is also called the section of r at x and is 
denoted by r({x}) (or rex»~. 

2. INVERSE OF A CORRESPONDENCE 

Let G be a graph and A = prIG, B = praG its projections. The rela­
tion (y, x) e G implies (x, y) e B X A; this relation therefore has a graph 
which consists of all ordered pairs (x, y) such that (y, x) e G. 

DEFINITION 5. Let G be a graph. The graph whose elements are the ordered 
pairs (x, y) such that (y, x) eGis called the inverse of G and is denoted 

-1 

by G. 
-1 

For every set X, G(X) is called the inverse image of X under G. 
-1 

~ It is clear that the inverse of G is G, and that 

In particular, if X, Yare two sets, we have 

-1 
~ 
XxY=YxX. 

-1 

A graph G is said to be symmetric if G = G. 

~ Let r = (G, A, B) be a correspondence between A and B. Since 
-1 -1 -1 

prIG c Band pr2G c A, the triple (G, B, A) is a correspondence between 
-1 

B and A, called the inverse of the correspondence r, and denoted by r. 
-1 -1 

For every subset Y of B, the image r(Y) of Y under r is also called 
-1 

the inverse image of Y under r. Clearly the inverse of r is r. 

3. COMPOSmON OF TWO CORRESPONDENCES 

Let G, G' be two graphs. Let A denote the set prIG and let C denote 
the set praG/. The relation (3y)(x, y) e G and (y, z) e G') implies 
that (x, z) e A X C, and therefore has a graph with respect to x and z. 

DEFINITION 6. Let G, G' be two graphs. The graph (with respect to x and z) 
of the relation (3y) «x, y) e G and (y, z) e G') is called the composition of 
GI and G, and is denoted by Glo G (or sometimes by GIG). 
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PROPOSITION 3. Let G, G' he two graphs. The inverse of G' 0 G is then 
-1 -1 

GoG'. 

For the relation "(x, y) e G and (y,~) e Gm is equivalent to 

-1 -1 

(~, y) e G' and (y, x) e G. 

PROPOSITION 4. Let G1, Ga, Ga he graphs. Then 

The relation (x, t) e (Ga 0 G2) 0 G1 is equivalent to the relation 

(3y)((x, y) e G1 and 3~((y, ~) e Gs and (~, t) e G3)) 

and therefore (by C33 (Chapter I, §4, no. 3)) to the relation 

(1) (3y)(3~)((x, y) e G1 and (y, ~) eGa and (~, t) e G3). 

Similarly, the relation (x, t) e G3 0 (G2 o G1) is equivalent to 

(2) (3~)(3y)((x, y) e G1 and (y,~) e G2 and (~, t) eGa). 

But the relations (1) and (2) are equivalent; hence the result. 

~ The graph Gs 0 (Ga 0 G1) is denoted by Gs 0 Ga 0 G1• Similarly, if 
G1, Ga, G3, G, are graphs, we put 

and so on. 

PROPOSITION 5. Let G, G' be graphs and Zet A be a set. TMn 

(G' 0 G) (A) = G' (G(A». 

For by virtue of C33 (Chapter I, § 4, no. 3) the relation ~ e (G' 0 G) (A) 
is equivalent to 

(3y) ((3x) (x e A and (x, y) e G) and (y, ~) e G') 

and is therefore equivalent to (3y)(ye G(A) and (y, ~) e G'); hence 
the result. 

-1 

~ If G and G' are two graphs, we have prl(G' 0 G) = G(pr1G'), and 
pra(G' 0 G) = G'(praG). For example, to prove the second of these 

79 



II THEORY OF SETS 

relations it is enough to note that the relation z e pra(G' 0 G) is equivalent 
to (3x) «x, z) e G' 0 G) and therefore to 

(3y)(3x)(x, y) e G) and (y, z) e G'); 

but this is equivalent to z e G' (pr2G). 
~ If G is a graph and X a set such that X c: prIG, we have 

-1 

Xc: G(G(X) ). 

For the relation x e X implies by hypothesis that (3y)«x, y) e G); 
-1 

but (x, y) eGis equivalent to (y, x) e G, and on the other hand 
(x, y) e G implies (3z) (.e; e X and (z, y) e G); hence x e X implies 

-1 

(3y) ((3.e;)(z E X and (.e;, y) e G) and (y, x) e G), 

-1 

that is to say, x e G(G(X) ). 
~ It is clear that if G1, Ga, G~, G~ are graphs, the relations G1 c: Ga 
and G~ c: G~ imply G~ 0 G1 c: G~ 0 Gil. 
~ Let r = (G, A, B) and r' = (G', B, C) be two correspondences such 
that the target of r is the same as the source of r'. From the above 
discussion we have prl(G' 0 G) c: prIG c:A and pr2(G' 0 G) c: pr2G' c: C; 
hence we may state the following definition : 

DEFINITION 7. Let r = (G, A, B) and r' = (G', B, C) be two correspond­
ences such tlzat the target oj r is the source oj r'. TIzen the correspondence 
(G' 0 G, A, C) is called tke composition of r' and r, and is denoted by r' 0 r 
(or sometimes r'r). 
It follows immediately from Proposition 5 that if X is a subset of A 
we have (r' 0 r) (X) = r' (r(X) ). Furthermore, since the target of 
-1 -1 -1 -1 

r' is the same as the source of r, the inverse of r' 0 r is r 0 r', by 
Proposition 3. 

DEFINITION 8. If A is a set, the set d A of all objects oj the form (x, x), 
wlzere x e A, is called the diagonal oj A X A. 

Clearly we have pr1dA = prlldA = A. The correspondence 

IA = (dA> A, A) 

is called the identi~ correspondence on A; it is its own inverse. 

~ If r is a correspondence between A and B and if lA' IB are theiden­
tity correspondences on A, B, respectively, then r 0 IA = IB 0 r = r. 
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4. FUNCI10NS 

DEFINITION 9. A graph F is said to be a functional graph if for efJ&h x there 
is at most one object which corresponds to x under F (Chapter I, § 5, no. 3). 
A correspondence f= (F, A, B) is said to be afunction if its graph F is afunc­
tional graph and if its source A is equal to its domain pr1F. In other words, 
a correspondence f = (F, A, B) is a function if for every x belonging to tke 
source A off the relation (x, y) e F isfunctional in y (Chapter I, § 5, no. 3); 
tke unique object which corresponds to x under f is called the value of f at tke 
element x of A, and is denoted by f(x) (or fa;, or F(x), or Fa;). 

If f is a function, F its graph, and x an element of the domain of f, 
the relation y = f (x) is then equivalent to (x, y) e F (Chapter I, § 5, 
no. 3, criterion C46). 

Remo.rk. The reader should beware of the confusion which may arise from 
the simultaneous use of the notations f(x) and f(X) (synonymous with 
f(X») introduced in Definition 3 (cf. Exercise 11). 

Let A and B be two sets; a mapping of A into B is a function f whose 
source (which is equal to its domain) is equal to A and whose target is 
equal to B; such a function is also said to be defined on A and to take its 
values in B. 

Instead of the phrase "let f be a mapping of A into B", the following 
phrases are often used : "let f: A _ B be a mapping" or even "let 
f: A - B". To simplify the presentation of an argument involving 
several mappings, we use diagrams such as 

A~~C~E 
hn/l 

f 
in which a group of signs such as A _ B is to be interpreted as meaning 
that f is a mapping of A into B. 

A function f defined on A is said to transform x into f (x) (for all x e A) ; 
f(x) is called the transform of x by f or (by abuse of language) the image 
of x under f. 
~ Under certain circumstances, a functional graph is called a family; the 
domain is then called the index set, and the range is called (by abuse of 
language) the set of elements of the family. It is mainly in this connection 
that the indicial notation fa; is used to denote the value of f at the ele­
ment x. When the index set is the product of two sets, we often speak 
of a double family. 
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~ Likewise a function whose target is E is sometimes called a family of 
elements of E. If every element of E is a subset of a set F, we speak 
of a family of mlmts of F. 

Throughout this series we shall often use the word "function" in place 
of "functional graph". 

Examples of functions 

(1) The empty set is a functional graph. Every function whose graph 
is empty has domain and range equal to the empty set. Among such 
functions, the one whose target is empty (i.e., the function (pi, pi, pi» 
is called the empty function. 

(2) Let A be a set. The identity correspondence of A (no. 3) is a 
function, called the identity mapping of A. 

Thus with every set A there is associated a family, defined by the identity 
mapping of A, whose index set is A and whose set of elements is A. By 
abuse of language, a set is sometimes referred to as a "family", in which 
case it is the family thus associated with the set in question. 

A function f is said to be constant if for all x and x' in the domain of f 
we have f(x) =f(x'). 
~ Let f be a mapping of a set E into E. An element x of E is said to 
befixed under f if f(x) = x. 

5. RESTRIcnONS AND EXTENSIONS OF FUNcnONS 

Two functions f and g are said to agree (or coincide) on a set E if E 
is contained in the domains off and g and if f(x) = g(x) for all x e E. 
Two functions which have the same graph agree on their domain. To 
say that f = g is to say that f and g have the same domain A and the 
same target B, and that they agree on A. 
~ Let f = (F, A, B) and g = (G, C, D) be two functions. To say that 
F eGis to say that the domain A of f is contained in the domain C 
of g and that g agrees with f on A. If also BcD, then g is said to 
be an extension of f (more precisely, an extension of f to C), and g 
is said to extend f (to C). When g is called a family of elements of D, 
f is said to be a subfamily of g. 

~ Let f be a function and let A be a subset of the domain off. It is 
immediate that the relation "x e A and y = f (x)" has a graph G 
with respect to x and y, that this graph is functional, and that A is its 
domain; the function whose graph is G, which has the same target as f, 
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is called the restriction of f to A, and is sometimes denoted by f IA. A 
function is an extension of any of its restrictions. If two functions j, g 
have the same target and agree on a set E, then their restrictions to E 
are equal. 

6. DEFINITION OF A FUNCTION BY MEANS OF A TERM 

054. Let T, A be two terms and let x, y be distinct letters. Suppose that 
X does not appear in A and that y does not appear in either T or A. Let R 
be the relation "x e A and y = T". The relation R has a graph F with 
respect to the letters x and y. This graph is functional; its first projection is 
A, and its second projection is the set of objects of the form T for x e A (§ 1, 
no. 6). For every x e A we have F(x) = T. 

Let B be the set of objects of the form T for x e A. Then 

R~ (ex, y) eA x B); 

smce the assembly denoted by A X B contains neither x nor y, R 
has a graph F with respect to the letters x and y (no. 1) . I t is clear 
that the relation 

(x, y) e F and (x, y') e F 

implies y = y', and hence F is a functional graph. The remaining 
statements are evident. 

~ If C is a set which contains the set B of objects of the form T for x e A 
(where y does not appear in C), then the function (F, A, C) is also 
denoted by the notation x -+ T (x e A, T e C); the corresponding assem­
bly in formal mathematics contains neither X nor y and does not depend 
on the choice of the letter y satisfying the above conditions. When the 
context is sufficiently explicit we shall permit ourselves the notations 
x -+ T(x e A), (T)xEA, or x -+ T, and sometimes simply T or (T). 
*Thus we may speak of "the function x3", if the context indicates 
clearly that we mean the mapping x -+ x3 of the set of complex numbers 
into itself. * 

Examples 

(1) If f is a mapping of A into B, the function f is equal to the 
function x -+ f (x) (x e A, f (x) e B), which is written simply as x -+ f (x) 
or also (f:ll):llEA (the latter notation is especially associated with the 
phrase "family of elements" instead of "function"). 
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(2) Let G be a set of ordered pairs. The functions 

Z ~ prlZ (z e G, prlZ e priG) 
and 

Z ~ pr~ (z e G, pr~ e priG) 

are called respectively the first and second coordinate functions on G; they 
are denoted by prl and prs when there is no risk of confusion. 

7. COMPOSmON OF TWO FUNCI'IONS. INVERSE FUNCI'ION 

PROPOSITION 6. 1f f is a mapping of A into B, and g is a mapping of B 
into C, then g 0 f is a mapping of A into C. 

Let F, G be the graphs of J, g, respectively, and let us show that G 0 F 
is a functional graph. Let x, z, z' be objects such that (x, z) eGo F, 
(x, z') eGo F. There exist objects y, y' such that 

(x, y) e F, (x, y') e F, (y, z) e G, (y', z') e G. 

Since F is a functional graph, we have y = y' and hence (y, z') e G. 
Since G is a functional graph, it follows that Z = z', which proves our 
assertion. Furthermore, the domain of g 0 f is evidendy A, and the 
proof is complete. 
~ The function go f may also be written as x ~ g(f(x)), or as gf 
when there is no risk of confusion. 

DEFINITION 10. Let f be a mapping of A into B. The mapping f is said 
to be i,yective, or an injection, if any two distinct elements of A have distinct images 
under J. The mapping f is said to be surjective, or a surjection, if f (A) = B. 
1f f is botk injective and surjective, it is said to be bijective, or a bijection. 

Instead of saying that f is swjective, we sometimes say that f is a 
mapping of A onto B, or that it is a parametric representation of B by 
means of A (in which case A is called the set of parameters of the repre­
sentation, and the elements of A are called parameters). Iff is bijective, 
we sometimes say that f puts A and B in one-to-one correspondence. A 
bijection of A onto A is called a permutation of A. 

Examples 

(I) If A c B, the mapping of A into B whose graph is the diagonal 
of A is injective and is called the canonical mapping or the canonical injection 
(or simply the injection) of A into B. 
(2) Let A be a set. The mapping x ~ (x, x) of A into the diagonal 
aA of Ax A is a bijective mapping, called the diagonal mapping of A. 
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(3) Let G be a set of ordered pairs. The mapping prl (resp. pr.) 
of G into prIG (resp. prIG) is surjective; pri is injective if and only if 
G is a functional graph. 

(4) Let G be a set of ordered pairs. The mapping 

Z ~ (pr~, prIZ) 
-1 

of G into G is a bijection (called the canonical bijection). 

(5) Let A be a set and b an object. The mapping x ~ (x, b) of A 
into A X {b} is a bijection. 

PROPosmON 7. Let f be a mapping of A into B. Then 7 is a function 
if and onb if f is bijective. 

-1 
If f is a function, its source B is equal to its domain, i.e., to f(A); 
hence f is sw:jective. To show that f is injective, let x and y be two 
elements of A such that f(x) =f(y). If F denotes the graph off, 
we have 

-1 -1 

(f(x), x) e F and (f(y), y) eF, 
hence 

-1 

(f(x),y)eF, 

so that x = y, which proves the assertion. 
-1 

~ Conversely, if f is bijective, it is immediate that F is functional and 
-1 

that the domain of f is equal to B. 

When f is bijective, -:l is called the inverse mapping of f; 7 is bijective, 

7 0 f is the identity mapping of A, and f 0 7 is the identity mapping 
of B. 

~ If a permutation is the same as its inverse, it is said to be involutory. 

Remark. Let f be a mapping of A into B. For each subset X of A 
-1 

we have (no. 3) Xc f (f(X) ). Furthermore, for each subset Y of B 
-1 -1 

we have f(f (Y) ) c Y, for the relation ye f(f (Y» is equivalent to 

(3x) «3z)(z e Y and z = f(x» and y = f(x» 

and therefore implies the relation (3z) (z e Y and y = z) and conse­
quendy also the relation y e Y. 

-1 

If f is surjective, we have f(f (Y» = Y for every subset Y of B, for 
the relation y eYe B implies by hypothesis the relation (3x)(y = f(x» 
and therefore also (:Jx)(yeY and y =f(x»; but ')leY and y =f(x)" 
implies (:Jz) (z e Y and z = f(x) ), and our assertion follows. 
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-1 

If f is i,yective, we have f (f(X) = X for every subset X of A. For 
-1 

the relation x ef (f(X» is equivalent to f(x) ef(X), hence to 

(3z)(z e X and fez) = f(x)) ; 

but the hypothesis means that fez) = f(x) implies z = x, hence 
-1 

x e f (f(X) > implies x e X. 

8. RETRACTIONS AND SECTIONS 

PROPOSITION 8. Let J be a mapping of A into B. lf there exists a mapping 
r (resp. s) of B into A suck that r 0 J (resp. J 0 s) is tke identity mapping 
oj A (resp. B), then f is injective (resp. surjective). Conversely, if J is surjec­
tive, there exists a mapping s of B into A suck that f 0 s is tke identity mapping 
of B. lf f is injective and if A =F $3, there exists a mapping r of B into A 
suck tkat r 0 J is tke identity mapping of A. 

If there exists a mapping r of B into A such that r 0 J is the identity 
mapping of A, then the equality J(x) =J(y), where xeA and yeA, 
implies x=r(J(x)) =r(J(y» =y, andsoJisinjective. If there exists 
a mapping s of B into A such that J 0 s is the identity mapping of B, 
we have B =J(s(B» cJ(A) c B, so that f is surjective. If J is surjec­
tive, let T denote the term '[y(y e A andJ( y) = x). We have 
J(T) = x for x e B; if s denotes the mapping x _ T (x e B, Te A), 
then J 0 s is the identity mapping of B. Finally, suppose that J is 
injective and that A =F fl, and let a be an element of A. The relation 

"(yeA and x =J(y» or (y = a and xeB - J(A»" 

implies (x, y) e B X A and therefore has a graph R with respect to 
the letters x, y. This graph is functional by reason of the hypothesis 
on j, and has B as its domain; and we have R(x) = a if x e B - J(A), 
andf(R(x» = x if xef(A). Hence the function r = (R, B, A) is such 
that r 0 f is the identity mapping of A. 

COROLLARY. Let A, B be sets, let f be a mapping of A into B, and let g 
be a mapping of B into A. lf g 0 f is tke identity mapping of A and if fog 

-1 
is tke identity mapping of B, then f and g are bijective, and g = f . 

DEFINITION 11. Let f be an injective (resp. surjective) mapping of A into B. 
Any mapping r (resp. s) of B into A suck that r 0 f (resp. f 0 s) is tke 
identi~y mapping of A (resp. B) is called a retraction (resp. section) off. 
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Instead of retraction (resp. section) the phrase left-inverse (resp. right­
inverse) is sometimes used. 

~ If 1 is injective (resp. surjective) and if r Crespo s) is a retraction Crespo 
section) of J, then f is a section (resp. retraction) of r (resp. s). Hence 
a retraction is surjective and a section is injective. 

!f If / is surjective and if s, s' are two sections of / such that s(B) = s' (B), 
then s = s'; for if x e B, there exists ye B such that sex) = s'(y), and 
we have x =1 (s(x» =1 (s' (y» = y, so that sex) = s' (x) and consequently 
s = s'. Thus a section s is uniquely determined by the set s(B). By 
abuse of language, the set s(B) is sometimes called a section of f 
THEOREM 1. Let / be a mapping of A into B, let l' be a mapping of B 
into C, and let f" = /' ° f Then: 

(a) If/and /' are injections, then /'1 is an injection. If r, r' are retrac­
tions of j, /', respectivef:y, then r ° rl is a retraction of f". 

(b) If/and f' are surjections, then f" is a surjection. If s, s' are sections 
of j, /', respectivef:y, then s ° s' is a section 0/ /". 

( c) If f'1 is an injection, then / is an injection. If r" is a retraction of /'1, 
then rl' ° /' is a retraction of f 

(d) If /ff is a surjection, then /' is a surjection. If s" is a section off", 
then / ° s" is a section of / I . 

( e ) If /'1 is a sUljection and /' an injection, then f is a surjection. If s" 
is a section 0/ /", then s" ° /' is a section of f. 

(f) Iff I' is an iry'ection and / a surjection, then /' is an injection. If r'l 
is a retraction of / I', then / 0 r" is a retraction of /'. 

For every set E let IE denote the identity mapping of E. 

(a) We have r 0/= IA and r' 0/1 = IB' hence 

(ror') 0 (/'0/) =roIBo/=rof=IA' 

If f and /' are injections, then f'l is an injection, by Proposition 8 if 
A ::f: ~, and trivially if A = ~. 

(b) We have /0 s = In and f' 0 Sl = Ic, hence 

(/' of)(s 0 s') =/10 IB 0 s' =/' 0 s' = Ie. 

If / and /' are surjections, /" is then a surjection by Proposition 8. 

(c) We have rn of II = lA' hence (r'l 0/') 01= r" o/U = IA. Iff" 
is an injection, then / is an injection, by Proposition 8 if A ::f:~, and 
trivially if A/= ~. 
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(d) We have f" 0 s" = Ie, hence f' 0 (f 0 s") =f" 0 sn = Ie. If f'1 
is a surjection, then f' is a surjection by Proposition 8. 

(e) We have f" 0 sn = Ie, and f' is a bijection by (d). Hence 

-1 -1 
fo (s" of') = (f' of') ofo (s" of') = f' 0 (f" 0 sn) of' 

-1 -1 

=f'oIeof' =f'of' = lB' 

If f" is a surjection and f' an injection, f is then a surjection by 
Proposition 8. 

(f) We have r" of" = lA' and f is a bijection by (c). Hence 

(fo rn) of' = (fo r") of' 0 (fo 7) =fo (r" of") 07 =fo IA 0 7 

=fo 7 = lB' 

If fn is an injection and f a surjection, then f' is an Injection, by 
Proposition 8 if A :f. f3, and trivially if A = f3 (for then we have 
B =f<A) = f3). 

PROPOSITION 9. (a) Let E, F, G be sets, let g be a mapping of E onto F 
and f a mapping of E into G. Then there exists a mapping h of F into G 
such that f = hog if and on~ if the relation g(x) = g(y) (where x e E, 
yeE) implies the relationf(x) =f(y). The mapping h is then unique~ 
determined by f; if s is a section of g, we have h = f 0 s. 

(b) Let E, F, G be sets, let g be an i,yection of F into E, and let f be 
a mapping of G into E. Then there exists a mapping h of G into F such 
that f = g 0 h if and on~ if f (G) c f (F). The mapping h is unique~ deter­
mined by f; if r is a retraction of g, we have h = r 0 f. 

(a) Iff = hog, the relation g(x) = g(y) (where x e E, ye E) clearly 
implies f(x) =f(y). And for every section s of g we have 

h = h 0 (g 0 s) = f 0 s, 

which shows that h is uniquely determined by f. Conversely, suppose 
that the relation g(x) = g(y) implies f (x) = f (y); let s be a section 
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of g, and let h = f 0 s; then for every x e E we have g(s(g(x))) = g(x), 
hence f (s(g(x») = f (x), that is, h(g(x)) = f (x) and therefore f = hog. 

(b) If f = go h, then clearly f (G) cf (F), and for every retrac­
tion r of g we have h = (r 0 g) 0 h = r 0 f, which shows that h is uni­
quely determined by f. Conversely, suppose that f(G) cf(F); let r be 
a retraction of g, and put h = r 0 f; for every x e G, there exists ye F 
such that f(x) = g(y), so that 

g(h(x» = g(r(f(x») = g(r(g(y ») = g(y) =f(x) 

and therefore f = g 0 h. 

9. FUNCTIONS OF TWO ARGUMENTS 

A function qf two arguments is a function whose domain is a set of ordered 
pairs (or, equivalently, a subset ofa product). Let f be such a function; if 
(x, y) is an element of the domain off, the value f«x, y» off at 
the element (x, y) is generally denoted by f(x, y). 
~ Let f be a function of two arguments, D its domain, and C its target. 
For each y let A, be the set of all x such that (x, y) e D (that is, the 

-1 

section of D at y (no. 1». The mapping 

x -+ fex, y) (x e Al , f(x, y) e C) 

is called the partial mapping defined by J, with respect to the value y qf the second 
argument, and is denoted by fee, y), or f( ,y) (or sometimes 1',); 
we have f (e, y)(x) = f (x, y) for all (x, y) e D. Similarly, for each x 
let Ba; be the set of all y such that (x, y) e D. The mapping 

y -+f(x, y) (y e Ba;, f(x, y) e C) 

is called the partial mapping defined by J, with respect to the value x qf the 
first argument, and is denoted by f(x, e), or f(x, ) (or sometimes fllJ); 
we have f(x, e)(y) =f(x, y) for all (x, y) e D. 
~ If for every y (resp. x) the partial mapping fee, y) (resp. f(x, e» 
is a constant mapping, we say that f does not depend on its first (resp. second) 
argument; this means therefore that f(x, y) =f(x', y) whenever (x, y) 
and (x', y) belong to D (resp. f (x, y) = f (x, y') whenever (x, y) and 
(x, y') belong to D). For each y belonging to the second- projection of 
Diet g(y) denote the common value of the f (x, y) for x e Al ; the 
mapping y -+ g(y) is then a mapping of prsD into C such that 

g(y) =f(x, y) for all (x, y) e D. 
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~ Conversely, let g be a mapping of a set B into a set C, and let A be 
any set. Then the mapping (x, y) ~ g(y) of Ax B into C does not 
depend on its first argument. 
~ Let a be a mapping of A into C and v a mapping of B into D. The 
mapping ~ ~ (u(prl~)' v(prsZ» of Ax B into C X D is called the (canon­
ical) extension oj a and v to the product sets, or simply the product of a and v 
(if there is no risk of confusion); its range is a(A) X v(B). It is denoted 
by a X v. If u and v are injective (resp. swjective) then a X v is injec­
tive (resp. surjective). If u and v are bijective, then a X v is bijective, 
and its inverse mapping is -,: X -VI. If u' is a mapping of C into a set E 
and if v' is a mapping of D into a set F, we have 

(u' X v') 0 (a X v) = (a' 0 u) X (v' 0 v). 

If U, V are the graphs of u, v respectively, the graph W of u X v 
is the set of ordered pairs «x,y), (z, t» of (A X B) X (C X D) such that 
(x, z) e U and (y, t) e V; the mapping «x, y), (z, I» ~ «x, z), (", I» 
puts W in one-to-one correspondence with the product U X V (a subset 
of (A X C) X (B X D» (cf. §5, no. 5). 

4. UNION AND INTERSECTION 
OF A FAMILY OF SETS 

1. D'EFINITION OF THE UNION AND THE INTERSECIION 
OF A FAMILY OF SETS 

Let X be a family (§3, no. 4) and I its index set. To help the intuitive 
interpretation of what follows, we shall refer to X as a family of sets. 
If (X, I,~) is a/amily ofsubsets of a set E (that is, a family whose target ~ 
is such that the relation Y e ~ implies Y c: E), we shall denote the 
family by (X')'EI(X, e @) or simply by (X')'EI (§3, no. 6); by abuse 
of notation we shall denote any family of sets, which has I as its index 
set, by (X')'EI" 
~ Since the relation (Vx) «L e I and x e Xc) =+- (x e X,» is true, it follows 
from 85 (Chapter I, §4, no 2.) that the relation 

(VL)(3Z) (VX)«L e I and x eX,) =+- (x e Z» 
is true. By virtue of the scheme S8 (§l, no. 6) the relation (3L)(L e I 
and x e X,) is collectivk;ing in x. 

DEFINITION 1. Let (Xc)'EI be a/amily of sets (resp. a/amily of subsets of a 
set E). The set 8i1/«3L)(L e I and x e Xc», that is to say, the set of all x 
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which belong to at least one set of the family (X,),eI' is called the union of the 

family, and is denoted by U X, (*). 
lei 

If (X,),eI is a farnily of subsets of a set E, then its union is a subset of E; 
notice that it does not depend on E, nor on the target @ of the mapping 
L~X,. 

It is clear that if I = p, we have U X, = p, because the relation 
(3L) (L e I and x e X,) is then false. lei 

~ Suppose now that I =/: p. If oc is an element of I, the relation 

implies x e XIX and therefore, by virtue of C52 (§l, no. 6), this relation is 
collectivizing in x. 

DEFINITION 2. Let (X,),eI be a family of sets whose index set I is not empty. 
The set &",«VL)(L e I) ~ (x e X,)), that is to say, the set of all x which 
belong to every set of the family (X,), e I' is called the intersection of the family 

and is denoted by n X,. 
lei 

If I = 0, the relation (VL)«L e I) ~ (xe X,» is not collectivizing in X; 
for it is a true relation and there exists no set Y such that X e Y is a true 
relation, because Y would then be the set of all objects (cf. §l, no. 7, 
Remark). 

If (X,),eI is a family of subsets of a set E and if I =/: p, the relation 
"xeE and (VL)«LeI) ~ (xeX,))" is equivalent to 

(VL)((LeI) ~ (xeX,)); 

consequently it is collectivizing in x, and the set of all x which satisfy 
this relation is equal to n X,. If I = p, the relation "x e E and 

lei 
(VL)(LeI) ~ (xeX,))" is equivalent to xeE; it is therefore collec-
tivizing in x, and the set of all x which satisfY this relation is E. Hence 
we may state the following definition: 

DEFINITION 3. Let (X,),eI be afamily of subsets of a set E. The set 

0", (xeE and (VL)((LeI) ~ (xeX,))), 

(*) The scheme S8 therefore allows us to define the union of a family of sets 
without supposing a priori that these sets are subsets of the same set (which is the 
assumption made in the definition of union given in Summary of Results, §4, no. 2). 
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in other words, the set of all x which belong to E and to each of the sets X" is 
called the intersection of the family and is denoted by n X,. 

'EI 

Hence for a family (XJ, EB of subsets of E we have 

But for a family (X')'EI of subsets of E whose index set is not empty, the 
intersection n X, depends neither on E nor on the target of , ~ X,; 

,EI 
and this justifies the use of the same notation in Definitions 2 and 3. 

PROPOSITION 1. Let (X')'EI be a family of sets, and let f be a mapping of 
a set K onto I. Then 

and, if I oF f1, 
n x,,(X) = n X,. 
XElt ,EI 

Let x be an dement of n X,. There exists an index ,e I such that 
'EI 

x e X,. Since J<K) = I, there exists an index x e K such that ,= J (x), 
whence x e x,,(X) and consequendy 

xe U X/ex)' 
KElt 

Conversely, if x e U X/ex), there exists x e K such that x e X/ex), and 
XEIl 

therefore, since f (x) e I, x e U X,. Hence 
,EI 

~ Now suppose that I oF f1, and let x be an element of n X,. For each 
,EI 

element x of K we have J (x) e I, hence x e X/ex), and therefore 

xe n X/ex)' 
XEIl 

Conversely, let x be an element of n X/ex)' If L is any element of I, 
XEIl 

there exists an element x of K such that L =f(x), whence xeX, and 
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consequendy xe nX,. Hence 
,EI 

§ 4.2 

For families of subsets of a given set, it is clear that the second part of 
Proposition 1 remains valid without the restriction I:F~. 

COROLLARY. Let (X')'EI he a family oj'sets such that X, = Xx for each 
pair oj' indices (L, K). Then for each ex e I we have 

and (if I ¥ ~) 

Apply Proposition 1 to the constant mapping L -+ ex of I onto {ex}. 

DEFINITION 4. Let 5' he a set of sets and let (J> be the family oj' sets defined 
by the identiry mapping oj' 5'. The union of the sets oj' (J> and (if 5' is not 
empry) the intersection of the sets of CI» are called, respectively, the union and the 
intersection oj'the sets oj' 5', and are denoted by U X and n X. 

xeIJ XE\J 

If follows immediately from Proposition 1 that if (X')'EI is a family of 
sets, then the union and (if I :F~) the intersection of the family are 
respectively equal to the union and the intersection of the sets of the set of 
elements of this family. 

2. PROPERTIES OF UNION AND INTERSECTION 

If (XI)IEI and (YI)IEI are families of sets having the same index set I, 
and if YI C X, for each LeI, then it is clear that 

and (if I ¥ ~) 

~ Let (X')IEI be a family of sets. If J c I, we have 

and (if J ¥~) 
IEJ lEI IEJ lEI 

PROPOSITION 2. Let (X')IEI be a family oj' sets whose index set I is the 
union oj' a family (Jl.hEL oj'sets. Then 
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II THEORY OF SETS 

and (if L ::F rJ and JA ::F rJ for each A e L) 

nX,=n(n X,) 
lEI AEL IEJ). 

("associativity" of union and intersection). 

Let x be an element of U X,. There exists an index LeI such that 
,EI 

x e X,. Since I is the union of the family (JAhEL' there exists an index 
A e L such that L e JA' whence x e U X" and consequently 

'EJ). 

Conversely, let x be an element of this set. There exists an index A e L 
such that x e U X" hence there exists an index L eJA (and there­

,EJ), 
fore LeI) such that x e XI; it follows that 

xeUXI • 

,EI 

Now suppose that L ::F rJ and JA ::F rJ for each A e L. Then I ::F rJ. 
Let x be an element of n X,. If A e L, we have x e XI for each L e JA 

lEI 

(since JA c I), whence x e n XI' Since the last inclusion is true for all 
,EJ. 

A e L, x belongs to n (n X,). Conversely, let x be an element of this 
AEL 'EJ), 

latter set, and let L be any element of I. There exists A e L such that 
L e J A; since x e n X" we have x e X" which is true for all LeI. Hence n IEJ), 
x e XI' This completes the proo£ 

lEI 

For families of subsets of a given set the second part of Proposition 2 remains 
valid without restriction on'L and lA' 

3. IMAGES OF A UNION AND AN INTERSECTION 

PROPOSITION 3. Let (XI)'EI be a family of subsets of a set A, and let r 
be a correspondence between A and B. Then 
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The relation (3x) (x e U X, and y e r(x)) is equivalent to 
,el 

(3x)(3~)(~eI and xeX, andyer(x)), 

hence to (3 ~)( ~ e I and y e r <X) ), hence is equivalent to y e U r <X,) ; 
,el 

this proves the first formula. As to the second formula, we have n X, c X, 
for all ~ e I, whence (§3, Proposition 2) ,el 

and consequently 

~ If r is an arbitrary correspondence (and in particular an arbitrary 
function), the formula 

is usually false. 

* For example, in the plane R2 the first projections of the lines y = x 
and y = x + 1 are equal to R, but the intersection of these lines is 
empty, and therefore so is the first projection of this intersection (*). * 

However, we have the following important result : 

PROPOSITION 4. 

of subsets of B. 
Let f be a mapping of A into B and let (Y,) , e I be a family 

,EI ,eI 
Then ?(n V,) = n jl <Y,). 

To prove this, let x be an element of n? <Y,). We have f (x) e Y, 
,eI 

for all LeI, whence f (x) e n Y" and consequently 
,eI 

(*) A celebrated error arising from the application of this formula is that com­
mitted by H. Lebesgue in his attempt to prove that the projection on an axis of a 
Borel set in the plane is again a Borel set (this statement was subsequently shown 
to be incorrect, and the discussion it provoked was the origin of the theory of 
"Souslin" sets) : Lebesgue asserted that the projection of the intersection of a 
decreasing sequence of sets is equal to the intersection of their projections (Journal 
de Mathematiques, (6) 1 (1905), pp. 191-192). 

95 



II THEORY OF SETS 

Therefore n? (YI ) c: ?(n YI); this relation, together with Proposition 3, 
leI leI 

gives the result. 

COROLLARY. If f is an injection oj A into B and if (X')IeI is a family 
oj subsets oj A whose index set I is not empry, then f(n X,) = n f <XI)' 

leI leI 
For we may write f = i 0 g, where i is the canonical injection of f <A) 
into Band g is a bijection of A onto f <A). If h denotes the inverse 

-1 
mapping of g, we have f <X) = h <X) for every subset X of A, and 

we are therefore brought back to Proposition 4. 

4. COMPLEMENTS OF UNIONS AND INTERSECTIONS 

PROPOSITION 5. For every family (X')leI of subsets oj a set E, we have 

Let x e CE (U XI)' Then x e E and, for every ~ e I, x $ X" so that 
leI 

x e CEX,; consequendy 

Conversely, let x be an element of n (CEX,); by the definition of inter­
leI 

section we have x e E. Furthermore, if we had x e U X" there would 
leI 

exist an index K e I such that x e Xx, which contradicts the hypothesi 

x e n (CEXI); hence 
leI 

This proves the first formula; the second one is an immediate consequence, 
in view of the relation CE(CEX) = X for every subset X of E. 

5. UNION AND INTERSECTION OF TWO SETS 

If A, B are sets, we write 
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COMPLEMENTS OF UNIONS AND INTERSECTIONS § 4.4 

It is clear that A u B is the set of all objects which belong either to A 
or to B (or possibly to both), while An B is the set of all objects which 
belong to both A and B. In particular, {x, y} = {x} u {y}. 
~ Let {x, y, z} = {x, y} U {z}. The set {x, y, z} is the set whose only 
elements are x, y, and z. Similarly we write 

{x,y, z, t} = {x, y, z} U ttl, 
and so on. 

~ If now A, B, C, D are sets, we write 

AuBuC = U X, 
XelA, B, cl 

AuBuCuD= U X, 
xe lA, B, c, DI 

and so on. 

AnBnC = n X; 
XeIA, B, cl 

An B n C n D = n X; 
xelA, B, c, DI 

~ Let A, B, C be sets. From Propositions I and 2 we deduce the formulae 

A u B = B u A, A n B = B n A, 
A u (B u C) = (A u B) u C = A u B u C, 
A n (B n C) = (A n B) n C = A n B n C. 

These formulae are also immediate consequences of the theorexns enun­
ciated in the criterion C24 (Chapter I, §3, no. 5). Similarly one proves 
the formulae 

Au (B n C) = (A u B) n (A u C), An (B u C) = (A n B) u (A n C) 

("distributivity" of union over intersection and of intersection over 
union; cf. §5, no. 6). 
~ The relation A c B is equivalent to A u B = B and to A n B = A. If 
A and B are subsets of a set E, we deduce from Proposition 5 (or from 
criterion C24) the formulae 

furthermore, we have 

Au (C~) = E, 

~ If r is a correspondence between E and F, and if A, B are subsets 
of E, it follows from Proposition 3 that 

r<A u B) = r<A) u r<B), r(A n B) c r<A) n r<B), 
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and that, if f is a mapping of F into E, 

-1 -1-1 
f<AnB) = f(A) n f(B) 

from Proposition 4. 

~ We record also the following Proposition on complements: 

PROPOSITION 6. Let f be a mapping of A into B. For every subset Y of B, 
we have 

7 (B - Y) = 7 (B) - 7 (Y). 
-1 

For x belongs to f (B - Y) if and only if f (x) belongs to B but not 

to Y, i.e., if and only if x belongs to 7 (B) but not to 7 (Y). 

COROLLARY. Let f be an injection of A into B. For every subset X of A, 
we have f(A - X) =f(A) - f(X). 
Writing f = i 0 g, where i is the canonical injection of f (A) into B, 

we reduce the Corollary to Proposition 6 applied to g1. 
~ The intersection X n A is sometimes called the trace of X on A. If s: 
is a family of sets, the set of traces on A of the sets belonging to ~ is 
called the trace of s: on A. 

6. COVERINGS 

DEFINITION 5. A family of sets (X,),eI is said to be a covering of a set E 
(or to cover E) if E c U X,. If (X')'EI and (YX)XEK are coverings of E, 

'EI 
the second of these coverings is said to be finer than the first (or to be a refinement of 
the first, or to refine the first) if, for each x e K, there exists LeI such that 

A set of sets vt is a covering of E if the family of sets defined by the 
identity mapping of vt is a covering of E, in other words, if E c U X. 

XE/Jt 
If vt, vt', vt" are three coverings of E such that vt' refines vt and 

vtH refines vt', it is clear that vtH refines vt. 
Let (X,),eI be a covering of E. If J is a subset of! such that (X'),eJ 

is still a covering of E, then this covering clearly refines (X,),eI' 
~ Let (X,),eI and (Yx)xeK be coverings of a set E. Then the family of 
sets (X, n Y X)(', X)EIX~ is a covering of E. For if x e E, there exist 
indices LeI and K e K such that x e X, and x e Yx, so that x e X, n Yx 
Moreover, it is clear that the covering (X, n Yx)("X)EIXK refines each 0 
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the coverings (X,),EI' (YX)XEK' Conversely, let (Z1hEL be a covering of 
E which refines each of the coverings (X')'EI' (YX)XEK; if A e L, then 
there exist indices Leland x e K such that Z1 c X, and Z1 c Y x' so 
that Z" eX, n Yx; hence the covering (Z1hEL is a refinement of 

(X, n YX)("XlEIXK' 

~ Let (X')'EI be a covering of a set A, and let f be a mapping of A onto 
a set B. The family (f <X,) )'EI is then a covering of B (Proposition 3), 
called the image under f of the covering (X')'EI' If g is a mapping of a 
set C into the set A, the family Cl <X,) ), E I is a covering of C, called 
the inverse image under g of the covering (X')'EI' 
~ Let E and F be sets, let (X')'EI be a covering of E, and let (YX)XEK 
be a covering of F. The family (X, X YX)("XlEIXK is then a covering 
of E X F, called the product of the coverings (X')'EI of E and (YX)XEK 
of F. 

PROPOSITION 7. (1) Let E be a set and (X,) 'EI a covering of E. If f and 
g are two functions with domain E such that f and g agree on E n X, for 
each LeI, then f and g agree on E. 

(2) Let (X,) 'EI be a family of sets and let (i,) 'EI be a family of mappings 
with the same target F such that for each LeI the domain of f, is X" and 
for each pair (t, x) e I X I, f, and fx agree on X, n Xx' Then there is exactly 
one function f with domain A = U X, and target F which extends each of 
the functions f, (i e I). 'EI 

(1) Let x be any element of E. Then there exists LeI such that 
x e X" whence f (x) = g(x) by hypothesis. 

(2) Let G, be the graph of f, and let G = U G,; let us show that G 
,EI 

is a functional graph. If (x,y) e G and (x,y') e G, there exist two 
indices L, x in I such that (x, y) e G, and (x, y') e Gx• This implies 
x e X" x e Xx, Y = J,.(x), y' = fx(x); but since x e X, n Xx, we have 

f,(x) = fx(x), 

that is to say, y = y'. The graph G has domain prIG = U prIG, = A; 
'EI 

the function f = (G, A, F) therefore satisfies the required conditions. 
Its uniqueness follows from the first part of the Proposition. 

7. PARTITIONS 

DEFINITION 6. Two sets A and B are said to be disjoint (or not to intersect) 
if A n B = fl. If An B :f: fl' we say that A meets (or intersects) B. Let 
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(X,) lEI be a family of sets. The sets of this family are said to be mutually disjoint 
if the conditions LeI, x e I, L ::F x imply X, n Xx = ~. 

Let f be a mapping of A into B, and let (Y')'EI be a family of mutually 
disjoint subsets of B. Proposition 4 then shows that the sets of the family 

(7 <Y'»IEI of subsets of A are mutually disjoint. On the other hand, 
if (X')'EI is a family of mutually disjoint subsets of A, the sets of the 
family (/ (X,) )'EI are not in general mutually disjoint. 

PROPOSITION 8. Let (X')'EI be a family of mutually disjoint sets, and let 
(/',),EI be a family of functions with the same target F such that the domtJin of 

Ie is X, for each LeI. Then there exists exactly one function f with domain 
U X, and target F which extends each of the functions Ie (L e I). 
,EI 

This is a corollary of Proposition 7, since Ie and f." clearly agree on 
X, n Xx = ~ whenever L ::F x. 

DEFINITION 7. A partition of a set E is a family of non-empty mutually 
disjoint subsets of E which covers E. 

Example. For every non-empty set A, the family ({x})~EA. is a partition 
of A. 

If (X')'EI is a partition of a set E, the mapping L ~ X, of I onto the 
set it of elements X, of the partition is bijective. Hence, if W is 
given, the partition is determined up to a one-to-one correspondence 
between index sets. Usually when we speak of a partition, it is the set of 
elements of the partition with which we are concerned. 

8. SUM OF A FAMILY OF SETS 

PROPOSITION 9. Let (X')'EI be a family of sets. Then there exists a set X 
with the following property: X is the union of a family (X:)'EI of mutually 
disjoint sets such that for each LeI there exists a one-to-one mapping of X, onto X:. 

Let A = U X,. If LeI, the mapping x ~ (x, L) (x e X,) is a one-
'EI 

to-one mapping of X, onto a subset X: of AX I. Moreover, the 
image of X: under the second coordinate function on A X I is contained 
in the set {L}; it follows that X: n ~ = ~ whenever L ::F x. We may 
then take X = U X:. 

lEI 

DEFINITION 8. Let (XJ'EI be a family of sets. The sum of this family is 
the union of the family of sets (X, X {L })'EI' 
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PROPOSITION 10. Let (X')'EI be a family of mutually disjoint sets. Let A 
be its union and S its sum. Then there exists a bijective mapping of A onto S. 

For each LeI, let J" be a bijection of X, onto XL X {L}. By virtue of 
Proposition 8, there exists a mapping f of A into S which extends all 
the mappings J". It is immediately verified that f is a bijective map­
ping of A onto S. 

By abuse oflanguage, a set E is said to be the sum of a family of sets (XI) I e I 
if there exists a bijection of E onto the sum of the family, as defined in 
Definition 8. 

Note that if (X')LEI is an arbitrary family of sets, the argument of Propos i­
tion 10 shows that there exists a mapping of the sum S onto the union A. 

5. PRODUCT OF A FAMILY OF SETS 

1. THE AXIOM OF THE SET OF SUBSETS 

A4. (VX) Colly(Y eX). 

This axiom means that for every set X there exists a set whose elements are 
all the subsets of X, namely the set 0y(Y c X) (§l, no. 4); this set is 
denoted by ~(X) and is called the set of subsets of X. Clearly, if X eX', 
we have ~(X) c ~(X'). 

~ Let A, B be two sets and let r be a correspondence between A and B. 
The function X -)- r(X) (X c ~(A), r<X) e ~(B)) is called the canonical 
extension (or simply the extension) of r to sets of subsets and is denoted by r; 
it is a mapping of ~(A) into ~(B). If r' is a correspondence between B 
and a set C, the formula (r' 0 r) (X) = r' <r<X» shows that the 
extension of r' 0 r to sets of subsets is the mapping til 0 t. 
PROPOSITION l. (1) 1j f is a surjection of a set E onto a set F, the canonical 
extension J off is a surjection of ~(E) onto ~(F). 

(2) 1j f is an i,yection of E into F, the canonical extension J of f is an 
injection of ~(E) into ~(F). 

(1) If s is a section of J, then f 0 s is the identity mapping of F, hence 
J 0 s is the identity mapping of ~(F); therefore J is surjective and s 
is a section of J (§3, no. 8). 
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(2) The proposItIOn is obvious if E = ¢, because then ~(E) = {¢}. 
If E ¥= ¢ and if r is a retraction of J, then r 0 f is the identity mapping 
of E, so that r 0 J is the identity mapping of ~(E); therefore J is 
injective, and r is a retraction of J (§3, no. 8). 

2. SET OF MAPPINGS OF ONE SET INTO ANOTHER 

Let E, F be sets. The graph of a mapping of E into F is a subset of 
E X F. The set of elements of ~(E X F) which have the property of 
being graphs of mappings of E into F is therefore a subset of ~(E X F), 
which is denoted by FE. The set of triples f = (G, E, F), where G e FE, 
is therefore the set of mappings of E into F; it is denoted by ~(E, F). 
Clearly G ~ (G, E, F) is a bijection (called the canonical bijection) of FE 
onto ~(E, F). The existence of this bijection allows us to translate 
immediately every proposition relating to the set FE into one relating to 
Si(E, F), and vice versa. 

~ Let E, E', F, F' be sets. Let u be a mapping of E' into E, and let v 
be a mapping of F into F'. Then the function f ~ v 0 f 0 u is a map­
ping of ~(E, F) into fJi(E', F'). 

PROPosITION 2. (I) If u is a surjection of E' onto E and v an injection of F 
into F', then the mapping f ~ v 0 f 0 u is injective. 

(2) If u is an injection of E' into E and v a surjection of F onto F', 
then the mapping f ~ v 0 f 0 u is surjective. 

We shall assume that the sets E, E', F, F' are all non-empty, since otherwise 
the proposition is trivially verified. 

(1) Let s be a section of u and let r be a retraction of v (§3, Defin­
ition 11). Then r 0 (v ofo u) 0 s = IF ofo IE =f, so that 

f~vofou 

is injective. 
(2) Let r' be a retraction of u and let s' be a section of v. For every 

mapping f' : E' ~ F' we have v 0 (s' 0 f' 0 r') 0 u = f', which shows 
that the mapping f ~ v 0 f 0 u is surjective. 

COROLLARY. If u is a bijection of E' onto E and v is a bijection of F onto 
F', then f ~ v 0 f 0 u is bijective. 

Let A, B, C be three sets and let f be a mapping of B X C into A. 
For every ye C let f(., y) be the partial mapping x -+f(x,y) of B 
into A (§ 3, no. 9); the function y ~ f ( ., y) is a mapping of C into 
JI(B, A). Conversely, for every mapping g of C into 5i(B, A) there 
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exists a unique mapping f of B X C into A such that g(y) = f ( • , y) 
for each ye C, namely the mapping (x,y) -+ (g(y»)(x). Hence: 

PROPOSITION 3. If for every mapping f of B X C into A we denote by J 
the mapping y -+ f ( • ,y) of C into fI(B, A), then the function f -+ J is a bijec­
tion (called the canonical bijection) of fI(B X C, A) onto fI(C, fJ(B, A». 

Similarly we define a canonical bijection of fJ(B X C, A) onto fI(B, fI(C, A». 
By reason of the one-to-one correspondence between mappings and func­
tional graphs, these bijections give rise to canonical bijections of ABXC onto 
(AB)C (resp. (AC)B). 

3. DEFINITIONS OF THE PRODUCT OF A FAMILY OF SETS 

Let (X')'EI be a family of sets and let F be a functional graph with 
domain I such that F(L) e XI for each LeI. Then for each LeI we 
have F(L) e A = U XI> and therefore F is an element of !P(I X A). 

,EI 
The functional graphs with the above property therefore form a subset of 
!PCI X A). 

DEFINITION 1. Let (X,) ,E I be a family of sets. The set of functional graphs 
F with domain I such that F(L) e X, for each LeI is called the product of 
the family of sets (X')'EI and is denoted by II X,. For each LeI, X, is 

lEI 
called the factor of index L in the product II X,. The mapping F -+ F(L) 

,EI 
( Fe II X" F ( L) e X,) is called the coordinate function (or projection) of index L, 

,EI 
and is denoted by pr,. 

F(L) is called the coordinate of index L (or projection of index L) of F; the 
image pr,(A) of a subset A of IIx, under the coordinate function of 

'EI 
index L is called the projection of index L of A. It is easily verified that 
A c II pr,<A). 

,EI 

We shall often use the notation (X,)'EI to denote an element of II X, 
(§3, no. 6). ,EI 

If I =~, the set II XI has only one element, namely the empty set (§3, 
,EI 

no. 4, Example 1). 

!f If all the factors X, of the product II X, are equal to the same set E, 
lEI 

we have II x. = EI; this follows immediately from the definitions. 
,EI 
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" If (X,),eI is an arbitrary family of sets and if E is a set such that 

UX,c:E, 
leI 

then Definition I shows that Il XI c: EI; there is therefore a one-to-one 
leI 

correspondence between II X, and a set of mappings of I into E (i.e., 
leI 

a subset of ~(I, E». 
!f If I = {ot} is a. set consisting of a single element, we have 

the mapping F -+- F(ot) is then a bijection (called canonical) of II X, 
onto ~. ,elzl 

!f Let A, B be sets and let ot, ~ be distinct objects (there exist two distinct 
objects, for example pi and {pi}). Consider the graph {(ot, A), (~, B)}, 
which is clearly functional and is precisely the family (X,),elcz. ~I such 
such that Xcz = A and X~ = B. For each pair (x, y) e A X B, let f:&.l 
be the functional graph {(ot, x), (~, y)}. It is evident that the function 
(x, y) -+-f:&., is a bijective mapping of Ax B onto II X,; the inverse 

,elcz,~1 
of this bijection is g -+- (g(ot), g(~». These two bijections are called 
canonical. In what follows we shall use this one-to-one correspondence to 
deduce properties of the product of two sets from properties of the product 
of a family of sets. 

!f Let (X,),eI be a family of sets each of which consists ofa single element, 
say X, = {al}; then the product Ilx, is a set consisting of the single 
element (a,),eI. leI 
!f Let E be a set. The graphs of the constant mappings L -+- x of I into E 
form a subset A of the product EI, called the diagonal. If x denotes the 
graph of the mapping L-+-X (where xeE), the mapping x-+-x is a 
bijection of E onto A, called the diagonal mapping. 

PROPOSITION 4. Let (X,),eI be a family of sets, and let u he a hijection of 
a set K onto the index set I. g U is the graph of u, the mapping F -+- F 0 U 
of II X, into II XU(lIl is hijective. 

leI lIeK 

Let 

A=UX, = UXu(lI) 
,el lIell 
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(§4, Proposition I). The mapping F ~ F 0 U (F E AI) is a bijection 
of AI onto AI. (Proposition 2). It is evident that the condition "for 
each tEl, F(t) EXt is equivalent to "for each K E K, (F 0 U)(K) E x,,(X)", 

and the result follows. 

4. PARTIAL PRODUCTS 

Let (X')'EI be a family of sets, and let J be a subset of I. The product 
II x, is called a partial product of IT X,. Iff is a function whose graph 
,EJ ~El 

F is a member of IT X" then F 0 tlJ (where tlJ is the diagonal of 
,EI 

J X J) is the graph of the restriction of f to J. Clearly F 0 tlJ E II X,; the 

II II ,EI 
mapping F ~ F 0 tlJ of X~ into X, is called the projection of index 

,EI ,EI 
J and is denoted by prJ. 

PROPOSITION 5. Let (X')'EI be a family of sets and let J be a subset of I. 
If for eack tEl we have X, =F p, the projection prJ is a mapping of II XI 
onto IT XI' ,EI 

IEJ 

In view of the remarks made above, it is enough to prove the following 
proposition: 

PROPOSITION 6. Let (XI),EI be a family of sets suck that X, =F ~ for all 
LEI. If g is a mapping of J c I into A = U X, suck that get) E X, for all 

lEI 
L ej, then there exists an extension f of g to I such that f(t) E X, for all 
LEI. 

For each tEl - J let T, denote the term 't'J'(Y E X,). Since X, =F ~ 
by hypothesis, we have T,eX, for all LEI -J (Chapter I, §4, no. I). 
If G is the graph of g, the graph G U ( U {(L, T,n) is the graph of 

,EI-I 
a function which has the required properties, as is immediately verified. 

COROLLARY 1. Let (X')'EI be a family of sets such that for each LEI we 
have X, =F pf. Then for eack Ot e I the projection pr a; is a mapping of II X, 
onto Xa;. ,EI 

Apply Proposition 5 to the subset J = {Ot} of I and note that prar; is the 
composition of the canonical mapping of XlIX I onto XIX and the 
mapping pr)IXI' 
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COROLLARY 2. Let (XI)IEI be a family of sets. 
only if there exists LeI such that XI = p. 

Then II XI = P if and 
lEI 

If we have XI =F ~ for each LeI, then it follows from Corollary 1 that 
II XI =F f3; conversely, if II XI =F f3, the relation prlZ ( II XI) c XIZ shows 
lEI lEI lEI 
that XIZ =F f3 for each tX e I. 

Hence, if we have a family (X,)'EI of non-empty sets, we may introduce 
(as an auxiliary constant) a function f with domain I such that f(L) e XI 
for all LeI. In practice one says : "take an element x, in each XI". 
Intuitively, we have thus "chosen" an element XI in each set X,; the 
introduction of the logical sign 't and the criteria governing its use absolve 
us from the necessity of formulating an "axiom of choice" to legalize 
this operation (cf. Summary of Results, §4, no. 10). 

COROLLARY 3. Let (XI),EI and (Y')'EI be two families of sets having the 
same index set I. If XI C YI for each LeI, then 

Conversely, if IT XI C IT YI, and if X, =F f3 for each LeI, then XI c Y, for 
,EI ,EI 

each, e I. 

The first assertion is obvious, and the second follows from Proposition 1, 
Corollary 5, because we have then, for each at e I, 

XIZ -:- prlZ(IIX,) cpr:x(IIYI) = YIZ' 
,EI lEI 

5. ASSOCIATIVITY OF PRODUCTS OF SETS 

PROPOSITION 7. Let (XI) I E I be a family of sets whose index set I IS not 
the empty set. Let (J).h.EL be a partition of I. Then the mapping 

f ~ (prJ,./hEL 

of IT X, into the product set II ( II X,) is bijective ("associativity" of 
,EI i.EL 'EJi. 

products of sets). 

From the interpretation of prJ,.! as the graph of the restriction of the 
function whose graph is f (no. 4), it follows that the statement that the 
mapping f ~ (prJ.JheL is bijective means that, for each family (v;.hEL' 
where v;. is a mapping of J). into U X" there exists a unique mapping u 

,EI 
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of I into U X, such that lI). is the restriction of u to JA for each A e L. 
,eI 

But this is a consequence of the hypothesis that (JAheL is a partition of 
I (§4, Proposition 8). 
~ The bijection defined in Proposition 7, and its inverse bijection are said 
to be canonical. 

Remarks 
(1) Let at, ~ be two distinct objects and let (JAheltz, ~I be a partition 
of I into two sets Jtz, J~. We thus obtain a one-to-one mapping (again 

called canonical) of the product II x, onto (II x,) X ( IT x,) by 
,eI ,eJ.. leJ~ 

forming the composition of the canonical mapping of II (II x,) 
Ael(z' ~I leJ" 

onto (II x,) X (II x,) and the canonical mapping of II XI onto 
IEJ.. ,eJ~ leI 

II (II x,). If X, is a set consisting of a single element for each 
Aeltz, ~I ,eJ'). 
L eJ~, then prJ .. is a bijective mapping of II X, onto II X,. 

,eI ,eJ .. 
(2) Let at, ~, y be three objects, no two of which are equal (three such 
objects exist; for example, fIl, {fIl}, ({fIl}}), and let A, B, C be sets. 
Consider the functional graph {(at, A), (~, B), (y, C)}, i.e., the family of 
sets (X,),eI2'~' 'YI such that Xtz = A, X~ = B, Xy = C. To the partition 
of {at, ~, y} formed by the two sets {at, ~} and {y} there corresponds a 

canonical bijection of II X, onto the product 
,eltz,~, 'Y! 

( II XI) X X~YI, 
,ela, ~I 

and hence a bijection (again called canonical) of IT X, onto A X B X C 
,ela, ~,'YI 

(§ 2, no. 2) which transforms each graph fen XI into the element 
,el~),'Y1 

(f(at), f(~), f(y» of Ax B X C. By Proposition 4 we may therefore 
put any two of the six sets A X B X C, B X C X A, C X A X B, 
B X A X C, A X C X B, C X B X A in one-to-one correspondence. 

6. DISTRIBUTIVITY FORMULAE 

PROPOSITION 8. Let ((XA,')leJ heL be afamily (with index set L) offamilies 
of sets. Suppose that L :/: f& anJ that JA :/: f& for each A e L. Let 
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Then we have 

("distributivity" of union over intersection, and of intersection over 
union). 

Let x be an element of U (n XA,,) and let f be any element of I. 
AeL ,eJl 

There exists an index A such that x e n XA"; consequently x e Xi,. [0.) 
and hence ,eJl 

xe UXA,/(A). 
AeL 

Since this is true for each f e I, we have 

xe n (UXA,/(A»). 
leI AeL 

Conversely, let x be an object which does not belong to the set 

Then for each A a L we have x E\! n XA", which means that the set J~ 
,eJl 

of indices L aJA such that x E\! XA" is not empty for each A a L. By 
Proposition 5, Corollary 2, there exists a functional graph f with domain L 
such that for eachAaLwe havef(A)aJ~. Consequentlyfe! and 
x E\! X),./(A) for each A a L; hence 

and thus 

XE\! UXA.!O,) 
AeL 

This completes the proof of the first formula. The second formula follows 
by applying the first to the family (CAXA, ,),eJ.heL' where A denotes 
the union n ( n XA). 

AeL ,el" 
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COROLLARY. Let (X')'EI and (Yx)xeK be two families oj sets with non­
empty zndex sets I, K. Then 

Let at, ~ be two distinct objects; apply the formulae of Proposition 8 
(with L = {at, ~}, ](% = I, h = K) to the family «Z)., p.)p.u1hEL, where 
Z(%, I = XI for all LeI and Z~. It = Y x for each x e K. By the existence 
of the canonical bijection of IT]). onto I X K (no. 3) and by Proposi-

).eL 
tion 1 of § 4 we obtain the formulae stated. 

PROPOSITION 9. Let «X).,I)leJ1hEL be a family (with index set L) oj fami­
lies oj sets. Let I = II]).. Then 

).EL 

IT (U X)..I)=U (ITX).,J().») 
j,EL cEJl JEI ).EL 

and (if L =F fJ and ]). =F fJ for each i.. e L) 

II (n x)., I) = n (IT X).,[IA») 
j.eL lel. JEI ).EL 

(Udistributivity" of product over union and over intersection). 
The first formula is trivially true if L = fJ or if ]). = pi for some i.. e L. 
If not, let g be an element of IT ( n X)., I)' For each it. e L there exists 

).EL IEll 
an index L e]). such that g(i..) e X)., I; in other words, the set H). of indices 
~ eli. such that g(A) e X)., I is not empty. By Corollary 2 to Proposition 5 
there is therefore a functional graph f with domain L such that 

for each i.. e L, i.e., g(i..) eX)., /().)' Hence we have g e II X)., J()') and 
consequently g e U (IT X)., J().»). Conversely, if ).EL 

JEI ).EL 

ge U (ITX).,/(A»)' 
JeI i.eL 

there is a functional graph f e I such that for every i.. e L we have 
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and, a fortiori, g(A) e U X).. ,. This completes the proof of the first for­
,eJl. 

mula. The proof of the second formula is analogous but simpler, and 
we leave it to the reader. 

COROLLARY 1. Suppose that L :F fll and that J). :F fll for each A e L. If for 
e achindex A e L the family (X)..I)IEJl is a partition of X). = U X).." then 
the family (II X)../().»)/EI is a partition of II X).. IEJ. 

i.EL i.EL 

If we set 

then, by virtue of the first formula of Proposition 9, it is sufficient to show 
that P, :F fll for all f e I and that PIn P g = fll whenever f and g are 
distinct elements of I. The first point follows from Proposition 5, Corol­
lary 2. A3 to the second, if f :F g, there exists A e L such that 

f(A) :F g(A) 

and therefore, by virtue of the hypothesis, X)../().) n Xi.. g(i.) = fll. It 
follows that there is no graph belonging to PI n Pg ; for if G were such a 
graph, we would have G(A) e X)../(A) n Xi.. g(i.} = fll, which is absurd. 

COROLLARY 2. Let (XI)IEI and (YX)XEK be two families of sets. Then 

and, if I and K are non-empty, 

The proof follows the pattern of the proof of the Corollary to Proposition 8. 

PROPOSITION 10. Let (X,. X)(I. X)EIxK lie a family of sets whose index set is 
the product of two sets I and K. If K :F $i, we have 

n (II XI. x) =ll(nx,.x). 
XEK lEI lEI Kex 

Both sides of the equality to be proved are functional graphs. A graph f 
belongs to the left-hand side if and only if, for each x e K, f e II XI. X; 

lEI 
that is, if and only if f(~) e X,. x for all (~, x) e I X K. For f to belong 
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to the right-hand side it is necessary and sufficient that f(t) e n ~,x 
XEK 

for each tel, i.e., that f (t) e X"X for each pair (t, x) e I X K. This 
completes the proof. 

COROLLARY. Let (X')'EI and (Y')'EI be two families of sets with the same 
index set I :F $b. Then 

Apply Proposition 10 to the case where K (resp. I) is a set consisting of 
two distinct elements. 

7. EXTENSION OF MAPPINGS TO PRODUCTS 

DEFINITION 2. Let (X')'EI' (Y')'EI be two families of sets, and let (g')'EI 
be a ffltnily of functions with the same index set I such that g, is a mappiRg of 
X, into Y, for each LeI. Far each fe II X, let uf be the graph of the 

'EI 
function L = g,(J(L)) (L e I), which is an element of II VI' The mapping 

,EI 
f ~ Uf of IIx, into II Y, is called the canonical extension (or simply the 

,EI lEI 
extension) to products of the family of mappings (g ,) ,E I; it is also sometimes called 
the product of the family of mappings (g')'EI' 

When the index notation is used, the product of the family (g')IEI is the 
function (X')'EI ~ (g,(X'»'EI; it is sometimes denoted by (g')'EI' 

If I = {IX, ~}, where at and ~ are distinct, the extension to products of 
the family of mappings (g,)'EI isjust q, 0 (grz X g~) 0 cp, where cp denotes 
the canonical mapping of IT XI onto Xrz X X~ (no. 3) and q, the 

,EI II 
canonical mapping of Y ~ X Y ~ onto VI' 

,EI 

PROPOSITION 11. Let (X')'EI' (Y')'EI' (Z')'EI be three families of sets 
and let (g')'EI' (g:)'EI be two families of functions, all having the same index 
set, such that g, is a mapping of X, into Y, and g: a mapping of Y, into Z" 
for each LeI. Let g and g' be the extensions of the families (g')'EI and 
(g:),EI to products. Then the extension of the family (g: 0 g')'EI to products is 
equal to g' 0 g. 
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This follows immediately from Definition 2. 

COROLLARY. Let (X')'EI' (Y')'EI be two families of sets and let (C')'EI 
be a family of functions. If g, is an i,yection (resp. surjection) of XI into Y, 
for each i e I, then the extension g of (C')'EI to products is an injection (resp. 

surjection) of IIx, into II YI' 
,EI ,EI 

(1) Let us assume that XI =F ~ for each LeI; otherwise the result is 
trivial. Suppose that C, is injective for each LeI, and let rl be a retrac­
tion of g, (§ 3, no. 8, Definition 11), so that r,o g, is the identity mapping 
of X,. Let r be the extension to products of the family (r')'EI; since 
r 0 g is the extension to products of the family of identity mappings Ix" 
r 0 g is the identity mapping of II X, and hence C is injective (§ 3, 
Proposition 8). ,EI 

(2) Suppose that C, is a surjection of X, onto Y, for each LeI, and 
let s, be a section of CI (§ 3, no. 8, definition 11), so that C, 0 $, is the 
identity mapping of Y,. If s is the extension to products of the family 
(S')'EI' then Cos is the extension to products of the family of identity 
mappings I y , and is therefore the identity mapping of IIYI ; hence C 
is surjective (§ 3, Proposition 8). ,EI 

Let (X')'EI be a family of sets, and let E be a set. For every mapping 
f of E into IT X" pr, 0 f is a mapping of E into XI' If 1 is the 

lEI 
extension to products of this family of mappings, and if d is the diagonal 
mapping of E into EI, then it is immediate that f = 1 0 d. Conversely, 
let (fr)'EI be a family of functions such that h is a mapping of E into 
X, for each i e I, and let 1 be the extension to products of this family; 
then we have prl 0 (1 0 d) = fr. for each LeI. By abuse oflanguage, the 
mapping 1 0 d is also written as Ch)IEI' In this way we define a one­
to-one mapping of the set II X~ onto the set (II XI)E; this mapping 

,EI lEI 
and its inverse are said to be canonical. 

6. EQUIVALENCE RELATIONS 

In principle, from now on we shall stop using bold-face italic letters to 
denote undetermined assemblies; the reader will be able to discern easily 
from the context the assertions which apply to undetermined letters or 
relations. 
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1. DEFINITION OF AN EQUIVALENCE RELATION 

Let R! x, y I be a relation, x and y being distinct letters. The relation 
R is said to be symmetric (with respect to the letters x and y) if 

R!x,y! ~R!y,x!. 

If so, by substituting for x and y two letters x' and.Y', distinct from each 
other and from all the letters which appear in R, and then by substituting 
y and x for x' and y', respectively, we see that 

Rly,xi ~Rlx,YI· 

Hence R I x, y I and R I y, x I are equivalent. 
!r Let z be a letter which does not appear in R. The relation R is 
said to be transitive (with respect to the letters x,y) if we have 

(Rlx,yl and Rly, zD===>Rlx,zi· 

Examples. The relation x = y is symmetric and transitive. The relation 
Xc Y is transitive but not symmetric. The relation X n Y = 9 is 
symmetric but not transitive. 

If R I x,y! is both symmetric and transitive it is said to be an equivalence 
relation (with respect to the letters x and y). In this case the notation 
x == y (mod R) is sometimes used as a synonym of R I x, y!; it is 
read "x is equivalent to y modulo R". If R is an equivalence relation, 
we have Rlx, yi ~ (Rlx, xi and Rl y, yD, because Rlx, y! 
implies R I y, xl, and (R lx, yi and R I y, xi) implies (R Ix, xi and 
R I y, y!) by virtue of the definitions. 
~ Let R lx, y! be a relation; it is said to be reflexive on E (with respect 
to the letters x, y) if the relation R I x, x I is equivalent to x e E. If 
there is no possible ambiguity about E, one says simply, by abuse of 
language, that R is reflexive. 
~ An equivalence relation on E is defined to be an equivalence relation which 
is reflexive on E. If R I x, y i is an equivalence relation on E, we have 
R I x, y! ~ «x, y) e E X E), hence R has a graph (with respect to the 
letters x, y). Conversely, suppose that the equivalence relation R I x, y i 
has a graph G. Observe that the relation R I x, x I is equivalent to the 
relation (3y)R! x, y I; for the former implies the latter (Chapter I, 
§ 4, no. 2, scheme 85), and conversely, since R I x, y! implies R I x, x!, 
(3y)Rlx,yi implies (3y)Rlx, xl and therefore also Rlx, xi. Thus 
R I X, x i is equivalent to x e prIG, and hence R is an equivalence 
relation on prIG. 
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~ An equivalence on a set E is a correspondence whose source and target 
are both equal to E, and whose graph F is such that the relation (x, y) e F 
is an equivalence relation on E. 

Examples 
(1) The relation x = y is an equivalence relation which has no graph, 
for if it did, the first projection of this graph would be the set of all objects. 
(2) The relation "x = y and x e E" is an equivalence relation on E 
whose graph is the diagonal of E X E. 
(3) The relation "there exists a bijection of X onto Y" is an equiva­
lence relation which has no graph (cf. Chapter III, § 3). 
(4) The relation "x e E and ye E" is an equivalence relation on E, 
whose graph is E X E. 
(5) Suppose A c: E; then the relation 

(x e E - A and y = x) or (x e A and yeA) 

is an equivalence relation on E. 
(6) • The relation "x e Z and ye Z and x - y is divisible by 4" is 
an equivalence relation on Z .• 

PROPOSITION 1. A correspondence r between X and X is an equivalence on 
X if and onlY if it satisfies the following conditions: (a) X is the domain of r; 

-1 

(b) r = r; (c) r 0 r = r. 
Let r be a correspondence between X and X, and let G be its graph. 
If r is an equivalence on X, then (x, x) e G for all x e X; hence X 
is the domain of r. The relation (x, y) eGis equivalent to (y, x) e G, 

-1 -1 -1 

hence to (x, y) e G. so that G = G and therefore r = r. The rela-
tions (x, y) e G and (y, z) e G imply (x, z) e G, so that GoG c: G; 
conversely, (x, y) e G implies (x, x) e G and therefore (x, y) eGo G, 
so that G eGo G; hence G = GoG and consequently r = r 0 r. 
~ Conversely, suppose that conditions (a), (b), and (c) are satisfied. The 
relation (x, y) eGis symmetric (by (b» and transitive (by ( c»; hence it 
is an equivalence relation, and by (a) it is an equivalence relation on X. 

1. EQUIVALENCE CLASSES; QUOTIENT SET 

Let f be a function, E its domain, F its graph. The relation "x e E 
and ye E and f (x) = f (y)" is an equivalence relation on E, called 
the equivalence relation associated with J. It is equivalent to the relation 

-1 

(3z)(x, z) e F and (y, z) e F), i.e., to (3z)«x, z) e F and (z, y) e F), 
-1 

and therefore its graph is F 0 F. 
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~ We shall now show that every equivalence relation R on a set E is of 
this type. Let G be the graph of R. For each x e E the (non-empty) 
set G(x) c E is called the equivalence class of x with respect to Rj it is thus 
the set of all y e E such that R! x, y I. Every set which can be written 
as G(x) for some x e E is called an equivalence class (with respect to R). 
An element of an equivalence class is called a representative of this class. 
The set of equivalence classes with respect to R (that is, the set of all 
objects of the form G(x) for some x e E) is called the quotient set of E 
by R and is denoted by E/R. The mapping x -+ G(x) (x e E) whose 
domain is E and whose target is E/R is called the canonical mapping of E 
onto E/R. 

C55. Let R be an equivalence relation on a set E, and let p be the canonical 
mapping of E onto E/R. Then 

R I x, y! ~ (P(x) = p(y». 

With the notation above, let x and y be elements of E such that 

(x, y) e G. 

Then x e E and ye E; let us show that G(x) = G(y). Since ye G(x), 
we have (Proposition 1) G(y) c (G 0 G)(x) = G(x). On the other hand, 
we also have (y, x) e G, whence G(x) c G(y) and therefore 

G(x) = G(y), 

i.e., p(x) = P(y). Conversely, if G(x) = G(y), we have ye G(y) = G(x), 
so that ex, y) e G. This completes the proof. 

~ A section of the canonical mapping p of E onto E/R (§ 3, no. 8, Defini­
tion II) is called more briefly a section of E (with respect to the relation R). 

Examples 

(1) Let R be the equivalence relation "x e E and ye E and x = y" 
on a set E. The equivalence class of x e E is then the set {x}, and the 
canonical mapping x -+ {x} of E onto EjR is bijective. 

(2) Let E, F be two sets and let R be the equivalence relation on 
E X F associated with the mapping prl of E X F onto E. The equi­
valence classes with respect to R are the sets of the form {x} X F, where 
x e E; the mapping x -+ {x} X F is a bijection of E onto (E X F) fR. 

Let R be an equivalence relation on a set E. The quotient set E/R is 
a subset of ~(E), and the identity mapping of EjR is a partition of E 
(~4, no. 7); for if G is the graph of R, we have x e G(x) for all x e E, 
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and if two equivalence classes G(x) and G(y) have a common element z, 
then R I x, z! and R I y, z!, so that G(x) = G(y). Furthermore, the 
relation 

(3X) (X e EtR and x e X and ye X) 

is equivalent to R I x, y! • 
~ Conversely, let (X')IEI be a partition of a set E. It is immediately 
verified that the relation (3L)(L e I and x e X, and y e V,) is an equiva­
lence relation R on E; the equivalence classes with respect to R are 
just the sets X, of the partition, and the mapping L -+- XI is a bijection of 
I onto EtR. Every subset S of E such that, for each LeI, the set 
S n X, consists of a single element is called a system of representatives (or a 
transversal) of the equivalence classes with respect to R. This name is 
also used to denote any injection of a set K into E such that the image 
of K under this injection is a system of representatives of the equivalence 
classes with respect to R; for example, any section of E with respect to R. 

3. RELATIONS COMPATIBLE WITH AN EQUIVALENCE RELATION 

Let R I x, x'! be an equivalence relation and let P I x ! be a relation. 
The relation P I x! is said to be compatible with the equivalence relation 
R I x, x'! (with respect to x) if we have 

where y denotes a letter which appears neither in P nor in R. 

For example, it follows from 043 (Chapter I, §5), no. 1) that every relation 
P } x} is compatible with the equivalence relation x = x'. 

056. Let R I x, xII be an equivalence relation on a set E, and let P I x I be 
a relation which does not contain the letter x' and is compatible (with respect to 
x) with the equivalence relation R I x, x'I. Then, if t does nol appear in 
Plxl, the relation "teEtR and (3x)(xet and Pix!)" is equivalent to 
the relation "leEtR and (Vx)«xet)=+PlxD". 

Let I e EtR. If there exists a e t such that P I a!, then for each x e t 
we have R I a, x I and hence P I x I. Hence (3x)(x e I and P I x D 
implies (V x)( (x e t) =+ P I x D. The converse is obvious since teE tR 
implies that t =F p. 
~ The relation 

leEtR and (3x)(xet and Pix!) 
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is said to be induced by P I x t on passing to the quotient (with respect to x) 
with respect to R. If this relation is denoted by P' I t I, and if 1 is the 
canonical mapping of E onto E/R. then the relation 

YEOE and P'!/(Y)! 

(where Y does not appear in P! x D is equivalent to (y EO E and PlY D. 
as is immediately verified. 

4. SATURATED SUBSETS 

Let R! x, y! be an equivalence relation on a set E, and let A be a 
subset of E. A is said to be saturated with respect to R if the relation x EO A 
is compatible (with respect to x) with R I x, Y!; or, equivalendy, if 
for each x EO A tke equivalence class of x is contained in A. In other words, 
a set is saturated with respect to R if and only if it is the union of a set of 
equivalence classes with respect to R. 
~i Let1 be the canonical mapping of E onto E/R. If A is saturated with 
respect to R, then the equivalence class of each x EO A. which is equal to 

7<{/(x)}), is contained in A, and hence 7<I<A»cA; since in 

any case we have A c 7<1 <A», it follows that 7 <I <A» = A. 
-1 

Conversely, if A = 1 (1 (A», then for every x EO A the equivalence 
class K = 1 (x) of x with respect to R is an element of 1 (A); and since 

K = 7 ({K}), we have K c 7 (I (A» = A. Thus the subsets of E 
which are saturated with respect to R are precisely the subsets A of E 

-1 
such that A = I <1 (A) ). Equivalendy, they are the subsets of E of 
the form 7 (B). where Be E/R; for the relation A = 7 (B) implies 

-1 

B =I<A), hence A = 1 (/(A». 
~ If (X,), e I is a family of saturated subsets of E, then the sets U XI and 

leI n X, are saturated (§4, Propositions 3 and 4). If A is a saturated subset 
leI 
of E, then so is CEA (§4, Proposition 6). 

-1 !l Let A now be an arbitrary subset of E. Then the set f < f (A) ) 
contains A and is saturated. Conversely, if A' is a saturated subset 
of E which contains A, we have 1 (A') ;:) 1 (A), so that 

A' = 7(1 (A'» ;:) 7<1 (A». 

Hence we may say that 7(1 (A» is the "smallest" saturated subset of 
E which contains A (cf. Chapter III); this set is called the saturation 
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of A with respect to the relation R. It is immediately seen that the satu­
ration of A is the union of the equivalence classes of the elements of A. 
If (XI)IEI is a family of subsets of E and if AI is the saturation of XI 

with respect to R, then the saturation of U X, is U A, (§4, Proposi-
tion 3). lEI lEI 

S. MAPPINGS COMPATIBLE WITH EQUIVALENCE RELATIONS 

Let R be an equivalence relation on a set E, and let f be a function 
with domain E. Then f is said to be compatible with the relation R if the 
relation y = f (x) is compatible (with respect to x) with the relation 
R!x, x'!. 
~ It comes to the same thing to say that the restriction of f to each 
equivalence class is a constant mapping, in which case we say that f is 
constant on each equwalence class with respect to R. If g is the canonical 
mapping of E onto E/R, an equivalent statement is that the relation 
g(x) = g(x') implies f (x) = f (x'); hence (§3, Proposition 9) we have the 
following criterion : 

CS 7. Let R be an equivalence relation on a set E, and let g be the canonical 
mapping of E onto E IR. Then a mapping f of E into F is compatible with 
R if and onry if f can be put in the form hog, where h is a mapping of E IR 
into F. The mapping h is uniquery determined by fj if s is any section of g, 
we have h =fo s. 

The mapping h is said to be induced by f on passing to the quotient with 
respect to R. 
~ Let f be a mapping of a set E into a set F, and let A = f <E) c F. 
Let R be the equivalence relation associated with f (no. 2); it is clear 
that f is compatible with R. Moreover, the mapping h induced by f 
on passing to the quotient is an injection of E IR into F : for if t, t' 
are equivalence classes with respect to R such that h(t) = h(t'), we 
have f (x) = f (x') for all x e t and x' e t', which implies t = I' by the 
definition of R. Let k be the mapping of E/R onto A which has 
the same graph as h; then k is bijective. If j is the canonical injection 
of A into F and if g is the canonical mapping of E onto E/R, then 
we may write 

f=j 0 k 0 g. 

This relation is called the canonical decomposition of J. 
~ Let f be a mapping of a set E into a set F, let R be an equivalence 
relation on E, and let S be an equivalence relation on F. Let II be 
the canonical mapping of E onto E/R, and let v be the canonical 
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mapping of F onto F /8. The mapping f is said to be compatible with 
the equivalence relations Rand 8 if v 0 f is compatible with R; this means 
that the relation x == x' (mod R) implies f(x) 5f(x') (mod 8). The 
mapping h of E/R into F 18 induced by v 0 f on passing to the quo­
tient with respect to R is then called the mapping indJlud by f on passing 
to the quotients with respect to R and 8; it is characterized by the relation 
v of= h 0 u. 

6. INVERSE IMAGE OF AN EQUIVALENCE RELATION; 
INDUCED EQUIVALENCE RELATION 

Let cp be a mapping of a set E into a set F, and let 8 be an equivalence 
relation on F. If u is the canonical mapping of F onto F 18, the equiva­
lence relation associated with the mapping u 0 cp of E into F 18 is called 
the inverse image of 8 under cp; if R is this relation, R I x, y I is equiva­
lent to 8 I cp(x), cp(y) t, and the equivalence classes with respect to R 
are the inverse images under cp of the equivalence classes with respect to 8 
which meet cp(E). 
~ In particular, consider an equivalence relation R on a set E, and let A 
be a subset of E; then the inverse image of R under the injection j 
of A into E is called the equivalence relation induced by R on A, and 
is denoted by R A. 
~ The equivalence classes with respect to RA are the traces on A of the 
equivalence classes with respect to R which meet A. The injection j 
is obviously compatible with the relations RA and R; the mapping h 
of A/RA into E/R induced by j on passing to the quotient with respect 
to RA and R is an injective mapping of AIR,. into E/R : for iff (resp. 
g) is the canonical mapping of E onto E/R (resp. A onto AjRA), then 
the relation h(g(x») = h(g(x'», where xeA and x' eA, is equivalent to 
f(x) = f(x') and therefore to g(x) =g(x'). The image h(A/RA) is equal 
to f <A). If k is the bijective mapping of A/RA onto f <A) which 
has the same graph as h, then k and its inverse are said to be canonical. 

7. QUOTIENTS OF EQUlV ALENCE RELATIONS 

Let R, 8 be two equivalence relations with respect to two letters x, y. 
We shall say that 8 is finer than R (or that R is coarser than 8) if the 
relation 8 => R is true. If Rand 8 are equivalence relations on the 
same set E, the statement that 8 is finer than R means that the graph 
of 8 is contained in that of R, or again that every equivalence class 
with respect to 8 is contained in an equivalence class with respect to R; 
or, equivalently, that every equivalence class with respect to R is satura­
ted with respect to 8. 
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Examples 
(I) The relation "x e E and )' e E and x =)''' is finer than every 
equivalence relation on E. The relation "x e E and )' e En is coarser 
than every equivalence relation on E. 

* (2) The equivalence relation "x e Z and)' e Z and Jt -)' is divisible 
by 4" is finer than the equivalence relation "x e Z and)' e Z and x - )' 
is divisible by 2". * 

Let R and S be two equivalence relations on the same set E, such that S 
is finer than R. Let f and g be the canonical mappings of E onto 
E/R and E onto E/S respectively; then the function f is compatible 
with S. Let h be the function induced by f on passing to the quotient 
with respect to S; then h is a mapping of E/S onto E/R. The equi­
valence relation associated with h on E/S is called the quotient of R by S 
and is denoted by RIS. The relation x == y (mod R) is equivalent to 
g(x) == g(y) (mod RIS), and the equivalence classes with respect to RIS 
are the images under g of the equivalence classes with respect to R. Let 
h = j 0 h2 0 Ax be the canonical decomposition (no. 5) of the mapping h. 
Then h1 is the canonical mapping of E/S onto (E/S) I(RIS), j is the 
identity mapping of E/R, and h. is a one-to-one mapping of (E/S) I(RIS) 
onto E/R. The mapping h2 and its inverse are said to be canonical. 
~ Conversely, consider an arbitrary equivalence relation T on the set E/S, 
and let R be the equivalence relation on E which is the inverse image 
under g of the relation T (no. 6). Since the relation x == y (mod R) 
is equivalent to g(x) == g(y) (mod T), it follows that T is equivalent 
to RIS. 

8. PRODUcr OF TWO EQUIVALENCE RELATIONS 

Let R I x, y I and R'} x', y' 1 be two equivalence relations. Let S I u, v I 
denote the relation 

(3x)(3y)(3x')(3y')(u=(x,x') and v=(y,y') and Rix,yi and R'lx',y'D; 

it is immediately verified that S I u, v t is an equivalence relation, called 
the product of R and R', and denoted by R X R'. Suppose that R is 
an equivalence relation on a set E and that R' is an equivalence relation 
on a set E'. Then the relation S lu, ul is equivalent to 

(3x)(3x')(u = (x, x') and Rlx, xt and R'lx', x'D 
i.e., to (3x) (3x') (u = (x, x') and x e E and x' e E'), hence to u e Ex E'. 
It follows that R X R' is an equivalence relatioll on E X E'. If 

u = (x, x') 
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is an element of E X E', the relation 5 I u, 1I! is equivalent to 

(3y)(3y')(v = Cy,y') and Rlx,y! and R'!x',y'!); 

if G and G' are the graphs of Rand R', respectivdy, this relation is 
in turn equivalent to 1I e G(x) X G(x'). Hence every equivalence class 
with respect to R X R' is the product of an equivalence class with respect to R 
and an equivalence class with respect to R', and converseh'. 
!f Let f and f' be the canonical mappings of E onto E/R and E' onto 
E/'R', respectivdy, and let f X f' be the canonical extension off and 
f' to the product sets (§3,no.9). Then (fxj')(x,x') = (f(x),f'(x')) 
for all (x, x') e E X E'. The inverse image under f X f' of an dement 
(u, u') of (E/R) X (E'fR') is just the product u X u' of the equivalence 
class u with respect to R and the equivalence class "' with respect 
to R'. It follows that the equivalence relation associated with f X f' 
is equivalent to R X R'. The mapping f X f' can therefore be written 
as hog, where g is the canonical mapping of E X E' onto 

(E X E') f(R X R') 

and h is a one-to-one mapping of (E X E') f(R X R') onto 

(EfR) X (E' fR'); 

this mapping h and its inverse are said to be canonical. 

Rlmark. Let P I X, x' I be a relation in which the letters y, y' do not 
occur. P is said to be compatible with the equivalence relations R I x, y I 
and R/l x', y'! (with respect to x and x') if the relation (P I x, x' 
and R I x, y! and R' lx', y' D implies Ply, y'!. Let Q I u! be the 
relation (3x) (3x' ) (u = (x, x') and P I x, x' I ); then it comes to the same 
thing to say that Q! u! is compatible (with respect to u) with the equi­
valence relation S! u, v !, the product of R and R/. 

9. CLASSES OF EQUIVALENT OBJECTS 

Let R I x, y I be an equivalence relation, which need not have a graph. 
It is obvious that if x, x', yare three distinct letters, the relation R I x, x'i 
implies "R I x, y! ~ R I x', y!" and therefore also implies the relation 
(Vy)(Rlx, yl ~ Rlx', yD. By the scheme 57 (Chapter I, §5, no. I), 
if we put e I x I = 't, (R I x, y I ), the rdation R I x, x' I implies 
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Note, on the other hand, that by definition R I x, 6} x II is the relation 
(3yHRlx,yD and hence (no. I) is equivalent to Rlx, xl. It follows 
that the relation (Rlx, xl and R!x', x'i and 61xl = 61x'I) is equi­
valent to R! X, x' I, for it implies, by S6 (Chapter I, §5, no. I), the relation 

(Rlx,xl and R}x',x'i and (Rlx', 6!xl ! ~ R!x', 61x'l D), 

hence also (Rlx, 81xl! and Rlx', 0lx! 0, and finally RJx, x'! by 
transitivity and symmetry. And since, conversdy, R I x, x'! implies 
R lx, . x! and R! x', x'!, the assertion is proved. The term 81 x! is 
called the class of objects equivalent to x (with respect to the rdation R). 
~ Suppose now that T is a term such that the relation 

(I) (VyHR I y, y! -=> (3x){x e T and R I x, y D) 
is true. Then the relation (3x) (R Ix, x! and z = 8Ix!) is collectivizing 
in z. For we may suppose that x e T implies R Ix, x! ; it is sufficient 
to replace T by the set of all x e T such that R Ix, x ! (observing that 
R I x, y! implies R I x, x!). Let e be the set of all objects of the 
form O(xl for xeT (§I, no. 6). Suppose that Rt)',y! is true; then 
there exists x e T such that R! x, )' I and therefore 81 y I = 61 x lee. 
The set e is called the set of classes of equivalent objects with respect to R; 
and for each x such that R! x, x I, 8! x I is the unique element z e e 
such that R! x, z I. 
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Under the same hypothesis, let A! x I be a term such that R! x, y I 
implies A I x I = A b! . Then the relation (3x)(R! x, x! and z = I x D 
is collectivizing in z, since R 1 x, x!, being equivalent to R 1 x, 61 x! !, 
implies A! x I = A! 6 ! x I I, and consequently if E is the set of objects 
of the form A!'I for le0, then R!x, xl implies Alx! eE. Iff is 
the function 1- A ill (I e 0, A It! e E), then the relation R I x, x I 
implies A!xl =f(O!x{). 

In particular, if R is an equivalence relation on a set F, we may take 
A! x! to be the equivalenu class of x with resjJl&l to R (no. 2), and the 
function f is then a bijection of 0 onto the quotient set FiR; this justifies 
the terminology introduced. 

• Example. Let R I x, y I be the equivalence relation "x and y are two 
vector spaces of the same finite dimension over e"; this relation has no 
graph. It satisfies condition (I) when T is the set of all vector subspaces 
of eCN), or when the subset T' of T consists of the spaces ell (n eN) 
with the conventions that CO consists of the point 0 of ON) and that en 
(n > 0) is the sum of the first n components of the direct sum ON). 
With this second choice we have 0=T' .• 



EXERCISES 

§ I 
1. Show that the relation 

(x =y) ~ (VX) ((xeX) =+ (yeX» 
is a theorem. 

2. Show that pi i: {x} is a theorem. Deduce that (3x)(3y) (x i: y) is 
a theorem. 

3. Let A and B be two subsets of a set X. Show that the relation 
B c CA is equivalent to A c CB and that the relation CB c A is equi­

valent to CA c B. 

4. Prove that the relation X c {x} is equivalent to 

"X = {x} or X = pi". 

5. Prove that p = 'tx('t,x(x eX) • X). 

6. Let 'lO be an equalitarian theory which contains the sign e and the 
following axiom : 

AI'. (Vy)(y = 't,x((V z)(z e x ~ Z ey») 

(in other words, every term is equal to the set of its elements). Show that 
the axiom of extent Al is a theorem in 'iO (use the scheme S7). 

