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xvii

GENERAL PREFACE

This two-volume text-book on Pure Mathematics has been designed
to cover completely the requirements of the revised regulations for the
B.Sc. General Degree (Part I) of the University of London. It presents
a serious treatment of the subject, written to fill a gap which has long
been evident at this level. The author believes that there is no other
book addressed primarily to the General Degree student which covers
the ground with the same self-contained completeness and thorough-
ness, while also indicating the way to further progress. On the
principle that ‘ the correct approach to any examinationisfrom above’,
the book has been constructed so that those students who do not
intend to take the subject Mathematics in Part IT of their degree
course will find included some useful matter a little beyond the
prescribed syllabus (which throughout has been interpreted as an
examination schedule rather than a teaching programme); while
those who continue with Mathematics will have had sound prepara-
tion. As it is the author’s experience that many students who begin
a degree course have received hasty and inadequate training, a com-
plete knowledge of previous work has not been assumed.

Although written for the purpose just mentioned, this book will
meet the needs of those taking any course of first-year degree work in
which Pure Mathematics is studied, whether at University or Tech-
nical College. For example, most of the Pure Mathematics required
for a one-year ancillary subject to the London Special Degrees in
Physics, Chemistry, etc. is included, and also that for the first of the
two years’ work ancillary to Special Statistics. The relevant matter
for Part I (and some of Part II) of the B.Sc. Engineering Degree is
covered. The book provides an introduction to the first year of an
Honours Degree in Mathematics at most British universities, and
would serve as a basis for the work of the mathematical specialist in
the Grammar School. Much of the material is suitable for pupils
preparing for scholarships in Natural Sciences.

By a natural division the subject-matter falls conveniently into two
volumes which, despite occasional cross-references, can be used
independently as separate text-books on Caleulus (Vol. I) and on
Algebra, Trigonometry and Coordinate Geometry (Vol. IT). According
to the plan of study chosen, the contents may be dealt with in turn,

b-2



xviii GENERAL PREFACE

or else split up into two or even three courses of reading in Calculus,
Algebra-Trigonometry and Geometry taken concurrently. Throughout
it has been borne in mind that many students necessarily work without
much direct supervision, and it is hoped that those of even moderate
ability will be able to use this book alone.

A representative selection of worked examples, with explanatory
remarks, has been included as an essential part of the text, together
with many sets of ‘exercises for the reader’ spread throughout each
chapter and carefully graded from easy applications of the bookwork
to “starred’ problems (often with hints for solution) slightly above the
ultimate standard required. In a normal use of the book there will
not be time or need to work through every ‘ordinary’ problem in
each set; but some teachers welcome a wide selection. To each chapter
is appended a Miscellaneous Exercise, both backward- and forward-
looking in scope, for revision purposes. Answers are provided at the
end of each volume. It should be clear that, although practice in
solving problems is an important part of the student’s training, in no
sense is this a cram-book giving drill in examination tricks. However,
those who are pressed for time (as so many part-time and evening
students in the Technical Colleges unfortunately are) may have to
postpone the sections in small print and all ‘starred’ matter for a
later reading.

Most of the problems of ‘examination type’ have been taken from
Final Degree papers set by the University of London, and I am grate-
ful to the Senate for permission to use these questions. Others have
been collected over a number of years from a variety of unrecorded
(and hence unacknowledged) sources, while a few are home-made.

It is too optimistic to expect that a book of this size will be com-
pletely free from typographical errors, or the Answers from mathe-
matical ones, despite numerous proof readings. I shall be grateful if
readers will bring to my notice any such corrections or other sugges-
tions for possible improvements.

Finally, I thank the staff of the Cambridge University Press for
the way in which they have met my requirements, and for the ex-

cellence of their printing work.
F. GERRISH
DEPARTMENT OF PHYSICS AND MATHEMATICS
THE TECHNICAL COLLEGE
KINGSTON-UPON-THAMES



xix

PREFACE TO VOLUME II

Although for convenience of reference the pagination and section
numbering are continued from Volume I, this does not imply depend-
ence of the present volume on the first. Apart from occasional back-
ward references, Volume 11 is a self-contained text-book on Algebra,
Trigonometry and Coordinate Geometry of two and three dimensions,
in which calculus methods are illustrated when instructive.