§ 2 

1. Let R 1 x, y I be a relation, the letters x and y being distinct; 
let z be a letter, distinct from x and y, which does not appear in 
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R I X, y!. Show that the relation (3x) (3y)R I X, y! is equivalent to 

(3z)(z is an ordered pair and R!pr1z, przzD 

and that the relation (Vx)(Vy)Rlx, y! is equivalent to 

(Vz) (z is an ordered pair) ===>- R!pr1z, przZ{). 

2. (a) Show that the relation {{x}, {x, yn = {{x'}, {x', y'n is equi­
valent to "x = x' and y = y'''. 

(b) Let fOo be the theory of sets and let fOl be the theory which has 
the same schemes and explicit axioms as fOo, except for axiom A3. Show 
that if fOI is not contradictory, then fOo is not contradictory (use (a». 

§ 3 

1. Show that the relations x e y, x c y, x = {y} have no graph with 
respect to x and y. 

2. Let G be a graph. Show that the relation X c priG is equivalent 
-1 

to Xc G(G(X) ). 

3. Let G, H be two graphs. Show that the the relation prlH c priG 
-1 -1 

is equivalent to He HoG 0 G. Deduce that G eGo GoG. 

-1 

4. If G is a graph, show that ~ 0 G = G 0 ~ =~, and that GoG = ~ 
if and only if G = fl. 

5. Let A, B be two sets and let G be a graph. Show that 

-1 

(A X B) 0 G = G(A) X B and G 0 (A X B) = A X G(B). 

6. For each graph G, let G' be the graph (prIG) X (przG» - G. 
Show that 

and that 
-1 

-1 ::::! 
(G)' = G', 

-1 

Go (G)' c ~~, (G)' 0 Gc~~, 

if A;:) priG and B;:) prsG. Show that 
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if and only if 
-1 

GoG'., G = fb. 

7. A graph G is functional if and only if for each set X we have 

-1 

G(G(X»eX. 

8. Let A, B be two sets, let r be a correspondence between A and 
B, and let r' be a correspondence between B and A. Show that if 
r'(r(x» = {x} for all xeA and if r(r'(y» = {y} for allyeB, then 
r is a bijection of A onto B, and f' is the inverse mapping. 

9. Let A, B, C, D be sets, I a mapping of A into B, g a mapping 
of B into C, h a mapping of C into D. If g 0 I and hog are bijec­
tions, show that all of J, g, h are bijections. 

10. Let A, B, C be sets, I a mapping of A into B, g a mapping of 
B into 0, h a mapping of C into A. Show that if two of the three 
mappings hog 0 J, g 0 f 0 h, 1 0 hog are surjections and the third is 
an injection, then J, g, h are all bijections. 

*11. Find the error in the following argument : Let N denote the set 
of natural numbers and let A denote the set of all integers n > 2 for 
which there exist three strictly positive integers x, y, ,e such that 
x" + Y' = ,en. Then the set A is not empty (in other words, "Fermat's 
last theorem" is false). For let B = {A} and C = {N}; Band C are 
sets consisting of a single element, hence there is a bijection f of B onto C. 
We have I (A) = N; if A were empty we should have N =/(fJ) = fJ, 
which is absurd. * 

§4 

1. Let G be a graph. Show that the following three propositions are 
equivalent : 

(a) G is a functional graph. 
(b) If X, Yare any two sets, then 

-1 -1-1 

G(X n Y) = G(X) n G(Y). 

(c) The relation X n Y = fb implies 

-1 -1 

G(X) n G(Y) = p. 

2. Let G be a graph. Show that for each set X we have 

G(X) = prl(G n (X X prIG» and G(X) = G(X n prIG). 
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3. Let X, Y, V', Z be four sets. Show that 

(Y' X Z) 0 (X X Y) = P if YnY' =p 
and that 

(Y' X Z) 0 (X X Y) = X X Z if Y n Y' =F p. 

4. Let (GI)leI be a family of graphs. Show that for every set X we 
have 

and that for every object x, 

( nGI)({X}) = nGI({x}). 
leI leI 

Give an example of two graphs G, H and a set X such that 

(G n H) (X) =F G(X) n H(X). 

5. Let (GI)leI be a family of graphs and let H be a graph. Show that 

6. A graph G is functional if and only if for each pair of graphs H, H' 
we have (H n H') 0 G = (H 0 G) n (H' 0 G). 

7. Let G, H, K be three graphs. Prove the relation 

-1 -1 

(H 0 G) n K c (H n (K 0 G» 0 (G n (H 0 K». 

8. Let m = (XI)leI and S = (Yx)xeK be two coverings of a set E. 
(a) Show that if m and S are partitions of E and if m is finer 

than S, then for every x e K there exists LeI such that XI c Y)t. 
(b) Give an example of two coverings m, S such that m is finer than 

S but such that the property stated in (a) is not satisfied. 
(c) Give an example of two partitions m, S of E such that for every 

x e K there exists LeI such that XI C Y 1t hut such that m is not a refine­
ment of S. 
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§ 5 

1. Let CXI)leI be a family of sets. Show that if (Y,),eI is a family 
of sets such that Y, e XI for each LeI, then 

2. Let A, B be two sets. For each subset G of Ax B let G- be the 
mapping x -+ G< {x} > of A into il,lCB). Show that the mapping G -+ G­
is a bijection of il,l(A X B) onto Cil,l(B))A. 

*3. Let (Xih~i~n be a finite family of sets. For each subset H of the 
index set [1, n] let 

and 
leH 

Let ~k be the set of subsets of [1, n] which have k elements. Show that 

UQH=> QPH if 
I 

k ~ - Cn + 1), 
He\i'k He k 2 

and that 

U QHe n PH if 1 
k ~ 2" (n + 1). * 

He\i'k Heir" 

§6 

1. For a graph G to be the graph of an equivalence relation on a set E, 
-1 

it is necessary and sufficient that prIG = E, GoG 0 G = G, and 

~E e G (~E being the diagonal of E). 
2. If G is a graph such that 

-1 

GoG 0 G = G, 

-1 -1 

show that GoG and GoG are graphs of equivalences on prIG and 
pr2G respectively. 

3. Let E be a set, A a subset of E, and R the equivalence relation 
associated with the mapping X -+ X n A of il,lCE) into il,lCE). Show that 
there exists a bijection of il,l(A) onto the quotient set il,l(E) fR. 

4. Let G be the graph of an equivalence on a set E. Show that if A 
is a graph such that A e G and prIA = E (resp. pr0. = E), then 

GoA = G Crespo A 0 G = G); 

127 



u THEORY OF SETS 

furthermore, if B is any graph, we have (G n B) 0 A = G n (B 0 A) 
(resp. A 0 (G n B) = G n (A 0 B». 

5. Show that every intersection of graphs of equivalences on a set E is 
the graph of an equivalence on E. Give an example of two equivalences 
on a set E such that the union of their graphs is not the graph of an 
equivalence on E. 

6. Let G, H be the graphs of two equivalences on E. Then Go H 
is the graph of an equivalence on E if and only if G 0 H = HoG. 
The graph G 0 H is then the intersection of all the graphs of equivalences 
on E which contain both G and H. 

7. Let Go, Gl> H o, HI be the graphs of four equivalences on a set E 
such that GI n Ho = Go n HI and GI 0 Ho = Go 0 HI. For each x e E, 
let Ro (resp. 80) be the relation induced on GI(x) (resp. HI(x)) by the 
equivalence relation (x, y) eGo (resp. (x, y) e Ho). Show that there 
exists a bijection of the quotient set G](x)JRo onto the quotient set 

(If A = GI(x) n HI(x), show that both quotient sets are in one-to-one 
correspondence with the quotient set of A by the equivalence relation 
induced by Ro on A; this relation is equivalentto that induced by So on A) 

8. Let E, F be two sets, let R be an equivalence relation on F, 
and let f be a mapping of E into F. If S is the equivalence relation 
which is the inverse image of R under j; and if A =f(E), define a 
canonical bijection of EJS onto A/RA • 

9. Let F, G be two sets, let R be an equivalence relation on F, 
let p be the canonical mapping of F onto F JR, and let f be a surjection 
of G onto F JR. Show that there exists a set E, a swjection g of E 
onto F, and a surjection h of E onto G, such that p 0 g = f 0 h. 

10. (a) If Rlx,yl is any relation, then "Rlx,yl and Rly, xl" 
is a symmetric relation. Under what condition is it reflexive on a set E? 

* (b) Let R I x, y! be a reflexive and symmetric relation on a set E. 
Let 8! x, y I be the relation "there exists an integer n > 0 and a 
sequence (Xi)o~i~n of elements of E such that Xo = x, Xn = y, and for 
each index i such that 0 ~ i < n, R I Xi, XiH!". Show that S I x, y! 
is an equivalence relation on E and that its graph is the smallest of all 
graphs of equivalences on E which contain the graph of R. The equi­
valence classes with respect to 8 are called the connected components of E 
with respect to the relation R. 

(c) Let ~ be the set of subsets A of E such that, for each pair of 
elements (y, z) such that yeA and z e E - A, we have "not R I y, z!". 
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For each x e E, show that the intersection of the sets A e ij such that 
x e A is the connected component of x with respect to the relation R.* 

11. (a) Let R I x, y! be a reflexive and symmetric relation on a set E. 
R is said to be intransitive of order 1 if for any four distinct elements 
x, y, z, t of E the relations R I x, y!, R I x, z!, R I x, t!, R I y, z!, and 
R I y, t I imply R !;;, t!. A subset A of E is said to be stable with 
respect to the relation R if R I x, y I for all x and y in A. If a and b 
are two distinct elements of E such that R! a, b!, show that the set 
C( a, b) of elements x e E such that R I a, x I and R! b, x! is stable and 
that 

C(x, y) = C(a, b) 

for each pair of distinct elements x, y of C(a, b). The sets C(a, b) (for 
each ordered pair (a, b) such that R! a, b D and the connected compo­
nents (Exercise 10) with respect to R which consist of a single element 
are called the constituents of E with respect to the relation R. Show that 
the intersection of two distinct constituents of E contains at most one 
element and that if A, B, C are three mutually distinct constituents, 
at least one of the sets A n B, B n C, C n A is empty. 

(b) Conversely, let (X).heL be a covering of a set E consisting of 
non-empty subsets of E and having the following properties: (I) if 
A, fL are two distinct indices, X). n X"" contains at most one element; 
(2) if A, fL' v are three distinct indices, then at least one of the three sets 
X). n X""' X"" n Xv, Xv n X). is empty. Let R! x, y! be the relation 
"there exists A e L such that x e X). and y eX)."; show that R is reflex­
ive on E, symmetric and intransitive of order I, and that the X). are the 
constituents of E with respect to R. 

(c) * Similarly, a relation Rlx, y! which is reflexive and symmetric 
on E is said to be intransitive of order n - 3 if, for every family (xih~i~1I 
of distinct elements of E, the relations R I Xi' xl! for each pair 
(i, j) oF (n - 1, n) imply R I XIl-1> XII!' Generalize the results of (a) 
and (b) to intransitive relations of arbitrary order. Show that a relation 
which is intransitive of order p is also intransitive of order q for all 
q > p. * 
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CHAPTER III 

Ordered Sets, Cardinals, 

Integers 

I. ORDER RELATIONS. ORDERED SETS 

1. DEFINITION OF AN ORDER RELATION 

Let R! x, y! be a relation, x and y being distinct letters. R is said to 
be an order relation with respect to the letters x and y (or between x and y) if 

(R! x, y! and R! y, ~ I) ~ R! x, ~!, 
(R!x, Yl and R! y, xl) ~ (x =y), 
R!x,yl ~ (R!x, xl and R!y, yD. 

The first of the above relations says that R is transitive with respect to the 
letters x and y (Chapter II, § 6, no. 1). 

Examples 
(1) The relation of equality, x = y, is an order relation. 

(2) The relation Xc Y is an order relation between X and Y (Chap­
ter II, § 1, no. 2, Propositions 1 and 2 and axiom AI) which is often called 
the inclusion relation. 

(3) Let R I x, y! be an order relation between x and y. The relation 
R I y, x! is then an order relation between x and y, called the opposite 
of the order relation R! x, y I . 
An order relation on a set E is an order relation R! x, y! with respect to 
two distinct letters x, y such that the relation R! x, x! is equivalent to 
x e E (in other words, is such that R I x, y I is reflexive on E (Chapter II, 
§ 6, no. 1». Then the relation R! x, y! implies "x e E and ye E" 
and the relation (R I x, y! and R I y, x!) is equivalent to "x e E and 
y e E and x = y". 
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Examples 
(1) The relations of equality and inclusion are not order relations on a 
set, for the relations x = x and X c X are not collectivizing (Chapter II, 
§ I, no. 7). 
(2) Let R! x, y! be an order relation between x and y, and let E 
be a set such that x e E implies R I x, x I (notice that the empty set 
satisfies this condition). The relation "R 1 x, y! and x e E and ye E" 
is then an order relation on E, as is immediately verified; it is called the 
order relation induced by R!x,y! on E (cf.no.4). Byabuseoflanguage, 
the phrase "the relation 8 I x, y! is an order relation between elements 
of E" is often used in place of "the relation (8! x, y! and x e E and 
ye E) is an order relation on E". For example, if A is a set, the relation 
"X c Y and X c A and YeA" is an order relation between subsets 
of A. 
(3) Let E, F be sets. The relation "g extends f" is an order relation 
(between f and g) on the set of mappings of subsets of E into F. 
(4) In the set ~(~(E» of sets of subsets of a set E, let ~ be the set of 
partitions of E (Chapter II, § 4, no. 7). We recall that a partition m is 
said to be coarser than a partition mt if given any Y e mt there exists X e m 
such that Y c X (Chapter II, § 4, no. 6). For each partition m of E 
let iiJ be the graph of the equivalence relation defined by m on E (Chap­
ter II, § 6, no. 2), that is to say, the union of the (mutually disjoint) sets 
A X A, where A runs through m. The relation "m is coarser than 
m'" is immediately seen to be equivalent to iiJ::l m', and is therefore 
an order relation on the set ~ between m and mt. 

An ordering on a set E is a correspondence r = (G, E, E) with E as 
source and as target, and such that the relation (x, y) eGis an order 
relation on E. By abuse of language we shall sometimes refer to the 
graph G of r as an ordering on E. If R I x, y! is an order relation 
on E, it has a graph which is an ordering on E. 

PROPOSITION I. A correspondence r between E and E is an ordering on E 
if and only if its graph G satisfies the following conditions : 

(a) GoG = G. 
-1 

(b) The set G n G is the diagonal ~ oj E X E. 

For the relation (x, y) e G and (y, ~) e G) ~ «x, ~) e G) can be writ­
ten as GoG c G, and the relation 

«x, y)eG and (y, x)eG) <==> (x=y and xeE andyeE) 

-1 -1 

can be written as G n G =~. From G n G = ~ we then deduce 
~ c G, whence G = ~ 0 Gc GoG; since also Go Gc G, wehave 

GoG = G. 
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2. PREORDER RELATIONS 

Let R I x, y I be a relation, x and y being distinct letters. If R is tran­
sitive and if we have Rlx,y! ~ (Rlx, xl and Rly, yi), it does not 
necessarily follow that R is an order relation because the relation 

(R I x, y! and R I y, x!) 

does not necessarily imply x = y. R I x, y! is said to be a preorder relation 
between x and y; R I y, x! is then also a preorder relation between x 
and y, called the opposite of the relation R! x, y! . 

For example, let if. be the set of subsets of ~(E) which are coverings 
of E (Chapter II, § 4, no. 6). The relation ,,~ is coarser than 9t", 
between elements m, !R' of ffi, (Chapter II, § 4, no. 6) is transitive and 
reflexive. But two distinct coverings can be such that each is coarser 
than the other; for example, this is the case when 9t' is the union (in ~(E)) 
of ~ and a subset of E contained in a set of ffi but not belonging to 9t. 

But in any case the relation (R I x, y I and R I y, x I) is an equivalence 
relation S I x, y! with respect to x and y. Let x', y' be letters distinct 
from x, y which do not appear in R. Then R I x, y I is compatible 
(with respect to x and y) with the equivalence relations S! x, x'! and 
Sly, y'!; in other words (Chapter II, § 6, no. 8), the relation 

(R I x, y I and S I x, x'! and Sly, y' !) 

implies R I x', y' I· 
~ A preorder relation on a set E is a preorder relation R I x, y I such that 
the relation R I x, x I is equivalent to X e E. The relation R 1 x, y! then 
implies "x e E and y e E". 
~ If R I x, y! is a preorder relation on a set E, then the relation S I x, y! 
defined above is an equivalence relation on E. Let R' I X, Y I denote 
the relation 

XeEjS and YeEjS and (3x)(3y)(xeX and yeY and Rlx,y!), 

that is to say, the relation induced by R on passing to the quotient (with 
respect to x and y); we saw in Chapter II, § 6, no. 3, that it is equivalent 
to the relation 

XeEjS and YeEjS and (Vx)(Vy)«xeX and yeY) ~ R!x,y!). 
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~ Let us show that R' I X, Y! is an order relation between elements of 
EjS. The relation (R' I X, Y! and R' I Y, Z!) is equivalent to 

X e EjS and Ye EjS and Z e EjS and 
(Vx)(Vy)(Vz)(xeX andyeY and zeZ)~ (R!x, y! and Rly, z!) 

(Chapter I, §4, criteria C40, C41). Since Rlx, y! is transitive and 
Ye EjS ~ Y =F ~ (Chapter II, § 6, no. 2), it follows immediately that 
R' I X, Y! is transitive. Next, (R' I X, Y I and R'! Y, X!) is equi­
valent to 

X e E/S and Y e EjS and 
(Vx) (V y) ((x e X and ye Y) ~ (R lx, y! and R I y, xi), 

and hence equivalent to 

XeE/S and YeE/S and (Vx)(Vy)«xeX and yeY) ~ Slx,y!), 

and therefore implies 

XeE/S and YeE/S and X = Y. 

Moreover, R I x, y! implies R I x, x! and R I y, y!, and hence R' I X, Y! 
implies each of the relations 

X e E/S and (Vx)(x e X) ~ R lx, x!), 
YeE/S and (Vy)«yeY)~RlY,YD, 

whence R' I X, Y! implies (R' I X, X! and R' I Y, Y I). Finally, since 
x e E implies R I x, x I, X e EjS implies R' I X, XI, and the proof of 
our assertion is complete. R' I X, Y 1 is said to be the order relation 
associated with R! x, y I. 
~ A preordering on a set E is a correspondence r = (G, E, E) with E as 
source and as target, and such that (x, y) eGis a preorder relation on E. 
By abuse of language we refer sometimes to the graph G of r as a preor­
dering on E. For this to be so it is necessary and sufficient that ~ c G 
and GoG c G (which implies GoG = G). The equivalence relation S 

-1 

corresponding to the preorder relation (x, y) e G then has G n G as 
its graph; the order relation associated with (x, y) e G has as graph the 
subset G' of (E/S) X (E/S) which corresponds (Chapter II, § 6, no. 8) 
to the image of G under the canonical mapping of E X E onto 

(E X E)/(S X S). 
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Example. ... Let A be a ring with an identity element. The relation 
(3z) (z e A and y = zx) between two elements x, y of A is a preorder 
relation on A; it is read "x is a right divisor of y" or "y is a left 
multiple of x" . ... 

3. NOTATION AND TERMINOLOGY 

The definitions to be given in the remainder of this section apply to an 
arbitrary order (or preorder) relation R} x, y! between x and y, but 
will be used mainly in the case where R} x, y! is written x ~ y • (by 
analogy with the usual order relation between integers or real numbers). 
(or x cy, or by means of some analogous sign); we shall therefore state 
them only for the notation x ~ y, and leave to the reader the task of 
transcribing them into other notations. When R} x, y! is written 
x ~ y, then y ~ x is synonymous with x ~ y, and these relations are 
read "x is smaller than y", or "x is less than y", or "y is larger than x" 
or "y is greater than x". The relation x ~ y is then the preorder rela­
tion (between x and y) opposite to x ~ y. 

By abuse of language, we shall often speak of "the relation ~" instead 
of "the relation x ~ y"; in this case "the relation ~" is the opposite 
of "the relation ~". We remark also that, in the same proof, we may 
often use the same sign ~ to denote several different order relations 
when there is no risk of confusion. 

The conditions for a relation written x ~ y to be an order relation on a 
set E are as follows : 

The relation "x ~ y and y ~ z" implies x ~ z. 
The relation "x ~ y and y ~ x" implies x = y. 
The relation x ~ y implies "x ~ x and y ~ y". 
The relation x ~ x is equivalent to x e E. 

If we leave out condition (ROn), we have the conditions for x ~ y to be 
a preorder relation on E. 
~ When an order relation is written x ~ y we shall write x < y (or y > x) 
for the relation "x ~ y and x #= y"; these relations are read "x is 
strictry smaller than y", or "x is strictry less than y", or " y is strictry 
larger than x", or 'J1 is strictry greater than x". 

The example of the inclusion relation shows that the negation of x ~ J 
(sometimes denoted by x ~~ y) isnotntcessari~equivalent to y < x (cf. no. 12). 
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C58. Let ~ be an order relation, and let x, y be two distinct letters. Tiu 
relation x ~ y is equivalent to "x < y or x = y". Each oj the relations 
"x ~ y and y < z", "x < y and y ~ z" implies x < z. 
The first assertion follows from the criterion A~ (eA and (not B» orB) 
(Chapter I, § 3, criterion 024). To prove the second assertion, we remark 
that each of the hypotheses implies x ~ z, by transitivity; and the rela­
tion ex = z and x ~ y and y ~ z) would imply x = y = Z, contrary to 
the hypothesis. 
, In order to make matters easier and to replace metamathematical 
criteria by mathematical theoreIDS we shall usually consider a theory to 
which contains the axioIDS and axiom schemes of the theory of sets, and 
in addition, two constants E and r satisfying the axiom 

"r is an ordering on the set E" (no. I). 

We shall denote by x ~ y the relation ye r(x), and we shall say that 
the set E is ordered by tlu ordering r (or by the order relation y e r (x) ) 
(cf. Chapter IV, § 1). 
~ Whenever, in fij, r is a preordering on E, we say likewise that E 
is preordered by the preordering r. 

In some situations (for example in the following definition) the theories 
which we shall consider are a litde more complicated. We shall leave it 
to the reader to make explicit the constants and axioms of such theories. 

Let E, E' be two sets ordered by orderings f, f'. An isomorphism of 
E onto E' (for the orderings f and f') is a bijection f of E onto E' 
such that the relations x ~ y and f(x) ~ fey) are equivalent ecf. Chap­
ter IV, § I). 

4. ORDERED SUBSETS. PRODUcr OF ORDERED SETS 

Let E be a set ordered by an ordering f, with graph G. For each 
subset A of E, G n (A X A) is an ordering on A; the corresponding 
order relation is equivalent to "x ~ y and x e A and yeA", and we 
shall denote it simply by x ~ y (by abuse of language). The ordering 
and the order relation thus defined on A are said to be induced by the 
ordering and order relation given on E; and the ordering and order 
relation on E are said to be extensions of the ordering and order relation 
which they induce on A. Whenever we consider A as an ordered set 
we have in mind the ordering induced on A by that on E, unless the 
contrary is expressly stated. 
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Examples. The relations induced by the inclusion relation Xc: Y on 
various sets of subsets are of considerable importance. Here are some 
examples : 

(I) Let E, F be two sets, and let ~(E, F) be the set of all mappings 
of subsets of E into F. For each fe ~(E, F) let Gf be the graph of j, 
which is a subset of E X F. Ifwe endow ~(E, F) with the order relation 
"g extends f" between f and g (no. 1, Example 3), then f- 0 is an 
isomorphism of the ordered set ~(E, F) onto a subset of !l!(E X F), 
ordered by inclusion. 

(2) For each partition t1J of a set E, let m be the graph of the equiva­
lence relation defined by m on E. The mapping m_ m is an isomorphism 
of the set '1 of partitions of E, ordered by the relation "m is finer 
than to'" between t1J and to' (no. 1, Example 4) onto a subset of 
!l!(E X E), ordered by inclusion. 

(3) Let E be a set and let n c: !l!(E X E) be the set of graphs of preor­
derings on E (no. 2) (or, by abuse of language, the- set of all preorderings 
on E). The order relation s c: t between sand t, induced on n by the 
inclusion relation on !l!(E X E), is expressed by saying that "the proor­
dering s is finer than t" (or that "t is coarser than s"). Let x(s)y 
and x(t)y respectively denote the preorder relations (x,y) e sand (x,y) e t 
on E; then to say that s is finer than t is equivalent to saying that the 
relation x(s)y implies x(t)y. 

Let (E')'EI be a family of sets, and for each index LeI let r, be an 
ordering on E,; let G, c: E, X E, be its graph, and let x, ~ y, denote 
the order relation (x" y,) e G, on E,. On the product set F = II E" 
the relation ,EI 

(VL) ((L e I) ~ (x, ~ y,)) 

is an order relation between x = (."'1) and y = (YI)' as is immediately 
verified. The ordering and the order relation so defined on F are called 
the product Q/ tlu orderings r, and the product Q/ the order relations x, ~ y,; 
this relation is written x ~ y, and the set F, ordered by the product of 
the orderings r" is called the product of the ordered sets E,. 

It is immediately verified that the graph of the product ordering on F 

is the image of the product set n G 1 under the canonical mapping of 

II .EI 
(E, X E) onto F X F (Chapter II, § 5, no. 5). 

,EI 

An important example of a product of ordered sets is the set FE of graphs 
of mappings of a set E into an ordered set F. There is a canonical 
bijection of FE onto the set 5i(E, F) of mappings of E into F, and this 
mapping is an isomorphism of the ordered set FE onto geE, F) endowed 
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with the ordering defined by the relation "for all x e E, f(x) ~ g(x)" 
between two mappings f, g of E into F. This relation is written f ~ g. 

It should be observed that in the ordered set Ui(E, F), the relation f < g 
means 

and not 

"for all x e E,f(x) ~ g(x), and there 
exists ye E such that fey) < g(y)" 

"for all xeE,f(x) < g(x)". 

In order to avoid confusion it is better not to use the notation f < g in 
this situation. 

The definitions of this subsection apply without change to preordered sets 
when "ordering" is replaced by "preordering" throughout. 

5. INCREASING MAPPINGS 

DEFINITION 1. Let E and F be preordered sets (the preorder relation in each 
being denoted by ~). A mapping f of E into F is said to be increasing (or 
order-preserving) if the relation x ~ y implies f (x) ~ I (y); it is decreasing 
(or order-reversing) if the relation x ~ y implies f(x) ~ I(y). A mapping 
of E into F is said to be monotone if it is either increasing or decreasing. 

An increasing mapping of E into F becomes decreasing (and vice versa) 
when we replace one of the preorderings on E or on F by the opposite 
preordering. Every constant function is both increasing and decreasing; 
the converse of this statement is usually not true. 

For example, if a set E is ordered by the equality relation, the identity 
mapping of E onto itself is both increasing and decreasing, but not cons­
tant if E has more than one element (cf. Exercise 7). 

DEFINITION 2. Let E and F be two ordered sets. A mapping I of E into 
F is said to be strictly increasing (or strictly order-preserving) if the relation x < y 
implies f(x) < I (y); I is said to be strictly decreasing (or strictly order­
reversing) if the relation x < y implies I(x) > fey). A mapping of E 
into F is said to be strictly monotone if it is either strictly increasing or strictly 
decreasing. 
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(I) Let E be a set. The mapping X _ E - X of ~(E) (ordered by 
inclusion) onto itself is strictly decreasing. 



MAXIMAL AND MINIMAL ELEMENTS § 1.6 

(2) Let E be an ordered set. For each x e E let U:e be the set of 
all y e E such that y ~ x. The mapping x _ U:e is a strictly decreasing 
mapping of E into ~(E) (ordered by inclusion); indeed, the relation 
x ~ y is equivalent to U x :l U 1" 

An injective monotone mapping of an ordered set E into an ordered set F 
is strictly monotone; the converse is usually not true, because it may happen 
thatf(x) =f(y) when neither of the relations x ~y, x ~J' is true (cf. 
no. 12, Proposition 11). 
!f A bijective mapping f of an ordered set E onto an ordered set E' is 
an isomorphism of E onto E' (no. 3) if and only if both f and its inverse 
mapping are increasing. 
!f If I is an ordered index set, a family of subsets (XI) leI of a set E is said 
to be increasing if ~ _ XI is an increasing mapping of I into ~(E), ordered 
by inclusion (in other words, if ~ ~ )( implies XI C Xx). Similarly we 
define a decreasing, strictly increasing, or strictly decreasing family of subsets 
(XI),EI· 

PROPOSITION 2. Let E, E' be two ordered sets, and let u : E _ E' and 
v : E' _ E be two decreasing mappings suck that for all x e E and all x' e E' 
we have v(u(x» ~ x and u(v(x')) ~ x'. Then 

uovou=u and v 0 u 0 v = v. 

For the relation v(u(x)) ~ x implies (u(v(u(x))) ~ u(x) because 1£ is 
decreasing; on the other hand, we have u(v(u(x))) ~ u(x) by replacing 
x' by u(x) in the inequality u(v(x')) ~ x'. Hence the first equality; the 
proof of the second is similar. 

6. MAXIMAL AND MINIMAL ELEMENTS 

DEFINITION 3. Let E be an ordered set. An element a e E is said to be a 
minimal Crespo maximal) element of E if the relation x ~ a (resp. x ~ a) 
implies x = a. 

Every minimal element of E is a maximal element with respect to the 
opposite ordering, and vice versa. 

Examples 

(1) Let A be a set. In the subset of ~(A) (ordered by inclusion) 
consisting of the non-empty subsets of A, the minimal elements are the 
subsets consisting of a single element. 
(2) In the set <J>(E, F) of mappings of subsets of E into F (F being 
non-empty), ordered by the relation "v extends u" between u and v, 
the maximal elements are the mappings of the whole of E into F. 
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* (3) In the set of natural integers > 1, ordered by the relation "m 
divides n" between m and n, the minimal elements are the prime 
numbers. * 
* (4) The set of real numbers has no maximal element and no minimal 
element. * 

7. GREATEST ELEMENT AND LEAST ELEMENT 

If there exists an element a in an ordered set E such that a :;:; x for all 
x e E, then a is the on(y element of E with this property; for if also 
b :;:; x for all x e E, then we should have a :;:; band b :;:; a, and conse­
quently a = b. 

DEFINITION 4. Let E be an ordered set. An element a e E is said to be the 
least Crespo greatest) element of E iffor all x e E we have a :;:; x (resp. x :;:; a). 
An ordered set need not have a greatest element nor a least element. 
If E has a least element a, then a is the greatest element with respect 
to the opposite ordering. 
~ If E has a least element a, then a is the unique minimal element of E; 
for if x e E is distinct from a, we have a < x. 

Examples 
(1) Let @5 be a non-empty subset of the set ~(E) of subsets of a set 
E. If @5 has a least (resp. greatest) element A with respect to the 
inclusion relation, then A is the intersection (resp. union) of the sets of @5. 
Conversely, if the intersection (resp. union) of the sets of e belongs to 
@5, then it is the least (resp. greatest) element of @5. 

(2) In particular, p is the least element and E the greatest element 
of ~(E). In the set cIl(E, F) of mappings of subsets of E into F, ordered 
by extension of mappings (no. 1, Example 3), the empty mapping is the 
least element, and there is no greatest element unless F consists of a single 
element. The diagonal A of E X E is the least element of the set of 
graphs of equivalence relations on E (or of the set of pre orderings on E). 

PROPOSITION 3. Let E be an ordered set and let E' be the disjoint union of E 
and a set {a} consisting of a single element. Then there exists a unique ordering 
on E' which induces the given ordering on E and for which a is the greatest 
element of E'. 

For if G is the graph of the ordering on E, the graph of an ordering on E' 
which satisfies the conditions of the Proposition must be the union G' of G 
and the set of all pairs (x, a) where x e E'; conversely, it is clear that 
G' is the graph of an ordering on E' which satisfies the given conditions. 

~ The ordered set E' is said to be obtained by adJoining a greatest element 
a to E ( cf. Exercise 3). 
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~ A subset A of a preordered set E is said to be cofinal Crespo coinitial) 
in E if for every x e E there exists yeA such that x ~ y Crespo y ~ x). 
To say that an ordered set E has a greatest (resp. least) element therefore 
means that E has a cofinal (resp. coinitial) subset consisting of a single 
element. 

8. UPPER AND LOWER BOUNDS 

DEFINITION 5. Let E be a preordered set and let X be a subset of E. A7!)' 
element x e E such that x ~ y (resp. x ~ y) for all y e X is called a lower 
(resp. upper) bound of X in E. 
Every upper bound of X is a lower bound of X with respect to the 
opposite ordering, and vice versa. 
~ If x is a lower bound of X, every element ~ ~ x is also a lower bound 
of X. A lower bound of X is also a lower bound of every subset of X. 
An ordered set X has a least element if and only if there exists a lower 
bound of X which belongs to X. 
~ The set of lower bounds of a subset X of a preordered set E may be 
empty : this is the case when X = E and E is an ordered set which has 
no least element. 
~ A subset X of E whose set of lower Crespo upper) bounds is not empty 
is said to be bounded below (resp. bounded above). A subset which is bounded 
both below and above is said to be bounded. If X is bounded below (resp. 
bounded above, bounded), the same is true of every subset of X. 

Every subset consisting of a single element is bounded. But a subset 
consisting of two elements need not be bounded either above or below 
(no. 10). 

Let E be a preordered set and let f be a mapping of an arbitrary set A 
into E. The mapping f is said (by abuse of language) to be bounded 
below Crespo bounded above, bounded) if the set f (A) is bounded below (resp. 
bounded above, bounded) in E. 

9. LEAST UPPER BOUND AND GREATEST LOWER BOUND 

DEFINITION 6. - Let E be an ordered set and let X be a subset of E. An 
element of E is said to be the greatest lower bound or irifimum (resp. least upper 
bound or supremum) of X in E if it is the greatest (resp. least) element of the 
set of lower Crespo upper) bounds of X in E. 

Given a subset X of an ordered set E, the least upper bound (resp. 
greatest lower bound) of X in E, when it exists, is denoted by 
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or by sup X (resp. inf X) if there is no risk of ambiguity. The least 
upper bound (resp. greatest lower bound) ofa set {x, y} of two elements, 
when it exists, is denoted by sup (x, y) (resp. inf (x, y». Similarly for the 
least upper bound and greatest lower bound of a set of three elements, etc. 'f If a subset X of E has a greatest element a, then a is the least 
upper bound of X in E. 
~ If X has a greatest lower bound a in E, then a is the least upper 
bound of X with respect to the opposite ordering on E. For this 
reason we may restrict ourselves for the most part, in what follows, to 
consideration of the properties of least upper bounds. 

Examples 
(1) The set of upper bounds of the empty set $Ii in an ordered set E 
is evidently E itself; hence $Ii has a supremum in E if and only if E 
has a least element, which is then the least upper bound of pi. 
(2) In the set ~(E) of subsets of a set E, ordered by inclusion, every 
subset S of ~(E) has a least upper bound, namely the union of the sets 
of S, and a greatest lower bound, namely the intersection of the sets of S. 
(3) Let E, F be two sets and let 9 be a subset of the CI>(E, F) of 
mappings of subsets of E into F, ordered by extension of mappings 
(no. 1, Example 3). For each ueCl>(E, F) let D(u) be the domain 
of u. The condition for the existence of a common extension of a family 
of mappings belonging to Cl>(E, F) (Chapter II, § 4, no. 6, Proposition 7) 
shows that 9 has a least upper bound in Cl>(E, F) if and only if for each 
pair (u,v) of elements of 0 wehave u(x) = v (x) wheneverxeD(u) nD(v). 

A mapping f of a set A into an ordered set E is said to have a least 
upper bound if the image f(A) has a least upper bound in E; this bound 
is then called the least upper bound of f and is written sup f (x). Similarly 
for the greatest lower bound. :re.~ 

In particular, if a subset A of E has a least upper bound in E, this 
bound is the least upper bound of the canonical injection of A into E, 
and may therefore be written as sup x. 

:reA 

PROPOSITIO)l 4. Let E be an ordered set and let A be a subset of E which 
has both a greatest lower bound and a least upper bound in E. Then inf A ~ sup A 
if A :F fi; if A = fi, sup A is the least and inf A the greatest element oj E. 

This follows immediately from the definitions. 

PROPOSITION 5. Let E be an ordered set and let A, B be two subsets oj E, 
each of whick has a least upper bound (resp. greatest lower bound) in E. If 
A c B, then sup A ~ sup B (resp. inf A ;;?; inf B). 
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COROLLARY. Let (XL)LEI be a family of elements of an ordered set E which 
has a least upper bound in E. If J is a subset of I such that the family (X')LEJ 
has a least upper bound in E, we have sup XL :::; sup XL' 

tEJ LEI 

PROPOSITION 6. Let (XI)LEI' (yJLEI be two families of elements of an ordered 
set E, indexed by the same set I, and such that XI :::; y, for all LeI. If both 
families have a least upper bound in E, then sup x, :::; sup YL' 

LEI LEI 
For a = sup YL is an upper bound of the set of the YL' so that x, :::; YL :::; a 

LEI 
for all LeI, and hence sup x, :::; a. 

lEI 

PROPOSITION 7. Let (X')'EI be a family of elements of an ordered set E, and 
let (J),hEL be a covering of the index set I. Suppose that each of the subfamilies 
(X')'EJ has a least upper bound in E. For the family (X')'EI to have a least 
upper b~und in E, it is necessary and sufficient that the family (sup XI), should 
have a least upper bound in E, and then we have ,EJ, AEL 

(1) sup XL = sup (sup XL)' 
,EI AEL 'EJ. 

Let b). = sup XI' Suppose that (XL)LEI has a least upper bound a. Then 
IEJ), 

a ~ b). for each A e L (Corollary to Proposition 5). On the other hand, 
if c ~ b). for each A e L, then we have c ~ X, for each LeI, because 
(J),hEL is a covering of I; hence c ~ a, which proves that 

a = sup bA. 
).EL 

Conversely, suppose that the family (b).hEL has a least upper bound at. 
Then a' ~ x, for all LeI. On the other hand, if c' ~ X, for all LeI, 
then we have in particular 

c' ~ sup X, = b). 
LEJ i. 

for each A e L, so that c' ~ a' and therefore 

COROLLARY. Let (X).p.) (I., P.)ELXM be a "double" family of elements of an 
ordered set E such that for each !l. eM the family (X"P.hEL has a least upper 
bound in E. For the family (x),p.)()" P.)ELXM to have a least upper bound in E, 
it is necessary and sufficient that the family (sup x),p.) should have a least 

).EL P.EM 
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upper bound in E, and then we have 

(2) sup X).!L = sup (sup x).p.) . 
0.· y.)ELXM y.EM i.EL 

PROPOSITION 8. Let (E')'EI be a family of ordered sets. Let A be a subset 
of the product ordered set E = II E" and let A, = pr,A for each LeI. FOT 

,EI 
A to have a least upper hound in E it is necessary and suJficient that,jor each LeI, 
A, should have a least upper bound in E" and then we have 

Suppose that, for each LeI, A, has a least upper bound b: in E,. To 
say that c = (c,) is an upper bound of A then means that c, ~ h, for 
each LeI, hence (b')'EI is an upper bound of A. Conversely, suppose 
that A has a least upper bound a = (a,), eI; for each x e I, ax is an upper 
bound of All, because if Xx e Ax, there exists x e A such that prxx = X ... , 

by the definition of Ax ; on the other hand, if a~ is an upper bound of 
Ax in Ex, the element c' = (c:),eI for which 

and 

is an upper bound of A; consequently c' ~ a and therefore a~ ~ a ... ; 
hence ax is the least upper bound of Ax in Ex. 
~ Let F be a subset of an ordered set E, and let A be a subset of F. It 
can happen that one of the two elements SUPE A, SUPF A exists but the 
other does not, or that both exist but are unequal. 

Examples 

* (I) In the ordered set E = R of real numbers, consider the subset 
F = Q of rational numbers and the set A c F of rational numbers < V2; 
sUPE A exists but supp A does not. 
(2) In the notation of Example I, let G be the union of A and the 
set {2}; then G c F and sUPG A exists, but supp A does not. 

(3) With the same notation, sUPE A = V2, sUPG A = 2. * 

However, we have the following result : 

PROPOSITION 9. Let E he an ordered set, F a subset of E, A a subset of F. 
1f both suPEA and suppA exist, we have suPEA :::;; suppA. 1f suPEA exists 
and belongs to F, then supFA exists and is equal to supEA. 
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The first assertion follows from the fact that the set M of upper bounds of 
A in F is contained in the set N of upper bounds of A in E, and from 
Proposition 5. On the other hand, if the least element of N lies in F, 
then it belongs to M and is clearly the least element of M; this proves 
the second assertion. 

10. DIRECTED SETS 

DEFINITION 7. A preordered set E is said to be right directed Crespo left directed) 
if every subset of two elements of E is bounded above (resp. bounded below). 

In place of "right directed" we shall often use the expression "directed 
with respect to the relation ~", and analogous expressions when the 
preorder relation is denoted by some other sign. For example, if @S is a 
set of subsets of a set A, we say that @S is directed with respect to the relation c 
(resp. :;) if, for each subset {X, Y} consisting of two elements of @S, 
there exists Z e e such that Xc Z and Y c Z (resp. X:;) Z and Y:;) Z). 

Examples 
(I) An ordered set which has a greatest element is right directed . 
... (2) In a topological space, a fundamental system of neighbourhoods 
of a point is directed with respect to the relation :;). 
(3) The set of submodules of finite type of an arbitrary module is directed 
with respect to the relation c .... 

PROPOSITION 10. In a right directed ordered set E, a maximal element a is 
the greatest element of E. 

For every x e E there exists by hypothesis y e E such that x ~ y and 
a ~ y; since a is maximal, y = a. 

~ A right directed preordered set is left directed with respect to the 
opposite ordering. Any product of right directed sets is right directed. 
On the other hand, a subset of a right directed set is not necessarily right 
directed. However, a co/mal subset F of a right directed set E is always 
right directed; for given x, y e F there exists z e E such that x ~ Z and 
y ~ z, and then t e F such that z ~ t. 

11. LATTICES 

DEFINITION 8. An ordered set E is said to be a lattice if every subset consisting 
of two elements of E has a least upper bound and a greatest lower bound in E. 

Every product of lattices is a lattice; this follows from the condition for the 
existence of a least upper bound in a product of ordered sets (no. 9, Propo­
sition 8). The set of subsets of a set A, ordered by inclusion, is a lattice 
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because the union and intersection of two subsets of A are again subsets 
of A. 

Examples 

* (I) The set of integers ~ I, ordered by the relation "m divides n" 
between m and n, is a lattice; the least upper bound of {m, n} is the 
l.c.m. of m and n, and the greatest lower bound is their h.c.f. 

(2) The set of subgroups of a group G, ordered by inclusion, is a lattice. 

(3) The set of topologies on a set A, ordered by the relation "6 is 
coarser than G'" between G and G', is a lattice. (General Topolog"l, 
Chapter I, § 2). 

(4) The set ~(I, R) of all real-valued functions defined on an interval 
I of R is a lattice with respect to the order relation f ~ g (no. 4), and 
as such is isomorphic to the product RI. * 
Remark. A lattice is obviously both left and right directed. But an 
ordered set which is both left and right directed is not necessarily a lattice. 
* An example of the latler is the set of mappings x _ p(x) of R into 
itself, where p is a polynomial in R[X], this set being ordered by the 
relation p ~ q (no. 4). * 

U. TOTALLY ORDERED SETS 

DEFINITION 9. Two elements x, y of a preordered set E are said to be comparable 
if the relation "x ~ y or y ~ x" is true. A set E is said to be totally ordered 
if it is ordered and if any two elements of E are comparable. The ordering on E 
is then said to be a total ordering, and the corresponding order relation a total 
order relation. 

If x and yare elements of a totally ordered set, then x = y or x < y 
or x > y; the negation of x ~ y is thus x > y. 
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An ordering on E is a total ordering if and only if its graph G satisfies 
-1 

the relation G U G = E X E, as well as the relations GoG = G and 
-1 

GnG= ~. 

Examples 
(I) Every subset of a totally ordered set is totally ordered by the 
induced ordering. 

(2) Let E be an arbitrary ordered set. The empty subset of E is 
totally ordered, and so is every subset of E consisting of a single element. 

* (3) The set R of real numbers is totally ordered. * 
(4) If A is a set which has at least two distinct elements, the set 
$(A) (ordered by inclusion) is not totally ordered, for if x =F y. the 
subsets {x} and {y} are not comparable. 



INTERVALS § 1.13 

A totally ordered set is also totally ordered with respect to the opposite 
ordering; it is a lattice and afortiori both left and right directed. 

PROPOSITION 11. Every strictly monotone mapping f of a totally ordered set E 
into an ordered set F is injective. if f is strictly increasing, f is an isomorphism 
of E onto f (E). 

For x =F y implies that either x < y or x > y; hence 

f(x) < fey) or f(x) > fey), 

so that f (x) =F f (y) in either case. It remains to be shown that iff is 
strictly increasing, f(x) :::; fey) implies x :::; y; if not, we should have 
x > y, and therefore f(x) > fey). 

PROPOSITION 12. Let E be a totally ordered set and let X be a subset of E. 
For an element b of E to be the least upper bound of X in E, it is necessary and 
sufficient that (1) b is an upper bound of X, (2) for every c e E such that c < b, 
there exists x e X such that c < x :::; b. 

The second condition says that no element c < b is an upper bound of X, 
i.e., b is a minimal element of the set M of upper bounds of X; but this is 
the same as saying that b is the least element of M, since M is totally 
ordered (no. 10, Proposition 10). 

13. INTERVALS 

Let E be an ordered set and let a, b be two elements of E such that 
a :::; b. The subset of E consisting of elements x such that a :::; x :::; b 
is called the closed interval with left-hand endpoint a and right-hand endpoint b, 
and is denoted by [a, b]. The set of all x e E such that a :::; x < b 
(resp. a < x :::; b) is called the interval half-open on the right (resp. on the left) 
with endpoints a and b, and is denoted by [a, b[ (resp. la, b]). The 
set of all x e E such that a < x < b is called the open interval with end­
points a and b, and is denoted by la, b[. 

Note that a closed interval is never empty; the interval [a, a] is the set 
{a}. On the other hand, the intervals [a, a[, la, aJ, la, a[ are all empty; 
and an open interval la, b[ may be empty even when a < b. 

Let a be an element of E. The set of all x e E such that x :::; a 
(resp. x < a) is called the closed (resp. open) interval unbounded on the left, 
with right-hand endpoint a, and is denoted by]+-, a] (resp. ]+-, aD; 
likewise, the set of all x e E such that x ~ a (resp. x > a) is called the 
closed (resp. open) interval with left-hand endpoint a, unbounded on the right, 
and is denoted by [a, +-[ (resp. la, +-[). Finally, E itself may be 
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regarded as the open interval unbounded on the left and on the right, denoted by 
l~-, ~[. 

PROPOSITION 13. In a lattice, the intersection of two intervals is an interval. 
Consider for example the intersection of two closed intervals [a, b] and 
[c, d], and Jet at = sup (a, c), ~ = inf (b, d). If both a:;;; x :;;; band 
c :;;; x :;;; d, then we have at :;;; X :;;; ~, and converse1y; if at :$ ~, the 
intersection of [a, b] and [c, d] is empty; if at :;;; ~, this intersection is 
rot, ~]. We leave it to the reader to carry through the proof for the 
other cases. 

2. WELL-ORDERED SETS 

1. SEG~S OF A ~ORDERED SET 

A relation R! x, y! is said to be a well-ordering relation between x and y 
if R is an order relation between x and y and if, for each non-empty 
set E on which R! x, y! induces an order relation (i.e., such that x E E 
implies R! x, x! ; cf. § 1, no. 1), E, ordered by this re1ation, has a 
least element. 
!f A set E ordered by an ordering r is said to be well-ordered if the 
relation ye r(x) is a well-ordering re1ation between x and y; r is then 
said to be a well-ordering on E. The following definition is equivalent 
to this: 

DEFINITION 1. A set E is said to be well-ordered if it is ordered and if each 
non-empty subset of E has a least element. 

A well-ordered set E is totally ordered because every subset {x, y} of E 
has a least e1ement. Every subset A of E which is bounded above in E 
has a least upper bound in E. 
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Examples 
(1) Let E = {at, ~} be a set whose elements are distinct. It is easily 
verified that the subset {(at, ot), (~, ~), (ot, ~)} of E X E is the graph of a 
well-ordering on E. 
(2) Every subset (in particular, the empty subset) of a well-ordered set 
is well-ordered by the induced ordering. 

* (3) The existence of totally ordered sets which are not well-ordered 
is equivalent to the axiom ofinfinity (§ 4, no. 4, Corollary I to Proposition 3, 
and Exercise 3). 

(4) If r is a well-ordering on E, the ordering opposite to r is a 
well-ordering on E only if E is finite (§4, Exercise 3). * 
(5) Let E be a well-ordered set. The set El obtained by adjoining 
to E a greatest element b (§ I, no. 7) is well-ordered, for if H is any 



SEGMENTS OF A WELL-ORDERED SET § 2.1 

non-empty subset of El other than {b}, the least element of H n E is 
also the least element of H. 

Remark. * As a consequence of the axiom of infinity (§ 6, no. I), there 
exist well-ordered sets which have no greatest element, for example the 
set N of natural integers. * 

DEFINITION 2. In an ordered set E, a subset of E such that the relations 
x Ei S, Y E E, and y ~ x imply YES is called a segment of E. 
Clearly, every intersection and union of segments of E is a segment of E. 
If S is a segment of E, every segment of S is also a segment of E. The 
set E itself and the empty set are segments of E. 

PROPOSITION I. In a well-ordered set E, every segment of E other than E 
itself is an interval ]+-, a[, where a E E. 

Let S be a segment of E such that S =F E. Since E - S is not empty, 
it has a least element a. By virtue of Definition 2, the relation x ~ a 
implies x $ S; otherwise we would have a E S, which is absurd. Hence 
E - S is the interval [a, -+[, and S is the interval l~-, a[. 

~ For every element x in a totally ordered set E the segment ]+-, x[ 
is called the segment with endpoint x, and is denoted by Sa;. 

Note that if E is well-ordered and not empty, Sa; has a least element ot 
and consequently is also the interval rot, x[. 

Let E be a totally ordered set. The union A of the Sa;, as x runs 
through E, is E if E has no greatest element; and if E has a greatest 
element b, we have A = E - {b}. 

PROPOSITION 2. The set E* of segments of a well-ordered set E is well­
ordered by inclusion. The mapping x -+ S", is an isomorphism of the well-ordered 
set E onto the set of segments of E other than E itself. 

It is clear that if x e E and y e E, the relation x ~ y implies Sa; C S" 
and that x < y implies S", =F S,; the mapping x -+ Sa; is therefore an 
isomorphism of E onto the set SeE) of segments of E distinct from E 
itself (§ 1, no. 12, Proposition 11), and consequently SeE) is well-ordered. 
Moreover, E* is isomorphic to the well-ordered set obtained from SeE) 
by adjoining a greatest element. 

PROPOSITION 3. Let (X,),el be a family of well-ordered sets such that for 
each pair ofindices (~, x) one of the sets X" Xx is a segment of the other. Then 
there exists a unique ordering on the set E = U X, which induces the given ordering 

,el 
on each of the X,. Endowed with this ordering, E is a well-ordered set. Every 
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segment of XI is a segment of E; for each x e XI' the segment with endpoint x 
in XI is equal to the segment with endpoint x in E; and each segment of E is 
either E itself or a segment of one of the XI' 

The first assertion is a consequence of the following general lemma : 

LEMMA 1. Let (~)aeA be a family of ordered sets, directed with respect to the 
relation c {in other words, such that for each pair of indices (x, ~ there 
exists an index y such that XII c Xy and Xli c Xy). Suppose that, for each 
pair of indices «x, ~) such that XII C Xli' the ordering induced on XII by that 
of Xli is identical with the given ordering on XII' Under these conditions there 
exists a unique ordering on the set E = U X IZ which induces the given ordering 
on each Xa' ilEA 

Let Gil be the graph of the given ordering on XII' If G is the graph of 
an ordering on E which induces on each XII the ordering whose graph 
is Ga, then we must have G« c G for each (X e A; hence G contains 
U G«. On the other hand, for each pair (x, y) of elements of E there 

IXEA 
exists by hypothesis an index (X e A such that x e XIX and ye Xa; if 
(x,y) E G, we have (x, y) EGa, so that G c U G«. Hence if the required 

, ilEA 
ordering on E exists, its graph is necessarily G = U Gil' It remains 

ilEA 
to be shown that this set satisfies the conditions of the lemma. Since 
G li n (XII X XII) = Gil if ~ c X~, we have G n (XII X XII) = Gil for all 
(X e A; on the other hand, it follows from the hypothesis that any three 
elements x, y, .c of E belong to the same XIX' Hence Cx, y) eGis an 
order relation on E, and the lemma is proved. 

~ We now take up the proof of Proposition 3. Let us begin by showing 
that each XI is a segment of E. Indeed, if x e X" y e E, and y :EO; x, 
there exists an index x such that XI c Xx and y e Xx; since by hypo­
thesis XI is a segment of Xx, we have y E X" which proves the assertion. 
The same reasoning proves that for each x e XI the segment with endpoint 
x in XI is identical with the interval 1-, x[ in E. Next let us show that 
E is well-ordered. If H is a non-empty subset of E, there is an index 
LeI such that H n XI :F ~; if a is the least element of H n XI in X" 
then a is also the least element of H in E. That is, if x e H, there 
exists an index x e I such that XI c Xx and x e Xx; we cannot have 
x < a, because the interval ]+-, a[ is contained in XI' and therefore 
we have x ~ a since Xx is totally ordered. 

"Finally, we must show that a segment of E, other than E itself, is a 
segment of one of the XI; this is an immediate consequence of the preceding 
arguments, since such a segment is of the form ]+-, x[ (Proposition 1) 
and since x belongs to some XI' 
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2. THE PRINCIPLE OF TRANSFINITE INDUCTION 

LEMMA 2. Let E be a well-ordered set and let e be a set oj segments oj E with 
the following properties: ( I) every union of segments belonging to S belongs to e; 
(2) if S", e 6, then S", U {x} e 6. Then every segment oj E belongs to e. 
Suppose that there are segments of E which do not belong to e, and let 
S be the smallest of them (no. I, Proposition 2). If S has no greatest 
element, then S is the union of the segments of S distinct from S itself, 
and these segments belong to e by virtue of the definition of S; hence 
See, which is absurd. If, on the other hand, S has a greatest element a, 
then S = Sa U {a}, and since Sa is a segment of S distinct from S, 
we have Sa e e; but then also S e S, which again is absurd. 

~ For greater convenience we shall place ourselves in a theory ~ in which 
E is a set well-ordered by a relation written x ::::; y. We have then the 
following criteria : 

C59. (Principle of transfinite induction). Let R! x! be a relation in iii 
(x not being a constant oJ~) such that the relation 

(xeE and (Vy)(yeE andy < x)~RIYD)~R!xl 

is a theorem in 'G. Under these conditions the relation (x e E) ~ R I x! IS a 
theorem in ~. 

Let e be the set of segments S of E such that (yeS) ~ R I y I. It 
is clear that every union of segments belonging to S also belongs to e. 
On the other hand, if S..,eS, we have Rlx! by hypothesis; hence 
(yeS", U {y}) ~ R I y! by the method of disjunction of cases. Hence 
(Lemma 2) E e e, which proves the criterion. 

~ In the applications of C59, the relation 

xeE and (Vy)«yeE andy < x)~RlYD 

is usually called the "inductive hypothesis". 

~ In what follows, for every mapping g of a segment S of E into a set F, 
and for each xeS we shall denote by g("') the mapping of the segment 
Sol: =] -, x[ of E onto g(S",) which coincides with g on S",. With this 
notation we have 

GGO. (Definition of a mapping by transfinite induction.) Let u be a 
letter, T I u! a term in the theory~. There exists a set U and a mapping f 
oj E onto U such that for all x e E we have f (x) = TIP"')!. Furthermore, 
the set U and the mapping fare uniquefy determined by these conditions. 
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Let us first prove the uniqueness. Suppose that f' and U' also satisfy 
the conditions of the criterion. Let 5 be the set of segments S of E such 
that f and fl coincide on S. It is clear that every union of segments 
belonging to 6 also belongs to 5. On the other hand, if S;c e 5, then f 
and f' agree on S;c and therefore f(;c) = f'(;c); consequently 

which shows that S;c U {x} e 6. It follows that E e 5 (Lemma 2), hence 
f' =f and U I =f'(E) =f(E) = U. 

~ Now let 51 denote the set of segments S of E for which there exists a 
set Us and a mapping fs of S onto Us such that for all xeS we have 
!sex) = T!pa;)l· For each SeS l ,fs and Us are uniquely determined, 
by the first part of the proof; in particular, if S' and S" are two segments 
belonging to 51 such that S' c: SR, then fs. is the mapping of S' onto 
fs'(S') which agrees with fs· on S'. From this remark it follows that 
every union of segments belonging to 6 1 also belongs to el (Chapter II, 
§ 4, no. 6, Proposition 7). On the other hand, if S;c e 51' we define on 
S = S,J) u {x} a function fs extending fSIl) by putting 

fs(x) = Tlfs .. ! 

(Chapter II, § 4, no. 7, Proposition 8); since f~:C) = fs .. , it is obvious that 
S,J) U {x} e ell' Hence (Lemma 2) E e 61> and the proof is complete. 

~ Usually this criterion is applied in situations where there exists a set F 
such that for every mapping h of a segment of E onto a subset of F we have 
T I h! e F. Then the set U obtained by applying C60 is a subset of F. 
For, with the notation used above, let 6 2 be the subset of 6 1 consisting 
of segments S of E such that Us c: F. It is evident that every union 
of segments belonging to 52 also belongs to 6 2 ; on the other hand, the 
hypothesis on F implies that if Sa; e 6 2, we have Sa; U {x} e e 2• The 
assertion now follows from Lemma 2. 

3. ZERMELO'S THEOREM 

LEMMA 3. Let E be a set, let 6 be a subset of ~(E), and let p be a mapping 
of el into E such that P(X) ~ X for all X e 6. Then there exists a subset 
M of E and a well-ordering r on M such that, if x ~ y denotes the relation 
ye r<x) and Sa; denotes the segment ]+-, x], 

(1) for all x e M we have Sa; e 6 and p(Sa;) = x; 

(2) M~6. 
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Let un be the set of subsets G of E X E satisfying the following condi­
tions : 

(a) G is the graph of a well-ordering on prlG = V; 
(b) if x ~ y denotes the relation (x, y) e G on V, then for each x e V 

the segment S:z: is such that SJ) e e and p(S:z:) = x. 
~ We shall show that if G and G' are two elements of M and if V, V' 
denote their first projections, then one of the two sets V, V' is contained 
in the other and that if, for example, V c V', then G = G' n (V X V) 
(in other words, that the order relation on V is induced by the order 
relation on V') and U is a segment of U'. 
~ Consider the set V of elements x e V n V' such that the segments with 
endpoint x are the same in V and V', and such that the orderings 
induced on this segment by the orderings on V and V' are identical. 
It is clear that V is a segment in both V and V' and that the orderings 
induced on V are the same; our assertion will therefore be proved if we 
show that either V = V or V = V'. Let us argue by contradiction and 
suppose that V =F V and V =F V'. Let x be the least element of 
V - V in V and let x' be the least element of V' - V in V'; we have 
V = S:z: in V, and V = S:z:. in V'. But by hypothesis, Ve e and 

x = p(S:z:) , X' = P(SJ)'), 

so that x = x'. Hence by definition x e V, which is absurd. 
~ We may therefore apply Proposition 3 of no. 1 to the set of first projec­
tions V = prlG (where G e un) and thus obtain a well-ordered set 

It is easily seen that the graph of the ordering on M belongs to rot If 
we had Me S, then, putting a = p(M), we should have a .. M. We 
could therefore adjoin to M the element a as greatest element, and the 
set M' = M u {a} would be well-ordered. Since M = Sa in M', we 
should have S" e @i and peS,,) = a; the graph of the ordering on M' 
would therefore belong to un, which is absurd. 

Note that if ~ .. @i (and in particular if @i is empty), the set M whose 
existence is asserted by Lemma 3 is the empty set; this follows from condi­
tion 1 of Lemma 3. 

THEOREM I (Zermelo). Every set E can be well-ordered. 

Let @i = ~(E) - {E} be the set of all subsets of E other than E itself. 
For each X e 6 let p(X) = 'tJ) (x e E - X); since the relation X e@i 
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implies (3x) (x e E - X), we have p(X) e E - X (Chapter I, § 4, no. 1) 
and therefore p(X) • X. We may therefore apply Lemma 3, and conse­
quently there exists a well-ordering on a subset M of E such that M. e; 
but the only subset of E which does not belong to E5 is E itself, and the 
theorem is proved. 

4. INDUCTIVE SETS 

DEFINITION 3. An ordered set E is said to be inductive if every totalh! ordered 
subset of E has an upper bound in E. 

Examples 

(I) Let lJ be a set of subsets of a set A, ordered by inclusion, and such 
that for every totally ordered subset ~ of if the union of the sets of ~ 
belongs to 3'. Then lJ is inductive with respect to the relation c because 
the union of the sets of @ is the least upper bound of 0J in ~(A). 

(2) An important example of a set of subsets which is inductive with 
respect to the relation c is the set B' of graphs of mappings of subsets 
of a set A into a set B. For if is a subset of $(A X B), and to say that 
a subset 0J of (j is totally ordered by inclusion means that the elements 
of ~ are graphs of mappings such that, given any two of these mappings, 
one is an extension of the other. It follows immediately that the union 
of the sets of ~ is an element of lJ (Chapter II, § 4, no. 6, Proposition 7). 
Hence the set <I>(A, B) of mappings of subsets of A into B is inductive 
with respect to the order relation "v extends u" between u and v. 

* (3) It follows from the axiom of infinity (§ 6, no. 1) that the well­
ordered set of natural integers is not inductive with respect to the relation 
~.* 

THEOREM 2 ("Zorn's lemma"). Every inductive ordered set has a maximal 
element. 

This theorem is a particular case of the following result : 

PROPOSITION 4. Let E be an ordered set in which every well-ordered subset is 
bounded above; then E has a maximal element. 

We shall say that an element veE is a strict upper bound of a subset X of E 
if v is an upper bound of X and v. X. Let @5 be the set of subsets 
of E which have a strict upper bound in E, and for each 8 e @5 put 
p(8) = 'tv (v is a strict upper bound of 8); then p(8) is a strict upper 
bound of 8. Applying Lemma 3 of no. 3 to Sand p, we see that there 
exists a subset M of E and a well-ordering r on M which satisfies the 
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conditions of Lemma 3; in particular, M has no strict upper bound in E. 
Furthermore, the ordering r is identical with that induced on M by the 
ordering on E. For in M the relation ')I e r<x) and .Ie :F y" is equi­
valent to.le e S,; and since peS,) = y is an upper bound of S, (with 
respect to the ordering on E), it implies x < y in E. But this means 
that the injection of Minto E is a strictly increasing mapping (M being 
endowed with the ordering r); and since M is totally ordered, it follows 
that the relations ye r<x) and x ~ yare equivalent in M (§ 1, no. 12, 
Proposition 11). This being so, there exists by hypothesis an upper bound 
m of M in E; but since M has no strict upper bound, it follows that m 
is a maximal element of E. 

COROLLARY 1. Let E be an inductive ordered set and let a be an element of E. 
Then there exists a maximal element m of E such that m ~ a. 

For it follows from Definition 3 that the set F of elements x ~ a in E 
is inductive, and a maximal element of F is also maximal in E. 

COROLLARY 2. Let ~ be a set of subsets of a set E such that, Jor every subset 
@ of ff which is total{Y ordered by inclusion, the union (resp. intersection) of the 
sets of @ belongs to ff; then ff has a maximal (resp. minimal) element. 

5. ISOMORPHISMS OF WELL-ORDERED SETS 

THEOREM 3. Let E and F be two well-ordered sets. Then at least one of the 
following two statements is true : 

( 1 ) there exists a unique isomorphism of E onto a segment of F; 

(2) there exists a unique isomorphism of F onto a segment of E. 

Let ff be the set of mappings of subsets of E into F such that each 
mapping is defined on a segment of E and is an isomorphism of this seg­
ment onto a segment of F. Then the set ff, ordered by the relation 
"v extends u" between u and v, is inductive. For if @ is a totally 
ordered subset of~, the union S of the domains of the mappings u e @ 
is a union of segments of E and is therefore itself a segment of E. If 
v is the least upper bound of @ in ~(E, F) (no. 4, Example 2), then 
v(S) is the union of the ranges of the mappings u e @ and is therefore a 
segment of F. Finally, for each pair of elements .Ie, y of S such that 
x < y there exists u e @ whose domain contains both x and y (because 
@ is totally ordered); and since vex) = u(x) < u(y) = v(y), v is an iso­
morphism of S onto v(S), and our assertion is proved. 
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~ Now let Uo be a maximal element of ij (no. 4, Theorem 2) and let So 
be the segment of E which is the domain of "0' If we show that either 
So = E or uo(So) = F, the theorem will be proved. Let us argue by 
contradiction and suppose that So ::/: E and uo(So) ::/: F. There will then 
be an element a e E and an element b e F such that So = ]+-, a[ and 
"o(So) = ]+-, b[ (no. 1, Proposition 1). Extend Uo to a mapping Ul 

of the segment ]+-, a] into F by putting ul(a) = b; since Ul is an iso­
morphism of ]+-, a] onto the segment l+-, b], this contradicts the 
maximality of Uo in ff. 
~ The uniqueness asserted in Theorem 3 is a consequence of the 
following Lemma : 

LEMMA 4. Let E, F be two well-ordered sets and let f, g be two increasing 
mappings of E into F such that / (E) is a segment of F and g is strictfy 
increasing; then / (x) :s;; g(x) for all x e E. 

Suppose, on the contrary, that the set of elements y e E such that 
f (y) > g(y) is not empty; then this set will have a least element a. 
g x < a, we have then f(x) :s;; g(x) < g(a) < f(a) since g is strictly 
increasing. Since f (E) is a segment of F, there exists z e E such that 
g(a) =f(z);fis increasing, so thatf(z) <f(a) implies z < a. Hence 

fez) :s;; g(z) < g(a) =/(z), 
which is absurd. 

COROLLARY 1. The onfy isomorphism of a well-ordered set E onto a segment 
of E is the identi!JI mapping of E onto itreif. 

Put F = E in Theorem 3. 

COROLLARY 2. Let E, F be two well-ordered sets. g there exists an isomor­
phism / of E onto a segment T of F and an isomorphism gofF onto a seg­
ment S of E, then we must have S = E, T = F, and g, / are inverses of each 
other. 

For go/ is an isomorphism of E onto the segment geT) c S of E; by 
Corollary 1 we have geT) = S = E, and go/ is the identity mapping 
of E. Similarly, /0 g is the identity mapping of F, whence the result. 

COROLLARY 3. Every subset A of a well-ordered set E is isomorphic to a 
segment of E. 

By virtue of Theorem 3 it is enough to prove that there exists no isomor­
phism g of E onto a segment of A of the form Sa. If there were, g 
would then be a strictly increasing mapping of E into E such that 
g(a) e Sa, in other words such that g(a) < a; but this inequality contra­
dicts Lemma 4 (with f as the identity mapping). 
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6. LEXICOGRAPHIC PRODUcrS 

Let (E,) lEI be a family of ordered sets, indexed by a well-ordered set 1. 
Consider the product set E = II E, and the relation 

lEI 

"x e E and ye E, and for the least index LeI such 
that prIx ~ prly, we have prIx < prly", 

which we shall denote by R I x, y!. It is evident that R I x, x! is 
equivalent to x e E, that R! x, y! implies R! x, x! and R! y, y!, and 
that (R I x, y i and R! y, x!) implies x = y. Also it,is easily verified 
that (R I x, y! and R I y, z!) implies R I x, z! (consider the least index 
LeI for which at least two of the three elements prIx, prly, prlZ are 
unequal); hence R I x, y! is an order relation on the product set E. This 
relation and the ordering it defines are called the lexicographic order relation 
and the lexicographic ordering on E (induced by the given orderings on I 
and on the E,); the set E with this ordering is called the lexicographic 
product of the family of ordered sets (EI)IEI' If each E, is totally ordere'd 
the lexicographic product is also totally ordered. 

3. EQUIPOTENT SETS. CARDINALS 

1. THE CARDINAL OF A SET 

DEFINITION 1. A set X is said to be equipotent to a set Y if there exists a bijec­
tiono! X onto Y. Therelation "X isequipotentto Y" isdenotedby Eq(X, V). 

The relations Eq(X, Y) and Eq(Y, X) are clearly equivalent, so that 
the relation Eq(X, Y) is symmetric; when it is true, we say that X and Y 
are equipotent. Next, Eq(X, X) is true. Finally, the relation Eq(X, Y) 
is transitive since the composition of two bijections is a bijection (Chapter II, 
§ 3, no. 8, Theorem 1); it is therefore an equivalence relation, reflexive on 
every set. 
~ From what has been said it follows that if X and Yare equipotent, 
the relation 

(VZ) (Eq(X, Z) ~ Eq(Y, Z)) 

is true. Now the axiom scheme S7 (Chapter I, § 5, no. 1) gives us the 
following axiom : 

«VZ) (Eq(X, Z) ~ Eq(Y, Z)) => ('tz(Eq(X, Z)) = 'tz(Eq(Y, Z))). 
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Hence, if X and Yare equipotent, we have 

'tz(Eq(X, Z)) = 'tz(Eq(Y, Z)), 

which justifies the following definition : 

DEFINITION 2. The set 'tz(Eq(X, Z)) is called the cardinal oj X (or the 
power of X) and is written Card(X). 

Since Eq(X, X) is true, Card (X) is equipotent to X (Chapter I, § 4, 
Scheme S5). We have therefore proved the following result : 

PROPOSITION I. Two sets X and Yare equipotent if and on(y if their cardinals 
are equal. 

Examples 
(I) Card(~) is denoted by O. Since the only set equipotent to p 
is ~ (Chapter II, § 3, nos. I and 4), we have 0 = Card(0') = ~. 
(2) All sets consisting of a single element are equipotent, since {(a, b)} 
is the graph of a bijection of {a} onto {b}; in particular, they are all 
equipotent to {~}. The cardinal Card({~}) = 'tz(Eq({0'}, Z» is denoted 
by 1. (*) 

(3) Card({~, {~}}) is denoted by 2; this is the cardinal of every set 
consisting of two distinct elements. 

*(4) A Hilbert space of countable type is equipotent to the set of real 
numbers. * 

2. ORDER RELATION BETWEEN CARDINALS 

The relation "X is equipotent to a subset of Y" is equivalent to "there 
exists an injection of X into Y"; it is also equivalent to the relation 
"Card eX) is equipotent to a subset of Card (Y)" (Chapter II, § 3, no. 8, 
Theorem I). 

(*) The mathematica\ term derwted (Chapter I, § 1, no. 1) by the symbol "I" 
is of course not to be confused with the word "one" in ordinary language. The 
term denoted by "1" is equal, by virtue of the definition above, to the term 
denoted by the symbol 

'tz«3u)(3U)(u = (U, {~}, Z) and U c {~} X Z 
and (VX)(XE {~}) => (3y)(x,y) EU» 

and (VX) (Vy) (Vy') «(x,y) E U and (x,y') E U) => (y = y'» 
and (Vy)(yeZ) => (3x)(x,y) EU»». 

As a rough estimate, the term so denoted is an assembly of several tens of thousands 
of signs (each of which is one of 't, 0, V, 1, =, e, :). 
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THEOREM 1. The relation R I r, \) I: ".J and \) are cardinals and I is 
equipotent to a subset of~" is a well-ordering relation (§ 2, no. I). 

Since R i.J, ;r I is true for every cardinal .J, what must be proved 
is that, for every set E of cardinals the relation eel e E and ~ e E and 
R ! l, ~!" is a well-ordering relation on E. Consider the set A = U f. 

reE 
Every cardinal feE is then a subset of A. By § 2, Theorem I there 
exists a well-ordering relation on A, which we shall denote by f ~ y, 
and every subset of A is equipotent to a segment of A (§ 2, no. 5, Theo­
rem 3, Corollary x). For every cardinal .J e E consider the set of segments 
of A which are equipotent to :T; this set of segments is not empty and 
therefore has a least element (§ 2, no. 1, Proposition ,2); let <p(eT) denote 
this least element. The relation 

"x. e E and ~ e E and .J is equipotent to a subset of IJ" 

is then equivalent to 

"r e E and t, e E and <p(.J) C <p(~)". 

For clearly the second relation implies the first. Conversely, if l is 
equipotent to a subset of <p(~), we cannot have <p(~) C <p(r) and 
<p(~) =F <p(.J); otherwise there would exist a segment of <p(~) equipotent 
to .f (§ 2, no. 5, Theorem 3, Corollary 3), contrary to the definition of 
<p(.J). Since the set of segments of A is well-ordered by inclusion (§ 2, 
no. I, Proposition 2), the theorem follows. 

~ We shall denote the relation R leT, ~ I by eT ~ il. A set X is equi­
potent to a subset of a set Y if and only if Card (X) ~ Card (Y). 

Clearly we have 0::::;; r for every cardinal eT, and I::::;; r for every 
cardinal eT =F O. 

COROLLARY 1. Given any two sets, one of them is equipotent to a subset of the 
other. 

COROLLARY 2. Two sets each of which is equipotent to a subset of the other 
are equipotent. 

Remark. Given any set A, there exists a set whose elements are the car­
dinals Card(X) for all the subsets X of A, namely, the set of objects of 
the form Card (X) for Xe ~(A) (Chapter II, § I, no. 6). For every 
cardinal Cl the relation ".J is a cardinal and eT ~ a" is therefore collec­
tivizing in eT (Chapter II, § 1, no. 4), because it is equivalent to the 
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relation "~ is of the form Card (X) for Xc (\"; the set of all ~ satis­
fying this relation is called the set of cardinals ~ 4. 

PROPOSITION 2. For every family (4ILeI of cardiTUlls, there exists a unique 
cardinal {j such that 41 ~ {j for all LeI and such that every cardiTUlI (for 
which 4, ~ (for all LeI is ~ {j. 

There exists a set E containing all the sets 4, (e.g., the sum of these sets 
(Chapter II, §4, no. 8», whence 4, ~ a = Card (E) for all LeI. The 
set F of cardinals ~ a is well-ordered and contains all the a" and 
therefore the family (a')'EI has a least upper bound {j in F. Let ( be 
a cardinal ~ 4, for all LeI; if ( < {j ~ a, then (e F, and the inequality 
a, ~ c contradicts the definition of the least upper bound of the family 
(a,) in the ordered set F; hence the result. 

" By abuse of language, the cardinal {j is called the least upper bound of 
the family (a')'EI and is denoted by sup a,. 

leI 

PRoPosmON 3. Let X and Y be sets. If there exists a surjection f of X 
onto Y, then Card (Y) ~ Card (X). 

For there exists a section s associated with f (Chapter II, § 3, no. 8, 
Proposition 8) and s is an injection of Y into X. 

3. OPERATIONS ON CARDINALS 

DEFINITION 3. Let (al),EI be a family of cardinals. The cardiTUlI of the 
product (resp. sum) of the sets a, is called the cardinal product (resp. cardinal 
sum) of the cardinals a, and is denoted by P 4, (resp. ~ al). 

lEI lEI 
Whenever there is no risk of confusion we shall say simply "product" and 
"sum" in place of "cardinal product" and "cardinal sum", and we shall 
write II al in place of P a, (cf. Exercise 2). 

,EI ,EI 

PRoposmoN 4. Let .(EI)IEI be a family of sets, P their product, and S their 
sum, and let al be the cardinal of E,. Then the cardiTUlI of P (resp. S) is the 
cardinal product (resp. cardinal sum) of the family (a,)IEI. 

For there exists a bijection of P (resp. S) onto the product (resp. sum) of 
the sets (al) (Chapter II, § 4, no. 8, Proposition 10, and § 5, no. 7, Corollary 
to Proposition 11). 

COROLLARY. If (E')IEI is any family of sets, the cardinal of the union UEI 
is at most equal to the sum ~ Card (EI). 'EI 

lEI 
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For there exists a mapping of the sum S of the E, onto the union of the 
E, (Chapter II, § 4, no. 8); the Corollary therefore follows from Proposi­
tions 3 and 4. 

PROPOSITION 5. (a) Let (Il,),el be afamily of cardinals, and let f be a bijec­
tion of a set K onto the index set I. Then 

P "j(x) = P Il,. 
xeK ,eI 

(b) Let (Il,LeI be a family of cardinals and let (J).h.eL be a partition 
of I. Then 

("associativity of the sum and product"). 

(c) Let «Il).,),eJ).h.eL be a family (indexed by L) of families of cardinals, 
and let I = II J).. Then 

).eL 

("distributivity of product over sum"). 

The relations in (a) follow from the analogous formulae for the union and 
product of sets, for the fact that f is a bijection implies that if (X,),el is 
a family of mutually disjoint sets, the elements of the family (Xj(x)xex 
are also mutually disjoint (cf. Chapter II, § 4, no. 1, Proposition 1 and 
§ 5, no. 3, Proposition 4). 

~ The relations in (b) are immediate consequences of the associativity for­
mulae for unions and products (Chapter II, § 4, no. 2, Proposition 2 and 
§ 5, no. 5, Proposition 7) and the distributivity of intersection over union 
(Chapter II, § 5, no. 6, Proposition 8), which shows that if (X,),el is a 
family of mutually disjoint sets, then the elements of the family 

are also mutually disjoint. 

~ Finally, (c) follows from the distributivity of the product over union 
and intersection (Chapter II, §5, no. 6, Proposition 9 and Corollary 1). 

~ Let (l and '6 be two cardinals. If I is a set consisting of two distinct 
elements (e.g., the cardinal 2), there exists a mapping f of I onto {Il, '6} 
which defines a family of cardinals. The sum and product of this family 
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depend only on 4 and li (by reason of Proposition 5(a»; these cardinals 
are called respectively the sum and the product of a and li, and are 
denoted by a + li and ali. Similarly for the sum and product of three 
or more cardinals. Proposition 5 then implies the following corollary : 

COROLLARY. Let a, li, e be cardinals. Then 

a + li = li + 4, 4li = li4; (1) 
(2) 
(3) 

4 + (li + e) = (4 + li) + t, a(lie) = (ali)c; 
4(li + t) = 4li + 4t. 

4. PROPERTIES OF THE CARDINALS 0 AND 1 

PROPOSITION 6. Let (4')'EI be a family of cardinals, and let J Crespo K) 
be a subset of I suck that ill = 0 for all ~.J (resp. ill = 1 for all ~. K). 
Then 

( resp. P ", = P a,). 
,EI 'EK 

The proposition is obvious as regards the sum, for the sum SI of the 
family of sets (a')'EI is equipotent to the union of the sum SI of the 
family (a')'EI and the empty set, and hence equipotent to SJ. The 
assertion concerning products follows from the fact that the projection prK 
of the product set IT a, onto the partial product IT a, is a bijection 

'EI 'EK 
(Chapter II, § 5, no. 5, Remark 1). 

COROLLARY 1. For every cardinal 4 we have a + 0 = 4. 1 = a. 

COROLLARY 2. Let a and li be cardinals and let I be a set equipotent to li. 
For eack ~ e I let a, = a, e, = 1. Then 

ali = ~ 4" 
,EI 

The second formula is a consequence of the fact that any set is the union 
of its one-element subsets. The first formula follows from the second by 
multiplying by a and using Corollary 1. 

PROPOSITION 7. Let (a')'EI be a family of cardinals. 
if and only if a, :F 0 for all LeI. 

Then P ill :F 0 
,EI 

This is merely a translation of the condition that a product set should be 
non-empty (Chapter II, § 5, no. 4, Proposition 5, Corollary 2). 

PROPOSITION 8. if 4 and li are cardinals suck that a + 1 = li + 1, then 
a = li. 
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Let X = a + I = b + I. Then there exist subsets A, B of X with 
cardinals a, b, respectively, such that the complements X - A, X - B 
each consist of a single element. Let u, v be these elements. The 
intersection C = A n B has as complement in X the set {u, v}. If 
u = v, then A = B = C, so that a = b. If u '# v, then A = C u {v}, 
B = C u {u}, and therefore a = I + Card (C) = b. 

The reader should beware of assuming that a + m = b + m implies 
a = b for all cardinals m (cf. § 6); * we shall see later, however, that this 
implication is true if m is finite (§ 5, no. 2, Proposition 3, Corollary 4 
and § 6, no. 3, Theorem 3, Corollary 4). * 

5. EXPONENTIATION OF CARDINALS 

DEFINITION 4. Let a and b be cardinals. The cardinal of the set of mappings 
of"& into a is denoted by all, by abuse of notation. 

The abuse of notation here lies in the the fact that ab already denotes 
the set of graphs of mappings of b into a (Chapter n, § 5, no. 3), and 
this set is not necessarily a cardinal (Exercise 2). It will always be clear 
from the context which meaning is to be attached to the symbol at'. 

PROPOSITION 9. Let X and Y be two sets, a and b their respective cardinals. 
Then the set Xl: has cardinal a'b. 

For there exists a bijection of XY onto the set of mappings of "& into a 
(Chapter II, § 5, no. 2, Proposition 2, Corollary). 

PROPOSITION 10. Let a and b be cardinals and let I be a set such that 
Card (I) = b. If a, = a for all ~ e I, we have Il'b = P a,. 

,EI 

This follows from the definition of the product of a family of sets as a set of 
functional graphs (Chapter II, § 5, no. 3). 

COROLLARY 1. Let a be a cardinal and let (b')'EI be a family of cardinals. 
Then 

Let S be the sum of the sets b" and put a, = a for all s e S. Both 
sides of the equality to be proved are then equal to P 11" by virtue of 

IES 
Proposition 10 and the associativity formula for products (no. 3, Proposi-
tion 5(b)). 
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COROLLARY 2. Let (4')'EI be a fami(y of cardinals and let Ii be a cardinal. 
Then 

Let 4,~ = 4, for each pair (L, ~) e I X lie Then, by associativity of the 
product, we have 

( P 41)' = P ( P 41~) = P ( P 41~) = P 4~. 
lEI ~E'b lEI lEI ~E~ ,EI 

COROLLARY 3. Let 4, li, c be cardinals. Then 4'e = (4'&)c. 

Let liy = li for all y e c. Then 

1: '&T 
4'&e = 4YEe = p 4'&T = (4'&)C 

YEe 
by virtue of Corollary 1. 

PROPOSITIoN 11. Let 4 be a cardinal. Then 4° = 1, 41 = 4, 14 = 1; and 
04 = 0 if 4 :F O. 

For there exists a unique mapping of 125 into any given set (namely, the 
mapping whose graph is the empty set); the set of mappings of a set 
consisting of a single element into an arbitrary set X is equipotent to X 
(Chapter II, § 5, no. 3); there exists a unique mapping of an arbitrary 
set into a set consisting of a single element; and, finally, there is no 
mapping of a non-empty set into 0. 
~ Note in particular that 00 = 1. 

PROPOSITION 12. Let X be a set and let 4 be its cardinal. Then tke cardinal 
of tke set !l!(X) of all subsets of X is 24. 

Let ex and ~ be the elements of the cardinal 2. For each subset Y of X 
let fy be the mapping of X into 2 defined by fy(x) = ex if x e Y and 
fy(x) = (3 if x e X - Y. Let II be the mapping Y -+ fy of !l!(X) 
into 2x. Conversely, with each mapping g of X into 2 let us associate the 
subset 1(ex) of X, and let v be the mapping g -+ -lcex) of 2x into !l!(X). 
It is clear that II 0 v and v 0 II are the identity mappings of 2x and !l!(X); 
hence II and v are bijections (Chapter II, § 3, no. 8, Proposition 8, 
Corollary) and therefore Card (!l!(X» = 24. 

6. ORDER RELATION AND OPERATIONS ON CARDINALS 

PROPOSITION 13. Let Cl and li be cardinals. Then Cl ~ li if and only if 
there exists a cardinal t suck tkat 4 = Ii + C. 
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For the relation a ~ X; means that there exists a subset B of a which is 
equipotent to X; (no. 2), i.e., a is equipotent to the set which is the sum 
of X; and a set c. 

If a ~ X;, there usually exist many cardinals t such that a = ti + t 
(cf. § 6); in general, therefore, it is not possible to define the "differt'Ilcc" 
a - X; of two such cardinals (cf. § 5, no. 2). 

PROPOSITION 14. Let (al),EI and (til)'EI be two families of cardinals, both 
indexed by the same set I, and such that al ~ til for all LeI. Then 

~ a, ~ ~ ti" P a, ~ P til' 
lEI 'EI 'EI ,EI 

The second inequality follows from the inclusion relations between products 
of sets (Chapter II, § 5, no. 4, Proposition 6, Corollary 3). As to the first 
inequality, if a set E is the union of a family (AI)'EI of mutually disjoint 
subsets and if BI c: AI for all LeI, then the B, are also mutually dis-
joint and UBI c: UA, (Chapter II, § 4, no. 2). 

I I 

COROLLARY 1. Let (al),EI be a family oj cardinals. For each subset J of I 
we have ~ al ~ ~ al' lfalso a, =F 0 for all LeI - j, then P a, ~ P a,. 

'EJ ,EI ,EJ ,EI 
Put til = a, if L e j, and til = 0 Crespo lit = 1) if LeI - J. Then apply 
Proposition 14, observing that the relation a =F 0 implies a ~ 1. 

COROLLARY 2. If a, a', ti, ti' are cardinals such that a ~ a', li ~ li', and 
a' > 0, then a" ~ a''''. 

For a" ~ a'" by Propositions 10 and 14, and a'" ~ a'b' by Proposition 10 
and Corollary 1 to Proposition 14. 

THEOREM 2 (Cantor). For each cardinal a, we have 24 > a. 

We have Card(~(a» = 211 (no. 5, Proposition 12). The mapping 
x ~ {x} (x e 4) is an injection of a into ~(a), whence a ~ 211. Hence it is 
enough to show that a =F 211, i.e., that for every mapping f of a into ~(a), 
the image f(a) is distinct from ~(a). Let X be the set of all x e a such 
that x $f(x). If x e X, we have x $f(x) , whence f(x) =F X; if x Ii a-X, 
we have x ef(x) and x $ X, whence f(x) = X. This shows that 
X $f(a) and proves the theorem. 

COROLLARY. There does not exists a set that has every cardinal as an element. 

If U were such a set, there would exist a set S, the sum of the family 
of sets (XhEU, so that every cardinal is equipotent to a subset of S. In 
particular, let ~ = Card(S); since 2~ is a cardinal, we would have 
2~ ~ ~, in contradiction to Theorem 2. 
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4. NATURAL INTEGERS. FINITE SETS 

1. DEFINITION OF INTEGERS 

DEFINITION 1. A cardinal a is said to be finite if a i: a + 1. A finite cardinal 
is also called a natural integer (or simply an integer if there is no risk of 
confusion (*». A set E is said to be finite if Card (E) is a finite cardinal; 
and Card (E) is then called the number of elements of E. 

A family (Chapter II, § 3, no. 4) is said to befinite if its index set is finite. 

When we say that the number of objects of a certain type is an integer m, 
we mean that these objects are elements of a finite set whose number of 
elements is m. A set whose number of elements is m is also called a 
set of m elements. 

PROPosmON 1. A cardinal a is finite if and only if a + 1 is finite. 

For the relations a = Ii and a + 1 = Ii + 1 between cardinals a and Ii 
are equivalent (§ 3, no. 4, Proposition 8); the relations a i: a + 1 and 
a + 1 i: (a + I) + 1 are therefore equivalent. 
!f It is clear that 0 i: 1; hence 0 is an integer. It follows that 1 and 
2 are integers. The cardinals 2 + 1 and (2 + 1) + I are integers, 
denoted by 3 and 4, respectively. 

2. INEQUALITIES BETWEEN INTEGERS 

PROPOSITION 2. Let n be an integer. Then every cardinal a such that a :::;; n 
is an integer. if n i: 0, there exists a unique integer m such that n = m + 1, 
and the relation a < n is equivalent to a :::;; m. 

If a :::;; n, there exists a cardinal Ii such that n = a + Ii (§ 3, no. 6, 
Proposition 13). Then (a + 1) + Ii = (a + Ii) + 1 = n + 1 (§3, no. 3, 
Proposition 5, Corollary); and since n i: n + 1, we have 

Hence a + 1 i: a, which means that a is an integer. If n i: 0, we have 
n ~ 1 (§ 3, no. 2), and therefore there exists a unique cardinal m such 

(*) The notion of "integer" will be generalized later, in Algebra, where we shall 
define the rational integers and the algebraic integers. 
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that n = m + 1 (§ 3, no. 6, Proposition 13 and no. 4, Proposition 8). 
Since m ~ n, m is an integer, from what has already been proved. 
Finally, if an integer a is such that a< n, we have n = a + b, with b:F 0 
(§ 3, no. 6, Proposition 13); since b is an integer, we have b = c + 1 
and n = m + 1 = (a + c) + 1. It follows that m = a + c (§ 3, no. 4, 
Proposition 8), hence a ~ m. Conversely, if a ~ m, we have 

a ~ m + 1 = n; 

and if a = n = m + 1, we would have a > m, contrary to hypothesis. 

COROLLARY 1. Every subset of a finite set is finite. 

COROLLARY 2. If X is a subset oj a finite set E and X :F E, tMn 

Card eX) < Card (E). 

For X is contained in the complement X' of a subset of E 
consisting of a single element; we have Card (X) ~ Card (X') and 
Card (E) = Card (X') + 1, hence (Proposition 2) Card (X') < Card (E) 
and a fortiori Card (X) < Card (E). 

Definition 1 shows that, conversely, if E is a set such that 

Card (X) < Card (E) 

for every subset X of E such that X :F E, then E is finite. 

COROLLARY 3. Iff is a mapping oj a finite set E into a set F, tMn feE) 
is a finite subset oj F. 

For Card (f(E» ~ Card (E) (§ 3, no. 2, Proposition 3). 

COROLLARY 4. Let E and F be two finite sets with the same number of 
elements, and let f be a mapping oj E into F. Then tM following statements 
are equivalent : 

(a) f is an injection; 
(b) f is a surjection; 
(c) f is a bijection. 

It is enough to prove that (a) and (b) are equivalent. Iff is injective, 
then Card(f(E» = Card (E) = Card (F), whence feE) = F (Corollary 
2). If f is not injective, let x and x' be two elements of E such that 
x :F x' and f (x) = f (x'). Then, putting E' = E - {x}, we have 
feE') =f(E), whence Card(f(E» ~ Card (E') < Card (E) by virtue of 
Corollary 2; but since Card (F) = Card (E), it follows that f (E) :F F. 
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3. THE PRINCIPLE OF INDUCTION 

C61 (Principle ofInduction). Let R} n! be a relation in a theory iO (where n 
is not a constant of iO). Suppose that the relation 

R}O! and (Vn)(n is an integer and R}nD ==+- R}n + I D 
is a theorem in iO. Under these conditions the relation 

(Vn) «n is an integer) -===too- R In!) 

is a theorem in iO. 

We shall argue by contradiction. Suppose that the relation 

(3n) (n is an integer and (not R In! » 

is true. Let q be an integer such that "not R I q!" (method of the 
auxiliary constant; c£ Chapter I, § 3, no. 3 and § 4, no. 1). The integers n 
for which Un ~ q and (not RinD" form a wdl-ordered non-empty set 
(§ 3, no. 2, Remark), which therefore has a least dement s. If s = 0, 
then "not R} ° I ", contrary to hypothesis. If s > 0, then s = s' + 1, 
where s' is an integer such that s' < s (no. 2, Proposition 2). By 
definition of s, we have R I s' I, but then the hypothesis implies that 
R I s I is true, contrary to the definition of s. 

In order to apply the principle of induction it is necessary in particular 
to prove the relation 

(n is an integer and R I n D ==+- R I n + II. 
For this purpose the method of the auxiliary hypothesis (Chapter I, § 3, 
no. 3) is commonly used, and it is for this reason that the relation "n is an 
integer and R! n!" (or even R In D is called the imluctivf hypothuir. 

Remark. There are various criteria which are frequently used under the 
name of "principle of induction". They can all be easily deduced from 
C61, and we indicate here the most important ofthem: 

(1) Let SIn I be the relation 

(Vp)(n is an integer and p is an integer and p < n) ==+- RIp D 
and suppose that Sin I implies R I n I. Then the rdation 

(Vn)«n is an integer) ==+- R I n D 
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is true. For the rdation 8! 01 is true, and by hypothesis 8! n I implies 
R! n!; since the rdation m < n + 1 is equivalent to m ~ n (no. 2, 
Proposition 2), the rdation 8 I n + 11 is equivalent to "8 In! and 
R!n!", consequently, 81n! implies 81n + II. The criterion 061 
therefore proves that the relation 

(Vn) «n is an integer) =* 8! n D 
is true, and since 8! n! implies R In!, the rdation 

(Vn) «n is an integer) =* RinD 
is true. 

(2) Let k be an integer and let R! n ! be a rdation such that the 
rdation 

Rlk\ and (Vn) «n is an integer ~ k and R!nD~Rln+ 10 
is true. Then the relation 

(Vn) «n is an integer ~ k) ~ RinD 

is true ("induction starting at k"). For let 8 In! be the rdation 

(n ~ k) =* R In! • 

Then by the method of disjunction of cases we see that 8 101 is true. 
On the other hand, it is easily verified that the rdation 

(n is an integer and 81 nD ~ 81n + II 
is true. It follows from 061 that the relation 

(n is an integer) =* 8 ! n I 
is true, which proves our assertion. 

(3) Let a and b be two integers such that a ~ b, and let R In! be a 
relation such that 

Rial and(Vn)«nisanintegeranda:e;; n < band R!nD~Rln+ II). 
Then the relation 

(Vn)«n is an integer and a :e;; n:e;; b) =+- RinD 

is true. The proof is similar to that of the preceding case; we take 8 In! 
to be the rdation "(a :e;; n < b) =+- Rln!" ("induction restricted to an 
interval") . 
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(4) Let a, b be two integers such that a ~ b, and let R!n{ be a 
relation such that 

Rib! and (Vn)(nis an integer and a ~ n < bandRln+ l!)=+-Rlnl). 

Then the relation 

(Vn)((n is an integer and a ~ n ~ b) =+- R In!) 

is true. For we have the relation 

(n is an integer and a ~ n < b and (not RinD) =+- not R!n + 1 {. 

If for some n such that a ~ n ~ b we had (not R I n D, it would follow 
from (3) that (not Rib t), contrary to the hypothesis, whence the result 
("descending induction"). 

4. FINITE SUBSETS OF ORDERED SETS 

PROPOSITION 3. Let E be a right directed preordered set (resp. a lattice, resp. 
a totally ordered set). Then every non-empty finite subset oj E is bounded above 
(resp. has a least upper bound and a greatest lower bound, resp. has a greatest 
element and a least element). 

The proof is by induction on the number n of elements of the subset under 
consideration. The result is trivial for n = 1. Let X be a subset of 
n + 1 elements of E (with n ~ 1), and put X = Yu {x}, where Y has 
n elements and is therefore not empty. The inductive hypothesis implies 
the existence of an upper bound (resp. least upper bound, resp. greatest 
element) y of Y. Since E is right directed Crespo a lattice, resp. totally 
ordered), {x, y} has an upper bound (resp. least upper bound, resp. 
greatest element) which is evidently an upper bound (resp. least upper 
bound, resp. greatest element) of X. 

COROLLARY I. Every totally ordered finite set is well-ordered and has a greatest 
element. 

COROLLARY 2. Every finite ordered set has a maximal element. 
For such a set is inductive by Corollary 1 (cf. § 2, no. 4, Theorem 2). 

5. PROPERTIES OF FINITE CHARACTER 

DEFINITION 2. Let E be a set. A set @) oj subsets oj E is said to be oj 
finite character if the relation X e @) is equivalent to the relation "every finite subset 
of X belongs to @)". 
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A property P l X { of a subset X of a set E is said to be of finite character 
if the set of subsets X of E for which P I X! is true is of finite character. 

Examples 
(I) The set of totally ordered subsets of an ordered set E is of finite 
character. Indeed, a subset X of E is totally ordered if and only 
if eyery subset of X consisting of two elements is totally ordered. 
* (2) The set of all free subsets of a module is of finite character. The 
same is true of the set of all algebraically free subsets of an extension of a 
field. 
(3) The set of submodules of a module E is not of finite character, 
because a finite subset of a submodule of E is not necessarily a submodule 
of E. * 

THEOREM 1. Every set e of subsets of a set E which is of finite character has a 
maximal element (when ordered by inclusion). 

By Theorem 2 of § 2, no. 4 it is enough to show that S is inductive. To do 
this we shall show that if @ is any subset of S which is totally ordered 
by inclusion, the union X of the sets of @ belongs to S (§ 2, no. 4, 
Theorem 2, Corollary 2). Since S is of finite character, it is enough 
to show that every finite subset Y of X belongs to S. Now, for each 
y e Y, there exists a set Z, e @ such that ye Z,. Since the set of sets 
Z1 (y e Y) is finite and totally ordered by inclusion, it has a greatest ele­
ment S (no. 4, Corollary I to Proposition 3); in other words, there exists 
a set S e @ such that Y c: S. But since S e S and since Y is a finite 
subset of S, we have YeS because ~ is of finite character; this com­
pletes the proof. 

5. PROPERTIES OF INTEGERS 

1. OPERATIONS ON INTEGERS AND FINlTE SETS 

PROPOSITION 1. Let (aj) leI be a finite family of integers. Then the cardinals 
~ aj and n aj are integers. 
ieI ieI 

Let us begin by showing that if a and b are integers, then so is a + b. 
We proceed by induction on b. The assertion is true for b = 0 since 
a + 0 = a. If a + b is an integer, then so is (a + b) + 1 (§4, no. 1, 
Proposition 1). But (a + b) + 1 = a + (b + 1) (§3, no. 3, Corollary to 
Proposition 5); hence a + (b + 1) is an integer, and consequently a + b 
is an integer for all integers b. 
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Next we show by induction on n = Card (I) that ~ ai is an integer. 
lei 

This is clear if n = 0, for then 1 = ¢ and ~ ai = O. If Card (I) = 
ieI 

n + 1, we may write 1 =J u {k}, where Card (1) = nand kteJ. Then 

~ aj = ale + ~ aj 
ieI 'eJ 

(§ 3, no. 3, Proposition 5). The inductive hypothesis is that ~ ai is an 
'eJ 

integer; hence so is ale + ~ a;, from the first paragraph of the proof. 
,eJ 

This shows that ~ ai is an integer for all n. 
ieI 

Since the product ab of two integers a and b is the sum of a finite 
family of integers all equal to a (§ 3, no. 4, Proposition 6, Corollary 2), 
ab is an integer. We shall prove by induction on n = Card (I) that 
II ai is an integer. This is true for n = 0, because then 
ieI 

IIai=l. 
ieI 

If Card (I) = n + 1, we have (with the same notation as above) 

(§ 3, no. 3, Proposition 5), and the inductive hypothesis therefore implies 
that IT ai is an integer. Consequently II ai is an integer for all n. 

ieI ieI 

COROLLARY 1. The union E of a finiu family (Xi)ieI of finite sets is a 
finiu set. 

For the sum S of the family (X;) is finite; and since there exists a map­
ping of S onto E (Chapter II, § 4, no. 8), the set E is finite (§ 4, no. 2, 
Proposition 2, Corollary 3). 

COROLLARY 2. The product of a finite family offiniu sets is afiniu set. 

COROLLARY 3. g a and b are integers, tlJ is an integer. 

For a" is the product of a finite family of integers all equal to a (§ 3, no. 5, 
Proposition 10). 

COROLLARY 4. The set of subsets of a finite set E is finite. 

For its cardinal is 2Card (E) (§ 3, no. 5, Proposition 12). 
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1. STRICI' INEQUALITIES BETWEEN INTEGERS 

PRoposmoN 2. Let a and h he two integers. Then a < b if and onry if 
there exists an integer c > 0 such that b = a + c. 

If a < b, there exists a cardinal c :s;; h (so that c is an integer (§ 4, no. 2, 
Proposition 2» such that b = a + c (§ 3, no. 6, Proposition 13); if a :F h, 
we must have c :F O. Conversely, if b = a + c and c :F 0, then c ~ 1 
and hence a < a + I :s;; a + c = h. 

PRoposmoN 3. Let (ai)ieI and (b)ieI be two finite families of integers 
such that ai :s;; hi fOT each i e I and ai < hi for at least one indu i. Then 

~ ai < ~ hi' 
iel ieI 

g also bj > 0 fOT each i e I, then 

Let j be an index such that aj < hj' and let J = 1-{j}. Then 

hj=aj+c) 

with c) > 0 (Proposition 2), and therefore (§ 3, no. 6, Proposition 14) 

~~=~+~+~~~~+~+~~=~+~~ 
iel 'eJ teJ ieI 

Since c) > 0, the first part of the Proposition follows from Proposition 2. 
Likewise 

Since c) and all the hi are :F 0, the product c). IT hi is oF 0 (§ 3, no. 4, 
ieJ 

Proposition 7); hence the second part of the Proposition. 

COROLLARY 1. Let a, a', and h be integers such that a < a' and h > O. 
Then ab < a'b. 

We need only express ab and a'b as products of finite families of integers 
(§ 3, no. 5, Proposition 10) and apply Proposition 3, observing that the rela­
tion a < a' implies a' > O. 
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COROLLARY 2. Let a, b, and b' be integers such that a > 1 and b < b' j 
then ab < ab'. 

For there exists an integer c > 0 such that bl = b + c (Proposition 2); 
since c ;:::: 1, we have aC ;:::: a > 1, whence ab' = abac > abo 

COROLLARY 3. Let a, b, b' be integers (resp. integers such that a > 0). Then 
a + b = a + hI (resp. ah = ahl) if and onlY if b = hI. 

COROLLARY 4. If a and h are integers such that a ~ h, then there exists a 
unique integer c such that h = a + C. 

The existence of c follows from Proposition 13 of § 3, no. 6, and its uni­
queness from Corollary 3 above. 

!f The integer c such that h = a + c (where a ~ b) is called the difference 
of the integers h and a, and is written b - a. It is easily verified that 
if a, b, a', hI are integers such that a ~ band a' ~ b', then 

(h-a) + (b ' -al) = (b + bl) - (a + al). 

3. UNTERVALS EN SETS OF ENTEGERS 

Every set of integers, being a set of cardinals, is well-ordered (§ 3, no. 2, 
Theorem 1). Furthermore, for each integer a the relation "x is a 
cardinal and x ~ a" is collectivizing in x (§ 3, no. 2, Remark after 
Theorem 1), and the set of x which satisfy this relation is a set of integers 
(§4, no. 2, Proposition 2), which may therefore be denoted by [0, a]. 

PROPOSITION 4. Let a and b be integers. Then the mapping x -+ a + x is a 
strictlY inrceasing isomorphism of the interval [0, b] onto the interval [a, a + b], 
and y -+ y - a is the inverse isomorphism. 

Clearly the relations 0 ~ x ~ b imply a ~ a + x ~ a + b. The map­
ping x -+ a + x is strictly increasing (and therefore injective) by Propo­
sition 3 of no. 2. Finally, the relations a ~ y ~ a + b imply y = a + x 
with x ;:::: 0 and a + x ~ a + h, whence x ~ b (no. 2, Proposition 3). 
This completes the proof. 

PROPOSITION 5. If a and b are integers such that a ~ b, then the interval 
[a, b] is a finite set whose number of elements is b - a + 1. 

By Proposition 4 we may restrict ouselves to the case where a = O. The 
proof is by induction on b. If b = 0, the result is clear. The relation 
o ~ x ~ b + 1 is equivalent to "0 ~ x < b + 1 or x = b + 1", and the 
relation 0 ~ x < b + 1 is equivalent to 0 ~ x ~ h (§ 4, no. 2, Propo­
sition 2); in other words, the interval [0, b + 1] is the union of [0, b] 
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and {b + I}, and these two sets are disjoint. By the inductive hypothesis 
the number of elements of [0, b + 1] is equal to (b + 1) + 1, and the 
Proposition is proved. 

PROPOSITION 6. For every finite set E which is totally ordered and has n 
elements (n ;;.: 1), there exists a unique isomorphism of E onto the interval [1, n]. 

Since E and [1, n] are well-ordered (§ 4, no. 4, Proposition 3, Corollary 1) 
and have the same number of elements (Proposition 5), the result follows 
from Theorem 3 of § 2, no. 5 and Corollary 2 to Proposition 2 of § 4, no. 2. 

4. FINITE SEQUENCES 

Afinite sequence (resp. finite sequence of elements of a set E) is a family (resp. 
a family of elements of E) whose index set I is a finite set of integers. 
The number of elements of I is called the length of the sequence. 

Let (ti)iEI be a finite sequence oflength n. By Proposition 6 of no. 3 
there exists a unique isomorphism f of the interval [1, n] onto the set 
of integers 1. For each k e [1, n], t[(k) is said to be the kth term of the 
sequence; t[(I) (resp. t[(n) is theftrst (resp. last) term of the sequence. 

Let P Ii! be a relation such that the elements i for which P! i! is 
true form a finite set of integers. A finite sequence (ti)iEI is then often 
written (ti)Plil' For example, when I = [a, b], the notation (ti)a~i~b is 
often used. Under the same conditions, to denote the product of a family 
of sets (Xi)iEI the notations 

II Xi and 
P~il 

are used; and analogous notations for union, intersection, cardinal product, 
cardinal sum, * composition laws in Algebra *' and so on. 

5. CHARACI'ERISTIC FUNCTIONS OF SETS 

Let E be a non-empty set and A a subset of E. The characteristic function 
of the subset A of E is the mapping 'P A of E into the set {D, I} defined 
by 

'PA(X) =1 if xeA; 'PAeX) = D if x e E - A. 

~ Clearly the relation 'PA = 'PB is equivalent to A = B. We have 
'PEeX) = 1 for all x e E and 'Pj3(x) = 0 for all x e E; these are the only 
constant characteristic functions on E. The following Proposition is an 
immediate consequence of the definitions: 
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PROPOSITION 7. For each pair of suhsets A, B of a non-empty set E, we luwe 

(1) 

(2) 

(3) 

for all xe E. 

lPE-A(X) = 1 - lPA(X), 

lPA n B(X) = lPA(X)lPB(X), 

lPAUB(X) + lPAnB(X) = lPA,(x) + lPB(X) 

~EUCLDDEAN D~ON 

THEOREM I. Let a and b be integers such that b > O. Then there exist 
integers q and r such that a = bq + r and r < b, and tIu integers q and r 
are uniquelY determined by these conditions. 

The conditions on q and r are equivalent to bq ~ a < b(q + 1) and 
r = a - bq (no. 2, Proposition 2). Hence we have to find q such that 
bq ~ a < b(q + 1); in other words, q must be the smallest integer 
such that a < b(q + I), which shows that q and r = a - bq are uni­
quely determined. To prove their existence, we note that there exist 
integers p such that a < bp, for example a + 1 (since b > 0). Let m 
be the least of these integers. We have m =f:. 0, and we may therefore 
write m = q + 1 with q ~ m (§ 4, no. 2, Proposition 2); it follows that 
bq ~ a < b(q + I). 
DEFINITION I. With the notation of Theorem 1, r is called the remainder of 
the division of a by b. q T = 0, we say that a is a multiple of b, or that a is 
divisible by b, or that b is a divisor of a, or that b divides a, or that b is a 
factor of a. The number q is then called the quotient of a by b and is denoted 

a 
by b or a/b. 

If a is not a multiple of b, the number q is called the integral part of tIu 
quotient of a by b (cf. General Topology, Chapter IV, § 8, no. 2). 

In this chapter, writing alb or : will imply that b divides a. 

The relations a = bq and q = alb are equivalent (if b > 0). Every 
multiple a' of a multiple a of b is a multiple of b, and 

a'lb = (a' fa) (a/b) if a =f:. O. 
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Also, if c and d are multiples of b, then c + d and c - d (if d ~ c) are 
multiples of h, and we have 

c+d=~+~, 
b b b 

The integers which are multiples of 2 are said to be even, and the others 
odd. By Theorem 1 the odd integers are of the form 2n + 1. 

7. EXPANSION TO BASE b 

PROPOSITION 8. Let b be an integer > 1. For each integer k > ° let E/( 
be the lexicographic product (§ 2, no. 6) of the family (Jh)O~h~k-l of intervals 
all identical with [0, b-l]. For each r = (ro, rl , ••• , rk-l) eEk, 

k-l 
let fk(r) = ~ rhbk-h-1; then the mapping fk is an isomorphism of the ordered 

h=O 
set Ek onto the interval [0, hk - 1]. 

The proof is by induction on k. For k = I it is an immediate conse­
quence of the definitions. For each r = (ro, ... , ric-I' rk) e EIc+1' put 

<per) = (ro, ... , ric-I) e Ek • 

Then the mapping r 4- (<p(r), rk) is an isomorphism of EIc+1 onto the 
lexicographical product of Eic and J = [0, h - I]; this is immediate 
from the definitions. We may write 

let us show that the relation r < r' in Elc+l implies fk+1(r) < fk+l(r' ). 
Indeed, we have either q>(r) < q>(r'), or else q>(r) = q>(r') and rk < r~. 
In the first case, the inductive hypothesis implies thatfk(<p(r» <fk(q>(r'», 
and therefore (§4, no. 2, Proposition 2) fk(q(r'» ~ fk(q>(r» + 1; 
consequently 

since rk ~ h -1 (no. 2, Proposition 3). If, on the other hand, q>(r) = q>(r') 
and rk < r~, it is clear that flc+1(r) < fk+l(r'). Now the inductive hypo­
thesis shows that fk(<p(r» ~ bk - 1, whence 

fk+l(r) ~ b(bk - 1) + b -I = bk+l_ 1. 

It follows that fk+l is an isomorphism of Ek+l onto a subset of the interval 
[0, bk+1 - 1]; but this interval and Ek+1 have the same number of 
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dements, namdy blc+l (no. 3, Proposition 5); therefore flc+l is a bijection 
(§ 4, no. 2, Proposition 2, Corollary 4), and the proof is complete. 
~ We note now that for every integer a we have a < ba• This is proved 
by induction on a; the result is evident for a = 0, and the hypothesis 
a < ba implies a + 1 ~ ba < h. ha = haH (no. 2, Proposition 3 and § 4, 
no. 2, Proposition 2). There is therefore a least integer k such that 
a < hk, and Proposition 8 then shows that there exists a unique finite 
sequence ('h)O~h~k-l such that 0 ~ 'h ~ h - 1 for 0 ~ k ~ k - 1 and 

k-l 

a = ~ 'hbk-h-l. 

h=o 

Furthermore, we must have '0 > 0, for otherwise a < hk - 1 by virtue of 
Proposition 8. The expression 

k-l 

~ 'hbk-h-l 

h=o 

is called the expansion to base b of the integer a. 
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• In all parts of mathematics which do not involve numerical computa­
tions, Proposition 8 is useful mainly when applied to a prime number b •• 

When the integer b is small enough for this to be practicable, we may 
represent each integer < b by a distinctive symbol called a aigil. The 
digits which represent 0 and I are usually 0 and 1. Let a be an integer 

1t-l 

and let ~ 'hbk-h-l be its expansion to base b. If the integer k which 
h=O 

appears in this expansion is sufficiently smaIl for this to be practicable, 
it is usual to associate with the integer a the succession of symbols obtained 
by writing 'oTI ..• 'Ir_'lrl from left to right and then replacing each 
integer 'i by the digit which represents it; the symbol so obtained is 
called the numerical symbol associated with a. One then often replaces a 
by its numerical symbol in the terms and relations in which it appears. 

For example, if C, Q, F, D are digits, the numerical symbols CQ, 
CQF, CQFD are respectively associated with Cb + Q, Cbl + Qb + F, 
ChI! + QbB + Fb + D. 

It follows from Proposition 8 that the numerical symbol associated 
with an integer a is unique, and that if a < bk it contains at most k 
digits. Notice that the numerical symbol associated with the integer bk 

consists of the digit 1 followed by k digits O. 
This system of representation of integers by numerical symbols is called 

the system of numeration to base b. In practical numerical computations, 
the following systems are used: (a) the system to base 2, or the dyaai& 
system, in which the digits are 0 and I; (b) the tfecimal system, in which the 
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digits are 0, 1, 2, 3, 4, 5 = 4 + 1, 6 = 5 + 1, 7 = 6 + 1, 8 = 7 + 1, 
9 = 8 + 1, and in which h is the integer 9 + 1 (whose numerical 
symbol in this system is therefore 10). 

Since the Middle Ages the decimal system has been traditionally used 
in numerical calculations, and we shall use it in this series whenever 
we have occasion to write down an integer explicitly. We refer the reader 
to the part of this series devoted to numerical calculation for an account 
of methods for obtaining the numerical symbols associated with the sum, 
difference, product, and integral part of the quotient of two integers 
given by their numerical symbols. 

8. COMBINATORIAL ANALYSIS 

PROPOSITION 9. Let E and F he two sets, It and li their cardinals, / a sur­
jection of E onto F such that the sets l(y), where y e F, all have the same 
cardinal c. Then It = lic. 

For the family (l(Y»YEF is a partition of E, each element of which 
partition is a set of cardinal C; hence the result (§ 3, no. 4, Proposition 6, 
Corollary 2). 

DEFINITION 2. Let n be an integer. 
(read "factorial n"). 

The product IT (i + 1) is denoted by n! 
i<n 

We have O! = 1 (Chapter II, § 5, no. 3) and I! = 1. For each integer n 
we have (n + 1) I = n! (n + 1). This relation, together with the relation 
O! = 1, characterizes the term nt, as is easily seen by induction on n. 

PROPOSITION 10. Let m and n be integers such that m ~ n. Then nl/Cn - m) ! 
is the number of injective mappings of a set A with m elements into a set B with 
n elements. 

The proof is by induction on the number m ~ n of elements of A. If 
m = 0, the result is evident. Suppose that m + 1 ~ n. Let A be a 
set with m + 1 elements, let A' be a subset of A with m elements, and 
let {a} = A-A'. Let F, F' be the sets of injective mappings of A, A' 
respectively into B, and let cp be the mapping f ~ f IA' which maps each 
function fe F to its restriction to A'. For each f' e F' an element / 
of rI(/') is uniquely determined by its value f (a); since f is injective, 
we must havef(a) eB-f'(A'). It follows that (/(/') has the same 
number n - m of elements as B - fl(A/). Hence, by Proposition 9, 
F has 

n' n! (n-m) . - ----
(n-m)! (n-m-l)! 

elements by virtue of the inductive hypothesis. This completes the proof. 

179 



m ORDERED SETS, CARDINALS, INTEGERS 

COROLLARY. The number of permutations of a finite set with n elements is 
equal to n!. 
For this number is equal to the number of injections of the set into itself 
(§4, no. 2, Proposition 2, Corollary 4). 

PRoposmoN 11. Let E be a finite set with n elements, and let (pi)l .... i..::." be 
h ~~ 

a finite sequence of integers such that ~ Pi = n. Then the number of coverings 
1=1 

(~h"i.:t;;" of E by mutual?y disjoint sets Xi such that Card (~) = Pi for 
1 ~ i~ h is equal to 

n!/Upi!. 
1=1 

Let G be the set of permutations of E and let P be the set of coverings 

" (Xi)l"i"" which satisfy the conditions of the Proposition. Since ~ Pi = n, 
1=1 

P is not empty. Let (A;)l.:t;;i"" be an element of P. For each permu-
tation fe G the family (f(A;)h"i.:t;;h again belongs to P; let us denote 
it by cp(f). For each element (~)l"i"h let us calculate the number of 
permutations fe G such that cp(f) = (~). Weshall have cp(f) = (~) 
if and only if for each index i we have f(Ai) = Xi. Hence the set of 
permutations f under consideration is equipotent to the product of the 
sets of bijections of Ai onto Xi (Chapter II, § 4, no. 7, Proposition 8); 

/a 

consequently the set ~l«~h.:t;;i"") has IIpi! elements (Corollary to 
1=1 

Proposition 10). Since G has n! elements, the result now follows from 
Proposition 9. 

COROLLARY 1. Let A be a set with n elements and let P be an integer ~ n. 

Then the number of subsets of A which have P elements is n! . 
p!(n-p)! 

Put h = 2, PI = p, Pa = n - P in Proposition 11. 

~ The number of subsets containing P elements in a set of n elements 

(where p ~ n) is denoted by (;) and is called the binomial coefficient with 

indices n and p(~)From( ~e )relation (;) = p l(n ~ P)! it follows imme­
diately that P = n _ P . 
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This is also a consequence of the fact that, if E is a set with n elements, 
X _ E - X is a bijection of the set of subsets of E consisting of p ele­
ments onto the set of subsets of n - p elements. 
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We put (p) = 0 for each pair of natural integen such that p > n. 
With this convention the number of subsets of p elements in a set of n 
elements is (p) for every natural integer p. 

COROLLARY 2. Let E and F be totally ordered finite sets with p and n 
elements, respectively. Then the number of strictly increasing 11/Ilppings of E 

into F is (;). 

For such a mapping is an injection of E into F (§ 1, no. 12, Proposition 11), 
and since E and F are well-ordered (§ 4, no. 4, Corollary 1 to Proposi­
tion 3), for each subset X of p elements of F there is exactly one strictly 
increasing mapping of E onto X (§ 2, no. 5, Theorem 3). 

PRoposmoN 12. For each integer n, we have 

For if E is a set of n elements, the left-hand side of the equality is the 
number of subsets of E. Now apply Proposition 12 of § 3, no. 5. 

PROPOSITION 13. If nand p are integers, then 

Let E be a set with n + 1 elements, let P be the set of all subsets of E 
containing p + 1 elements, let a be an element of E, and put 

E' = E-{a}. 

Let P' Crespo P") denote the set of subsets of p + 1 elements of E 
which contain a (resp. do not contain a). The set P" is the set of 
subsets of p + 1 elements of E' and therefore has (p':' 1) elements. 
The mapping X _ X n E' is a bijection of P' onto the set of subsets of p 
elements of E', and P' therefore has (p) elements. The result now 
follows from the fact that P is the union of the disjoint sets P' and P". 

Proposition 13 can also be proved by means of a simple calculation from 

the formula = . for p ~ n. ( n) n' 
P p!(n - p)! 

PROPOSITION 14. Let n be an integer > o. Then the number an (resp. bn) 

of ordered pairs (i, j) of integers such that I ~ i ~ j ~ n Crespo 1 ~ i < j ~ n) 
is tn(n + 1) «resp. tn(n - 1)). 
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For bra is the number of subsets of 2 elements in [1, n]; hence 

n! 1 
bra = = -n(n-l). 

2!(n- 2)! 2 

The value of a" is deduced from this by noting that the set of ordered 
pairs (i, j) such that 1 ~ i ~ j ~ n is the union of the set of ordered 
pairs (i, j) such that 1 ~ i ~ j < n and the set of pairs (i, i) where 

l~i~n. Thusa,,=n+b,,=~n(n+l). 
2 

COROLLARY. For each integer n > 0, we have 

" ~ i = 2. n(n + 1). 
i=l 2 

In the set A of ordered pairs of integers (i, j) such that 1 ~ i ~ j ~ n, 
let Ak denote the subset of pairs (i, k), where I ~ i ~ k (for an arbi­
trary integer k~n). Then Ak has k elements. But (Ak)l~k~n is a par­
tition of A; hence the result. 

PROPOSITION 15. Let nand h be integers and let E be a set with h elements. 
Then the number of mappings u of E into [0, n] such that ~ u(x) ~ n (resp. 
~ uCx) = n, for h > 0) is <veE 

a:EE 

Let A(h, n) Crespo B(h, n» denote the number of mappings u of E into 
[0, n] such that ~ uCx) ~ n (resp. ~ uCx) =n for h> 0). We show 

<veE <veE 
first that A(h - 1, n) = B(h, n). For this, let E' be a subset of E with 
h -1 elements, and let {a} = E - E'. If u is a mapping of E into 
[0, n] such that ~ u(x) = n, then its restriction u' to EI is such that 

<ve.E 
~ u'(x) ~ n, and moreover u(a) = n - ~ u'(x). Conversely, every 

<veE' <veE' 

mapping u' of E' into [0, n] which satisfies ~ u'(x) ~ n defines a un-
<veE' 

ique mapping u of E into [0, n], of which u' is the restriction, and 
which is such that ~ u(x) = n. 

3:9E 

We note next that if ~ uCx) ~ n, then either ~ u(x) = n, or else 
~E ~E 

~ u(x) ~ n - 1, and these two possibilities are mutually exclusive. 
a:e E 
Consequently 

A(h, n) = A(h, n - 1) + BCh, n) = A(h, n -1) + ACh - 1, n). 
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Since A(O, 0) = 1 = (:), the formula A(k, n) = (11th) follows from 
above and from Proposition 13, by induction on n + k. 

* The number of monomials X~IX.CXt ... X~" in h indeterminates with 
total degree ~ n is evidently equal to the number of mappings i -- Qti 

h 

of [1, h] into [0, n] such that ~ Qti ~ n, and is therefore equal to 
i=o 

(11th) by Proposition 15; this number is also the number of monomials 
in h + 1 indeterminates with total degree n. * 

6. INFINITE SETS 

l.THE SET OF NATURAL UNTEGERS 

DEFINITION 1. A set is said to be infinite if it is not finite. 

In particular, a cardinal is infinite if it is not an integer. 
The relation "there exists an infinite set" implies that the relation "x 

is an integer" is collectivizing (Chapter II, § 1, no. 4); for if 4 is an infinite 
cardinal and n an arbitrary integer, we cannot have 4 ~ n (§ 4, no. 2, 
Proposition 2). We have therefore n < a for all integers n, which shows 
that the set of integers < a (§ 3, no. 2, Remark following Theorem 1) 
contains all integers. Conversely, if the relation "x is an integer" is 
collectivizing, then the set E of integers is an infinite set. For each inte­
ger n, the interval [0, n] is a subset of n + 1 elements of E (§ 5, no. 3, 
Proposition 5). Therefore Card (E) ~ n + 1 > n. But to say that 
Card (E) #: n for every integer n means that E is infinite. 
~ We now introduce the following axiom: 

A5 ("Axiom of infinity".) There exists an irifinite set. 

It is not known whether or not this axiom can be deduced from the axioms 
and axiom schemes introduced previously; although the question has 
not been definitively settled, it is to be presumed that this axiom is inde­
pendent of the others. 

The preceding remarks then prove the following theorem: 

THEOREM 1. The relation "x is an integer" is collectivizing. 

We shall denote by N the set of integers (also called "the set of natural 
integers" when necessary to avoid ambiguity). The cardinal of N is 
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denoted by No. Whenever N is considered as an ordered set, it is always 
the ordering (called the usual ordering) defined in § 3, no. 2 that is under 
consideration, unless the contrary is expressly stated. 

DEFINITION 2. A sequence (resp. a sequence of elements of a set E) is a/amily 
(resp. afamily of elements tif E) whose index set is a subset of N. The sequence 
is said to be iTifinite if its index set is an irifinite subset tif N. 

Let PIn! be a relation and let I denote the set of integers n such that 
Pin I is true. I is then a subset of N. A sequence (x")"eI is then 
sometimes written (x"ht"t, and x" is called the nth term in the sequence. 
A sequence whose index set is the set of integers n ;;r: k is often written 
(x,.h~,. or (X")"~k' or even just (x,,) if k = ° or k = 1. Under the same 

go 

conditions, for example, the notations II X" and II XII are used to 
P11I1 11=11 

denote the product of a sequence of sets (XII)"ex, and there are analogous 
notations for unions, intersections, cardinal products, and cardinal sums. 

Every subfamily of a sequence is a sequence, called a subsequence of the 
given sequence. 

Two sequences (XII)lIel, (YII).el with the same index set are said to dijJer 
only in the order tif their terms if there exists a permutation f of the index set I 
such that X[(II) = Y. for all nEIl. 

A multip18 sequence is a family whose index set is a subset of a product NP 
(p an integer) ("double sequence" for p = 2, "triple sequence" for 
p = 3, and so on). 

Let I be a set equipotent to N and let f be a bijection of N onto I. 
For each family (x,),&1 indexed by the set I, the sequence n ~xl(lI) is said 
to be obtained by arranging the/amily (x,),el in the order defined by f. The 
sequences which correspond in this way to two distinct bijections of N 
onto I differ only in the order of their terms. For a finite family indexed 
by a set I of n elements we may similarly define a finite sequence with 
[1, n] or [0, n -I] as index set, by arranging the family in the order 
defined by a bijection of one or the other of these intervals onto I. 

2. DEFINITION OF MAPPINGS BY INDUCI10N 

Since the set N is well-ordered, we may apply criterion C60 (§ 2, no. 2), 
which now takes the following form (with the same notation) : 

C62. Let u be a l8tter and l8t T! u! be a term. Then there exists a set U 
and a mapping f tif N onto U such thatJor each integer n wehavef(n) =Tlf")!, 
where f") denotes the mapping of [0, n[ onto f([O, n[) which agrees with f 
on [0, n[. Moreover, the set U and the mapping f are uniquely determined by 
this condition. 
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We shall deduce from this the following criterion: 

C63. Let S I v! and a be two terms. Then there exists a set V and a mapping 
f of N onto V such that f(O) = a and fen) = S I f (n - I)! for each integer 
n ~ I. Moreover, the set V and the mapping f aTe unique~ determined by these 
conditions. 

To deduce C63 from C62 (*), let 

D(u) = g",(x e Nand (3y)«x,y) e pr1(pr1(u)))) 

for each letter u. If u is a mapping ofa subset of N into a set, then D(u) 
is just the domain of u (Chapter II, § 3, no. 1). Let M(u) be the least 
upper bound of DCu) in N (t). Let ~ be the empty mapping, with fll 
as source and target, i.e. (Chapter II, § 3, nos. I and 4), the triple 
(fll, fll, fll) and consider the relation 

(u = ~ and y = a) or (u #: ~ and y = Slu(M(u)) D 
which we denote by R I y, u! ; finally, let T I u! be the term 't1(R I y, u! ). 
Apply C62 to the term T I u ! . Since PO) is equal to ~, we have 
Tl.fO)! = a; hence f(O) = a. If on the other hand n> 0, we have 
D(Plll) = [0, n - I] and M(PIl» = n - I, whence 

T!pn>! =S!pn)(n-I)! =S!f(n-I)!. 

Examples 

(I) Suppose that a is an element of a set E and that S I u! is the 
term gCu), where g is a mapping of E into itself C**). Then it is imme­
diately seen by induction on n that for all n e N we have fen) a E; 
consequently f is a mapping of N into E such that f CO) = a and 
fen + I) = g(f(n» for all integers n. 

Likewise, let h be a mapping of N X E into E, and let IjJ be the 
mapping of N X E into itself defined by ljJ(n, x) = (n + I, h(n, x». 
By the preceding discussion there exists a unique mapping g = (0, f) 
of N into N X E such that g(O) = (0, a) and g(n + I) = ljJ(g(n» for 
all n, from which follows the existence and uniqueness of a mapping f 

(*) It is also possible to give a direct proof of C63, analogous to the proof of 
C60 (§ 2, no. 2). 

(t) The definition of the least upper bound (§ I, nos. 7,8, and 9) can be formu­
lated in such a way that it has a meaning even for a set which is not bounded above 
(it denotes a term, in the formalized language, of the form 't1ll(R!.It!), which the 
reader will have no difficulty in writing down). 

(**) If g = (G, E, E), the term g(u) is the term denoted by 'ty«u,y) e G). 
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of N into E such that f(O) = a and fen + 1) = ken, fen»~ for each 
integer n. 
(2) Let X be a set and let E be the set of mappings of X into itself. 
Let e denote the identity mapping of X into itself, and let f be any 
element of E. Take S I u I to be the term. f 0 u (*). By applying C63 
we see that there exists a unique mapping of N into E, denoted by 
n ~ pi, such that fO = e and f n+! = f 0 fn. The mapping fn is called 
the nth iterate of the mapping J. 

(3) Ifwe take S I U I to be the term ~(u), and a to be a set E, it follows 
likewise that there exists a mapping, denoted by n _ ~n(E), of N into 
a set V(E) such that ~(E) =E, ~l(E) = ~(E), and ~n+1(E) =~(~n(E» 
for every integer n. 
Remark. Let E be a set, let A be a subset of E, let g be a mapping 
of A into E, and let a be an element of A. Take S I u I to be the 
term g(u). Criterion C63 is applicable and proves the existence of a 
mapping f of N onto a set V such that f(O) = a and fen + 1) = g(f(n» 
for every integer n. It may happen that V c Aj ifnot, let p be the largest 
integer such thatf([O, p]) c:A. Thenf(p + 1) = g(p) iliA, and g(g(P» 
is a term about which nothing can be said. Hence in this case f is consid­
ered to be defined only on the interval [O,P + 1] ("restricted induction"). 

3. PROPERTIES OF INFINITE CARDINALS 

THEOREM 2. For every infinite cardinal ct we have ctll = ct. 

We shall use the following two lemmas: 

LEMMA 1. Every infinite set E contains a set equipotent to N. 

There exists a well-ordering relation on E (§ 2, no. 3, Theorem 1), which 
we shall denote by x ~ y. The hypothesis implies that the well-ordered 
set E cannot be isomorphic to a segment of N distinct from N, for such 
a segment is of the form. [0, n] (§ 2, no. 1, Proposition 1) and is therefore 
finite. It follows that N is isomorphic to a segment of E (§ 2, no. 3, 
Theorem 3), whence the result. 

LEMMA 2. The set N X N is equipotent to N. 

Since N X N contains the set {O} X N, which is equipotent to N, we 
have Card(N) ~ Card(N X N). To complete the proof it is enough to 
define an injection f of N X N into N. For this purpose we note that 

(*) Here we mean the term denoted by (T, X, X), where T is the term 
denoted by Sz(z is an ordered pair and (3y)(prlZ'Y) eprl(prl(U» and 
(.)" pr-z) e prl(prl(f))). 
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there exists an injection ~ of N into the set of mappings of N into 
I = {O, I}, obtained as follows: if r is the least integer such that n > 2", 

"-1 
and if ~ e,,2"-"-1 is the dyadic expansion of n (§ 5, no. 7), ~(n) is 

"=0 
defined to be the sequence (Um)mEN such that Um = e,.-m-1 for m < rand 
Um = 0 for m ~ r. Proposition 8 of § 5, no. 7 shows that ~ is injective. 
For each pair (n, n') eN X N we define f (n, n') as follows: if ~(n) = (um) 

and ~(n') = (vm), let fen, n') be the integer s such that ~(s) = Wm, 

where W2m = Um and wllmH = Vm for all meN. It is clear that the 
relation f (n, n') = f (n1' n~) implies ~(n) = ~(n1) and ~(n') = ~(~); 
hence (n, n') = (n1' ~), and therefore f is injective. 
~ We come now to the proof of Theorem 2. Let E be a set such that 
Card (E) = 4. Let D be a subset of E equipotent to N (Lemma I). 
Then there exists a bijection I/Jo of D onto D X D (Lemma 2). Let IDl 
be the set of pairs (X, I/J), where X is a subset of E containing D and I/J 
is a bijection of X onto X X X which extends I/Jo. Order the set IDl by 
means of the relation 

"X c X' and I/J' is an extension of I/J" 

between (X, I/J) and (X', I/J'). Then it is immediately seen that IDl is 
inductive (c£ § 2, no. 4, Example 2). Hence, by Zorn's Lemma (§ 2, no. 4, 
Theorem 2), IDl has a maximal element (F, f). We shall show that 
Card (F) = 4, which will suffice to prove the theorem. If Card (F) is not 
equal to 4, let Card (F) = li < It. Then li = lill and li is infinite, and 
li ~ 2li ~ 3li :::; lill = li (§ 3, no. 6, Proposition 14); hence 2li = li and 
3li = li. From the hypothesis li < It it follows that Card (E - F) > li, 
for otherwise we should have Card (E) ~ 2li = li, and we have assumed 
that li < Card (E). Hence there is a subset Y c E - F equipotent to F. 
Let Z = F u Y; we shall show that there exists a bijection g of Z onto 
Z X Z which extends f. We have 

Z X Z = (F X F) u (F X Y) u (Y X F) u (Y X Y), 

and the four products on the right-hand side are mutually disjoint. Since 
F and Yare equipotent, we have 

Card(F X Y) = Card(Y X F) = Card(Y X Y) = lill = li, 

whence 
Card«F X Y) u (Y X F) u (Y X V)) = 3li = li. 

There is therefore a bijection f1 of Y onto the set 

(F X Y) u (Y X F) u (Y X Y); 
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the mapping g of Z into Z X Z, which is equal to f on F and to Ji 
on Y, is therefore a bijection which extends f, contrary to the definition 
of f. Hence Card (F) = 4, and the proof is complete. 

COROLLARY 1. If 4 is an irifinite cardinal, then 4n = 4 for every integer n ~ 1. 

By induction on n. 

COROLLARY 2. The product of a finite family (Cli)iEI of non-zero cardinals, of 
which the greatest is an irifinite cardinal 4, is equal to 4. 

Let ~ denote the product and let n be the number of elements in I. 
Then 1; ~ 4n = 4 (§ 3, no. 6, Proposition 14). On the other hand, since 
4i ~ 1 for all i e I, we have ~ ~ 4 (§ 3, no. 6, Proposition 14). 

COROLLARY 3. Let 4 be an irifinite cardinal and let (4,),eI be a family of 
cardinals ~ 4 whose index set I has a cardinal ~ 4. Then ~ 4, ~ 4; and 
if 4, = 4 for at least one index LeI, then ~ 4, = 4. leI 

leI 

Let ~ be the cardinal of I; then we have ~ 4, ~ 41; ~ 4:1 = 4 (§ 3, no. 6, 
leI 

Proposition 14), and ~ 4, ~ ax for all x e I. 
leI 

COROLLARY 4. If 4 and 1; are two non-zero cardinals, one of which is irifinite, 
we have 4~ = 4 + 1; = sup (a, 1;). 

This follows directly from Corollaries 2 and 3. 

4. COUNTABLE SEI'S 

DEFINITION 3. A set is said to be countable if it is eguipotent to a subset of Ike 
set N of integers. 

PROPOSITION I. Every subset of a countable set is countable. The product of a 
finite family of countable sets is countable. The union of a sequence of countable 
sets is countable. 

The first assertion is obvious. The others follow from the Corollaries to 
Theorem 2, no. 3. 

~ We have proved (no. 3, Lemma 1) that if a is any infinite cardinal, 
then Card(N) ~ a. This has the following consequences : 

PROPOSITION 2. Every countable irifinite set E is eguipotent to N. 

For Card (E) ~ Card(N) by definition; and Card(N) ~ Card (E) since E 
is infinite. 
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PROPOSITION 3. Every infinite set has a partition (X')'EI formed of countable 
itifinite sets X" the index set I being equipotent to E. 

For Card(E) = Card(E) Card(N) (no. 3, Theorem 2, Corollary 4). 

PROPOSITION 4. Let f be a mapping of a set E onto an infinite set F such 
that, for each y e F, 1 (y) is countable. Then F is equipotent to E. 

For the sets -l (y) (y e F) form a partition of E; hence 

Card(E) ~ Card(F)Card(N) = Card(F), 

and Card(F) ~ Card(E) by Proposition 3 of § 3, no. 2. 

PROPOSITION 5. The set ~(E) of finite subsets of an infinite set E is equipotent 
to E. 

For each integer n, let ~II denote the set of subsets of E which have n 
elements. For each X e ~II there exists a bijection of [1, n] onto X. 
Hence the cardinal of ~Il is at most equal to that of the set of mappings 
of [1, n] into E, i.e., to Card(EIl) = Card (E) (no. 3, Theorem 2, Corol. 
lary 1). Therefore 

Card(~(E» = ~ Card(~Il) ~ Card(E)Card(N) = Card(E). 
IlEN 

On the other hand, since x -+ {x} is an injective mapping of E into ~(E), 
we have Card(E) ~ Card(~(E». 

DEFINITION 4. A set is said to have the power of the continuum if it is equipotent 
to the set of all subsets of N. 

A set which has the power of the continuum is not countable (§ 3, no. 6, 
Theorem 2). 

* The name "power of the continuum" arises from the fact that the set 
of real numbers is equipotent to ~(N) (General Topology, ChapterIV,§8). * 
The continuum I!1fJotMsis is the assertion that every uncountable set contains 
a subset which has the power of the continuum; the generalized continuum 
hypothesis is the assertion that, for every infinite cardinal 11, every cardinal 
>11 is ~2a. 

S. STATIONARY SEQUENCES 

DEFINITION 5. A sequence (XII)IIEN of elements of a set E is said to be stationary 
if there exists an integer m such that XII = Xm for all integers n ~ m. 
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PROPOSITION 6. Let E be an ordered set. Then the following statements are 
equivalent : 

(a) Every non-em pry subset of E has a maximal element. 
(b) Every increasing sequence (x.) of elements of E is stationary. 

We show first that (a) implies (b). Let X be the set of elements of the 
sequence (x.), and let Xm be a maximal element of X. If n ~ m, we 
have by hypothesis x. ;J1; xm, and therefore Xn = Xm by the maximality 
of xm• Conversely, suppose that there exists a non-empty subset A of E 
which has no maximal element. For each x e A, let Til; be the set of all 
yeA such that y > x. By assumption, Til; #: pi for all x e A; hence 
there exists a mapping f of A into A such that f(x) > x for all x e A 
(Chapter II, § 5, no. 4, Proposition 6). If a e A, then the sequence 
(Xn).EN defined inductively by the conditions Xo = a, xn+1 =f(x.) is 
evidently increasing and not stationary. 

COROLLARY 1. A totally ordered set E is well-ordered if and only if every 
decreasing sequence of elements of E is stationary. 

For to say that E is well-ordered is equivalent to saying that every non­
empty subset of E has a minimal element (§ 1, no. 10, Proposition 10), 
and the assertion therefore follows from Proposition 6. 

COROLLARY 2. Every increasing sequence of elements of a finite ordered set is 
stationary. 

For every finite ordered set has a maximal element (§ 4, no. 4, Proposition 3, 
Corollary 2). 

~ An ordered set E which satisfies the equivalent conditions of Propo­
sition 6 is sometimes said to be Noetherian. 

PROPOSITION 7 ("Principle of Noetherian induction"). Let E be a Noether­
ian set, and let F be a subset of E with the following pro perry : if a e E is 
such that the relation x > a implies x e F, then a e F. Under these conditions, 
F=E. 

Indeed, suppose E #: F; then E - F has a maximal element b. By 
definition we have x e F for all x > b; but this implies b e F, which is 
absurd. 
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7. INVERSE LIMITS AND DIRECT LIMITS 

1. INVERSE LIMITS 

Let I be a preordered set and let (Eat)IXEI be a family of sets indexed 
by 1. For each pair (x, ~) of elements of I such that (x ::s:; ~, let fat~ 
be a mapping of E~ into Eat. Suppose that the fat~ satisfy the following 
conditions : 

(LPI) The relations (x ::s:; ~ ::s:; y imply faty = fat~ 0 f~Y' 
(LPn) For each (x e I, fatat is the identity mapping of Eat. 

Let G = II Eat be the product of the family of sets (Eat) atEI' and let E 
atEI 

denote the subset of G consisting of all x which satisfy each of the relations 

(1) 

for each pair of indices (x, ~) such that (x ::s:;~. E is said to be the 
inverse limit of the family (Eat)atEI with respect to the family of mappings (fat~), 
and we write E = lim (Eat, flX~) or simply E = lim Eat when there is no - -risk of ambiguity. By abuse of language, the pair ((Eat), (fat~)) (usually 
denoted by (Eat, fat~) is called an inverse system of sets, relative to the index 
set 1. The restrictwn fat of the projection pr at to E is called the canonical 
mapping of E into Eat, and we have the relation 

(2) fIX =fat~ of~ 

whenever (x ::s:; ~; this is merely a transcription of the relations (1) which 
define E. 

Examples 
(1) Suppose that the order relation on I is the relation of equali9'. Then 
the only pairs «x, ~) such that (X::S:; ~ are the pairs (<<, «) where (XeI; 
and since fu.at is the identity mapping, the relation (1) is satisfied for all 

x e G; in other words, lim E~ is then the product IT Eat' 
~ atEI 

(2) Suppose that I is right directed, that Eat is the same set F for all 
«e I, and that flX~ is the identity mapping of F onto itself whenever 

(x ::s:;~. Then E = lim Eat is the diagonal 11 of the product II Eat = Fl. 
~ atEI 

Indeed, it is clear that each xel1 satisfies the relations (I). Conversely, 
let x be an element of E, and let us show that for each pair of indices 
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(at, ~) we have pr~ = pr~x. By hypothesis, there exists an index y e I such 
that at ~ Y and ~ :e;,; y; hence by (1) we have pr~ =frJ.y(prr) = prr' 
and similarly pr~x = prr' which proves our assertion. 

It should be noted that E = lim ErJ. can be empty even when all the ErJ. -are non-empty and all the mappings frJ.~ are surjective (Exercise 4; see 
no. 4). 

~ Itis clear that for each subset J of I the pair consisting of the subfamily 
(E«)rJ.eJ and the family (JrJ.~)' where Cl eJ, ~ eJ, and Cl :e;,; ~, is again an 
inverse system of sets relative to J; it is said to be obtained by restricting 
the index set to J. Let E and E' respectively denote the inverse limits 
of the families (E«)GtEI and (E«)GteJ' For each x e E the element 

(3) g(x) = (fGt(x»GteJ 

belongs to E' by virtue of (2); the mapping g : E ~ E' so defined is 
called canonical. If J' is a subset of J, and EN the inverse limit of the 
family (EGt)«es" and if g' : E' ~ EN and g' : E ~ EN are the canonical 
mappings, then by definition we have 

(4) g" = g' 0 g. 

2. INVERSE SYSTEMS OF MAPPINGS 

PROPOSITION 1. Let I be an ordered set, let (Ee" f«p) be an inverse system of 
sets relative to I, let E = lim EGt be its i1UJerse limit, and for eack Cl e I let -
be the canonical mapping. For eack Cl e I, let "« be a mapping of a set F 
into E« suck that 

(5) J«~ 0 "~ ="11 whenever at :e;,; ~. 

Then: 

(a) there exists a unique mapping " of F into E suck that 

(6) "« =J« 0 " Jor all Cl e I; 

(b) the mapping " is injective if and on[y if, Jor eack pair of distinct elements 
y, .c of F, there exists Cl e I suck that "«CY) :p ,,«(.c). 
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For the relation U~ = ff% 0 U means that for each ye F we have 

the element u(y) e II Ell is uniquely determined by u(y) = (UII(y»IIEI' 
IIEI 

It remains to be shown that u(y) e E for all ye F, in other words, that 

whenever ~ ~~. But this can be written in the form 

and therefore follows from (5). The second part of the Proposition 
follows immediately from the definitions. 

COROLLARY 1. Let (Ell' fll~) and (F II' gf%~) be two inverse systems of sets 
relative to the same index set I; let E = lim Ell, F = lim FII, and let fll (resp. -- --gil) be the canonical mapping of E into Ell (resp. of F into F II) Jor each ~ e I, 
For each ~ e I, let UII be a mapping of E into F II such tlvJt the diagram 

u, 
E~-F~ 

f .. ,~ ~g .. , 
Ef%-FII 

U .. 

is commutative (*) whenever ~ ~~. Then there exists a unique mapping 
U : E -4 F such that Jor eack ~ e I the diagram 

is commutative. 

u 
E-F 

f .. ~ ~ga 
EII-FII 

U .. 

Put VII = Uf% 0 JII' If ~ ~ ~, we have, by (2), 

glll\ 0 v~ = gllil 0 u~ ofll = UII off%l\ of~ = UII ofll = VII' 

and we may therefore apply Proposition 1 to the mappings VII; hence the 

(*) This means that u~ ofll~ = gf%lI 0 u~. 
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existence and uniqueness of a mapping u : E ~ F such that 

ga. 0 U = Va. = Ua. 0 fa. 
for each at e I. 

~ A family of mappings Ua. : Ea. ~ Fa. which satisfies the conditions of 
Corollary 1 is called an inverse system of mappings of (Ea., fa.p) into (Fa., ga.II)' 
The mapping u defined in Corollary 1 is called the inverse limit of the 
family (ua.) and is written u = lim Ua. when there is no risk of confusion. -
COROLLARY 2. Let (Ea.,f~p), (F«, ga.p), (Ga., ka.p) be three inverse systems of 
sets relative to tke same index set I; let E = lim Ea., F = lim Fa., G = lim Ga., - - -and let f« (resp. ga., ka.) be tke canonical mapping of E (resp. F, G) into Ea. 
(resp. Fa., Ga.). If (ua.) and (va.) are two inverse systems of mappings, 
Ua. : E« ~ Fa., Va. : Fa. ~ Ga., tken tke composite mappings Va. 0 Ua.: Ea. ~ Ga. 
form an inverse system of mappings, and we have 

(7) 

For if we put Wa. = Va. 0 Ua., then if at :::;; ~ we have 

wa. 0 fa.~ = Va. 0 (ua. 0 fa.~) = Va. 0 (ga.~ 0 u~) = (ha.~ 0 v~) 0 u~ = ka.~ 0 w~, 

which shows that (wa.) is an inverse system of mappings. Furthermore, if 
" = lim "a. and v = lim Va., then ka. 0 (v 0 u) = (va. 0 ga.) 0 u = (va. 0 ua.) 0 fa. - -for each at e I, and therefore, by the uniqueness of the inverse limit, 
we have v 0 u = lim Wa.' -
~ Let (Ea., fa.~) be an inverse system of sets, and for each at e I let Ma. 
be a subset of Ea.. If fa.~(MIi) c Ma: whenever at:::;;~, the Ma. are said to 
form an inverse system of Subsets of the Ea.. Let ga.1i be the mapping of Mii 
into Ma. (where at :::;; ~) whose graph is the same as that of the restriction 
of fa.1i to M Ii· Then it is clear that (Ma., ga.li) is an inverse system of 
sets and that 

(8) lim Ma. = (lim Ea.) n II Ma.. 
- - a.EI 

PROPOSITION 2. Let (Ea., fa.li) and (E~, f ~,) be two inverse systems of sets 
relative to I, and let "a. be a mapping of Ea. Jnto E~ for ,ack at e I, suck that 
tke Ua. form an inverse system of mappings. Let" = lim "a.' Then for eack 
x' = (x~) e E' = lim E~, tke r1a.(x~) form an inverse -;;;tem of subsets of tke -E:x, and -,l(x') = lim u~(x~). -
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For if ~ ~ ~ and x~ e -J~(x~), we have 

u~(f~~(x~)) = f ~~(u~(x~)) = f ~~(x6) = x~, 

from which the first assertion follows; and to say that x = (x~) e E = lim E~ -is such that u(x) = x' means, by definition, that UIX(XIX ) = x~ for each 
oc e I. 

COROLLARY. If UIX is injective (resp. bijective) for each ~ e I, then u is 
i,yective (resp. bijective). 

With the notation of Proposition 2, the images ulX(EIX) also form an inverse 
system of subsets of the E~, and we have 

(9) 

but the two sides of this relation are not necessarily equal (Exercise 4). 

PROPOSITION 3. Let I be a preordered set, let (EIX' flX~) be an inverse system 
of sets relative to I, and let E = lim EIX. Let J be a cofinal subset of I such -that J is right directed, and let E' be the inverse limit of the inverse system of sets 
obtained from (EIX' flX~) by restricting the index set to J. Then the canonical 
mapping g of E into E' (no. 1, formula (3» is bijective. 

For each ~ eJ, let f~ be the canonical mapping E' ~ EIX. Then, by (2) 
and (5), g is the unique mapping of E into E' such that fIX =f~ 0 g 
for all ~ eJ (Proposition 1). We shall show that g is injective by using 
the criterion of Proposition 1. If x, yare distinct elements of E, then 
by definition there exists ~ e I such that flXex) =1= flX(Y); since J is cofinal 
in I, there exists A eJ such that ~ ~ A; since flX).(f).(x» =1= fIX). (1). (y» , we 
have f).(x) =1= f).(y). It remains to be shown that g is surjective. Let 
x' = (x~heJ be an element of E'. For each ~ e I there exists A e J such 
that ~ ~ A, and the element flX).,(xD does not depend on the index A eJ 
such that ~ ~ A; for if fL eJ is such that oc ~ fL, there exists veJ such 
that A ~ v and !L ~ v, hence flX).,(xD =fIXA(JAV(X~) =flXv(x~), andsimil­
arl y flXlJ. (x~) = flXv (x~). Let XIX be the common value of the flXA (x~) for the 
A eJ such that ~ ~ A, and let x = (XIX)IXEI. Then x e E, because if 
~ ~ ~ and if A eJ is such that ~ ~ A, we have 

flX~(x~) = flX~(f~).,(xm = fIXA(X~) = XIX· 

Finally, we have x~ =fAA(X~) forall AeJ, hence Xl = x{ forall AeJ; in 
other words, f(X).,) = x{, so that g(x) =X'. Therefore g is surjective and 
the proof is complete. 

In particular, if I has a greatest element w, we may take J = {w}, so that 
lim EIX is canonically identified with Ell). -
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Remarks 
(1) For each ate I put E~ =fa.(E). Then the sets E~ fonn an inverse 
.rystem of subsets of the Ea. by reason of (2), and it is immediately clear that 
lim E~ = E = lim Ea.. The mapping f~~: E6 -+- E~ (where at ~ ~), - -whose graph is the same as that of the restriction of fa.~ to E~, is surjective, 
and we have 

(10) 

for all at e 1. 
(2) Let I be a (right) directed ordered set, let (Ea., fa.~) be an inverse 
system of sets relative to I, and for each at e I let "IX : F -+- EIX be a map­
ping such that the family (ulX) satisfies formula (5). Consider the inverse 
system (F IX' ilX~) indexed by I, where FIX = F for all at e I and iIX~ is the 
identity mapping of F. Then (no. 1, Example 2) F is canonically iden­
tified with lim Fa.. If we consider "a. as a mapping of Fat into Ea., then -("IX) is an inverse system of mappings, and the mapping " : F -+- E defined 
by (6) is identified with the inverse limit of this system of mappings. Hence, 
by abuse of language, we write " = lim "II' -

(3) Let I be an ordered set and let (Ea., fl%~) be an inverse system of sets 
relative to I. For each finite subset J of I, let F J be the inverse limit of 
the (finite) inverse system obtained from (EII,jI%~ by restricting the index 
set to J. If J and K are any two finite subsets of I such that J c K, 
let glI.. denote the canonical mapping (3) of F Jt into F J' Then the 
relation (4) shows that (F J' gJJt) is an inDITsIJ sysllm of sets relative to the 
directed set (with respect to the relation c) 8'(1) of finite subsets of I. 
Next, for each J e ~(I) let hJ : E -+- F J be the canonical mapping (3). 
By virtue of (4) and with the abuse oflanguage mentioned in Remark (2), 
(hJ ) is an inverse system of mappings. Put h = lim hJ : E - F = lim F J' - -and let us show that h is a bijection (called canonical). Indeed, let 

Y = (YJ) e F. By definition we have YJ = (XI% J)I%E,J, where XII J e Ea. for 
all at e J. If J c K, then by definition of the mapping gn and because 

YJ = gJIl(YIl)' we have XII J = xa..1l for all ateJ. Hence, given ateI, 
there is a unique element x: e Ea. such that xl% = XII J for all finite subsets J 
of I which contain at. If at ~ ~, there is a finite subset J of I which 
contains both at and ~; hence XII =fll~(x~) by definition. Consequently 
x = (XII) is the unique element of E sucli that hex) = y. 

3. DOUBLE INVERSE LIMIT 

Let I, L be two preordered sets, and I X L their product (§ I, no. 4). 
Consider an inverse system of sets (E~,f~~) relative to the index set I xL. 
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We have 

(11 ) f A ~ - f),11. 0 fll.v whenever ex :::;; R :::;; " and A :::;; II. :::;; 'I. f7.y - f7.~ WY to' I r 

Let E or lim E~ denote the inverse limit of this inverse system. 
t 

For each A e L put g~~ = f~~ : E~ -+ E~. It follows from (11) that 

(12) whenever ex :::;; ~ :::;; y, 

so that (E~, g~~) is an inverse system of sets relative to I. Let FA = lim E~ -f7. 
denote its inverse limit. For fixed A :::;; (.L in L it follows from (11) that 
the h~(J. = f~~: E~ -+ E~ form an inverse system of mappings, whose 
inverse limit we denote by h)·(J. = lim h~(J.: F(J. -+ FA. If A :::;; (1. :::;; 'I in L, 

0+-

we have f7. 

(13) 

(no. 2, Proposition 2, Corollary 2); hence (FA, hA(J.) is an inverse system 
of sets relative to L. Let F = lim FA be its inverse limit. We shall 

0+-

define a canonical bijection F -+ E. To do this we note that F is by defin-
ition a subset of II FI., and Fi, is a subset of II E~; hence F may be 

"eL UI 

canonically identified with a subset of II E~ = G (Chapter II, § 5, 
(f7.,A)eIXL 

no. 5, Proposition 7). For each z e G, let pr),(z) denote the element 
(pr~(Z))f7.EI of IT E~. Then z e F if and only if 

f7.EI 
(14) whenever A :::;; (.L in L 

and pri,(z) e FA for all A e L; that is to say, whenever ex :::;; ~ in I we 
have 

(15) pr~(z) = J~~(pr~(z)). 

But hi,(J.(prll.(z)) = (J~~(pr~(Z))f7.EI; it therefore follows from (14) and (15) 
that if ex :::;; ~ and A :::;; (1., we have 

prHz) =f~~(J~~(pr~(z))) =f~~(pr~(z)), 

which implies that z e E. The converse is obvious, and we have therefore 
proved 
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PROPOSITION 4. If (E~, f~~) is an inverse system of sets relative to a product 
I X L of preordered sets, then (up to a canonical bijection) WI have 

(16) lim E~ = lim (lim E~). 
:.). ):'" ~ 

COROLLARY 1. Let (E/~, f/~~) be another inverse system of sets relative to 
I X L, and for each (IX, A) e I X L let u~ be a mapping of E~ into E/~ such 
that the u~ form an inverse system of mappings. Then 

(17) lim u~ = lim (lim u~). 
~.). "):" -;-

The verification is similar to that of Proposition 4. 

COROLLARY 2. Let (E~, f~pheL be a family oj inverse systems oj sets relative 
to I. If IIf~p denotes the extension to products (Chapter II, § 5, no. 7, 

).eL 
Definition 2) oj the family oj mappings (f~pheL' then (II E~, IIf~~) is 

).eL ).eL 
an inverse system oj sets relative to I, and (uP to a canonical bijection) we have 

(18) lim II E~ = II (lim E~). 
~).eL ).eL ~ 

Consider the double inverse system (E~, g~~) relative to I X L, where 
the order relation on L is equality (no. 1, EXample 1), and apply Propo­
sition 4. 

4. CONDmONS FOR AN INVERSE LIMIT TO BE NON-EMPTY 

In this subsection we shall give the two most frequently used sufficient 
conditions for an inverse limit to be non-empty (see also Exercise 5). 

PROPOSITION 5. Let (E«, f«~) be an inverse system oj sets relative to a directed 
set I which has a countable coJinal subset, and suppose furthermore that the f«p 
are surjective. Then, if E = lim E«, the canonical mapping f7.: E -+ E« IS -surjective for each IX e I (and, a fortiori, E is not empty provided that none oj the 
E« is empty). 

Let (IXn) be a sequence of elements of I which form a cofinal subset 
of I. Since I is directed, we can define a sequence (~II) of elements 
of I inductively by the conditions ~o = IXo, ~n ~ ~i for i < n and ~n ~ IXn• 
Clearly the sequence (~/I) is increasing and forms a cofinal subset of I. 
In view of Proposition 1 of no. 1 and the relations f« = f7.p. 0 f~,. for 
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(X ~ ~m we need only prove the Proposition for the case I = N. 
Moreover, it is clear that it suffices to prove that fo is surjective. Let 
Xo e Eo. Define Xn e En (for n ~ 1) inductively to be an element of the 

-1 
set f n-l.n(Xn- 1) , which is possible because the latter set is non-empty by 
hypothesis. We then show by induction on n - m that xm = fmn(xn) for 
m ~ n, and it follows that x = (xn) belongs to E. 

The second criterion concerns inverse systems (Eex,fex~) relative to an 
index set I such that for each (X e I we are given a set ®ex of subsets 
of Eex which satisfy the following conditions : 

(i) Every intersection of sets belonging to ®ex also belongs to Sex. 
It follows in particular (by considering the intersection of the empty family) 
that Eexe®ex. 

(ii) If a set of subsets s: c ®ex is such that every finite intersection of sets belong­
ing to s: is non-empty, then n M is non-empty. 

lleW 

In view of (i), it is clear that (ii) is equivalent to the following condition: 

(ii)' If @ C ®ex is left directed (with respect to inclusion) and does not contain 
the empty set, then n M is non-empty. 

lIe@ 

THEOREM 1. Suppose that I is directed, that the sets Sex satisfy conditions (i) 
and (ii), and that the inverse system (Eex,fex~) has the following properties: 

(iii) For each pair of indices (x, ~ such that (X ~ ~, and each Xex e Eex, we 
-1 

have f ex~(xex) e 6~. 

(iv) For each pair of indices (x, ~ such that (X ~ ~, and each M~ e 6~, we 
have fex~(M~) e eex. 
Let E = lim Eex and let fex: E -+ Eex be the canonical mapping for each (X e I. 
Then: --

(a) For each (X e I we have 

(b) If Eot is non-empty for each (X e I, then E is non-empty. 

Let ~ be the set of families ~ = (Aex)exeI which satisfy the following 
conditions : 

(20) 

(21) 

Aot :F!3 and Aex e 6 ex for all (X e I; 

fex~(A~) c Aex whenever (X ~ ~. 
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If !l{ = (A,,) and !l{' = (A~) are any two elements of};:, let the relation 
!l{ ~ !l{' mean that A,,::I A~ for all IX. Clearly ~ is ordered by this rela­
tion. 

(1) Let us first show that the ordered set ~ is inductive. Let L be a 
totally ordered set and let J.. -+!l{" = (A~)"EI be a strictly increasing 
mapping of L into~. For each IX e I, put B" = n A~. Then it is 

"EL 
immediately seen that the family l1.t = (B")Ul satisfies (21); by reason 
of (i) and (ii), it also satisfies (20), hence belongs to ~; and it is clear 
that l1.t is an upper bound of the set of the !l{". 

(2) Let!l{ = (A,,) be a maximal element of~. We shall show that 
A" = f,,~(A~) whenever IX ~~. Let A~ = n f,,~(A~) for all IX e I, and 

fj~" 
let us show that !l{' = (~) belongs to~. Note first that if IX ~ ~ ~ y, 
we have f"Y(Ar)=f,,~(f~Y(Ar» cf,,~(A~) by (21); moreover, f,,~(A~) e $" 
by (iv), and f,,~(A~) =F ~ by (20). Hence conditions (i) and (ii) show 
that !l{' satisfies (20). Also, if IX ~ ~, we have 

f,,~(AD c nf,,~(f~y(Ay» = n f<r.y(A.(); 
y~~ y~~ 

and for each 8 ~ IX there exists ye I such that y ~ 8 and y ~-~, so 
that f"y(Ay) cf"a(Aa) and consequently 

n f"y(Ay) = n f"o(Aa) = A~. 
y~~ Il~" 

Hence !l{' satisfies (21) and therefore belongs to~. Since A~ c A" for 
all IX, the maximality of!l{ in ~ implies !l{' = !l{, and our assertion is 
proved. 

(3) We shall establish next that if!l{ = (~) is a maximal element 
of ~, then each of the A" consists of a single element. Let x" e A". For 

each ~ ~ IX, put B~ = A~ n 1 ,,~(x,,); if ~ is not ~ IX, put B~ = A~; 
then we shall see that l1.t = (Bp) belongs to~. If ~ is not ~ IX, the 
relation ~ ~ y implies fjly(By) cJpyCAr) c A~ = B~. If, on the other hand, 
at ~ ~ ~ y, then since 

-1 -1 -1 

we have 
f"y(X,,) =f~y(J,,~Cx,,», 

-1 -1 

f~y(J"y(x,,» cf,,~(x,,), 

and since f~y(Al) c A~, we again have fjly(By) C B~, so that the family l1.t 
satisfies (21). Since A" =f,,~(A~) whenever IX ~ ~ by part (2) of the 
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proof, it is clear that B~ ¥- ~ for all ~ e I. Finally, by virtue of (i) 
and (iii), we have B~ e ®~ for all ~ e I, and hence ~ e I:. Since B~ c A~ 
for all ~ e I, the maximality of ~ implies that B~ = A~ for all ~, and 
in particular AIX = {XIX}' 

(4) We are now in a position to prove Theorem l. Let us start with (a). 
We have 

Conversely, let 

and put 

if ~ ~ ex, and B~ = E~ otherwise. By the definition of X!l;, the B~ are 
non-empty, and we have B~ e e~ for all ~ e I by virtue of (iii) and (i); 
moreover, it is evident that hy(By) C B~ whenever ~ ~ y. Hence 
~ = (B~) e I:. Let!U = (AIX) be a maximal element of I: such that 
~ ~ ~ (the existence of!U follows from (I) and § 2, no. 4, Theorem 2, 
Corollary I). Since, by (3), A~ is of the form {Y~} for all ~ e I, it follows 
that Y = (y~) belongs to E, and flX(Y) = YIX = XIX by definition. 

Finally, (a) implies (b). We may as well assume that I is not empty 
(otherwise there is nothing to prove). The hypothesis that the EIX are 
non-empty implies that fa:~(E~) ¥- fif for all ~ ~ ex. Since the fa:~(E~), 
for fixed ex and variable ~ ~ ex, form a left directed set of subsets of Ea: 
belonging to ea:, condition (ii)' proves that 

Hence fa:(E) ¥- ~ by (a), and a fortiori E ¥- fif. Q.E.D. 
Remark. Suppose that condition (iii) in Theorem is replaced by the 
following weaker condition : 

(iii)' For each ex e I and each non-empty set Ma: e 6a: there exists X!l; e Ma: 
-1 

such that fa:~(Xa:) e ®~ for each f3 ~ ex. 

Then the conclusion (b) of Theorem I remains valid; the proofS of parts (I) 
and (2) of Theorem I remain unchanged and the proof of part (3) remains 

-1 

valid provided that we are careful to take Xa: e AIX such that fa.~(xa.) 
belongs to e~ for all f3 ~ ex. Finally, the proof of (4) shows that if 
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-1 

and if we choose an Xa. in this set such that fa.~(xa.) e ~~ whenever ~ ~ at, 
there exists ye E such that fa.(Y) = Xa., which proves our assertion. 

Examples 

(1) If the Ea. are finite sets, Theorem I can be applied by taking ~I.& 
to be the set of all subsets of Ea.. * This example is generalized in General 
Topology to the situation in which the Ea. are compact topological spaces, 
the fa.~ continuous maps, and 6a. the set of closed subsets of Ea. (General 
Topology, Chapter I, § 9, no. 6). * 
* (2) Let A be a ring with an identity dement, and for each at e I 
let T 1.& be an Artinian left A-module. Let Ea. be a homogeneous space for T 1.& 

on which T a. operates faithfully (so that Ea. is an affine space attached to T a.). 
For ~ ~ at, suppose that fa.~ : E~ ~ Ea. is an affine mapping. Take ~Gt to 
be the set consisting of the empty set and the qffine linear varieties in Erx. 
Then condition (i) is trivially satisfied, and (ii) follows from the fact that T a. 
is Artinian; for this implies that there exists a minimal dement in the set of 
finite intersections of sets Me ij, and this minimal element must be 
equal to n M. Finally, since fa.~ is affine, conditions (iii) and (iv) are 

Mel' 
trivially satisfied. * 

s. DIRECT UMITS 

Let I be a (right) directed preordered set and let (Ea.)a.EI be a family of 
sets indexed by I. For each pair (at, ~) of elements of I such that 
at ~ ~, let f~a. be a mapping of Erx into E~. Suppose that the f~a. satisfy 
the following conditions : 

(LII) The relations at ~ ~ ~ y imply /ya. = fy~ 0 f~a.. 
(LID) For each at e I,fa.a. is the identity mapping of EGt• 

Let G be the set which is the sum of the family of sets (Ea.)a.EI (Chapter 
II, § 4, no. 8); by abuse of language, we shall identify the Ea. with their 
canonical images in G, and for each x e G we shall denote by A(X) 
the unique index at e I such that x e Ea.. Let R I x, y f denote the follow­
ing relation between two dements x, y of G: "there exists an element 
ye I such that y ~ at = A(X) and y ~ ~ = A(Y) for which fy·r,{x) = fy~(y)". 
Then R is an equivalence relation on G. It is clear that R is reflexive and 
symmetric on G. To show that R is transitive, let x e Erx, y e E~, z e Ey, 

and suppose that there exist A e I such that A ~ at, A ~ ~ and 
ha.(x) = h~(y), and IL e I such that IL ~ ~, IL ~ y, and fp.~(y) = fp.y(z). 
Since I is a directed set, there exists vel such that v ~ A and v ~ ILj 
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by (LII) we then have 

fvu.(x) =fvA(fAU.(X)) =fvA(fA~(Y)) =fv~(Y) 
=fvp.(fp.~(Y)) =fvp.(fp.y(;:') =fvy(;:'), 

which establishes our assertion. The quotient set E = G /R is called the 
direct limit of the family (EU.)«EI with respect to the family of mappings (fpu.) , 
and is written E = lim (Eu.,hu.), or simply E = lim Eu. when there is no - -risk of ambiguity. By abuse oflanguage, the pair «Eu.), (f~» (which is 
usually written (Ell) hu.» is called a direct system of sets, relative to the 
directed set I. 
~ Clearly E is not empty provided at least one of the Eu. is not empty. We 
denote by fu. the restriction to Eu. of the canonical mapping f of G 
onto E = G/R;fa. is called the canonical mapping of Ea. into E. If IX ~ ~, 
we have the relation 

(22) 

sinceforeach xeEa. wehavef(ifi(ffia.(x)) ffiu.(x) by (LIv; andtherefore 
the elements x e Eu. and f~u.(x) e E~ are congruent mod R. 

Examples 
(1) Let A, B be two sets, and let (V u.)U.EI be a family of subsets of A 
whose index set I is directed, and such that the relation IX ~ ~ implies 
V Ii c: V u.. Let Ea. denote the set of all mappings of V u. into B, and for 
each pair of indices (IX, ~) such that ex. ~ ~ let fliu. be the mapping of 
Eat into Eli which sends each function u e Eu. to itS restriction to V~. It is 
obvious diat the conditions (LI1) and (LIu) are satisfied, and the set 
E = lim Eu. is called the set of germs of flllJppings of the V u. into B. • The -most frequent case is that in which (V u.) is the family of nnghhourhoods 
of a subset of a topological space A (General Topology, Chapter I, § 6, 
no. 10). * 
(2) Suppose that, for each ex. e I, Eat is the same set F and that 
whenever ex. ~ ~,f~u. is the identity mapping of F onto itself. Then there 
exists a canonical bijection of lim Eat onto F. In order to define lim Eu., - -we have to form the set G which is the sum of the family (E(X); G is 
therefore the union of a family (Gu.) of mutually disjoint sets, and for 
each ex. e I there is a canonical bijection hl1. : F __ G(X. We have next to 
consider the equivalence relation R on G corresponding to the partition 
(P,),ep', where P, is the set of all h(X(y) as ex. runs through I. Clearly 
y -- P, is a bijection whose inverse is the bijection required. We shall 
identify F with lim Eu. by means of this canonical bijection. -

LEMMA 1. Let (Eu.,f~u.) be a direct system of sets, E = lim E(X its direct limit, -and for each IX e I let fu.: Eot __ E the canonical mapping. 
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(i) Let (x(ilh.::i.::n be a finite system of elements of E. Then there exists 
ex e I and a finite~y-;tem (X~»)l~i~n of elements of Eoc such that x(i) =foc(x~») 
forl~i~n. 

(ii) Let (Y~)h~i~n be a finite system of elements of some Eoc. if 
foc(Y~» =foc(Y<,j» for each pair of indices (i, j), then there exists ~ ~ ex such 
that f~oc (y~» = f~oc (y<,j» for each pair (i, j). 

(i) By the definition of E there exists for each i an index ~i e I 
and an element Z~I e E~, su~h that x(i) = f ~I(Z~). Take ex such that 
ex ~ ~i for I ~ i ~ n, and x~> =fOC~I(Z~i). 

(ii) By the definition of E, for each pair (i, j) there exists "(il e I 
such that "tif ~ ex and fY'J'x(y~j») = fYi}a.(Y<,j». Take ~ such that ~ ~ "tij 
for all pairs (i, j), and use the relations f~a. = f~YIJ 0 fYIJoc. 

6. DIRECT SYSTEMS OF MAPPINGS 

PROPOSITION 6. Let I be a directed set, let (Ea., hoc) be a direct system of sets 
relative to I, let E = lim Ea. be the direct limit, and for each ex e I let -
be the canonical mapping. For each ex e I, let UIX be a mapping of Eoc into 
a set F such that 

(23) whenever ex ~ ~. 

Then: 

(a) There exists a unique mapping u of E into F such that 

(24) UIX = U 0 fIX for all ex e I. 

(b) u is surjective if and only if F is the union of the sets ua.(E\t). 

(c) u is injective if and only if for each ex e I the relations x e E IX, y e E IX, 

"a. (x) = Ua. (y) imply that there exists ~ ~ ex such that f~\t (x) = f~iy) . 

(a) With the notation of no. 5, let v be the mapping of G into F 
which agrees with "a. on Ea. for each ex e I (Chapter II, § 4, no. 7, 
Proposition 8). The hypothesis implies that v is compatible with the 
equivalence relation R (Chapter II, § 6, no. 5); hence there exists a 
unique mapping " of E = G /R into F such that v = U 0 f (loc. cit.). 

(b) Since E is the union of the fa.(Eil), the relation F = U uoc(Eoc) is 
clearly necessary and sufficient for u to be surjective. IXEI 
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(c) By Lemma 1 of no. 5 any two elements of E can always be written 
in the form fa.(x) and fa.(Y), where x e Ea. and ye Ea., for a suitable 
choice of at e I. It follows also from the lemma that the relation 
fa.(x) = fa.(Y) is equivalent to the existence of ~ ~ at such that 
f~a.(x) =ha.(Y). Since "a.(x) = u(fa.(x» and ua.(Y) = u(fa.0», this 
completes the proof. 

~ If the mapping u is bijective, it is sometimes said, by abuse oflanguage, 
that F is the direct limit of the family (Ea.). 

Remark. Suppose that each of the mappings f~a. is injective. Then each 
of the fa. is injective, by the definition of the relation R. In this case we 
generally identify Eel and fa.{Ea.} and consider E therefore as the union 
of the Ea.' Conversely, let (F a.)a.EI be an increasing family of subsets 
of a set F and suppose that F is the union of this family. If j~el 
denotes the canonical injection of Fa. into F ~ for at:E; ~, then it follows 
from Proposition 6 that we may identify F with the direct limit of the 
family Fa. with respect to the family of mappings (j ~a.)' and the canonical 
mapping of Fa. into lim Fa. with the canonical injection of Fa. into F, 
for each at e I. -

COROLLARY 1. Let (EClI> ha.) and (F a., g~a.) be two direct systems of sets 
relative to the same index set I; let E = lim Ea., F = lim Fa., and for each - -atE I let fa. (resp. ga.) be the canonical mapping of Eoe (resp. Foe) into E 
(resp. F). For each at E I let Ua. be a mapping of Ea. into Foe such that, 
whenever at ~ ~, the diagram 

u .. 
Eoe-Foe 

1, .. ~ ~ g,,, 
E~-F~ 

Up 

is commutative. Then there exists a unique mapping u: E ~ F such that, for 
each at e I, the diagram 

is commutative. 

U" 
Eoe-Foe 

f .. ~ ~g .. 
E-F 

u 

Put Va. = goe 0 "oe' If at ~ ~, then by (22) we have 
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We may therefore apply Proposition 6 to the mappings VIZ' whence the 
existence and uniqueness of a mapping " : E "'"'+ F such that 

for all at e I. 
~ A family of mappings 1.I1Z : EIZ "'"'+ F IZ which satisfies the conditions of Corol­
lary 1 is called a direct system of mappings of (EIZ' f~lZ) into (F IZ' g ~IZ)' The 
mapping defined in Corollary 1 is called the direct limit of the family (ulZ) 
and is written u = lim UIZ when there is no risk of ambiguity. -
COROLLARY 2. Let (EIZ, f~IZ)' (FIZ, g~IZ)' (GIZ, k~lZ) be three direct systems of 
sets relative to I. Let E = lim E«, F = lim F IX' G = lim G«, and let fIX - - -(resp. g«, krJ.) be the canonical mapping of EIZ (resp. F«, GrJ.) into E (resp. 
F, G). q (1.1«) and (v«) are two direct systems of mappings "«: E«"'"'+ FIZ, 
v«: F« -+ G«, then tke mappings v« 0 "«: ErJ."'"'+ G« form a direct system of 
mappings, and we have 

(25) 

For if we put W IZ = VrJ. 0 "rJ.' then for at ~ ~ we have 

k~rJ. 0 w« = (k~« 0 VIZ) 0 "rJ. = (v~ 0 g~at) 0 "IX = v~ 0 ("~ 0 f~2) = w~ 0 J~2' 

which shows that (wrJ.) is a direct system of mappings. Furthermore, if 
" = lim"« and v = lim VrJ., then for all at e I we have - -

(v 0") oJrJ. = v 0 (g« 0 "IX) = krJ. 0 (v« 0 ulZ), 

and by virtue of the uniqueness of the direct limit, we have v 0 " = lim W IZ' -
PROPOSITION 7. Let (ErJ.,J~IZ) and (E~,J~«) be two direct systems of sets relative 
to I, and Jor each at e I let "IZ be a mapping of ErJ. into E~ such that the "IZ 
form a direct system of mappings. Let" = lim 1.I1Z' If each "« is injective (resp. --surjective) then " is injective (resp. surjective). 

Let E = lim EIZ, E' = lim E~, and let JIZ: E«"'"'+ E, f ~: E~"'"'+ E' be the -- --canonical mappings. Suppose that each UIZ is injective. To show that u 
is injective it is enough, by Proposition 6, to verify that if x e E« and 
y e E« are such that f~(u«(x» f~("IZ(y»' then there exists ~ ~ at such 
that f~lZ(x) = f~«(y). Now the hypothesis implies (no. 6, Lemma 1) that 
there exists ~ ~ at such that 

J6at("IZ(x» =J61Z("«(Y»' i.e., "~(f~at(x» = "~(J~«(Y», 

and hence J~«(x) = f~«(y) since u~ is injective. 
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Now suppose that the Ua. are surjective. Then we have 

With the notation of Proposition 7, let Ma. be a subset of Ea. for each 
at e I; if we have f~a.(MIl) e M~ whenever at ::;; ~, the family (Mil) IlEI is 
said to be a direct system of subsets of the Ea:. Let g~a: (where at::;; ~) be the 
mapping of M into M~ whose graph is the same as that of the restric­
tion of f~a: to Ma:. Then it is clear that (Ma:, g~a:) is a direct system of 
sets; and Proposition 7, applied to the canonical injections jll : Ma: -+ Ell, 
allows us to identify M = lim M!X with a subset of E by means of the 
injection j = limja:' --
COROLLARY. Let (EIl,hll) and (E~,f~ll) be two direct systems of sets, let 
(ua:) be a direct system of mappings U!X : Ell -+ E~, and let u = lim Ull. -(i) Let (Mil) be a direct system of subsets of the EIX. Then (ulX(MIX)) is a 
direct system of subsets of the E~, and we have 

(26) lim ulX(M!X) = u (lim MIX)' - -
(ii) Let (a~)IlEI be afamily such that a~ e E~ for each at e I andf~!X(a~) =a~ 

whenever at ::;; ~. Then the sets -u\. (a~) form a direct system of subsets of the Ea:, 
and we have 

(27) 1. -1 (f) -1( f) 1m u a. aa. = u a , -
where af is the unique element of lim E~ which is the canonical tmage of a~ 
for each at e I. -

(i) It is evident that the uaCMa) form a direct system of subsets of 
the E~, and we may write ulX(Ma.) = viMa:), where Vll is the mapping 
of Ma onto ua.(Ma) whose graph is the same as that of the restriction of 
Ua. to Ma.. The formula (26) then follows from Proposition 7 because the va. 
are surjective. 

(ii) Let Na. = -ulll(a~). If at ::;; ~ and XIl e Na:, then 

u~(f~a(Xa)) =f~xCua(xa) =f~a(a~) = a6; 

hence f~a.(x':J.) e N~, and the Na. therefore form a direct system of subsets 
of the Ea. With the notation of the proof of Proposition 7, consider an 
element x e lim Na. There exists at e I and XIX e Na such that x=fa(xll), -so that u(x) = u(fa(xll)) = f~(u'7.(xll)) = f~(a~) = af • Conversely, if 
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xe-,l(a') and if x=fa.(xa.) forsome ateI andsome xa:eEa., then we have 
a' =u(fa.(xa.» f~(ua.(xa.» =f~(a~). Hence (no. 5, Lemma 1) there exists 
~ ~ at such thatf~CI(u~{xa:)) =f~CI(a~) = a~; i.e., uCl(f~CI(xCI» = afo, and 
therefore f~a.(xa:) e N~. Since x =f~(f~a.(xa.», it follows that xe hm N!lt. 

-+-

Remark. Suppose that, for each at e I, Ua.: Ea. -+ E' is a mapping such that 
the family (uCl) satisfies (23). Consider the direct system (ECI' i~CI) relative 
to I, where E~ = E' for all at e I, and i~GIt is the identity mapping of E'. 
Then (no. 5, Example 2) E' can be identified canonically with lim E~. If -UGit is considered as a mapping of EGit into E~, then (uCl) is a direct system 
of mappings, and the mapping u: E -+ E' defined by (24) is identified 
with the direct limit of this system of mappings. Hence, by abuse of 
language, we write u = lim Ua.' 

-+-

If J is a subset of I which is directed (with respect to the induced pre­
ordering), it is clear that the pair consisting of the subfamily (ECI)GltEJ and 

the family (f~CI)' where at ~ ~ and at eJ and ~ eJ, is a direct system of 
sets relative to J; it is said to be obtained by restricting the index set to J. 
Let E, E' respectively denote the direct limits of the families (EGIt)GltEI and 
(ECI)ClEJ' and for each at e I let fGlt: ECI-+E denote the canonical mapping. 
Then (fCl)GltEJ is a direct system of mappings, and consequently g = limfCl 

-+-
is a mapping of E' into E, called canonical. Moreover, if J' is a directed 
subset of J, if E" is the direct limit of the family (EGIt)GltEJ" and if 

g': E" -+E' and g": E" -+ E 

are the canonical mappings, then it follows immediately from Propo­
sition 6 that 

(28) g" = gog'. 

PRoposmoN 8. Let I be a directed set, let (EGIt, f~GIt) be a direct system of sets 
relative to I, and let E = lim EGit be its direct limit. Let J be a cofinal subset 

-+-of I and let E' be the direct limit of the direct system of sets obtainedfrom (EGIt,f~GIt) 
by restricting the index set to J. Then the canonical mapping g of E' into E 
is bijective. 

J is necessarily a directed set (§ 1, no. 10). We shall use the criteria of 
Proposition 6 to show that g is bijective. The condition for injectivity 
follows immediately from the definitions and from Lemma I of no. 5. 
To show that g is surjective, we note that for each at eJ we have 
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Now, for each (3 e I, there exists yeJ such that ~~ y, from which it 
follows that g(ET) ;:)g(fT~(E~)) =f~(E~). E is therefore the union ofthe 
sets g(Eat) as ex runs through J. 

7. DOUBLE DIRECT LIMIT. PRODUCT OF DJRECf LIMITS 

Let I, L be two directed sets, and let I X L be their product (§ 1, no. 4) 
which, with the product preordering, is again a directed set. Consider 
a direct system of sets (E~, f~~) relative to I X L. We have then 

(29) f VI. IlLv fILl. 
"[at = Tfl 0 ~at 

whenever ex ~ (3 ~ y and A ~ !L ~ v. 
Let E or lim E~ denote the direct limit of this direct system. For 

""i.t 
each A e L put g~at = f~~ : E~ -+ E~. Then from (29) we have 

(30) whenever ex ~ ~ ~ y; 

in other words, (E~, g~at) is a direct system of sets relative to I. Let 
FI. = lim E~ denote its direct limit. If A ::;;; !L are fixed elements of L, -at 

it follows from (29) that the mappings h~). = f~~ : E~ -+ E~ form a direct 
system of mappings. Let hILI. = lim h~). : F). -+ FIL denote the direct limit -at 

of this system of mappings. If A ::;;; !L ::;;; v in L, then 

(31) 

(no. 6, Proposition 6, Corollary 2), and therefore (F)., hILI.) is a direct sys­
tem of sets relative to L. Let F = lim FA be its direct limit. We shall -define a canonical bijection E -+ F. For this purpose, let g~ denote the 
canonical mapping E~ -+ F)., and hI. the canonical mapping F). -+ F, and 
put u~ = h). 0 g~. If ex ::;;; {3 and A ::;;; !L, then we have 

ul-t ofl-tl. - hI' 0 gl' ofl'l. - hI' 0 gl' ofl'l' ofl'). - hI' 0 gl' ofl'l. 
~ ~- ~ ~- ~ p ~- at = 

= hlL 0 hl'A 0 g~ = hI. 0 g~ = u~ 

from (29) and the definition of the hlL).. Hence the u~ form a direct 
system of mappings relative to I X L. Put u = lim u~: E -+ F. We -at,). 

shall show that u is bijective by applying the criteria of no. 6, Proposition 6. 
In the first place, F is the union of the sets h).(FA), and each F). is the 
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union of the sets g~(E~); hence F is the union of the sets 

hA(g~(Em = u~(E~). 