Beginning with a chapter which leads from revision of previous
algebraic work to an introduction to formal algebra, an early start
on determinants can be made in the next, thereby assembling all the
equipment necessary for the subsequent geometry (which throughout
isreal and euclidean). Certain widely-used general theorems on systems
of linear equations have received more explicit statement and
emphasis than is customary at this level.

In Chapter 12 the passage from finite to infinite series lays the
foundations of ‘ convergence’, a subtle subject so often misunderstood
and mishandled by beginners. It is hoped that the many somewhat
negative cautionary remarks will stimulate rather than shake the
reader’s confidence.

Chapter 13 sets complex numbers on a logical footing by first briefly
retracing the historical steps in their development from ‘mystery’
through ‘diagram’ to the concept of ‘ordered number-pair’. The
subject is often approached from only one of these standpoints, but
the present inclusive treatment combines the advantages of all. The
opportunity is also taken of setting up a general theory of factorisation
and polynomial equations. Despite some repetition, it is felt that this
can be appreciated only after the provisional nature of the con-
clusions in 10.13, 10.3 has been realised. The following chapter, con-
cerned with trigonometrical applications of the preceding algebraic
theories, also introduces some genuine functions of a complex
variable.

An anticipated criticism of the book is that complex numbers and
the complex exponential have been introduced too late, with a con-
sequent loss of freedom of method in the Calculus section in topics
such as the solution of linear differential equations. This delay was
intentional, and could almost be claimed as a special feature; for the
author believes that (with the exception of confessedly symbolic
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methods in which ‘anything is fair’) only confusion of principles can
arise by incautiously mixing the real and the complex, especially in
calculus techniques.

Since many students come to the course regarding Coordinate
Geometry as merely a mixture of ‘graphs’, Pure Geometry, and easy
Calculus, an attempt in Chapter 15 has been made to review the
‘known’ parts of the subject more as an illustrated account of linear
and (real) quadratic algebra. Use is made of oblique axes when
appropriate.

In the next three chapters, which contain a fairly detailed treat-
ment of the parabola, ellipse, and hyperbola by means of their
‘standard’ equations, the emphasis is on parametric methods and
the consequent elegant applications of the (real) theory of equations
given in Chapter 10. Joachimsthal’s ratio equation and the distance
quadratic are also used incidentally. Owing to the algebraic analogy
between ellipse and hyperbola, the discussion of the latter is centred
mainly on properties of the asymptotes.

The unifying influence of a systematic treatment of ‘the general
conic’ by Joachimsthal’s method is too valuable to omit. This and
the powerful ‘s = ks’ principle’ are the themes of Chapter 19.

A short chapter on polar equations, first revising the straight line
and circle in this form, develops in more detail their application to the
conic, and thus gives the geometrical complement of the calculus
methods illustrated for various ‘polar’ curves in Volume I.

In principle, Chapter 21 returns to the fundamentals of cartesian
coordinate geometry, this time for three dimensions. The treatment,
designed to emphasise whenever possible the analogies between the
two- and three-dimensional cases, while also pointing out important
contrasts, revises the methods of linear algebraic geometry, and may
well be left until fairly late in the course. Finally the sphere is briefly
treated, first geometrically by methods resembling those already used
for the circle in Chapter 15, and then trigonometrically.
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10

ALGEBRA OF POLYNOMIALS

10.1 The remainder theorem and some consequences
10.11 Long division; identities
The reader will be familiar with the process for dividing one poly-

nomial by another of lower degree; we use it here to lead up to an
important algebraic theorem.

Example -
Find the quotient and remainder obtained by dividing ax®*+bx+c by x—k.
z—k )ax?+bx +e ( ax+(b+ak)
ax? — akx
(b+ak)x+c
(b+ak)z— k(b +ak)

ak?+bk+c
Observe that the remainder is the original expression with z replaced by k.