Next, let x, y be two elements of E& such that U&(x) = u~(y), i.e., 
kA(g~(x» = k1(g&(y». Then (no. 5, Lemma 1) there exists !L ~ A such 
that k,,"l(g~(x» = hl'-l(g~(y», i.e., g~(f~~(x» = g~(f~~(y»; likewise there 
exists ~~ ex such that g~ez(f~~(x}} =g~lI(f~~(Y» (no. 5, Lemma I), i.e., 
f~~(x} = f~~(Y}; and this shows (no. 6, Proposition 6) that u is injective. 
We have therefore proved : 

PROPOSITION 9. If (E~, f~&) is a direct system of sets relative to a product 
I X L of two directed sets, then (uP to a canonical bijection) we have 

(32) lim E~ = lim (lim E~). 
-;:t -:t"7 

COROLLARY. Let (E'~, f'~~) be another direct system of sets relative to I xL, 
and for each (IX, A) e I X L let u~ be a mapping of E~ into E'~, suck tkat the 
u~ form a direct system of mappings. Then we have 

(33) lim u~ = lim (lim u~). - --II,A A II 

We leave the verification to the reader. 

PROPOSITION 10. Let (Eez, fr,ez) and (E~, f 6ez) be two direct systems of sets, botk 
relative to the same directed set I. Let E = lim Eez, E' = lim E~, and let - -fez : Eez -+ E, f~ : E~ -+ E' denote the canonical mappings, for each ex e I. Then 
(Ell X E~, f~1I X f6ez) is a direct systems of sets, (fez X f~) is a direct system 
of mappings, and lim (fez X f~) is a bijection -
(34) lim (Eez X E~) -+ (lim Eez) X (lim E~). - --
The first two assertions of the Proposition are immediatdy verified. To 
show that g = lim (fez X f~) is bijective, we apply Proposition 6 of no. 6. -Clearly E X E' is the union of the sets fez(Eez) X f~(E~); hence g is 
surjective. If (x, x') and (y, }') are two dements of Eez X E~ such that 
fez(x) =fez(y) and f~(X/} =f~(Y'), then (no. 5, Lemma 1) there exist 
two elements ~, y of I such that ~ ~ ex, y ~ IX, and f~ez(x) =f~ez(Y), 
f~ez(x') = f~ez(y'); since I is directed, there exists 3 e I such that 3 ~ ~ 
and 3 ~ y; hence Jaez(x) = Ja(l.(Y) and faez(x') = 1811,(y'). This completes 
the proof. 
The bijection g is called canonical. 
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COROLLARY. Let (Fat, g~at) and (F~, g~at) be two direct systems of sets relative 
to I, and for each «e I let "at : Eat -+ F at, "~ : E~ -+ F ~ be TTUZPPings such that 
("at) and (u~) are two direct systems of mappings. Then (uat X u~) is a direct 
system of mappings, and (uP to canonical bijections) we have 

(35) lim ("at X u~) = (lim "at) X (lim "~). - --
We leave the verification to the reader. 
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§ I 

I. Let E be an ordered set in which there exists at least one pair of 
distinct comparable elements. Show that, if R! x, y I denotes the relation 
"x e E and ye E and x < y", then R satisfies the first two conditions 
of no. 1 but not the third. 

2. (a) Let E be a preordered set and let Six, YI be an equivalence 
relationon E. Let R!X, YI denotetherelation "XeE/S and YeE/S 
and for each x e X there exists y e Y such that x ~ y". Show that R 
is a preorder relation on E/S, called the quotient by S of the relation 
x ~ y. The quotient set E/S, endowed with this preorder relation, is 
called (by abuse oflanguage; cf. Chapter IV, § 2, no. 6) the iqllotient by S 
of the preordered set E. 

(b) Let cp be the canonical mapping of E onto E/S. Show that 
if g is a mapping of the preordered quotient set E/S into a preordered 
set F such that go cp is an increasing mapping, then g is an increasing 
mapping. The mapping cp is increasing if and only if S satisfies the 
following condition : 

(C) The relations x ~ y and x == x' (mod S) in E imply that there 
exists y' e E such that y == y' (mod S) and x' ~ y'. 

If this condition is satisfied, the equivalence relation S is said to be 
weakly compatible (in x and y) with the preorder relation x ~ y. Every 
equivalence relation S which is compatible (in x) with the preorder rela­
tion x ~ y (Chapter II, § 6, no. 3) is a fortiori weakly compatible (in x 
and y) with this relation. 

(c) Let El and E. be two preordered sets. Show that if SI is the 
equivalence relation prl.t = pr1.t' on El X E2, then SI is weakly compa-
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tible in z and t with the product preorder relation z ~ t on El X E2 
(but is not usually compatible with this relation in z or t separately); 
moreover, if <PI is the canonical mapping of El X El onto (El X E.) 151> 
and if prl = fl 0 <PI is the canonical decomposition of prl with respect 
to the equivalence relation 51' then fl is an isomorphism of (El X E2) lSI 
onto E l • 

(d) With the hypothesis of (a), suppose that E is an ordered set and that 
the following condition is satisfied : 

(C/) The relations x :;:; y ~ z and x == Z (mod 5) in E imply x == y 
(mod 5). 

Show that R I X, Y! is then an order relation between X and Y on E/S. 

(e) Give an example of a totally ordered set E with four elements 
and an equivalence relation 5 on E such that neither of the conditions 
(C) and (C/) is satisfied, but such that E/S is an ordered set. 

(f) Let E be an ordered set, let f be an increasing mapping of E into 
an ordered set F, and let Slx,yi be the equivalence relation f(x) =f(y) 
on E. Then the condition (C') is satisfied. Moreover, the condition (C) 
is satisfied if and only if the relations x :;:; y and f (x) = f (x') imply that 
there exists y' e E such that x' :;:; y' and f (y) = f(y'). Let f = g 0 <P be 
the canonical decomposition of J. Then g is an isomorphism of E/S 
onto f (E) if and only if this condition is satisfied and, in addition, the 
relation f(x) ~ fey) implies that there exist x',y' such that f(x) =f(x'), 
fey) =f(y'), and x' :;:; y'. 

3. Let I be an ordered set and let (E')'EI be a family of non-empty 
ordered sets indexed by I. 

(a) Let F be the sum (Chapter II, § 4, no. 8) of the family (E')'EI; 
for each x e F, let A(X) be the index L such that x e E,; and let G be 
the graph consisting of all pairs (x,y) eF X F suchthateither ).(x) < A(Y) 
or else A(X) = A(Y) and x :;:; y in E).(",). Show that G is the graph of an 
ordering on F. The set F endowed with this ordering is called the 
ordinal sum of the faInily (E')'EI (relative to the ordering on I) and is 
denoted by ~ E,. Show that the equivalence relation corresponding to 

,EI 
the partition (E')'EI of F satisfies conditions (C) and (C') of Exercise 2, 
and that the quotient ordered set (Exercise 2) is canonically isomorphic 
to I. 

(b) If the set I is the ordinal sum ofa family (J).hEL of ordered sets, 
where L is an ordered set, show that the ordered set ~ E, is canonically 

lEI 

isomorphic to the ordinal sum ~ F)., where F). = ~ E, ("associativity" 
AEL 'EI), 
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of the ordinal sum). If I is the linearly ordered set {I, 2}, we write 
El + E. for the ordinal sum of El and E.. Show that E. + El and 
El + Ell are not necessarily isomorphic. 

(c) An ordinal sum ~ E, is right directed if and only if I is right 
,EI 

directed and Ell) is right directed for each maximal element CI) of I. 

(d) An ordinal sum ~ E, is totally ordered if and only if I and 
lEI 

each EI is totally ordered. 

(e) An ordinal sum ~ E, is a lattice if and only if the following 
lEI 

conditions are satisfied: 

(I) The set I is a lattice, and for each pair (A, IL) of non-comparable 
indices in I, E.UP (A,!1> (resp. Einf(A,!1» has a least (resp. greatest) element. 

(II) For each at e I and each pair (x, y) of elements of EQI such that 
the set {x, y} is bounded above (resp. bounded below) in EQI' the set 
{x,y} has a least upper bound (resp. greatest lower bound) in EQI' 

(III) For each at e I such that EQI contains a set of two elements 
which has no upper bound (resp. lower bound) in EQI' the set of indices 
A e I such that A > at (resp. A < at) has a least element (resp. greatest 
element) ~, and E~ has a least element (resp. greatest element). 

* 4. Let E be an ordered set, and let (E')'EI be the partition of E 
formed by the connected components of E (Chapter II, § 6, Exercise 10) 
with respect to the reflexive and symmetric relation "either x = y or x 
and yare not comparable". 

(a) Show that if L :F x and x e E, and ye Ex, then x, yare compar­
able; and that if, for example, x ::::; y, y' e Ex, and y' :F y, then also 
x ::::; y' (use the fact that there exists no partition of Ex into two sets A and B 
such that every element of A is comparable with every element of B). 

(b) Deduce from (a) that the equivalence relation S corresponding 
to the partition (EI) of E is compatible (in x and in y) with the order 
relation x ::::; y on E, and that the quotient ordered set E/S (Exercise 2) 
is totally ordered. 

(c) What are the connected components of an ordered set E = F X G 
which is the product of two totally ordered sets? * 

5. Let E be an ordered set. A subset X of E is said to be free if 
no two distinct elements of X are comparable. Let 3 be the set of free 
subsets of E. Show that, on 3, the relation "given any x e X, there 
exists ye Y such that x ::::; y" is an order relation between X and Y, 
written X::::; Y. The mapping x ~ {x} is an isomorphism of E onto a 
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subset of the ordered set 3. If Xc: Y, where X e 3 and Y. 3, show 
that X ~ Y. The ordered set 3 is totally ordered if and only if E 
is totally ordered, and then 3 is canonically isomorphic to E. 

6. Let E and F be two ordered sets, and let ~(E, F) be the subset 
of the product ordered set FE consisting of the increasing mappings of E 
into F. 

(a) Show that if E, F, G are there ordered sets, then the ordered set 
.Jtg(E, F X G) is isomorphic to the product ordered set .AJ(E, F) x~(E, G). 

(b) Show that if E, F, G are three ordered sets, then the ordered set 
.Jtg(E X F, G) is isomorphic to the ordered set ~(E, ~(F, G». 

(c) If E #: jZJ, then .Jtg(E, F) is a lattice if and only if F is a lattice. 

(d) Suppose that E and F are both non-empty. Then ~(E, F) is 
totally ordered if and only if one of the following conditions is satisfied : 

(ot) F consists of a single element; 

(fj) E consists ofa single element and F is totally ordered; 

(y) E and F are both totally ordered and F has two elements. 

7. In order that every mapping of an ordered set E into an ordered 
set F with at least two elements, which is both an increasing and a decreas­
ing mapping, should be constant on E, it is necessary and sufficient 
that E should be connected with respect to the reflexive and symmetric 
relation "x and yare comparable" (Chapter II, § 6, Exercise 10). This 
condition is satisfied in particular if E is either left or right directed. 

8. Let E and F be two ordered sets, let J be an increasing mapping 
of E into F, and g an increasing mapping of F into E. Let A (resp. 
B) be the set of all x e E (resp. ye F) such that g(J (x» = x (resp. 
I(g(y» = y). Show that the two ordered sets A and B are canonically 
isomorphic. 

* 9. If E is a lattice, prove that 

for every finite "double" family (xij) •• 

10. Let E and F be two lattices. Then a mapping I of E into F is 
increasing if and only if 

I(inf(x,y» ~ inf(J(x),J(y» 

for all x e E and all y e E. 
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* Give an example of an increasing mapping f of the product ordered 
set N X N into the ordered set N such that the relation 

f(inf(x, y» = inf(f(x, y» 
is false for at least one pair (x, y) eN X N .• 

II. A lattice E is said to be complete if every subset of E has a least 
upper bound and a greatest lower bound in E; this means, in particular, 
that E has a greatest and a least element. 

(a) Show that if an ordered set E is such that every subset of E has a 
least upper bound in E, then E is a complete lattice. 

(b) A product of ordered sets is a complete lattice if and only if each 
of the factors is a complete lattice. 

(c) An ordinal sum (Exercise 3) ~ E, is a complete lattice if and 
leI 

only if the following conditions are satisfied : 
(I) I is a complete lattice. 
(II) If J is a subset of I which has no greatest element, and if 
a = sup J, then Ea has a least element. 
(III) For each ~ e I every subset of E, which has an upper bound 
in E, has a least upper bound in E,. 
(IV) For each ,e I such that E, has no greatest element, the set 
of all x > ~ has a least element IX, and E(X has a least element. 

(d) The ordered set .)b(E, F) of increasing mappings of an ordered 
set E into an ordered set F (Exercise 6) is a complete lattice if and 
only if F is a complete lattice. 

12. Let cJ) be a set of mappings of a set A into itself. Let ~ be the 
subset of ~(A) consisting of all X c A such that f eX) c X for each 
fe cJ). Show that ~ is a complete lattice with respect to the relation of 
inclusion. 

13. Let E be an ordered set. A mapping f of E into itself is said 
to be a closure if it satisfies the following conditions: (I) f is increasing; 
(2) for each xe E, fex) ~ Xj (3) for each xe E, f(f(x» =f(x). Let F 
be the set of elements of E which are invariant under J. 

(a) Show that for each xeE the set Fill ofelementsyeF such that 
x ~ y is not empty and has a least element, namely f(x). Conversely, 
if G is a subset of E such that, for each x e E, the set of all ye G such 
that x ~ y has a least element g(x), then g is a closure and G is the 
set of elements of E which are invariant under g. 

(b) Suppose that E is a complete lattice. Show that the greatest 
lower bound in E of any non-empty subset of F belongs to F. 
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(c) Show that if E is a lattice, then J(sup (x, y)) =J(sup (J(x), y)) 
for each pair of elements x, y of E. 

14. Let A and B be two sets, and let R be any subset of A X B. 
For each subset X of A (resp. each subset Y of B) let p(X) Crespo 
a(Y)) denote the set of all y e B (resp. x e A) such that (x, y) e R for 
all x e A (resp. (x, y) e R for all ye B). Show that p and a are decreas­
ing mappings, and that the mappings X ~a(p(X)) and Y ~ p(a(Y)) 
are closures (Exercise 13) in lll(A) and lll(B) respectively (ordered by 
inclusion). 

15. (a) Let E be an ordered set, and for each subset X of E let 
£l(X) (resp. a(X)) denote the set of upper (resp. lower) bounds of X 
in E. Showthat,in $(E), theset E of subsets X such that X=a(p(X)) 
is a complete lattice, and that the mapping i : x ~ a({ x}) is an isomorphism 
(called canonical) of E onto an ordered subset E' of E such that, if a 
family (XI) of elements of E has a least upper bound (resp. greatest 
lower bound) in E, the image of this least upper bound (resp. greatest 
lower bound) is the least upper bound (resp. greatest lower bound) in E 
of the family of images of the XI' E is called the completion of the ordered 
set E. 

(b) Show that, for every subset X of E, a(£l(X)) is the least upper 
bound in E of the subset i(X) of E. If J is any increasing mapping 
of E into a complete lattice F, there exists a unique increasing mapping J 
of E into F such that J = J 0 i and J (sup Z) = sup (J (Z)) for every 
subset Z of B-

(c) If E is totally ordered, show that E is totally ordered. 

~ 16. A lattice E is said to be distributive if it satisfies the following two 
conditions : 

(D') sup (x, inf (y, z)) = inf (sup (x,y), sup (x, z)), 
(D") inf (x, sup (y, z)) = sup (inf (x,y) inf (x, Z)) 

for all x, y, Z in E. A totally ordered set is a distributive lattice. 
(a) Show that each of the conditions (D), (D') separately implies the 

condition 

(D) sup (inf (x,y), inf (y, z), inf (z, x)) 
= inf(sup (x,y), sup (y, z), sup (z, x)) 

for all x,y, Z in E. 

(b) Show that the condition (D) implies the condition 

(M) If x ~ z, then sup (z, inf(x,y)) = inf(x, sup (y, z)). 
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Deduce that (D) implies each of (D') and (D"), and hence that the 
three axioms (D), (D'), and (D") are equivalent (to show, for example, 
that CD) implies CD'), take the least upper bound of x and each side 
of (D), and use (M». 

(c) Show that each of the two conditions 

(T') inf(z, sup (x,y» ~ sup (x, inf(y, z», 
(Tn) inf (sup (x,y), sup (z, inf (x,y») = sup (inf (x,y) , inf(y, z), inf(z, x» 

for all x, y, Z in E is necessary and sufficient for E to be distributive. 
(To show that (T') implies (D"), consider the element 

inf (z, sup (x, inf (y, z»).) 

!f 17. A lattice E which has a least element IX is said to be relativelY 
complemented if, for each pair of elements x, y of E such that x~y, there 
exists an element x' such that sup (x, x') = y and inf (x, x') = IX. Such 
an element x' is called a relative complement of x with respect to y • 

... (a) Show that the set E of vector subspaces of a vector space of 
dimension ~ 2, ordered by inclusion, is a relatively complemented 
lattice, but that if x, yare two elements of E such that x ~ y, there 
exist in general several distinct relative complements of x with respect 
toy . ... 

(b) If E is distributive and relatively complemented, show that if 
x ~ y in E, there exists a unique relative complement of x with respect 
to y. E is said to be a Boolean lattice if it is distributive and relatively 
complemented and if, moreover, it has a greatest element 6). For each 
x e E, let x· be the complement of x with respect to (0). Then the 
mapping x -+ x· is an isomorphism of E onto the ordered set obtained 
by endowing E with the opposite ordering, and we have (x·)· = x. 
If A is any set, then the set ~(A) of all subsets of A, ordered by inclusion, 
is a Boolean lattice. 

(c) If E is a complete Boolean lattice (Exercise 11), show that for 
each family (X).) of elements of E and each ye E we have 

inf(y, sup (X).» = sup (inf(y, X).». 
A A 

(Reduce to the case y = IX, and use the fact that if inf (ot, X).) = IX for 
every index A, then z· ~ X). for every A). 
!f ... 18. Let A be a set with at least three elements, let !f be the set of all 
partitions of A, ordered by the relation "tiJ is finer than tiJ'" between tiJ 

and tiJ' (no. I, Example 4). Show that !f is a complete lattice (Exercise 
11), is not distributive (Exercise 17), but is relatively complemented. 
(To prove the last assertion, well-order the sets belonging to a partition.) • 
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19. An ordered set E is said to be without gaps if it contains two distinct 
comparable dements and if, for each pair of dements :c, y such that 
x < y, the open interval lx, y[ is not empty. Show that an ordinal sum 
~ E, (Exercise 3) is without gaps if and only if the following conditions 
,EI 
are satisfied: 

(I) Either I contains two distinct comparable elements, or dse there 
exists LeI such that E, contains two distinct comparable elements. 

(II) Each E, which contains at least two distinct comparable dements 
is without gaps. 

(III) If Ot, ~ are two elements of I such that ex < ~, and if the interval 
]Ot, ~[ in I is empty, then either Eex has no maximal element or else Ep 
has no minimal element. 

In particular, every ordinal sum ~ E, of sets without gaps is itsdf 
,eI 

without gaps provided that no E, has a maximal dement (or provided 
that no E, has a minimal dement). If I is without gaps, and if each E, 
is either without gaps or contains no two distinct comparable dements, 
then ~ E, is without gaps. 

,El 

~ 20. An ordered set E is said to be scattered if no ordered subset of E 
is without gaps (Exercise 19). Every subset of a scattered set is scattered. 
* Every well-ordered set of more than one dement is scattered. * 

(a) Suppose that E is scattered. Then, if :c, y are any two dements 
of E such that x < y, there exist two dements x', y' of E such that 
x ~ x' < y' ~ y and such that the interval lx', y'[ is empty. * Give an 
example of a totally ordered set which satisfies this condition and is not 
scattered (consider Cantor's triadic set). * 

(b) An ordinal sum E = ~ E, (where neither I nor any E, is 
,EI 

empty) is scattered if and only if I and each E, is scattered. (Note that E 
contains a subset isomorphic to I and that every subset F of E is the 
ordinal sum of those sets F n E, which are non-empty; finally use Exer­
cise 19.) 

21. Let E be a non-empty totally ordered set, and let SIx, y I be the 
rdation "the closed interval with endpoints x,y is scattered" (Exercise 20). 
Show that S is an equivalence rdation which is weakly compatible 
(Exercise 2) in x and y with the order relation on E, that the equivalence 
classes with respect to S are scattered sets, and that the quotient ordered 
set E/S (Exercise 2) is either without gaps or dse consists of a single 
dement. Deduce that E is isomorphic to an ordinal sum of scattered 
sets whose index set is either without gaps or else consists of a single dement. 
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!f 22. (a) Let E be an ordered set. A subset U of E is said to be 
open if, for each x e U, U contains the interval [x, ~[. An open set U 
is said to be regular if there exists no open set V;:) U, distinct from U, 
such that U is cofinal in V. Show that every open set U is cofinal in 
exactly one regular open set 0 (*). The mapping U -+ 0 is increasing. 
If U, V are two open sets such that U n V =~, then also 0 n V = ~. 

(b) Show that the set R(E) of regular open subsets of E, ordered by 
inclusion, is a complete Boolean lattice (Exercise 17). For R(E) to 
consist of two elements it is necessary and sufficient that E should be 
non-empty and right directed. 

(c) If F is a cofinal subset of E, show that the mapping U ~ Un F 
is an isomorphism of R(E) onto R(F). 

(d) If ElJ Ell are two ordered sets, then every open set in EI X Ea 
is of the form UI X Us, where U i is open in Ei (i=l, 2). The set 
R(EI X Ell) is isomorphic to R(EI) X R(EI ). 

~ 23. Let E be an ordered set and let RoCE) = R(E) - {jII} (Exer­
cise 22). For each x e E, let rex) denote the unique regular open set 
in which the interval [x, -+[ (which is an open set) is cofinal. The 
mapping r so defined is called the canonical mapping of E into Ro(E). 
Endow Ro(E) with the order relation opposite to the relation of inclusion. 

(a) Show that the mapping r is increasing and that r(E) is cofinal 
in Ro(E). 

(b) An ordered set E is said to be antidirected if the canonical mapping 
r: E ~ Ro(E) is injective. For this to be so it is necessary and sufficient 
that the following two conditions should be satisfied : 
(I) If x and yare two elements of E such that x < y, there exists 
z e E such that x < z and such that the intervals [y, -+[ and [z, -+[ 
do not intersect. 
(II) If x and yare two non-comparable elements of E, then either 
there exists x' ~ x such that the intervals [x', -+[ and [y, ~[ do not 
intersect, or else there exists y' ~ y such that the intervals [x, ~[ and 
[y', -+[ do not intersect. 

(c) Show that, for every ordered set E, Rc,(E) is antidirected and that 
the canonical mapping of Ro(E) into Rc,(Rc,(E» is bijective (use Exer­
cise 22 (a». 
* 24. (a) An ordered set E is said to be branched (on the right) if 
for each x e E there exist y, z in E such that x ~ y, x ~ Z and the 

(*) This terminology may be justified by noting that there exists a unique 
topology on E for which the open sets (resp. regular open sets) are those defined in 
Exercise 22 (a) (cf. General Topology, Chapter I, § 1, Exercise 2 and § 8, Exercise 20). 
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Intervals [y, ~[ and [z, ~[ do not intersect. An antidirected set with 
no maximal elements (Exercise 23) is branched. 

(b) Let E be the set of intervals in R of the form 

[k.2-n, (k + 1)2-n] (0 ~ k < 211), 

ordered by the relation ::l. Show that E is antidirected and has no 
maximal elements. 

(c) Give an example of a branched set in which there exists no anti­
directed cofinal subset. (Take the product of the set E defined in (b) 
with a well-ordered set which contains no countable cofinal subset, and 
use Exercise 22.) 

(d) Give an example of an ordered set E which is not antidirected, 
but which has an antidirected cofinal subset (note that an ordinal sum 
I, F~ contains a cofinal subset isomorphic to E). * 
~eE 

§ 2 

1. Show that, in the set of orderings on a set E, the minimal elements 
(with respect to the order relation err is coarser than r'" between r 
and r') are the total orderings on E, and that if r is any ordering 
on E, the graph of r is the intersection of the graphs of the total order­
ings on E which are coarser than r (apply Theorem 2 of no. 4). Deduce 
that every ordered set is isomorphic to a subset of a product of totally 
ordered sets. 

2. Let E be an ordered set and let m- be the set of subsets of E which 
are well-ordered by the induced ordering. Show that the relation "X 
is a segment of Y" on m- is an order relation between X and Y and 
that m- is inductive with respect to this order relation. Deduce that there 
exist well-ordered subsets of E which have no strict upper bound in E. 

3. Let E be an ordered set. Show that there exist two subsets A, B 
of E such that A u B = E and A n B = 91, and such that A is well­
ordered and B has no least element (for example, take B to be the union 
of those subsets of E which have no least element). * Give an example 
in which there are several partitions of E into two subsets having these 
properties. * 
!f 4. An ordered set F is said to be partially well-ordered if every totally 
ordered subset of F is well-ordered. Show that in every ordered set E 
there exists a partially well-ordered subset which is cofinal in E. (Consider 
the set ~ of partially well-ordered subsets of E, and the order relation 
"X c Y and no element of Y - X is bounded above by any element 
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of X" between elements X and Y of B'. Show that B' is inductive with 
respect to this order relation.) 

5. Let E be an ordered set and let :;} be the set of free subsets of E, 
ordered by the relation defined in § 1, Exercise 5. Show that, if E is 
inductive, then :;} has a greatest element. 
!r 6. Let E be an ordered set and let f be a mapping of E into E 
such that f (x) ;ll: x for all x e E. 

(a) Let ~ be the set of subsets M of E with the following properties : 
(1) the relation x eM implies f(x) eM; (2) if a non-empty subset of M 
has a least upper bound in E, then this least upper bound belongs to M. 
For each a e E, show that the intersection CG of the sets of ~ which 
contain a also belongs to ~; that CG is well-ordered; and that if CG 

has an upper bound b in E, then be CG and feb) = b. CG is said to 
be the chain of a (with respect to the function f). (Consider the set rol 
whose elements are the empty set and the subsets X of E which contain a 
andhavealeastupp$rbound m in E such that either m$ X or f(m) > m, 
any apply Lemma 3 of no. 3 to the set rol.) 

(b) Deduce from (a) that if E is inductive, then there exists beE 
such thatf(b) = b. 

!r 7. Let E be an ordered set and let F be the set of all closures (§ I, 
Exercise 13) in E. Order F by putting u ~ v whenever u(x) ~ vex) for 
all x e E. Then F has a least element e, the identity mapping of E 
onto itself. For each u e F let I(u) denote the set of elements of E 
which are invariant under u. 

(a) Show that u ~ v in F if and only if I(v) c: leu). 
(b) Show that if every pair of elements of E has a greatest lower 

bound in E, then every pair of elements of F has a greatest lower bound 
in F. If E is a complete lattice, then so is F (§ 1, Exercise 11). 

(c) Show that if E is inductive (with respect to the relation ~), 
then every pair u, v of elements of F have a least upper bound in F. 
(Show that if f(x) = v(u(x» and if w(x) denotes the greatest element 
of the chain of x, relative to f (Exercise 6), then w is a closure in E 
and is the least upper bound of u and v.) 

!r 8. An ordered set E is said to be ramified (on the right) if, for each pair 
of elements x, y of E such that x < y, there exists z > x such that y 
and z are not comparable. E is said to be completely ramified (on the 
right) if it is ramified and has no maximal elements. Every antidirected 
set (§ 1, Exercise 22) is ramified. 

(a) Let E be an ordered set and let a be an element of E. Let mG 
denote the set of ramified subsets of E which have a as least element. 
Show that mG, ordered by inclusion, has a maximal element. 

222 



EXERCISES 

(b) If E is branched (§ 1, Exercise 24), show that every maximal 
element of ffla is completely ramified. 

(c) Give an example of a branched set which is not ramified. The 
branched set defined in §I, Exercise 24 (c) is completely ramified. 

(d) Let E be a set in which each interval ]+-, xl is totally ordered. 
Show that E has an antidirected cofinal subset (§l, Exercise 22) (use (b». 

9. An ordinal sum ~ E, (§ I, Exercise 3) is well-ordered if and only 
,EI 

if I and each E, is well-ordered. 

10. Let I be an ordered set and let (E')'EI be a family of ordered sets, 
all equal to the same ordered set E. Show that the ordinal sum ~ E, 

'EI 
(§ 1, Exercise 3) is isomorphic to the lexicographical product of the sequence 
(FAhEIIX, ~I' where the set {ot, ~} of two distinct elements is well-ordered 
by the relation whose graph is {Cot, ot), (ot, ~), (~, ~)}, andwhere FIX = I 
and F ~ = E. This product is called the lexicographic product of E by I 
and is written E. 1. 

~ * 11. Let I be a well-ordered set and let (E')'EI be a family of 
ordered sets, each of which contains at least two distinct comparable 
elements. Then the lexicographic product of the E, is well-ordered if 
and only if each of the E, is well-ordered and I is finite (if I is infinite, 
construct a strictly decreasing infinite sequence in the lexicographic product 
of the E,). * 
~ 12. Let I be a totally ordered set and let (E')'EI be a family of 
ordered sets indexed by 1. Let R! x, y! denote the following relation 
on E = II E,: "the set of indices ~ e I such that prIx i= pr,y is well-

,EI 
ordered, and if x is the least element of this subset of I, we have 
prxx < prxY'" Show that Rjx,y! is an order relation between x andy 
on E. If the E, are totally ordered, show that the connected components 
of E with respect to the relation "x and yare comparable" (Chapter II, 
§ 6, Exercise 10) are totally ordered sets. Suppose that each E, has at 
least two elements. Then E is totally ordered if and only if I is well­
ordered and each E, is totally ordered (use Exercise 3); and E is then 
the lexicographic product of the E I • 

13. (a) Let Is(r, r') be the relation "r is an ordering (on E), and r' 
is an ordering (on E'), and there exists an isomorphism of E, ordered 
by r, onto E', ordered by r"'. Show that Is(r, r') is an equivalence 
relation on every set whose elements are orderings. The term 't~(Is(r, ~» 
is an ordering called the order-type of r and is denoted by Ord cr), or 
Ord(E) by abuse of notation. Two ordered sets are isomorphic if and 
only if their order-types are equal. 
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(b) Let R I A, IL I be the relation: "A is an order-type, and IL is an 
order-type, and there exists an isomorphism of the set ordered by A onto a 
subset of the set ordered by IJ.". Show that R I A, IL I is a preorder relation 
between A and IJ.. I t will be denoted by A -< IL. 

(c) Let I be an ordered set and let (AI)IEI be a family of order-types 
indexed by I. The order-type of the ordinal sum (§ I, Exercise 3) of the 
family of sets ordered by the AI (L e I) is called the ordinal sum of the order-
types AI (L e I) and is denoted by ~ I.,. If (E')'EI is a family of ordered 

lEI 
sets, the order-type of ~ EI is ~ Ord(E,). If I is the ordinal sum 

,EI ,EI 
of a family (Jx)xel.' show that 

(d) Let I be a well-ordered set and (AI)IEI a family of order-types 
indexed by I. The order-type of the lexicographic product of the family 
of sets ordered by the AI (L e I) is called the ordinal product of the family 
(AI)IEI and is denoted by P AI' If (EI),eI is a family of ordered sets, 

leI 
the order-type of the lexicographic product of the family (EI)IEI is 

p Ord(EI). If I is the ordinal sum of a family of well-ordered sets 
lEI 
(JX)XEK' indexed by a well-ordered set K, show that 

P ( Pl.,) = PAl' 
XEK leJ. leI 

(e) We denote by A + IJ. (resp. ILl.) the ordinal sum (resp. ordinal 
product) of the family (~I)IEJ' where J = {el, fj} is a set with two distinct 
elements, ordered by the relation whose graph is {(el, el), (el, fj), (fj, (j)), 
and where ~(lC = A, ~~ = IJ.. Show that if I is a well-ordered set of 
order-type A, and if (IJ.I),EI is a family of order-types such that ILl = IL 
for each LeI, then ~ ILl = ILl.. We have (A + IL) + v = A + (IL + v), 

leI 
(AIJ.)v = A(ILv), and A(IL + v) = AIL + AV (but in general 1.+ IL =F IJ. + A, 
AIJ. =F 1JoA, (A + lJ.)v =F AV + IJ.v). 

(f) Let (AI)leI and (IL')IEI be two families of order-types indexed by 
the same ordered set I. Show that, if AI -< IL, for each LeI, then 
~ AI -< ~ ILl and (if I is well-ordered) P A, -< P ILl' If J is a sub-
lEI leI ,eI lEI 
set of I, show that ~ AI -< ~ AI and (if I is well-ordered and the AI 

,eS leI 
are non-empty) P 1.1 -< PAl' 

les leI 
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(g) Let A· denote the order-type of the set ordered by the opposite 
of the ordering A. Then we have 

(A*)· = A and 

where I· denotes the set I endowed with the opposite of the ordering 
given on I. 
~ 14. An ordinal is the order-type of a well-ordered set (Exercise 13). 

(a) Show that, if (AI)IEI is a family of ordinals indexed by a well­
ordered set I, then the ordinal sum ~ AI is an ordinal; * and that if, 

lEI 

moreover, I is finite, the ordinal product P AI is an ordinal (Exercise 11). * 
lEI 

The order-type of the empty set is denoted by 0, and that of a set with 
one element by 1 (by abuse oflanguage, cf. § 3). Show that 

and oc.l= l.oc=oc 

for every ordinal oc. 

(b) Show that the relation "A is an ordinal and !L is an ordinal and 
A -<!L" is a well-ordering relation, denoted by A ~!L. (Note that, if A 
and !L are ordinals, the relation A -< !L is equivalent to "A is equal to 
the order-type of a segment of !L" (no. 5, Theorem 3, Corollary 3): given 
a family (AI) lEI of ordinals, consider a well-ordering on I and take the 
ordinal sum of the family of sets ordered by the AI; finally, use Proposi­
tion 2 of no. 1.) 

(c) Let oc be an ordinal. Show that the relation "~ is an ordinal 
and ~ ~ oc" is collectivizing in ~, and that the set 0" of ordinals < oc 
is a well-ordered set such that Ord (0") = oc. We shall often identify 0" 
with IX. 

(d) Show that for every family of ordinals (~I)IEI there exists a unique 
ordinal IX such that the relation "A is an ordinal and ~I ~ A for all 
LeI" is equivalent to oc ~ A. By abuse of language, oc is called the 
least upper bound of the family of ordinals (~I)IEI' and we write oc = sup ;1 

lEI 
(it is the greatest element of the union of {oc} and the set of the ~I)' The 
least upper bound of the set of ordinals ~ < oc is either oc or an ordinal ~ 
such that oc = (j + 1; in the latter case, (j is said to be the predecessor 
of oc. 

15. (a) Let oc and ~ be two ordinals. Show that the inequality 
oc < ~ is equivalent to oc + I ~ ~, and that it implies the inequalities 
; + oc < ~ +~, oc + ~ ~ (j +~, oc~ ~ ~~ for all ordinals;, and 
~oc < ;(j if ~ > O. 
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(b) Deduce from (a) that there exists no set to which every 
ordinal belongs (use Exercise 14 (d». 

(c) Let at, ~, IL be three ordinals. Show that each of the relations 
IL + at < IL +~, at + IL < ~ + IL implies at < ~; and that each of the 
relations lLat < IL~' atlL < ~IL implies at < ~ provided that IL > O. 

(d) Show that the relation IL + at = IL + ~ implies at = ~, and that 
lLat = IL~ implies at = ~ provided that IL > O. 

(e) Two ordinals at and ~ are such that at ~ ~ if and only if there 
exists an ordinal ; such that ~ = at +;. This ordinal ; is then unique 
and is such that ; ~ ~; it is written (- at) + ~. 

(f) Let at, ~, ~ be three ordinals such that ~ < at~. Show that there 
exist two ordinals ;, 'rI such that ~ = at'rl + ; and; < at, 'rI < ~ (d. 
no. 5, Theorem 3, Corollary 3). Moreover,; and 'rI are uniquely 
determined by these conditions. 
~ 16. An ordinal P > 0 is said to be indecomposable if there exists no 
pair of ordinals ;, 'rI such that ; < p, 'rI < p, and ; + 'rI = p. 

(a) An ordinal p is indecomposable if and only if; + p = p for 
every ordinal; such that ; < p. 

(b) If P > I is an indecomposable ordinal and if at is any ordinal 
> 0, then atp is indecomposable, and conversely (use Exercise 15 (f». 

(c) If p is indecomposable and if 0 < at < p, then p = at~, where ~ 
is an indecomposable ordinal (use Exercise 15 (f». 

(d) Let at be an ordinal > O. Show that there exists a greatest 
indecomposable ordinal among the indecomposable ordinals . ~ at (consider 
the decompositions at = p + ;, where p is indecomposable). 

(e) If E is any set of indecomposable ordinals, deduce from (d) that 
the least upper bound of E (Exercise 14 (d» is an indecomposable ordinal. 

~ 17. Given an ordinal ato, a term f (;) is said to be an. ordinal func­
tional symbol (with respect to ;) defined for ; ~ oto if the relation "; is an 
ordinal and ; ~ «.0" implies the relation '1 (;) is an ordinal"; f (;) is 
said to be normal if the relation «.0 ~ ; < 'rI implies f (;) < f ('rI) and if, 
for each family (;I)lel of ordinals ~ ato, we have supf(;I) =f(sup ;1) 
(cf. Exercise 14 (d». leI leI 

(a) Show that, for each ordinal at > 0, at +; and at; are normal 
functional symbols defined for ; ~ 0 (use Exercise 15 (f». 

(b) Let we;) be an ordinal functional symbol defined for ; ~ ato 
such that we;) ~ ; and such that «.0 ~ ; < 'rI implies we;) < w('rI)' 
Also let g(;, 'rI) be a term such that the relation "; and 'rI are ordinals 
~ oto" implies the relation "g(;, 'rI) is an ordinal such that g(;, 'rI) > ;". 
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Define a term f(~, 1) with the following properties: (1) for each ordinal 
~ ~ !XcI, f (~, 1) = w(~); (2) for each ordinal ~ ~ !XcI and each ordinal 
1) > I, f(~, 1) = sup g(f(~, ~),~) (use criterion COO of no. 2). Show 

O<~<"l 
that if it (~, 1) is another term with these two properties, then 
f(~, 1) =it(~, 1) for all ~ ~ !XcI and all 1) ~ 1. Prove that, for each 
ordinal ~ ~ oco, f (~, 1) is a normal functional symbol with respect to 1) 

(defined for all 1) ~ 1). Show that f(~, 1) ~ ~ for all 1) ~ 1 and 
~ ~ oco, and that f(~, 1) ~ l) for all ~ ~ sup (!XcI, 1) and 1) ~ 1. 
Furthermore, for each pair (oc, ~) of ordinals such that IX > 0, oc ~ !XcI, 
and ~ ~ w( oc) there exists a unique ordinal ~ such that 

f (oc, ~) ~ ~ < f (oc, ~ + 1), 

and we have ~ ~ ~. 

(c) If we take oco = 0, w(~) = ~ + 1, g(~, 1) = ~ + 1, then 
f(~, l) = ~ + 1). If we take !XcI = 1, w(~) = ~, g(~, YJ) = ~ + YJ, then 
f(~, YJ) = ~l). 

(d) Show that if the relations oco ~ ~ ~ ~', !XcI ~ YJ ~ YJ' imply 
g(~, YJ) ~ g(~', YJ'), then the relations !XcI ~ ~ ~ ~', 1 ~ 1) ~ l)' imply 
f(~, l)) ~ f(~', l)'). If the relations !XcI ~ ~ ~ ~', !XcI ~ 1) < YJ' imply 
g(~, YJ) < 6(~, l)') and g(~, 1) ~ g(~', 1), then the relations !XcI ~ ~ < ~' 
and YJ ~ ° imply f(~, YJ + 1) < f(~', YJ + 1). 

(e) Suppose that w(~) = ~ and that the relations !XcI ~ ~ ~ ~', 
!XcI ~ l) < YJ' imply g(~, YJ) < g(~, YJ') and g(~, 1) ~ g(~', YJ). Suppose, 
moreover, that for each ~ ~ oco, g(~, l) is a normal functional symbol 
with respect to YJ (defined for l) ~ oco), and that, whenever ~ ~ OCo, 
YJ ~ OCo, and ~ ~ OCo, we have the associativity relation 

g(g(~, l), ~) = g(~, gel), ~». 

Show that, if ~ ~ OCo, l) ~ 1, and ~ ~ 1, then 

g(f(~, YJ), f(~, ~» =f(~, l) + ~) 
("distributivity" of g with respect to f) and 

f(f(~, YJ), ~) =f(~, YJ~) 

("associativity" of f). 
~ 18. In the definition procedure defined in Exercise 17 (b), take 
!XcI = 1 + 1 (denoted by 2 by abuse of language), 

w(~) = ~, 
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Denote f (~, '1) by ~11 and define rx.0 to be 1 for all ordinals rx.. Also 
define O~ to be 0 and 1 ~ to be 1 for all ordinals ~ ;;?; 1. 

(a) Show that if rx. > 1 and ~ < W, we have rx.~ < rx.~' and that, for 
each ordinal rx. > 1, rx.~ is a normal functional symbol with respect to ~. 
Moreover, if 0 < rx. ~ a.', we have rx.~ :s:;; rx.'~. 

(b) Show that rx.~.rx.1I = rx.~+'l and (rx.~)11 = a.~1I. 

(c) Show that, if a. ;;?; 2 and ~ ;;?; 1, rx.~ ;;?; a.~. 

(d) For each pair of ordinals ~ ;;?; 1 and a. ;;?; 2, there exist three 
ordinals ~, y, 8 such that ~ = a.~ + 8, where 0 < y < a. and 8 < a.~, 
and these three ordinals are uniquely determined by these conditions. 

* 19. Let rx. and ~ be two ordinals, and let E, F be two well-ordered 
sets such that Ord(E) = a. and Ord(F) =~. In the set EF of mappings 
of F into E, consider the subset G of mappings g such that g(y) is 
equal to the least element of E for all but a finite number of elements 
ye F. If F* is the ordered set obtained by endowing F with the 
opposite order, show that G is a connected component with respect to 
the relation "x and y are comparable" (Chapter II, § 6, Exercise 10) 
in the product EF* endowed with the ordering defined in Exercise 12, 
and show that G is well-ordered. Furthermore, prove that Ord(G) = a.~ 
(use the uniqueness property of Exercise 17 (b». 

~ 20. A set X is said to be transitive if the relation x e X implies x c X. 

(a) If Y is a transitive set, then so is Y u {V}. If (Y')'EI is a family 
of transitive sets, then U Y, and n Y I are transitive. 

,EI 'EI 

(b) A set X is a pseudo-ordinal if every transitive set Y such that 
Y c X and Y #: X is an element of X. A set S is said to be decent if the 
relation xeS implies x. x. Show that every pseudo-ordinal is transitive 
and decent (consider the union of the decent transitive subsets of X, 
and use (a». If X is a pseudo-ordinal, then so is X u {X}. 

(c) Let X be a transitive set, and suppose that each x e X is a 
pseudo-ordinal. Then X is a pseudo-ordinal (note that, for each x e X, 
x U {x} is a pseudo-ordinal contained in X). 

(d) Show that fJ is a pseudo-ordinal and that every element of a 
pseudo-ordinal X is a pseudo-ordinal. (Consider the union of the 
transitive subsets of X whose elements are pseudo-ordinals.) 

(e) If (X')'EI is a family of pseudo-ordinals, then n X, is the least 
'EI 

element of this family (with respect to the relation ofinclusion). (Use (b).) 
Deduce that, if E is a pseudo-ordinal, the relation x c y between elements 
x, y of E is a well-ordering relation. 
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(f) Show that for each ordinal ex there exists a unique pseudo-ordinal 
Ea; such that Ord(Ea;) = ex (use (e) and criterion C60). In particular, 
the pseudo-ordinals whose order-types are 0, I, 2 = I + I, and 3 = 2 + I 
are respectively 

~, {~}, {~, {~}}, {~, {~}, {~, {~}}}. 

§ 3 

~ 1. Let E and F be two sets, let f be an injection of E into F, and 
let g be a mapping of F into E. Show that there exist two subsets 
A, B of E such that B = E - A, and two subsets A', B' of F such that 
B' = F-A', forwhich A' =f(A) and B=g(B'). (Let R=E-g(F) 
and put h = g 0 j; take A to be the intersection of the subsets M of E 
such that M:> R u h(M).) 

2. If E and F are distinct sets, show that EF =F FE. Deduce that 
if E and F are the cardinals 2 and 4(=2 + 2), then at least one of the 
sets EF, FE is not a cardinal. 

~ 3. Let (a')'EI and (li')'EI be two families of cardinals such that 
'Ii, ~ 2 for each LeI. 

(a) Show that. if a, ::::; 6, for each LeI, then 

(b) Show that, if Il, < 'ti, for each LeI, then 

(Note that a product IIE, cannot be the union of a family (A,),el 
,el 

such that Card (A,) < Card (EI) for all LeI, by observing that 
Card (pr,(A,» < Card (E,).) 

4. Let E be a set and let f be a mapping of ~(E) - {~} into E 
such that for each non-empty subset X of E we have f (X) e X ("choice 
function") . 

(a) Let li be a cardinal and let A be the set of all x e E such that 
-1 

Card (f (x» ~ 6. Show that, if a = Card (A), then 2" ~ I + a6 (note 
that if YeA and Y =F ~, then fey) e A). 

(b) Let B be the set of all x e E such that, for each non-empty subset 
-1 

X of f (x), Card (X) ~ 6. Show that Card (B) ~ 'Ii. 
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5. Let (A')'EI be a family of order-types (§2, Exercise 13), indexed 
by an ordered set I. Show that 

and that, if I is well-ordered, 

Card ( Pl.,) = P Card (A,). 
,EI ,EI 

6. Show that for every set E there exists X c E such that X .. E 
(use Theorem 2 of no. 6). 

§ 4 

1. (a) Let E be a set and let ~(E) be the set of finite subsets of E. 
Show that ~(E) is the smallest subset ~ of ~(E) satisfying the following 
conditions: (i) fb e ~; (ii) the relations X e (5J and x e E imply 

Xu {x}e~. 

(b) Deduce from (a) that the union of two finite subsets A, B of E 
is finite (consider the set of subsets X of E such that X u A is finite; 
cf. § 5, no. 1, Proposition 1, Corollary 1). 

(c) Deduce from (a) and (b) that for every finite set E the set ~(E) 
is finite (consider the set of subsets X of E such that ~(X) is finite; 
cf. § 5, no. 1, Proposition 1, Corollary 4). 

2. Show that a set E is finite if and only if every non-empty subset 
of ~(E) has a maximal element (with respect to inclusion). (To show that 
the condition is sufficient, apply it to the set ~(E) of finite subsets of E.) 

3. Show that if a well-ordered set E is such that the ordered set 
obtained by endowing E with the opposite ordering is also well-ordered, 
then E is finite (consider the greatest element x of E such that the 
segment Sill is finite). 

4. Let E be a finite set with n ~ 2 elements, and let C be a subset 
of E X E such that, for each pair x, y of distinct elements of E, exactly 
one of the two elements (x, y), (y, x) of E X E belongs to C. Show 
that there exists a mapping f of the interval [I, n] onto E such that 
(f(i), f(i + 1» e C for 1 ~ i ~ n - 1 (use induction on n). 

!f 5. Let E be an ordered set for which there exists an integer k such 
that k is the greatest number of elements in a free subset X of E (§ I, 
Exercise 5). Show that E can be partitioned into k totally ordered 
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subsets (with respect to the induced ordering). The proof is in two steps: 

(a) If E is finite and has n elements, use induction on n; let a be a 
minimal element of E and let E' = E - {a}. If there exists a partition 
of E' into k totally ordered sets q (1 ~ i ~ k), let Ui be the set of 
all x E q which are ~ a. Show that there is at least one index i for 
which a free subset of E' - U i has at most k - 1 elements. The proof 
of this is by reductio ad absurdum. For each i, let Si be a free subset of 
E' - U i which has k elements, let S be the union of the sets Si, and 
let S J be the least element of S n C J for each index j ~ k; show that 
the k + 1 elements a, S1> ••• , sle form a free subset of E. 

(b) If E is arbitrary, the proof is by induction on k, as follows. A 
subset C of E is said to be strong~ ,elated in E if for each finite subset F 
of E there exists a partition of F into at most k totally ordered sets 
such that C n F is contained in one of them. Show that there exists a 
maximal strongly related subset Co, and that every free subset of E - Co 
has at most k - 1 elements. (Argue by contradiction, and suppose that 
there is a free subset {au ... , ale} of k elements in E - Co. Consider 
each set Co U {ail (1 ~ i ~ k), and express the fact that it is not strongly 
related, thus introducing a finite subset Fi of E for each index i. Then 
consider the union F of the sets Fi and use the fact that Co is strongly 
related to obtain a contradiction.) 

~ 6. (a) Let A be a set and let (X;)l.:!ii;i.:!ii;m, (YJ)m+1.:!ii;J.:!ii;m+1I be two finite 
families of subsets of A. Let h be the least integer such that, for each 
integer r ~ m - h and each subset {i1> ••• , ir+l&} of r + h elements of 
[1, m], there exists a subset {j1> ••. , jr} of, elements of [m + 1, m + n] 
for which the union of the sets Xi. (I ~ ex ~ , + h) meets each of the sets 
YJs (1 ~ ~ ~ r) (which implies that m ~ n + k). Show that there 
exists a finite subset B of A with at most n + h elements such that 
every Xi (1 ~ i ~ m) and every YJ (m + 1 ~ j ~ m + n) meets B. 
(Consider the order relation on the interval [1, m + n] whose graph is the 
union of the diagonal and the set of pairs (i, j) such that 1 ~ i ~ m and 
m + I ~ j ~ m + n and Xi n YJ =1= fb, and apply Exercise 5 to this 
ordered set.) 

(b) Let E and F be two finite sets and let x -+ A(x) be a mapping 
of E into ~(F). Then there exists an injection f of E into F such that 
f (x) E A(x) for each x E E if and only if for each subset H of E we have 

Card ( U A(x») ~ Card (H) (the method of proof is analogous to that 
alEH 

of (a), with k = 0). 

(c) With the hypotheses of (b), let G be a subset of F. Then there 
exists an injection f of E into F such that f (x) E A(x) for each x E E 
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and such that feE) :J G if and only iff satisfies the condition of (b) 
and for each subset L of G the cardinal of the set of all x e E such that 
A(x) n L :F P is ~ Card (L). (Let (aj)l~j~P be the sequence of distinct 
elements of G, arranged in some order; let (bJ)p+I~J~p+m be the sequence 
of distinct elements of F, arranged in some order; and let 

be the sequence of distinct elements of E, arranged in some order. Consi­
der the order relation on the set [1, p + m + n] whose graph is the union 
of the diagonal and the set of pairs (i, j) such that either 

I ~ i ~ P and p + I ~ j ~ p + m and aj = b J' 

or I ~ i ~ P and p + m + 1 ~ j ~ p + m + nand aj e ACCj) , 

or p + 1 ~ i ~ P + m and p + m + 1 ~ j ~ p + m + nand bj e A(cJ); 

then apply Exercise 5.) 

7. An element a of a lattice E is said to be irreducible if the relation 
sup (x, y) = a implies either x = a or y = a. 

(a) Show that in a finite lattice E every element a can be written as 
sup (el' ... , ek), where the ej (1 ~ i ~ k) are irreducible. 

(b) Let E be a finite lattice and let J be the set of its irreducible 
elements. For each x e E let Sex) be the set of all yeJ which are ~ x. 
Show that the mapping x -+ Sex) is an isomorphism of E onto a subset 
of ~(J), ordered by inclusion, and that S(inf (x, y)) = Sex) n S(y). 

~ 8. (a) Let E be a distributive lattice (§ 1, ElCercise 16). If a is 
irreducible in E (Exercise 7), show that the relation a ~ sup (x, y) 
implies a ~ x or a ~ y. 

(b) Let E be a finite distributive lattice and let J be the set of its 
irreducible elements, ordered by the induced ordering. Show that the 
isomorphism x -+ Sex) of E onto a subset of $(J) defined in ElCercise 7 (b) 
is such that S(sup (x,y» = Sex) u S(y). Deduce that if J* is the ordered 
set obtained by endowing J with the opposite ordering, then E is iso­
morphic to the set J,(J*, I) of increasing mappings of J* into I = {O, I} 
(§ 1, Exercise 6). 

(c) With the hypotheses of Cb), let P be the set of elements of J other 
then the least element of E. For each x e E, let Yu ... , Yk be the dis­
tinct minimal elements of the interval lx, -+[ in E; for each index i 
let qj be an element of P such that qj. Sex) and qj e S(Yj). Show that 
no two of the elements qu ... , qk are comparable. 
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(d) Conversely, let q1> •.• , qk be k elements of P, no two of which 
are comparable. Let u = sup (ql' ... , qk) and let 

(1 ~ i ~ k). 

Show that Vi < u for 1 ~ i ~ k. Let x = inf (VI' ... , Vk) and let 

Show that x < Yi for each index i, and deduce that the interval lx, -+[ 
has at least k distinct minimal elements. 

~ 9. A subset A of a lattice E is said to be a sub lattice if for each pair 
(x, y) of elements of A, SUPE(X, y) and infE(x, y) belong to A. 

(a) Let (qh~i~n be a finite family of totally ordered sets and let 

be their product. Let A be a sublattice of E. Show that A cannot 
have more than n irreducible elements (Exercise 7) no two of which are 
comparable. (The proof is by reductio ad absurdum. Suppose that there 
exist r > n irreducible elements a1> •.• , ar in A, no two of which are 
comparable. Consider the elements u = sup (at> ..• , ar ) and 

VJ = sup (aj) 
l~j~r. j#i 

of A. By projecting onto the factors, show that u = Vi for some index i, 
and hence that two of the ai are comparable.) 

(b) Conversely, let F be a finite distributive lattice, let P be the 
set of irreducible elements of F other than the least element of F, and 
suppose that n is the greatest number of elements in a free subset of P 
(§ 1, Exercise 5). Show that F is isomorphic to a sublattice of a product 
of n totally ordered sets. (Apply Exercise 5, which shows that P is the 
union of n totally ordered sets Pi with no element in common. Let q 
be the totally ordered set obtained by adjoining a least element to Pi 
(1 ~ i ~ n). With each x E F associate the family (Xi)l~i~n' where Xi is 
the least upper bound in q of the set of elements of Pi which are ~x.) 

~ 10. (a) An ordered set E is isomorphic to a subset of a product 
of n totally ordered sets if and only if the graph of the ordering on E 
is the intersection of the graphs of n total orderings on E. (To show 
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that the condition is necessary, show that if 

is a product of n totally ordered sets, then the graph of the product 
ordering on F is the intersection of n graphs of lexicographic orderings 
on F.) 

(b) An ordered set E is isomorphic to a subset of a product of two 
totally ordered sets if and only if the ordering r on E is such that there 
exists another ordering r l on E with the property that any two distinct 
elements of E are comparable with respect to exactly one of the orderings 
r, r/. 

(c) Let A be a finite set of n elements. Let E be the subset of 
~(A) consisting of all subsets {x} and A - {x} as x runs through A. 
Show that n is the smallest integer m such that E, ordered by inclusion, 
is isomorphic to a subset of a product of m totally ordered sets (use (a». 

!f 11. Let A be a set and let Ol be a subset of the set 3'(A) of finite 
subsets of A. m is said to be mobile if it satisfies the following condition: 

(MO) If X, Yare two distinct elements of Ol and if z e X n Y, then 
there exists Z c X n Y belonging to Ol such that z $ Z. 
A subset P of A is then said to be pure if it contains no set belonging 
to Ol. 

(a) Show that every pure subset of A is contained in a maximal pure 
subset of A. 

(b) Let M be a maximal pure subset of A. Show that for each 
x e eM there exists a unique finite subset EM(x) of M such that 
EJK(x) u {x} e Ol. Moreover, if y e Ell (x) , the set (M u {x}) - {y} is a 
maximal pure subset of A. 

(c) Let M, N be two maximal pure subsets of A, such that N n eM 
is finite. Show that Card (M) = Card (N). (Proof by induction on the 
cardinal of N n eM, using (b).) 

(d) Let M, N be two maximal pure subsets of A, and put 
N' = N n CM, M' = M n CN. Show that 

MI c n El,(x). 
:re~' 

* Deduce that Card (M) = Card (N) (by virtue of (c), we are 
reduced to the case where N' and ?\'f' are infinite; show then that 
Card (M') :::; Card (N'». * 
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§ 5 

1. Prove the formula 

II-
Pi q

+
1

( n-k )(k-l) _ (n) 
k=Hl p - q - 1 q - P t 

where p ~ nand q < p (generalize the argument of no. 8, Corollary to 
Proposition 14). 

2. If n ~ 1, prove the relation 

(~) - (~ ) + (; ) - ... + (_1)11(:) =? 

(Define a one-to-one correspondence between the set of subsets of [1, n] 
which have an even number of elements, and the set of subsets of [1, n] 
which have an odd number of elements. Distinguish between the cases n 
even and n odd.) 

3. Prove the relations 

(Consider the subsets of p elements of [1, n] which contain a given 
subset of k elements (0 ~ k ~ p), and use Exercise 2 for the second 
formula.) 

4. Prove Proposition 15 of no. 8 by defining a bijection of the set of 
mappings u of [1, k] into [0, n] such that 

" ~ u(x) ~ n 
1=1 

onto the set of strictly increasing mappings of [1, k] into [1, n + k]. 

5. • (a) Let E be a distributive lattice and f be a mapping of E 
into a commutative semigroup M (written additively) such that 

f(x) + fey) =f(sup (x, y)) + f(inf(x, y)) 
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for all x, y in E. Show that for each finite subset I of E we have 

jesup (1» + 211~fard(I) (HCI, Ca~(H)=211 j(inf (H») 

= }: ( }: j (inf (H» ) 
211+1~Card(l) BCI, Card(H)=211+1 

(By induction on Card (I).) * 
(b) In particular, let A be a set, let (Bj),el be a finite family of 

finite subsets of A, and let B be the union of the Bi • For each subset H 
of I, put BB = n Bi . Show that 

,eH 

Card (B) + 1R~~rd(J) Card~)=tn Card (BB») 

= }: ( }: Card (BB) ) . 
III+l~Card (I) Card (H)= 1/1+1 

6. Prove the formula 

(n t h) = 1 + (~) (n + ~-l) _(;) (n + ~-2) + ... 

+ (-l)h ( : ) ( ~ ). 

(If F denotes the set of mappings u of [1, h] into [0, n] such that 

h 

~ u(x) ~ n, 
",=1 

consider for each subset H of [I,h] the set of all ueF such that u(x) ~ 1 
for each x e H, and use Exercise 5.) 

7. (a) Let S/I,p denote the number of mappings of [I, n] onto [I, pl. 
Prove that 

Sn,p = pn - (1) (p -1)" + (~ ) (p - 2)n - '" + (- l)P-l (p ~ 1)' 

( Note that pn = Sn,p + ( f) Sn,p-I + ( ~ ) SII,P-2 + ... + (p ~ 1) and 

use Exercise 3.) 

(b) Prove that Sn,p = p(Sn-l,p + Sn-l,p-I) (method of no. 8, Propo­
sition 13). 
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EXERCISES 

and S - n(3n + 1) ( + 2) , "H," - 24 n . 

(consider the elements T of [1, n] whose inverse image consists of more than 
one element). 

(d) If P ",p is the number of partitions into p parts of a set of n ele­
ments, show that S",p = p!P n,p' 

8. Let Pn be the number of permutations u of a set E with n ele­
ments such that u(x) ::f.: x for all x E! E. Show that 

p" = n! - (~ ) (n - I)! + (;) (n - 2)! - ... + (-I)" 

* and hence that p" ,..., n!le as n ~ + 00 * (same method as in 
Exercise 7 (a». 

9. (a) Let E be a set with qn elements. Show that the number of 
partitions of E into n subsets each of q elements is equal to 

(qn) !/(nl(ql)n). 

(b) Suppose that E = [1, qn]. Show that the number of partitions 
of E into n subsets of q elements, no one of which is an interval, is 
equal to 

(qn)! __ (qn-q + I)! + (qn-2q + 2)1 _ ... + (-I)" 
nl(q!)" l!(n - 1) !(q!)"-1 2 !(n - 2) !(q!)"-2 

(same method as in Exercises 7 and 8). 
10. Let q".k be the number of strictly increasing mappings u of [1, k] 

into [1, n] such that for each even (resp. odd) x, u(x) is even (resp. odd). 
Show that 9", k = 9"-1, k-l + 9,,-2, k and deduce that 

!I" 11. Let E be a set with n elements and let S be a set of signs such 
that S is the disjoint union of E and a set consisting of a single element f. 
Suppose that f has weight 2 and that each element of E has weight 0 
(Chapter I, Appendix, Exercise 3). 
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(a) Let M be the set of significant words in Lo(S) which contain 
each element of E exactly once. Show that if Un is the number of 
elements in M, then unH = (4n - 2) Un> and deduce that 

Un = 2.6 ... (4n-6) (n ~ 2). 

(This is the number of products of n different terms with respect to a 
non-associative law of composition.) 

(b) Let Xi be the ith of the elements of E which appears in a word 
of M. Show that the number Vn of words of M, for which the sequence 
(Xi) is given, is equal to (2:=~)/n and satisfies the relation 

~ 12. (a) Let p and q be two integers ~ 1, let n = 2p + q, let E 
be a set with n elements, and let N = (p) = (p.!q). Let (Xj)l:!l;i:!l;N 
(resp. (Yih:!l;i:!l;N) be the sequence of all subsets of E which have p (resp. 
p + q) elements arranged in a certain order. Show that there exists a 
bijection cp of [1, N] onto itself such that Xq,(i) c Yi for all i. (The method 
is analogous to that of Exercise 6 of § 4: observe that for each r:::; N the 
number of sets Y) which contain at least one of Xl' ... , Xr is ~ r.) 

(b) Let h, k be two integers ~ 1, let n be an integer such that 
2h + k < n, let E be a set with n elements and let (Xih:!l;i:!l;r be a 
sequence of distinct subsets of E, each having h elements. Show that 
there exists a sequence (Y)l:!l;}:!l;rH of distinct subsets of E, each having 
k + k elements, such that each Y) contains at least one Xi and each Xi 
is contained in at least one Y} (by induction on n, using (a». 

~ 13. Let E be a set with 2m elements, let q be an integer < m, and 
let ~ be the set of all subsets ® of ~(E) with the following property: 
if X and Yare two distinct elements of ® such that Xc Y, then 
Y - X has at most 2q elements. 

(a) Let IDl = (Aj)l:!l;i:!l;p be an element of ~ such that p = Card (IDl) 
is as large as possible. Show that m - q :::; Card (Ai) :::; m + q for 
1 :::; i :::; p. (Argue by contradiction. Suppose, for example, that there 
exist indices i such that Card (Ai) < m - q, and consider those of the 
Ai for which Card (Ai) has the least possible value m - q - s (where 
s ~ 1). Let AI> ... , Ar, say, be these sets. Let @ be the set of subsets 
of E each of which is the union of some Ai (1 :::; i :::; r) and a subset of 
2q + 1 elements contained in E - Ai' Show that @ contains at least 
r + 1 elements (cf. Exercise 12), and that if BI> ... , BrH are r + 1 
distinct elements of @, the set whose elements are B} (1 :::; j :::; r + 1) 
and Ai (r + 1 :::; i :::; p) belongs to fJ, contrary to hypothesis.) 
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(b) Deduce from (a) that the number of elements p of each (! E fii 
satisfies the inequality 

1'1 ( 2 ) 
P ~ k~O m - ; + k • 

(c) Establish results analogous to those of (a) and (b) when 2m or 2q 
is replaced by an uneven number. 

!:" 14. Let E beafinitesetwith n elements, let (ajh~j~1I bethesequence 
of elements of E arranged in some order, and let (Aih ~i ~m be a sequence 
of subsets of E. 

(a) For each index j, let kj be the number of indices i such that 
aj e~, and let Si = Card (~). Show that 

II m 

}: kj = }: Si' 
j=l i=l 

(b) Suppose that, for each subset {x, y} of two elements ofE, there 
exists exactly one index i such that x and yare contained in Ai' Show 
that, if aj"~, then Si ~ kj . 

(c) With the hypotheses of (b), show that m ~ n. (Let kll be the 
least of the numbers kj • Show that we may suppose that, whenever 
i ~ kJl) j ~ kJl) and i =F j, we have aj" Ai and all" AJ for all j ~ kll.) 

(d) With the hypotheses of (b), show that m = n if and only if one of 
the following two alternatives is true: (i) Al = {au at, ... , all-l}, 
Ai = {ai-I> all} for i = 2, ... , n; (ii) n = k(k - 1) + 1, each Ai has k 
elements, and each element of E belongs to exactly k sets Ai' 
~ 15. Let E be a finite set, let S! and ~ be two disjoint non-empty 
subsets of ~(E), and let A, h, k, 1 be four integers ~ I with the following 
properties: (i) for each A e S! and each B e~, Card (A n B) ~ A; (ii) for 
each A e S!, Card (A) ~ h; (iii) for each B e~, Card (B) ~ k; (iv) for 
each x e E, the number of elements of S! u f&: which contain x is exactly 1. 
Show that Card (E) ~ hklA. (Let (ajh~j~1I be the sequence of distinct 
elements of E arranged in some order, and for each i let Tj be the 
number of elements of S! to which aj belongs. Show that, if Card (~) = S 

and Card (f&:) = t, then we have 

II II 

}: (l - Ti) ~ tk, and }: Tj(l- Ti) ~ ).st.) 
i=l 1=1 

For Card (E) to be equal to hk IA it is necessary and sufficient that 
for each A e S! and each B e ~ we have Card (A) = k, Card (B) = k, 

239 



III ORDERED SETS, CARDINALS, INTEGERS 

Card (A n B) = A, and that there exists an r ~ l such that for each 
x e E the number of elements of 2 to which x belongs is equal to r. 

16. Let E be a finite set with n elements, let ~ be a non-empty 
subset of ~(E), and let A, k, I be three integers ~ 1 with the following 
properties: (i) if A, B are distinct elements of~, then Card (A n B) = A; 
(ll) for each A e~, Card (A) ~ k; (iii) for each x e E the number of 
elements of m to which x belongs is equal to l. Show that 

n(A-I) ~ k(k-I), 

and that if n(A - 1) = k(k - 1) then A = k and Card (~) = n. (Given 
a e E, let 2 be the set of all A-{a} where A e ~ and a e A, and let (i 
be the set of all A em such that a $ A. Apply the results of Exercise 15 
to 2 and (i.) 

~ 17. Let i, n, k be three integers such that i ~ I, n ~ i, k ~ i. Show 
that there exists an integer mien, k) with the following properties: for 
each finite set E with at least mi(h, k) elements, and each partition 
(.t, tv) of the set ~i(E) of subsets of i elements of E, it is impossible 
that every subset of n elements of E contains a subset X e.t and that 
every subset of k elements of E contains a subset Ye tv; in other words, 
if every subset of n elements of E contains some X e.t, there exists a 
subset A of k elements of E such that every subset of i elements of A 
belongs to.i. (Proof by induction. Show that we may take 

ml(n, k) = h + k -I, Tnj(i, k) = k, and 

and finally mien, k) = Tnj-l(m;(h - 1, k), m;(n, k - 1» + 1. If E is a set 
with mi(h, k) elements, if a e E and if E' = E - {a}, show that if the 
proposition were false, then every subset of mj (n - I, k) elements of E' 
would contain a subset X' of i-I elements such that X' u {a} e .t, 
and that every subset of mi(n, k - 1) elements of E' would contain a 
subset Y' of i-I elements such that Y' u {a} e tv.) 
18. (a) Let E be a finite ordered set with p elements. If m,n are 
two integers such that mn < p, show that E has either a totally ordered 
subset of m elements or else a free subset (§ 1, Exercise 5) of n elements 
(use § 4, Exercise 5). 

(b) Let h, k be two integers ~ I and let r(h, k) = (h -I)(k -I) + 1. 
Let I be a finite totally ordered set with at least r(n, k) elements. Show 
that, for each finite sequence (Xj)iEI of elements of a totally ordered set E, 
there exists either a subset H of h elements of I such that the sequence 
(Xi)iEB is increasing, or else a subset K of k elements of I such that 
the sequence (Xj)ieK is decreasing. (Use (a) applied to I X E.) 
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§ 6 

I. A set E is infinite if and only if for each mapping f of E into E 
there exists a non-empty subset S of E such that S #= E and f (S) c S. 

2. Show that, if a, :6, c,)) are four cardinals such that a < c and li < )), 
then a + li < c + )) and ali < t)) (cf. Exercise 21 (c)). 

3. If E is an infinite set, the set of subsets of E which are equipotent 
to E is equipotent to ~(E) (use Proposition 3 of no. 4). 

4. If E is an infinite set, the set of all partitions of E is equipotent 
to ~(E) (associate a subset of E X E with each partition of E). 

5. If E is an infinite set, the set of all permutations of E is equipotent 
to $(E). (Use Proposition 3 of no. 4 to show that, for each subset A 
of E whose complement does not consist of a single element, there exists 
a permutation f of E such that A is the set of elements of E which are 
invariant under f.) 

6. Let E, F be two infinite sets such that Card (E) ~ Card (F). 
Show that (i) the set of all mappings of E onto F, (ii) the set of all map­
pings of E into F, and (iii) the set of all mappings of subsets of E into F 
are all equipotent to ~(F). 

7. Let E, F be two infinite sets such that Card (E) < Card (F). 
Show that the set of all subsets of F which are equipotent to E and the 
set of all injections of E into F are both equipotent to the set FE of all 
mappings of E into F (for each mapping f of E into F, consider the 
injection x ~ (x, f(x)) of E into E X F). 

8. Show that the set of well-orderings on an infinite set E (and 
afortiori the set of orderings on E) is equipotent to ~(E) (use Exercise 5). 

9. Let E be a non-empty well-ordered set in which every element x 
other than the least element of E has a predecessor (the greatest element 
of ]+--, xD. Show that E is isomorphic to either N or an interval 
[0, n] of N (remark that every segment #= E is finite by using Proposi­
tion 6 of no. 5; then use Theorem 3 of§ 2, no. 5). 

~ 10. Let c.u or c.uo denote the ordinal Ord (N) (§ 2, Exercise 14). 
The set of all integers is then a well-ordered set isomorphic to the set of all 
ordinals < c.u. For each integer n we denote again by n (by abuse of 
language) the ordinal Ord ([0, nD. 

(a) Show that for each cardinal a the relation "~is an ordinal 
and Card (~) < a" is collectivizing (use Zermelo's theorem). Let W(a) 
denote the set of all ordinals ~ such that Card (~) < a. 
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(b) For each ordinal oc > 0 define a function f.r. on the well-ordered 
set O'(oc) of ordinals ~ oc by transfinite induction as follows: Ja.(O) = 
6)0 = 6), and for each ordinal ~ such that 0 < ~ ~ Qt, Ja.(~) is the least 
upper bound (§ 2, Exercise 14 (d» of the set of ordinals ~ such that 
Card(~) ~ Card (fa.( l») for at least one ordinal l) <~. Show that, 
if 0 ~ 7) < ~ ~ oc, then Card(Ja.(Yj» < Card(fa.(~» and that, if 
~ ~ oc ~ ~, then fa.(~) =f~(~). Put 6)a. =Ja.(Qt); 6)a. is said to be the 
initial ordinal with index oc. We have 6)a. ~ oc. Put Na. = Card ( 6)a.) ; 
NIX is said to be the aleph ofindex Qt. In particular, No = Card (N). 

(c) Show that for each infinite cardinal a the least upper bound A 
of the set of ordinals Wea) is an initial ordinal 6)a.' and that a = Na. 
(consider the least ordinal lL such that 6)1' ~ A); in other words, 6)a. is the 
least ordinal ~ such that Card(~) = Na.. For each ordinal oc the map­
ping ~ -+ N~, defined on O'(oc), is an isomorphism of the well-ordered 
set O'(oc) onto the well-ordered set of cardinals ~ Na.; in particular, 
Na.+! is the least cardinal > Na.. Show that, if oc has no predecessor, 
then for every stricdy increasing mapping ~ -+ a~ of an ordinal ~ into oc 
such that oc = sup ae, we have 

~<~ 

~ Nat = NIZ• 

~<~ 

(d) Deduce from (c) that 6)~ is a normal ordinal functional symbol 
(§ 2, Exercise 17). 
~ 11. (a) Show that the ordinal 6) is the least ordinal > 0 which has 
no predecessor, that 6) is indecomposable (§ 2, Exercise 16), and that for 
each ordinal oc > 0, Qt6) is the least indecomposable ordinal which is 
> oc (note that n6) = 6) for each integer n). Deduce that 

(oc + 1)6) = OC6) for each oc > o. 
(b) Deduce from (a) that an ordinal is indecomposable if and only 

if it is of the form 6)~ (use Exercise 18 (d) of§ 2). 

" 12. (a) Show that, for each ordinal Qt and each ordinal y> 1, there 
exist two finite sequences of ordinals (Ai) and (lLi) (1 ~ i ~ k) such that 

oc = yA11'1 + yl.'1'3 + ... + yAkl'k' 

where 0 < lLi < Y for each i, and Ai > Ai+! for I ~ i ~ k - 1 (use 
Exercise 18 (d) of § 2 and Exercise 3 of § 4). Moreover, the sequences 
(Aj), (I'i) are uniquely determined by these conditions. In particular, 
there exists a unique finite decreasing sequence (~j)l~j~m such that 

oc = 6)~t + 6)~' + .'. + 6)~m. 
Let cp( oc) denote the greatest ordinal 6)~' in this decomposition. 

242 



EXER,CISES 

(b) For each integer n let fen) ~ n! be the greatest number of 
elements in the set of ordinals of the form 1Xa(1) + 1Xa(1I) + ... + lXa(n)' 

where (lXi)l~i~n is an arbitrary sequence of n ordinals, and cr runs 
through the set of permutations of the interval [1, n]. Show that 

(1) fen) = sup (k.2 k - 1 + l)f(n-k). 
l~k~n-l 

(Consider first the case where all the <p( lXi) are equal and show that the 
largest possible number of distinct ordinals of the desired form is equal to n, 
by using Exercise 16 (a) of § 2. Then use induction on the number of 
ordinals lXi for which <p( lXi) takes the least possible value among the set 
of ordinals <p(lXj) (1 ~ j ~ n).) Deduce from (1) that for n ~ 20 we 
havef(n) = 8If(n-5). 

(c) Show that the n! ordinals «(I) + cr(I»)((I) + cr(2» ... «(I) + cr(n», 
where cr runs through the set of all permutations of [1, n], are all distinct. 

" 13. (a) Let w(~) be an ordinal functional symbol (§2, Exercise 17), 
defined for ~ ~ 1X0 and such that the relation 1X0 ~ ~ < ~' implies 
w(~) < W(~/). Show that, if ~ ~ 1X0, then w(~ + l) ~ w(~) + l) for 
every ordinal l) (argue by contradiction). Deduce that there exists IX 

such that w(~) ~ ~ for all ~ ~ IX (take IX to be the least indecomposable 
ordinal ~ 1X0; cf. Exercise 11 (a) . 

(b) Let f (~, l) be the ordinal functional symbol defined in §2, 
Exercise 17 (b). Suppose that the relations 1X0 ~ ~ ~ ~' and 1X0 ~ l) ~ l)' 
imply g(~, "1) ~ g(~/, "1)'), so that the relations 1X0 ~ ~ ~ ~I and 
1 ~ "1) ~ "1)' imply f(~, l) ~f(~/, l)') (§ 2, Exercise 17 Cd». Show that 
for each ordinal ~ there exists at most a finite number of ordinals 1) for 
which the equation f (~, l) = ~ has at least one solution. (Note that 
if ~l is the least solution of f(~, 'YJI) = ~ and if ~2 is the least solution 
of f (~, 1)2) = ~, then the relation 1)1 < 1)2 implies ~1 > ~2') 

(c) A critical ordinal with respect to f is any infinite ordinal y > 1X0 

such that f (~, y) = y for all ~ such that 1X0 ~ ~ < y. Show that a 
critical ordinal (with respect to f) has no predecessor. If there exists 
a set A of ordinals such that f (~, y) = y for all ~ e A, and if y is the 
least upper bound of A, show that y is a critical ordinal. 

(d) Let h(~) =f(~, ~) (defined for ~ ~ 1X0)' Define inductively 
1X1 = 1X0 + 2, IXn+! = h( IXn) for n ~ 1. Show that the least upper bound 
of the sequence (IXn) is a critical ordinal with respect to J. 

(e) Show that the least upper bound of every set of critical ordinals 
with respect to f is again a critical ordinal, and that every critical ordinal 
is indecomposable (note that f (~, 1) + 1) ~ c.u(~) + '1J ~ ~ + '1J for all 
~ ~ 1X0)' 
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" 14. (a) Show that if ex ~ 2 and if ~ has no predecessor, then ex~ is 
an indecomposable ordinal (cf. § 2, Exercise 16 (a»; if ex is finite and if 
~ = cuy, then ex~ = cu Y; if ex is infinite and if 7t' is the greatest indecompo­
sable ordinal ~ ex, then ex~ = 7t'~ (use Exercise 11). 

(b) An ordinal a is critical with respect to the functional symbol 
f (~, 1) = ~ 1) if and only if, for each ex such that I < ex ~ a, the equation 
a = ex~ has a solution; the unique solution ~ of this equation is then 
indecomposable (use Exercise 13 (e), together with Exercise 18 (d) of 
§ 2). Conversely, for each ex > I and each indecomposable ordinal 7t', ex'1t 
is a critical ordinal with respect to ~1) (use Exercise 13 (c». Deduce that 
a is a critical ordinal with respect to ~ 1) if and only if 8 is of the form 
cu wI' (cf. Exercise II (b». 

(c) For an ordinal e to be critical with respect to the functional 
symbol f (~, 1) = ~"l, i.e., such that y. = e for each y satisfying 
2 ~ y ~ e, it is sufficient that 2£ = e. Show that the least critical 
ordinal eo with respect to ~"l is countable (cf. Exercise 13 (d». 

~ 15. Let y be an ordinal > 1, and for each ordinal ex let L(ex) 
denote the set of exponents Ai in the expression for ex given in Exer­
cise 12 (a). 

(a) Show that Ai ~ ex for each Ai e L(ex), and that Ai = ex for one of 
these ordinals only if ex = 0 or if ex is a critical ordinal with respect to 
~"l (Exercise 14 (c». 

(b) Define Ln(ex) by induction on n as follows: L1(ex) = L(ex), and 
Ln(ex) is the union of the sets L(~) as ~ runs through Ln-1(ex). Show 
that there exists an integer no such that Ln+t(ex) = Ln(ex) whenever 
n ~ no, and that the elements of Ln(ex) are then either 0 or critical 
ordinals with respect to ~"l. (Argue by contradiction: for each n, 
consider the set Mn(ex) of elements ~ e Ln(ex) such that ~ $ L(~), and 
assume that MII(ex) is not empty for any n; use (a) to obtain a contra­
diction.) 

16. Every totally ordered set has a well-ordered cofinal subset (§2, 
Exercise 2). The least of the ordinals Ord (M) of the well-ordered cofinal 
subsets M of E is called the final character of E. 

(a) An ordinal ~ is said to be regular if it is equal to its final character, 
and singular otherwise. Show that every infinite regular ordinal is an 
initial ordinal CU« (Exercise 10). Conversely, every initial ordinal cu«, 
whose index ex is either 0 or has a predecessor, is a regular ordinal. An 
initial ordinal cu« whose index ex has no predecessor is singular if 
0< ex < cu«; in particular, CUll) is the least infinite singular initial ordinal. 

(b) An initial ordinal cu« is said to be inaccessible if it is regular and its 
index ex has no predecessor. Show that, if ex = 0, then CU(1 = ex; in other 
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words, at is a critical ordinal with respect to the normal functional symbol 
(J}"I) (Exercise 10 (d) and 13 (c)). Let x be the least critical ordinal with 
respect to this functional symbol. Show that (J}x is singular, with final 
character (J) (cf. Exercise 13 (d)). In other words, there exists no 
inaccessible ordinal (J}ez such that 0 < at ~ X (*). 

(c) Show that there exists only one regular ordinal which is cofinal 
in a given totally ordered set E; this ordinal is equal to the final char­
acter of E, and if E is not empty and has no greatest element, it is an 
initial ordinal. If (J}i" is the final character of (J}ez, then it. ~ Ot; and (J}ez 

is regular if and only if Ot = ii. 
(d) Let (J}ez be a regular ordinal and let 1 be a well-ordered set such 

that Ord (I) < (J}ez. Show that, for each family (~I),eI of ordinals such 
that ~I < (J}ez for all tel, we have ~~, < Wez. 

lei 

17. A cardinal Nor: is said to be regular (resp. singular) if the initial 
ordinal Wez is regular (resp. singular). For Nez to be regular it is neces­
sary and sufficient that for every family (d,),eI of cardinals such that 
Card (I) < NIX and Il, < Nez for all tel, we have 

~ Il, < NIX' 
leI 

N", is the least singular cardinal. 

~ 18. (a) For each ordinal Ot and each cardinal m #: 0 we have 
N~+l = N~ • NIX+! (reduce to the case where m < NIX+! and consider the 
mappings of the cardinal m into the ordinal 00 IX+!) • 

(b) Deduce from (a) that, for each ordinal y such that Card (y) ~ m, 
we have N:'+r = N~· N~~dr(n (by transfinite induction on y). 

(c) Deduce from (b) that, for each ordinal Ot such that Card (Ot) ~ m, 
we have N~ = 2m • N~ard(ez). 

" 19. (a) Let Ot and ~ be two ordinals such that Ot has no predecessor, 
and let ~ _ O'a be a strictly increasing mapping of the ordinal w~ into 
the ordinal Ot such that sup O'a = at. Show that 

e<",~ 

N~~ = II Na~' 
~<"'P 

(With each mapping f of the ordinal w~ into the ordinal W IX associate 
an injective mapping 1 of w~ into the set of all wa~ (~ < (J)~) such that 

(*) At present it is not known whether or not there exist inaccessible ordinals 
other than w. 

245 



III ORDERED SETS, CARDINALS, INTEGERS 

f (~) ~ f (~) for all ~ < Cd~. Calculate the cardinal of the set of map­
pings f associated with the same f and observe that 

m = IT NI1~ ~ 20Ird (II),> 
e<lI), 

and m ~ NIX (cf. § 3, Exercise 3).) 
(b) Let ex be the ordinal such that Cd" is the final character of Cdez. 

Show that N~"i > Nez and that if there exists n such that NIX = nNy, 

then r < ex (use (a) and Exercise 3 of § 3). 
(c) Show that, if A < ~, then 

N~' = ~ Nr. 
t<IX 

(argue as in Exercise 18 (a». 
~ 20. (a) For a cardinal 4 to be regular (Exercise 17) it is necessary 
that for every cardinal ~ =F 0 we should have 

4" = 4. ~ m". 
m<" 

(Use Exercise 19 and consider separately the cases (i) ~ is finite, (ii) 
No ~ ~ < 4, (iii) ~ ~ 4; also use Exercise 3 of § 3.) The generalized 
continuum hypothesis implies that the above condition is also sufficient. 

(b) Show that, if a cardinal 4 is such that 4M = 4 for every cardinal m 
such that 0 < m < 4, then 4 is regular (use Exercise 3 of § 3). 

(c) Show that the proposition "for every regular cardinal 4 and 
every cardinal m such that 0 < m < 4, we have 4 = 4m" is equivalent 
to the generalized continuum hypothesis (use (a». 
~ 21. An infinite cardinal 4 is said to be dominant if, for each pair of 
cardinals m < a, n < 4, we have mn < a. 

(a) For 4 to be dominant it is sufficient that 2m < a for every cardinal 
m < 4. 

(b) Define inductively a sequence (a/l) of cardinals as follows: 40 = No, 
4/1+1 = 2"·. Show that the sum b of the sequence (4/1) is a dominant 
cardinal. No and b are the two smallest dominant cardinals. 

(c) Show that bNo = N~ = 2~ (note that 2b ~ bNo). Deduce that 
bNo = (2~)b, although b < 2b and No < b. 

~ 22. A cardinal NIX is said to be inaccessible if the ordinal CdIX is inac­
cessible (Exercise 16 (b». We have then CdIX = at if Cdez =F Cdo. A car­
dinal 4 is said to be strongly inaccessible if it is inaccessible and dominant 
(Exercise 21). 
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(a) The generalized continuum hypothesis implies that every inac­
cessible cardinal is strongly inaccessible. 

(b) For a cardinal 4 ~ 3 to be strongly inaccessible it is necessary 
and sufficient that, for each family (4')'EI of cardinals such that 

Card (I) < 4 and 4, < 4 

for all LeI, we should have II 4, < 4. 
leI 

(c) For an infinite cardinal 4 to be strongly inaccessible it is necessary 
and sufficient that it should be dominant (Exercise 21) and that it should 
satisfy one of the following two conditions: (i) 4" = 4 for every cardinal ~ 
such that 0 < :6 < 4; (ii) 4" = 4.2" for every cardinal :6 > O. (Use 
Exercises 20 and 21.) 

~ 23. Let (X be an ordinal > O. A mapping f of the ordinal (X into 
itself is said to be divergent if for each ordinal Ao < (X there exists an ordinal 
!Lo < (X such that the relation 1L0 ~ ~ < (X implies Ao ~ f(~) < (X (*). 

(a) Let cp be a stricdy increasing mapping of an ordinal ~ into (X 

such that 

and such that 

cp (sup ~) = sup cp(~) for all y < ~, 
~<'Y t<'Y 

sup cp(~) = (X(t). 

~<~ 

Then there exists a divergent mapping f of (X into itself, such that f (~) < ~ 
for all ~ satisfying 0 < ~ < (x, if and only if there exists a divergent 
mapping of ~ into itself of the same type. 

(b) Deduce from (a) that there exists a divergent mapping of War; into 
itself, such thatf(~) < ~ forall ~ satisfying 0 < ~ < (x, ifandonlyifthe 
final character of War; is WO' (If W IX is a regular ordinal > WO, define 
inductively a stricdy increasing sequence (lJlI) as follows: lJl = 1, and 
lJlI+l is the least ordinal ~ such that f(~) > lJlI for all ~ ~ ~.) 

(c) Let W-a be the final character of War; (Exercise 16). Show that, if 
(i > 0 and if f is a mapping of War; into itself such that f (~) < ~ for all ~ 

(*) If the well-ordered set O~ of ordinals ~ ct is endowed with the topology 
G_(O~) (Gmeral Topology, Chapter I, § 2, Exercise 5), this condition may be written 

lim f(~) = (x. 
e~ar;. e<CIt 

(t) If we extend cp to O~ by defining cp(~) = ct, the conditions above signify 
that cp is continuous with respect to the topologies fiqO~) and G_(O~) on 
O~ and O~ respectively (loc. cit.). 
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such that 0 < ~ < CUIX' then there exists an ordinal Ao such that the set of 
solutions of the equation f (~) = At, has a cardinal ~ N~. 
~ 24. Let fr be a set of subsets of a set E such that for each A e 3' 
we have Card (A) = Card (ll) = 4 ~ No. Show that E has a subset P 
such that Card (P) = 4 and such that no set of 6' is contained in P. 
(If 4 = NIX, define by transfinite induction two injective mappings 
~ -+ f (~), ~ -+ g(~) of CUIX into E such that the sets P = f (culX) and 
Q = g( CUIX) do not intersect and such that each of them meets every subset 
AeW.) 

(b) Suppose, moreover, that for each subset @} of 6' such that 
Card (@}) < 4, the complement in E of the union of the sets A e @} has 
cardinal ~ 4. Show that E then has a subset P such that Card (P) = 4 

and such that, for each Ae (5J, Card (P n A) < 4 (similar method). 
~ 25. (a) Let W be a covering of an infinite set E. The degree oj 
disjointness of 6' is the least cardinal c such that c is strictly greater than the 
cardinals Card (X n Y) for each pair of distinct sets X, YeW. If 
Card (E) = 4 and Card OJ) = t;, show that t; ~ 4e (note that a subset 
of E of cardinal c is contained in at most one set of 6'). 

(b) Let CUIX be an initial ordinal and let F be a set such that 
2 ~ " = Card (F) < NtlC• Let E be the set of mappings of segments 
of CUIX' other than CUIX itself, into F. Then we have Card (E) ~ "N ... 
For each mapping f of CUIX into F, let K, be the subset of E consisting 
of the restrictions of f to the segments of CUIX (other than CUIX itself). Show 
that the set W of subsets K( is a covering of E such that Card (6') = "N .. , 
and that its degree of disjolDtness is equal to NIX' 

(c) Let E be an infinite set of cardinal 4, and let c, " be two cardi­
nals > 1 such that ,,< c, jIm < 4 for all m < c, and 4 = ~ jIm. Deduce 

m<c 
from (b) that there exists a covering W of E consisting of sets of cardinal (, 
with degree of disjunction equal to (, and such that Card (W) = t. 
In particular, if E is countably infinite, there exists a covering B' of E 
by infinite sets such that Card (W) = 2No and such that the intersection 
of any two sets of B' is finite. 
~ 26. Let E be an infinite set and let 6' be a set of subsets of E such 
that for each A e W we have 

Card (A) = Card (W) = Card (E) = 4 ~ No. 

Show that there exists a partition (B')'EI of E such that 

Card (I) = Card (B,) = 4 

for all LeI, and such that A n B, :F f1 for all A e Wand all LeI. 
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(With the notation of Exercise 24 (a), consider first a surjective mapping f 
of CUot into ff such that for each A e ij the set of all ~ e CU2; such that 
f (~) = A has cardinal equal to 11. Then, by transfinite induction, 
define a bijection g of CUot onto E such that g(~) ef(~) for every 
~ e cuot .) 

~ 27. Let L be an infinite set and let (E"heL be a family of sets indexed 
by L. Suppose that for each integer n > 0 the set of A e L such that 
Card (EA) > n is equipotent to L. Show that there exists a subsetF 
of the product E = IT EA, such that Card (F) = 2C•rd (L), and such that 

"eL 
F has the following property: for each finite sequence (fkh:l;,k:l;,,, of 
distinct elements of F there exists A e L such that the elements 

are all distinct. (Show first that there exists a partition (Lj)jeN of L 
such that Card (L j ) = Card (L) for all j, and such that Card (~) ~ 2i 
for each A eLi' Hence reduce to the case where L is the sum of the 
countable family of sets Xi (j ~ I), where X is an infinite set, and 
E" = 2J for each A Ei Xi. With each mapping g Ei 21: of X into 2, asso­
ciate the element fEi E such that f(A) = (g(xl ), ... , g(Xj)) whenever 
1..= (Xk)l:l;,k:l;,j e XJ; show that the set F of elements fe E so defined has 
the required property.) 

~ 28. Let E be an infinite set and let (.fi)l~i~m be a finite partition of the 
set ffn(E) of subsets of E having n elements. Show that there exists an 
index i and an infinite subset F of E such that every subset of F with n 
elements belongs to .ri' (Proof by induction on n. For each a e E 
show that there exists an index j(a) and an infinite subset M(a) of 
E - {a} such that, for every subset A of M(a) with n-l elements, 
{a} u A belongs to £J(a)' Then define a sequence (ai) of elements of E 
as follows : at is an arbitrary element of E, a2 is an arbitrary element of 
M(al ) , a3 is defined in terms of M(al ) and as in the same way as as 
was defined in terms of E and aI' and so on. Show that the set F of 
elements ofa suitable subsequence of the sequence (ai) satisfies the required 
conditions. ) 

29. (a) In an ordered set E, every finite union of Noetherian subsets 
(with respect to the induced ordering) is Noetherian. 

(b) An ordered set E is Noetherian if and only if for each a e E the 
interval ]a, ~[ is Noetherian. 

(c) Let E be an ordered set such that the ordered set obtained by 
endowing E with the opposite ordering is Noetherian. Let u be a letter 
and let T! u! be a term. Show that there exists a set U and a mapping f 
of E onto U such that for each xeE we havef(x) = T!P"')!, where 
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pm) denotes the mapping of ]_, x[ onto f (]+-, xD which coincides 
with f on this interval. Furthermore, U and f are determined uni­
quely by this condition. 

(d) Let E be a Noetherian ordered set such that every finite subset 
of E has a least upper bound in E. Show that, if E has a least element, 
then E is a complete lattice (§ 1, Exercise 11); and that if E has no least 
element, the set E' obtained by adjoining a least element to E (§ I, no. 7, 
Proposition 3) is a complete lattice. 

30. Let E be a lattice such that the set obtained by endowing E with 
the opposite ordering is Noetherian. Show that every element a e E can 
be written as sup (eu ell' ... , ell), where eu •.. , ell are irreducible (§ 4, 
Exercise 7; show first that there exists an irreducible element e such that 
a = sup (e, b) if a is not irreducible). Generalize Exercise 7 (b) of § 4 
to E; also generalise Exercises 8(b) and 9(b) of § 4. 
~ 31. Let A be an infinite set and let E be the set of all infinite subsets 
of A, ordered by inclusion. Show that E is completely ramified (§ 2, 
Exercise 8) but not antidirected (§ I, Exercise 23) and that E has an 
antidirected cofinal subset F. (Consider first the set meA) of countable 
infinite subsets of A (which is cofinal in E) and let Z = Rocm(A» 
(§ 1, Exercise 23). Write Z in the form (z}.h.eL> where L is a well­
ordered set, and take F to be a set of countable subsets X~, where A 
runs through a suitable subset of L, n e N, X~::> X~ whenever m ~ n, 
Xk - X~+l is infinite for all n ~ 0, and 

the Xk are to be defined by transfinite induction in such a way that the 
images of the sets Xh under the canonical mapping r: meA) ~ Z (§ 1, 
Exercise 23) are mutually disjoint and form a cofinal subset of Z.) 
~ • 32. Let (Mil)' (PII) be two sequences of mutually disjoint finite 
sets (not all empty), indexed by the set Z of rational integers. Let 
(XII = Card (Mil), ~n = Card (Pn). Suppose that there exists an integer 
Ie > 0 such that for each n e Z and each integer I ~ 1 we have 

(XII + (XII+l + ... + (Xn+1 ~ ~n-Ic + ~II-Ic+l + ... + ~I1+1+1c' 
~n + ~1I+l + ... + ~n+l ~ (XII-Ie + (XII-Ic+l + ... + IXII+I+Ic' 

Let M be the union of the family (Mil) and let P be the union of the 
family (P n). Show that there exists a bijection cp of M onto P such that 

1I+Ic+l 

cp(Mn) c: U Pi and 
-1 n+lc+l 

cp (PII ) c: U Mi 
i=n-/c-l i=II-/c-l 
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for each n e Z. (Consider a total ordering on each Mn (resp. Pn) 

and take M (resp. P) to be the ordinal sum (§ 1, Exercise 3) of the 
family (Mn)nez (resp. (Pn)nez), If no is an index such that Milo oF p, 
consider the isomorphisms of M onto P which transform the least element 

n.+k 

of Mn. into one of the elements of U Pi' and show that one of these 
j=no-k 

isomorphisms satisfies the required conditions. Let 8 be the least of the 
numbers 

~n-k + ~n-k+l + ... + ~n+lH - (Otn + Otn+1 + ... + Otn+I), 
Otn-k + Otn-k+l + ... + Otn+IH - (~n + ~nH + ... + ~n+l) 

for all n e Z and all l;;:: 1. If n e Z and l;;:: 1 are such that, for 
example, ~n-k + ~n-kH + ... + ~n+l+k = 8 + Otn + Otn+1 + ... + Otn+" 
we may take rp to be such that the least element of Pn- k is the image 
under rp of the least element of M n.) 

§ 7 

1. Let I be a directed set, let (JAheL be a family of subsets of I, 
indexed by a directed set L, such that (i) for each A e L, JA is directed 
with respect to the induced ordering; (ii) the relation A ~ !L implies 
JA eJ,,; (iii) I is the union of the family (JA)' Let (Ear;, far;~) be an inverse 
system of sets relative to I, let E be its inverse limit, and for each A e L 
let FA be the inverse limit of the system obtained from (Ear;, far;~) by 
restricting the index set to JA' For A ~ !L let gAl' be the canonical mapping 
of F" into FA (no. I). Show that (FA, gAl') is an inverse system of sets 
relative to L, and define a canonical bijection of F = lim FA onto E. ---2. Let (Ear;, far;~) be an inverse system of sets relative to a directed 
index set, let E = lim Ear;, and let far; : E ~ Ear; be the canonical mapping ---for each IX. Show that, if all the far;'(. are injective, then far; is injective. 

3. Let (Ear;, far;~) and (F ar;, gar;~) be two inverse systems of sets relative 
to the same index set I. For each IX e I, let Uar; be a mapping of Ear; 
into Far;, such that the Uar; form an inverse system of mappings. Let 
Gar; e Ear; X FIX be the graph of Ua• Show that (Gar;) is an inverse system 
of subsets of Ear; X Far; and that its inverse limit may be canonically iden­
tified with the graph of u = lim Ua• ---4. Let I be a non-empty directed set with no greatest element, and 
let F be the set of all sequences x = (lXI' lXI' ••• , 1X2n-H Otlln) of an even 
number ;;:: 2 of elements of I with the following properties: (i) Ot2i-1 < Otlli 
for I ~ i ~ n; (ii) Ot2i-1 :l:~ Ot2j-l for 1 ~ j < i ~ n. The set F is not 
empty. Put rex) = Ot2n-l' sex) = Ot2n' The integer n is called the length 
of x. 
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(a) For each ex e I, let EIX be the set of all x e F such that rex) = ex. 
Then EIX is not empty. For ex ~ ~ in I, we define a mapping flX~ of E~ 
into the set of all finite sequences of elements of I, as follows: if 

let j be the least index such that ex ~ exSj-I; then 

flX~(x) = (exl> ••• , exSj-S' ex, exSj)' 

Show that flX~(E~) = EIX and that (EIX' flX~) is an inverse system of sets 
relative to I. 

(b) Show that if XIZ e EIZ and x~ e E~ are such that there exists an 
index y for which y;;;: ex and y ;;;: ~, and an element Xy e Ey for which 
XIX = fIXY(xy) and x~ = f~y(xy), then, provided also XIZ and x~ have the 
same length, we have s(xlX) = s(x~). 

(c) Deduce from (b) that, if E = lim EIX is not empty and if --Y = (XIX) e E, then the set of elements S(XIX) is countable and cofinal in I. 

(d) Let I be the set of all finite subsets of an uncountable set A, 
ordered by inclusion. Show that I has no countable cofinal subset, and 
hence deduce from (c) an example of an inverse system of sets (EIZ' flZ~) 
in which the EIX are non-empty and the flX~ are surjective, but for which 
E = lim EIZ = f1. -(e) Deduce from (d) an example of an inverse system of mappings 
UIX : EIX -+ E~ such that each "IX is surjective but lim UIX is not surjective 
(let each E~ consist of a single element). -
~ 5. Let I be a directed set and let (EIX) IXEI be a family of lattices such 
that each EIX, endowed with the opposite ordering, is Noetherian (§ 6, 
no. 5). For each pair (ex, ~) of indices in I such that ex ~ ~ let 

flX~ : E~ -+ EIZ 

be an increasing mapping, and suppose that (EIX' fa.~) is an inverse 
system of sets relative to I. For each ex e I let G IX be a non-empty 
subset of EIX such that (i) no two distinct elements of GIX are comparable, 
(ii) flX~(G6) = G IX whenever ex ~ ~, (iii) for each ex ~ ~ and each 

-1 

XIX e G IX, flX~(xlX) has a greatest element MIX~(xa) in E~, (iv) whenever 
ex ~ ~, if h~ e E~ is such that there exists y~ e G~ such that y~ ~ h~, then 
for each XIX e G IX such that XIX ~ flX~(h~) there exists x~ e G~ such that 
.t'~ ~ h~ and XIX = flX~(x~), Under these conditions the inverse limit of 
the inverse system of subsets (G IX) is not empty. The proof runs as follows: 

(a) Let j be afinite subset of I. A family (xlX)lXeJ' where XIX e G IZ for 
all ex ej, is said to be coherent if it satisfies the following two conditions: 
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(i) if lXeJ, ~eJ, IX ~ ~, then XIX =f .. ~(x~); (ii) for each upper bound y 
of J in I there exists xye Gy such that X:z = flXy(xy) for all IX eJ. Show 

-1 

that, for each upper bound y of J in I, the set n fIXY(xlX) has a greatest 
lXeJ 

element equal to inf (MlXy(xlX)); furthermore, the intersection of Gy and 
-1 lXeJ n flXy(xaJ is the set (non-empty by hypothesis) of all Yye Gy such that 

lXeJ 

(use condition (i». 

(b) Let J be any subset of I. A family xJ = (XIX)lXeJ' where XIX e G IX 
for all IX eJ, is said to be coherent if every finite subfamily of XJ is coherent. 
If J :F I and if ~ e I - J, show that there exists x~ e G~ such that the 
family xJUI~I=(xlX)lXeJul~1 is coherent. (Using (a) and condition (iv) , 
show that, for every finite subset F of J, if y is an upper bound of 

-1 

F U {~}, then f~y (Gy n n fIXY(xlX») is the (non-empty) set of all y~ e G~ 
lXeF 

which are ~ f~y( inf (MlXy(.tlX)). Using the fact that E~ endowed with 
lXeP 

the opposite ordering is Noetherian, show next that there exist a finite 
subset Fo of J and an upper bound Yo of Fo u {M such that for each 
finite subset F of J and each upper bound y of F u {~} we have 

Prove then that every element x~ e F~ which is ~ f~yo( inf (M:zy.(xlX») 
satisfies the required conditions. lXeF. 

(c) Finally, complete the proof by showing that there exists a coherent 
family whose index set is the whole of I. (Order the set of coherent 
families XJ by the relation "XI is a subfamily of XK", and apply (b) and 
Zorn's lemma.) 

6. Let I be a directed set, and let (J).h.eL be a family of subsets of I 
satisfying the conditions of Exercise I. Let (EIX' f~lX) be a direct system of 
sets indexed by I, let E = lim E IX, and for each A e L let F). be the --direct limit of the direct system obtained from (EIX' hlX) by restricting the 
index set to J).. Whenever A ~ fL' let g",). be the canonical mapping of 
F). into F p. (no. 6). Show that (F)., g",).) is a direct system of sets relative 
to L, and define a canonical bijection of E onto F = lim F).. --7. Let I be a directed set and let (EIX' hlX) be a direct system of sets 
relative to I. For each IX e I, let f«: E« ~ E = lim EIX be the canonical --mapping. In each E IX, let R« be the equivalence relation f«(x) f«(Y). 
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Show that, whenever ex ~ (3, the mapping ISa is compatible with the equi­
valence relations Ra and R li. Let E~=Ea/Ra, and let 16a. be the map­
ping of E~ into E~ induced by I~a. on passing to the quotients. Show 
that I ~a. is injective and that (E~, f 6a.) is a direct system of sets, and define 
a canonical bijection of E onto lim E~. -8. Let (EcZJ f~a.) and (Fa., glia.) be two direct systems of sets, both 
indexed by the same directed set I. For each ex e I, let "a be a mapping 
of Ea into Fa, such that the Ua. form a direct system of mappings. Let 
Ga c: Ea. X Fa. be the graph of "a.' Show that (Ga) is a direct system of 
subsets of Ea. X Fa. and that its direct limit may be canonically identified 
with the graph of " = lim "a.' -9. Let I be an arbitrary preordered set, and let (Ea.) a.EI be a family of 
sets indexed by I. For each pair of indices (ex, (3) such that ex ~ (3, let 
f~a. be a mapping of Ea. into Eli! and suppose that these mappings satisfy 
conditions (LII ) and (LIn). Let G be the set which is the sum of the 
family (Ea.) and (with the notation of no. 5) let R I x, y t be the relation 
"A (x) = ex ~ A(,,} = (3 and y =f~a(x)" between two elements x, y of G. 
Let R' be the equivalence relation on G whose graph is the smallest of 
the graphs of equivalence relations which contain the graph of R (Chap­
ter II, § 6, Exercise 10). The set E = G/R' is called the direct limit of the 
family (Ea.) with respect to the family of mappings (f~a.), and we write 
E = lim Ea. When the index set I is directed, show that this definition -agrees with that given in no. 5. In the general case, the restriction to Ea. 
of the canonical mapping of G into E is called the canonical mapping 
of Ea. into E and is denoted by fa.. Suppose we are given, for each ex e I, 
a mapping "a. of Ea into F such that "Ii ° Ilia. ="a whenever ex ~ (3; 
show that there exists a unique mapping" of E into F such that 
u="a.0la. for each exeI. 
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HISTORICAL NOTE 

(Chapter III, § 5) 

(Numbers in brackets refer to the bibliography 
at the end of this Note.) 

The evolution of ideas relating to the notions of integer and cardinal 
number is inseparable from the history of the theory of sets and mathema­
tical logic for which the reader is referred to the Historical Note following 
Chapter IV. The purpose of this Note is to indicate briefly some of the 
salient facts in the history of numeration and "combinatorial analysis". 

History and archaeology have revealed to us a large number of "systems 
of numeration", the prime aim of which is to attach to each individual 
integer (up to some limit depending on the demands of practical use) 
a name and a written representation, formed from a restricted number of 
signs according to more or less regular laws. By far the most common 
procedure is to decompose the integers into sums of "successive units" 
bl> bl, .•. , b", ... , each of which is an integral multiple of its predecessor; 
and although in general h,,/h"-l is taken to be a fixed number h (the 
"base" of the system, usually 10), there are many known exceptions to 
this rule. For example, in the Babylonian system, hn/hn- l is sometimes 10 
and sometimes 6 [1], and in the chronological system of the Mayas hn/hn- 1 

is equal to 20 except for n = 2, and hi/hI = 18 [2]. As to the corres­
ponding written symbol, it must indicate the number of "units" hi of each 
order i. In many systems (for example, the Egyptian, the Greek, and the 
Roman) the successive multiples k. hi (where k varies from 1 up to 
(h i+1/bi ) - 1) are denoted by symbols which depend on both k and i. 
A first and important step foward was to denote all the numbers k. hi 
(for the same value of k) by the same sign: this is the principle of "numer­
ation by position", where the index i is indicated by the fact that the 
symbol representing k. hi appears "in the ith place". The first system of 
this nature is that of the Babylonians, who, certainly as early as 2000 B.C., 
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denoted by the same sign all the multiples k. 60"'; corresponding to 
various values of the exponent i ([1], pp. 93-109). The inconvenience 
of such a system is of course its ambiguity so long as there is nothing to 
indicate whether or not the units of a certain order are absent, i.e., so long 
as the system is not completed by the introduction of a "zero". Never­
theless, the Babylonians managed without such a sign for the greater part of 
their history, and did not make use of a "zero" except in the last two 
centuries B.C., and then only inside a number; up to that time, the 
context alone could clarify the meaning of the symbol under consideration. 
Only two other systems made systematic use of a "zero" : that of the Mayas 
(in use, apparently, since the beginning of the Christia~ era [2]) and our 
present decimal system, which comes (via the Arabs) from Hindu mathe­
matics, where the use of zero is attested since the first centuries A.D. 
Moreover, the conception of zero as a number (and not merely as a separat­
ing sign) and its introduction into calculations are original contributions 
of the Hindus [3]. Of course, once the principle of "numeration by 
position" had been acquired, it was easy to extend it to an arbitrary base. 
A discussion of the merits of the different "bases" proposed since the 
17th century depends on the techniques of numerical computation, 
and cannot be entered into here. We note only that the operation which 
lies at the root of these systems, the so-called "Euclidean division", did not 
appear before the time of the Greeks, and undoubtedly goes back to the 
early Pythagoreans, who made it the essential tool in their theoretical 
arithmetic. 

The general problems of enumeration, grouped together under the name 
of "combinatorial analysis", seem not to have been attempted before the 
last centuries of classical antiquity; only the formula m = fn(n - 1) 
is attested, in the third century A.D. The Hindu mathematician Bhaskara 
(12th century) knew the general formula for (~). A more systematic 
study is found in a manuscript of Levi ben Gerson (the beginning of the 
13th century): he obtained the inductive formula for the number V~ 
of arrangements of n objects p at a time, and in particular for the number 
of permutations of n objects, and he stated rules which are equivalent to 
the relations m = V~/p! and (p) = (n~p) ([4], pp. 64-65). But 
this manuscript seems to have remained unknown to his contemporaries, 
and the results were only gradually rediscovered by mathematicians in the 
subsequent centuries. As regards later progress, let us record that Cardan 
proved that the number of non-empty subsets of a set of n elements is 
2n - I. Pascal and Fermat, in founding the calculus of probability, 
rediscovered the expression for (~), and Pascal was the first to observe the 
relation between these numbers and the binomial theorem, which seems 
to have been known to the Arabs since the 13th century, to the Chinese 
in the 14th century, and was rediscovered in the West at the beginning 
of the 16th century, together with the inductive method of calculation 

256 



BIBLIOGRAPHY 

of the coefficients known as "Pascal's triangle" ([4], pp. 35-38). Finally, 
about 1676, Leibniz obtained (but did not publish) the general formula for 
"multinomial coefficients", which was rediscovered independendy and 
published 20 years later by de Moivre. 
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CHAPTER IV 

Structures 

1. STRUCTURES AND ISOMORPHISMS 

The purpose of this chapter is to describe once and for all a certain number 
of formative constructions and proofs (cf. Chapter I, § 1, no. 3 and § 2, 
no. 2) which arise very frequently in mathematics. 

1. ECHELONS 

An echelon construction schema is a sequence Cu ca, ... , Cm of ordered pairs 
of natural integers (*) Ci = (ai, bi), satisfying the following conditions : 

(a) If bi = 0, then 1 ~ ai ~ i-I. 
(b) If ai =1= ° and bi =1= 0, then 1 ~ ai ~ i-I and 1 ~ bi ~ i-I. 

These conditions imply that c1 = (0, b1), with b1 > 0. If n is the 
largest of the integers bi which appearin the pairs (0, bi), then C1> C2, ••• , cm 
is said to be an echelon construction scheme on n terms. 
Given an echelon construction scheme S = (Cl> C2, ••• , cm) on n terms, 
and given n terms Eu Ea, ... , En in a theory 10 which is stronger than 
the theory of sets, an echelon construction of scheme S on E1, .•• , En is defined 
to be a sequence A1, Aa, ... , Am of m terms in the theory 'iV, defined 
step by step by the following conditions : 

(a) If Ci = (0, bi), then Ai is the term Eb,• 

(b) If Cj = (ai, 0), then Ai is the term !l3(Aa,). 
(c) If Ci = (ai, bi), where ai =1= ° and bi =1= 0, then ~ is the term 

Aai X A b,. 

(*) We use the notion of integer in the same manner as in Chapter I, that is 
to say, in the metamathematical sense of marks arranged in a certain order; this 
use has nothing to do with the mathematical theory of integers which was developed 
in Chapter III. 
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IV STRUCTURES 

The last term Am of the echelon construction of scheme S on EI , ... , En 
is called the echelon of scheme S on the base sets E I , .•. , En; in the general 
arguments which follow, it will be denoted by the notation S(EI' ... , En). 

Example. Given two sets E, F, the set ~(~(E)) X ~(F) is an echelon 
on E, F, with scheme 

(0, 1), (0, 2), (1, 0), (3, 0), (2, 0), (4, 5). 

It is also the echelon oil E, F with scheme 

(0,2), (0, 1), (1,0), (2,0), (4,0), (5, 3). 

Distinct schemes may therefore give rise to the same echelon on the same 
terms. 

2. CANONICAL EXTENSIONS OF MAPPINGS 

Let S = (cl , c2, ••• , cm) be an echelon construction scheme on n terms. 
Let El> ... , Em Ei, ... , E~ be sets (terms in iO) and let ft, ... , fn be 
terms in iO such that the relations ''Ji is a mapping of Ei into E;" are 
theorems in iO for 1 ~ i ~ n. Let AI, ... , Am (resp. Ai, ... , A:n) be 
the echelon construction of scheme S on Eu ... , En (resp. Ei, ... , E!). 
We define step by step a sequence of m terms gu ... , gm such that gi 
is a mapping of ~ into Ai (for I ~ i ~ m) by the following conditions: 

(a) If Ci = (0, bj), so that ~ = Ebi and Ai = E~" then gi is the 
mapping fbI' 

(b) If Ci = (ai, 0), so that Ai = ~(A..i) and Ai = ~(~I)' then gi 
is the canonical extension gal of gal to sets of subsets (Chapter II, § 5, no. 1). 

(c) If Ci = (ai, bi), where ai =1= 0 and bi =1= 0, so that 

and 

then gi is the canonical extension gal X gb, of ga, and gbl to Aa; X Ab 
(Chapter II, § 3, no. 9). 

The last term gm of this sequence is called the canonical extension, with 
scheme S, of the mappings ft, ... , f", and will be denoted by <ft, ... , f,,)s. 
~ The following criteria can be verified step by step : 

CST!. If Ii is a mapping of Ei into E;, and if fi is a mapping of Ei 
into Er (I ~ i ~ n), then for every echelon construction scheme S on n terms 
we have 

(1: oft, 1~ oj2' ... , j~ of,,)S = (j~, j~, ... , 1~)S 0 <ft, Is, ... ,f,,)s. 
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CST2. If fi is injective (resp. surjective) for 1 ~ i ~ n, then <h, ... , f,.)S 
is injective (resp. surjective). 
This criterion follows from the corresponding properties of the extension g 
(Chapter II, § 5, no. 1, Proposition 1) and the extension g X h (Chapter II, 
§ 3, no. 9). 

CST3. If fi is a bijection of Ei onto Ei, and if it1 is the inverse bijection (*), 
he <I" j,)5 0 b .. 0 d < I" 1 j, 1)5 . .. . t n Jl" 0 0',. IS a vectzon an Jl-""'''- IS Its Inverse; an 

other words, 

This follows immediately from CSTI and CST2. 

3. TRANSPORTABLE RELATIONS 

Let 'lO be a theory which is stronger than the theory of sets, let Xl' ••• , X,., 
St, ••• , sp be distinct letters which are distinct from the constants of G, 
and let AI, .. 0, Am be terms in 'lO in which none of the letters Xi 
(I ~ i ~ n) and Sj (I ~ j ~ p) appears. Let Sl' .. 0, Sp be echelon 
construction schemes on n + m terms. Then the relation T! XlJ ••• , X,., 
Sl' .. 0' sp I : 
"St e Sl (Xl' 0 0 0' xn> AI' . 0 0' Am) and S2 e S2(Xl, .. 0, Xn> At, . 0 ., Am) 

and. o. and sp e Sp(XI' ... , X,., AI' ... , Am)" 

is called a typification of the letters Sl' o. 0' sp. 

~ Let R I Xl' 0", Xn> SlJ ••• , S p! be a relation in G which contains certain 
of the letters Xi, Sj (and possibly other letters as well). Then R is said 
to be transportable (in 'iii) with respect to the typification T, the Xi (I ~ i ~ n) 
being considered as principal base sets and the Ah (I ~ h ~ m) as auxiliary 
base sets, if the following condition is satisfied : let YI' ... , y,., h, .. 0' j,. 
be distinct letters which are distinct from the Xi (1 ~ i ~ n), the 
Sj (1 ~ j ~ p), the constants of G, and all the letters which appear in R 
or in the terms Ah (1 ~ h ~ m), and let Idh (1 ~ h~ m) denote the 
identity mapping of Ah on to itself. Then the relation 

(1) "T I Xl' ••• , X,., S1> 0.0, sp! and (h is a bijection of Xl onto Yl) 
and 0 •• and (f,. is a bijection of X,. onto Y,.)" 

implies, in '(0, the relation 

(2) R I Xl> •• 0' X,., SlJ • 0 ., sp I ~ R I Yt> ... , YII' s~, ... , s~ I ' 
-1 

(*) For typographical reasons we write here f- 1 instead of f. 
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where 

(3) (1 ~ j ~ p). 

There is an analogous but simpler definition in the case where there is no 
auxiliary set. 

For example, if n = p = 2 and if the typification T is "Sl e Xl and 
Ss e Xl'" the relation Sl = S. is transportable. On the other hand, the 
relation Xl = X. is not transportable. 

4. SPECIES OF STRUCfURES 

Let 'G be a theory which is stronger than the theory of sets. A species of 
structures in 'G is a text :E formed of the following assemblies : 

(1) a certain number of letters Xu ••• , Xn, s, distinct from each other 
and from the constants of 'G; Xl> ••• , Xn are called the principal base sets 
of the species of structures ~; 

(2) a certain number of terms AI, ... , Am in 'G in which none of the 
letters Xu ••• , Xn, S appears, and which are called the auxiliary base sets 
of:E; :E possibly contains no auxiliary base sets (but it must contain 
at least one principal base set); 

(3) a typification T I Xl> ••• , Xn, S I : 
s e 8(x1> ... , X/I, Al> ••• , Am), 

where 8 is an echelon construction scheme on n + m terms (no. 1); 
T I Xl> ••• , Xn, S I is called the typical characterization of the species of struc­
tures :E; 

(4) a relation RIX1> •.• , Xn, s! which is transportable (in 'G) with 
respect to the typification T, the Xi being the principal base sets and 
the Ala the auxiliary base sets (no. 3); R is called the axiom of the species 
of structures ~. 
The theory 'G~ which has the same axiom schemes as 'G and whose 
explicit axioms are those of 'G, together with the axiom "T and R", 
is called the theory of the species of structures:E. The constants of 'GE are 
therefore the constants of 'G and the letters which appear in T or in R. 

~ Let 'G' be a theory which is stronger than 'G, and let E1, ••• , En' U be 
terms in 'G'. In the theory fa', U is said to be a structure of species ~ on 
the principal base sets E1> ..• , En> with A1> •.. , Am as auxiliary base sets, 
if the relation 
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is a theorem in '(9'. When this is SO, then for each theorem B ! Xl' •.• , XII' S I 
in the theory '(9E the relation B lEI, ... , Ell, U I is a theorem in '(9' (Chap­
ter I, § 2, no. 3). In '(9E, the constant s is called the generic structure oj 
the species 1:. 
~ In the theory '(9', the principal base sets E1, .•• , Ell are said to be endowed 
with the structure U. Clearly, U is an element of the set 

The set of elements V of S(EI' ... , Ell, AI, ... , Am) which satisfy the 
relation RIEl> ... , En> V I is therefore the set oj structures oj the species 1: 
on El> ... , En (and it may be empty). 

Examples 

(I) Take r? to be the theory of sets, and consider the species of struc­
tures which has no auxiliary base set, one principal base set A, the typical 
characterization s e !ll(A X A), and the axiom 

-1 

S 0 S = s and s n s = tlA 

(tlA being the diagonal of Ax A), which is a transportable relation 
with respect to the typification s e !ll(A X A), as is easily verified. It is 
clear that the theory of this species of structures is just the theory of ordered 
sets (Chapter III, §l, no. 3); and therefore the species of structure so 
defined is also called the sjHcies of order structures on A. In Chapter III 
we saw many examples of sets endowed with structures of this species. 
(2) Take 'iii to be the theory of sets, and consider the species of struc­
tures which has no auxiliary base set, one principal base set A, the 
typical characterization Fe !ll«A X A) X A), and as axiom the trans­
portable relation "F is a functional graph whose domain is A X A". 
The structures of this species are particular cases of what are called algebraic 
structures, and the function whose graph is F (a mapping of Ax A into A) 
is called the (everywhere d4inetl) internal law of composition of such a structure. 
(3) As before, let r? be the theory of sets, and consider the species 
of structures which has no auxiliary base set, one principal base set A, 
the typical characterization V e !ll(~(A», and as axiom the transportable 
relation 

(VV) «V' c V) ~ « U X) e V)) 
xev' 

and (VX)(VY)«XeV and YeV)=> «XnY)eV». 

This species of structures is called the species of topological structures. A struct­
ure of this species is also called a topology, and the relation X e V is 
expressed by saying that X is an open set in the topology V (General 
Topology, Chapter I, § 1). 
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* (4) Take 19 to be the theory of the species of division ring structures, 
which has (among other things) a constant K as unique (principal) 
base set. The species of structure of a left vector space over K has K as 
auxiliary base set, a principal base set E, and as typical characterization 
the relation 

Ve$«E X E) X E) X $«K X E) X E) 

(prlV being the graph of addition in E, and praY the graph of scalar 
multiplication); we shall not state here the axiom for this species of struct­
ures. 
(5) Again let 19 be the theory of sets; in this theory, the field C 
of complex numbers is a term which contains no letters. The species 
of structure of a comjJleJe analYtic manifold of dimension n has C as auxiliary 
base set, and one principal base set V. We shall not indicate here the 
typical characterization or the axiom of this species of structure. * 
lUmarks 
(1) In applications it is often the case (as in Example 4 above) that 
the echelon S(Eu 0 •• , En' AI, ... ,~) is a product of echelons 

SI(Eu .• 0' ~) X ••• X Sp(Eu . 0.' Am)' 

If so, the letter s in the definition of ~ is often replaced by a "P.tuple" 
(Sl, ••. , sp) (cf. Chapter II, § 2, no. 1). 

Moreover, the axiom of a species of structures ~ is most frequently 
written as a conjunction ofsevera1 transportable relations (as in Example 3 
above). These relations are called the axioms of the species ~. 
(2) Names are given to the species of structures most frequently used 
in mathematics, and to sets endowed with structures of these species. Thus 
an ortlered set (Chapter 111, § 1) is a set endowed with an order structure 
(Example I); * in the later Books of this series, we shall define the notions 
of group, field, topologieol space, differentiable manifold, etc., all of which denote 
sets endowed with certain structures. * 
(3) By abuse of language, in the theory of sets 19, the giving of n 
distinct letters Xu • 0 ., xn (with no typical characterization and no 
axiom) is considered as a species of structure ~o, called the structure 
of a se' on the n principal base sets Xl' • 0 ., xn• 

5. ISOMORPIDSMS AND TRANSPORT OF STRUCfURES 

Let ~ be a species of structures in a theory YO, on n principal base sets 
Xl' ••• , Xno with m auxiliary base sets Au ... , Am. Let S be the echelon 
construction scheme on n + m letters which features in the typical 
characterization of~, and let R be the axiom of~. In a theory YO' 
which is stronger than 'iii, let U be a structure of species ~ on sets 
Eu ... , En (as principal base sets) and let U' be a structure of the same 
species on sets E;, 0", E~. Finally, let Ii (in 'iii') be a bijection of E j 

264 



ISOMORPHISMS AND TRANSPORT OF STRUCTURES § 1.5 

onto Ei (1 ~ i ~ n). Then (fl' ... , fn) is said to be an isomorphism of 
the sets El , ..• , En' endowed with the structure V, onto the sets E~, ... , 
E~, endowed with the structure V', if we have (in '{OI) 

(4) 

where Idh denotes the identity mapping of ~ onto itself (1 ~ k ~ m). 
~ Let Ii be the inverse of the bijection.li (1 ~i~n). It follows immed­
iately from (4) and the criterion CST3 (no. 2) that we have 

<If, .. ·,1~, Idl> ... , Idl/l)S(V/) = V 

and consequendy that (1~, ,." 1~) is an isomorphism of E~, "., ~, 
endowed with V', onto E1, ' , "En' endowed with V. The isomorphisms 
(ii., "" In) and (1~, " . ,1~) are said to be inverses of each other. 

E~, .,., E!, endowed with V', are said to be isomorphic to E1, ,." En> 
endowed with V, if there exists an isomorphism of E1, "., En onto 
E~, "" E~; in this case the structures V and V' are said to be isomorphic. 
~ The above definitions, together with CSTl, imply the following criterion: 

CST4. Let V, V', vn be three structures of the same species I: on the principal 
base sets E1, "., En' E~, "" E~, E~, "" E~, respectively. Let.li be a 
bijection of Ei onto Ei, and let gi be a bijection of Ei onto Ei (1 ~ i ~ n). 
If (ft, , .. , fn) and (gl' , .. , gn) are isomorphisms, then so is (gl 0 ii., "" 
gn °In)' 

An isomorphism of EI , "" En onto El , "., En (with respect to the same 
structure) is called an automorphism of El> "" En' The composition of 
two automorphisms of E1, , .• , En is an automorphism, and so is the 
inverse of an automorphism, * so that the automorphisms of Eu ... , En 
form a group. * 

&mark. By abuse of language, if Ii is any bijection of Ei onto Ei 
(1 ~ i ~ n), (ii, .,., fn) is said to be an isomorphism of EI , ,." En 
onto E~, ... , E~ with respect to the species of structure of a set (no. 4, 
Remark 3). 

CST5. In a theory to' which is stronger than 'lO, let V be a structure of spe­
cies I: on Eu ... , En, and let.li be a bijection of E, onto a set Ei (1 ~ i ~ n). 
Then there exists a unique structure of species ~ on E~, , .. , E~ such that 
(ii., ... , In) is an isomorphism of E1, ••• , En onto Ef, ... , E~. 
For this structure, if it exists, can only be the term V r defined by the 
relation (4); it remains to be verified that this term is indeed a structure 
of species ~, i.e., that the relation R! E~, ... , E!, V'l is true in 'ii)/. But 
this follows from the fact that R I Xl' ••• , XJ1) s! is transportable, for 
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R IE:, ... , E!, U'I is equivalent in ~I to the rdation RIEl, ... , E", U I 
(no. 3), which is true in ~' by hypothesis. 

~ The structure U I is said to be obtained by transporting the structure U to 
the sets E~, ... , E! by means of the bijective mappings ft, ... , J,.. Thus two 
structures of the same species are isomorphic if and only if each is obtained 
from the other by transport of structure. 

It may happen that any two structures of species 1: are necessarily iso­
morphic; the species of structure 1: is then said be univalent. * This is the 
case for the structure of an infinite cyclic group (isomorphic to Z), the 
structure of a prime field of characteristic zero (isomorphic to Q), the 
structure of a complete Archimedean ordered field (isomorphic to R), 
the structure of an algebraically closed, connected, locally compact topo­
logical field (isomorphic to C), and of the structure of a non-commutative, 
connected, locally compact topological division ring (isomorphic to H, 
the division ring of quaternions). For some of these species of structure, 
for example that of a prime field of characteristic zero, or that of a complete 
Archimedean ordered field, there is not even any automorphism other than 
the identity mapping; but there do exist such automorphisms for the other 
examples given above (for example, the symmetry x_ - x in Z). * 

It will be observed that the above species of structure are essentially 
those which are the basis of classical mathentatics. On the other hand, 
* the species of group structures, the species of structures of an ordered 
set, and the species of topological structures, are not univalent. * 

6. DEDUcnON OF STRUCTURES 

Let 1: be a species of structures in a theory ~, on n principal base sets 
Xl' ••• , XII' with m auxiliary base sets AI, ... , Am. Let s be the generic 
structure of 1:, and let T be an echelon construction scheme on n + m 
terms. A term V I Xl' ••• , XII' S I which contains no letter other than the 
constants of 'to~ is said to be intrinsic for s, of type T(xI' ... , XII' AI, ... , Am), 
if it satisfies the following conditions : 

(1) the relation V!xu ... , XII' sl eT(xu ... , XII' AI' ... , Am) is a 
theorem in ~~; 

(2) let 'toE be the theory obtained by adjoining to the axioms of ~ll the 
axioms "f" is a bijection of Xi onto yt (1 ~ i ~ n) (where the letters 
Yi and fi. are distinct from each other and from the constants of 'COll, 
for I ~ i ~ n); if s' is the structure obtained by transporting s by 
means of (ft, ... , J,.) (no. 5), then 

V lyu .. "YII' s'l = <ft, .. . ,J,.. Idl ,·· .,IdlJl)T(V!xu ... , XII' sO 
is a theorem in ~~ . .... 
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Most of the terms which one is led to define in the theory of a species of 
structures are intrinsic terms. 

Let 0 be another species of structures in the theory to, on r principal 
base sets Ul , ... , Ur• with p auxiliary base sets Bl, ... , Bp, and let 
t e T(ul' ... , Ur, Bl, ... , Bp) be the typical characterization of 0 (no. 4). 
Then a system of r + 1 terms P, V 1> ... , Vr, intrinsic for s, and such that 
P is a structure of species 0 on VI' ... , Vr, in the theory ~E. is called 
a procedure of deduction of a structure of species 0 from a structure of species ~. 
By abuse of language, the term P alone is often called a procedure of 
deduction. 

~ Let ~' be a theory stronger than~. If ~ is a structure in ~' of spe­
cies ~ on EI • . .. , En. then P I E1> ... , Ell. ~! is a structure of species 0 
on the r sets Fj = VjjEI' ... , Ell> ~! (1 ~ j ~ r), said to be deduced 
from ~ by the procedure P, or subordinate to !f. The hypothesis that the 
terms P, VI> ... , Vr are intrinsic for s moreover implies the following 
criterion: 

CST6. Let (gI> ... , gil) be an isomorphism of El , ... , Ell, endowed with a 
structure ~ of species ~, onto Ei. . .. , E~, endowed with a structure ~' of the 
same species. If Vj is of type $(Tj ), put 

hj = <gI' ... , gil' Idu ... , Idm)TJ (1 ~ j ~ r), 

and let FJ=VJjEi, ... , E~, ~1!(1 ~j~ r). Then (hI, ... , hr) is an 
isomorphism of F 1> ... , F r onto F i, ... , F~ when these systems of sets are 
endowed with the structures of species 0 deduced from ~ and W respectively by 
the procedure P. 

It is clear that the terms Xl' ••• , XII are intrinsic for s. In many cases, 
the terms V1> ... , Vr are certain of the letters Xl' ... , XII; the structure 
of species 0 deduced from s by the procedure P is then said to be a 
structure underlying s. 

Examples 

* (I) The species of topological group structures has a single principal 
base set A, no auxiliary base set, and the corresponding generic structure 
is a pair (Sl' S2) (Sl being the graph of the law of composition on A, and 
Sz the set of open sets in the topology of A; cf. General T apology, Chapter III, 
§ I). Each of the terms Sl' S2 is a procedure of deduction and provides 
respectively the group structure and the topology underlying the topological 
group structure (Sl' S2)' 

Likewise, from a vector space structure can be deduced an underlying 
commutative group structure. From a ring structure can be deduced an 
underlying commutative group structure and a (multiplicative) semigroup 
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structure. From the structure of a differentiable manifold can be deduced 
an underlying topology, etc. 

(2) The species of vector space structures over C (resp. R) has a 
principal base set E, an auxiliary base set equal to C (resp. R), and 
typical characterization 

sle~«E X E) X E) and sae~«C X E) X E) 

(resp. Sl e ~«E X E) X E) and Sa e ~«R X E) X E». 

The pair (s1> Sa n «R X E) X E» is a procedure of deduction of a vector 
space structure over R from a vector space structure over C ("restriction 
of the field of scalars to R"). * 
(3) Suppose that 0 has the same (principal and auxiliary) base sets 
as 1:, and the same typical characterization. If, moreover, the axiom 
of 1: implies (in 19) the axiom of 0, it is clear that the term s is a pro­
cedure of deduction of a structure of species 0 from a structure of species 
1:. 0 is then said to be poorer than 1:, and 1: is richer than 0. Every 
structure of species 1:, in a theory 19' which is stronger than 'G, is then 
also a structure of species 0. For example, the species of structures of 
lotal?J! ordered sets (obtained by taking as axiom the conjunction of the 

-1 

axiom of order structures (no. 4, Example 1) and the relation sUs = A X A) 
is richer than the species of order structures. * The species of commu­
tative group structures is richer than the species of group structures. The 
species of compact topological space structures is richer than the species 
of topological structures, etc. * 
* (4) When each of 1: and 0 is the species of group structures (resp. 
ring structures), there is defined in algebra a procedure of deduction which 
associates with each group structure (resp. ring structure) the group struc­
ture (resp. ring structure) on its centre. When I: is the species of vector 
space structures over a field K, and when 0 is the species of algebraic 
structures over K, there are defined procedures of deduction which asso­
ciate with every vector space over K its tmsor algebra or its exterior algebra. 
We shall meet many other examples later in this series. * 
Remark. When P is a "q-tuple" (PI' ... , Pq), it is also said that the 
terms Pb •• " Pq constitute a procedure of i:l.eduction of a structure of 
species 0 from a structure of species I:. 

7. EQUIVALENT SPECIES OF STRUCTURES 

Let 1: and e be two species of structures, in the same theory ~, having 
the same principal base sets Xl' ••• , Xn, Let s, t be the generic structures 
of the species ~, e respectively. Suppose that the following conditions 
are satisfied : 

(I) We have a procedure of deduction Plxl, .,., Xn, sf ofa structure 
of species e on Xl' •• " xn from a structure of species ~ on Xu •• " Xn• 
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(2) We have a procedure of deduction Q I Xl' ••• , X", t! of a structure 
of species ~ on Xl' •••• x" from a structure of species 0 on Xl' •••• X". 

(3) The relation Q I Xu ••.• X"' P I Xl' ••. , X", s II = s is a theorem 
in 'iOE, and the relation P I Xl' •.. , X"' Q I Xl' .•• , X"' til = t is a theorem 
in 'iO®. 
The species of structures ~ and 0 are then said to be equivalent by means 
of the procedures of deduction P and Q. In this case, for every theorem 
B I Xl' ••• , X"' s! in the theory 'iOE. the relation B I Xl' ••• , X"' Q! is a 
theorem in 'iO®; and conversely, for every theorem C lXI' ... , X"' t! in the 
theory 'iO®, the relation C I Xl' •.. , X", P! is a theorem in 'iOE. 

~ If U is a structure of species ~, the structure deduced from U by 
the procedure P is said to be equivalent to U. Criterion CST6 implies 
the following: 

CST7. Let ~, ~' be two structures of species ~ on the principal base sets 
(EI' ... , E,,), (E~, ... , E~), respectively. Let ~ 0' ~ ~ be structures of species 0 
which are equivalent respectively to If and W. In order that (gu ... , g,,) should 
be an isomorphism with respect to the structures If 0 and lf~, it is necessary and 
sufficient that (gl' ... , g,,) should be an isomorphism with respect to the structures 
ti' and If'. 
In practice, we make no distinction between the theories 'iOE and 'iO® of 
two equivalent species of structures. 

Examples 

• (I) Let 1: be the species of commutative group structures; 1: has a 
single (principal) base set A, and its generic structure consists of a single 
letter F; the typical characterization of 1: is Fe$«AxA} xA), and we 
denote the axiom ofl: by R ! A, F ,. This axiom implies in particular that F 
is the graph of a function (the "law of composition" of the group; cf. 
no. 4, Example 2). In the theory 'G::£ (where 'G denotes the theory 
of sets) we define a term M I A, F! which is a functional graph in 
$«Z X A) X A) and satisfies the following relation B! M, A, F I : 
(Vx)(Vy)(Vn)«xeA and yeA and neZ) 

~ (M(n, F(x, y» = F(M(n, x), M(n, y)))) 
and (Vx)(Vm)(Vn)«xeA and meZ and neZ) 

~ (M(m + n, x) = F(M(m, x), M(n, x»» 
and (Vx)(Vm)(Vn)«xeA and meZ and neZ) 

~ (M(m, M(n, x» = M(mn, x))) 
and (Vx}«xeA) ==> (M(l, x) = x». 

("multiplication of an element of A by an integer"). 
Consider the species 0 of Z-module structures, which has a single 

principal base set A, with Z as auxiliary set, and whose generic strue-
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ture contains two letters G, L, with the typical characterization 

Ge$«A X A) X A) and Le$«Z X A) X A) 

and the axiom 

"R 1 A, G I and (L is a functional graph) and B 1 L, A, G I". 
It is immediately verified that the terms F, M constitute a procedure 

of deduction of a structure of species 9 from a structure of species ~, 
and that the term G is a procedure of deduction of a structure of species ~ 
from a structure of species 9. Furthermore, the condition (3) above is 
trivially satisfied. We may therefore say that the species of commutative 
group structures and the species of Z-module structures are equivalent. 

(2) Let 1: be the species of topological structures (no. 4, Example 3), 
let A be the (principal) base set, and let V be the generic structure 
of .E. Consider the relation 

xeA and Xc:A and (VU)«UeV and xeU) ~ (Xn U;I: !if». 

This relation has a graph Pc: $(A) X A with respect to the pair (X, x); 
P I A, V i is a term called "the set of all pairs (X, x) such that x lies 
in the closure of X with respect to the topology V". We can then prove 
(cf. General Topology, Chapter I, § 1) that the following relations are theo­
rems in G!l : 

P(!if) = fJ, 
(VY)«Yc:A) ~ (Yc:P(y»), 
(VY)«Yc:A) ~ (P(P(Y» = P(Y»), 

(Vy) (VZ) «Y c:A and Z c:A) ~ (P(Yu Z) = P(Y) u P(Z»). 

Consider the species of structures 9, having a single (principal) base 
set A, whose generic structure consists of a single letter W, which has as 
typical characterization We $($(A) X A) and as axiom 

W(fJ) = fJ and (VY)«Yc:A) ~ (Yc:W(Y))) 
and (VY)«Yc:A) ~ (W(W(Y» = W(Y») 
and (Vy)(VZ)«Y c:A and Z c:A) ~ (W(Yu Z)=W(Y) u W(Z))). 

Consider also the relation 

Uc:A and (Vx)«xeU) ~x.W(A - U». 

The set of all U e $(A) which satisfy this relation is a subset Q I A, W i 
of $(A). We can then prove (General Topology, Chapter I, § 1, Exercise 10) 
that the following relations are theorems in G8 : 

AeQ, 

(VM){(Mc:Q) ~ ((x~t X) eQ ). 

(VX)(Vy)«Xe Q and Ye Q) ~ «X n Y) e Q». 



MORPHISMS § 2.1 

Thus the terms PlA, V! and QlA, W! satisfy conditions (1) and (2) 
above, and it is easily seen that they also satisfy condition (3). The species 
of structures ~ and e are therefore equivalent, and we therefore consider 
every structure of species e as a topology, namely that which corresponds 
to it under the procedure of deduction Ql A, W \ . * 

2. MORPHISMS AND DERIVED STRUCTURES 

1. MORPIDSMS 

In this section and the next we shall assume for the sake of simplicity 
that the species of structures under consideration has only one base set 
(which is therefore a principal base set). The reader will have no difficulty 
in extending the definitions and results to the general case. 

Let ~ be a species of structures in a theory 'lO which is stronger than the 
theory of sets, and let x, y, s, t be four distinct letters which are different 
from the constants of '(0. We recall that the notation 5i(x,y) denotes the 
set of mappings of x into y (Chapter II, § 5, no. 2). Suppose that we 
are given a term a I x,y, s, t! in 'lO which satisfies the following conditions : 

(MOl) The relation "s is a structure of species ~ on x, and t is a 
structure of species ~ on y" implies, in E, the relation a l x,y, s, t! c :;Ji(x,y). 

(MOIl) if, in a theory 'lO' stronger than 'lO' we have three sets E, E', E" 
endowed respectively with structures 9', 9", 9'" of species ~, then the relations 
fe a IE, E', 9', ::I"! and g e a IE', E", ::1", 9"'! imply the relation 

gofealE, E",::I', 9'''1. 

(MOm) if, in a theory lV' stronger than lV, we have two sets E, E' endowed 
respectively with structures J', 9" of species ~, then a bijection f of E onto E' 

-1 
is an isomorphism if and only iff e (j I E, E', 9', 9"! and f e (j IE', E, 9", 9'! . 

If ~ and (j are given, the relation f e (j I x, y, s, t I is expressed by saying 
that f is a morphism (or a a-morphism) of x, endowed with s, into y, endowed 
with t. If (in a theory 'lO' stronger than '(0) E and E' are two sets 
endowed with structures 9', ~r' of species ~, then the term (j IE, E', 9', 9" ! 
is the set of a-morphisms of E into E'. 

Examples 

(I) Take ~ to be the species of order structures and let (j I x, y, s, t \ 
denote the set of all mappings f of x into y such that the relation 
(u, v) e s implies (f(u), f(v» e t. With the notation of Chapter III, § 1, 
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this means that u ~ u implies feu) ~ feu), i.e., that f is itu:reasing. The 
verification of axioms (MOl)' (MOil)' and (MOm) is obvious. 
(2) Take ~ to be a species of algebraic structures which has a single 
(internal) law of composition, everywhere defined (§l, no. 4, Example 2). 
Let A, N be two sets endowed with structures of species ~, and let p, P' 
be the composition laws of these two structures. Consider the mappings f 
of A into N such that pi (f(x), f(Y» = f(P(x, y» for all x e A and all 
yeA. These mappings satisfy (MOl)' (MOIl)' and (MOm), and are 
called homomorphisms of A into N. 

(3) Take ~ to be the species of topological strcutures (§l, no. 4, 
Example 3). Let A, N be two sets endowed with topologies V, V', 
respectively. Consider the mappings f of A into N such that the 

-1 
relation X' e V' implies f (X') e V (in other words, such that the inverse 
image of every open set in the topology V' is an open set in the topology V). 
These mappings, which satisfy (MOl)' (MOn) , and (MOm), are the 
continuous mappings of A into A' (with respect to the topologies V and 
V') (cf. General Topology, Chapter I, § 2). 

Remark. For given species of structures ~ we may have occasion to define 
various terms alx, y, s, t i which satisfy the conditions (MOl)' (MOu ), 
and (MOm)' For example, if ~ is the species of topological structures, 
with the notation of Example 3 above, a mapping f of A into A' is 
said to be open if the relation X e V implies f(X) e V' (in other words, 
if the image under f of every open set is an open set). It is easily checked 
that the open mappings also satisfy conditions (MOl)' (MOn ), and (MOm) 
for the species~. • Moreover, it can be shown that a continuous mapping 
is not necessarily open, and that an open mapping is not necessarily contin­
uous.. A given species of structures therefore tfou not imply a well­
defined notion of morphisms. 

Where order structures, algebraic structures, and topological structures 
are concerned, it is always to be understood that the morphisms are those 
which have been defined in the Examples above, unless the contrary is 
expressly stated. 

The condition (MOm) and the characterization of bijections (Chapter II, 
§ 3, no. 8, Corollary to Proposition 8) imply the following criterion : 

CST8. Let E, E' be two sets, each endowed with a structure of species 1:. Let f 
be a a-morphism of E into E' and let g be a a-morhpism of E' into E. g 
g 0 f is the identiry mapping of E onto itself, and if fog is the identity mapping 
of E' onto itself, then f is an isomorphism of E onto E', and g is the inverse 
isomorphism. 
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It should be noted that a bijection of E onto E' may be a a-morphism 
without the inverse bijection necessarily being a a-morphism. • For 
example, a bijective mapping of a topological space A onto a topological 
space N can be continuous without the inverse bijection being contin­
uous (Gen8Tal Topology, Chapter I, § 2, no. I, Remark I) .• 
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Remark. When a species of structures 1: has several principal base sets 
Xl> ••• , xn' and auxiliary base sets AI' ... , Am' a a-morphism is a system 
(ft, ... , In), where Ii is a mapping of Xi into Yi (I ~ i ~ n), and these 
systems of mappings satisfy conditions analogous to (MOn) and (MOm), 
which the reader may easily state for himself. 

2. FINER STRUcrURES 

For the rest of this section we shall suppose that we are given a species of 
structures 1: and a notion of er-morphism relative to this species of struc­
tures; all the notions which will be introduced will depend not only on l: but 
also on the notion oj er-morphism envisaged. Usually we shall say "morphism" 
in place of "er-morphism". 

~ Let E be a set and let ~'t, !:f 2 be two structures of species ~ on E. The 
structure !:f 1 is said to be finer than !:f 2 (and !:f 2 coarser than !:f 1) if the 
identity mapping of E, endowed with !:f1, onto E, endowed with ~f2' 
is a morphism. 

When necessary to avoid ambiguity, we shall say that 9'1 is finer than lla 
relative to the notion of a-morphism under consideration; and similarly for all 
the other notions to be defined in this section. 

Suppose that !:f1 is finer than ~2' If E' is a set endowed with a structure 
~, of species l:, and if f is a morphism of E, endowed with ~ 2' into E', 
endowed with ~I, then f is also a morphism of E, endowed with ~1' 
into E', endowed with ~I; this follows from the preceding definition 
and from (MOn ). Likewise, if g is a morphism of E', endowed with ~', 
into E, endowed with ~1' then g is also a morphism of E', endowed 
with ~', into E, endowed with ~ 2' 

Thus the finer the structure (of species 1:) on E, the more morphisms 
there are with E as source, and the fewer morphisms with E as target. 

The relation "~1 is coarser than 9'2" is an order relation between ~ 1 
and ~2 on the set of all structures ofthe species 1: on E; for it is reflexive 
by (MOm), transitive by (MOu ), and if a structure of species l: is 
both finer and coarser than another, then the two structures are identical 
by virtue of (MOm)' In conformity with the general definitions 
(Chapter III, § 1, no. 14), two structures of species ~ on E are said to 
be comparable if one is finer than the other; a structure is said to be 
strictly finer (resp. strictly coarser) than another if it is finer (resp. coarser) 
than the other and is distinct from it. 
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Examples 

(1) An order structure with graph s on a set A is finer than an order 
structure with graph s' if and only if s c s'. In other words, the relation 
x ~ y with respect to s implies x ~ y with respect to s'; this is in 
accordance with the definition given in Chapter III, § 1, no. 4, Example 3. 
(2) Consider two algebraic structures F, F' of the same species ~ 
on a set A, where F and F' are the graphs of the (everywhere defined) 
laws of composition of these two structures. From the definition of mor­
phisms in this case (no. 1, Example 2), F is finer than F' if and only if 
Fe F'. But since F and F' are both functional graphs with the same 
domain A X A, we must have F = F'. In other words, two comparable 
structures of species ~ are necessarily identical. 
(3) Let V, V' be two topologies on the same set A. To say that V 
is finer than V' means, by virtue of the definition of morphisms in this 
case (no. 1, Example 3), that V' c V; in other words, every subset of A 
which is an open set in the topology V' is also an open set in the topology V 
(and thus, the finer the topology, the more open sets there are). 

Remark. We have just met an example (Example 2) in which two compa­
rable structures of the same species ~ are necessarily identical. There 
are many other such examples : linear order structures, * compact topo­
logies, Frechet space structures (the morphisms being continuous linear 
mappings), topologies defined by an absolute value (or a valuation) on a 
division ring, etc. * 

For such a species of structures ~, a morphism f of E into E' which 
is bijective is an isomorphism; for if we transport to E' the structure {i on E 
by means of J, we obtain a structure of species ~ which is finer than the 
structure W on E' and therefore coincides with {i'. 

3. INmAL STRUCTURES 

Consider a family (A')'EI of sets, each of which is endowed with a struc­
ture 9', of species l;. Let E be a set, and for each LeI let f.. be a 
mapping oj E into A,. A structure J of species l; on E is said to be an 
initial structure with respect to the family (A" 9'" f..)IEI if it has the following 
property: 

(IN) Given any set E', any structure of species 9" on E', and any 
mapping g oj E' into E, the relation 

"g is a morphism of E' into E" 

is equivalent to the relation 

"for each LeI, f.. 0 g is a morphism of E' into A,". 
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CST9. If there exists an initial structure on E with respect to the family 
(A" ~"J.J,eI' it is the coarsest of all structures of species ~ on E for which 
each of the mappings J,. is a morphism, and consequently is unique. 
Let J be an initial structure on E, and let ~ be a structure of species ~ 
on E for which each of the J,. is a morphism. If i denotes the identity 
mapping of E, endowed with 9', into E, endowed with J, then J,. 0 i is 
a morphism for all ~ e I, and the condition (IN) shows that i is a morphism, 
which means (no. 2) that ~ isfmer than J. On the other hand, applying 
(IN) to the case in which g is the identity mapping of E (endowed 
with J) onto itself, we see (by (MOm)) that each J,. is a morphism of E 
into A" which completes the proof. 

It may happen that there exists a structure of species ~ on E which is 
the coarsest of all the structures of species ~ for which the J,. are mor~ 
phisms, but that this structure is not the initial structure with respect to 
(A" <J" J,) (Exercise 6). 

We have the following transitivity criterion: 

OSTIO. Let E be a set, let (AI),eI be a family of sets, and for each ~ e I 
let ~, be a structure of species ~ on AI' Let (J).heL be a partition of I, and 
let (B).heL be afamily of sets indexed by L. For each A e L let h). be a mapping 
of E into B)" and for each A eLand each L eJ), let g).1 be a mapping of B). 
into A" and let fl = gA' 0 h).. Suppose that, for each A e L, there exists an 
initial structure ~~ on B). with respect to the family (A" ~" g).')leJ' Then the 
following statements are equivalent : A 

( a) there exists an initial structure J on E with respect to the family 
(A" IJ"f')leI; 

(b) there exists an initial structure JI on E with respect to tke family 
(B)" 9'~, h)'heL' 

Furthermore, these statements imply that J = JI. 

Let F be a set endowed with a structure of species ~, and let u be a 
mapping of F into E. Observe that by definition the relation Uk). 0 u 
is a morphism of F into B)," is equivalent to the relation "for all L eJ)., 
g)'1 0 h), 0 u = f, 0 u is a morphism of F into At. The relation 

(1) "for all A e L, k). 0 u is a morphism of F into ~" 

is therefore equivalent to the relation 

(2) "for all L e I,fl 0 u is a morphism of F into At. 
Now, to say that JI is the initial structure with respect to the family 
(~, 9'~, h).heL means that relation (1) is equivalent to the relation "u 
is a morphism of F into E endowed with J"'; and to say that J is the 
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initial structure with respect to the family (A" ~" J,.LeI means that 
relation (2) is equivalent to the relation "u is a morphism of F into E 
endowed with In. Hence the result, in view of the property of uniqueness 
of initial structure. 

4. EXAMPLES OF INITIAL STRUCTURES 

I. Inverse image of a structure. When I is a set consisting of a single 
element, the initial structure with respect to (A,~, f) is called the inverse 
image under f of the structure ~ (when it exists). 

lit A topology always has an inverse image under any mapping j; but 
this is not the case for an order structure or an algebraic structure. lit 

II. Induced structure. Let A be a set endowed with a structure ~ of 
species 1:, let B be a subset of A, and let j be the canonical injection 
of B into A. Then the inverse image under j of the structure B (if it 
exists) is called the structure induced by ~ on B. 

An order structure induces a structure of the same species on every subset 
of the set on which it is defined; but this is not the case for the structure 
of a directed set. lit A topology induces a topology on every subset of the 
set on which it is defined, but a compact topology does not in general 
induce a compact topology. An algebraic structure on a set A does not 
in general induce a structure of the same species on an arbitrary subset B; 
if the given structure on A consists of laws of composition which are 
everywhere defined, then it is necessary that B should be stable with 
respect to each of these laws, but this necessary condition is not always 
sufficient .... 

The general criterion CSTIO gives us the following transitivity criterion for 
induced structures : 

CSTl!. Let B be a subset of A, let C be a subset of B, and let ~ be a 
structure of species 1: on A which induces a structure ~' of the same species 
on B. Then ~ induces a structure of species 1: on C if and only if W induces 
a structure of species 1: on C, and the structures induced on C by ~ and ~' are 
then identical. 

CST12. Let A, A' be two sets endowed with structures ~, Sf' of species 1:. 
Let B be a subset of A, and B' a subset of A'. Suppose that ~ (resp. ~') 
induces a structure of species 1: on B (resp. B'). Iff is a morphism of A 
into A' such that feB) c B', then tke mapping g of B into B' which coincides 
with f on B is a morphism (with respect to the structures induced by ~ and ~'). 

Let j (resp. j') be the canonical injection of B (resp. B') into A (resp. 
A'). By definition we have f 0 j = j' 0 g. Since f and j are morphisIDS, 
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SO is f 0 j by (MOu); but then, j' 0 g being a morphism, the mapping g 
is a morphism by the definition of initial structure. 

III. Product structure. Let (A')'EI be a family of sets, and on each set Al 
let If, be a structure of species:E. Let E = IT A, be the product of the 

,EI 
family (A')'EI (Chapter II, § 5), and let prj denote the projection of E 
onto A,. The initial structure (if it exists) with respect to the family 
(A" 9'" pr')IEI is called the product of the structures ~,. 

A family of order structures always admits a product structure, but the 
same is not always true of a family of total order structures. * A family 
of group structures always admits a product structure, but the same need 
not be true of a family of division ring structures. A family of topologies 
always admits a product structure, but this is not always true of a family of 
structures of locally compact spaces; in this case, there is a product struc­
ture of the same species if the family is finite, but there need not be one 
if the family is irifinite (cf. General Topology, Chapter I, § 9, no. 7, Prop. 14). * 

Criterion CSTlO gives rise to the following associativity criterion for product 
structures : 

CST13. Let (AI)'EI be a family of sets, and for each index LeI let ~, be a 
structure of species :E on A,. Let (J>.hEL be a partition of I. Suppose that 
on each partial product ~ = IT A, the family (~')'EJl admits a product structure 

9'~. Then the family (9',),~~J~dmits a product structure ~ if and only if the 
family (~~heL admits a product structure ~/, and the canonical mapping of 
E = II AI' endowed with 9', onto F = II ~,' endowed with 9" (Chapter II, 

lei }.eL 
§ 5, no. 5), is then an isomorphism. 

Another application of CSTlO gives the following criterion concerning 
structures induced by a product structure: 

CST14. Let (A,),el be afamily ofsets, andfor each LeI let!f, be a struc­
ture of species :E on AI. For each LeI, let B, be a subset of A,. Suppose 
that each ~, induces a structure 9': on B" and that on the product E = II A, 

leI 
there exists a structure !f 0 which is the product of the family (~I). Then the 
following statements are equivalent : 

(a) on the set B = II B, c E there exists a structure ~ induced by !fo; 
ieI 

(b) on the set B there exists a structure !fl which is the product of the family 
of structures US:). 
Furthermore, these statements imply that !f = !f'. 
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Let jl be the canonical injection of BI into A" let j be the canonical 
injection of B into E, let PI be the projection of E onto A" and let P; 
be the projection of B onto BI. Then we have PI 0 j = jl 0 p; for all 
tel. By eST 10, 9' is the initial structure with respect to the family 
(AI' 9'" p, 0 j)IEI' and 9" is the initial structure with respect to the family 
(A" 9'"jl 0 P;)IEI' Hence the result. 
~ The notions of inverse image and product are related by the following 
criterion: 

eSTI5. Let (AI) lEI he a family of sets, and for each tel let ~ I he a struc­
ture of species ~ on A" and let.!" he a mapping of a set E into AI' Suppose 
that on the product set A = II AI there exists a product structure 9' of the 

IEJ 
family (lil)'EI' Then there exists an initial structure with respect to the family 
(A" 9'"f')'EI if and only if the structure ~ has an inverse image under the mapping 
x -+ f(x) = (fl(x)) of E into A, and these two structures are then identical. 

Since fl = prl of, this criterion is a particular case of eSTlO. 

Remark. Let (9').ha be a family of structures of species I: on the same 
set A; let A). denote the set A endowed with the structure 11)., and let I). 
denote the identity mapping of A into A).. Let B be the product set 

AL = II A)., and let A be the diagonal of this product (Chapter II, 
).EL 

§ 5, no. 3). Let h be the diagonal mapping of A onto A, so that h(x) 
is the element (X).hEL such that X>. = x for all ).e L. Suppose that 
there exists on B a product structure 9" of the family (9').)' Since h 
is injective, criterion CST 15 shows that there exists an initial structure lJ 
with respect to the family (A)., ff)., IA>).EL if and only if there exists a struc­
ture lJ" on 6. induced by 9"; 9''' is then identical with the structure 
obtained by transporting lJ to 6. by means of h. In particular, when 
all the structures 9'). are identical, h is an isomorphism of A (endowed 
with this structure) onto 6.. 

We have also the following criterion: 

eST16. Let (AI)IEI' (B')'EI he two families of sets indexed by the same set. 
For each tel, let 9', he a structure of species 1: on AI and let 9'; he a struc-

ture of species ~ on BI • Suppose that there exists on A = II A, (resp. on 
'EI 

B = liB,) a product structure 9' (resp. 9") of the family (9',) (resp. (9';». 
,EI 

Foreach tel, let.!" be a morphism of A, intoB,. Thenthemappingf=(f,'),eI 
is a morphism of A into B. 

Let PI (resp. qJ be the projection of A onto AI (resp. of B onto B,). 
Then we have q, of='!" op,. Since.!" and p, are morphisms (criterion 

278 



EXAMPLES OF INITIAL STRUCTURES §2.4 

CST9), I, 0 p, is a morphism by (MOn); hence 1 is a morphism by 
(IN). 

Remark. For most of the usual structures, the condition given in CST 16 
is not only sufficient but also necessary for f to be a morphism (cf. Exer­
cise 7). In particular, this is so in the following circumstances (which 
occur, for example, if ~ is the species of order structures, * or the species 
of group structures, or the species of topological structures *, etc.; cf. 
Exercise 8) : 

~ There exists a family (a,)'EI such that a, eA, for all LeI and such 
that, if we put r,(x,) = (Yx), where y, = x, and Yx = ax whenever x i= L, 
each of the mappings r, is a morphism of A, into A. For iff = (J;) 
is a morphism of A into B, we may write J; = q, 0 for, for all LeI, 
and it is enough to apply (MOn). 

~ Note that r, is a morphism if the following condition is satisfied: 

(a) For every set E endowed with a structure of species ~, the constant 
mapping z --+ a, is a morphism of E into A,; namely, for each x e I, 
Px 0 r, is a morphism of A, into Ax, since it is the identity mapping 
when x = L, and a constant mapping z --+ ax when x i= L; by the defi­
nition of product structure, r, is therefore a morphism of A, into A. 

~ The examples listed above satisfy not only (a), but also the following 
condition: 

(b) On every set A; = A, X II {ax}, the structure fJ induces a struc-
ture of species 1:. It:;!' , 

~ Let p; denote the restriction of p, to A;. If both conditions (a) and 
(b) are satisfied, then p; is an isomorphism of A: onto A,. For since 
p; = p, oj" where j, is the canonical injection of A; into A, p; is a 

-1 -1 

morphism by (MOn ). Also we have r, = j, 0 p;; hence p; is a mor­
phism of A, into A; by virtue of the definition of induced structure. 

Finally, we have the following criterion, which characterizes the morphisms 
in many cases : 

CST17. Let A and B be two sets, endowed with structures if A, if B qf the 
same species~. Suppose that there exists on A X B the structure 9' AxB, the 
product qf g' A and :f B' Let 1 be a mapping qf A into B, let F be its graph, 
and let 1t be the bijection x --+ (x, 1 (x)) 01 A onto F. Then, lor 1 to be a 
morphism qf A into B, it is necessary and sufficient that there should exist on F 
a structure qf species ~ induced by 9' AxB and that, when F is endowed with this 
structure, 1t should be an isomorphism 01 A onto F. 

To prove sufficiency, let J be the canonical injection of F into A X B. 
We may write 1 = pr2 0 j 0 1t, and 1 is then by hypothesis the composi­
tion of three morphisms. 
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~ To prove necessity, let ~.fF be the structure of species I: obtained 
by transporting the structure ~ A to F by means of the bijection 1t 

(§ I, no. 5). Then we must show that 9'F is induced by 9'AXR on F. 
We remark first that j is a morphism of F into A X B; for j 0 7t is 
the mapping x ~ (x, I{x» of A into A X B and is therefore a 
morphism by virtue of the hypothesis on I and the definition of the 
product structure; hence, by the definition of the structure ~F' j is a 
morphism. It remains to be shown that if E is a set endowed with 
a structure of species I:, and if g is a mapping of E into F such that 
jog is a morphism of E into A X B, then g is a morphism; or, equi-

-1 

valently, that gl = 7t 0 g is a morphism of E into A. But since 
gl = prl 0 (j 0 g), this follows from the hypothesis and the definition of the 
product structure. 

5. FINAL STRUCTURES 

Consider a family of sets (A')'El' each endowed with a structure ~I of 
species I:. Let E be a set, and for each LeI let gl be a mapping oj AI 
into E. A structure fJ of species I: on E is said to be a final structure 
with respect to thelamily (A" ~I' gl)IEl ifit has the following property: 

(FI) Given any set E', any structure ~' of species I: on E, and any 
mapping I oj E into E', the relation 

''1 is a morphism of E into E'" 

is equivalent to the relation 

"for all L e 1,10 gl is a morphism of AI into E"'. 

CSTI8. If there exists a final structure on E with respect to the family 
(AI' ~I' gl)'EI' then it is the finest structure oj species I: on E for which each oj 
the mappings gl is a morphism, and is therefore unique. 

Let 51 be a final structure on E, and let !f be a structure of species I: 
on E for which each g, is a morphism. If i denotes the identity map­
ping of E, endowed with fJ, onto E, endowed with ~, then i 0 gl is a 
morphism for each LeI. The condition (FI) then shows that i is a 
morphism, which means (no. 2) that ~ is coarser than fJ. Applying (FI) 
again to the case in which f is the identity mapping of E (endowed 
with fF) onto itself, we see (using (MOm» that each gl is a morphism 
of AI into E. This completes the proof. 
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It may happen that there exists a structure of species 1: on E which is 
the finest of all structures of species 1: on E for which the 8, are mor­
phisms, but that this structure is not the final structure with respect to the 
family (A" !II' 81) (Exercise 6). 
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We have the following transitiviry criterion: 

CSTI9. Let E be a set, let (A,),ex be afamily of sets, andfor each tel let 
~, be a structure of species L on A,. Let (J).heL be a partition of I, and let 
(~heL be a family of sets indexed by L. For each A e L, let h)" be a mapping 
of B)" into E; for each A eLand each ~ &J)", let g,)" be a mapping of AI into 
~, and put J.. = h)" 0 g ,)'" Suppose that, for each A e L, there exists a final 
structure 9'~ on B)" with respect to the family (A" 9'" gl).)le.J' Then the 
following statements are equivalent : 1 

(a) There exists a final structure fF on E with respect to the family 
(A" 9'" f,J,eI' 

(b) There exists a final structure " on E with respect to the family 
(~, 9'~, h)"heL' 
Furthermore these statements imply that fJ = fJ'. 

Let F be a set endowed with a structure of species L, and let u be a 
mapping of E into F. By definition, the relation "u 0 ~ is a morphism 
of B)" into F" is equivalent to the relation 

"for all t eJ)., u 0 h)" 0 g,1.. = u 0 J.. is a morphism of AI into F". 

The relation 

(3) "for all A e L, u 0 h).. is a morphism of B>, into F" 

is therefore equivalent to the relation 

(4) "for all tel, u o./;, is a morphism of AI into F". 

To say that [i' is the final structure with respect to the family (B>" 9'~, h)..heL 
means that the relation (3) is equivalent to the relation "u is a morphism 
of E (endowed with fJ/) into F"; and to say that E is the final struc­
ture with respect to the family (A" 'J"J..)lex means that the relation (4) 
is equivalent to the relation "u is a morphism of E (endowed with fJ) 
into F"; hence the result, in view of the property of uniqueness of final 
structure. 

6. EXAMPLES OF FINAL STRUCTURES 

I. Direct image of a structure. When I is a set consisting of a single element, 
the final structure with respect to (A, 9',f) is called the direct image under f 
of the structure 9' (when it exists). 

II. Quotient structure. Let A be a set endowed with a structure 9' of 
species L, let R be an equivalence relation on A, and let cp be the 
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canonical mapping of A onto the quotient set E = AIR (Chapter II, 
§ 6, no. 2). The direct image of the structure 9' under the mapping cp 
is called (when it exists) the quotient of the structure g by the relation R. 

• In general, an order structure or an algebraic structure does not admit 
quotient structures with respect to arbitrary equivalence relations (c£ 
Chapter Ill, § 1, Exercise 2). On the other hand, a topology always 
admits a quotient structure with respect to an arbitrary equivalence rela­
tion, but this is not necessarily the case for a Hausdorff topology .• 

Let A, B be two sets endowed respectively with structures g, 9" of 
species ~, and let f be a morphism of A into B. Let R be the equi­
valence relation f(x) =f(y), let cp be the canonical mapping of A onto 
AIR, and let j be the canonical injection of f (A) into B. Suppose that 
g admits a quotient structure 9'0 with respect to R, and that W induces 
a structure l:J'~ on f (A). Then, in the canonical decomposition f = jog 0 cp 
of f (Chapter II, § 6, no. 5), the bijection g of AIR onto f (A) which 
is associated with f is a morphism (but not necessarily an isomorphism) 
when AIR is endowed with go and f(A) with g~. For jog is a mor­
phism of AIR into B by the definition of quotient structure, and g is 
therefore a morphism of AIR onto f (A) by the definition of induced 
structure. 

CST20. Let A, N be two sets endowed with structures g, 9" of species ~, 
and let R (resp. R/) be an equivalence relation on A (resp. N). Suppose that 
there exists a quotient structure go (resp. 9'~) of!i by R (resp. W by R /). If f 
is a morphism of A into N which is compatible with the equivalence relations R 
and R', and if g is the mapping ohtained from f hy passing to the quotients, 
then g is a morphism of AIR into N IR'. 

Let cp (resp. cp') be the canonical mapping of A onto AIR (resp. of N 
onto AIIR'); then we have g 0 cp = cpl 0 f. Since cpl and fare mor­
phisms, so is cp' 0 f by (MOn ). But then, g 0 cp being a morphism, g is 
also a morphism by the definition of quotient structure. 
~ The transitivity criterion CSTl9 gives rise in particular to the follow­
ing criterion: 

CST21. Let A be a set endowed with a structure !J of species ~, and let R 
be an equivalence relation on A such that there exists on AIR a quotient structure 
!i' of ff by R. Let S be an equivalence relation on A which is coarser than R, 
and let SIR denote the equivalence relation on AIR which is the quotient of S 
by R (Chapter II, §6, no. 7). Then there exists on (A/R)/(S/R) a quotient 
structure !in of!il by SIR if and onb' if there exists on AIS a quotient struc­
ture !io of !J by S, and the canonical mapping of A/S (endowed with !io) 
onto (AIR) I(S/R) (endowed with !in) is an isomorphism. 
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Let <p be the canonical mapping of A onto AIR, and let IjJ be that 
of AIR onto (AIR) I(S/R). By virtue ofCST19, !iH is the quotient oUf' 
by SJR ifand only if 9'" is the final structure with respect to (A, 9', IjJ 0 <p). 
The criterion then follows from the fact that the relation 1jJ( <p(x)) = 1jJ( <p(y)) 
is equivalent to S. 

Remark. Let A be a set endowed with a structure !:I of species l:, and 
let R be an equivalence relation on A such that there exists on E = AfR 
a quotient structure !:I' of !:I by R. Let cp be the canonical mapping of 
A onto E. In general, there exists no section s of <p (Chapter II, § 3, 
no. 8) which is a morphism of E into A. Let us suppose that such a sec­
tion s exists, and moreover that there exists a structure !:IIr induced by !:I 
on seE). Then, if j denotes the canonical injection of seE) into A and 
if s = j 0 J, the bijection f is an isomorphism of E onto seE). For f is a 
morphism by the definition of induced structure, and g = cp 0 j is a mor­
phism of s(E) onto E by reason of (MOil)' Since g 0 f and fog are 
the identity mappings of E and seE), respectively, the assertion is a 
consequence of CSTB. 

3. UNIVERSAL MAPPINGS 

1. UNIVERSAL SETS AND MAPPINGS 

Let ~ be a theory which is stronger than the theory of sets, and let E be a 
term in~. Let ~ be a species of structures in~. For simplicity we 
shall suppose throughout that l: is defined on a single (principal) base 
set, and for brevity we shall say "l:-set" for "set endowed with a structure 
of species l:". Furthermore, we shall suppose that the a-morphisms have 
been defined for the species l: (§ 2, no. 1; as in § 2, we shall say "morphism" 
in place of "a-morphism"). Finally, the species l: being defined on the 
base set x and having s as generic structure (§ 1, no. 4), let us suppose 
that a term IX! x, s! is defined in ~E, satisfying the following conditions: 

(QM1) The relation lXix,s! c:iJi(E;x) istru.ein ~E' 

(QMIl) If (in a theory '(p' which is stronger than ~) F and F' are two sets 
endowed with structures if, 9" of species l:, and iff is a morphism of F into F', 
then the relation <p e IX IF, 9'! implies f 0 <p e IX I F', 9"!. 
We shall express the relation <p e IX I x, s! by saying that <p is an IX-mapping 
of E into x (endowed with s). 
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A ~-set FE and an at-mapping CPE of E into FE are said to be uni­
versal if the following condition is satisfied : 

(AU) For each at-mapping cP of E into a ~-set F there exists a unique morphism 
f of FE into F such that cP = f 0 CPE' 

The pair (FE' CPE) is then also said to be a solution of the universal mapping 
problem for E (relative to ~, cr, and at). 

~ Let (F~, cp~) and (~, cp~) be two solutions of the universal mapping 
problem for E. The condition (AU) shows then that there exists a unique 
morphismfl ofF~ into F~ and a unique morphism fa of ~ into F~ such that 
cP~ = h. 0 cP~ and cP~ = fa 0 cp~. We have therefore cP~ = fa 0 h. 0 cP~ and 
cP~ = h. 0 fa 0 cp~. Applying (AU) to the case where F = F~ and 
cP = cP~, we find that fa 0 h. is the identity mapping of F~ onto itself. 
Similarly, h. 0 fa is the identity mapping of ~ onto itself. Consequently 
(§ 2, no. I, criterion CST8) h. is an isomorphism of FE onto ~, and f2 
is its inverse isomorphism. This result is expressed by saying that the 
solution of the universal mapping problem for E is unique up to isomor­
phism. 

To verify that a pair (FE' CPE) is a solution of the universal mapping 
problem for E, it is often convenient to verify the following two conditions : 

(AUD For every ~-set F and every at-mapping cP of E into F, there exists a 
morphism f oj FE into F such that <P = f 0 <PE' 
(AUh) For every ~-set F, two morphisms of FE into F which agree on <PE(E) 
are equal. 

For if these two conditions are satisfied, the morphism f whose existence is 
ensured by (AUD is unique by (AUh). Conversely, it is clear that (AU) 
implies (AUD; furthermore, iff and f' are two morphisms of FE into F 
which agree on CPE(E), we have f 0 CPE = f' 0 CPE' whence f = f' by 
applying (AU) to the at-mapping f 0 CPE' Hence (AU) implies (AUh). 

2. EXISTENCE OF UNIVERSAL MAPPINGS 

A universal mapping problem does not necessarily have a solution (Exer­
cise I). However, we shall show that the following conditions imply the 
existence of a solution : 

(CUI) On every product of a family of ~-sets there exists a product structure of 
species ~ (§ 2, no. 4). 

(CUll) Let (FI)IEI be a family of ~-sets, and for each LeI let CPI be an 
at-mapping of E into Fl' Then the mapping (<p,),Elof E into II F,-(endow-
ed with the product structure) is an at-mapping. lEI 
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A subset G of a 1:-set F will be said to be 1:-admissihle if the structure 
on F induces a structure of species 1: on G (§ 2, no. 4). 

(CUm) There exists a cardinal 4 with the following properties: for every 
1:-set F and every a.-mapping ep of E into F there exists a 1:-admissihle suhset G 
of F which contains epeE), has cardinal ~ 4, is such that the mapping of E into 
G having the same graph as ep is an oc-mapping, and such that any two morphisms 
of G into a 1:-set, which agree on epeE), aTe equal. 

CST22. If the conditions (CUI) to (CUm) are satisfied, then the universal 
mapping problem fOT E has a solution. 

We shall first show that if there exists a pair (FE' epE) which satisfies (AUD, 
then there also exists a solution of the universal mapping problem for E. 
For by (CUm) there exists a 1:-admissible subset F~ of FE containing 
epE(E), such that the mapping ep~ of E into F~ which has the same 
graph as epE is an a.-mapping, and such that any two morphisms of F~ 
into a 1:-set which agree on epE(E) are equal. Let j be the canonical 
injection of F~ into FE' so that epE = j 0 ep~. For every morphism f of 
FE into a 1:-set F, f" j is a morphism of F~ into F, and we have 
f 0 epE = (f 0 j) 0 ep~. It is therefore clear that (F~, ep~) satisfies (AUD 
and (AUh). 

It remains for us to establish the existence of a pair (FE' epE) satisfying 
(AUi). Let s e Sex) be the typical characterization of the species of 
structures 1:, and consider the subset L of $(4) X S(4) X $(E X 4) 
consisting of all triples A = (X, V, P) having the following property: 
"V is a structure of species 1: on X c a, and P is the graph of an a.-mapp­
ing of E into X (with respect to the structure V)" 
(observe that we have SeX) c Sea), as is easily seen by arguing step by 
step on the length of the echelon construction scheme S). For every 
A = eX, v, P) e L, we denote by X" the set X endowed with the 
structure V, and by ep). the mapping of E into X). whose graph is P. 

Let FE be the 1:-set which is the product of the X). (it exists by (CUI))' 
and let epE be the mapping x ~ (ep).(x)) of E into FE' which is an 
a.-mapping by virtue of (CUn). Let us show that the pair (FE' epE) 
satisfies (AUi). Given an a.-mapping ep of E into a 1:-set F, let G be a 
subset of F which satisfies the conditions stated in (CUm). Let j be the 
canonical injection of G into F, and let ~ be the mapping of E into G 
which has the same graph as ep, so that ep = j o~. It follows from (CUm) 
that ~ is an a.-mapping of E into G. Since Card (G) ~ 4, there is a 
subset G' of a equipotent to G. Let g be a bijection of G onto G'. 
If we transport by means of g the structure of species 1: on G, there 
exists by definition an element A of L such that G' (endowed with the 
transported structure) is equal to X). and such that g 0 ~ = ep).. Then 
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f = j 0 gl 0 PI). is a morphism of FE into F such that q:I = f 0 q:lE, and 
the proof is complete. 

CST23. Let (FE' q:lE) be a solution of the universal mapping problem for E. 
Then q:lE is an injection of E into FE if and onry if, for each pair of distinct 
elements x, y of E, there exists an f1..-mapping q:I of E into a ~-set F such that 
q:I(x) :F cp(y). 

Since q:lE is an f1..-mapping, the criterion is an immediate consequence of the 
definitions. 

~ In this case the f1..-mappings are said to separate the elements of E, and 
we do not ordinarily make any distinction, in the terminology, between 
the elements of E and their images under q:lE' With this convention, 
if (FE' q:lE) is a solution of a universal mapping problem, and if 
condition (CUm) is satisfied, then every f1..-mapping of E into a ~-set F 
extends uniquery to a morphism of FE into F. 

3. EXAMPLES OF UNIVERSAL MAPPINGS 

* The examples which follow will, for the most part, be treated in detail 
elsewhere in this series. 

I. Free algebraic structures. Let E be a set and let ~ be a species of alge­
braic structures, defined by one or more laws of composition. We take as 
morphisms the homomorphisms for the species ~ under consideration, and 
as f1..-mappings arbitrary mappings of E into a ~-set (in other words, 
f1.. ! x, s I = ;J(E, x». All the usual species of algebraic structures satisfy 
(CUm); with the exception of division ring structures, they also satisfy 
(CUI)' and (CUll) is here a trivial consequence of (CUI)' 

Since in general there exist structures of species ~ defined on sets with 
at least two elements, the f1..-mappings separate the elements of E, and E 
may therefore be considered as embedded in F E' FE is said to be the 
free ~-set generated by E. Thus in algebra we speak of free semigroups, 
free groups, free modules, and free algebras. 

II. Rings and fields of fractions. Let E be a commutative ring with an 
identity element and let S be a multiplicatively closed subset of E which 
does not contain O. We take ~ to be the species of structures of commu­
tative rings with identity element, and the morphisms to be ring homomor­
phisms which transform identity element into identity element. The 
«-mappings will be the homomorphisms q:I of E into a commutative 
ring A with an identity element, such that q:I(l) = I and q:I(S) contains 
only units of A. The conditions (QMIl) , (CUI) throngh (CUm) (with 
a = Card (E) Card eN» are immediately verified. The universal map­
ping problem therefore always has a solution (FE' q:lE), but in general q:lE 
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is not lUJective. The most frequently arising case is that in which E is an 
integral domain; in this case, <fiE is injective. If, moreover, we take 
S = E - {O}, then FE is a field, called thefield offractions of E. 

III. Tensor product of two modules. Let E be the product A X B of two 
modules over a commutative ring C which has an identity ele­
ment. Take 1': to be the species of C-module structures, the mor­
phisms to be linear mappings, and the ex-mappings to be bilinear mappings 
of Ax B into a C-module. The condition (QMn) is evidently satisfied, 
and so are (CUI) through (CUm) (with (t = Card (E) Card (C) Card (N)). 
The universal C-module FE corresponding to the pair (A, B) is called 
the tensor product of A and B and is written A ® B. The universal 
mapping <fiE is written (x, y) ~ x ®y; it is bilinear but not, in general, 
injective. 

IV. Extension of the ring of operators of a module. Let A be a commutative 
ring with an identity element, let B be a subring of A containing the 
identity element of A, and let E be a B-module. The species 1': 
is the species of A-module structures, the morphisms are A-linear 
mappings, and the ex-mappings are the B-linear mappings of E into an 
A-module. The universal A-module FE corresponding to the B-module 
E is said to be obtained by extending to A the ring of operators B of E. 

V. Completion of a uniform space. Let E be a uniform space. Take 1': 
to be the species of structures of complete Hausdorff uniform spaces, the 
morphisms to be uniformly continuous mappings, and the ex-mappings to 
be uniformly continuous mappings of E into a complete Hausdorff uni­
form space. The I:-admissible subsets of a complete Hausdorff uniform 
space are here the closed subsets (with respect to the topology of the space), 
and conditions (QMn) and (CUI) through (CUm) are satisfied (with 
It = 22oard (E»). The complete Hausdorff uniform space is (up to iso­
morphism) the completion of the Hausdorff uniform space associated with E 
(General Topology, Chapter II, § 3, no. 7). 

VI. Stone-eech compactification. Let E be a completely regular space. 
1': is the species of structures of compact spaces, the morphisms being 
continuous mappings (of a compact space into a compact space), and 
the ex-mappings are continuous mappings of E into a compact space. 
The 1':-admissible subsets are again the closed subsets, and conditions 
(QMn), (CUI) through (CUm) are easily verified (with the same cardinal as 
in Example V). The compact space FE is (up to isomorphism) the 
"Stone-Cech compactification" obtained by completing E with respect to 
the coarsest uniformity for which all the continuous mappings of E into 
the interval [0, 1] of R are uniformly continuous (General Topology, 
Chapter IX, § I, Exercise 7); the mapping <fiE is injective, because any 
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two distinct points of E can be separated by a continuous mapping of E 
into [0, I]. 
VII. Free topological groups. Let E be a completely regular space, let 1:: 
be the species of Hausdorff topological group structures, the morphisms 
being continuous homomorphisms; and take the IX-mappings to be the 
continuous mappings of E into a Hausdorff topological group. Condi­
tions (QMu) and (CUI) to (CUm) are easily verified, with 

/1 = Card (E) Card (N). 

The Hausdorff topological group FE which is the solution of this 
universal mapping problem for E is called the free topological group 
generated by the space E. Since any two distinct points of E can be separated 
by a continuous mapping of E into the Hausdorff topological group R, 
the mapping 'PE is injective; it can be shown that 'PE is a homeomor­
phism of E onto the subspace 'PE(E) of FE C*). Instead of taking 1:: to 
be the species of structures of Hausdorff topological groups, we could also 
take other species of structures, such as those of Hausdorff topological 
abelian groups, compact groups, Hausdorff topological rings, Hausdorff 
topological vector spaces (over a topological division ring, considered as 
an auxiliary base set), etc. 

VIII. Almost periodic functions on a topological group. Let E be a topological 
group. Take 1:: to be the species of compact group structures, the mor­
phisms being continuous homomorphisms, and the IX-mappings being 
continuous homomorphisms of E into a compact group. Conditions (QMn), 
(CUI) through (CUm) are satisfied, with /1 = 220&rd(E). The compact 
group FE which is the solution of this universal mapping problem for E 
is called the compact group associated with E; the mapping 'PE is not neces­
sarily injective. Every continuous real-valued function on E, of the form 
g 0 'PE' where g is a continuous real-valued function on E, is called an 
almost periodic function on E. 

IX. Albanese variety. Let E be an algebraic variety, let 1:: be the species 
of structures of abelian varieties over the same base field as E (an abelian 
variety is a complete algebraic variety endowed with an algebraic group 
structure; it is necessarily commutative). The morphisms are rational 
mappings of one abelian variety into another (each morphism is necessarily 
the composition ofa homomorphism and a translation). The IX-mappings 
are rational mappings of E into an abelian variety. Condition (CUI) 
is not satisfied, yet this universal mapping problem for E admits a solution 
FE, called the Albanese variety of E. In general, the rational mapping 'PE 
is not injective. * 

(*) See P. SAMUEL, "On universal mappings and free topological groups", 
Bull. Amer. Math. Soc., 54 (1948), pp. 591-598. 
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§ 1 

1. Let S be the set of signs P, X, Xl) ... , XIl, the letters Xi being of weight 
0, P of weight 1, and X of weight 2. Let T be a balanced word in L(S). 
Such a word will be called an echelon type on Xl' ... , XII' 

Let EI, ... , En be n terms in a theory stronger than the theory of 
sets. For each echelon type T on Xu ••• , XII define a term T(EI' ... , Ell) 
as follows: 

(i) If T is a letter Xi, then T(EI' ... , Ell) is the set E i . 
(ii) If T is of the form PD, then T(E}) ... , Ell) is the set 

(iii) If T is of the form XUV, where U and V are assemblies ante­
cedentto T, then T(El) , .. , Ell) istheset U(EI, ... , Ell) xV(EI' "" Ell)' 

Show that, for each echelon type T on Xu ••• , XIl• T(EI •. ". Ell) is an 
echelon on the terms Eu ,." En' and conversely (proof by induction 
on the length of the echelon type or of the echelon construction scheme). 
T(EI' .. " Ell) is called the realization of the echelon type T on the terms 
EI, "" Ell' More precisely, every echelon on n distinct letters can be 
written in exactly one wtry in the form Texl , ' , "xn), where T is an echelon 
type, 

Also show how one may associate with an echelon type T on n letters, 
and n mappings iI' "" ill, a canonical extension of these mappings. 
Deduce that if two echelon construction schemes S, S' on n letters are 
such that S(XI' ,." XII) = S'(xl, ,." XII) (Xl' .'" XII beingdistinctletters), 
then <iI, "" ill)S = <iI, ' , "ill)8'. 
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§ 2 

l. Let S be the set of signs P, P-, X, X-, Xl, ... , X,u the letters Xi being 
of weight 0, P and P- of weight 1, and X, X- of weight 2. For each 
word A in L(S) we define the variance of A as follows: each letter Xi, 
and the signs P, X, have variance 0; the signs P-, X- have variance 1; 
the variance of A is the sum * (in the field F.) * of the variances of the 
signs which appear in A (in other words, it is 0 if A contains an even number 
of signs of variance 1, and is I otherwise). 

A signed echelon type is a balanced word A in L(S) (Chapter I, Appendix, 
no, 3) which satisfies one of the following two conditions: (I) A is one of the 
letters Xi; (2) if A is ofthe formfAIA •.. , Ap (Chapter I, Appendix, no. 3, 
Corollary 2 of Proposition 2), where f is one of the signs P, P-, X, X -, P is 
equal to 1 or 2 and the ~ (1 ~ i ~ p) are balanced words, then each of 
the ~ is a signed echelon type; further, iff = X, then Al and As have 
variance 0, and iff = X-, then Al and AI have variance l. 

A signed echelon type is said to be covariant if it has variance 0, contra­
variant if it has variance 1. If in a signed echelon type A we replace 
P- and X- by P and X, respectively, we obtain an echelon type A* 
(§ 1, Exercise I), Every realization of the echelon type A* on n terms 
EI, ... , E" is called a reali~ation oj the signed echelon type A on El> ',., E", 
and is written A(E!, .. " E,,). 

Let El> .,., E", E~, ... , ~ be sets, and let Ji be a mapping of Ei 
into Ei (1 ~ i ~ n). Show that to each signed echelon type S on 
Xl> ... , X" we may associate a mapping {ft, ... ,fll}S havingthefollowing 
properties : 

(i) If S is covariant (resp. contravariant), then {ft, 0 0 0, fn}S is a 
mapping of SeE!> .. 0, En) into S(E~, o. 0' E~) (resp. of S(~, .. 0' E~) 
into S(Eu .. 0' Ell»' 

(ii) If S is a letter Xi' then {ft, .0.' .In}S is Ji. 
(iii) If S is PT (resp. P-T) , and if g = {fi, ... , .In}T is a mapping 

of F into F', then {fi, ... , .In}S is the extension of g to sets of subsets 
(resp. the extension of 1 to sets of subsets). 

(iv) If S is XTU or X-TU, if {ft, .. . ,fn}T is a mapping g: F~F' 
and if {fi, ... , fll}U is a mapping h: G ~ G', then {fi, ... , .In}S is 
the extension g X h : F X G ~ F' X G'. 

The mapping {ft, ... , .In}S is called the signed canonical extension of 
ft, ... ,fn corresponding to the signed echelon type S. If S is an echelon 
type (i.e., if P- and X- do not appear in S), then the signed canonical 
extension {ft, .. ·,f,,}S is equal to (ft, •. . ,fn)s, 

Show that, if fi is a mapping of Ei into E~, and if fi is a mapping of 
Ei into Ei (1 ~ i ~ n), then for a covariant signed echelon type S we 
have 

{f~ oft, ... , f~ oln}S = {f~, ... , f~}S 0 {ft, ... , .In}S, 
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and for a contravariant signed echelon type we have 

{f~ ofl' ... , f~ ofnP = {ft, ... , fnP 0 {f~, f 'lS ••• , R • 

Deduce, that if fi is a bijection of E j onto Ei and if fi is its inverse 
bijection (1 :::; i:::; n), then {ft, .. . ,fn}S is a bijection and {f~, .. . ,f!}8 
its inverse. Moreover, if S* is the (unsigned) echelon type corresponding 
to the signed echelon type S, then {ft, ... .fn}S is equal to <ft, ... ,/,.>8· 
or to <f~, ... , f !>s· according as S is covariant or contravariant. 

2. Let S be a signed echelon type on n + m letters (Exercise I). 
Let ~ be a species of structures having Xl' ••. , Xn as principal base sets 
and AI' ... , Am as auxiliary base sets, whose typical characterization is 
of the form se~(S(xI' ... ,xn,A1, ••• ,Am)). Show that we may define 
a notion of a-morphism for this species of structures as follows: given n 
sets E1, .•. , En endowed with a structure U of species ~,n sets E~, ... , E! 
endowed with a structure U' of species ~, and mappings fi: E j ~ E; 
(1 :::; i :::; n), then (ft, .. . ,fn) is said to be a a-morphism if the mappings 
fi satisfy the following conditions: 

(i) If S is a covariant echelon type, then 

{ft, ... , fn, II' ... , ImP<U> c U'. 

(ii) If S is a contravariant echelon type, then 

{ft, ... , fn, Iv ... , ImP<U'> c U. 

Show that by assigning the variances suitably we may obtain in this 
way the definition of the morphisms for order structures, algebraic struc­
tures, and topological structures. 

3. Let A, B, C be three sets endowed with structures of the same 
species ~, let f be a morphism of A onto B, and let g be a morphism 
of B into C. Show that if g 0 f is an isomorphism of A onto C, then g 
and f are isomorphisms. 

4. Let A, B, C, D be four sets endowed with structures of the same 
species ~, let f be a morphism of A into B, g a morphism of B into C, 
and h a morphism of C into D. Show that if g 0 f and hog are iso­
morphisms, then 1, g, and h are isomorphisms (cf. Chapter II, §3, 
Exercise 9). 

5. Let A, B be two sets endowed with structures ~, :S' of the same 
species~. Let f be a morphism of A into B, and let g be a morphism 
of B into A. Let M (resp. N) be the set of all X e A (resp. y e B) 
such that g(f (x» = x Crespo f «g) y) = y). Suppose that 9' (resp. 9") 
induces on M (resp. N) a structure of species~. Show that M and N, 
endowed with these structures, are isomorphic. 
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6. Let ~ be the species of structure having a principal base set A and 
an auxiliary set k, whose generic structure (F, H) has as typical characteri­
zation 

Fe lJl«AxA) X A) X lJl«A X A) X A) X lJl«k X A) X A) and He lJl(A) 

and whose axiom (which can be written more explicitly) is the following: 
"F is a structure of commutative k-algebra with identity element, and H is 
an irreducible ideal of the algebra A" (we recall that an irreducible ideal 
in a k-algebra A is an ideal a such that, for any ideals "6, t of A satisfying 
li n c = a, either li = a or c = a). If A, A' are two sets endowed respec­
tively with structures (F, H), (F/, H') of species ~, we define the a-mor­
phisms of A into A' to be homomorphisms f of k-algebras, which map 
identity element to identity element, and satisfy f (H) c H'. Give an 
example of a family (!fA) of structures of species ~ on a set A, such that 
there exists a least upper bound for this family of structures (in the ordered 
set of structures of species ~ on A) but such that this least upper bound is 
not an initial structure for the family (AA' !fA' IdA), where AA is the set A 
endowed with the structure !fA' and IdA is the identity mapping A-+AA' 
(Consider a polynomial ring A = k[T] : the irreducible ideals in A are 
powers of maximal ideals. If F is the k-algebra structure of A, consider the 
two structures (F, ~1) and (F, ~2) of species ~, where ~1' ~2 are distinct 
maximal ideals of A; show that the least upper bound of these two struc­
tures is (F, (0)), but that this is not the initial structure for the family in 
question. To prove this, consider the k-subalgebra B = k + (~1 n ~2) 
of A, in which ~1 n ~2 is a maximal ideal, and the injection B -+ A.) 
~ Also give an example of a species of structure ~/, and a family (!f~) of 
structures of species ~' on a set A', such that the greatest lower bound of 
this family of structures exists but is not the final structure for the family. 
(On the dual of A (considered as a vector space) consider the structure of 
linearly compact k-coalgebra deduced from the k-algebra structure of A 
by transposition, and define the species of structures ~' by transposition.) 
* 7. Let ~ be the species of structures which has a principal base 
set A, and the set R as auxiliary base set, whose generic structure consists 
of two letters (V, ~) with the typical characterization 

V e lJl(lJl(A)) and ~ e lJl(R X A), 

and whose axioms are (i) the axiom R! V! of the species of topological 
structures (§ 1, no. 4, Example 3), (ii) the relation "there exists a > 0 
such that <p is the graph of a continuous injective mapping (with respect 
to the topology V) of the interval [0, a] into A". 

If A, A' are two sets endowed respectively with structures (V, <p), 
(V', <p') of the species ~, the a-morphisms of A into A' are defined to be 
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the mappings f of A into A' which are continuous (with respect to the 
topologies V, V') and whose graph F is such that F 0 cp c cp'. Show that 
this notion of a-morphisms can be defined by the procedure of Exercise 2, 
and that there exists a product structure on the product of two sets AI' A. 
endowed with arbitrary structures of species:E. But give an example 
in which the direct image, under the first projection prlJ of the product 
structure on Al X As is not the original structure given on Al (take Al 
to be a space homeomorphic to R). * 

8. Let:E be the species of structures which has a single (principal) 
base set, whose generic structure (V, a, b) consists of three letters, with the 
typical characterization 

Ve$($(A» and aeA and beA 

and whose axiom is the relation 

R I V! and a =1= b, 

where R I V! is the axiom of the species of topological structures (§ 1, 
no. 4, Example 3). If A, A' are two sets endowed respectively with 
structures (V, a, h), (V', aI, hI) of species 1::, the a-morphisms of A 
into A' are defined to be the continuous mappings f: A -+- A' (with 
respect to the topologies V, VI) such that f(a) = a' and f(h) = hI, 
Show that by replacing :E by an equivalent species of structures, we can 
obtain this notion of a-morphisms by the procedure of Exercise 2. Show 
that if A, B are two sets endowed with structures S, S' of species :E, 
there exists a product structure on A X B, and that the direct image of 
this structure under prl (resp. prs) is S (resp. S/). * But give an example 
where there is no section of prl which is a a-morphism of A into A X B 
(take A to be connected and B discrete). * 
* 9. Let:E be the species of division ring structures. Show that a 
notion of a-morphisms for this species of structures may be defined by 
taking the morphisms of a division ring K into a division ring K' to be 
the homomorphisms f of K into K' in the sense of Example 2 of no. 4, 
together with the mapping fo of K into K' for which 10(0) = 0 and 
Io(x) = 1 for all x =1= 0 in K. Show that, with this notion of morphisms, 
we have the following properties: for every division ring K (of any 
characteristic) the division ring structure of K induces a division ring 
structure (isomorphic to that of F2) on the set {O, I}; and that if R is the 
equivalence relation whose equivalence classes are {O} and K* = K-{O}, 
there exists a quotient structure (isomorphic to that of Fa) of the structure 
of K by the relation R. * 
* 10. Let:E be the species of structures of a complete Archimedean 
ordered field. For each set A endowed with a structure of species :E, 
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let <PA be the unique isomorphism of A onto R. If A, B are two sets 
endowed with structures of species ~, show that the morphisms of A 
into B may be taken to be the mappings f of A into B such that 
fPB(f(x»;;?; <PA(X) for all xeA. For this notionofmorphisms show that 
there exist bijective morphisms which are not isomorphisms, although 
the species ~ is univalent. * 

II. Let l; be a species of structures (in a theory ~) which has only 
one base set. Let s e F(x) be the typical characterization, and R I x, s! 
the axiom of l;. Let A(x) denote the set of structures of species ~ on x. 
Let a I x, y, s, t! be a term which satisfies the conditions (MOl), (MOn), 
and the following condition : 

(MO~II) Given two sets E, E' (in a theory ~' which is stronger than ~) 
endowed with structures ~, W of species ~, respectively, if f is any 
isomorphism of E onto E', thenfealE, E', ~, W!. 

(a) Let Ilil be the identity mapping of x onto itself. Show that the 
relation Ql x, s, t! : 

s e A(x) and t e A(x) and Ilil e 0" I x, x, s, t! n a I x, x, t, s! 

is an equivalence relation between sand t on A(x). Let B(x) be the 
quotient set A(x) /Q, and let fPlIl be the canonical mapping of A(x) 
onto B(x). Suppose that the relation s' e B(x) is transportable (see the 
Appendix for conditions which will ensure that this is so), and let e denote 
the species of structures with typical characterization s' e ~(F(x» and 
axiom s' e B(x). 

(b) Let alx,y, s', t'! be the set ofmappingsfefi(x,y) which satisfy 
the following relation: "s' e B(x) and t' e B(y) and there exist s e A(x) 
and t e A(y) such that s' = fP<I:(s) and t' = fPy(t) and f eO" I x, y, s, t!". 
Show that, for the species of structures 0, the term a satisfies (MOl)' 
(MOil)' and (MOm) and that we have 

0"1 x, y, s, tl c:alx, y, <p",(s) , fPy(t) I. 

§ 3 

* 1. Let E be a topological space and let l; be one of the species of 
structures defined in Exercises 7 and 8 of § 2. Take the morphisms to 
be those defined in the same exercises, and the at-mappings to be the 
continuous mappings of E into a l;-set. Show that the universal mapping 
problem for E (relative to the preceding definitions) has in general no 
solution. * 
* 2. Let E be a field, ~ the species of algebraically closed field 
structures. Take the morphisms to be homomorphisms, and the at-map-
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pings to be homomorphisms of E into an algebraically closed field. Show 
that the algebraic closure FE of E and the canonical injection of E 
into FE satisfy (AUD, but that there is in general no solution to the universal 
mapping problem for E. * 

3. Let:E be a species of structures, let (AI)leI be a family of sets, 
and for each LeI let ~, be a structure of species :£ on A,. Let E be 
the set which is the sum of the family (A,),el' each A, being considered 
as a subset of E. Suppose that we are given a notion of a-morphisms for 
the species :£, and define an at-mapping to be a mapping q> of E into 
a :E-set F such that, for each LeI, the restriction of q> to A, is a 
morphism of A, into F. Show that, if there exists a solution (FE' q>E) 
to the universal mapping problem for E, then the structure of species :£ 
on FE is the final structUf'e with respect to the family (A" 9'" q>,),eI' where 
q>, denotes the restriction of q>E to A,. 

Furthermore, let F be a set, and for each LeI let I, be a mapping 
of AI into F. If there exists a final structure of species :E on F with 
respect to the family (A" B" fc),eI' then we may write fc = 1 0 q>" 
where I is a morphism of FE into F, and the structure on F is the 
direct image under I of the structure on FE. 

Consider the applications to the following cases : 
* (i) :E is a species of algebraic structures, the morphisms being 
homomorphisms, and the conditions (CUI) through (CUm) are satisfied. 
This is so for semi-group structures, group structures, module structures, 
algebra structures, etc. The :£-set FE is called the free product of the A, 
in the case of groups, direct sum in the case of modules, direct product in the 
case of algebras. 

(ii) :£ is the species of topological group structures or the species of 
topological vector space structures. The conditions (CUI) through (CUIll) 

are then satisfied. In the case of locally convex topological vector 
spaces, FE is called the topological direct sum of the A,. * 
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HISTORICAL NOTE 
(Chapters I through IV) 

"Aliquot selectos Iwmines rem intra quinquennium absolvere posse puto" 
Leibniz ([12 b], vol. 7, p. 187). 

(Numbers in brackets refer to the bibliography 
at the end of this Note.) 

The study of what is usually called the "foundations of mathematics", 
which has been unflaggingly pursued since the beginning of the nineteenth 
century, could not have achieved success without a parallel effort of 
systematization of logic, or at least of those parts of logic which govern the 
relationships of' mathematical propositions. Thus the history of the 
theory of sets and the formalization of mathematics cannot be separated 
from that of "mathematical logic" . But traditional logic, like that of the 
modern philosophers, extends in principle over a field of applications far 
wider than mathematics. The reader will therefore not find a history of 
logic, even in a summary form, in this Note; we have limited ourselves, 
so far as possible, to retracing the evolution of logic only in so far as it has 
influenced the evolution of mathematics. Thus we shall say nothing 
about non-classical logics (many-valued logics, modal logics); a fortiori, 
we shall not go into the history of the controversies which, from the time 
of the Sophists to that of the Vienna school, have divided philosophers 
as to the possibility and manner of applying logic to the objects of the 
external world or the concepts of the human mind. 

~ Today it is well established that mathematics was already highly developed 
in pre-Hellenic times. Not only are the (extremely abstract) notions 
of integers and measurement of magnitudes freely used in the most ancient 
documents which have come down to us from Egypt and Chaldaea, but 
the algebra of the Babylonians, by the elegance and sureness of its methods, 
cannot be regarded as simply a collection of problems solved by empirical 
devices. And, although there is nothing in the texts resembling a "proof" 
in the formal sense of the word, we may justly consider that the discovery 
of such methods of solution, whose generality is apparent from the partic­
ular numerical applications treated, could not have been achieved without 
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a mlnImUm of logical reasoning (perhaps not entirely conscious, but 
rather of the type on which a modern algebraist relies when undertaking 
a calculation, before writing out all the details) ([1], pp. 203 ff.). 

The originality of the Greeks consists precisely in a conscious effort of 
arranging mathematical proofS in a sequence so that the passage from 
one step to the next leaves nothing in doubt and compels universal assent. 
Of course, the Greek mathematicians, just like their present-day successors, 
made use of "heuristic" rather than rigorous arguments in the course of 
their researches; for example, Archimedes, in his Treatise on Metlwd [4 his], 
refers to results "found, but not proved" by earlier mathematicians (*). 
But, from the earliest detailed texts known to us (which date from the 
middle of the fifth century B.C.) the ideal "canon" of a mathematical 
text is fixed. It found its complete realization in the works of the great 
masters Euclid, Archimedes, and Apollonius. Their notion of proof 
differs in no respect from ours. 

We do not possess any text which would allow us to trace the first steps 
of this "deductive method". At its first known appearance, it is already 
nearly perfected. We can only think that it was a natural development 
from the perpetual search for "explanations" of the world, which charac­
terized Greek thought from the time of the Ionian philosophers of the 
seventh century B. C. onward; furthermore, tradition is unanimous in ascrib­
ing the development and perfection of the method to the Pythagorean 
school, at a period somewhere between the end of the sixth century and 
the middle of the fifth. 

This "deductive" mathematics, precise in its aims and rigorous in its 
methods, was to occupy the philosophical and mathematical reflections 
of the succeeding ages. We see, on the one hand, the edifice of "formal" 
logic slowly being built up, on the model of mathematics, and culminating 
in the creation offormalized languages; and on the other hand, principally 
from the beginning of the nineteenth century onward, especially after the 
advent of the theory of sets, the concepts which lie at the root of 
mathematics being more and more closely questioned and examined in 
an effort to clarify their nature. 

(*) Notably Democritus, to whom Archimedes attributes the discovery of the 
formula for the volume of a pyramid ([4 bis], p. 13). This allusion should be 
compared with a celebrated fragment ascribed to Democritus (but of doubtful 
authenticity) in which he declares: "nobody has ever surpassed me in the construction 
of figures by means of proofs, not even the Egyptian so-called 'harpedonaptes' " (H. DIELS, 

Die Fragmente der Vorsokratiker, 2nd edition, vol. I, p. 439 and vol. 11.1, pp. 727-728, 
Berlin (Weidmann), 1906-1907). Archimedes' remark, and the fact the Egyptian 
texts which have come down to us contain no proofs (in the classical sense), lead us 
to think that the" proofs" to which Democritus alludes were no longer considered 
to be proofs in the classical period, and would not be so considered today. 
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The formalization of logic 

The general impression that we get from the (extremely incomplete) 
texts in our possession is that Greek philosophic thought of the fifth century 
B.C. was dominated by an increasingly conscious effort to extend to the 
whole field of human thought the procedures of articulate discourse which 
were put to use with such great success in rhetoric and contemporary 
mathematics - in other words, to create Logic, in the most general sense 
of the word. The tone of philosophical writings underwent an abrupt 
change in this epoch. Whereas in the seventh and sixth centuries the 
philosophers asserted and prophesied (or, at best, sketched vague argu­
ments, founded on equally vague analogies), from Parmenides and espe­
cially Zeno onward they reasoned and sought to extract general principles 
to serve as a basis for their dialectic. The first statement of the principle 
of the excluded middle is to be found in the work of Parmenides, and the 
proofs "by contradiction" of Zeno of Elea have remained famous. But 
Zeno flourished in the middle of the fifth century and, in spite of the 
uncertainty of documentation (*), it is very likely that at this period the 
mathematicians also used these principles in their own sphere. 

As we have already said, it is not within the scope of this book to relate the 
innumerable difficulties which arose at each stage in the development of 
this Logic, and the resulting polemics which occupied the Eleatic school, and 
the Sophists, as well as Plato and Aristotle. Let us merely note the part 
played in this evolution by the assiduous culture of the art of oratory and 
the analysis of language which naturally followed from it - developments 
which are attributed mainly to the Sophists of the fifth century. On the 
other hand, the influence of mathematics, if not always explicitly acknowl­
edged, is no less clear, in particular in the writings of Plato and Aristotle. 
It could be said that Plato was almost obsessed by mathematics; although 
himself not an inventor in this domain, he kept himself informed of the 
discoveries of the contemporary mathematicians (many of whom were his 
friends or his pupils), and remained always most directly interested in the 
subject, to the extent of suggesting new directions for research. In his 
writings, it is mathematics which constantly serves as illustration or model 
(and on occasion, as with the Pythagoreans, feeds his penchant toward 
mysticism). Aristotle, as Plato's pupil, could hardly have failed to receive the 
minimum of mathematical education demanded of the pupils at the 
Academy, and a volume of selections from his writings which relate or 

(*) The most beautiful classical example of reductio ad absurdum in mathematics 
is the proof that Vi' is irrational, to which Aristotle alludes on several occasions. 
But the experts have not succeeded in assigning any precise date to this discovery; 
some put it at the beginning and others right at the end of the fifth century B.C. 
(see the Historical Note to General Topology, Chapter IV, and the references cited 
there). 
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allude to mathematics has been compiled [2 bis]. However, he seems never 
to have made much effort to keep in contact with the mathematical move­
ments of his times, and in this domain he quotes only results which had 
long since become common knowledge. The later philosophers were, 
for the most part, even less well acquainted with mathematics. Many of 
them lacked the necessary technical knowledge, and their references to 
mathematics relate to stages long since passed in the evolution of the subject. 

The culmination of this period, in so far as logic is concerned, is the 
monumental work of Aristotle [2], whose great merit is to have succeeded 
for the first time in systematizing and codifying methods of reasoning 
which had hitherto remained vague or unformulated (*). For our purpose 
we need to keep in mind the general thesis of this work, namely that it is 
possible to reduce every correct argument to the systematic application 
of a small number of immutable rules which are independent of the parti­
cular nature of the objects under consideration (this independence is 
clearly brought out by the use ofletters to denote concepts or propositions -
a usage which Aristotle very probably borrowed from the mathematicians). 
But Aristotle concentrated his attention almost exclusively on a particular 
type of relations and chains of reasoning, namely what he called "syllo­
gisms"; essentially, these are relations of the form A c B or A n B =F p, 
in the language of set theory (t), and chains of such relations or their 

(*) In spite of the simplicity and "obviousness" to our minds of the logical 
rules formulated by Aristotle, it is only necessary to place them in their historical 
context for us to appreciate the difficulties in the way of a precise conception of 
these rules, and to understand the effort which Aristotle must have required to 
surmount these difficulties. Plato, in his dialogues, which were addressed to an 
educated public, allows his characters to become entangled in questions as ele­
mentary as the relationship between the negation of A c B, and An B = ~ 
(in modern language) before producing the correct answer (cf. R. ROBINSON, 

"Plato's consciousness offallacy", Mind, vol. 51 (1942), pp. 97-114). 
( t) The corresponding statements in Aristotle are "every A is B" and 

"some A is B". In this notation, A (the "subject") and B (the "predicate") 
stand for concepts, and to say that "every A is B" means that we can attribute 
the concept B to every entity to which the concept A can be attributed (A is 
the concept "man" and B the concept "mortal" in the classical examples). 
The interpretation which we give in this series consists in considering the sets of 
entities to which the concepts A and B respectively apply; this is the "extensional" 
point of view and was already known to Aristotle. But Aristotle considers the 
relation "every A is a B" from another point of view, the "comprehensional", 
in which B is envisaged as one of the concepts which in some sense constitute 
the more complex concept A, or, as Aristotle says, "belong" to A. At first 
sight, these two points of view seem equally natural; but the "comprebensional" 
point of view has been a constant source of difficulties in the development of logic 
(it seems more remote from intuition than the former, and leads rather easily to 
errors, especially in schemes which involve negations; cf. [12 bis], pp. 21-32). 
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negations linked together by means of the scheme 

(AeB and BeC) => (Ae C). 

Aristotle was too well acquainted with the mathematics of his time not to 
have realized that schemes of this nature were not sufficient to account 
for all the logical operations used by mathematicians, nor a fortiori for 
other applications oflogic ([2], Anafytica Priora, I, 35; [2 bis], pp.25-26) (*). 
At any rate, he undertook a close study of the various forms of "syllogism" 
(almost entirely devoted to the elucidation of the perpetual difficulties 
which arise from the ambiguity or obscurity of the terms involved in 
reasoning), which led him to formulate, among other things, rules for 
taking the negation of a proposition ([2], Anafytica Priora, I, 46). To 
Aristotle also belongs the merit of having distinguished with great clarity 
the role of "universal" propositions from that of "particular" propositions: 
a first step toward quantifiers (t). But it is only too well known how the 
influence of his writings - often narrowly and unintelligently interpreted -
which remained considerable up to the nineteenth century, led philosophers 
to neglect the study of mathematics and impeded the progress of formal 
logic (**). Nevertheless, logic continued to make progress in antiquity, 
in the Megarian and Stoic schools, the rivals of the Peripatetics. Our 
knowledge of these doctrines is unfortunately all at second hand, often 
derived from their adversaries or mediocre commentators. It seems that 
the contribution of these logicians was the foundation of a "propositional 
calculus" in the modem sense of the word; instead of limiting themselves, 
like Aristotle, to propositions of the particular form A e B, they stated 
rules concerning entirely indeterminate propositions. Moreover, they 
analyzed so closely the logical relationships between these rules that they 
were able to deduce them all from five elementary rules, which were classed 
as "unprovable", by methods very similar to those we described in Chap­
ter I, §§ 2 and 3 [5]. Unfortunately their influence was ephemeral, and 
their results lapsed into oblivion until rediscovered by the logicians of the 
nineteenth century. Aristotle remained the unchallenged master, in logic, 
until the seventeenth century. In particular, the scholastic philosophers 
were entirely under his influence, and although their contribution to 
formal logic is far from negligible, it contains no advance of the first order 
in comparison with that due to the philosophers of antiquity. 

(*) For a critical discussion of the syllogism and its inadequacies, see, for 
example, [12 bis], pp. 432-441, or [32], pp. 44-50. 

(t) The absence of genuine quantifiers (in the modem sense) up to the end of 
the nineteenth century was one of the causes of the stagnation of formal logic. 

(*.) We may mention that during a recent lecture at Princeton an eminent 
academic is reported to have said in the presence of Godel that nothing new had 
been done in logic since Aristotle! 
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However, it does not appear that the works of Aristotle or his successors 
caused any notable repercussions in mathematics. The Greek mathema­
ticians pursued their research along the paths opened by the Pythagoreans 
and their successors of the fourth century (Theodorus, Theaetetus, Eudoxus) 
without apparently concerning theInselves with formal logic in the presen­
tation of their results. This is hardly surprising when one compares the 
flexibility and precision of mathematical reasoning at this period with 
the extremely rudimentary state of Aristotelian logic. And, later, when 
logic passed beyond this stage, its evolution was guided by the new conquests 
of mathematics. 

With the development of algebra, one could hardly fail to be struck 
by the similarity between the rules of formal logic and those of algebra, 
both being applicable to unspecified objects (propositions or numbers). 
And when, in the seventeenth century, algebraic notation took its 
definitive form in the hands of Vieta and Descartes, almost immediately 
there appeared various attempts to represent logical operations symboli­
cally. But before Leibniz these attempts (as for example, that of Hengone 
(1644) to write symbolically the proofs of elementary geometry, or that 
of Pell (1659) to do the same for arithmetic) were superficial and did not 
lead to any progress in the analysis of mathematical reasoning. 

Leibniz was a philosopher who was also a mathematician of the first 
rank, and who was able to draw from his mathematical experience the 
germs of the ideas which were to release formal logic from the scholastic 
impasse (*). A universal genius if ever there was one, and an inexhaustible 
source of original and fertile ideas, Leibniz was all the more interested in 
logic because it lay at the heart of his grand projects offormalizing language 
and thought, at which he continued to work throughout his life. Having 
broken with scholastic logic already in his childhood, he was attracted by 
the idea (going back to Raymond Lulie) of a method of resolving all 
human concepts into primitive concepts, which thus constituted an "alpha-

(*) Although Descartes and (to a lesser extent) Pascal had devoted part of 
their philosophical works to the foundations of mathematics, their contribution to 
the progress of formal logic was negligible. Undoubtedly the reason for this 
limitation is to be found in the fundamental trend of their thoughts, which was to 
emancipate themselves from the scholastic yoke and which led them to reject 
everything connected with scholastic philosophy, and first of all formal logic. 
In his Rijfexions sur l' esprit geomltrique, Pascal essentially limited himself - as he 
himself realized - to fashioning into striking formulae the known principles of 
Euclid's proofs (for example, the famous precept "Substituer tor.gours mentalemmt 
les dejinitions a la place des dejinis" ([11], vol. IX, p. 280) had already been known to 
Aristotle ([2], Topics, VI, 4; [2 bis], p. 87». As to Descartes, the rules of reasoning 
which he put forward were, above all, psychological precepts (and rather vague 
ones) rather than logical criteria; and as Leibniz says ([12 bir], pp.94and202-203), 
their validity is therefore only subjective. 
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bet of human thoughts", and recombining them in a quasi-mechanical 
fashion so as to obtain all true propositions ([12 b], vol. VII, p. 185; cr. 
[12 bis], Chap. II). When still a very young man, he also conceived 
another, much more original idea, that of the utility of symbolic notation 
as a "thread of Ariadne" of thought (*). "The true method", he said 
"should provide us with a filum Ariadnes, that is to say, a certain sensible material 
means which will lead the intellect, like the lines drawn in geometry and the forms 
of operations which are prescribed to novices in arithmetic. Without this, our 
minds will not be able to travel a long path without going astray" ([12 b], vol. VII, 
p. 22; cf. [12 bis], p. 90). He had litde knowledge of the mathematics 
of his time until the age of twenty-five, and first presented his projects 
in the form of a "universal language". But when he came into contact 
with algebra, he adopted it as the model for his "universal characteristic". 
By this phrase he meant a sort of symbolic language, capable of expressing 
all human thoughts unambiguously, of strengthening our powers of deduc­
tion, of avoiding errors by a purely mechanical effort of attention, and 
constructed in such a way that "Ies cmmeres, que celuy meme qui les avanee 
n'entend pas, ne pourrount pas estre ecrites en ces caracteres" ([12 a], vol. I, p. 187). 
In coundess passages in his writings where Leibniz alludes to this grandiose 
project and the progress which its achievement would bring (cf. [12 bis], 
Chapters IV and VI), one sees how clearly he conceived the notion of a 
formalized language, as a pure combination of signs in which only the 
order of writing is important (t), so that a machine would be capable 
of producing all the theorems (**) and all controversies could be resolved 
by a simple calculation ([12 bis], vol. VII, pp. 198-203). Although these 
hopes may appear extravagant, it is nonetheless true that this constant theme 
in Leibniz' thought underlies a good part of his mathematical output, 
beginning with his work on the symbolism of infinitesimal calculus. He 
himself was perfecdy aware of this fact and explicidy associated his ideas 
on indicial notation and determinants ([12 a], vol. II, p. 240; cr. [12 bis], 
pp. 481-487) and his sketch of "geometrical calculus" (cf. [12 bis], Chapter 
IX) with his "characteristic". In his mind, the essential part of his scheme 
was to be symbolic logic or, in his words, a "Calculus ratiocinator"; and 
ifhe did not succeed in creating this calculus, he made atleastthree attempts 
at it. In the first attempt he had the idea of associating with each "prim-

(*) Of course, the usefulness of such a symbolism had not escaped the prede­
cessors of Leibniz so far as mathematics was concerned. Descartes, for example, 
recommended the replacement of whole figures "by very short signs" (XVIe Regie 
pour la direction de l'esprit; [10], vol. X, p. 454). But no one before Leibniz had 
insisted so strongly on the universal range of application of this principle. 

(t) It is striking that Leibniz cites, as examples of "fonnal" reasoning, "un 
compte tie receveur" or even a legal text ([12 b], vol. IV, p. 295). 

(**) This conception of a "logical machine" is used nowadays in metamathe­
matics with great effect ([48], Chapter VIII). 
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itive" term a prime number, every term formed of several primitive 
terms being represented by the product of the corresponding prime num­
bers (*); he sought to translate into this system the usual rules of syllogism, 
but met considerable complications caused by negation (which he attempted, 
naturally enough, to represent by a change of sign) and soon abandoned 
this approach ([12 c], pp. 42-96; cf. [12 his], pp. 326-344). In later 
attemps, he sought to give Aristotelian logic a more algebraic form. 
Sometimes he retained the notation AB for the conjunction oftwo concepts, 
sometimes he used the notation A + B (t). He observed (in the multi­
plicative notation) the law of idempotence AA = A, noted that the 
proposition "every A is B" may be replaced by the equality A = AB, 
and that from this starting-point most of the rules of Aristotle may be 
obtained by purely algebraic calculation ([12 c], pp. 229-237 and 356-399; 
cf. [12 his], pp. 345-364). Also he had the idea of the empty concept 
("non Ens") and recognized, for example, the equivalence of the propo­
sitions "every A is B" and "A. (not B) is not true" (loe. cit.). Fur­
thermore, he noted that his logical calculus applied not only to the logic 
of concepts but also to that of propositions ([12 c], p. 377). Thus he came 
very close to "Boolean calculus". Unfortunately, he seems not to have 
succeeded completely in casting off the scholastic influence; not only did he 
limit the aim of his calculus almost entirely to the transcription of the rules 
of syllogism in his notation (**), but he went as far as sacrificing his most 
felicitous ideas to the desire of recovering the Aristotelian rules in their 
entirety, even those which are incompatible with the notion of the empty 
set (tt). 

The work of Leibniz remained, for the most part, unpublished until the 
beginning of the twentieth century, and had little direct influence. 
Throughout the eighteenth century and the beginning of the nineteenth, 
various authors (de Segner, Lambert, Ploucquet, Holland, De Castillon, 
Gergonne) gave outlines of attempts which were similar to those of Leibniz 
but which never really passed beyond the point at which he had halted. 
Their works made very little impression, and most of them were unaware of 

(*) This idea has been taken up successfully, in a slightly different form, by 
GOOel in his metamathematical works (cf. [44a] and [48], p. 254). 

(t) Leibniz does not attempt to introduce disjunction into his calculus, except 
in one or two fragments (where it is denoted by A + B), and seems not to have 
succeeded in simultaneously handling this operation and conjunction in a satisfactory 
manner ([12 bis], p. 363). 

( .... ) Leibniz knew perfectly well that Aristotelian logic was insufficient to trans­
late mathematical texts into formal language, but in spite of various attempts 
he never succeeded in improving it in this respect ([12 bis], pp. 435 and 560). 

(tt) These are the so-called "rules of conversion", based on the postulate that 
"every A is a B" implies "some A is a B", which of course presupposes 
that A is not empty. 
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the results of their predecessors (*). Another who wrote under the same 
conditions was G. Boole, who can be considered as the true creator of modern 
symbolic logic [16]. His master idea was to take the "extensional" point of 
view systematically and thus to calculate directly with sets, denoting by xy 
the intersection of two sets, and by x + y their union when x and yare 
disjoint. He also introduced a "universe", denoted by I (the set of all 
objects), and the empty set, denoted by 0, and he wrote I -x for the 
complement of x. As Leibniz had done, he interpreted the relation or 
inclusion by the relation xy = x (from which he easily deduced the 
justifications of the rules of the classical syllogism), and his notation for 
unions and complements gave his system a flexibility which its predecess­
sors had lacked <t). Moreover, by associating with each proposition 
the set of "cases" in which it is satisfied, he interpreted the relation of 
implication as an inclusion, and his calculus of sets gave him in this way the 
rules of "propositional calculus". 

In the second half of the nineteenth century, Boole's system became the 
basis of the work of an active school of logicians, who improved and 
completed it in various respects. Thus Jevons (1864) widened the sense 
of the operation of union x + y by extending it to the case where x 
and yare arbitrary. A. De Morgan in 1858, and C. S. Peirce in 1867, 
proved the duality relations 

(CA) n (CB) = C(A u B), (CA) u (CB) = C(A n B) (**). 

In 1860 De Morgan also began the study of relations, and defined inversion 
and composition of binary relations (i.e., the operations which correspond 

-1 

to the operations G and G1 0 Gs on graphs) C*). All this work was 

(*) The influence of Kant, from the middle of the eighteenth century onward, is 
without doubt partly responsible for the lack of interest in formal logic at this 
period. Kant thought that "we have no need of any new invention in logic", the form 
given to it by Aristotle being sufficient for all possible applications (Werke, vol. VIII, 
Berlin (B. CAssuuul), 1923, p. 340). For the dogmatic conceptions of Kant on 
mathematics and logic, consult the article of L. COUTURAT, Revue de Metaph. et de 
Morale, vol. 12 (1904) pp. 321-383. 

( t) Note in particular that Boole uses the distributivity of intersection with 
respect to union, which seems to have been noticed for the first time by J. Lambert. 

(**) It should be noted that statements equivalent to these rules are to be found 
in the writings of certain scholastic philosophers ([6], pp. 67-ff). 

(*) However, the notion of the "cartesian" product of two arbitrary sets seems 
to have been first introduced by G. Cantor ([25], p. 286), who was also the first 
to define exponentiation AB (loc. cit., p. 287). The general notion of infinite 
product is due to A. N. Whitehead (Amer. Jour. of Math. 24 (1902), p. 369). The 
use of graphs of relations is fairly recent; apart, of course, from the classical case 
of real-valued functions of real variables, they appeared first in the work of the 
Italian geometers, especially C. Segre, in the study of algebraic correspondences. 
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systematically expounded and developed in the massive and prolix volumes 
of Schroder [23]. But it is rather curious to observe that the logicians 
we have just mentioned seemed scarcely interested in the application of 
their results to mathematics and that, on the contrary, the principal aim 
of Boole, and Schroder in particular, was apparently to develop "Boolean" 
algebra by imitating the methods and duplicating the problems of classical 
algebra (often in a rather artificial fashion). No doubt the reason for 
this attitude lies in the fact that Boolean calculus was still not suitable 
for transcribing the majority of mathematical arguments (*) and therefore 
was only a very incomplete answer to the grand dream of Leibniz. The 
construction of formalisms better adapted to mathematics - the introduc­
tion of variables and quantifiers, due independently to Frege [24] and 
C. S. Peirce [22 b], the capital step forward in this direction - was the 
work oflogicians and mathematicians who, in contrast to their predecessors, 
were primarily interested in applications to the foundations of mathe­
matics. 

Frege's project [24 band c] was to base arithmetic on logic formalized 
by means of a symbolism to which he gave the name Begrilfssckrift (concept­
script) ; we shall return later to the method by which he defined the natural 
integers. His publications were characterized by extreme precision and 
minute care in the analysis of concepts, which led him to introduce many 
distinctions that have since shown themselves to be of great importance 
in modern logic. For example, he was the first to distinguish between 
the statement of a proposition and the assertion that the proposition is 
true; between the relation of membership and that of inclusion; between 
an object x and the set {x} whose only member is x, etc. This formal­
ized logic, which contains not only "variables" in the mathematical 
sense of the word but also "propositional variables" which represent 
undetermined relations and are susceptible of quantification, was later 
(through the work of Russell and Whitehead) to provide the fundamental 
tool of metamathematics. Unfortunately the notation adopted by Frege 
was unsuggestive, of appalling typographical complexity, and far removed 
from current mathematical usage; and the resulting unread ability had the 
effect of considerably diminishing his influence on his contemporaries. 

Peano's aim was both more ambitions and more down-to-earth. He set 
about publishing a Formulaire de mathematiques written entirely in formalized 
language, and containing not merely mathematical logic but all the 
results of the most important branches of mathematics. The speed with 
which he succeeded in completing this ambitious project, assisted by a 
constellation of enthusiastic collaborators (Vailati, Pieri, Padoa, Vacca, 

(*) For each relation obtained from one or more given relations by applying 
our quantifiers it would be necessary, in this calculus, to introduce an ad hoc notation 

-1 

of the type G and Gl 0 G2 (cf. for example [22 b]). 
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Vivanti, Fano, Burali-Forti) bears witness to the excellence of the system 
he had adopted. Closely following current mathematical usage, and 
introducing many well-chosen abbreviating symbols, his language succeeded 
moreover in being fairly readable, thanks mainly to an ingenious system 
of replacing brackets by separating points [29 c]. Many of the notations 
due to Peano are now in common use by the majority of mathematicians : 
for example, e, ;:) (but, contrary to the present usage, in the sense of 
"is contained" or "implies" (*», u, n, A - B (the set of differences 
a - b, where a e A and be B). Besides this, the Formulaire contains, for 
the first time, a close analysis of the general notion of a function, of direct (t) 
and inverse images, and the remark that a sequence is just a function 
defined on N. But in Peano's hands quantification is subjected to irksome 
restrictions (in his system, in principle, only relations of the form A ==+- B, 
A ~ B, or A = B can be quantified). Moreover, the almost fanatic 
zeal of some of his disciples laid him wide open to ridicule, and the often 
unjust criticism of H. Poincare in particular was a serious blow to Peano's 
school and hindered the dissemination of his doctrines in the mathematical 
world. 

With Frege and Peano we have the essential ingredients of the formalized 
languages in use today. The most famous of such languages is, without 
doubt, that created by Russell and Whitehead in their great work Principia 
Mathematica, which happily combines the precision of Frege with the 
convenience of Peano. Most of the formalized languages in current use 
differ from each other only in modifications of secondary importance 
whose object is to simplify their use. One of the most ingenious is the 
"functional" notation for relations (for example, e xy in place of x ey), 
due to Lukasiewicz, which does away completely with the need for 
brackets. But the most interesting is certainly the introduction by Hilbert 
of the symbol "t, which allows one to consider the quantifiers 3 and V 
as abbreviating symbols, to avoid the "universal" functional symbol L 

of Peano and Russell (which applies only to functional relations) and to 
dispense with the axiom of choice in the theory of sets ([31], p. 183 (**». 

The notion of truth in mathematics 

Mathematicians have always been convinced that what they prove is 
"true". It is clear that such a conviction can be only of a sentimental 

(*) This indicates how deeply rooted, even in Peano, was the old habit of thinking 
in terms of "comprehension" rather than "extension". 
( t) The introduction of this appears to be due to Dedekind, in his work War 
sind uru/ was sollm die ~ahIm, which we shall come to later ([26], vol. III, p. 348). 
(**) It should be observed that what Hilbert denotes by 'r,x(A) in this context 
is denoted by 'r.J:(not A) in Chapter I. 
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or metaphysical order, and cannot be justified, or even ascribed a meaning 
which is not tautological, within the domain of mathematics. The 
history of the concept of truth in mathematics therefore belongs to the 
history of philosophy and not of mathematics; but the evolution of this 
concept has had an undeniable influence on the development of mathe­
matics, and for this reason we cannot pass over it in silence. 

First of all, a mathematician who is well schooled in philosophy is as 
rare as a philosopher with a wide knowledge of mathematics. The opin­
ions of mathematicians on philosophical questions, even questions which 
touch on their own science, are most often second- or third-hand and 
from sources of doubtful value. But, precisely for this reason, these "aver­
age" opinions are of as much interest to the historian of mathematics 
as the original views of thinkers such as Descartes or Leibniz (to cite two 
who were also mathematicians of the highest order), Plato (who was 
at least familiar with the mathematics of this time), and Aristotle or Kant 
(for whom one cannot say as much). 

The traditional notion of mathematical truth goes back to the Renais­
sance. In this conception, there is no great difference between the objects 
studied by mathematics and those studied by the natural sciences. Both 
are knowable, and can be apprehended by intuition and by reason; neither 
intuition nor reason is fallible if properly employed. "Only an entire!y 
false intellect", says Pascal, "could reason wrong!y from principles so obvious that 
it is almost impossible for them to escape notice" ([11], vol. XII, p. 9). Des­
cartes convinced himself that "it is on!y mathematicians who have been able 
to find proofs, that is to say, certain and evitJent reasons" ([10], vol. VI, p. 19), 
and this (if we accept his account) before he had constructed a metaphysic 
in which he says, "this, which a little while ago I took as a rule, name!y that the 
things we conceive very clear!y and very distinct!y are all true, is assured only because 
God is or exists and is a perfect being" ([10], vol. VI, p. 38). Although Leibniz 
objects that it is not obvious how one is to recognize that an idea is "clear 
and distinct" (*), yet he too considers the axioms to be self-evident and 
ineluctable consequences of the definitions as soon as the terms are under­
stood (t). Moreover, it should not be forgotten that at this period mathe-

(*) "Those who have given us methods", he says in this context, "have given us 
without doubt good precepts, but not the means of observing them" ([12 b], vol. VII, p. 21). 
Elsewhere, deriding the rules of Descartes, he compares them to the alchemists' 
formulae : " Take what is necessary, do as you ought, and you will obtain what you desire!" 
([12 b], vol. IV, p. 329). 

( t ) On this point, Leibniz was still under the influence of the schoolmen; he 
thought always of propositions as establishing a relationship of "subject" to "pre­
dicate" between concepts. As soon as the concepts had been resolved into 
"primitive" concepts (which, as we have seen, was one of his fundamental ideas), 
everything was reduced, for Leibniz, to a problem of verifying relations of "inclu­
sion" by means of what he called the "identical axioms" (which are essentially 
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matics embraced many sciences - sometimes even the art of the engineer 
which we would not nowadays regard as mathematical. The remarkable 
success of its applications to "natural philosophy", the "mechanical arts", 
and navigation was a principal cause of the confidence it inspired. 

From this point of view the axioms were no more open to discussion 
or doubt than the rules of logical reasoning; at most, it was a matter of 
personal choice whether one reasoned "in the manner of the ancients" 
or gave free rein to one's intuition. The choice of starting point was 
also a matter of individual preference. Thus many editions of Euclid's 
work were published in which the solid logical framework of the Elements 
was strangely travestied, and "deductive" accounts of infinitesimal calculus 
or rational mechanics were given in which the foundations were singularly 
badly laid. Spinoza therefore perhaps acted in good faith when he 
claimed that his Ethics was "proved in the manner of the geometers" 
(more geometrico demonstrata). Although it is hard to find two mathema­
ticians in the seventeenth century in agreement on any single question 
whatsoever, although the controversies were frequent, interminable, and 
acrimonious, yet the notion of truth was free from all imputation. "Since 
there is onlY one trutk for eack thing", said Descartes, "whoever finds it knows as 
muck as can be known" ([10], vol. VI, p. 21). 

Although no Greek mathematical text of the great period on these 
questions has been preserved, it is probable that the point of view of the 
Greek mathematicians on this subject was much less rigid. It is only by 
experience that the rules of reasoning have been developed to the point 
of inspiring complete confidence; before they could be considered as 
above all discussion they must have passed through many hesitations and 
tentative forms. Furthermore, it would have been out of keeping with the 
critical spirit of the Greeks and their taste for discussion and sophistry, 
if those "axiOlns" which Pascal considered to be self-evident (and which, 
according to a legend originated by his sister, he himself discovered, with an 
infallible instinct, as a child) had not been the object of long discussions. 
In a domain which is not, strictly speaking, that of geometry, the paradoxes 
of the Eleatic philosophers have preserved for us some traces of such 
controversies; and Archimedes, when he observes ([4], p. 265) that his 
predecessors have on many occasions made use of the axiom which bears 

the propositions A = A and A c A) and the principle of "substitution of equi­
valents" (if A = B, we may replace A everywhere by B, which is our scheme 
S6 of Chapter I, § 5) ([12 bis], pp. 184-206). It is interesting in this connection 
to note that, in accordance with his desire to reduce everything to logic and to 
"prove all that can be proved", Leibniz proved the symmetry and transitivity 
of the equality relation, starting from the axiom A = A and the principle of 
substitution of equivalents; the proofS he obtained are essentially those we gave 
in Chapter I, § 5 ([12 a], vol. VII, pp. 77-78). 
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his name, adds that what is proved with the help of this axiom "has been 
admitted no less than what is proved witlwut it", and that it is enough for him 
that his own results should be admitted on the same footing. Plato, 
in conformity with his metaphysical views, presented mathematics as a 
means of access to "truth in itself", and the objects with which it deals as 
existing in their own right in the world of ideas. He characterizes the 
mathematical method with accuracy in a famous passage of the Republic : 
"Those who study geometry and arithmetic... assume the existence of odd and even 
numbers, and three kinds of angles; these things they take as known, and consider 
that there is no need to justify them either to themselves or to others, because they 
are self-evident to everyone; and, starting from them, they proceed consistent?1 step 
by step to the propositions which they set out to examine" (Book VI, 5IOc-e). 
Thus what constitutes a proof is first of all a starting point, which is to 
some extent arbitrary (although "self-evident to everyone") and from 
which, he says a little later, one does not attempt to go further back; 
next, a path which passes in order through a sequence of intermediate 
stations; finally, at each step the consent of the interlocutor guaranteeing 
the correctness of the reasoning. It should be added that, once the axioms 
had been stated, no new appeal to intuition was in principle admitted; 
Proclus, quoting Geminus, recalls that "we have taught even the pionurs in 
this science to take no account of mere?1 plausible conclusions when concerned with 
reasoning that is to form a part of our geometric doctrine" ([3], vol. I, p. 203). 

Thus the rules of mathematical reasoning were developed by experience 
and the fire of criticism. If it is true, as has been plausibly argued (*), 
that Book VIII of Euclid has preserved for us a part of the arithmetic of 
Archytas, then it is not surprising to find there the somewhat pedantic 
stiffness of reasoning which never fails to appear in any mathematical 
school which discovers or thinks it has discovered "rigour". But once 
these rules of reasoning had entered into the conunon practice of mathema­
ticians, it does not appear that they were ever subjected to doubt until 
a very recent epoch; although Aristotle and the Stoics deduced certain 
of these rules from certain others by schemes of reasoning, the primitive 
rules were always admitted as self-evident. Likewise, having gone back 
as far as the "hypotheses", "axioms", and "postulates" which seemed to 
them to provide a solid foundation for the science of their period (such, 
for example, as must have appeared in the first Elements, which tradition 
ascribes to Hippocrates of Chio, about 450 B. C.), the Greek mathematicians 
of the classical period seem to have devoted their efforts to the discovery 
of new results rather than to a critique of the foundations, which at this 
period could only have been sterile; and, metaphysical preoccupations 
apart, the text from Plato quoted earlier bears witness to this general 

(*) Cf. B. L. van der WAERDEN, "Die Arithmetik der Pythagoreer", Math. 
Ann. 120 (1947) pp. 127-153. 
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agreement among mathematicians concerning the bases of their science. 
Furthermore, the Greek mathematicians seem not to have believed that 

the "primary notions" which served for them as a starting point - straight 
line, surface, ratio of magnitudes - were capable of further elucidation. 
If they gave "definitions", it was visibly to clear their consciences and 
without any illusions about the validity of these definitions. It goes 
without saying that, by contrast, the Greek mathematicians and philo­
sophers had perfectly clear ideas on definitions other than those of the 
"primary notions" (often called "nominal" definitions, and playing the 
same role as our "abbreviating symbols"). In this connection there 
intervenes explicitly, without doubt for the first time, the question of 
"existence" in mathematics. Aristotle did not omit to remark that a 
definition does not imply the existence of the thing defined, and that 
either a postulate or a proof of existence is necessary. Undoubtedly his 
observation was derived from the practice of mathematicians. In every 
case Euclid is careful to postulate the existence of the circle, to prove that 
of the equilateral triangle, parallel lines, the square, etc. as he finds it neces­
sary to introduce them into his arguments ([3], Book I); these proofs are 
"constructions" - in other words, he exhibits, with the aid of his axioms, 
mathematical objects which he then proves satisfy the definitions in ques­
tion. 

Thus we see Greek mathematics of the classical period come to a sort 
of empirical certainty (whatever may have been the metaphysical basis, 
according to this or that philosopher). If the rules of mathematical 
reasoning are considered to be above question, then the success of Greek 
science, and the feeling that critical revision would have been inopportune, 
are largely due to the confidence inspired by the axioms : a confidence 
of the same order as that accorded in the last century to the principles of 
theoretical physics. It is what is suggested by the proverb "nihil est in 
intellectu quod non prius fumt in sensu" with which Descartes rightly took 
issue as not providing a firm enough basis for what he proposed to achieve 
by the use of reason. 

I t was not until the beginning of the nineteenth century that mathematic­
ians retreated from the arrogant position of Descartes (not to speak of Kant 
or of Hegel; the latter was a little behind the time, as was to be expected, 
in relation to the science of his age (*)) to a position as flexible as that of 
the Greeks. The first blow to the classical conceptions was the construc­
tion of hyperbolic non-Euclidean geometry by Gauss, Lobatschevsky, and 
Bolyai at the beginning of the century. We shall not undertake here a 
detailed account of the genesis of this discovery, the culmination of numer­
ous fruitless attempts to prove the parallel postulate. At the time, 

(*) In his inaugural dissertation, he "proved" that there could exist only 
seven planets, in the same year that an eighth was discovered. 
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its effect on the principles of mathematics was perhaps not so deep as 
is sometimes asserted. It simply demanded the abandonment of the 
claims of the preceding century to the "absolute truth" of Euclidean 
geometry and, a fortiori, of the Leibnizian view that the definitions imply 
the axioms; the latter no longer appear at all as "self-evident" but rather 
as hypotheses which are to be judged according to whether they are adapted 
to the mathematical representation of the physical world. Gauss and 
Lobatschevsky believed that the debate between the various possible 
geometries could be settled by experiment ([15], p. 76). This was also the 
point of view of Riemann, the aim of whose famous inaugural lecture 
"On the hypotheses which lie at the fozuuitJtions of geometry" was to provide a 
general mathematical framework for various natural phenomena. "The 
question remains to be settled", he said, "as to how far and to WM' extent these hypo­
theses will be co~d hy experiment" ([19], p. 284). But clearly this is a 
problem which no longer has anything to do with mathematics; and none 
of the authors just mentioned seems to have had any doubts that, even 
if a "geometry" did not correspond to experimental reality, its theorems 
were any less "mathematically true" (*). 

However, if this is so, such a conviction can no longer be attributed to an 
unlimited confidence in classical "geometrical intuition". The descrip­
tion, which Riemann sought to give of "manifolds n times extended", 
the object of his work, relies on "intuitive" considerations (t) only to the 
point of justifying the introduction of "local coordinates"; from then on, 
he seems to have felt that he was on firm ground, namely that of Analysis. 
But the latter is ultimately based on the concept of real number, which 
up to that time had remained on a very intuitive basis; and progress in the 
theory of functions was leading to most disturbing results in this respect. 
With the work of Riemann himself on integration, and even more with the 
examples of curves with no tangents, constructed by Bolzano and Weier­
strass, the whole pathology of mathematics was beginning to emerge. 
A century later, we have seen so many monsters of this sort that we have 
become a little blase. But the effect produced on the majority of nineteenth 
century mathematicians ranged from disgust to consternation. cc How", 
asked H. Poincare, "can intuition deceive us at this point?" ([33 b], p. 19); 
and Hermite (not without a turn of humour, which not all the commen­
tators on this celebrated phrase seem to have perceived) declared that he 

(*) cr. the arguments of Poincare in favour of the "simplicity" and "conven­
ience" of Euclidean geometry ([33 al, p. 67), and the analysis by which, a little 
later, he arrives at the conclusion that experience provides no absolute criterion 
for the choice of one geometry over another as the framework for natural pheno­
mena. 

( t) Again, this word is justified only for n ~ 3; for larger values of n it is in 
fact argument by analogy which is involved. 
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"turned away with fright and horror from this lamentable plague of continuous 
functions with no derivatives" ([27], vol. II, p. 318). The most serious feature 
of the malaise was that it was no longer possible to attribute these pheno­
mena, so contrary to common sense, to badly elucidated notions, as in the 
days of the "indivisibles", because they arose after the reforms of Bolzano, 
Abel, and Cauchy, which had succeeded in founding the notion of limit as 
rigorously as the theory of proportions. They were therefore to be ascribed 
to the gross and incomplete character of our geometrical intuition, which 
since that time has been discredited as a method of proof. 

This conclusion inevitably affected classical mathematics, beginning 
with geometry. However much respect was paid to the axiomatic construc­
tion of Euclid, the imperfections in it had been noticed, from antiquity 
onward. The parallel postulate had been the object of the largest number 
of criticisms and attempts at proof; but Euclid's successors and commen­
tators had also sought to prove other postulates (notably that of the equality 
of right angles) or had recognized the inadequacy of certain definitions, 
such as those of a straight line or a plane. In the 16th century Clavius, 
an editor of the Elements, noticed the absence of a postulate guaranteeing 
the existence of the fourth proportional; Leibniz, for his part, remarked that 
Euclid makes use of geometrical intuition without mentioning it explicitly, 
for example when he assumes (Elements, Book I, Proposition I) that two 
circles, each of which passes though the centre of the other, have a common 
point ([12 b], vol. VII, p. 166). Gauss (who did not deny himself the use 
of such topological considerations) drew attention to the part played in 
Euclid's constructions by the notion ofa point (or a line) situated "between" 
two others, a notion which nevertheless had not been defined ([14], vol. VIII, 
p. 222). Finally, the use of displacements - notably in the case of "con­
gruent triangles" -long accepted as standing to reason (*), soon appeared 
to the critics of the nineteenth century as a concept which rested on unfor­
mulated axioms. Thus, in the period from 1860 to 1885, many partial 
revisions of the foundations of geometry appeared (Helmholtz, Meray, 
Houe!) with the pwpose of filling some of these gaps. But it was not 
until M. Pasch [28] that the abandonment of all appeal to intuition was 
clearly formulated as a programme and carried out with perfect rigour. 
The success of his enterprise soon produced numerous emulators who, 
principally between 1890 and 1910, gave varied presentations of the 
axioms of Euclidean geometry. The most famous of these works were 
Peano's, written in his symbolic language [29 b], and above all Hilbert's 
Grundlagen der Geometrie, which appeared in 1899, and by the lucidity and 
profundity of its exposition immediately and justly became the model of 

(*) It should however be noted that, already in the sixteenth century, a commen­
tator on Euclid, J. Peletier, protested against this method of proof, in terms 
close to these ofmodem critics ([3], vol. I, p. 249). 
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modem axiomatics, to the extent that its predecessors were forgotten. 
Hilbert was not content with giving a complete system of axioms for 
Euclidean geometry, but classed them in various groups according to 
their nature, and set about determining the exact range of each group of 
axioms, not only by developing the logical consequences of each group 
in isolation, but also by discussing the various "geometries" obtained 
by suppressing or modifying certain axioms (geometries among which 
those of Lobatschevsky and Riemann appear as special cases (*». In 
this way he brought clearly into view, in a domain which until that time 
had been considered as one of the closest to external reality, the liberty 
which a mathematician has in the choice of his postulates. In spite of the 
disarray caused among some philosophers by these "metageometries" 
with their weird properties, the thesis of the Grundlagen was rapidly and 
almost unanimously adopted by mathematicians. Thus H. Poincare, 
who could hardly be suspected of partiality towards formalism, asserted 
in 1902 that the axioms of geometry are conventions for which the notion 
of "truth", in the everyday sense of the word, has no meaning ([33 a], 
pp. 66-67). "Mathematical truth" therefore consists entirely in logical 
deduction from premises posed arbitrarily as axioms. As we shall see 
later, the validity of the rules of reasoning according to which the deduc­
tions operate was soon to be called in question, leading thus to a complete 
overhauling of the conceptions at the base of mathematics. 

Objects, models, structures 

A. Mathematical objects and structures. From antiquity to the nineteenth 
century there was common agreement on the principal objects of study of a 
mathematician, namely those mentioned by Plato in the passage quoted 
earlier: numbers, magnitudes, and fi~es. Although, for the Greeks, this list 
should be enlarged to include the objects and phenomena proper to mechan­
ics, astronomy, optics, and music, they nevertheless always made a clear 
distinction between these "mathematical" disciplines and arithmetic and 
geometry; and from the time of the Renaissance the former soon acquired 
the status of independent sciences. 

Whatever the philosophical nuances which coloured the conception 
of mathematical objects in the mind of this or that mathematician or 
philosopher, there was at least one point of unanimous agreement: that 
these objects are given and that it does not lie in our power to ascribe 
arbitrary properties to them, any more than a physicist can alter a natural 

(*) What seems to have struck Hilbert's contemporaries most is "non-Archime­
dean" geometry, i.e., geometry over a non-Archimedean ordered base field (or 
division ring), the commutative case of which had been introduced some years before 
by Veronese (ForuJamenti di geometria, Padova, 1891). 
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phenomf'non. In truth, these views are partly the product of psycholog­
ical reactions, which it is not for us to go into, but which every mathe­
matician is well aware of when he exhausts himself in vain efforts to obtain 
a proof which seems perpetually to escape him. From there it is only 
one step to assimilating this resistance to external obstacles; and even 
today more than one mathematician, who parades an intransigent formal­
ism, would voluntarily subscribe in his conscience to this avowal by 
Hermite: "I believe that the numbers andfunctions of Ana?J!sis are not the arbitrary 
product of our mindsj that they exist outside of us, with the same character of necessity 
as the objects of the material world, and we meet or discover them, and study them, just 
like the physicists, chemists, and zoologists ([27], vol. II, p. 398). 

In the classical conception, mathematics was the study of only numbers 
and figures. But this official doctrine, to which every mathematician 
felt bound to give his verbal adherence, gradually became more and 
more of an intolerable constraint under the pressure of new ideas. The 
embarrassment of algebraists in the presence of negative numbers 
vanished only when analytical geometry provided them with a 
convenient "interpretation". But even in the eighteenth century d' Alembert 
(although a convinced "positivist"), when discussing the question in 
the Encyclopedie [13], suddenly lost courage after a column of some­
what confused explanations, and contented himself with concluding 
that "the rules of algebraic operations on negative quantities are general?J! admitted 
by everyone and are general?J! received as correct, whatever interpretation is to be 
attached to these quantities". As regards imaginary numbers, the scandal 
was far worse still; for if they were "impossible" roots and if (until about 
1800) there was no known way of "interpreting" them, how could these 
undefinable objects be talked about without contradiction, and above all 
how could they be introduced? On this topic d'Alembert prudently 
kept his silence, and did not even state the questions, no doubt because he 
realized that he could not answer in terms other than those naively used 
by A. Girard a century earlier [9] : "On pourroit dire: a quay sert ces solutions 
qui sont impossibles? Je r'ponds: pour trois choses, pour la certitude de la reigle 
generale, et qu'il n'y a point d' autres solutions, et pour son utilill". 

In analysis, the situation in the eighteenth century was hardly better. It 
was a happy coincidence that analytical geometry appeared, as if on cue, 
to provide an "interpretation", in the form of a geometrical figure, of the 
great creation of the 17th century, the notion of function, and thus to 
assist powerfully (in the hands of Fermat, Pascal, and Barrow) at the 
birth of infinitesimal calculus. But the phiIosophico-mathematical controv­
ersies to which the notions of infinitely small and indivisible quantities 
gave rise are only too well known. And although d' Alembert was on 
firmer ground here, and realized that in the "metaphysics" of the infini­
tesimal calculus there is nothing but the concept of limit, he was no more 
able than his contemporaries to comprehend the true meaning of expan-
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sions in divergent series, or to explain the paradox of correct results obtained 
by calculations with expressions which are devoid of all numerical inter­
pretation. Finally, even in the domain of "geometrical certainty", the 
Euclidean faf?de was cracking. When Stirling, in 1717, did not 
hesitate to say that a certain curve has an "imaginary double point at 
infinity" (*), he would have been hard put to relate such an "object" 
to commonly received notions; and Poncelet, who, at the beginning of the 
nineteenth century, gave a considerable impetus to such ideas by founding 
projective geometry, was content to invoke as justification an entirely 
metaphysical "principle of continuity". 

In these circumstances (and, paradoxically, at the very time when the 
"absolute truth" of mathematics was being proclaimed with the greatest 
insistence), the notion of proof seemed to become more and more blurred 
as the eighteenth century ran its course, because the notions employed, and 
their fundamental properties, could not be definitively fixed in the manner 
of the Greeks. The return to rigour, which was set in motion at the 
beginning of the nineteenth century, brought some improvements to this state 
of affairs, but did not correspondingly stem the flood of new ideas. Thus in 
algebra appeared the imaginaries of Galois, the ideal numbers of Kummer, 
followed by vectors and quaternions, n-dimensional spaces, multivectors, 
and tensors, not to mention Boolean algebra. Undoubtedly one of the 
great advances (which made possible a return to rigour without abandon­
ment of any part of the conquests of the past) was the possibility of con­
structing "models" of these new notions in more classical terms. Thus 
ideal numbers and the imaginary numbers of Galois were interpreted 
in terms of the theory of congruences, n-dimensional geometry could be 
regarded (if one so wished) purely as a language for expressing the results 
of algebra "of n variables"; and, as regards the classical imaginary 
numbers - whose geometrical representation by the points of a plane 
marked the beginning of this effiorescence of algebra - there was soon 
the choice between this geometrical "model" and an interpretation in 
terms of congruences. But mathematicians at last began to feel that this 
makeshift approach was contrary to the natural development of their 
science and that it should be legitimate, in mathematics, to work with 
objects which have no concrete "interpretation". "It is not of the essence of 
mathematics", said Boole in 1854, "to be conversant with the ideas of number 
and quantiry" ([16 b], p. 13) (**). The same considerations led Grassmann, 

(*) J. STIRLING, Lineae tertii ordinis Newtonionae ... (1717). 
(**) In this respect again, Leibniz appeared as a forerunner. "The universal 
Mathematies", he says, "is, so to speak, the logic of i11llJgination", and should concern 
itself with "everything in the domain of imagination which is capable of exact determina­
tion" ([12 c], p. 348; cf. [12 bis], pp. 290-291). In his view the keystone ofmathe­
maties so conceived is what he calls the "art of formulae", i.e., essentially the 
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in his "Ausdehnungslehre" of 1844, to present his calculus in a form in which 
the notions of number and geometrical object were completely excluded 
from the start (*). And a little later, Riemann, in his inaugural lecture, 
was careful not to speak of "points" but of "determinations" (Bestimmungs­
weise) in his description of "manifolds n times extended", and emphasized 
that in such a manifold the "metrical relations" (Massverkiiltnisse) "can be 
studied only for abstract quantities and can be represented only by formulae; under 
certain assumptions tkey can however be decomposed into relations, each oj whick 
separately is capable oj a geometrical representation, and thereby tke results oj calcu­
lations may be expressed in geometrical terms" ([19], p. 276). 

From this moment onward, the enlargement of the axiomatic method 
was an accepted fact. Although for some time yet it was felt to be useful 
to check "abstract" results, whenever possible, against geometrical intuition, 
at least it was agreed that the "classical" objects were not the only legi­
timate objects of study for a mathematician. Precisely because of the 
multiplicity of possible "interpretations" or "models", it came to be 
recognized that the "nature" of mathematical objects is ultimately of 
secondary importance, and that it matters little, for example, whether a 
result is presented as a theorem of "pure" geometry or as a theorem of 
algebra via analytical geometry. In other words, the essence of mathe­
matics - that fleeting and insubstantial notion which hitherto could 

science of abstract relations between mathematical objects. But whereas at that 
time practically the only relations considered in mathematics were relations of 
magnitude (equality, inequality, proportion), Leibniz conceived of many other types 
of relations which, in his opinion, ought to be systematically investigated by mathe­
maticians, such as inclusion, or what he called the relation of (single-valued or 
many-valued)" determination" (i.e., the notions of mapping and correspondence) 
([12 bis], pp. 307-310). Many other modem ideas made their appearance under 
his pen in this context; he observed that the various equivalence relations in classical 
geometry have in common the properties of symmetry and transitivity; he conceived 
the notion of a relation which is compatible with an equivalence relation, and 
expressly observed that an arbitrary relation does not necessarily have this property 
([12 bis], pp. 313-315). Of course, here as everywhere, he advocated the use of a 
formalized language and even introduced a sign designed to denote an undeter­
mined relation ([12 bis], p. 301). 
(*) It should be noted that his quasi-philosophical language was hardly likely 
to attract the majority of mathematicians, who felt ill at ease in the presence of a 
statement such as the following: "Pure mathematics is the science of the particular 
en~ in so far as it is created by thought" (die Wissenschaft des besonderen Seins a1s 
eines durch das Denken gewordenen). But it is apparent from the context that what 
Grassmann had quite clearly in mind was axiomatic mathematics in the modem 
sense (except that, rather curiously, he followed Leibniz in considering that the 
bases of this "formal science", as he called it, were the definitions and not the 
axioms). In any case, like Boole, he emphasized that "the name of science of magni­
tudes is not a suitable onefor the wlwle ofmathematics" ([17], vol. 11> pp. 22-23). 
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only be expressed by vague names such as "Teigle generale" or "metaphysic" -
appeared as the study of relations between objects which do not of themselves 
intrude on our consciousness, but are known to us by means of some 
of their properties, namely those which serve as the axioJIlS at the basis 
of their theory. Boole had understood this clearly in 1847 when he 
wrote that mathematics is concerned with "operations considered in themselves, 
independently of the various ways in which they may be applied" ([16 a], p. 3). 
Hankel, in 1867, inaugurating the axiomatization of algebra, defended 
mathematics as being "purely intellectual, a pure theory of forms whose purpose 
is the study, not of the combination ofmagnitudes or oftkeir images, namely numbers, 
but objects of thought (Gedankendinge), which may correspond to concrete objects 
or relations, although such a correspondence is not necessary" ([20], p. 10). Cantor, 
in 1883, echoes this claim for a "free mathematics", proclaiming that 
"mathematics is entirely free in its development, and its concepts are bound only by the 
necessiry that they should be non-contradictory and coordinated with concepts pre­
viously introduced by precise definitions" ([25], p. 182). Finally, the revision 
of Euclidean geometry helped to disseminate and popularize these ideas. 
Pasch himself, although still attached to a certain "reality" of geometrical 
objects, realized that geometry is a fact independent of their signification, 
and consists purely in the study of their relations ([28], p. 90): a conception 
which Hilbert pushed to its logical conclusion by emphasizing that even 
the names of the basic notions of a mathematical theory may be chosen 
at random (*), and which Poincare expressed by saying that axioms are 
"disguised definitions", thereby completely reversing the point of view of 
the scholastic philosophers. 

It is therefore tempting to assert that the modern notion of "structure" 
was substantially in existence by 1900, but in fact another thirty years 
of preparation were required before it made its full-fledged appearance. 
Certainly it is not difficult to recognize structures of the same species when 
they are of a sufficiently simple nature j with group-structures, for example, 
this point was attained in the middle of the nineteenth century. But at the 
same period Hankel was still struggling, without complete success, to 
extract the general ideas of a field and an extension field, which he managed 
to express only in the semi-metaphysical form of a "principle of permanence" 
[20], and which were definitively formulated only by Steinitz forty years 
later. It has been especially difficult to escape from the feeling that 

(*) According to a well-known anecdote, Hilbert was wont to express this idea 
by saying that the words "point", "line", and "plane" could be replaced by 
"table", "chair", and "beer-mug" without changing geometry in the least. 
It is curious to find an anticipation of this conceit (in the older sense of the word) 
in d' Alembert : "We may assign to words any meanings we like", he writes in the 
Encyclopedie ([13], s.v. DEFINITION); "(we could) build up the elements of Geometry 
in full rigour by calling a triangle what is usualh' called a circle". 
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mathematical objects are "given" together with their structure, and it has 
taken many years of functional analysis to make modern mathematicians 
familiar with the idea that, for example, there are several "natural" 
topologies on the set of rational numbers, and several measures on the real 
line. With this dissociation the passage to the general definition of struc­
tures such as has been presented in this book, was finally achieved. 

B. Models and isomorphisms. In several places we have had occasion to 
refer to the notion of a "model" or an "interpretation" of a mathematical 
theory constructed with the help of another theory. This i~ not a recent 
idea, and it should undoubtedly be seen as a continually recurring mani­
festation of a deep-lying feeling of the unity of the various "mathematical 
sciences". If the traditional maxim "All things are numbers" of the early 
Pythagoreans is taken as authentic, it may be considered as the vestige of a 
first attempt to reduce the geometry and algebra of the time to arithmetic. 
Although the discovery of irrationals appeared to close this path for good, 
the reaction it provoked in Greek mathematics was a second attempt at 
synthesis, this time taking geometry as the basis and embracing, among 
other things, the methods of solution of algebraic equations inherited from 
the Babylonians (*). This conception reigned supreme until the funda­
mental reform of R. Bombelli and Descartes, which assimilated every 
measurement of magnitudes to a measurement of length (in other words, 
to a real number). But with the creation of analytical geometry by 
Descartes and Fermat, the trend was again reversed, and a far closer fusion 
of geometry and algebra was obtained, this time to the benefit of algebra. 
Descartes went further and at one stroke conceived of the essential unity 
of "all the sciences which are commonly called mtZtkematical... Although their 
objects are different", he wrote, "they are all concordant with one another in that 
they are concerned onlY with the various ratios or proportions which are present" 
([10], vol. VI, pp. 19-20) (t). However, this point of view tended only to 
make algebra the fundamental mathematical science: a conclusion against 
which vigorous protests were uttered by Leibniz, who, as we have seen, 
had also conceived of a "universal mathematics", but on a far vaster scale 

(*) Arithmetic, however, remained outside this synthesis. Thus Euclid, having 
developed the general theory of proportions between arbitrary magnitudes, then 
developed the theory of rational numbers independently of the notion of ratios 
of magnitudes. 

(t) It is rather curious, in this connection, to see Descartes compare arithmetic 
with "combinations of numbers", and the "arls ... in which order is dominant, such as 
those of the weavers anti the tapestry-makers, the women who embroider anti make lace" 
([10], vol. X, p. 403), as if in anticipation of modern studies of symmetry and its 
relationship with the notion of a group (cf. H. WEYL, Symmetry, Princeton Uni­
versity Press, 1952). 
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and already in close accord with modern ideas. Making quite explicit the 
"concordance" of which Descartes spoke, he perceived for the first time 
what is effectively the general notion of isomorphism (which he called 
"similitude") and the possibility of "identifying" isomorphic relations or 
operations; as an example he cites addition and multiplication ([12 his], 
pp. 301-303). But these bold conceptions found no echo among his 
contemporaries, and the realization of his dreams had to await the expansion 
of algebra in the middle of the nineteenth century. We have already obser­
ved that it was at this point that the "models" multiplied and the habit of 
passing from one theory to another by simple changes of language was 
formed; the most striking example of the latter is perhaps that of duality 
in projective geometry, where the practice of printing theorems "dual" 
to each other side by side in two columns undoubtedly had a large share 
in the acceptance of the notion of isomorphism. On a more technical 
level, it is certain that the notion of isomorphic groups was known to 
Gauss for commutative groups, and to Galois for groups of permutations; it 
was in defined for general arbitrary groups about the middle of the nine­
teenth century (*). Thereafter, with each new axiomatic theory it became 
natural to define a notion of isomorphism; but it is only with the modern 
notion of structure that it has been finally recognized that every structure 
contains in itself a notion of isomorphism, and that it is superfluous to give 
a special definition for each species of structures. 

c. The arithmeti~ation of classical mathematics. The increasingly widespread 
use of the notion of "model" was also to permit the nineteenth century 
mathematicians to achieve the unification of mathematics dreamed of by 
the Pythagoreans. At the beginning of the century, whole numbers and 
continuous quantities appeared to be as irreconcilable as they were in 
antiquity; the real numbers were related to the notion of geometric magni­
tude (especially that of length), and the "models" of negative numbers 
and imaginary numbers were constructed on this basis. Even the rational 
numbers were traditionally associated with the idea of "subdivision" 
of a magnitude into equal parts. Only the integers remained apart, as 
"exclusive products of our intellect", as Gauss said in 1832, when contrasting 
them with the notion of space ([14], vol. VIII, p. 201). The first attempts, 
by Martin Ohm (1822), to bring together arithmetic and analysis were 
concerned with the rational numbers (positive and negative); they were 
taken up again around 1860 by several authors, notably Grassmann, 

(*) The word "isomorphism" was introduced into group theory at the same 
period. But at first it was used also to denote surjective homomorphisms, which 
were called "meriedric isomorphisms", in contrast to "holoedric isomorphisms", 
which were isomorphisms in the modern sense of the word. This terminology 
remained in use up to the time of E. Noether. 
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Hankel, and Weierstrass (in unpublished lectures). To Weierstrass is 
apparently due the idea of obtaining a "model" of the positive or negative 
rational numbers by considering classes of ordered pairs of natural integers. 
But the most important step still remained to be taken, namely to construct 
a "model" of the irrational numbers from within the theory of rational 
numbers. By 1870 this had become an urgent problem because of the 
necessity, after the discovery of "pathological" phenomena in analysis, 
to purge every trace of geometrical intuition and the vague notion of 
"magnitude" from the definition of real numbers. The problem was 
in fact solved, at about this time, almost simultaneously by Cantor, Dede­
kind, Maay, and Weierstrass, using quite different methods from one 
another. 

From then on the integers became the foundation of all classical mathe­
matics. Furthermore, the "models" founded on arithmetic acquired still 
greater importance with the extension of the axiomatic method and the 
conception of mathematical objects as free creations of the human intellect. 
For there remained a limitation to the freedom claimed by Cantor, namely 
the limitation raised by the question of "existence", which had already 
occupied the Greeks, and which arose now so much more urgently precisely 
because all appeal to intuitive representation was now abandoned. We 
shall see later what a philosophico-mathematical maelstrom was to be 
generated by the notion of "existence" in the early years of the twentieth 
century. But in the nineteenth century this stage had not yet been reached, 
and to prove the existence of a mathematical object having a given set of 
properties meant simply, just as for Euclid, to "construct" an object with 
the required properties. This was precisely the purpose of the arithmetical 
"models"; once the real numbers had been "interpreted" in terms of 
integers, then the same was done for complex numbers and Euclidean 
geometry, thanks to analytic geometry, and likewise for all the new alge­
braic objects introduced since the beginning of the century. Finally, 
in a discovery which achieved great fame, Beltrami and Klein obtained 
Euclidean "models" of the non-Euclidean geometries of Lobatschevsky 
and Riemann and thereby "arithmetized" (and completely justified) 
these theories which at first had aroused so much distrust. 

D. The axiomatization of arithmetic. It was natural, in this line of develop­
ment, that attention should next be directed toward the foundations of 
arithmetic itself, and in fact this is what happened around 1880. Appar­
ently, before the nineteenth century, no one had attempted to define addition 
and multiplication in any other way than by a direct appeal to intuition. 
Leibniz alone, faithful to his principles, pointed out explicitly that "truths" 
as "obvious" as 2 + 2 = 4 are no less capable of proof, if one reflects 
on the definitions of the numbers which appear therein ([12 b], vol. IV, 
p. 403; cf. [12 bis], p. 203); and he did not by any means regard the 
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commutativity of addition and multiplication as self-evident C*). He did 
not, however, push his reflections on this subject any further, and in the 
middle of the nineteenth century progress had still not been made in this 
direction. Even Weierstrass, whose lectures contributed gready to the 
the spread of "arithmetizing" point of view, seems not to have realized the 
necessity of a logical clarification of the theory of integers. The first steps in 
this direction are apparendy due to Grassmann who, in 1861 C[I7], vol. II., 
p. 295), gave a definition of addition and multiplication of integers and 
proved their fundamental properties (commutativity, associativity, distri­
butivity), using nothing but the operation x ~ x + 1 and the principle of 
induction. The latter had been clearly conceived and used for the first 
time in the seventeenth century by B. Pascal ([11], vol. III, p. 456) (t) -
though more or less explicit applications of it are to be found in the 
mathematics of antiquity - and it was in current use by mathematicians 
from the second half of the seventeenth century. But it was not until 1888 
that Dedekind ([26], vol. III, pp. 359-361) enunciated a complete system of 
axioms for arithmetic (reproduced three years later by Peano and usually 
known under his name [29 a]), which contained in particular a precise 
formulation of the principle of induction (which Grassmann had used 
without enunciating it explicidy). 

With this axiomatization it seemed that the definitive foundations of 
mathematics had been attained. But, in fact, at the very moment when 
the axioms of arithmetic were being clearly formulated, arithmetic itself was 
being dethroned from this role of primordial science in the eyes of many 
mathematicians (beginning with Dedekind and Peano), in favour of the 
most recent of mathematical theories, namely the theory of sets; and the 
controversies which were to surround the notion of integers cannot be 
isolated from the great "crisis of foundations" ofthe years 1900-1930. 

The theory of sets 

It may be said that at every period of history mathematicians and philo­
sophers have used arguments of the theory of sets more or less consciously. 
But in the history of their conceptions on this subject, it is necessary to 
separate clearly all questions relating to the idea of cardinal numbers 
(and, in particular, relating to the notion of infinity) from those which 
involve only the notions of membership and inclusion. The latter are 

(*) As examples of non-commutative operations, he cited subtraction, division, 
and exponentiation ([12 b], vol. VII, p. 31). At one time he even attempted to 
introduce such operations into his logical calculus ([12 his], p. 353). 

(t) See H. FREUDENTHAL, Zur Geschichte der vollstindigen lnduktion, Arch. 
Int. Hist. Sci., 33 (1953), p. 17. 
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intuitively clear and seem never to have given rise to controversies. They 
serve as the easiest foundation for a theory of the syllogisms (as Leibniz 
and Euler were to show), for axioms such as "the whole is greater than the 
part", and for that part of geometry which is concerned with intersections 
of curves and surfaces. Up to the end of the nineteenth century, there was 
equally no objection raised to speaking of the set (or "class" according to 
some writers) of all objects having one or another given property (*); 
and the celebrated "definition" given by Cantor ("By a set we mean a 
grouping into one enti!)! of distinct objects of our intuition or our thought") ([25], 
p.282) provoked hardly any objections at the time of its publication (t). 
But the situation was quite different where the notions of number or 
magnitude became entangled with the notion of set. The question of the 
indefinite divisibility oflength (raised, certainly, by the early Pythagoreans) 
led, as is well known, to considerable philosophical difficulties; from the 
Eleatic school to Bolzano and Cantor, mathematicians and philosophers 
unsuccessfully came up against the paradox of the finite magnitude compos­
ed of an infinite number of points without magnitude. For us it is irrele­
vant to retrace, even in summary, the interminable and passionate polem­
ics aroused by this problem, which constituted a particularly favourable 
terrain for metaphysical or theological aberrations. Let us only take note 
of the point of view held since antiquity by the majority of mathematicians. 
It consisted essentially in refusing to discuss the question since it could 
not be irrefutably decided, an attitude which we shall find again among 
the modem formalists: just as the latter contrive to eliminate all appearances 
of "paradoxical" sets (see later, page 328), so the classical mathematicians 
carefully avoided introducing into their arguments the "actual infinite" 
(that is to say, sets containing an infinity of objects conceived as existing 
simultaneously, at least in thought) and contented themselves with the 
"potential infinite", i.e., the possibility of increasing any given magnitude 
(or of diminishing it, if a "continuous" magnitude was under considera­
tion) (**). If this point of view contained a certain measure of hypocrisy (tt) , 

(*) We said earlier that Boole did not hesitate to include in his logical calculus 
the "Universe" (denoted by 1), the set of all objects. It does not appear that 
this conception was criticized. at the time, although it had been rejected by Aris­
totle, who gave a rather obscure proof which purported to demonstrate its absurdity 
([2], Met. B, 3, 998 b). 

(t) Frege seems to have been one of the few contemporary mathematicians 
who, not without reason, protested at the spate of similar "definitions" ([24 c], 
vol. I, p. 2). 

(**) A typical example of this conception is Euclid's statement: "For every given 
quanti!Y of prime numbers, t/w, is one which is greater tIum all of them", which we would 
express nowadays by saying that the set of prime numbers is infinite. 

(tt) Classically it would, of course, be correct to say that a pointbelongs to a 
line, but to draw the conclusion that a line is "composed of points" would violate 
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it nevertheless allowed the development of the greater part of classical 
mathematics (including the theory of proportion and, later, the infinitesimal 
calculus) (*); it appeared to be an excellent lifeline, especially after the 
quarrels aroused by infinitesimals, and had become an almost universally\ 
accepted dogma until well into the nineteenth century. 

A first glimmer of the general notion of equipotence appeared in a 
remark of Galileo ([8], vol. VIII, pp. 78-80). He observed that the 
mapping n ~ n2 established a one-to-one correspondence between the 
natural integers and their squares, and consequently that the axiom 
"the whole is greater than the part" could not be applied to infinite sets. 
But, far from inaugurating a rational study of infinite sets, this remark 
seems to have had no other effect than to reinforce distrust of the "actual 
infinite"; this was the moral that Galileo himself drew, and Cauchy 
quotes him in 1833 only to endorse his attitude. 

The requirements of analysis - and especially the deeper study of 
functions of real variables, which was pursued throughout the nineteenth cen­
tury - are at the origin of what was to become the modem theory of sets. 
When Bolzano in 1817 proved the existence of the greatest lower bound 
of a set bounded below in R., he argued, as most of his contemporaries 
did, in terms of "comprehension" and considered, not an arbitrary set 

the taboo of the "actual infinite", and Aristotle devoted long passages to justi­
fying this interdict. Probably in order to escape any objection of this sort many 
mathematicians in the nineteenth century avoided speaking of sets, and reasoned 
systematically in terms of "comprehension"; for example, Galois did not speak of a 
number field, but only of the properties common to all the elements of such a field. 
Even Pasch and Hilbert, in their axiomatic presentations ofEuc1idean geometry, 
still abstained from saying that lines and planes were sets of points; Peano was 
the only one who freely used the language of set theory in elementary geometry. 

(*) The reason for this fact is undoubtedly the circumstance that the sets envi­
saged in classical mathematics belong to a small number of single types, and can 
for the most part be completely described by a finite number of numerical "para­
meters", so that consideration of them reduces to that of a finite set of numbers 
(this is the case, for example, with algebraic curves and surfaces, which for a long 
time constituted almost exclusively the "figures" of classical geometry). Before the 
progress of analysis led, in the nineteenth century, to the consideration of arbitrary 
subsets of the line and Rn, it was rare to encounter sets which did not conform to 
the above types. For example, Leibniz, original as always, considered the closed 
disc minus its centre as a "geometrical locus", or (by a curious presentiment of 
the theory of ideals) considered that in arithmetic an integer is the "type" of the 
set of its multiples, and remarked that the set of multiples of 6 is the intersection 
of the set of multiples of 2 and the set of multiples of 3 ([12 b], vol. VII, p. 292). 
From the beginning of the nineteenth century sets of this latter type became familiar, 
in algebra and in number theory: for example, the classes of quadratic forms, 
introduced by Gauss, and fields and ideals, defined by Dedekind before the Cantor­
ian revolution. 
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of real numbers, but an arbitrary property of them. But when, thirty 
years later, he wrote his Paradoxien des Unendlichen [18] (published in 1851, 
three years after his death), he did not hesitate to claim the possibility 
of existence for the "actual infinite" and to speak of arbitrary sets. In 
this work he defined the general notion of equipotence of two sets and 
proved that any two compact intervals in R are equipotent (provided 
each contains more than a single point). He observed also that the 
characteristic difference between finite and infinite sets lies in the fact 
that an infinite set E is equipotent to some proper subset of E, but he 
gave no convincing proof of this assertion. The general tone of the work 
is more philosophical than mathematical; and since he did not distinguish 
precisely enough between the notion of the power of a set and that of 
magnitude or order of infinity, Bolzano failed in his attempts to construct 
infinite sets of greater and greater powers, and his discussion in this connec­
tion was entangled with considerations of divergent series which are entirely 
devoid of meaning. 

The creation of the theory of sets, as it is understood today, is due to the 
genius of G. Cantor. He too began as an analyst, and his work on 
trigonometric series, inspired by that of Riemann, led him naturally in 
1872 to a first essay in classifying the "exceptional" sets which arise in this 
theory (*) through the notion of successive "derived sets", which he 
introduced in this connection. Undoubtedly it was these researches, 
and also his method for defining real numbers, which led Cantor to interest 
himself in problems of equipotence; for in 1873 he noted that the set of 
rational numbers (or the set of algebraic numbers) is countable. In his 
correspondence with Dedekind, which began at about this time [25 his], 
he raised the question whether the set of integers and the set of real numbers 
are equipotent, and succeeded a few weeks later in showing that they are 
not. Next, from 1874 onward, the problem of dimension preoccupied 
him, and for three years he sought in vain to establish the impossibility 
of a one-to-one correspondence between Rand Rn (n > I), before he 
came to construct such a correspondence, to his own stupefaction (t). 
Having obtained these new and surprising results, he devoted himself 
entirely to the theory of sets. In a series of six memoirs published in the 
Mathematische Annalen between 1878 and 1884, he considered problems 
of equipotence, the theory of totally ordered sets, topological properties 
of Rand Rn, and the problem of measure; and it is admirable to see 

(*) These are sets E c R with the property that if a trigonometric series 
+00 
~ cnenix converges to 0 except at points of E, then cn = 0 for all n ([25], 

-00 

p.99). 
(t) "Je Ie vois, maisje ne Ie Cf'ois pas", he wrote to Dedekind ([25 his], p. 34; 

in French in the text). 
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how in his hands the notions which appeared to be so inextricably rooted 
in the classical conception of the "continuum" were gradually brought 
out. In 1880 he had the idea of iterating "transfinitely" the formation of 
"derived sets"; but this idea did not take substance until two years later, 
with the introduction of well-ordered sets - one of the most original 
of Cantor's discoveries, thanks to which he was able to initiate a detailed 
study of cardinal numbers and to formulate the "problem of the contin­
uum" [25]. 

I t was not to be expected that such bold conceptions, which ran counter 
to a tradition two thousand years old and led to such unlikely results of so 
paradoxical an appearance, should have been accepted without resistance. 
In fact, among the influential mathematicians in Germany, Weierstrass 
was the only one to follow with some favour the work of Cantor (his former 
pupil); but Cantor met with the irreconcilable opposition of Schwarz, 
and above all of Kronecker (*). It seems to have been as much the 
constant tension generated by opposition to his ideas as his fruitless efforts 
to prove the continuum hypothesis which produced in Cantor the first 
symptoms of a nervous illness which was to affect his mathematical produc­
tivity (t). In fact he did not resume his interest in the t~eory of sets 
until about 1887, and his last publications, which are concerned mainly 
with the theory of totally ordered sets and the calculus of ordinals, date 
from the period 1895-97. He had also proved in 1890 the inequality 
m < 2m. However, not only did the problem of the continuum remain 
unanswered, but there was a more serious gap in the theory of cardinals, 
for Cantor had not been able to prove the existence of a well-ordering 
relation between arbitrary cardinals. This gap was to be filled partly 
by the theorem of F. Bernstein (1897) showing that the relations 11 ~ \i 
and {I ~ 11 imply 11 = \i (**), and above all by the theorem of Zermelo 
[36 a] which proved the existence of a well-ordering on any set: a 
theorem that Cantor had conjectured already in 1883 ([25], p. 169). 

Dedekind, however, had followed the work of Cantor with sustained 
interest since the beginning. But whereas the latter concentrated his 

(*) Kronecker's contemporaries made frequent allusions to his doctrinal position 
on the foundations of mathematics; it is thus to be presumed that he expressed 
himself more explicitly in personal contacts than in his publications (which, 
so far as the role of the natural integers is concerned, contain nothing more than 
comments on "arithmetization", which by 1880 had become rather banal) 
(cf. H. WEBER, "Leopold Kronecker", Math. Ann., 43 (1893), pp. 1-25, in parti­
cular pp. 14-15). 

(t) For this period of Cantor's life, see A. SCHOENFLIES, Acta Math. 50 (1928), 
pp. 1-23. 

(**) This theorem had already been obtained in 1887 by Dedekind, but he did 
not publish his proof ([26], vol. III, p. 447). 
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attention on infinite sets and their classification, Dedekind pursued his 
own thoughts on the notion of number (which had already led to his 
definition of irrational numbers by means of "cuts"). In his pamphlet 
Was sind und was sollen die ?,aklen, which was published in 1888, but whose 
essential content dates from the period 1872-8 ([26], vol. III, p. 335), 
he showed how the notion of natural integer (which, as we have seen, 
was now the basis for the whole of classical mathematics) could itself be 
derived from the fundamental notions of the theory of sets. He was 
certainly the first to develop explicitly the elementary properties of arbi­
trary mappings of one set into another (hitherto neglected by Cantor, 
who was interested only in injective correspondences) and introduced, 
for any mapping f of a set E into itself, the notion of the "chain" of an 
element a e E relative to 1, namely the intersection of all sets K c E 
such that a e K and f (K) c K (*). Next, he took as the definition of an 
infinite set E the fact that there exists a one-ta-one mapping 'P of E 
into E such that 'P(E)::p. E (t). If, furthermore, there exists such 
a mapping 'P and an element a .. 'P(E) for which the whole set E is 
the chain of a, Dedekind said that E is "simply infinite"; moreover, 
he noted that "Peano's axioms" are then satisfied and showed (before 
Peano did) how, from that starting-point, all the elementary theorems of 
arithmetic may be obtained. The only thing lacking in his presentation 
is the axiom of infinity, which Dedekind (following Bolzano) believed he 
could prove by considering the "world of thoughts" (Geclankenwelt) as a 
set (**). 

(*) A notion closely related to this forms the basis of Zermelo's second proof 
of his theorem ([36 b]; see Chapter III, §2, Exercise 6). 

(t) A1I we have seen, Bolzano had already noticed this characterization of infinite 
sets, but his work (which was apparently not well known in mathematica1circles) was 
not known to Dedekind at the time of writing Was sind untl was sollen die <ahlen. 

(**) Another method of defining the notion of natural integer and deducing its 
fundamental properties had been proposed by Frege in 1884 [24 b]. First of all, 
he sought to give the notion of the cardinal of a set a more precise meaning than 
Cantor; at this date the latter had defined only the notions of equipotent sets and 
of a set having a power at most equal to that of another set, and the definition of 
"cardinal number" which he gave later ([25], p. 282) was as obscure and unusable 
as Euclid's definition of a straight line. Frege, with his usual care for accuracy, 
had the idea of taking as the definition of the cardinal of a set A the set of all 
sets equipotent to A ([24 b], § 68); then, having defined cp(4) = 4 + 1 for every 
cardinal a (§ 76), he considered the set C of all cardinals, and defined the relation 
"t; is a cp-successor of a" to mean that t; belongs to the intersection of all sets 
Xc C such that cp(a) e X and cp(X) eX (§ 79). Finally, he defined a natural 
integer as a cp-successor of 0 (§ 83; all these definitions are of course expressed 
by Frege in his Begriffsschrift). Unfortunately, this construction was later seen 
to be defective, since the set C and the set of all sets equipotent to a set A are 
"paradoxical" (see below). 
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On another front, Dedekind had been led by his arithmetical work (and 
especially the theory of ideals) to envisage the notion of ordered set in a 
more general aspect than Cantor had done. Whereas the latter restricted 
himself entirely to totally ordered sets (*), Dedekind investigated the 
general case and in particular made a close study of lattices ([26], vol. II, 
pp. 236-271). This work attracted hardly any attention at the time; 
and although his results, rediscovered by various authors, have been the 
object of numerous publications since 1935, their historical importance 
lies far less in the possible applications of this theory (which indeed are 
rather scanty) than in the fact it was one of the first examples of careful 
axiomatic construction. On the other hand, Cantor's first results on 
countable sets soon produced many important applications, even to the 
most classical questions of analysis (t) (quite apart from those parts of 
his work which inaugurated general topology and measure theory; for 
these the reader is referred to the Historical Notes in General Topology). 
Moreover, the last years of the nineteenth century saw the first applications 
of the principle of transfinite induction which, especially since the proof 
of Zermelo's theorem, has become an indispensable instrument in all 
parts of modern mathematics. Kuratowski in 1922 gave a version of 
this principle, subsequendy rediscovered by Zorn [45] and custOInarily 
named after him, which is often more convenient to apply since it avoids 
the use of well-ordered sets ([40], p. 89); it is this form of the principle 
that is generally used nowadays (**). 

By the end of the nineteenth century, therefore, the essential conceptions 
of Cantor had carried the day (tt). As we have seen, the formalization 
of mathematics was achieved at the same period, and the use of the axio-

(*) It is curious to note that Cantor would never admit the existence of "non­
Archimedean" ordered groups, because they brought in the notion of "actual 
infinitesimal" ([25), pp. 156 and 172). Such order relations presented themselves 
naturally in the researches of Du Bois-Reymond on orders of infinity and were 
studied systematically by Veronese (FfIIIIi4rnenta di Geometria, Padova, 1891). 

(t) In 1874 Weierstrass had announced, in a letter to Du Bois-Reymond, an 
application to functions of a real variable of Cantor's theorem on the possi­
bility of arranging the rational numbers in a sequence (Acta Math. 30 (1924), 
pp.206). 

(**) For this reason, the importance attached to Cantor's ordinals has declined 
considerably; and, generally speaking, many of the results of Cantor and his suc­
cessors on the arithmetic of uncountable ordinals and cardinals have so far remained 
somewhat isolated. 

(tt) The first Intemational Congress of Mathematicians (Zurich, 1897) maybe 
taken as the official consccration of the theory of sets; on this occasion Hadamard 
and Hurwitz announced important applications of set theory to analyais. The 
increasing influence of Hilbert at this period contributed greatly to the dissemination 
of Cantor's ideas, especially in Germany. 
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matic method had become almost universally accepted. In other words, 
the intense labours of the years 1875-1895 had acquired for mathematics 
the essential content of the material presented in this book. But the same 
period saw the beginning of a "crisis of the foundations" of rare violence, 
which was to shake the mathematical world for more than thirty years 
and seemed at times to put in danger not only all the recent acquisitions 
but even the most classical parts of mathematics. 

The paradoxes of the theory of sets and the crisis of the foundations 

The first "paradoxical" sets appeared in the theory of cardinals and 
ordinals. In 1897, BuraH-Forti noted that there cannot be a set formed 
of all the ordinals, for such a set would be well-ordered and therefore iso­
motphic to a proper segment of itself, which is absurd (*). In 1899, 
Cantor observed (in a letter to Dedekind) that we can no more say that the 
cardinals form a set, nor speak of "the set of all sets" without contradiction 
(the set of all subsets of the latter "set" n would be equipotent to a subset 
of n, which is contrary to the inequality m < 2m) ([25], pp. 444-448). 
Finally, in 1905, by analyzing the proof of this inequality Russellshowed 
that the reasoning which establishes it also proves (without any appeal 
to the theory of cardinals) that the notion of "the set of all sets which are 
not elements of themselves" is self-contradictory [37] (t). 

It might be thought that such "antinomies" would appear only in the 
peripheral regions of mathematics characterized by the consideration 
of sets so "large" as to be inaccessible to intuition. But other paradoxes 
were soon to threaten the most classical parts of mathematics. Berry 
and Russell [37], simplifying an argument due to J. Richard [34], observed 
that the set of integers which can be named in less than nineteen syllables 
is finite, but that it is nevertheless contradictory to define an integer as 
"the least integer not nameable in fewer than nineteen syllables", since 
this definition contains only eighteen syllables. 

Although such arguments, so remote from the current usage of mathe­
maticians, must have appeared to many as a sort of play upon words, 
yet they indicated the need for a revision of the basis of mathematics 
in order to eliminate "paradoxes" of this nature. But although there was 

(*) C. BURAU-FoRTI, "Sopra un teorema del Sig. G. Cantor", Alii Accad. 
Torino, 32 (1896-7), pp. 229-237. This remark had already been made by Cantor 
in 1896 (in an unpublished letter to Hilbert). 

(t) Russell's -argument is to be compared with the ancient paradoxes of the 
"liar" type, which were the subject of innumerable commentaries in classical 
formal logic; the question is whether a man who says "I am lying" is telling the 
truth or not when he speaks these words (cr. A. RlisTOW, Der Lugner, Diss. Erlangen, 
1910). 
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unanimous agreement on the urgency of such a revision, radical divergences 
of opinion soon arose as to the manner of achieving it. For one group of 
mathematicians, the "idealists" and the "formalists" (*), the situation 
created by the "paradoxes" of set theory was very similar to that caused 
in geometry by the discovery of non-Euclidean geometries or "patholog­
ical" curves (such as curves with no tangents); it should therefore lead to a 
similar, but more general conclusion, namely that it is futile to attempt 
to found any mathematical theory on an appeal (explicit or otherwise) 
to "intuition". This position may be summarized in the words of the 
principal adversary of the formalist school : " ... the view of formalism", said 
Brouwer ([38 a], p. 83), "which maintains that human reason does not haUl at 
its disposal exact images either of straight lines or of numbers larger than ten, for 
example... It is true that from certain relations among mathematical entities, 
which we assume as axioms, we deduce other relations according to fixed laws, in the 
conviction that in this way we derive truths from truths by logical reasoning... For 
the formalist, therefore, mathematical exactness consists mere{y in the method oj 
developing the series of relations, and is independent of the significance one might 
want to give to the relations or the entities which they relate". 

For the formalist, therefore, what is required is to provide an axiomatic 
basis for the theory of sets quite analogous to that for elementary geometry, 
in which it is not necessary to know what the "th.ings" are that are called 
"sets", nor what the relation x Ey means, but in which the conditions 
imposed on this relation are enumerated; naturally, this should be done 
in such a way as to include, so far as possible, all the results of Cantor's 
theory, while rendering impossible the existence of "paradoxical" sets. 
The first example of such an axiomatization was given by Zermelo in 
1908 [36 c]; he avoided sets which are "too big" by introducing a "selec­
tion axiom" (Aussondenmgsaxiom) , according to which a property P I x! 
determines a set formed by the elements which possess this property only 
if P I x! already implies a relation of the form x e A (t). But the 
elimination of paradoxes analogous to "Richard's paradox" could be 
achieved only by restricting the sense attached to the notion of "property". 

("') The differences between these two schools are mainly of a philosophical 
order, and we cannot here enter into more details on this subject. The essential 
point for us is that they were in agreement on strictly mathematical questions. 
For example, Hadamard (a typical representative of the "idealists") adopted a 
point of view very close to that of the formalists, so far as the validity of the argu­
ments of the theory of sets is concerned, but without expressing himself in axiomatic 
terms ([35], p. 271). 

(t) For example, Russell's paradox would be valid in Zermelo's system only 
if the relation (3z)«x$x) ~ (xez») were proved. Of course, such a proof, 
if it were to be found, would entail as an immediate consequence the necessity 
of substantial modification of the system in question. 
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In this connection, Zermelo was content to describe in extremely vague 
terms a type of properties which he called "definite" and to indicate 
that the application of the selection axiom must be limited to properties 
of this type. This point was made precise by Skolem [39] and Fraenkel [41] 
(*); as they observed, its elucidation demands a completely formalized 
system (such as that described in Chapters I and II of this book), in which 
the notions of "property" and "relation" have lost all "meaning" and 
have become simply designations for assemblies formed in accordance 
with explicit laws. This, of course, necessitates that the rules of logic 
used be incorporated in the system, which was not yet the case in the 
Zermelo-Fraenkel system; apart from this, it is essentially their system 
which we have described in Chapters I and II. 

Other axiomatizations of the theory of sets were subsequently proposed. 
We shall consider principally that due to von Neumann [43 a and b], 
which comes closer than the Zermelo-Fraenkel system to Cantor's primitive 
conception; the latter, in order to avoid "paradoxical" sets, had already 
proposed (in his correspondence with Dedekind; [25], pp. 445-448) to 
distinguish two kinds of sets, "multiplicities" (Vielheiten) and "sets" (Mengen) 
in the strict sense, the latter being characterized by the fact that they 
could be thought of as single objects. It is this idea which von Neumann 
made precise by distinguishing between two types of objects, "sets" and 
"classes". In his system (almost completely formalized) the classes are 
distinguished from sets by the fact that they cannot be placed on the left 
of the sign e. One of the advantages of such a system is that it rehabil­
itates the notion of "universal class" (which, of course, is not a set) used by 
the logicians of the nineteenth century. We should add that von Neumann's 
system avoids (for set theory) the introduction of axiom schemes, which 
are replaced by suitable axioms, thereby making the logical study of the 
system easier. Variants of von Neumann's system have been given by 
Bernays and COdel [44 b]. 

These systems seem to have succeeded in eliminating the paradoxes, but 
at the cost of restrictions which cannot but appear highly arbitrary. In 
favour of the Zermelo-Fraenkel system it can be said that it limits itself to 
formulating prohibitions which do no more than sanction current practice 
in the applications of the notion of set to various mathematical theories. 
The systems of von Neumann and Godel are more remote from usual 
conceptions. On the other hand, we cannot exclude the possibility that 

(*) Skolem [39] and Fraenkel [41] also noted that Zermelo's axioms are insuf­
ficient to prove, for example, the existence of uncountable cardinals m such that 
2:\ < m for every cardinal 11 < m. As we have seen (Chapter III, § 6, Exercise 21), 
the existence of such cardinals can be proved by reinforcing the selection axiom 
(scheme S8, Chapter II, § 1, no. 6); the axiom thus introduced is a variant of those 
proposed by Skolem and Fraenke1. 
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it may be easier to insert the basis of some mathematical theories into the 
framework of such systems than into the more rigid framework of the 
Zermelo-Fraenkel system. 

In any case, it cannot be said that any of these solutions gives the impres­
sion of finality. They satisfy the formalists, because the formalists refuse 
to take into consideration the individual psychological reactions of every 
mathematician; they consider that a formalized language has done its 
duty if it is capable of transcribing mathematical arguments in a form 
which contains no ambiguities, and hence of serving as a vehicle for mathe­
matical thought. It is everyone's right, they would say, to think what they 
like about the "nature" of mathematical entities or the "truth" of the 
theorems they use, provided that their reasoning can be transcribed into 
the common language (*). 

In other words, from a philosophical point of view, the attitude of the 
formalists is characterized by an indifference to the problem posed by the 
"paradoxes", resulting from the abandonment of the Platonic position 
which claimed to attribute to mathematical notions an intellectual "content" 
common to all mathematicians. Many mathematicians rebelled against 
this break with tradition. Russell, for example, sought to avoid the 
paradoxes by analyzing their structure more deeply. Taking up an idea 
first advanced by J. Richard (in the article [34] in which he presented 
his "paradox") and later developed by H. Poincare [33 c], Russell and 
Whitehead observed that the definitions of the paradoxical sets all violate 
the following principle, called the "vicious circle principle" : "whatever 
involves all of a collection must not be one of the collection" ([37], vol. I, 
p.40). This statement served as a basis for the Principia, and the "theory 
of types" was developed in order to accommodate it. Like that of Frege 
which inspired it, the logic of Russell and Whitehead (much vaster than the 
mathematical logic used in Chapter I of this Book) contains "propositional 
variables" . The theory of types proceeds to a classification of these 
variables, in broad outline as follows. 

Starting from an undefined "domain of individuals", which may be quali­
fied as "objects of order 0", relations in which the variables (free or bouud) 
are individuals are called "first-order objects"; and in general, relations 
in which the variables are objects of order ~ n (and at least one of them 
is of order n) are called "objects of order n + 1" (*). A set of objects 

(*) Hilbert, at any rate, apparently always believed in an objective mathema­
tical "truth" ([30], pp. 315 and 323). Even some formalists, such 88 H. Curry, 
took a position very close to that which we have just summarized, rejecting with a 
sort of indignation the idea that mathematics can be regarded simply as a 
game, and insisted that it is an "objective science" (H. CuRRY, Outlines of a 
Formalist Philosophy of Mathematics, Amsterdam (North Holland Publ. Co.), 1951, 
p.57). 
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of order n can therefore be defined only by a relation of order n + 1, 
and this condition allows the elimination of paradoxical sets without 
any difficulty (t). But the principle of the "hierarchy of types" is so 
restrictive that, if strictly adhered to, it leads to a mathematics of inex­
tricable complexity (**). To escape this consequence, Russell and White­
head were obliged to introduce an "axiom of reducibility" which asserts 
the existence, for every relation between "individuals", of an equivalent 
relation of the first order. This condition is as arbitrary as the axioms 
of the formalists, and reduces considerably the interest of the construction 
of the Principia. The system of Russell and Whitehead has been more 
popular with logicians than with mathematicians. Moreover, it is not 
completely formalized (tt), so that there are numerous obscurities of detail. 
Various efforts have been made to simplify and clarify it (Ramsey, Chwistek, 
Quine, Rosser); these authors tend to use more and more completely 
formalized languages, and replace the rules of the Principia (which still 
contain a certain intuitive substratum) by restrictions which take account 
only of the writing down of the assemblies considered; not only do these 
rules thus appear as gratuitous as the prohibitions formulated in the 
systems of Zermelo-Fraenkel or von Neumann, but also, being more remote 
from mathematical usage, they have in many cases led to unacceptable 
consequences which the author had not foreseen (such as BuraIi-Forti's 
paradox, or the negation of the axiom of choice). 

For the mathematicians of these schools, the essential aim was to avoid 
renouncing any part of the heritage of the past. "No one shall expel us", 

(*) In fact, this is only the beginning of the classification of "types", which 
cannot be accurately described without going into very long explanations. The 
reader who wishes to have a more detailed account may refer especially to the 
introduction to Volume II of Principia MathernaJi&a [37]. 

(t) In the system of Russell and Whitehead, the relation x e x therefore cannot 
be legitimately written, in contrast to the Zermelo-Fraenkel system for example 
(cf. Chapter II, § 1, no. 4). 

(**) For example, equality is not a primitive notion in the system of Principia; 
two objects a, b are equal if, for every property P I x I, P I a I and P! b I are 
equivalent propositions. But this definition is meaningless in the theory of types. 
To give it meaning, it would at any rate be necessary to specify the "order" 
of P, and one would thus be led to distinguish an infinite number of equality 
relations! Zermelo had noted in 1908 [36 b] that many definitions of classical 
mathematics (for example, that of the greatest lower bound of a set in R) do not 
respect the "vicious circle principle", and the adoption of this principle therefore 
risked imposing an interdict on important parts of the most traditional mathema­
tical theories. 

(tt) Russell and Whitehead (like Frege) adhered to the classical position 
touching mathematical formulae, which for them always possessed a "meaning" 
related to an underlying activity of the mind. 
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said Hilbert ([30], p. 274), "from the paradise Cantor has created/or us". To 
achieve this aim, they were prepared to accept limitations on mathematical 
reasoning which, though not of vital importance because they conformed 
with mathematical usage, did not appear to be imposed by our mental 
habits and the intuitive notion of a set. For them, anything was preferable 
to the intrusion of psychology in the criteria of validity in mathematics; 
and rather than "take into account the properties of our brains", as Hadamard 
said ([35], p. 270), they resigned themselves to the imposition of largely 
arbitrary boundaries, provided that all of classical mathematics was 
contained in them and that they did not threaten to impede later progress. 

Quite different was the attitude of the mathematicians who adhered 
to the following doctrine. Whereas the formalists agreed to abandon control 
by the "eyes of the mind" so far as mathematical reasoning was concerned, 
the mathematicians who have been labeled as "empiricists", "realists", 
or "intuitionists" refused to consent to this abdication; they insisted on a 
sort of inner certainty guaranteeing the "existence" of the mathematical 
objects they studied. They had no serious objection to the renunciation 
of spatial intuition, because arithmetical "models" allowed them to 
shelter behind the intuitive notion of integers. But irreconcilable oppo­
sition arose over the question of reducing the notion of integer to that 
of set (which is intuitively far less clear) and then of erecting barriers, 
devoid of intuitive foundations, to the manipulation of sets. The first 
person td voice this opposition (and the most influential, by reason of the 
authority of his genius) was H. Poincare. Having accepted not only the 
axiomatic point of view toward geometry and the arithmetization of 
analysis but also a good part of Cantor's theory, he refused to consider that 
arithmetic, too, might be amenable to axiomatic treatment. The principle 
of mathematical induction, in particular, was in his eyes a fundamental 
intuition of our intellects and could not be regarded purdy as a conven­
tion (*) [33 c]. He was in principle against formalized languages, whose 
usefulness he contested, and was prone to confuse the notion of integers 
in formalized mathematics with the use of integers in the theory of proof 
(which was then emerging and of which we shall speak later). No doubt 
it was not easy at that time to make this distinction as precisdy as we do 
today - after more than fifty years of study and discussion - although 
the distinction had been grasped clearly by men such as Hilbert and Rus­
sell. 

(*) Poincare goes so far as to say, in substance, that it is impossible to define a 
structure which satisfies all of Peano's axiom except for the principle of mathema­
tical induction ([33 a], p. 65). The example (due to Padoa) of the integers with 
the mapping x _ x + 2 replacing x _ x + I shows that this assertion is incorrect. 
Curiously, this example is already to be found in Frege, in almost the same terms 
([24 b], p. 21 e). 
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Criticisms of this nature multiplied after the introduction of the axiom 
of choice by Zermelo in 1904 [36 a]. Its use in many previous proofs in 
analysis and set theory had hitherto gone almost unnoticed (*), and it 
was by following up an idea suggested by Erhard Schmidt that Zermelo, 
explicitly stating this axiom (and in the two forms given in the Summary 
of Results, §4, no. 10), deduced by an ingenious method (which we repro­
duced in essence in Chapter III, § 2) a satisfactory proof of the existence 
ofa well-ordering on any set. It appears that, coming as it did at the same 
time as the "paradoxes", this new method of reasoning, with its unfamiliar 
appearance, caused confusion among many mathematicians; one need 
only read the strange misconceptions which arose in this connection, 
in the following volume of the Mathematische Annalen, by authors as familiar 
with Cantor's methods as Schoenflies and F. Bernstein. The criticisms of 
E. Borel, published in the same volume, have more substance and clearly 
reflect the point of view of Poincare on integers; they were developed and 
discussed in an exchange of letters between E. Borel, Baire, Hadamard, 
and Lebesgue, which has become a classic of the French mathematical 
tradition [35]. Borel began by denying the validity of the axiom of choice 
because in general it involves an uncountable infinity of choices, which 
cannot be intuitively imagined. But Hadamard and Lebesgue observed 
that a countable infinity of successive arbitrary choices is no more intuitive, 
because it involves an infinite number of operations, which it is impossible 
to conceive of being actually carried out. In the view of Lebesgue, who 
enlarged the debate, everything depended on what was meant by the 
assertion that a mathematical object "exists"; for him, it is necessary to 
"name" explicitly a property (a "functional" property, we should say) 
which defines the object uniquely. A function such as that used by Zermelo 
in his proof is what Lebesgue called a "law" of choice. If, he continued, 
this requirement is not satisfied, and we merely "consider" this function 
instead of "naming" it, can we be sure that throughout our reasoning 
we are always considering the same function? ([35], p. 267) This consid­
eration led Lebesgue to new doubts : even the choice of a single element 
in a set appears to raise difficulties; it is necessary to be certain that such 
an element "exists", i.e., that at least one element of the set can be 
"named" (t). Can we therefore speak of the "existence" of a set if 

(*) In 1890, Peano, in the course of proving his theorem on the existence of 
integrals of differential equations, remarked that he had been led naturally to 
"applying an irifinite number oj times an arbitrary law which associates with a class an irulivi­
dual member oj the class"; but he added immediately that such an argument was not 
admissible, in his opinion (Math. Ann., 37 (1890), p. 210). In 1902, B. Levi noted 
that the same line of reasoning had been implicitly employed by F. Bernstein in a 
proof in the theory of cardinals (1st. Lernbardo Sci. Lett., Rend. (2) 35 (1902), p.863). 

( t) The so-called "choice" of an element in a set has in fact nothing to do 
with the axiom of choice; it is simply a manner of speaking, and whenever we use 
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we cannot "name" every element of it? Baire did not hesitate to deny the 
"existence" of the set of subsets of a given infinite set (loc. cit., pp. 263-
264); in vain Hadamard observed that these restrictions would lead to 
renouncing even the right to speak of the set of real numbers, and E. Borel 
in the end came to this conclusion. Apart from the fact that countable 
sets seem to have been granted the franchise, we are almost back to 
the classical position of the opponents of the "actual infinite". 

None of these objections was very systematic; it was reserved to Brouwer 
and his school to undertake a complete recasting of mathematics on similar 
but even more radical lines. We shall not here, presume to summarize 
a doctrine so complex as intuitionism, which is as much of philosophy as 
mathematics, and we shall do no more than indicate some of its most 
striking features, referring for more details to the works of Brouwer him­
self [38] and Heyting's exposition [46]. In Brouwer's view, mathematics 
is identical with the "exact" part of our thought, founded on the primary 
intuition of the sequence of natural numbers, and cannot be translated 
into a formal system without mutilation. Moreover, it is "exact" only 
in the minds of mathematicians, and it is illusory to hope to construct an 
instrument of communication between mathematicians which is free of 
all the imperfections and ambiguities of languages; the most that can be 
hoped for is to arouse in the interlocutor a favourable state of mind for 
more or less vague descriptions ([46], pp. 11-13). Intuitionist mathe­
matics attaches hardly more importance to logic than to language; a proof 
is conclusive not by virtue ofthe rules oflogic, fixed once and for all, but by 
reason of the "immediate self-evidence" of each of its steps. This "self­
evidence" is moreover to be interpreted in an even more restrictive sense 
than that of E. Borel and his supporters; thus in intuitionist mathematics 
we may not assert that a relation of the form "R or (not R)" is true 
(the principle of the excluded middle) unless, for every system of values 
given to the variables appearing in R, we can prove that one of the two 
propositions R, "not R" is true. For example, from the equation 
ab = 0 between two real numbers, we may not infer "a = 0 or b = 0", 
because it is easy to construct explicit examples of real numbers a, b such 
that we have ab = 0 without at present being able to prove either one of 
the two propositions a = 0, b = 0 ([36], p. 21). 

this expression we are in fact using the method of the auxiliary constant (Chapter I, 
§ 3, no. 3) which depends only on the most elementary logica1laws (not involving 
the sign or). Of course, the application of this method to a set A requires that 
A ::f: ~ should have been proved; this is the point of Lebesgue's argument, for 
such a proof is not valid for him unless an element of A has been "named". 
For example, Lebesgue does not accept as valid the argument of Cantor proving 
the existence of transcendental numbers; for him their existence is proved only 
because it is possible to "name" particular transcendental numbers, such as 
Liouville's numbers or the numbers e or 1t. 
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It is hardly surprising that the intuitionist mathematicians, starting from 
such principles, were led to results quite different from the classical theo­
rems. A large number of the latter disappeared, for example most of the 
"existence" theorems of analysis (such as the theorems of Bolzano and 
Weierstrass for real functions); if a function of a real variable "exists" 
in the intuitionist sense, it is ipsofacto continuous, and a monotone bounded 
sequence of real numbers does not necessarily have a limit. Furthermore, 
many of the classical notions ramify into several fundamentally distinct 
notions in intuitionist mathematics. Thus there are two notions of conver­
gence (for a sequence of real numbers) and eight notions of countability. 
It goes without saying that transfinite induction and its applications to 
modem analysis are, like most of Cantor's theory, condemned without 
appeal. 

According to Brouwer, it is only in this way that mathematical propo­
sitions can acquire a "content"; formalist arguments which go beyond 
what is admitted by intuitionism are judged to be worthless, because it is 
impossible to give them a "meaning" to which the intuitive notion of 
"truth" could be applied. Clearly, judgments of this sort can only rest 
on a previous notion of "truth", which is of a psychological or metaphysical 
nature; that is to say, in practice, that they are beyond discussion. 

Certainly, the vigorous attacks from the intuitionist camp have from 
time to time obliged not only the avant-garde mathematical schools, but 
even the partisans of traditional mathematics, to be on the defensive. 
A well-known mathematician has admitted to being impressed by these 
attacks to the point that he voluntarily restricted his work to those branches 
of mathematics considered to be "certain". But such cases must have been 
rather uncommon. The intuitionist school, whose memory will undoubt­
edly survive only as a historical curiosity, has at least rendered the service 
of having obliged its opponents, that is to say the vast majority of math em a­
ticians, to clarify their own positions and to become more consciously 
aware of the reasons (whether logical or sentimental) for their confidence 
in mathematics. 

Metfl1TllJthematics 

Absence from contradiction has always been considered to be a sine qua non 
of all mathematics, and from the time of Aristotle logic was sufficiently 
developed for it to be realized that anything could be deduced from a 
contradictory theory. ProofS of "existence", which have been regarded 
as indispensable ever since antiquity, clearly served only to guarantee that 
the introduction of a new concept did not risk entailing a contradiction, 
particularly if the concept was too complicated to fall immediately under 
"intuition". We have seen how this demand for a proof of non-contra­
diction became more imperative with the advent of the axiomatic point 
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of view in the nineteenth century, and how the construction of arithmetic 
"models" answered it. But might arithmetic itself not be contradictory? 
Such a question could not have been asked before the end of the nineteenth 
century; so much did the integers appear to belong to what is surest in our 
intuition. But after the "paradoxes" everything seemed open to doubt, 
and the feeling of insecurity they created understandably led mathema­
ticians, round about 1900, to look more closely at the problem of the 
consistency of arithmetic, in order to save at least classical mathematics 
from shipwreck. Thus this problem was the second of those listed by 
Hilbert in his famous address to the International Congress of 1900 ([31], 
pp. 229-301). In doing so, he put forward a new principle which was to 
make a deep impression. Whereas, in traditional logic, the non-contra­
diction of a concept only made the concept "possible", for Hilbert it was 
equivalent to the existence of the concept (at any rate where axiomatically 
defined mathematical concepts were concerned). This point of view 
apparently entailed the necessity of proving a priori the consistency of a 
mathematical theory before even being able to develop the theory legi­
timately; certainly this was how the principle was understood by H. Poin­
care, who took up Hilbert's idea as a convenient stick with which to beat 
the formalists, by pointing out with malicious satisfaction how far the 
formalists in this period were from being able to satisfy this condition 
([33 c], p. 163). We shall see later how Hilbert took up this challenge. 
But first, it should be noted that, under his influence and that of Poincare, 
the demands put forward by the latter were accepted without reserve 
for a long time, as much by the formalists as by their opponents. One 
consequence was the belief, which was very widespread even among the 
formalists, that Hilbert's theory of proof was an integral part of mathe­
matics, and constituted an indispensable prolegomenon to mathematics 
proper. We explained in the Introduction why this dogma appears 
unjustified to us (*), and we hold that the role of metamathematics 
in an account of logic and mathematics can and should be confined to the 
very elementary part which deals with the manipulation of abbreviating 
symbols and deductive criteria. Contrary to what Poincare asserted, it is 
thus not a question of "claiming freedom from contradiction", but rather 
of considering, as Hadamard did, that consistency, even when it cannot 
be proved, can be ascertained ([35], p. 270). 

It remains for us to give a brief historical sketch of the efforts of Hilbert 
and his school. Although the theory of proof is not touched on in this 
series, it is not without interest to retrace in outline not only the evolution 
of ideas which finally led to GOdel's negative result and justified a posteriori 

(*) According to the pure formalist doctrine, the words "there exists" in a 
formalized text have no more "meaning" than any others, and there is no other 
type of "existence" to be considered in formalized proofs. 
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Hadamard's scepticism, but also all the progress which has resulted in an 
understanding of the mechanism of mathematical reasoning, and which 
has elevated modern metamathematics to the position of an autonomous 
science of undeniable importance. 

In 1904, in an address to the International Congress ([30], pp. 247-261), 
Hilbert attacked the problem of the consistency of arithmetic. First, he 
established that a proof of consistency could not be obtained by recourse 
to a "model" (*), and he indicated in broad outline the principle of another 
method. He proposed to consider the true propositions of formalized 
arithmetic as assemblies of signs without any meaning and to show that, 
by using the rules governing the formation and juxtaposition of these 
assemblies, an assembly could never be obtained which was a true propo­
sition and whose negation was also a true proposition. He sketched a 
proof of this nature for a formalism less elaborate than that of arithmetic; 
but, as H. Poincare observed soon afterward ([33 c], p. 185), this proof 
made essential use of the principle of induction, and therefore appeared 
to be founded on a vicious circle. Hilbert did not reply to this criticism 
immediately, and fifteen years went by before anyone tried to develop his 
ideas. It was only in 1917 that (moved by the desire to answer the attacks 
of the intuitionists) he devoted himself again to the problem of the 
foundations of mathematics, which from then on occupied him contin­
uously until the end of his scientific career. In his work on this 
subject, which stretches from 1920 to about 1930, and in which a whole 
school of young mathematicians (Ackermann, Bernays, Herbrand, von Neu­
mann) were active participants, Hilbert gradually extracted the principles 
of his "theory of proof" in a more precise fashion. Realizing implicitly 
the justice of Poincare's criticism, he admitted that in metamathematics 
the arithmetical arguments used could be based only on our intuition 
of the integers (and not on formalized arithmetic). Thus it appeared 
essential to restrict these arguments to "finite procedures" ( finite Prozesse) 
of a type allowed by the intuitionists. For example, a proof by reductio ad 
absurdum cannot establish the metamathematicaI existence of an assembly 
or a sequence of assemblies; it is necessary to give an explicit law of 
construction (t). Furthermore, Hilbert enlarged his initial program in 
two directions; not only did he attack the problem of the consistency of 
arithmetic, but he also hoped to prove the consistency of the theory of 

(*) The "models" provided by the definitions of Dedekind and Frege serve 
only to shift the question to the consistency of the theory of sets, which is certainly 
a more difficult problem than the consistency of arithmetic, and must have appeared 
even more so at this period, when no serious attempt to get round the "paradoxes" 
had yet been proposed. 

(t) For a detailed and precise description of the finite procedures allowed in 
metamathematics, the reader may consult, for example, Herbrand's thesis [42]. 
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real numbers and even of the theory of sets (*). To the problems of 
consistency were added those of independence of the axioms, of categoricity, 
and the decision problem. We shall give a brief review of these various 
questions and mention the principal researches which they have occasioned. 

A proof of the independence of a system of propositions At> A2, ••• , An 
consists in showing that, for each index i, A;, is not a theorem in the 
theory 'Gi obtained by taking as axioms the Aj where j =F i. All we 
need is to find a non-contradictory theory 'G; in which the Aj (j =F i) 
are theorems, together with "not At; we may therefore consider the 
problem in two aspects according as we do or do not assume that certain 
theories (such as arithmetic or set theory) are consistent. In the latter 
case, we have a problem of "absolute" consistency. On the other hand, 
the first type of problem is to be solved, like problems of "relative" consis­
tency, by the construction of appropriate "models", and many proofs of 
this nature were devised well before mathematics had taken on a com­
pletely formalized aspect. We may cite as examples the models of non­
Euclidean geometry, the questions of the independence of the axioms of 
elementary geometry treated by Hilbert in the Grundlagen tier Geometrie [30], 
the work of Steinitz on the axiomatization of algebra, and the work of 
Hausdorff and his successors on the axiomatization of topology. 

A theory '(0 is said to be categorical if, for every proposition A in 'G which 
contains no letters other than the constants of '(0, one of the two proposi­
tions A, (not A) is a theorem in 'G (t). Apart from some very rudi­
mentary formalism whose categoricity is easily proved ([32], p. 35; cf. 
Chapter I, Appendix, Exercise 7), the results obtained in this area are 
essentially negative. The most important is due to K. Godel who showed 
that if 'G is non-contradictory and if the axioms of formalized arithmetic 
are theorems in 'G, then 'G is not categorical. The fundamental idea of 
his ingenious method consists in establishing a one-to-one correspondence 
(of course, by means of "finite procedures") between metamathematical 
statements and certain propositions of formalized arithmetic. We give 
here an outline sketch of the argument (**). With each assembly A 
which is a term or a relation in 'G, we associate (by an explicit constructive 
procedure which can be applied quasi-mechanically) an integer g(A) 
in a one-to-one manner. Likewise, with every proof D in '(9 (considered 
as a succession of assemblies; cf. Chapter I, § 2, no. 2) we may associate 

(*) When we speak of the consistency of the theory of real numbers, we suppose 
that this theory has been axiomatically defined without recourse to the theory of sets 
(or at least without recourse to certain axioms of the latter, such as the axiom of 
choice or the axiom of the set of subsets) . 

(t) This is often expressed by saying that if A is not a theorem in G, then the 
theory G' obtained by adjoining A to the axioms of G is contradictory. 

(**) For more details, see [44 a] or [48], pp. 181-258. 
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an integer h(D) in a one-to-one manner. Finally, we can give an explicit 
procedure for constructing a relation P J x, y, z I in ~ (*) such that, 
in ~, PI x,y, z! implies that x,y,.t are integers, and satisfies the following 
two conditions : 

(I) If D is a proof of A I A I, where A I x I is a relation in ~, and A 
is a definite integer (that is, a term in 19 which is an integer), then 

is a theorem in 1O. 
PIA, g(AlxD, h(D) 1 

(2) If the definite integer 1.1. is not of the form h(D), or if 1.1. = h(D) 
and D is not a proof AlAI, then (not PIA, g(A!xl), 1.1.1) is a theorem 
in 1O. 

Now let S I x 1 be the relation (not (3z)P I x, x, z D, and ,let y = g(S! x D, 
which is a term in~. If ~ is not contradictory, there is no proof of the 
proposition Sly I in~. For if D were such a proof, then 

P!y, g(S Ix!), h(D) I 
would be a theorem in ~. This relation is just P! y, y, keD) I, 
and consequently (3z)P!y, y, z! would also be a theorem in ~; but 
since the last relation is equivalent to (not Sly I), ~ would be contradic­
tory. Furthermore, what has just been said shows that, for each definite 
integer 1.1., (not P! y, y, 1.1.1) is a theorem in 1O. It follows that there is 
no proof in 1O ofthe proposition (not S!y D, for this relation is equivalent 
to (3z) Ply, y, z I, and the existence of an integer 1.1. such that Ply, y, 1.1.1 
would imply that to was contradictory, by virtue of the preceding argu­
ment (t). This metamathematical theorem of GOde1 has been subse­
quently generalized in various directions ([48], Chapter XI) ( .... ). 

(*) The detailed description of g(A), h(D), and P I x, y, z I is extremely long 
and tedious, and to write out P I x, y, z! would require so large a number of 
signs as to be impossible in practice. It is this type of difficulty that we discussed 
in the Introduction, but no mathematician would consider that this diminishes in 
any way the validity of these constructions. 

(t) In fact, the last part of this argument presupposes a little more than the 
consistency of G, namely what is called the "w-consistency" of 'G. This means 
that there is no relation R! x! in G such that R! x! implies x e N and such 
that, for each definite integer 1.1., R! 1.1.1 is a theorem in G, although (3x)(x e N 
and (not R! xl» is also a theorem in 'G. However, Rosser has shown that 
GOdel's argument can be modified so as to require only the consistency of 'G ([48], 
p.208). 

(**) The reader may have noticed the analogy between GOdel's argument and 
the sophism of the liar : the proposition S! Y I implies its own falsity when inter­
preted in metamathematical terms! It should also be noted that the proposition 
(Vz)«zeN)~ (not PlY, y, z!» is intuitively true, because we have a proof 
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~ The relation Sly I in 'G, which is thus shown to have the property that 
there exists no proof in 'iD either of it or of its negation, has obviously been 
manufactured to fit the requirements of the argument and is not related in 
any natural way to any mathematical problem. What is much more 
interesting is the fact that, if 'G denotes the theory of sets (with the system 
of axioms of von Neumann-Bernays), neither the continuum I!YPothesis nor its 
negation are provable in 'G. This remarkable result has been established in 
two steps: in 1940, GOdel proved that the theory obtained by adjoining 
to 'G the hypothesis 2No = Nl is not contradictory [44b]; and quite recently. 
P. Cohen has proved that the same is met when the relation 2No = Nil (or 
2No = N" for any integer n> 1) is adjoined to'G [49]. 

The decision problem (Entsckeidungsproblem) is certainly the most ambi­
tious of all in metamathematics. The problem is whether, for a given 
formalized language, a quasi-mechanical "universal procedure" can be 
conceived which, when applied to any relation whatever in the formalism 
under consideration, will indicate in a finite number of operations whether 
the relation is true or not. The solution of this problem formed a sub­
stantial part of the grand designs of Leibniz, and it seems that at one point 
the Hilbert school believed they were very close to a solution. It is a fact 
that such procedures can be described for formalisms which contain few 
primitive signs and axioms ([48], pp. 136-141; cf. Chapter I, Appendix, 
Exercise 7). But the efforts to make precise the decision problem by 
defining exactly what is to be meant by "universal procedure" have led 
so far only to negative results ([48], pp. 432-439). Moreover, the solution 
of the decision problem for a theory 'G would tell immediately whether 
or not 'G is contradictory, because the "universal procedure" could be 

of "not Ply, y, !L!" in G for each definite integer!L. Nevertheless this propo­
sition is unprovable in G. The above situation should be compared with a result 
obtained earlier by Lowenheim and Skolem (see [39]). The latter defines meta­
mathematically a relation between two natural integers x, y which, when written as 
x ey, satisfies von Neumann's axioms of set theory. Hence, at first sight, we have 
a new "paradox", because in this "model" all the infinite sets are countable, 
contrary to Cantor's inequality m < 2m. But, in fact, the relation defined by 
Skolem cannot be written in formalized set theory any more than the "theorem" 
asserting that the set of subsets of an infinite set has only a countable infinity of 
"elements". At bottom, this "paradox" is only a more subtle form of the 
banal remark that one can write down only a finite number of assemblies in a 
formalized theory, and that it is therefore absurd to conceive of an uncountable 
set of terms of the theory - a remark parallel to that which had already led to 
"Richard's paradox". Similar arguments show that the formalization of set theory 
is indispensable if we wish to preserve the essentials of Cantor's edifice. Mathema­
ticians are in agreement that there is hardly more than a superficial concordance 
between our "intuitive" conceptions of the notion of set or of integer, and the 
formalisms which are supposed to account for them; the disagreement begins with 
the questien of choosing between them. 
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applied to a relation in ~ and its negation; and, as we shall see, the possi­
bility of resolving the question in this way is excluded, so far as the usual 
mathematical theories are concerned (*). 

It is in fact in the question of consistency of mathematical theories 
- the origin and the very heart of mathematics - that the results have 
turned out to be most deceptive. During the years 1920-1930, Hilbert 
and his school developed new methods for attacking these problems. Hav­
ing proved the consistency of some partial formalisms, covering a part of 
arithmetic (c£ [42], [43 c]), they thought they were on the verge of victory 
and that they would succeed in proving the consistency not only of arith­
metic, but also of set theory, when GOdel used the non-categoricity of 
arithmetic to deduce that it is impossible to prove, by means of Hilbert's 
"finite procedures", the consistency of any theory E which contains 
arithmetic (t). 

Nevertheless, GOdel's theorem does not close the door altogether to 
attempts to prove consistency, provided that Hilbert's restrictions concern­
ing "finite procedures" are (at least partially) abandoned. Thus, in 1936, 
Gentzen [47] succeeded in proving the consistency of formalized arithmetic 
by "intuitive" use of transfinite induction as far as the countable ordinal eo 
(Chapter III, § 6, Exercise 14) (**). The degree of "certainty" which can 

(*) The decision problem should be carefully distinguished from the belief, 
held by many mathematicians and often forcefully expressed by Hilbert in parti­
cular, that whether a given mathematical proposition is true, false, or undecidable 
will always ultimately be settled. This is a pure act of faith, and lies outside 
our discussion. 

(t) With the notation introduced above, GOdel's precise result is as follows. 
To say that G is consistent means that there is no proof, in G, of the relation 
o =/: O. This implies, for each definite integer (.t, that (not PI 0, g(x =/: x), (.t!) 
is a theorem in G. Consider the proposition 

(Vz)«zeN) ~ not PIO, g(x=/: x), zO, 

which we denote by C. By "translating" into formalized arithmetic the 
argument (reproduced above) by which it is proved metamathematically that 
"if G is consistent, then there is no proof of S I "( I in G", we can show that 
C ~ (not (3z)(P!'Y, "(, z D> is a theorem in G, i.e., that C ~ S l'Y! is 
a theorem in 'iii. It follows that, if 'iii is consistent, C is not a theorem in G, because 
in these conditions S! y! is not a theorem in G. This is the exact statement of 
GOdel's theorem. 

(**) Gentzen associates with each proof D in formalized arithmetic an ordinal 
«(D) < eo. He also describes a procedure which, starting from any proof D 
which leads to a contradiction, produces a proof D' which also leads to a contra­
diction and is such that «(D') < «(D). The theory of well-ordered sets then allows 
him to conclude that such a proof D does not exist (a type of reasoning which 
extends the classical "infinite descent" of number theory). 
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be attributed to such an argument is undoubtedly less than for those 
which satisfy Hilbert's original restrictions, and is essentially a matter 
depending on the personal psychology of the individual mathematician. 
But it is no less true that similar "proofs" using "intuitive" transfinite 
induction as far as some given ordinal would be considered as an important 
step forward if they could be applied, for example, to the theory of real 
numbers or to an important part of set theory. 

Furthermore, within set theory itself there are many problems of "rela­
tive" consistency connected with the many "hypotheses" at large in the 
theory. The most remarkable result in this area is again due to COdel. 
In 1940 he proved that, if the theory whose axioms are those of the von 
Neumann-Bernays system, except for the axiom of choice, is consistent, 
then the theory obtained by adjoining to these axioms a very strong form 
of the axiom of choice (of the type which the use of the symbol 't gives us) 
and the generalized continuum hypothesis is also consistent [44 b]. More 
recently, 1. Novak-Gal has shown that the consistency of the Zermelo­
Fraenkel system implies that of the von Neumann-Bernays-Godel sys­
tem (*). 
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Summary of Results 

INTRODUCTION 

This Summary contains all the definitions and all the results, but none 
of the proofs, from the theory of sets which will be used in the remainder 
of this series. Ar. for the notions and terms introduced below without defi­
nitions, the reader may safely take them with their usual meanings; this 
will not cause any difficulties as far as the remainder of the series is 
concerned, and renders almost trivial the majority of the propositions (*). 

1. ELEMENTS AND SUBSETS OF A SET 

1. A set consists of elements which are capable of possessing certain propsrties 
and of having certain relations between themselves or with elements of 
other sets. 

2. Sets and elements are denoted in mathematical arguments by graphical 
symbols, which in general are letters (from various alphabets) or combi­
nations of letters and other signs. Relations between elements of one or 
more sets are denoted by inserting the symbols which denote these elements 
into a scheme characteristic of the relation considered (t); and similarly 
for properties. 

A letter may denote either a fixed element or an arbitrary element (also 
called a variable, an argument, or a generic element) of a set. When an 
arbitrary element is replaced by a fixed element in a relation (or property), 
the arbitrary element is said to be given this fixed element as value. 

(*) The reader will not fail to observe that the "naive" point of view taken 
here is in direct opposition to the "formalist" point of view taken in Chapters I 
to IV. Of course, this contrast is deliberate, and corresponds to the different purposes 
of this Summary and the rest of the volume. 

(t) When the symbol which denotes an element is a combination of several 
signs and is to be inserted into a relation in the place of a single letter, it is custom­
ary to put it in brackets in order to avoid possible confusion. 
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In order to indicate the elements which appear in a relation which is not 
explicitly written down, we represent the relation by a notation such as 
R f :e, y, z! (if x, y, Z are the elements in question). 

3. A relation or a property in which arbitrary elements feature (*) is said to 
be an identity if it becomes a true proposition whatever values we give to 
these arbitrary elements. If Rand S denote two relations (or properties), 
R is said to imply S if S is true whenever the arbitrary elements which 
enter in these relations are fixed in such a way that R is true. The 
relations (or properties) Rand S are said to be equivalent if each implies 
the other. 

4. Let R I x, y, z! be a relation between the variables :e, y, z. The 
phrase "for all x, R f %, y, z!" is a relation between y and z, which will 
be considered to be true for a system of given values of these latter variables 
if R is true for these values of y and z and every value of x. The phrase 
"there exists x such that R I x, y, z!" (or "for some x, R I x, y, .c I ") is 
again a relation between y and z, which will be considered to be true 
for a system of given values of y and .c if, these variables being thus fixed, 
there is at least one value of x for which R is true. Similarly for a relation 
between any number of variables. 

If R denotes the negation of R, then the negation of "for all x, R" is 
"there exists ~ such that R"; the negation of "there exists x such that R" 
is "for all x, R". 

5. If R, S denote two relations, we regard "R and S" as a single 
relation, which is considered as true whenever both R and S are true. 
Likewise, "R or S" is a relation which is considered to be true whenever 
at least one of the relations R, S is true (and, in particular, whenever they 
are both true. The word "or" thus does not have the disj~ctive sense 
here which it sometimes has in ordinary speech). Let R, S denote the 
negatio~ of R, S, respectively. Then the negation _of "R and S" is 
"R or S", and the negation of "R or S" is "R and S". 

6. By writing two symbols one on each side of the sign "=" (read 
"equals"), we have a relation called the relation of equality, which means 
that the two symbols represent the same element. The negation of this 
relation is obtained by writing the same symbols one on each side of the 
sign "i=" (read "is not equal to" or "is different from"). 

(*) It should be emphasized that, when we speak of a profmly of a generic element 
of a set E, this in no way implies that the property is true for every element of E, 
but simply that it has a meaning for every element of E; it may be true for some of 
these elements and false for others. Similarly for relations. 
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7. Given a set E and a property of a generic element of E, those of the 
elements of E which have this property form a new set, called a subset 
of E. Two equivalent properties therefore define the same subset of E, 
and conversely. 

Let A be a subset of E. When x is a generic element of E, the 
property "x belongs to A" (i.e., "x is an element of A") is written 
"x e A"; the set of elements which have this property is clearly just A. 

The negation of this property is written "x. A" (read "x does not 
belong to A"); the set of elements of E which have this property is 
called the complement of A and is written CA or E - A. 

8. Some properties, for example x = x, are true for all elements of E. 
Any two such properties are equivalent, and the subset they define is the 
set E itself. 

On the other hand, some properties, for example x ::1= x, are not true 
for any element of E. Again, any two such properties are equivalent, 
and the subset they define is called the empty subset of E, which is denoted 
by",. 

Note that E and p are complements of each other. 

9. Let a be a determinate element of E. Some properties, for example 
x = a, are true only for the single element a. Any two such properties 
are equivalent; the subset they define is denoted by {a}, and is called the 
subset consisting of a alone. 

10. The set whose elements are all the subsets of a set E is called the set of 
subsets of E, and is denoted by ~(E). We have", e ~(E), E e ~(E), 
and {x} e ~(E) for all x e E. If x denotes a generic element of E, and 
X a generic element of ~(E), the relation "x e X" between x and X is 
called the relation of membership. 

II. Let x and y be two elements of E and let X be a generic element 
of ~(E). Then the relation of equality "x =y" is equivalent to the relation 
"for all X such that x e X, we have y e X". 

12. Let X, Y be two subsets of a set E. If the property x e X implies 
the property x e Y, in other words if every element of X belongs to Y, 
then we say that X is contained in Y, or that Y contains X, or that X 
is a subset of Y. This relation between X and Y is called the relation 
of inclusion (of X in Y), and is denoted by "X c: Y" or "Y::J X". Its 
negation is denoted by "X ¢ Y" or "Y:1> X". 

For all subsets X of E we have '" c: X and Xc: E. The relation of 
membership "x e X" is equivalent to "{x} c: X". 

The relation "X c: Y and Y c: Z" implies "X c: Z". 
The relation "X c: Y" does not exclude the possibility of "X = Y". 

The relation "X c: Y and Y c: X" is equivalent to "X = Y". 
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13. Let X and Y be any two subsets of E. The set of all elements 
which have the property "x e X or x e Y" is denoted by X u Y and is 
called the union of X and Y. The set of all elements which have the 
property "x e X and x e Y" is denoted by X n Y and is called the 
intersection of X and Y. 

The union and intersection of several subsets of E are defined in the 
same way. 

If x, y, .t are three dements of E, the union {x} u {y} u {.t} is denoted 
by {x,y, .t}. Similarly for any number of (individually named) elements. 

Let X and Y be two subsets of E. According as X n Y =I: P or 
X n Y =~, we say that X and Y intersect or are disjoint. 
14. In the statements of the following propositions, X, Y, Z denote 
any subsets of the same set E. 

(a) We have ~ = CE, E = C~. 
(b) For all X we have 

(1) 
(2) 
(3) 

(4) 
(5) 

C(CX) = X; 
XuX=X, 

Xu (CX) = E, 
Xu~=X, 
XuE = E, 

XnX=X; 
Xn (CX) =~; 
XnE = X; 
Xn~=~. 

(c) For all X, Y we have 

(6) Xu Y = Yu X, Xn Y = Y n X (commutativity); 
(7) XcXuY, XnYcX; 

(8) C(X u Y) = (CX) n (Cy), C(X n Y) = (CX) u (CY). 

(d) The rdations Xc Y, CX:;, Cy, Xu Y = Y, X n Y = X are 
equivalent. 

(e) The relations X n Y =~, X c Cy, Y c Cx are equivalent. 
(f) The relations X u Y = E, Cx c Y, Cy c X are equivalent. 
(g) For all X, Y, Z we have 

(9) 

(10) 

Xu (Y u Z) = (X u Y) u Z = Xu Y u Zi ( . f 't ). 
X n (Y n Z) = (X n Y) n Z = X n Y n Z ~ asSOCla lV! y , 

Xu (Y n Z) = (X u Y) n (X u Z) i (distributivity). 
X n (Y u Z) = (X n Y) u (X n ZH 

(h) The rdation "X c Y" implies the relations "X u Z c Y u Z" and 
"XnZcYnZ". 
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(i) The relation "Z c: X and Z c: Y" is equivalent to "Z c: X n Y". 
The relation "X c: Z and Y c: Z" is equivalent to "X u Y c: Z". 
15. From the identities (8) we conclude that if a subset A of E is 
obtained from other subsets :x, Y, Z of E by applying only the operations 
C, u, n (in any order), then the complement CA can be obtained by 
replacing the subsets X, Y, Z by their respective complements, and the 
operations u, n by n, U, respectively, while preserving the order of 
the operations. This is the duality rule. Given an equality A = B 
between subsets of the above form, consider the equivalent equality 
CA = CB. If we replace CA and CB by the expressions obtained by 
applying the duality rule, and if then we replace CX, CY, Cz by 
X, Y, Z, respectively, and vice versa, we obtain an equality called the dual 
of A = B. We can do the same for an inclusion relation A c: B, but then 
we must take care to replace the sign "c:" by ":;,". 

The identities above which carry the same number are duals of each 
other. 
16. In certain questions we have to consider a fixed subset A of a set E. 
If X is any arbitrary subset of E, the set A n X is called the trace of X 
on A, and is sometimes denoted by X A ; it is considered, in this case, 
as a subset of A. For all subsets X, Y of E we have 

(X U Y) A = XA. U YA, (X n Y) A = XA n Yo"~ 

and CAX\ = (CEX)A' 

where CEX denotes the complement of X in E and C_\X_\ denotes the 
complement of X A in A. 

If g denotes a set of subsets of E, then the set g A of the traces on A 
of the sets of 8 is called the trace of 8 on A. 

2. FUNCTIONS 

1. Let E and F be two sets, which mayor may not be distinct. A 
relation between a variable element x of E and a variable element y of F 
is called a functional relation in y if, Jor all x e E, there exists a unique y E F 
-which is in the given relation with x. 

We give the name of Junction to the operation which in this way associates 
with every element x e E the element y e F which is in the given relation 
with X; Y is said to be the value of the function at the element X, and the 
function is said to be determined by the given functional relation. Two 
equivalent functional relations determine the same function. Such a function 
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is said to "take its values in F" and to be "defined on E". More briefly, 
it is also said to be a mapping of E into F. 
2. The mappings of a set E into a set F are the elements of a new set, the 
set of mappings of E into F. Iff is any element of this set, the value off 
at the element x of E is often denoted by f(x). In some situations, 
the notation h (called the indicial notation; the set E is then called the 
index set) is preferable. The relation ')I = f (x)" is a functional relation 
in y, which determines f. 

When a relation of the fonn y = (x) (where (x) denotes a combination 
of signs in which x may appear) is a functional relation in y, the 
function it determines is often denoted by the notation x _ (x), or even 
simply by (x); this is a very common abuse of language. For example, 

if X and Y are two generic subsets of a set E, the relation Y = eX is 
functional in Y; the mapping of ~(E) into ~(E) it determines is denoted 
by X _ eX, or simply by eX. 

Instead of saying "let f be a mapping of E into F", we shall often 
say, more simply, "let f: E _ F". 

To describe a situation in which several mappings are involved, we 
shall also make use of diagrams such as 

c 
f g/ "-.h 

A-B/ ~~E 

1" v ! w 
D E F 

in which the letter attached to an arrow denotes a mapping of the set at 
the tail of the arrow into the set at its head. 

The relation of equality "f = g" between mappings of E into F is 
equivalent to the relation "for all x e E,f (x) = gex) " • 
3. A function, defined on a set E, which takes the same value a for 
every element x of E, is called a constant function on E; it is determined 
by the functional relation y = Go 

The mapping of E into E which associates with each element x of E 
this same element is called the identiry mapping. It is determined by the 
functional relation y = x. 

If A is any subset of E, the mapping of A into E which associates 
with each element x of A the same element x considered as an element 
of E is called the canonical mapping of A into E. 

Let f be a mapping of a set E into itself. An element x of E is 
said to befixed (or invariant) under f if f(x) = x. 
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An element x of E is said to befixed (or invariant) under a set of map­
pings of E into E if it is fixed under each of them. 
4. Let f be a mapping of E into F and let X be any subset of E. 
Then the image of X under f is the subset Y of F consisting of all de­
ments y which have the property "there exists x IE E such that x e X 
and f(x) = y". 

This defines a rdation between X and Y which is functional in Y 
and therefore determines a mapping of ~(E) into ~(F). This mapping 
is called the canonical extension off to sets of subsets; by abuse of language 
it, too, is denoted by f, and we write Y = f (X). 

For all f and x we have 

f(fJ) = fJ and f({x}) = {f(x)}. 

By abuse of language, the value f (x) of f at x is also called the image of x 
under f. 

If y is a generic element of F, the property') ef(E)" may be ex­
pressed by saying that 'y is oflkeform f(x)". 

By abuse of language, the image f (E) of E under f is sometimes 
called the image of f. 

If we have f (E) = F, that is if for all ye F there exists x e E such 
that Y = f (x), then f is said to be a mapping of E onto F, or a surJective 
mapping, or a surjection. 

Let x be any element and X any subset of E. IpJltead of saying that 
f(x) is the value of f at x, and f(X) the image of X under f, it is 
sometimes said that f transforms (or maps) x into f(x) and X into f(X); 
f(x) and f(X) are then called the traniforms by f of x and X, respec­
tively. 

If f is a mapping of E into itself, a subset X of E is said to be stable 
under f if I(X) eX. The subset X is said to be stable under a set of 
mappings of E into E if X is stable under each of these mappings. 

5. Let f be a mapping of E into F. Then we have the following 
propositions, in which X and Y denote arbitrary subsets of E : 

(a) The relation Xc Y implies f(X) cf(Y). 
(b) The property X :;6 fJ is equivalent to f (X) ::f: fJ. 
(c) For all X, Y we have 

(11) 
(12) 

f (X U Y) = f (X) u f (Y), 
f(X n Y) cf(X) n fey). 

6. Let f be a mapping of E into F, and let Y be any subset of F. 
The invml image oj Y under f is the subset X of E consisting of all 
dements x which have the property f (x) e Y. 
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This defines a relation between X and Y which is functional in X 
and therefore detennines a mapping of $(F) into !U(E), called the 
inverse extension of I to sets of subsets, and denoted by 7"; thus we write 

-1 
X=/M· _ 

In particular, if y is an element of F, then ]({y}) will be the set 
of all x e E such that I (x) = y. The relations ',/(x) = y" and 
"x e f({y})" are equivalent. By abuse oflanguage we often write fey) 
in place of 1({y}). 

The trace XA. of a subset X of E on a given subset A is the inverse 
image of X under the canonical mapping of A into E (no. 3). 

7. Let I be a mapping of E into F. Then we have the following 
propositions, in which X and Y denote arbitrary subsets of F : 

(a) The relation Xc: Y implies f (X) c: f (Y). 
(b) For all X, Y we have 

(13) 
(14) 

(15) 

f(X u Y) = f(X) u fey), 
f(X n Y) = f(X) n -ley), 

]\Cx) = Cf(X). 

Note the difference between formulae (12) and (14); (14) would not be 
-1 

true for all X and Y if we replaced f by an arbitrary mapping of F 
into E. Again, there is no analogue of (15) for the extension of an arbi­
trary mapping. 

Furthennore, we have 7" (~) = ~; but we can also have ],\X) = ~ 
for a non-empty subset X of F. In order that X =1= ~ should imply 
7" (X) =1= ~, it is necessary and sufficient that f should be a mapping 
of E onto F. 

8. If a mapping f of E into F is such that for all y e F there exists at 
most one x e E such that y = f (x) (in other words, the set f (y) is either 
empty or consists of a single element), then f is said to be a one-to-one 
mapping of E into F, or an injective mapping, or an injection. We have 
then, for all subsets X, Y of E, 

(16) I(X n Y) =f(X) n fey). 

9. If a mapping f of E into F is such that for all y e F there exists 
exactly one x e E such that y = I (x) (in other words, 1 (y) consists of a 
single element), then f is said to be a one-to-one mapping of E onto F, 
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or a bijective mapping, or a bijection. Such a mapping may be characterized 
as being both a mapping of E onto F and a one-to-one mapping of E into F. 

If f is a one-to-one mapping of E onto F, the relation y = f (x) is not 
only functional in y, but also functional in x. As a functional relation in x, 
it determines a one-to-one mapping of F onto E, called the inverse of the 
mapping J. 

Note that the extension of the inverse of f is the same as the inverse of tll8 
extension of f. 

Let g be the inverse of J. Then the relations ')I-f (x)" and "x = g(y)" 
are equivalent. The inverse of g is f If f is a one-to-one mapping of E 
onto F, we have not only the relation (16) but also, for all subsets X 
of E, 

f(CX) = Cf (X). 

Moreover, the extension off is a one-to-one mapping of WeE) onto 
ql(F). 

A one-to-one mapping of E onto F, together with its inverse mapping, 
are said to realize a one-to-one correspondence between E and F; alternatively, 
we say that E and F are put in one-to-one correspondence by these mappings. 

A one-to-one mapping of a set E onto itself is called a permutation of E. 
The identity mapping is a permutation. If a permutation is identical 
with its inverse, it is said to be involutory; for example, the mapping X -+ Cx 
of ~(E) onto itself is involutory. 

10. In the following propositions, X denotes an arbitrary subset of E, 
and Y an arbitrary subset of F : 

(a) Iff is a mapping of E into F, we have 

-1 -1 
(17) fey) = J(Ynf(E)), 

-1 
(18) XcJ(f(X)), 

-1 
(19) f(f (Y)) c Y. 

-1 
(b) The properties "for all Y, J (J (Y)) = Y" and "J is a mapping 

of E onto F" are equivalent. -1 

(c) The properties "for all X, J (f (X)) = X" and "f is a one-to-one 
mapping of E into F" are equivalent. 

(d) The properties "for all X and Y, 
-1 

f(f(X)) = X and 
-1 

f (f (Y)) = Y" 

and ''f is a one-la-one mapping of E onto F" are equivalent. 
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11. Let E, F, 0 be three sets, which mayor may not be distinct. Let f 
be a mapping of E into F, and let g be a mapping of F into O. The 
mapping of E into 0 whose value at any element x of E is g(f (x» is 
called the composition of g and J, and is denoted by g 0 J, or simply gf 
if there is no risk of ambiguity. 

The equality k = g 0 f is called a factorization of k. 

Note that, if G is distinct from E, we may not speak of the composition of f 
and g (in that order), and the notationf 0 g has no meaning. IfG is identical 
with E, then fog and g of are not elements of the same set unless F 
is also identical with E; and even when this is so, it is usually the case 
that fog =!: g 0 f. Thus the artier of composition of f and g is essential. 

Let <p be the composition of g and J, let X be any subset of E, and 
let Z be any subset of O. Then we have 

(20) 

(21) 

<p(X) = g(f (X», 

~l(Z) = 7CJ(Z». 
If f is a one-to-one mapping of E onto F, and if g is a one-to-one mapping 

of F onto 0, then g 0 f is a one-to-one mapping of E onto O. 
Let k be a mapping of 0 into a set H. Then we have 

k 0 (g of) = (k 0 g) 0 f; 

this mapping of E into H is written k 0 g 0 J, and is called the composition 
of the three mappings k, g, f in this order. The composition of more 
than three mappings is defined similarly. 

If f is a mapping of E into itself, the iterates of f are defined to be the 
mappings f" (n an integer ;;?; 1) of E into itself, defined by induction 
on n by means of the relations f1 = f, f" = f"-l 0 f; I" is called the nth 
iterate of J. We have Im+" = 1m 0 I". 
12. In general, the composition 7 0 I of the inverse extension and the 
extension of a mapping f is not the identity mapping of $(E) onto itself. 

Likewise, f 0 7 is not usually the identity mapping of $(E) onto itself. 
These two conditions are satisfied simultaneously only if I is a bijection 
of E onto F. 

If f is a bijection of E onto F, and if g denotes the inverse of J, then 
the compositions g 0 f and fog are respectively the identity mapping 
of E onto E and the identity mapping of F onto F. 

Conversely, iff is a mapping of E into F, and g a mapping of F 
into E, such that g 0 f is a permutation of E and fog is a permutation 
of F, then I is a bijection of E onto F and g is a bijection of F onto E. 

356 



PRODUCTS OF SETS §3 

If, moreover, g 0 f is the identity mapping of E onto itself, then g is the 
inverse of J. 
13. Let f be a mapping of E into F, and let A be any subset of E. 
The mapping fA. of A into F whose value at any dement x of A is f (x) 
is called the restriction off to the subset A; it is just the composition off 
and the canonical mapping of A into E. If two mappings f, g of E 
into F have the same restriction to A, they are said to agree (or coincide) 
on A. Conversely, f is said to be an extension of fA. to E. 
14. A mapping of a set E onto a set F is also called a parametric represen­
tation of F by means of E; E is then called the parameter set of this represen­
tation, and the dements of E take the name of parameters. 

A family of elements of a set F is by definition a subset of F endowed 
with a parametric representation; in other words, to be given a family of 
elements of F is equivalent to being given a mapping of some set E into F. 
The image of E under this mapping is called the set of elements of the family. 
Note that two distinct families of elements of F may have the same subset 
of F as the set of their dements. 

With each subset A of a set F we may always associate a family of 
elements whose set of elements is A. It is enough to consider the family 
defined by the canonical mapping of A into F. 

A family of dements of F, defined by a mapping t ~ x, of a set I 
into F, is denoted by (X')'EI' or simply (x,) if there is no possible ambi­
guity about the index set. 

If J is a subset of I, the family (x,),eJ is called the subfamily correspond­
ing to J of the family (x,),el; it is defined by the restriction to J of the 
mapping t ~x,. 

3. PRODUCTS OF SETS 

1. Let E, F be two sets, which mayor may not be distinct. The ordered 
pairs (x,y), whose first dement x is any dement of E and whose second 
element y is any element of F, are the elements of a new set, called the 
product of E by F, and denoted by E X F; E and F are called the 
factors of E X F. Two ordered pairs are considered to be identical only 
if they have the same first element and the same second element; in other 
words, the relation "(x, y) = (x', y')" is equivalent to the relation "x = x' 
and y = y"'. If z is any dement of E X F, the rdation "x is the first 
element of the ordered pair z" is a functional relation in x; it determines 
a mapping of E X F onto E, which is called the first coordinate function, 
or the first projection, and is denoted by prt. Instead of saying "x is the 
first element of the ordered pair z", we also say "x is the first coordinate 
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(or projection) of ZOO or "x = prlZ'" Similarly we define the second 
coordinate function, or second projection, which is a mapping of E X F onto F, 
denoted by pr 2' 

The relation "x = prlZ and y = prl!Z" is equivalent to "z = (x,y)". 
The extension of the function pr 1 to sets of subsets is denoted by the 

same symbol, in accordance with the general conventions, and is again 
called the first projection (here we do not use the term "coordinate"); simi­
larly for the extension of the second projection. 

2. A relation R between a generic element x of E and a generic element 
y of F is a property of the pair (x, y), and consequendy defines a subset 
of the product E X F, called the graph of R. Conversely, every subset 
A of E X F is the graph of the relation (x,y) eA between x and y. 

Let A be a subset of E and let B be a subset of F. We denote by 
A X B the subset of E X F defined by the relation "x e A and y e B" 
between x and y. 
3. In the following propositions, X and X' denote arbitrary subsets 
of E, Y and Y' arbitrary subsets of F, and Z an arbitrary subset of 
Ex F. 

(a) The relation "X X Y = fJ" is equivalent to "X = P or Y = p". 
(b) If X X Y oF p, the relation "X X Y c: X' X Y'" is equivalent to 

"X c: X' and Y c: Y"'. 
(c) For all X, X', Y we have 

(22) (X X Y) U (X' X Y) = (X u X') X Y. 

(d) For all X, X', Y, Y' we have 

(23) (X X Y) n (X' X Y') = (X n X') X (Y n Y'). 

(e) For all X, Y we have 

-1 -1 

(24) prl(X) = X X F, prs(Y) = E X Y. 

(f) If Y =1= p, then for all X we have 

(25) 

(g) For all Z we have 

(26) 

(h) Let a be an element of E. Then the mapping (a, y) ~ y of the 
set {a} X F onto F (i.e., the restriction of pr2 to the subset {a} X F) is 
one-to-one. 
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4. The mapping 

(27) (x, y) ~ (y, x) 

is a one-to-one mapping of E X F onto F X E, and is called canonical. 
When E and F are the same set, the mapping (27) is called the canonical 
symmetry; it is then involutory. The elements (x, y) of E X E which are 
fixed under this symmetry are those which have the property x = y; 
the set ~ of these elements is called the diagonal of E X E. The mapping 
x ~ (x, x) is a bijection of E onto ~, called the diagonal mapping of E 
into E X E. 

If Z is any subset of E X F, the image of Z under the canonical 
-1 

mapping of E X F onto F X E is denoted by Z. If X is any subset 
of E and Y any subset of F, then 

-1 .--.... 
X X Y=Y X X. 

If a relation R between x and y, considered as a property of the 
ordered pair (x, y), defines a subset A of E X F, then the same relation, 

-1 

considered as a property of the pair (y, x), defines the subset A of F X E. 
-1 

R is equivalent to each of the relations (x, y) e A, (y, x) e A. If E 
and F are the same set, the relation R and the corresponding subset A 

-1 

are said to be symmetric when A = A. The diagonal ~ (defined by the 
relation of equality) is symmetric. If Z is any subset of E X E, then 

-1 -1 

Z U Z and Z n Z are symmetrie. 

5. Let A be a subset ofa set E, and let f be a mapping of A into a set F. 
The relation "x e A and Y = f (x)" between a generic element x of E 
and a generic element y of F defines a subset of E X F called the graph 
of the function f. If B is a subset of E which contains A, and if g is an 
extension (§ 2, no. 13) of f to B, then the graph of f is contained in the 
graph of g. 

Conversely, let C be a subset of E X F such that, for each x e E, 
there exists at most one y e F such that (x, y) e C. Then the relation 
(x, y) e C between a generic element x of the set pr1(C) and a generic 
element y of F is a functional relation in y and determines a mapping 
of pr1(C) into F whose graph is C. 

The set of subsets C of E X F which have the property "for all x e E 
there is at most one ye F such that (x, y) e C" (a set which is a subset 
of ~(E X F» can therefore be put into one-to-one correspondence with 
the set of mappings of subsets of E into F. 
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Let f be an injective mapping of E into F, and let g be the inverse 
of f considered as a bijection of E onto f (E). If C is the graph of J, 

-1 

then the graph of g is C. 

6. Iff is a mapping of E into F, and C is its graph in E X F, the 
relation ')I f (x)" is equivalentto "(x,y) e C". The relation ')I ef(X) " 
is equivalent to "there exists x such that x e X and (x, y) e C". 

Now let K be any subset of E X F, and let X be any subset of E. 
Let K(X) denote the subset of F consisting of all elements y which satisfy 
the relation "there exists x such that x e X and (x, y) .. K"; this relation 
is thus equivalent to ')I e K(X)". The mapping X -+ K(X) of $(E) 
into $(F) is said to be defined by the subset K of E X F. Note that K(X) 
is the second projection of the set K n (X X F). If K is the graph of a 
mapping f of E into F, then the mapping X -+ K(X) is the canonical 
extension of f to sets of subsets. 

7. If x is a generic element of E, then x -+ K({x}) is a mapping of E 
into $(F) whose value K({x}) (denoted also by K(x), by abuse of 
language) is called the section of K at x. The relation (x, y) e K is 
equivalent to ye K(x). 

Conversely, every mapping x -+ CI»(x) of E into $(F) can be obtained in 
this way; for the relation ye CI»(x) defines a subset K of E X F, and 
CI»(x) is precisely the section of K at x. The set $(E X F) and the set 
of mappings of E into $(F) are thus in one-to-one correspondence. 

8. Every mapping X -+ K(X) defined by a subset K of E X F has the 
following properties, which generalize those of the canonical extension of a 
mapping of E into F (§2, nos. 4 and 5) : 

(a) K($6) = $6. 
(b) "X c Y" implies "K(X) c K(Y)". 
(c) For all X, Y we have 

(28) K(X u Y) = K(X) u K(Y), 
(29) K(X n Y) c K(X) n K(Y). 

If K and K' are two subsets of E X F such that K c K', then we 
have K(X) c K'(X) for all Xc E; in particular, K(x) c K'(x) for all 
x e E. Conversely, if K(x) c K'(x) for all x e E, then K c K'. 

9. A relation between a generic element of E and a generic element of F 
-1 

defines a subset K of E X F and a subset K of F X E, and hence a 
-1 

mapping X -+ K(X) of $(E) into $(F) and a mapping Y -+ K(Y) of 

$(F) into $(E). 
-1 

If K is the graph ofa mapping f of E into F, the mapping Y -+ K(Y) 
is the inverse extension of J. 
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It should be noted that the relations (18) and (19) do not generalize to 
-1 

the mappings X -+ K(X) and Y -+ K(y), when K is an arbitrary 
subset of E X F. 

10. Let E, F, G be three sets, which mayor may not be distinct, let A 
be a subset of E X F and let B be a subset of F X G. Then the ele­
ments (x, z) of E X G which have the property "there exists y E F 
such that (x, y) E A and (y, z) E B" form a subset of E X G, called the 
composition of B and A, and denoted by BoA, or simply BA when there 
is no risk of confusion. Here again, the order of composition is essential. 
~I The mapping X -+ BA(X) of $(E) into $(G) is the composition of 
Y -+ B(Y) and X -+ A(X); in other words, for all X c: E we have 

(30) BA(X) = B(A(X)). 

Let H be another set, not necessarily distinct from E, F, G, and let C 
be a subset of G X H. Then we have Co (B 0 A) = (C 0 B) 0 A; this 
set is also denoted by CoB 0 A (or simply CBA) and is called the 
composition of C, B, A taken in this order. 

Let f be a mapping of E into F, and let g be a mapping of F into G. 
If A (resp. B) is the graph of f (resp. g), then the composition BA is the 
graph of the composite mapping g 0 f 
II. We have 

-1 
....--.... -1-1 

(31) BoA = A 0 B. 

Let A, A' be two subsets of E X F, and let B, B' be two subsets of 
F X G. Then the relation 

"A c: A' and B c: B'" implies "B 0 A c: B' 0 A"'. 

Let A be a subset of E X F, 6, the diagonal of E X E, and 6,' the 
diagonal of F X F. Then we have 

(32) A 0 6, = 6,' 0 A = A. 

12. Let E, F, G be three sets, which mayor may not be distinct. Their 
product E X F X G is the set of ordered triples (x, y, z), where x E E, 
y E F, and z E G, the relation "(x,y, z) = (x',y', z')" being equivalent to 
"x = x' and y = y' and z = z"'. The three mappings (x, y, z) -+ x, 
Cx, y, z) -+ y, (x, y, z) -+ z of E X F X G onto E, F, G respectively are 
called the first, second, and third coordinate functions (or projections) ; similarly, 
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for example, the projection with indices 1, 2 is the mapping 

(x, y, z) -+ (x, y) 

of E X F X G onto E X F, and is denoted by prI,I. 
The definitions and propositions of nos. 2, 3, and 4 generalize easily to 

the product of three sets. 
Furthermore, instead of considering the product E X F X G of three 

sets, we may equivalently consider the product (E X F) X G, obtained 
by a double application of the operation of forming the product of two 
sets. In fact, (x,y, z) -+ «x,y), z) is a one-to-one mapping of E X F X G 
onto (E X F) X G, called canonical. Similarly we define one-to-one map­
pings of E X F X G onto the set E X (F X G), and onto all the sets 
obtained from E X F X G, (E X F) X G, and E X (F X G) by per­
muting the three letters E, F, G. 

There are analogous definitions and properties for the product of more 
than three sets. 
13. If a function f, which takes its values in any set E', is defined on a 
product of three sets E, F, G, it is said to be a function of three variables, 
each of which runs through one of the sets E, F, G. The value of f at the 
element (x, y, z) of E X F X G is denoted by f (x, y, z). 

Let a be any element of E. Then (y, z) -+ f(a,y, z) is a mapping of 
F X G into E', called a partial mapping (or function) determined by f corres­
ponding to the value a of x; it is also the composition off and the 
mapping (y, z) -+ (a,y, z) of F X G into E X F X G. 

Likewise, if b is an element of F, then z -+f(a, b, z) is a mapping 
of G into E', called the partial mapping determined by f corresponding 
to the values a, b of x,y. 

Inversely, let g be a mapping of E into E'. Then (x, y, z) -+ g(x) 
is a mapping h of E X F X G into E' such that every partial mapping 
of E into E' determined by h, corresponding to any values of y and z, 
is identical with g. This fact is often expressed by saying that a function 
of an argument x can always be envisaged as a function of all the argu­
ments which need to be considered at a given moment and which will, 
of course, include x. 
14. Let f, g, h be three mappings of E into E', F into F', G into G', 
respectively. The mapping (x,y, z) -+ (f(x), g(y), h(z» of E X F X G 
into E' X F' X G' is denoted by (f, g, h) or f X g X h and is called the 
extension off, g, h to products. If all three off, g, h are injective (resp. 
swjective, bijective), then f X g X h is injective (resp. surjective, bijec­
tive). 

In this and the previous subsection we have considered only the case of 
three sets merely to fix the ideas; analogous considerations hold for any 
finite number of sets. 
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4. UNION, INTERSECTION, PRODUCT 
OF A FAMILY OF SETS 

1. In this section we consider a family (XI)Iel of subsets of a set E, in 
which the index set I is arbitrary; the set of subsets of E belonging to th4 
family will be denoted by ff (which is therefore a subset of ~(E)). 

If I is finite, the consideration of the family (XI) reduces to that of 
several subsets of E, which mayor may not be distinct, and in number 
equal to the number of elements of I. For example, any three subsets 
Xl> Xs, Xa of E form a family of subsets of E, the index set here consisting 
of the numbers 1, 2, 3. 

2. Let J be any subset of I, and consider the set of all elements x which 
have the property "there exists L E J such that x E XI", This set is called 
the union of th4 family of sets (XI),el' and is denoted by U XI' 

leJ 
We may also formulate this definition as follows: to the mapping L ~ X, 

of I into ~(E) there corresponds a well-defined subset 0 of I X E such 
that X, = G(L) (§ 3, no. 7), and we have U XI = 0(1). 

In particular, ,eJ 

(33) U X, = O(~) = ~. 
leD 

When J = I, we often write U XI' or simply U X" in place of 
UXI • ' 

leI 

The union U XI depends only on th4 set ij; in other words, it is the same 
I 

for two families corresponding to the same subset ij of ~(E). In particular, 
it is equal to the union of the family defined by the canonical mapping 
of ~ into ~(E), and we may therefore write U XI' which is also called 
the union of th4 sets belonging to ij. xeW 

When I is a set whose elements are explicitly designated, for example 
the numbers 1,2,3, we have 

U XI = Xl U X 2 U Xa, 
leI 

which justifies the name "union" given in the general case to the set 

UX" , 
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3. For any J c: I we have 

In particular, for all x e I, we have 

Conversdy, if Y is a subset of E such that XI c: Y for all LeI, then 

More generally, if (YI ) is another family of subsets of E, indexed by 
the same set I, and if XI c: YI for all LeI, then 

Let F be another set, and let X ~ K(X) be the mapping of ~(E) 
into ~(F) defined by a subset K of E X F. Then we have 

(34) 

Now let L be another index set, and (J>.heL a family of subsets of I. 
Then 

(35) 

This is the generalassociativiV' formula for unions. When I and L are 
sets whose dements are explicidy designated, the relations we obtain have 
already been given (see § 1, no. 14). If L alone satisfies this condition 
and consists, say, of the numbers 1,2, we have 

(36) 

Let (X')'EI and (Yx)xeK be any two families of subsets of E. Then 
we have 

(37) 
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the distributivity formula, which includes the second formula of (10) as a 
particular case. 

If (X')'EI is a family of subsets of E, and if (YX)XEX is a family of 
subsets of F, then 

(38) 

4. A family (X')'EI of subsets of E is a covering of a subset A of E, or 
covers A, if 

In particular, if (X,) is a covering of E, we have 

A partition of E is a covering (X,) of E such that 
(a) X, #= ~ for all LeI; 
(b) X, n Xx = ~ for each pair of different indices L, x in I. (This 

second condition may be expressed by saying that the X, are pairwise 
disjoint.) 

These conditions imply that L -+ X, is a bijection of I onto the set iJ of 
subsets of the partition. Hence, if ~ is given, the family is determined 
to within a one-to-one correspondence of index sets. In particular, a 
partition may be considered indifferently as a set of subsets or as a family 
of subsets. 

5. Let (X')'EI be any family of non-empty subsets of a set E. In the 
product I X E, let X: denote the subset {L} X X, for each LeI. The 
set 

s=UX: 
,EI 

is called the sum of the family (X')'EI' It is clear that the family (X:)'EI 
is a partition of S and that for each LeI the mapping x, -+ (L, x,) is a 
bijection of X, onto X:. By abuse of language, any set in one-to-one 
correspondence with S is often called the sum of the family (X')IEI' 
and the XI are usually identified with the subsets of this set to which they 
correspond. 

The sum of two non-empty sets E and F is often said to be obtained 
by adjoining the set F to E. 

6. With the notation of no. 2, the set of elements x of E which have the 
property "for all L E J, x e X/, is called the intersection oj the family oj sets 
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(XI)lel' and is denoted by n XI; when J = I, we often write 
lel 

simply n XI' instead of n XI' 
leI 

We have 

(39) 

In particular, if J = fb, 

(40) 

The intersection n XI depends only on the set W, and may be written 
I n X. For example, if I consists of the numbers 1, 2, 3, we have 

xeIJ 

7. Formula (39) allows us to generalize the duality rule. If a subset A 
of E is obtained from other subsets X, Y, Z and families (X,), (Yx), (Z).) 
of subsets of E by applying (in any order) onb> the operations C, u, n, 
U, n, then we shall obtain the complement CA by replacing the 
subsets X, Y, Z, X" Yx, Z). by their complements, and the operations 
u, n, U, n by n, u, n, u, respectivdy, the order of operations 

being preserved; of course, the operations of intersection and union are 
not to be altered where they apply to index sets written under the signs 

U and n· 
As in § 1, no. 15, we define the dual of a rdation A = B or A c B 

where A and B are subsets of E of the above form. 
8. For all J c I we have 

In particular, for all x e I we have 

Conversely, if Y c X, for all LeI, then 
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More generally, if (Y,) is another family of subsets of E, indexed by the 
same set I, and if X, c Y, for all tel, then 

The union of the sets X, is the intersection of all sets Y such that X, c Y 
for all tel. The intersection of the X, is the union of all Z such that 
Z c X, for all tel. 

The following formulae are the duals of (35) and (37), respectively: 

(41 ) 

(42) (n X,) u (n Yx) = n (X, u Yx) (distributivity). 
,EI XEK <t. X)EIXK 

If (X')'EI is a family of subsets of E, and (YX)XEK a family of subset 
of F, then 

(43) 

Moreover, if (X,) and (Y I ) are families of subsets of E and F, respec­
tively, indexed by the same set I, then 

(44) 

The formula (34) has no dual; in general all we can say is 

(45) K(n x,) c n K(X,). 
IEJ ,EJ 

We have equality in (45) for all families (X,) only if X -+ K(X) is the 
inverse extension of a mapping of a subset of F into E. Consequently, 
if f is a mapping of F into E, we have (generalizing (14» 

(46) 

9. Let E be any set and let I be any index set. The set of all families 
(X')'EI of elements of E, indexed by I, is denoted by EI, and the operation 
of passing from E to EI is called exponentiation. EI is thus in one-to-one 
correspondence with the set of all mappings of I into E (which for this 
reason is often denoted by EI, by abuse of language), as well as with a 
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subset of $(1 X E), by considering the graphs of these mappings. The 
sets EJ corresponding to subsets J of the set I may therefore be consid­
ered all as subsets of the same set, which is in one-to-one correspondence 
with a subset of $(1 X E). 

Now let (X')'EI be afamily of subsets of E, indexed by the same set I, 
and let J be any subset of I. The property "for all ~ eJ, x, e X/' of the 
family (X')'EJ defines a subset of EJ, called the product of tke family of sets 
(X')'EJ' and denoted by II X, (or simply II X, when J = I). The 

IEJ I 

X, are called the factors of the product. Note that II X, is a set consist­
lEe 

ing of one element (corresponding to the empty subset of I X E). If 
XI = E for all L eJ, then we have 

If, for example, I consists of the three numbers 1, 2, 3, then II XI 
is in one-to-one correspondence with the set Xl X XI X Xa' IEJ 
10. If R I x, y I is a relation between a generic element x of a set E 
and a generic element y of a set F, then the following propositions are 
equivalent : 

"for each x there exists y such that R I x, y ! .. 
and 

"there exists a mapping f of E into F such that RJx,f(x)! for all x". 

The assertion of this equivalence is known as the axiom of choice (or Zer­
melo's axiom). We shall sometimes indicate whether the proof of a theorem 
depends on it. 

The axiom of choice is equivalent to the following proposition : "if, for 
each LeI, we have XI oF p, then n XI oF p". 

,EI 
11. In this and the following subsection, we shall consider a non-empty 
product II AI, where (AI) is any family of (non-empty) subsets of E. 

lEI 
Let J be a subset of I. The mapping (X')IEI -+ (XI)IEJ of II AI onto 

II II IEJ II A, is called the projection of AI onto A" and is denoted by prJ. 
IEJ lEI ,EJ 
In particular, the mapping (X')IEI -+ Xx of n AI onto Ax is called the 

lEI 
coordinate function (or projection) ofindex x, and is denoted by prx. 

If ~ is an element of II A" we have ~ = (pr'~)IEI' 
I 
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Let Jl' J2 be two sets forming a partition of I. Then Z -7 (prJ,Z, prJ.Z) 
is a one-to-one mapping of I1 A, onto II A, X II A,. 

lEI IEJ. ,eJ. 
In general, if (JAheL is any partition of the set I, the mapping 

Z -7 (prJ1zheL is a bijection (called canonical) of II A, onto the product 
,EI II ( II A,). This may also be expressed by saying that the product of a 

AEL ,EJ. 
family of sets is associative. 
12. The following propositions generalize those of §3, no. 3; (X,), (Y,) 
denote families of subsets of E such that X, c A, and Y, c AI for all 
tel; Z denotes any subset of II AI' 

I 

(a) If II X, #: p, the relation" II X, c II YI" is equivalent to "for 
I I I 

all LeI, X, c Y,". 
-1 

(b) We have prx(Xx) = II YI> where Yx = Xx and Y, = A, when-
ever L #: x. Hence ! 

(c) If II XI #: p, then 

(48) prx(If XI) = Xx' 

(d) For all Z we have 

(49) Z c II pr,(Z). 
t 

(e) Let (J1' J2) be a partition of I into two sets, let (al),EJ. be a 
family of elements of E, and let (XI),EJ. be a family of subsets of E, 
such that a, e A, for all t e J l' and X, c A, for all L e J2' Then the 
product II Y,. where YI = {all when t eJl> and Y, = XI when t eJ2' 

'EI 
can be put in one-to-one correspondence with II X, by projecting onto 
this latter set. ,EJ, 

13. Let (A')'EI be a family of subsets ofa set F, and let f bea mapping 
ofa set E into the product II A,. Ifwe put};(x) = pr,(f(x», then}; 

,EI 
is a mapping of E into AI, and f is the mapping x -7 (};(x». Converse­
ly, iffor each index L e I,l; is a mapping of E into A" then 

X -7 (};(x» 
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is a mapping of E into II All which is denoted by (.I,,) (by abuse 
,EI 

of language, because this notation already denotes the family of 
mappings .1,,). Thus we define a bijection (called canonical) of the set 

(II AI)E onto the set II (A~). 
lEI lEI 

14. Let E, F, G be three sets. For each mapping I of F X G into E 
and for each ye G, let /y denote the partial mapping x ~ I (x, y) of F 
into E. Then y ~ /y is a mapping of G into EF. Conversely, for each 
mapping g of G into EF there exists a unique mapping f of F X G 
into E such that /y = g(y) for all y e G. Thus we define a bijection 
(called canonical) of the set EFXG onto the set (EF)G. 

15. Let (AI)IEI be a family of non-empty subsets of a set E. For each 
LeI let.l" be a mapping of AI into a set F such that, for each pair of 
indices (L, x), .I" and Ix agree on A, n Ax. Then, if 

there exists a unique mapping I of A into F such that the restriction of I 
to each AI is equal to.l". In particular, if AI n Ax = fb whenever 
L =F x, we see that sets FA and II FA, are in one-to-one correspondence 
(called canonical). I E I 

5. EQUIVALENCE RELATIONS 
AND QUOTIENT SETS 

1. Let (AI)IEI be a partition of a set E. The relation R I x, y! : "there 
exists LeI such that x e AI and ye At between two generic elements 
x, y of E satisfies the following conditions : 

(a) Rlx, xj is an identity (reflexivity of R). 
(b) Rlx,y! and Rly, x! are equivalent (.rymmetry of R). 
(c) The relation "R I x, y! and R I y, z!" implies R 1 x, z! (transitivity 

of R). 
If C denotes the subset of E X E defined by the relation R, the 

conditions (a), (b), (c) are respectively equivalent to the following condi-
-1 

tions: (a') d c: Cj (b') C = C; (c') Co C c: C. From (a') and (e') it 
follows that C 0 C = C. 

2. Conversely, let R! x, y! be a reflexive, symmetric, and transitive relation, 
and let C be its graph in E X E. Then the image !r of E under the 
mapping x ~ C(x) of E into ~(E) is a partition of E, and the relation 
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"there exists a subset X e ~ such that x e X and y e X" is equivalent to 
R!x,y!. 

Every relation which satisfies conditions (a), (b), and (c) is called an 
equivalence relation on E. The partition ~ which it defines, considered 
as a subset of ~(E), is called the quotient set of E by the relation R, and is 
denoted by E IR; its elements are called equivalence classes with respect to R. 
The mapping x ---* C(x) of E onto E/R, which maps each element x 
of E to the equivalence class which contains x, is called the canonical 
mapping of E onto E/R. 

The relation of equality x = y is an equivalence relation. The canonical 
mapping of E onto the corresponding quotient set is just x ---* {x}, and 
is bijective. 

If R is an equivalence relation, the notation "x == y (mod R)" is 
sometimes used as a synonym for R I x, y! ; it is read "x is equivalent to y 
modulo R". 
3. On a product set E X F, the relation "prlZ = prlZ'" between Z 
and z' is an equivalence relation R, and the quotient set (E X F) IR 
can be put in one-to-one correspondence with E (this is the origin of the 
name quotient set). 

More generally, let f be a mapping of a set E into a set F. Then the 
relation ''f(x) =f(y)" is an equivalence relation on E. If we denote 

-1 -1 
this relation by R, the mapping Z ---* f (z) (where f (Z) is considered as 
an element of E/R) is a bijection off (E) onto E/R. 

It follows that f may be considered as the composition of the following 
three mappings, in the given order: 

(I) the canonical mapping of the subset f (E) of F into the set F; 
(2) the bijective mapping of EjR onto fCE), whose inverse has just 

been defined; 
(3) the canonical mapping of E onto EjR. 
This decomposition of a mapping is called its canonical decomposition or 

canonical factorization. 

4. Every equivalence relation R on a set E may be defined by means 
of a mapping as in the previous subsection; for, if C is the graph of R, 
the relation "C(x) = C(y)" is equivalent to R I x, y I. 
5. Let R be an equivalence relation on a set E, and let A be a subset 
of E. Then the relation R! x, y! between two generic elements x, y 
of A is an equivalence relation on A, called the relation induced by R 
on A, and denoted by RA.' Let f be the canonical mapping of E onto 
EjR and let g be that of A onto AjRA.' By making an element of EjR 
and an element of AjRA. correspond if they are the images of the same 
element of E under f and g respectively, we have a one-to-one corres­
pondence between the image f(A) of A under f and the quotient set 
A IRA.' If qJ denotes the canonical mapping of A into E, this corres-
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pondence is realized by the mapping Z - f(tp(g(z») and its inverse, 
both of which are also called canonical. 
6. A subset A of E is said to be saturated with respect to the equivalence 
relation R if for each x e A the equivalence class of x with respect to R 
is contained in A. In other words, the saturated sets with respect to R 
are unions of equivalence classes with respect to R. If f is the canonical 

-1 

mapping of E onto E/R, then a set is saturated if it is of the form f (X), 
where Xc E/R. 

Let A be a subset of E. The intersection of the saturated sets which 

contain A is 7(f(A». This set may also be defined as the union of the 
equivalence classes of the elements of A, and is called the saturation of A 
(with respect to R). 
7. Let P I x, y, z I be a relation in which there appears a generic element 
x of E. Then P is said to be compatible (in x) with tke equivalence relation R 
if the relation "Plx,y, z! and x = x' (mod R)" implies Plx',y, zl. 

Let f be the canonical mapping of E onto E/R, and let t be a generic 

element of E/R. The relation "there exists xe 7 (t) such that PI x,y, z I" 
is then equivalent to "for all x e 7 (t), P I x, y, z I "; the latter is a relation 
between t, y, z, said to be induced by P on passing to tke quotient (with 
respect to x). If we denote it by P'l t, y, z I, then P I x, y, z I is equiva­
lent to P'I f(x),y, zl· 

There are analogous definitions for a relation involving any number 
of arguments, and for the case in which the relation is compatible with R 
in several of its arguments. For example, if A is a subset of E, to say 
that the relation "x e A" is compatible (in x) with R is equivalent to 
saying that A is saturated with respect to R. If tp is a mapping of E 
into a set F, to say that the functional relation "y = tp(x)" is compatible 
(in x) with R is to say that tp is constant on each equivalence class 
with respect to R. Passing to the quotient, R therefore induces a relation 
between y and a generic element t of E/R; this relation is functional 
in y and so determines a mapping tp' of E/R into F, satisfying the 
identity tp(x) = tp'(f(x». 
8. Let R be an equivalence relation on a set E, let 8 be an equivalence 
relation on a set F, and let f be a mapping of E into F. The mapping f 
is said to be compatible with R and 8 if the relation x = x' (mod R) 
implies f(x) =f(x') (mod 8). If g is the canonical mapping of F onto 
F 18, then the composite function g 0 f has the same value at all elements 
of an equivalence class Z with respect to R; if we denote this common 
value by h(z), then h is a mapping of E/R into F /8, and is said to be 
induced by f on passing to tke quotients. 
9. Let R be an equivalence relation on E, and let 8 be an equivalence 
relation on E/R. Iff is the canonical mapping of E onto E/R, then 
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"f(x) == fey) (mod S)" is an equivalence relation Ton E. An equiv­
alence class with respect to T is therefore the union in E of equivalence 
classes with respect to R which are equivalent to each other with respect 
to S; and the relation "x == y (mod R)" implies "x == y (mod T)". 
If g and cp are the canonical mappings of E/R onto (E/R) IS and E 
onto E/T, respectively, we obtain a one-to-one correspondence (called 
canonical) between (E/R) IS and E/T by making an element of (E/R) IS 
and an element of E IT correspond to each other if they are the images of 
the same element of E under g 0 f and cp, respectively. 

Conversely, let Rand T be two equivalence relations on E such that 
"x =y (mod R)" implies "x ==y (mod T)". Then T is compatible 
(in the sense of no. 7) with R, both in x and in y; by passing to the 
quotient E/R (with respect to x and y), T induces an equivalence 
relation S on E IR. If f again denotes the canonical mapping of E 
onto E/R, the relation ''f(x) =f(y) (mod S)" is equivalent to "x ==y 
(mod T)". The equivalence relation S is called the quotient of T by R, 
and is denoted by T IR. From the previous paragraph we see that there 
exists a one-to-one correspondence (the canonical correspondence) 
beween (E/R)/(T/R) and E/T. 

10. Now let E, F be any two sets, which mayor may not be distinct. 
Let R! x, y! be an equivalence relation on E and let S! z, t i be an 
equivalence relation on F. Then the relation "R! x, y! and S! z, t I " 
between elements (x, z) and (y, t) of the product set E X F is an 
equivalence relation on E X F, called the product of R by S, and denoted 
by R X S. Every equivalence class with respect to R X S is the product 
of an equivalence class with respect to R and an equivalence class with 
respect to S. If u denotes a generic element of E/R, and v a generic 
element of F IS, then (u, v) ~ u X v is a bijection (called canonical) of 
(E/R) X (F IS) onto (E X F) I(R X S). 

6. ORDERED SETS 

1. A relation (U I x, y I between two generic elements x, y of a set E 
is said to be an order relation on E, ifit satisfies the following two conditions: 

(a) The relation "(u I x, y! and (U Iy, z!" implies C/) I x, z! (transitiv­
ity). 

(b) The relation "(u I x,y! and (U I y, x!" is equivalent to "x = y". 
Condition (b) implies that (U is reflexive. 

Let C be the subset of E X E defined by the relation (U I x, y! as a 
property of the pair (x, y). Then conditions (a) and (b) are respectively 
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equivalent to the following: (a /) Co C c C; (b /) C n C = &. These 
imply that C 0 C = C. 

When we consider a particular order relation on a set E, we say that E 
is ordered by this relation, and that the relation defines an order structure 
(cf. §8) (or an ordering) on E. 

If CAl! x, y! is an order relation on E, then so is CAl I y, x! • These two 
order relations, and the orderings they define, are said to be opposites of 
each other. 

Let CAl! x, y! be an order relation on E, and let A be any subset 
of E. The relation CAl! x, y! between two generic elements x, y of A 
is then an order relation on A, and the ordering it defines on A is said 
to be induced by the ordering defined by CAl! x, y! on E. The given 
ordering on E is said to be an extension of the induced ordering on A. 

A reflexive and transitive relation tiJ! x, y! between two generic elements 
x, y of E is called a preorder relation on E. The relation "liJ! x,y ! and 
liJ Iy, x!" is an equivalence relation R on E, and tiS! x, y! is compatible 
(in x and y) with this relation. Passing to the quotient (with respect 
to x and y), tiS! x, y! induces on the set E/R an order relation, said to be 
associated with tiS I x, y !. A set endowed with a preorder relation is called 
a preordered set. 
2. The inclusion relation "Y c X" is an order relation on the set of 
subsets $(E) of any set E. 

If E and F are two sets, which mayor may not be distinct, the 
relation "g extends i" is an order relation on the set of all mappings of 
subsets of E into F. 

The set N of natural integers (*) is ordered by the relation "x ~ y". 
3. By analogy with this last example, when a set E is ordered by a relation 
CAl ! x, y !, it is often convenient to denote the relation CAl! x, y! by x ~ y, 
or y ;;?; x; these relations are read "x is less than y", or ')I is greater 
than x" (t). The relations "x < y" and ')I> x" (read "x is strictly less 
than y", or ')I is strictly greater than XU) are by definition equivalent to 
"x ~ y and x i:. y". 

The relation "x ~ y" is equivalent to "x < y or x = y". The relation 
"x ~ y and y < ;!' implies "x < ;:."; similarly, "x < y and y ~ ;:." im­
plies "x < ;:.". 

(*) In accordance with our point ofview in this Summary of Results, we assume 
the theory of integers as known. But it should not be thought that this theory 
is necessary for building up the theory of sets; the reader will see, by referring 
to Chapter TIl that, on the contrary, the integers can be defined, and all their 
known properties proved, from the results of the theory of sets. 

In our terminology, 0 belongs to N. 
(t) Thus, in our terminology, "less than" and "greater than" do not exclude 

"equal to". 
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4. A subset X of a set E, ordered by a relation "x ~ y", is said to be 
total~ ordered by this relation if, for all x e X and all y fiE X, we have 
either x ~ y or y ~ x (or, equivalently, either x < y or x = y or x> y, 
these three relations being mutually exclusive). 

The empty subset of an ordered set is always totally ordered. It may 
happen that the whole set E is totally ordered, as is the case for the set N 
and the relation x ~ y. 

Every subset of a totally ordered set is totally ordered by the induced 
ordering. 

In an ordered set E, if a and b are two elements such that a ~ b, 
the subset of E consisting of the elements x such that a ~ x ~ b is 
called the closed interval with left-hand endpoint a and right-hand endpoint b, 
and is denoted by [a, b]. The set of all x e E such that a ~ x < b 
(resp. a < x ~ b) is called the interval half-open on the right (resp. on the 
left) with endpoints a and b, and is denoted by [a, b[ (resp. la, b]). 
The set of all x e E such that a < x < b is called the open interval with 
endpoints a and b, and is denoted by la, b]. 

The set of all x e E such that x ~ a (resp. x < a) is called the closed 
(resp. open) interval unbounded on the left, with right-hand endpoint a, and is 
denoted by l~-, a] (resp. ]+-, aD; likewise, the set of all x e E such that 
x ~ a Crespo x> a) is called the closed (resp. open) interval unbounded on 
the right, with left-hand endpoint a, and is denoted by. [a, -[ (resp. la, -D. 
Finally, we consider E itself as an open interval unbounded in both directions, 
and as such we denote it by]+-, _]. 

5. If X is a subset of an ordered set E, there is at most one element a 
of X such that a ~ x for all x e X; when there exists an element a 
with this property, it is called the least element of X. Likewise, there exists 
at most one element b such that x ~ b for all x e X; b, if it exists, is 
called the greatest element of X. 

In a total~ ordered set E, every finite non-empty subset has a greatest 
element and a least element, called the maximum and minimum elements 
respectively of the subset. 

An ordered set in which every non-empty subset has a least element 
is said to be well-ordered. The set N of natural integers is well-ordered; 
a subset of N has a greatest element ifand only ifit is finite and non-empty. 
It is shown, by use of the axiom of choice, that on every set there exists 
a well-ordering (Zermelo' s theorem). 

In the set ~(E) of subsets of a set E, ordered by inclusion, a subset 8' 
of ~(E) has a least element if and only if the intersection of the sets of 8' 
belongs to 8', and this intersection is then the least element. Similarly, 8' 
has a greatest element if and only if the union of the sets of 8' belongs to lj, 
and this union is then the greatest element. 

A subset X of an ordered set E is said to be cofinal (resp. coinitial) in E 
if, for each ye E, there exists x e X such that y ~ x (resp. y ;;i1: x). To 

375 



SUMMARY OF RESULTS 

say that an ordered set E has a greatest (resp. least) element means that 
there exists a cofinal (resp. coinitial) subset of E consisting of a single 
element. 

6. Let X be a subset of an ordered set E. Every x e X such that 
there exists no element z e X for which z < x is called a minimal element 
of X. Every y e X such that there exists no element z e X for which 
z > y is called a maximal element of X. The set of maximal elements 
(or the set of minimal elements) may be empty; it may also be infinite. 
If X has a least element a, then a is the onb minimal element of X; 
likewise, if X has a greatest element b, then b is the onb maximal 
element of X. 

7. Let X be a subset of an ordered set E. If an element x e E is such 
that z ::;; x for all z e X, then z is called an upper bound of X. Similarly, 
an element y e E such that z ~ y for all z e X is called a lower bound 
of X. 

The set of upper bounds (or the set oflower bounds) ofa subset X may 
be empty. A subset X whose set of upper (resp. lower) bounds is not 
empty is said to be bounded above (resp. bounded below). A set which is 
bounded both above and below is said simply to be bounded. Every element 
greater than an upper bound of X is an upper bound of X; every element 
less than a lower bound of X is a lower bound of X. 

If the set of upper bounds of a subset X has a least element a, then a 
is called the least upper bound or supremum of X. If the set of lower bounds 
of X has a greatest element b, then b is called the greatest lower bound or 
irifimum of X. If these bounds exist, they are unique by definition, and 
they are denoted respectively by SUPE X (or sup X), infE X (or inf X). 
If X has a greatest element, it is its least upper bound; if X has a least 
element, it is its greatest lower bound. Conversely, if the least upper 
bound (resp. greatest lower bound) of X exists and belongs to X, it is 
the greatest (resp. least) element of X. 

Let f be a mapping of a set A into E. If f (A) is bounded above 
(resp. bounded below, bounded) in E, then f is said to be bounded above 
(resp. bounded below, bounded). If f(A) has a least upper bound (resp. 
greatest lower bound) in E, this bound is called the least upper bound 
(resp. greatest lower bound) of f and is denoted by supf(x) (resp. inff (x». 

~eA zeA 

8. A preordered set E in which every finite non-empty subset of E is 
bounded above (resp. bounded below) is said to be right directed (or directed) 
(resp. left directed). 

An ordered set E in which every finite non-empty subset of E has a 
least upper bound and a greatest lower bound is called a lattice. 

The set of subsets of any set, ordered by inclusion, is a lattice. Every 
totally ordered set is a lattice. 
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9. An ordered set E is said to be inductive if it satisfies the following 
condition : every totalfy ordered subset of E has an upper bound. 

The set ~(E), ordered by inclusion, is inductive. So is the set of 
mappings of subsets of a set E into a set F when ordered by the relation 
"g extends f" between f and g. 

An arbitrary subset of an inductive set is not in general inductive. But 
if a is any element of an inductive set E, then the subset of E consisting 
of all elements x e E such that x ~ a is inductive. 

10. The following proposition is proved with the help of the axiom of 
choice, and is known as Zorn's lemma : 

Every inductive ordered set has at least one maximal element. 

11. In the set of subsets ~(E) of a set E, ordered by inclusion, the least 
upper bound ofa set ij' of subsets of E is the union of the sets of S'. Appli­
cation of Zorn's lemma gives the following result : 

If ~ is a set of subsets of a set E such that, for each subset ~ of S' which 
is totalfy ordered by the relation of inclusion, the union of the sets of @ belongs 
to S', then S' has at least one maximal element (that is, a subset of E which 
belongs to S' but is not contained in any other subset of E belonging 
to ~). 

A set S' of subsets of a set E is said to be of finite character if the property 
"X e S''' is equivalent to the property "every finite subset of X belongs 
to S'''. With this definition, we have the following theorem : 

Every set of subsets of E of finite character has at least one maximal element. 

12. A mapping f of a subset A of an ordered set E into an ordered 
set F is said to be increasing (resp. decreasing) if the relation x ~ y between 
generic elements of A implies f (x) ~ f (y) (resp. f (y) ~ f (x)). Every 
constant function on A is thus both increasing and decreasing, and the 
converse is true if A is (right or left) directed. 

A mapping f is said to be strietfy increasing (resp. stnctfy decreasing) if the 
relation x < y implies f(x) < fey) (resp. f(x) <fCy». 

If E is totalfy ordered, every strietfy increasing (or strictfy decreasing) mapping 
of a subset A of E into an ordered set F is injective. 

If I is an ordered set of indices, a family (X,) ,eI of subsets of a set E 
is said to be increasing (resp. decreasing) if the mapping L _ X, of I into 
~(E), ordered by inclusion, is increasing (resp. decreasing). 

13. Let I be a directed set, and let (Ea;)a;eI be a family of sets indexed 
by I. For each pair (IX, ~) of indices in I such that IX ~ ~, let fpa. be a 
mapping of Ea. into Ep, and suppose that the relations IX ~ ~ ::;;; y imply 
fya. = fy~ 0 f~a.. 

Let F be the sum of the family of sets (Ea.)a.El. By abuse oflanguage, 
we shall identifY the Ea. with the corresponding subsets of F. Given two 
elements x and y in F, let R I x, y! be the following relation (where IX 
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and ~ denote the elements of I such that x e E ot and y e E~) : 

"there exists ye I such that y ~ (X and y ~ ~ and fyot(x) = fy~(Y)'" 

Then R is an equivalence relation on F. Let E be the quotient set 
F fR, and let f be the canonical mapping F --+ F fR. The set E is 
called the direct limit of the family (Eot) «EI with respect to the family of mappings 
(f~ot), and the restriction fIX of f to E« is called the canonical mapping of E ot 
into E. We have h 0 f~a. = fa. whenever (X ~~. We write 

or simply E = lim Ea. when there is no risk of confusion. By abuse of 
-+-

language, the pair «Ea.), (ha.)) is called a direct system of sets relative to 1. 
If the ha. are injective, then the fa. are injective. In this case we shall 

usually identify Ea. and fa.(Ea.), and thus consider E as the union of the Ea.. 
Conversely, if a set E' is the union of a family (E~)a.EI of subsets such 
that the relation (X ~ ~ implies E~ c E~, and if (for (X ~ ~) h'Z. denotes the 
canonical injection of E~ into E~, then we may identify lim (E~, jot~) 

-+-
with E', and the canonical mappings of the E~ into lim (E~, hot) with 
the canonical injections of the E~ into E. -+-

More generally, let (Ea., f~ot) be a direct system of sets relative to I, 
and for each (X e I let ga. be a mapping of Ea. into a set E' such that the 
relation (X ~ ~ implies g~ 0 ha. = ga.' Then there exists a unique mapping 
g of E = lim Ea. into E' such that ga. = g 0 fa. for all (X e 1. The map-

-+-
ping g is surjective if and only if E' is the union of the got(Ea.). The 
mapping g is injective if and only if, for each (X e I, the relations x e Ea., 
ye Ea., ga.(x) = ga.(Y) imply that there exists ~ ~ (X such that f~a.(x) = f~ot(Y). 
If g is bijective, E' is sometimes identified with the direct limit of the Ea.. 

Let (Aot, 'P~'Z.) and (Ba., !)I~a.) be two direct systems of sets relative to 
the same index set I. Let A = lim (Aa., 'P~a.), B = lim (Ba., !)I~a.), and for 

-+- -+-
each (X e I let 'Pa. (resp. !)Ia.) denote the canonical mapping of Aa. into A 
(resp. of Ba. into B). For each (X e I let Ua. be a mapping of Aa. into Ba. 
such that u~ 0 'P~ot = !)I~a. 0 Ua. whenever (X ~~. The family (ua.) is called 
a direct system ofmappings of (Act, 'P~ot) into (Ba., !)I~a.). Under these conditions 
there exists a unique mapping u: A --+ B such that u 0 'Pa. = !)I a. 0 Ua. 
for all (X e 1. The mapping u is called the direct limit of the Uot , and is 
written u = lim Uot , provided that there is no risk of confusion. Let 

-+-
(Ca., e~ot) be another direct system of sets relative to I, let (va.) be a direct 
system of mappings of (Bot, !)I~ot) into (Cot, e~a.), and let v = lim Vot. Then 
lim (va. 0 uot ) = v 0 u. -+-
-+-

Keeping the above notation, let Dot = Aa. X Ba. and (U~a. = CP~ot X !)I~a.. 
Then the family (Dot, (U~a.) is a direct system of sets. Let D = lim (Da., (U~'Z.)' --
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let Wa be the canonical mapping of Da into D, let D' = A X B, and let 
w~ = (jIa X !f;a. Then there exists a unique bijection (called canonical) 
f: D -+ D' such that f 0 Wa = w~ for all (X e I. We shall usually identify 
the product D' of the direct limits with the direct limit D of the products 
Da• 

Let J be a cofinal subset of I; then J is also directed. If ((Ea)IXEI' 
(ha)aEI,~EI) is a direct system of sets relative to I, then ((Ea)aEJ' 
(f~a)aeJ,~EJ) is a direct system of sets relative to J. Let E' be its direct 
limit, and let f ~ be the canonical mapping of Ea into E' for all (X e J. 
Then there exists a unique mapping g : E -+ E' such that g(f~(x)) =fa(x) 
for all (X eJ and all x e Ea (where fa denotes the canonical mapping 
of Ea into E). This mapping is a bijection, by means of which E' is 
usually identified with E. 

14. Let I be a preordered set and let (Ea) IXEI be a family of sets indexed 
by 1. For each pair ((X, ~) of indices of I such that (X ~ ~, let fa~ be 
a mapping of E~ into EGO and suppose that the relations (X ~ ~ ~ y 
imply fay = fa~ 0 f~Y" 

Let G be the product of the family of sets (Ea)IXEI' Let E be the 
subset of G consisting of all elements x which satisfy all the relations 
prax = fa~ (pr~x), for every pair of indices (x, ~ such that (X ~~. The 
set E is called the inverse limit of the family (Ea) exEI with respect to the family 
of mappings (fa~), and the restriction fa of prex to E is called the canonical 
mapping of E into Ea. We have fex = fa~ 0 h whenever (X ~~. We write 
E = lim (Ea,jex~), or simply E = lim Eex when there is no risk of confusion. 
~ ~ 

By abuse of language, the pair ((Eex), (fex~)) is called an inverse system of 
sets relative to I. 

It should be mentioned that E can be empty, even when all the Ea are 
non-empty and all the mappings fa~ are surjective. 

For each a E I let glX be a mapping of a set E' into EIX such that the 
relation (X ~ ~ implies fa~ 0 g~ = gao Then there exists a unique map­
ping g of E' into E such that ga = fa 0 g for all (X e I. For g to be 
injective it is necessary and sufficient that for each pair of distinct elements 
x', y' of E', there should exist a e I such that ga(x') =P ga(y'). 

Let (Aa, (jIa~) and (Ba, !f;1X~) be two inverse systems of sets relative to the 
same index set I. Let A = lim (AIX' (jI1X~)' B = lim (BIX' !f;1X~)' and for each - -(X e I let (jI1X (resp. !f;1X) be the canonical mapping of A into AIX (resp. of 
B into Ba). For each (X e I let Uex be a mapping of Aa into Ba such that 
!f;1X~ 0 u~ = UIX 0 (jI1X~ whenever a ~~. The family (ua) is called an inverse 
system of mappings of (Aa, (jI1X~) into. (Bex, !f;a~). Under these conditions 
there exists a unique mapping u : A -+ B such that !f;a 0 U = Ua 0 (jIa for 
all IX e I. The mapping U is called the inverse limit of the U IX' and is 
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written u = lim Ua when there is no risk of confusion. Let (Ca, 6a~) ---be another inverse system of sets relative to I, let VIZ be an inverse system 
of mappings of (BIZ' ~IZ~) into (Ca, 6a~), and let v = lim Va. Then we 

. -have hm (va 0 ua) = V 0 u. -Let J be a cofinal subset of I, and suppose that J is directed (with 
respect to the ordering induced from I). If «EIZ)IZEI' (flZ~)GtEI. ~EI) is an 
inverse system of sets relative to I, with inverse limit E, then (Ea)GtEl' 
(fGt~)GtEl. ~El) is also an inverse system of sets, relative to J. Let E' be its 
inverse limit and let f~ be the canonical mapping of E' into EGt, where 
ex eJ. For each x e E let g(x) = (fa(x»GtEl e E' (where fa denotes the 
canonical mapping of E into Ea). Then g is a bijection of E onto E', by 
means of which E' is usually identified with E. 

7. POWERS. COUNTABLE SETS 

1. Two sets E, F are said to be equipotent if they can be put in one-to-one 
correspondence. 

Two sets, each equipotent to a third, are themselves equipotent. 
If E and F are equipotent, then $(E) and $(F) are equipotent. 
If E and F, E' and F', E" and F" are respectively equipotent, then 

E X E' X E" and F X F' X F" are equipotent. This proposition ex­
tends to the product of any number of sets. 

2. Let X and Y be two generic subsets of a set E. The relation "X 
and Yare equipotent" is an equivalence relation on $(E). The equivalence 
class (with respect to this relation) to which X belongs is called the power (*) 
of X, and the set of these classes (Le., the quotient of $(E) by the above 
relation) is called the set of powers of subsets of E. 

If E and F are two distinct sets, the relation "X and Yare equi­
potent" between a subset X of E and a subset Y of F is expressed by 
saying that the power of X and the power of Y are equivalent. In this 
way we have a one-to-one correspondence between a subset of the set of 
powers of subsets of E and a subset of the set of powers of subsets of F. 

(*) In formalized set theory (cf. Chapter III, § 3) we define the notion of the 
can/inal of a set, which we also call (by abuse of language) the power of the set. This 
abuse of language does not, however, cause any confusion, because two subsets 
of a set have the same power (in the sense defined above) if and only if they have 
the same cardinal; likewise, the power of a subset A of a set E is less than the 
power of a subset B of a set F (no. 3) if and only if the cardinal of A is less 
than that of B; and finally, if the power of A is the sum (no. 5) of the powers 
ofa family (AI) ofsubsets of E, then the cardinal of A is the sum. of the cardinals 
of the AI. 
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3. Let E, F be any two sets, which mayor may not be distinct, and let a 
(resp. li) be an element of the set of powers of subsets of E (resp. F). 
Then a is said to be less than li, or li greater than a, if there exists a one-to­
one mapping of a subset X c E with power a into a subset Y c F with 
power li. If also a and li are not equivalent powers, than a is said 
to be strictly less than li, or li strictly greater than a. 

If a and li are equivalent, then a is both greater and less than li. 
Conversely, it is a theorem that if a is both greater and less than li, then a 
and li are equivalent. It follows in particular that the set of powers of 
subsets of a set E is ordered by the relation "a is less than li"; whenever 
we speak of this set as an ordered set, it is always the ordering defined by 
this relation that we mean. 

Furthermore, using Zorn's lemma (and hence the axiom of choice), 
it is shown that the set of powers of subsets of a set E is well-ordered. 

4. The power of a set E is strictly less than that of the set $(E). 
If f is a mapping of a set E into a set F, then the power of the image 

f eX) of any subset X of E is less than the power of X. 

5. Let (X,),eI be a family of subsets of a set E such that X, n Xx = fz$ 
whenever L oF it. Let (Y')'EI be a family of subsets of a set F, indexed 
by the same set I and such that the power of Y, is less than that of X, 
for all LeI. Then the power of the union U Y, is less than that of U X, 
for all subsets J of 1. ,eJ ,eJ 

If also Y, n Yx = fz$ whenever L oF it, and if X, and Y, are equipotent 
for all LeI, then U X, is equipotent to U Y,. 

,eJ ,eJ 
In particular, if F and E are the same set, we see that the power of the 

union of a set of pairwise disjoint subsets of E depends only on the powers 
of these subsets; it is called the sum of these powers (thus this function is 
defined for a family (a,) of elements of the set of powers only if there exists 
a family (X,) of pairwise disjoint subsets of E such that X, has power a, 
for each index L). 

If (X,),eI and (Y,),eI are families of subsets of E and F, respectively, 
indexed by the same set I such that X, and Y, are equipotent for all L, 
then the products II X, and II Y, are equipotent. 

I I 

6. The set N of natural integers may be considered as the set of powers 
of finite subsets of an infinite set. The order relation "x ~ y" on N is just 
the relation ordering this set of powers, and the sum of two natural integers 
is a function identical with the sum of two powers as defined above. 

7. A set is said to be countable if it is equivalent to a subset of the set N 
of natural integers. Every finite set is therefore countable; if it has n ele­
ments, it is equipotent to the interval [0, n - I] of the set N. Every 
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countable infinite set is equipotent to N; in particular, every infinite subset 
of N has the same power as N. 

If E is an infinite set, there exists a partition of E into countable infinite 
sets; in particular, every infinite set has a power greater than that of N. 

If E is an itifinite set, the sets E X E and E X N are both equipotent 
to E, and the set of finite subsets of E is equipotent to E. In particular, 
N X N is a countable itifinite set. 

8. A sequence of elements of a set E is by definition a family of elements 
of E, indexed by the set N or a subset of N. A sequence whose index 
set is N is therefore written (Xn)nEN' or more simply (xn) when there 
is no likelihood of confusion. If n denotes a generic integer, Xn is said 
to be the general term of the sequence, or the nth term. The latter terminology 
is also used when n is replaced by a particular integer. The set of elements 
of a sequence is countable. 

A sequence is said to be infinite or finite according as the index set is an 
infinite or finite subset of N. The set of elements of a finite sequence is 
finite. 

Every subfamily of a sequence is again a sequence, called a subsequence 
of the given sequence. Every subsequence of a finite sequence is a finite 
sequence. 

A family of elements whose index set is N X N, or a subset of- N X N, 
is called a double sequence. A double sequence indexed by N X N is 
written (xm• n), or more simply (xmn) if there is no risk of confusion. 
Similarly for sequences with more than two indices. 

Two sequences (Xn) , (Yn) are said to differ on~ in the order of their terms 
if there exists a permutation f of the index set such that Yn = X /(n) for all n. 

With any family of elements (x')'Er whose index set I is countably 
infinite we may associate an infinite sequence, as follows: there exists 
a bijection n ~ f (n) of N onto I; putting Yn = X /(n), the sequence (Yn) 
is said to be obtained by ranging the fami~ (x,) in the order defined by f. 
Thus the sequences corresponding to two distinct bijections of N onto I 
differ only in the order of their terms. 

Operating in the same way when I is finite, we obtain a finite sequence 
associated with the family (x,). 

9. The union, intersection, and product of a family (X,),eI of subsets 
of a set E are said to be countable if I is a countable set, finite if I is finite. 

If I is countable, and if the power of XI is less than a given infinite power 
11 for all LeI, then the power of the union U XI is less than 11. If also 

I 

at least one of the XI has power 11, then U XI has power 11. In parti­
I 

cular, every countable union of sets of power 11 also has power 11; every 
countable union of countable sets is a countable set. 
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8. SCALES OF SETS. STRUCTURES 

1. Given, for example, three distinct sets E, F, G, we may form other 
sets from them by taking their sets of subsets, or by forming the product 
of one of them by itself, or again by forming the product of two of them 
taken in a certain order. In this way we obtain twelve new sets. If we add 
these to the three original sets E, F, G, we may repeat the same operations 
on these fifteen sets, omitting those which give us sets already obtained; 
and so on. In general, anyone of the sets obtained by this procedure 
(according to an explicit scheme) is said to belong to the scale of sets on 
E, F, G as base. 

For example, let M, N, P be three sets of this scale, and let R! x,y, z! 
be a relation between generic elements x, y, Z of M, N, P, respectively. 
Then R defines a subset of M X N X P, hence (via a canonical corres­
pondence) a subset of (M X N) X P, i.e., an element of ~((M X N) X P). 
Thus to give a relation between elements of several sets in the same scale is 
the same as to give an element of another set in the scale. Likewise, to give 
a mapping of Minto N, for example, amounts (by considering the graph 
of this mapping) to giving a subset of M xN, i.e., an element of 
~(M X N), which is again a set in the scale. Finally, to give two elements 
(for example) of M amounts to giving a single element in the product set 
MxM. 

Thus being given a certain number of elements of sets in a scale, rela­
tions between generic elements of these sets, and mappings of subsets of 
certain of these sets into others, all comes down in the final analysis to 
being given a single element of one of the sets in the scale. 

2. We said earlier (§6) that an element 0 of the set ~(E X E) defines 
an order structure on E if it has the properties (a) 00 0 c C and (b) 

-1 

On 0 = 8. 
In general, consider a set M in a scale of sets whose base consists, 

for the sake of example, of three sets E, F, G. Let us give ourselves a 
certain number of explicitly stated properties of a generic element of M, 
and let T be the intersection of the subsets of M defined by these proper­
ties. An element (J of T is said to define a structure of the species T on 
E, F, G. The structures of species T are therefore characterized by the 
scheme offormation of M from E, F, G, and by the properties defining T, 
which are called the axioms of these structures. We give a specific name 
to all the structures of the same species. Every proposition which is a 
consequence of the proposition "(J e T" (i.e., of the axioms defining T) 
is said to belong to the theory of the structures of species T; for example, 
the propositions stated in § 6 belong to the theory of structures of ordered 
sets. 
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In the last example, the axioms may be stated for a completely arbitrary 
base set E. Hence we give the same name to the structures which satisfy 
these axioms, independently of the set on which they are defined; and the 
propositions deduced from these axioms are valid in any set, because 
their formulation does not involve any special properties of the set E. 
Such remarks apply whenever the axioms are of this nature (*). 

Most often when a scale is used with a base consisting of several sets 
E, F, G, one of these sets, say E, plays a preponderant role in the struc­
tures under considerations. Therefore, by abuse of language, these 
structures are said to be defined in the set E, with F and G considered 
as auxiliary sets. 

Finally, to simplify the language, a particular name is often given to a 
set which has been endowed with a structure of a definite species. Thus 
we speak of an ordered set, and in later parts of this series we shall define 
the notions of group, ring, field, topological space, uniform space, etc., all of 
which are words denoting sets endowed with certain structures. 

3. Consider the structures of the same species T, where T is a subset 
of a set M in a scale of sets. If we adjoin new "axioms" to those which 
define T, the system of axioms thus obtained defines a subset U of M, 
contained in T. The structures of the species U are said to be richer than 
the structures of the species T. For example, the structures of total~ 
ordered sets are richer than the structures of ordered sets, because the ele­
ment C of $(E X E) which defines such a structure has to satisfy the 

-1 

additional axiom C u C = E X E. 
4. Let M, M' be two sets in the same scale, say with E, F, G as base. 
Let T be a subset of M and T' a subset of M', each defined by certain 
explicitly stated axioms. Whenever we can define explicitly a one-to-one 
mtlpping of Tonto T', we consider two elements a e T, a' e T', which 
correspond to each other under this mapping, as defining the same struc­
ture on E, F, G; and the systems of axioms which define T and T' 
are said to be equivalent. 

The topological structures provide an example of this situation; they can 
be defined by means of several equivalent systems of axioms, two of which 
systems are particularly useful (see General Topology, Chapter I, § 1). 
5. Let E, F, G be three sets, and suppose we are given bijective mappings 
of E, F, G onto three other sets E', F', G', respectively. Since we know 
how to define the canonical extensions of bijective mappings to sets of subsets 
(§ 2, no. 9) and to product sets (§ 3, no. 14), we can define, step by step, 

(*) The reader may have observed that the indications given here are left 
rather vague; they are not intended to be other than heuristic, and indeed it seems 
scarcely possible to state general and precise definitions for structures outside of 
the framework offormal mathematics (see Chapter IV). 
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the extension of the given bijections to two sets M, M' constructed respec­
tively according to the same scheme in the scale of sets based on E, F, G, 
and that based on E', F', G'. Let f be the bijection of M onto M' so 
obtained. If a is a structure on E, F, G which is an element of a subset 
T of M, we say that f(a) is the structure obtained by transporting the 
structure a onto E', F', G' by means of the given bijections of E onto E', 
F onto F', G onto G'. Every proposition relating to the structure a 
on E, F, G gives rise (by use of appropriate extensions) to a proposition 
relating to the structure f(a) on E', F', G'. 

Conversely, a structure a on E, F, G and a structure a' on E', F', G' 
are said to be isomorphic if a' can be obtained by transporting a by means 
of bijections of E, F, G onto E', F', G', respectively; these mappings are 
then said to constitute an isomorphism of a onto a'. 

When we are concerned with structures on a single set E, the bijection 
of E onto E' which transports a into a' is also called an isomorphism of 
the set E, endowed with the stTucture a, onto the set E', endowed with the struc­
ture a'. 

This mapping is also called an isomorphism when F and G are two 
auxiliary sets, and the bijections for these two sets are the identity mappings 
of F and G onto themselves. 

An isomorphism of a set E, endowed with a structure a, onto itself 
is called an automorphism. 

When there exists an isomorphism of a set E, endowed with a struc­
ture a, onto a set E', endowed with a structure a', it is often convenient 
to identify E with E', i.e., to give the same name to an element of a set M 
in the scale based on E and to the element which is its image under the 
appropriate extension of f to the set M. 

6. Given a system of axioms defining a subset T of a set M in a scale 
of sets, we should make sure, before speaking of the structures which satisfy 
these axioms, that the set T is not necessarily empty; otherwise the axioms 
would be said to be contradictory or inconsistent. 

7. It may happen that a system of axioms defining a structure on a set 
can be stated for an arbitrary set, but that when we consider two structures 
satisfying these axioms and defined on two distinct sets E, F, we find from 
the axioms that these structures (if they exist) are necessarily isomorphic 
(which implies in particular that E and F are equipotent). Then the 
theory of the structures satisfying these axioms is said to be univalent; 
otherwise they are said to be multivalent. 

The theory of integers, the theory of real numbers, and classical Euclidean 
geometry are univalent theories; the theory of ordered sets, group theory, 
and topology are multivalent theories. The study of multivalent theories 
is the most striking feature which distinguishes modern mathematics from 
classical mathematics. 
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The reference numbers indicate the chapter, section, and subsection, in 
that order. (R refers to the Summary of Results.) 

0, 't, V, 1, ==> : 1.1.1 
't,.;{A), (Blx)A, Alx!, Alx,y!, A!B!, AlB, C! : 1.1.1 
not (A), (A) or (B), (A) ==> (B) : 1.2 
"A and B" : 1.3.4 
~, A ~ B: 1.3.5 
(3x)R, (Vx)R : 104.1 
(3Ax)R, (VAx)R : 1.404 

=, #, T= U, T# U: 1.5.1 
e, '*', T e U, T,*, U: 11.1.1 
c, ::>, ¢, :)), xc y, x::> y : 11.1.2 
CollxR, &x(R) : 11.1.4 
{x,y}, {x} : 11.1.5 
CxA, X-A, CA, ~: 11.1.7 
::>, (T, U), prlz, pr:aZ: 11.2.1 
A X B, A X B X C, A X B X C X D, (x,y, z) : 11.2.2 
pr1<G), pra<G), prIG, praG (G a graph) : 11.3.1 
G<X), G(X), G(x) (G a graph, X a set, x an object) : 11.3.1 
r<X), reX), rex) (r a correspondence, X a set, x an object) : 11.3.1 
-1 -1 

G (G a graph), r (r a correspondence) : 11.3.2 
G' 0 G, G'G (G, G' graphs), r' 0 r, rrr (r, r' correspondences) : 

11.3.3 
L\A, IA (A a set) : 11.3.3 
/(x),/,.; (/ a function), F(x), F,.; (F a functional gaph) : 11.304 
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f /: A ~B, A~B: 11.3.4 
x~T (xeA, Tee), x~T (xeA), x~T, (T)xeA, T (by abuse of 

language) (T a term) : II.3.6 
prlJ prll: II.3.6 
gf (g, / mappings) (by abuse of language) : II.3.7 
/(x,y),/(.,y),/(x, .),/( ,y),/(x, ): II.3.9 
u X v (u, v functions), (u, v) (by abuse of language) : II.3.9 

U X" n X,: II.4.1 
,EI ,EI 

U X, n X: II.4.1 
XEiJ XES' 

A u B, Au B u C, A n B, A n B n C: 11.4.5 
{x, y, z} : II.4.5 
$(X) : II.5.1 
9I(E, F), FE : II.5.2 

II X" pr,: II.5.3 
,EI 

prJ: II.5.4 
(g')'EI (extension to products of the family (g')'EI' by abuseoflanguage): 

II.5.7 
x == y (mod R) (R an equivalence relation) : 11.6.1 
E/R (E a set, R an equivalence relation) : II.6.2 
RA (R an equivalence relation, A a set) : II.6.6 
R/S (R, S equivalence relations) : 11.6.7 
R X R' (R, R' equivalence relations) : II.6.8 
x ~ y, y ~ x, x ~ y: III.1.3 
x < y, y < x: 111.1.3 
SUPE X, infE X: III.I.9 
sup X, infX: III.1.9 
sup (x, y), inf (x, y) : III.1.9 
sup/ex), inf lex) : III.1.9 
a:EA a:EA 

sup x, inf x: III.1.9 
a:EA a:EA 

[a, h], [a, h[, ]a, h], ]a, h[: III.1.13 
[+-, a], ]+-, a[, ]a, ~[, [a, ~[: 111.1.13 

~ E, (ordinal sum) : 111.1, Exercise 3 
,EI 

Sa:: 111.2.1 
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Is(r, r'), Ord(E) , A -< (L, ~ A" P A~, A + (L, (LA,A* (A, (L, A, order-
lEI iEI 

types) : 111.2, Exercise 13 
;'11 (;, 7j ordinals) : 111.2, Exercise 18 
Eq (X, V), Card (X) : 111.3.1 
0, 1, 2 : 111.3.1 
~ ~ \J (.r, u cardinals) : 111.3.2 
sup III «a')'EI a family of cardinals) : 111.3.2 
'EI 

~ a" P a" IIa~ «a')'EI a family of cardinals) : 111.3.3 
,EI ,EI ~EI 

a + li, ali Ca, li cardinals) : 111.3.3 
ab (a, li cardinals) : 111.3.5 
3, 4 : 111.4.1 
a - b (a, b integers, b < a) : 111.5.2 

(ti)Pli!, (ti)a~i~b : 111.5.4 
b n Xi, II Xi: 111.5.4 

Plil i=a 

CPA (A a subset of a set E) : 111.5.5 

: • alb (a, b integers such that b divides a) : 111.5.6 

5,6, 7, 8, 9: 111.5.7 
n! (n an integer) : 111.5.8 

(~) (n, P integers) : 111.5.8 

N, No: 111.6.1 
(xn)Plnp (xnh~n' (Xnk~k' (xn) : 111.6.1 

'" II X n, II Xn: 111.6.1 
Pln~ n=k 
fn (f a mapping) : 111.6.2 
(0)01' NOI (IX an ordinal) : 111.6, Exercise 10 
lim E,; (E,; sets) : 111.7.1 -lim "01 (u,; mappings) : 111.7.2 -lim E~, lim E~, lim "~, lim u~ : 111.7.3 - - - -01, i. 01 01.). 01 

lim E,; (Ea sets) : 111.7.5 -lim It,; (u,; mappings) : 111.7.6 -
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lim E~, lim E~, lim u~, lim u~ : III.7.7 - - - -~1 ~ ~1 ~ 

S(EI> ... , E,,) (S an echelon construction scheme, Ex, ... , E" sets) : 
IV. I. 1 

<fl> .. ·,In)S (8 an echdon construction scheme, fl> .. . ,/" mappings) : 
IV. I. I 

R ! x, y, .c! : R.I.2 
=, =F : R.1.6 
e, .. : R.I.7 

CA, E-A: R.I.7 
fi1: R.1.8 
{a} : R.I.9 
!P(E) : R.I.IO 
C, ::J, ¢, ~ : R.I.I2 
U, n : R.1.l3 
{x,y,4: R.1.l3 
X A (X a subset) : R.1.l6 
gA (g a set of subsets) : R.1.l6 
f(x), ltD, x -+f(x) (I a mapping, x an dement) : R.2.2 
I (X) (X a subset) : R.2A 
-1 
f (f a mapping) : R.2.6 
go J, hog 0 I (J, g, h mappings) : R.2.11 
IA (f a mapping) : R.2.13 
(xl)lex, (XI) : R.2.14 
(x,y) : R.3.1 
E X F (E, F sets) : R.3.1 
prl> pr.: R.3.1 
.:1 : R.3.4 
-1 

Z (Z a subset of a product) : R.3A 
K(X) (K a subset of E X F, X a subset of E) : R.3.6 
K(x) (K a subset of E X F, x an dement of E) : R.3.9 
BoA, BA, CoB 0 A, CBA (A a subset of ExF, B a subset of FxG, 

C a subset of G X H) : R.3.10 
(x,y, .c) : R.3.12 
E X F X G : R.3.l2 
pr1,l: R.3.12 
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(f, g, h) (f, g, h mappings) : R.3.12 

U X" UX" U X: RA.4 
leI t xel\' 

n X" nXI , n X: RA.9 
leI I ;'e\ 

II X" IT XI : R.4.9 
leI t 

EI (E, I sets) : R.4.9 
prJ, prx : RA.Il 
U;) U; mappings) : RA.13 
E jR (E a set, R an equivalence relation on E) : R.5.2 
RA (R an equivalence relation, A a subset) : R.5.5 
T jR CT, R equivalence relations) : R.5.9 
R x S (R, S equivalence relations) : R.5.10 
N: R.6.2 
~, ~, <, > : R.6.3 
[a, b], [a, b[, ]a, b], ]a, b[, ]+-, a], ]+-, a[, [a, ~[, ]a, ~[, ]+-, 
~[: R.6A 
SUPE X, sup X, infE X, inf X: R.6.7 
sup f(x), inf f(x) : R.6.7 
II)EA II)EA 

lim (EGU f~ex), lim Eex, lim "ex : R.6.13 - --lim (Eex, fex~), lim Eex, lim "at : R.6.14 --- ------(XII)' (xm,lI) (m, n natural integers) : R.7.8 
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The reference numbers indicate the chapter, section, and sub-section 
(or exercise) in that order. (R refers to Summary of Results.) 

Adjunction of a greatest element to an ordered set: 111.1.7 
Adjunction (of one set to another) : R.5.4 
Agreeing on a set (functions) : 11.3.5 
Agreement (of two functions on a set) : R.2.14 
Aleph: 111.6. Ex. 10 
Antecedent assemblies: I. App. 4 
Antidirected (ordered set) : 111.1. Ex. 23 
Applying the results of one theory in another: 1.2.4 
Argument: R.I.2 
Assembly: 1.1.1 

antecedent : I. App. 4 
balanced : I. App. 4 
of the first (second) species: 1.1.3 
perfectly balanced : I. App. 4 

Associated equivalence relation: 11.6.2 
Associativity criterion for product structures: IV.2.4 

of the intersection of a family of sets: R.4.8 
of the product of a family of sets: R.4.11 
of the union and intersection of two sets : R.l.14 
of the union of a family of sets: R.4.3 

Automorphism: IV.l.5, R.8.6 
Auxiliary base sets: IV.1.3,1.4 

constant, method of: 1.3.3 
hypothesis, method of: 1.3.3 

Axiom, explicit: 1.2.1 
implicit: 1.2.1 
of choice: R.4.10 
of extent: 11.1.3 
of infinity: 111.6.1 
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Axiom of the ordered pair: 11.2.1 
of the set of subsets : 11.5.1 
of the set of two elements : II.I.5 

Axioms, equivalent: R.8.4 
of structures of the same species : R.8.2 

Axiom(s) of a species of structures: IV.1.4 

Balanced assembly : I. App. 4 
word : I. App. 2 

Base of an expansion, or of a system of numeration: 111.5.7 
of a scale of sets : R.8.1 
sets (of an echelon construction) : IV.U 
sets, auxiliary: IV.I.3, 1.4 
sets, principal: IV.I.3, 1.4 

Bijection: II.3.7, R.2.9 
Bijective mapping: II.3.7, R.2.9 
Binomial coefficient: III.5.8 
Boolean lattice: III.I. Ex. 17 
Bound, greatest lower and least upper (of a set or a mapping): III. 1.9, R.6.7 

least upper (of a set of cardinals) : III.3.2 
lower: 11I.l.8, R.6.7 
strict upper: III.2.4 
upper: 111.1.8, R.6.7 

Bounded, bounded above, bounded below (set or mapping): III.l.8, R.6.7 
Branched (ordered set) : III.t. Ex. 24 

Canonical decomposition of a function: II.6.5, R.5.3 
Canonical extension, of a correspondence to sets of subsets: II.5.1 

of a family of functions to the product sets: II.5.7 
of mappings: IV.l.2 
of two functions to the product sets: II.3.9 
signed: IV.2. Ex. 1 

Canonical injection: II.3.7 
Canonical mapping, IV, App. 4 

of a subset of E into E : II.3.7, R.2.3 
of ADXC onto (AD)C : II.5.2, R.4.14 

-1 

of G onto G (G a graph) : II.3.7 
of FE onto [ji(E, F) : II.5.2 
of [ji(B X C, A) onto ;ji(B, 5(C, A» : 11.5.2 

of n XI onto X ct : 11.5.3 
IElct\ 

of IT XI onto ~ X X~ : 11.5.3 
IE!ct,(:s: 
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Canonical mapping of II XI onto II (II XI): II.5.5, R.4.11 
lEI ).EL IEll 

of II XI onto (II XI) X (IT XI) «(Jot, JII) a partition ofI) : II.S.S 
lEI IEl" IEJ, 

of II XI onto X ot X XII X Xy : II.5.5 
IE!ot.lI. r ! 

of II X~ onto (II XI)E: II.S.7, R.4.13 
lEI lEI 

of E onto E/R : II.6.2, R.S.2 
of A/RA. ontof(A) : II.6.6, R.S.S 
of (E/S) /(R/S) onto E/R : II.6.7, R.S.9 
of (E X E')/(R X R') onto (E/R) X (E'/R') : II.6.8, R.S.lO 
into a direct limit of a direct limit obtained by restriction of the 

index set : III. 7 .6 
of Ell into lim Eot : III.7.S, R.6.13 -of an inverse limit into an inverse limit obtained by restriction of the 

index set: 111.7.1 
oflim Eot into Ell : III.7.1, R.6.14 -of E X F onto F X E : R.3.4 
of E X F X G onto (E X F) X G, etc. : R.3.12 
of FA. onto II FA., (where A = U A" and AI n Ax = l' whenever 

lEI lEI 
L :#: x) : RA.1S 

symmetry: R.3.4 
Cantor's theorem : 111.3.6 
Cardinal, dominant: 11I.6.Ex.21 

finite: 11104.1 
inaccessible: III.6.Ex.22 
product: III.3.3 
regular : 1I1.6.Ex.17 
singular: III.6.Ex.17 
strongly inaccessible : III.6.Ex.22 

Cardinal of a set: III.3.1 
Cardinal sum : 111.3.3 
Chain of an element in an ordered set (with respect to a mapping) : 

III.2.Ex.6 
Characteristic function of a subset of a set : 111.5.5 
Characterization, typical: IV.1.4 
Choice, axiom of: R.4.9 
Class, equivalence: 11.6.2, R.S.2 

of objects equivalent to x (with respect to an equivalence relation) : 
II.6.9 

Closed interval: 111.1.13, R.6A 
Closure (mapping of an ordered set into itself) : III.l.Ex.13 
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Coarser equivalence relation: 11.6.7 
preordering : III.lA 
structure: IV.2.2 

Coefficient, binomial: III.5.B 
Cofinal subset: III. 1. 7, R.6.5 
Coincidence (of two functions on a set) : II.3.5, R.2.14 
Coinitial subset: 111.1.7, R.6.5 
Collectivizing relation: II.IA 
Commutativity (of union and intersection) : R.1.14 
Comparable elements: II1.1.12 

structures: IV.2.2 
Compatibility, of a function with two equivalence relations: 11.6.5, R.5.B 

of a relation with an equivalence relation: II .6.5, R.5.7 
Complement of a set: 11.1.7, R.I.7 
Complete lattice: II1.I.Ex.ll 
Complete solution: 1.5.2 
Completely ramified (ordered set) : III.2.Ex.B 
Completion of an ordered set: III.l.Ex.15 
Composition, of mappings: R.2.11 

of sets: R.3.10 
of two correspondences: II.3.3 
of two graphs: II.3.3 

Conjunction of two relations: 1.304 
Connected components of a set with respect to a relation: 1I.6.Ex.1O 
Constant, auxiliary: 1.3.3 

function or mapping: II.3.4, R.2.3 
of a theory: 1.2.1 

Constituents of a set with respect to a relation: 1I.6.Ex.11 
Construction, echelon: IV.I.I 

formative: 1.1.3 
Contained in a set: II.1.2, R.1.l2 
Continuum hypothesis: III.6A 
Continuum, power of: III.6A 
Contradictory axioms: R.B.6 

theory: 1.2.2 
Contravariant signed echelon type: IV.2.Ex.1 
Coordinate (first, second) of an ordered pair: II.2.1 
Coordinate function (first, second) : 11.3.6 

of index ~ : II.5.3 
Coordinate functions, on a product of a family of sets : RA.ll 

on a product of several sets: R.3.12 
on a product of two sets: R.3.1 

Corollary: 1.2.2 
Correspondence, between two sets: II.3.1 

395 



INDEX OF TERMINOLOGY 

Correspondence defined at an object x : 11.3.1 
defined by a relation : 11.3.1 
inverse : 11.3.2 
one-to-one: 11.3.7, R.2.9 

Correspondences, composition of: 11.3.3 
Countable set: 111.6.4, R.7.7 
Countable union, intersection, product: R.7.9 
Covariant signed echelon type: IV.2.Ex.l 
Covering: 11.4.6, R.4.4 

finer: 11.4.6 
of a set: 11.4.6 

Criterion, deductive : 1.2.2 
formative: 1.1.4 
of deduction: 1.3.3 
of substitution : 1.1.2 

Critical ordinal: 1I1.6.Ex.13 

Decent set : 1I1.2.Ex.20 
Decimal system : 111.5.7 
Decomposition, canonical: 11.6.5, R.5.3 
Decreasing faInily of subsets: 111.1.5, R.6.12 
Decreasing mapping: 111.1.5, R.6.12 
Deduced (structure) : IV.1.6 
Deduction, criterion of: 1.3.3 

procedure: IV.1.6 
Deductive criterion : 1.2.2 
Definition: 1.1.1 
Degree of disjointness of a covering: 1I1.6.Ex.25 
Demonstrative text : 1.2.2 
Descending induction: 111.4.3 
Diagonal, of A X A : 11.3.3, R.3.4 

of EI : 11.5.3 
Diagonal mapping, of A into A X A : 11.3.7, R.3.4 

of E into EI : 11.5.3 
Diagrams : R.2.2 
Difference of two integers : III.5.2 
Different from : 1.5.1 
Digit: 111.5.7 
Direct image of a structure: IV.2.6 
Direct lirit, of a direct system of mappings : III. 7.6, R.6.13 

ofa direct system of sets : III.7.5, R.6.13 
Direct system, of mappings: 111.7.6, R.6.13 

of sets : 111.7.5, R.6.13 
of subsets: 111.7.6 
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Directed (left, right) : II1.1.10, R.6.8 
with respect to the relation ~ : III. I. 10 

Disjoint segments : LApp. I 
sets: 11.4.7, R.Ll3 

Disjunction, of cases, method of: 1.3.3 
of two relations: 1.1.3 

Distributive lattice: III. LEx. 16 
Distributivity, of union and intersection of a family of sets: RA.3, 4.8 

of union and intersection of two sets : R.1.14 
Divergent mapping (of an ordinal into itself) : III.6.Ex.23 
Divisible by an integer: III.S.6 
Division, Euclidean: 111.5.6 

of an integer: 111.5.6 
Domain, of a correspondence: 11.3.1 

of a graph: 11.3.1 
Dominant cardinal: 1I1.6.Ex.21 
Double family: 11.3.4 
Double sequence: 111.6.1, R.7.8 
Dual formulae: R.l.lS, RA.7 
Duality rule : R.Ll5, R.4.7 
Dyadic system: 111.5.7 

Echelon, echelon construction, echelon construction scheme: IV.I.1 
signed: IV.2.Ex.1 
type: IV. LEx. I 

Element: 1I.l.1 
fixed (under a mapping or set of mappings) : R.2.3 
generic : R.I.2 
greatest: 111.1.3, R.6.5 
invariant (under a mapping or set of mappings) : R.2.3 
least: 111.1.3, R.6.5 
maximal: III.I.6, R.6.6 
minimal: 111.1.6, R.6.6 

Elements, comparable: III.1.12 
Empty function : 11.3.4 
Empty set: 11.1.7, R.1.8 
Empty word : LApp. I 
Endowed with a structure: IV.1.4 
Endpoints of an interval: III.1.I3, R.6.4 
Equal: I.S.1 
Equalitarian theory: 1.5.1 
Equality, relation of: I.S.1, R.1.6 
Equation: I.S.2 
Equipotent sets: 111.3.1, R.7.1 
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Equivalence, on a set: II.6.1 
Equivalence class: II.6.2, R.5.2 
Equivalence relation: 11.6.1, R.5.2 

associated with a function : 11.6.2 
coarser: 11.6.7 
finer: 11.6.7 
induced: 11.6.6 
on a set: 11.6.1 
product: 11.6.8 
quotient : II.6.7 

Equivalent axioms : R.8A 
Equivalent elements : II.6.1 
Equivalent powers: R.7.2 
Equivalent relations: 1.3.5, R.1.3 
Equivalent species of structures: IV.l.7 
Equivalent theories: 1.2A 
Euclidean division: 111.5.6 
Even integer: 111.5.6 
Existential quantifier: lA.1 
Expansion of an integer to base b : 111.5.7 
Explicit axiom: 1.2.1 
Exponentiation: RA.9 
Extension, canonical : IV.1.2 

inverse (of a mapping to sets of subsets) : R.2.6 
of a correspondence or mapping to sets of subsets: 11.5.1, R.2.4 
of a family of functions to product sets : 11.5.7 
of a mapping: 11.3.5, R.2.13 
of an ordering, order relation, preordering, preorder relation: III. I A, R.6. I 
of several mappings to the product sets: R.3.14 
of two functions to product sets: 11.3.9 

Extent, axiom of: 11.1.3 

Factor, of an integer: 111.5.6 
of a product: 11.2.2 and 11.5.3 

Factors, of a product set: R.3.1, 4.9 
Factorial n : 111.5.8 
Factorization, canonical: R.5.3 

of a mapping: R.2.11 
False relation: 1.2.2 
Family: 1I.3A 

double: 1I.3A 
finite: 111.4.1 
of elements of a set: 1I.3A, R.2.14 
of mutually disjoint sets: IIA.7 
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Family of subsets, decreasing (increasing) : 111.1.5 
of subsets of a set: 11.3.4 

Final character (of a totally ordered set) : 1I1.6.Ex.16 
Final segment of a word: I.App.1 
Final structure: IV.2.5 
Finer covering: 11.4.6 
Finer preordering : 111.1.4 
Finer relation: 11.6.7 
Finer structure: IV.2.2 
Finite cardinal: 11104.1 
Finite character (property of, set of subsets of) : 111.4.5, R.6.11 
Finite family: 11104.1 
Finite sequence, finite sequence of elements of a set : 111.504, R. 7.8 
Finite set: IV.4.1 
First coordinate of an ordered pair: 11.2.1 
First projection of a graph: 11.3.1 
First species: 1.1.3 
First term of a sequence: 111.5.4 
Fixed element: 11.304, R.2.3 
Formative construction: 1.1.3 

criterion: 1.1.4 
Free subset of an ordered set: III.l.Ex.5 
Function: see mapping 

characteristic: 111.5.5 
coordinate: 11.3.6, 11.5.3 
defined on A with values in B : 11.3.4 
not depending on x : 11.3.9 
of several variables: R.3.13 
of two arguments: 11.3.9 

Functional graph: 11.3.4 
Functional relation: 1.5.3, R.2.1 
Functional symbol: 1.5.3 

General solution: 1.5.2 
General term (of a sequence) : R.7.8 
Generalized continuum hypothesis: 111.6.4 
Generic element (of a set) : R.1.2 
Generic structure: IV.1.4 
Graph: 11.3.1 

functional: 11.304 
inverse : 11.3.2 
of a correspondence : 11.3.1 
of a mapping: R.3.5 
of a relation: 11.3.1, R.3.2 
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Graph symmetric: II.3.2 
Graphs, composition of: II.3.3 
Greater: III.1.3, R.6.3 
Greatest element of an ordered set: II1.1.7, R.6.5 
Greatest lower bound: III.l.9, R.6.7 

Half-open interval: III.l.l3, R.6.4 
Hypothesis, auxiliary: 1.3.3 

continuum: III.6.4 
generalized continuum: II1.6.4 
inductive: I11.2.2, III.4.3 

Identification : R.8.5 
Identity: R.l.3 
Identity correspondence: 11.3.3 
Identity mapping: I1.3.4, R.2.3 
Image, direct (of a structure) : IV.2.6 

inverse (of a set under a mapping) : R.2.6 
inverse (of a structure) : IV.2.4 
of a covering: 11.4.6 
of an equivalence relation: I1.6.6 
of a function (by abuse of language) : R.2.4 
of a set: 11.3.2 
ofa set under a correspondence: 11.3.1 
of a set under a function: I1.3.4, R.2.4 
of a set under a graph: 11.3.1 

Implicit axiom: 1.2.1 
Imply: R.l.3 
Inaccessible cardinal: 1I1.6.Ex.22 
Inaccessible initial ordinal: 11I.6.Ex.16 
Inclusion relation: 11.1.2, 111.1.1, R.1.2 
Inconsistent axioms: R.B.6 
Increasing family of subsets: 111.1.5, R.6.12 
Increasing mapping: 111.1.5, R.6.12 
Indecomposable ordinal: 11I.2.Ex.16 
Independent (of other axioms) : 1.2.Ex.l 
Index set of a family: 11.3.4, R.2.2 
Indicial notation : R.2.2 
Induced equivalence relation: R.5.5 
Induced mapping: 11.6.5 
Induced ordering, order relation, preordering, preorder relation: 111.1.4, 

R.6.1 
Induced relation: I1.6.3 
Induced structure: IV.2.4 
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Induction, descending: IIIA.3 
Noetherian: III.6.5 
principle of: 111.2.2, 111.4.3 
restricted: II1.4.3 
starting at k : 111.4.3 
transfinite: III.2.2 

Inductive hypothesis: 111.2.2, 111.4.3 
Inductive set: 111.204, R.6.9 
Infimum: 111.1.9, R.6.7 
Infinite sequence: 111.6.1, R.7.8 
Infinite set: 111.6.1 
Infinity, axiom of: 111.6.1 
Initial ordinal: III.6.Ex.1O 
Initial segment of a word: LApp. 1 
Initial structure: IV.2.3 
Injection: 11.3.7, R.2.8 

canonical: II.3.7 
Injective mapping: 11.3.7, R.2.8 
Integer, natural: IIIA.l 
Integral part of the quotient of two integers: 111.5.6 
Intersecting subsets : R.l.13 
Intersection, countable: R.7.9 

of a family of sets, or subsets: 1104.1, RA.6 
ofa set of sets : 11.4.1 
of several sets : R.l.13 

Intervals (closed, half-open, open, unbounded) : 111.1.13, R.6.4 
Intransitive: 1I.6.Ex.ll 
Intrinsic term: IV.1.6 
Invariant element: R.2.3 
Inverse extension of a mapping: R.2.6 
Inverse, of a (bijective) mapping: 11.3.7, R.2.9 

of a correspondence: II.3.2 
of a graph: II.3.2 

Inverse image: R.2.6 
of a covering: 11.4.6 
of an equivalence relation: 11.6.6 
of a set: 11.3.2 
of a structure: IV.2.4 

Inverse isomorphisms: IV.l.5 
Inverse limit, of a family of mappings: III. 7.2, R.6.14 

ofa family of sets : 111.7.1, R.6.l4 
Inverse system, of mappings: 111.7.2, R.6.14 

of sets: 111.7.1, R.6.14 
of subsets: III. 7.2 
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Involutory permutation: 11.3.7, R.2.9 
Irreducible element (of a lattice) : III.4.Ex.7 
Isomorphic sets: IV.1.5 

structures: IV.1.5, R.8.6 
Isomorphism: IV.I.5, R.8.6 

of ordered sets: 111.1.3 
Iterates of a mapping: 111.6.2, R.2.11 

Larger than: 111.1.3 
Last term of a finite sequence: 111.5.4 
Lattice: 111.1.11, R.6.8 

Boolean: III.I.Ex.17 
complete : I11.l.Ex.ll 
distributive: III.l.Ex.16 
relatively complemented: 11I.I.Ex.17 

Least dement of an ordered set: 111.1.7, R.6.5 
Least upper bound : 111.1.9, R.6.7 

of a family of cardinals : 111.3.2 
Left directed set: 111.1.10, R.6.8 
Left-hand endpoint of an interval: 111.1.13 
Left inverse (of an injection) : 11.3.8 
Legitimation, theorem of: 1.3.3 
Lemma : 1.2.2 

Zorn's : 111.2.4, R.6.1O 
Length, of a finite sequence: 111.5.4 

of a word = I.App.1 
Less than: 111.1.3, R.6.3 
Lexicographical order relation, ordering: 111.2.6 

product: 111.2.6 and 1I1.2.Ex.1O 
Limit, direct: 111.7.5, R.6.13 

inverse: 111.7.1, R.6.14 
Linearly ordered : see totally ordered 
Link: 1.1.1 
Logical components of a relation : I.App.Ex.6 
Logical construction : I.App.Ex.6 
Logical sign : 1.1.1 
Logical theory: 1.3.1 
Logically constructed : I.App.Ex.6 
Logically irreducible : I.App.Ex.6 
Lower bound : 111.1.8, R.6.7 

greatest: 111.1.9, R.6.7 

Mapping: R.2.1 
bijective : 11.3.7, R.2.9 

402 



INDEX OF TERMINOLOGY 

bounded above (bounded below, bounded) : 111.1.8, R.6.7 
compatible with an equivalence relation : 11.6.5 
compatible with two equivalence relations: R.5.8 
composite: 11.3.7, R.2.11 
constant: 11.3.4, R.2.3 
decreasing: 111.1.5, R.6.12 
diagonal: 11.3.7, 11.5.3, R.3.4 
empty: 11.3.4 
identity: 11.3.4, R.2.3 
increasing: 111.1.5, R.6.12 
injective: 11.3.7, R.2.8 
inverse: 11.3.7, R.2.9 
monotone: 111.1.5 
of a set into a set: 11.3.4 
of a set onto a set : 11.3.7 
one-to-one: 11.3.7, R.2.9 
order-preserving: 111.1.5 
order-reversing : 111.1.5 
partial: 11.3.9, R.3.13 
strictly decreasing (strictly increasing, strictly monotone): 111.1.5, 

R.6.l2 
surjective: 11.3.7, R.2.4 
universal: IV.3.1 

Mappings, agreeing on a set: 11.3.5 
canonical : see canonical 

Mathematical theory: 1.1.1, 1.2.1, 1.2.2 
Maximal element: 11.1.6, R.6.7 
Maximum: R.6.5 
Membership, relation of: 11.1.1, R.1.10 
Method, of disjunction of cases: 1.3.3 

of reductio ad absurdum: 1.3.3 
of the auxiliary constant: 1.3.3 
of the auxiliary hypothesis: 1.3.3 

Minimal element: 111.1.6, R.6.6 
Minimum: R.6.5 
Mobile (set of finite subsets) : 1I1.4.Ex.ll 
Model of a theory: 1.2.4 
Monotone mapping: 111.1.5 
Morphism: IV.2.1 
Multiple of an integer: 111.5.6 
Multiple sequence : 111.6.1 
Multivalent theory : R.8.7 
Mutually disjoint (family of sets) : 11.4.7 
Natural integer: 111.4.1 
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Negation of a relation: 1.1.3 
Noetherian induction, principle of: 111.6.5 
Noetherian set: 111.6.5 
nth iterate of a mapping: 111.6.2, R.2.11 
nth term ofa sequence: 111.6.1, R.7.8 
Number of elements of a finite set: 11104.1 
Numerical symbol : 111.5.7 
Numeration, system of: 111.5.7 

Odd integer : 111.5.6 
One-to-one correspondence, mapping: 11.3.7, R.2.9 
Open interval: III.1.l3, R.6.4 
Opposite order relation, preorder relation: 111.1.1, 111.1.2, R.6.1 
Ordered pair: 11.2.1 
Order-preserving mapping : 111.1.5 
Order relation, associated with a preorder relation : 111.1.2 

between x andy, with respect to x andy: 111.1.1 
induced on a set: 111.1.4 
lexicographical : III.2.6 
on a set: 111.1.1, R.6.1 
opposite to an order relation: 111.1.1 

Order-reversing mapping: III.1.5 
Order-structure : R.6.1 

total: 111.1.12 
Order type: 1I1.2.Ex.13 
Ordered set: 111.1.3, R.6.1 

antidirected : 11I.I.Ex.23 
branched: 1I1.1.Ex.24 
completely ramified: III.2.Ex.8 
partially well-ordered: III.2.Ex.4 
ramified : 111.2.Ex.8 
scattered : III.l.Ex.20 
without gaps: I11.1.Ex.19 

Ordering: 111.1.1, R.6.1 
induced: 111.1.4 
lexicographical: 111.2.6 
product: 111.1.4 
total: 111.1.12 

Ordinal : III.2.Ex.14 
critical: 1I1.6.Ex.13 
functional symbol : 1I1.2.Ex.17 
inaccessible initial: 111.6.Ex.16 
indecomposable: III.2.Ex.16 

Ordinal, initial: III.6.Ex.10 
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Ordinal product (of order-types) : 1I1.2.Ex.13 
regular: 11I.6.Ex.16 
singular: 11I.6.Ex.16 

Ordinal sum, of a family of non-empty ordered sets indexed by an 
ordered set: 11I.1.Ex.3 

(of order-types) : 1I1.2.Ex.13 

Pair, ordered: 11.2.1 
Pairwise disjoint (family of subsets) : R.4.4 
Parameter, parametric set, parametric representation: 11.3.7, R.2.14 
Partial mapping: 11.3.9, R.3.13 
Partial product: 11.5.4 
Partially well-ordered (ordered set) : 11I.2.Ex.1 
Partition of a set: 11.4.7, R.4.4 
Passage to quotient sets: 11.6.3, 11.6.5, R.5.7, R5.8 
Perfecdy balanced assembly: I.App.4 
Permutation: 11.3.7, R.2.9 
Poorer (species of structures) : IV.1.6 
Power, of a set: 111.3.1, R.7.2 

of the continuum : 111.6.4 
Powers, equivalent : R. 7.2 

sum of: R.7.5 
Predecessor (of an ordinal) : III.2.Ex.14 
Preorder relation: 111.1.2, R.6.1 

on a set: 111.1.2 
opposite to a preorder relation: 111.1.2 

Preordered set : R.6.1 
Preordering : 111.1.2 

(coarser, finer) : 111.1.4 
Principal base sets: IV.1.3, 1.4 
Principle of induction: 111.4.3 

of Noetherian induction: 111.6.5 
of transfinite induction: 111.2.2 

Procedure of deduction of structures: IV.1.6 
Product cardinal: 111.3.3 
Product, lexicographic: 111.2.6 
Product of a family of mappings : 11.5.7 

of a family of sets: 11.5.3, R.4.9 
of cardinals: 111.3.3 
of order relations, orderings, preorder relations, preorderings : 111.1.4 
of ordered sets, preordered sets: 111.1.4 
of several sets: R.3.12 
of two coverings: 11.4.6 
of two equivalence relations: 11.6.8, R.5.IO 
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Product of two sets : II.2.2, R.S.I 
Product ordinal: III.2.Ex.IS 
Product structure, product of structures: IV.2.4 
Product partial : II.5.4 
Projection, (first, second) of a graph: II.S.I 

(first, second) of an ordered pair: II.2.1 
onto a factor: II.5.3 
onto a partial product : 11.5.4 

Projections: R.3.1, R.3.12, R.4.11 
Proof: 1.2.2 
Proper segment : I.App.1 
Property of finite character: 111.4.5 
Proposition: 1.2.2 
Pseudo-ordinal: 1I1.2.Ex.20 

Quantified theory: 1.4.2 
Quantifier, existential: 1.4.1 

typical: 1.4.4 
universal: 1.4.1 

Quotient equivalence relation: 11.6.7, R.5.9 
Quotient of a preorder relation or preordered set by an equivalence 

relation : III.I.Ex.2 
Quotient of two integers: 111.5.6 
Quotient set : 11.6.2, R.5.2 
Quotient structure: IV.2.6 

Ramified (ordered set) : III.2.Ex.8 
Range, of a correspondence : II.S.I 

of a graph: 11.3.1 
Realization, of an echelon type: IV.1.Ex.! 

of a signed echelon type : IV.2.Ex.1 
Reductio ad absurdum, method of: 1.3.3 
Refinement of a covering: 11.4.6 
Reflexive relation on a set: II.6.1, R.5.1 
Regular cardinal : II I.6. Ex. I 7 
Regular ordinal: IV.6.Ex.16 
Relation: 1.1.3 

between an element of A and an element of B : 11.3.1 
collectivizing: 11.1.4 
compatible with an equivalence relation: 11.6.3, R.5.7 
compatible with two equivalence relations: II.6.8 
equivalence : 11.6.1, R.5.2 
false: 1.2.2 
functional: 1.5.3, R.2.l 
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Relation, having a graph : 11.3.1 
induced by an equivalence relation on passing to the quotient : 11.6.3 
of equality: 1.5.1, R.1.6 
of inclusion : 11.1.2, 111.1.1, R.1.l2 
of membership : 11.1.1, R.1.l0 
order : 111.1.1, R.6.l 
preorder: 111.1.2, R.6.l 
reflexive: 11.6.1, R.5.1 
single-valued: 1.5.3 
symmetric: 11.6.1, R.3.4 
total order: 11.1.12 
transitive: 11.6.1, R.5.l 
transportable: IV.1.3 
true: 1.2.2 
well-ordering: 111.2.1 
~ (resp. ~, c:, :;)) : 111.1.3 

Relations, equivalent : 1.3.5, R.l.3 
Relational sign: 1.1.3 
Relative complement (of an element in a lattice) : IIl.l.Ex.17 
Relatively complemented lattice : 1I1.1.Ex.17 
Remainder (on division of a by b) : 111.5.6 
Representation, parametric: 11.3.7, R.2.14 
Representative, of an equivalence class: 11.6.2 
Representatives, system of: 11.6.2 
Restricted induction: 111.4.3 
Restriction, of a direct system : III. 7.6 

of a function: 11.3.5, R.2.13 
of an inverse system: 111.7.1 

Retraction of an injection: 11.3.8 
Richer structure : R.8.3 
Right directed set: III.1.10, R.6.8 
Right-hand endpoint of an interval: 111.1.13 
Right inverse (of a surjection) : 11.3.8 

Saturated set: R.5.6 
Saturation of a set with respect to an equivalence relation : R.5.6 
Scale of sets : R.8.1 
Scattered (ordered set) : III.1.Ex.20 
Scheme: 1.2.1 

echelon construction: IV.1.1 
of selection and union: 11.1.6 

Second coordinate of an ordered pair : 11.2.1 
projection : 11.3.1 
species : 1.1.3 
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Section, of a correspondence: 11.3.1 
of a graph: 11.3.1 
of a set (with respect to an equivalence relation) : 11.6.2 
of a subset of a product : R.3.7 
of a surjection: 11.3.8 

Segment, final: LApp. 1 
initial: LApp.l 
of a word : LApp. I 
of an assembly: I.AppA 
proper: LApp. 1 
with endpoint x : 111.2.1 

Segments, disjoint: I.App.l 
Selection and union, scheme of: 11.1.6 
Separation (of the elements of E by ([-mappings) : IV.3.3 
Sequence: R.7.8 

double: R.7.8 
finite: 111.504, R. 7.8 
infinite: 111.6.1, R.7.8 
obtained by ranging a countable family in an order defined by a map-

ping: 111.6.1 
of elements of a set : 111.6.1 
significant : LApp.2 
stationary: 111.6.5 
triple, multiple : 111.6.1 

Sequences differing only in the order of their terms: 111.6.1, R.7.8 
Set: 1I.l.l 

base: IV.1.3, 1.4 
bounded, bounded above, bounded below: 111.1.8, R.6.7 
consisting of a single element : 11.1.5 
countable: 111.6.4, R.7.7 
decent: 1I1.2.Ex.20 
directed: 11I.l.lO, R.6.8 
empty: 11.1.7, R.1.8 
endowed with a structure: IV.1.4 
equipotent to another set: R.7.l 
finite: 11104.1 
index (of a family) : 11.3.4 
inductive: 111.2.4, R.6.9 
infinite: 111.6.1 
left directed: 111.1.10, R.6.8 
Noetherian: 111.6.5 
of all x e A such that P: 11.1.6 
of all x such that R (R a relation collectivizing in x) : II.lA 
of cardinals ~ a: 111.3.2 
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Set of classes of equivalent objects: II.5.9 
of elements of a family: II.3.4, R.2.14 
of mappings of E into F : II.5.2, R.2.2 
of n elements (n an integer) : II1.4.1 
of objects of the form T for x e A : II .1.6 
of parameters of parametric representation: 11.3.7 
of a-morphisms : IV.2.1 
of subsets of a set: II.5.1, R.1.10 
of subsets, of finite character: III.4.5 
ordered: III.I.3, R.6.1 
preordered: III.1.3, R.6.1 
product: R.3.1, R.3.12, RA.9 
quotient: 11.6.2, R.5.2 
representative (of a relation) : II.3.1 
right directed: 111.1.10, R.6.8 
totally ordered: III.1.12, R.6A 
transitive: III.2.Ex.20 
universal: IV.3.1 
well-ordered: 111.2.1, R.6.5 
whose only element is x : 11.1.5 

Sets, composition of: R.3.IO 
disjoint: 11.4.7 
equipotent: 111.3.1 
isomorphic: IV.1.5 
theory of: 11.1.1 

~-admissible : IV.3.2 
a-morphism: IV.2.1 
Sign : 1.1.1, LApp. I 

logical : 1.1.1 
rational: 1.1.3 
specific: 1.1.1 
substantific : 1.1.3 

Signed canonical extension: IV.2.Ex.l 
Signed echelon type: IV.2.Ex.l 
Significant sequence, word: I.App.2 
Single-valued relation: 1.5.3 
Singular cardinal: 11I.6.Ex.I7 
Singular ordinal: 1I1.6.Ex.I6 
Smaller than: IV.1.3 
Solution (of an equation) : 1.2.2 

complete (or general) : 1.5.2 
of a universal mapping problem: IV.3.1 

Source of a correspondence: II.3.1 
Species, equivalent: IV.I.7 
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Species of algebraic structures: IV.1.4 
of order structures: IV.1.4 
of structures: IV.1.4, R.8.2 
of topological structures: IV.1.4 
poorer (richer) : IV.1.6 

Specific sign: 1.1.1 
Stable subset : R.2.5 
Stationary sequence : III.6.5 
Strict upper bound: III.2.4 
Strictly coarser (finer) structure: IV.2.2 
Strictly decreasing (increasing) : III.1.5, R 6.12 
Strictly greater (less) : III.1.3, R.6.3, R.7.3 
Stronger theory: 1.2.4 
Strongly inaccessible cardinal: III.6.Ex.22 
Structure, coarser: IV.2.2 

deduced: IV.1.6 
final: IV.2.5 
finer : IV.2.2 
generic : IV.1.4 
induced: IV.2.4 
initial : IV.2.3 
ofa set: IV.1.4, R.8.2 
of species ~ : IV.1.4 
order : R.6.1 
product : IV.2.4 
quotient: IV.2.6 
richer : R.8.2 
strictly coarser (finer) : IV.2.2 
subordinate: IV.1.6 
transport of: R.8.5 
underlying: IV.1.6 

Structures, comparable: IV.2.2 
isomorphic: IV.1.5, R.8.6 

Subfamily: 11.3.5, R.2.14 
Sublattice : III.4.Ex.9 
Subordinate structure: IV.I.6 
Subsequence (of a sequence) : 111.6.1, R.8.7 
Subset, cofinal: 111.1.7, R.6.5 

coinitial: 111.1.7, R.6.5 
consisting of a alone: R.1.9 
empty: R.1.8 
of a set: 11.2.1, R.1.7 
saturated (with respect to an equivalence relation) : 11.6.4 
symmetric: R.3,4 
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Subsets, disjoint: R.1.13 
set of: 11.5.1, R.1.10 
stable: R.2.5 

Substantific sign: 1.1.3 
Substitution, criterion of: 1.1.2 
Sum, cardinal: 111.3.3 

of a family of sets: 11.4.8 
of cardinals: 111.3.3 
of powers : R.7.5 
of sets: R.4.5 
ordinal : 1I1.2.Ex.13 

Supremum: 111.1.9, R.6.7 
Surjection: 11.3.7, R.2.4 
Surjective mapping: 11.3.7, R.2.4 
Symbol, functional : 1.5.3 

numerical : 111.5.7 
Symmetric graph: 11.2.3 

relation or subset: 11.6.1, R.3.4 
Symmetry, canonical: R.3.4 
System, decimal : 111.5.7 

direct : III. 7.5, R.6.13 
dyadic: 111.5.7 
inverse: 111.7.1, R.6.14 

System of numeration: 111.5.7 
System of representatives: 11.6.2 

Target of a correspondence: 11.3.1 
Term: 1.1.3 

general : R. 7.8 
(first, kth, last) of a finite sequence: 111.5.4 
intrinsic: IV.1.6 
nth: R.7.8 
satisfying a relation : 1.2.2 
which can be put in the form T: 1.5.2 

Text, demonstrative: 1.2.2 
Theorem : 1.2.2 

of Cantor: 111.3.6 
of legitimation: 1.3.3 
of Zermelo : 111.2.3, R.6.5 

Theories, equivalent : 1.2.4 
Theory: 1.1.1, 1.2.1, 1.2.2 

contradictory: 1.2.2 
equalitarian: 1.5.1 
logical: 1.3.1 
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Theory multivalent: R.8.7 
of a species of structures: IV.1.4 
of sets: 11.1.1 
of structures of a given species: R.B.2 
quantified: 1.4.2 
stronger: 1.204 
univalent : R.B.7 

Total order relation, total ordering: 111.1.12 
Totally ordered set: 111.1.12, R.6A 
Trace of a family of sets: 1104.5 

of a subset, or set of subsets : R.l.16 
Transform of an element by a function: 11.304, R.2.4 
Transitive relation: 11.6.1, R.5.1 
Transitive set: 1I1.2.Ex.20 
Transitivity criteria: IV.2.3, 2.5 
Transport of structure : R.8.5 
Transportable relation: IV.l.3 
Transporting a structure: IV.I.5 
Transversal: 11.6.2 
Triple: II.2.2 
Triple sequence : 111.6.1 
True relation: 1.2.2 
Typical characterization of a species of structures: IV.l.4 
Typical quantifier: 104.4 
Typification: IV.1.3 

Unbounded interval: II1.1.l3, R.6A 
Underlying structure: IV.1.6 
Union, countable: R.7.9 

of a family of sets: RA.2 
of a set of sets : IIA.l 
of several sets : R.I.I3 

Univalent species of structures: IV. 1.5 
Univalent theory: R.B.7 
Universal mapping: IV.3.1 
Universal problem: IV.3.1 
Universal quantifier: 1.4.1 
Universal set: IV.3.1 
Upper bound: 111.1.8, R.6.7 

least: III.1.9, R.6.7 
strict: 111.2.4 

Value, of a function: II.3A 
of a function at an element: R.2.1 
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Value, of a variable : R.l.2 
taken by a correspondence: II.3.1 

Variable : R.1.2 
Variance of an assembly: IV.2.Ex.1 

Weak compatibility (of an equivalence relation with a preorder relation) : 
III.l.Ex.2 

Weight of a sign: 1.1.3, LApp. 1 
Well-ordered set: III.2.l, R.6.5 
Well-ordering, well-ordering relation: 111.2.1 
Without gaps (ordered set) : III. 1. Ex. 19 
Word: LApp.l 

balanced: I.App.3 
empty : LApp.1 
significant: I.App.2 

Zermelo's axiom (= axiom of choice) : RA.9 
Zermelo's theorem : 111.2.3, R.6.5 
Zorn's lemma: 111.2.4, R.6.10 
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AXIOMS AND SCHEMES OF THE THEORY OF SETS 

S1. If A is a relation, (A or A) ==> A is an axiom. 
S2. If A and B are relations, the relation A ==> (A or B) is an axiom. 
S3. If A and Bare relations, the relation (A or B) -=+- (Bor A) is an axiom. 
S4. If A, B, and C are relations, the relation 

(A => B) ==> «C or A) ==> (C or B» 

is an axiom. 
S5. If R is a relation, T a term, and x a letter, the relation (TI x) R >- (3x)R 

is an axiom. 
S6. Let x be a letter, T and U terms, and R I x! a relation. Then the 

relation 
(T= U) ==> (R! T! ~ R! Un 

is an axiom. 
S7. Let Rand S be relations and x a letter. Then the relation 

«Vx)(R ~ S» ==> (orx(R) = orx(S» 

is an axiom. 
S8. Let R be a relation, x and y distinct letters, X and Y letters distinct 

from X andy which do not appear in R. Then the relation 
(Vy)(3X)(Vx)(R=> (xe X» ==> (VY) Collx «3y)«ye Y) and R» 

is an axiom. 
AI. (Vx)(Vy)«xcy and yc x) ==> (x =y». 
A2. (Vx)(Vy) Collz (z = x or Z = y). 
A3. (Vx) (Vx')(Vy)(Vy')«(x, y) = (x', y'» ~ (x = x' and y = y'». 
A4. (VX) Colly (Y eX). 
A5. There exists an infinite set. 
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