If only the remainder is required in the above example, we can
proceed as follows. Let the quotient be @(z) (a function of ) and the
remainder be R (a constant). Then we have

ax?+bx+c = (x—k)Q(x) + R. (i)
If we now put 2 = k in this, we obtain
ak®+bk+c=R (ii)
since the term involving Q(k) is zero.

Remarks

() It may be objected that the division process has established
relation (i) for all values of = except k, so that the substitution r = &
isnot justified. The validity of (i) for all x can be shown by the following
method, which also identifies B. We have

(ax? + bz +c) — (ak?® + bk +c) = a(x®—k?) +b(x — k),

26 ) GPMII



364 ALGEBRA OF POLYNOMIALS [10.12

so that the right-hand side has the factor x— . If the other factor is
denoted by @(x), then

(ax?+ bz +c) — (ak?+ bk +c) = (x — k) Q(x),

which is equivalent to (i) with R given by (ii).

(8) We may regard the ‘long division’ as a process for constructing
from the given polynomials z — & and ax? + bx + ¢ another polynomial
Q(x) and a constant R which satisfy (i) for all values of x. (A similar
principle, justified in 10.13, ex. (v), holds for any pair of polynomials,
although when the divisor is of degree » > 1, R will be a polynomial
of degree n—1 or less.)

The relation (i), which holds for all values of z, is called an identity
in 2 (in contrast to an equation in z, which holds only for certain special
values of z). The sign = between two polynomialsin z is used to denote
‘equal for all values of z’, and is read ‘identically equal to’. Thus
(i) would be written

ax?+bx+c=(x—k)Q(x)+R. i)’
Theresult of substituting z = % would still be written with the ordinary
= sign because (ii) is a relation between special numbers only. How-
ever, we may continue to use the sign = even when the expressions

are in fact identically equal, unless we specially wish to emphasise
their identity.

10.12 The remainder theorem

We now obtain the remainder when the general polynomial

px) = DPo™ +p1xn—1 +.oo F P+ P,
is divided by z— k. We have
p(@) —p(k) = po(™ — k™) +py (@ — k") + ... + pp (@ — k). (ii])

By direct multiplication we can verify that, for any positive integer

m and any x and k,
am—km = (x—k) (@™ L+ am 2+ am 8k + .+ k).

(When z + k, this is equivalent to the sum-formula for the a.p. in

the second bracket.) Thus z—k is a factor of the right-hand side of
(iii). Denoting the other factor{ by Q(x), we have

p@)—p(k) = (x—k) Q). (iv)
+ Which will be a polynomial in « of degree n—1if n > 1.
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Hence the remainder when the polynomial p(x) is divided by x—k is
the number p(k) obtained by substituting k for x in this polynomial.

Also from (iv) we have

THE FACTOR CASE. If p(k) = 0, the polynomial p(x) has x—k for a
Sactor. Conversely, if x—Fk is a factor, then p(k) = 0.

Examples
(i) Factorise 2a® — 1122+ 172 —6.
Calling the polynomial p(x), we seek numbers % for which p(k) = 0. Only

those numbers k& which are factors of the last term 6 need be tried, for any
other number could not be the constant term in a factor of the polynomial.t

p(ly= 2—-11417—-6 %0, .. 2—1is not a factor.
(2) =16—44+34—6 =0, ;. x—2is a factor.

To find the other factor, divide the polynomial by z—2; the quotient is
222~ T2+ 3, 80
piz) = (—2) (222~ T2 +3),
= (x—2)(x—3)(22z—1)
on completing the factorisation by inspection.
(ii) Find the values of a and b if 6x®+ax®+bxr—2 is divisible (i.e. exactly
divisible, without remainder) by 222+ —1.
Since 22?+x—~1 = (z+1)(2x—1), both z+1 and 2x—1 are factors of the
given polynomial p(x). Hence p(—1) = 0 and p(}) = 0, which give

0=a—-b-8, 0=}a+4b-35,
andsoa="17,b=-1.

(iii) Find the remainder when p(z) is divided by (z—a) (m;b), a % b, where -
p(x) has degree greater than 2.

Since the divisor is quadratic in z, the remainder will in general be linear in #,
say Az + B. If Q(x) is the quotient, then (cf. 10.11, Remark (5))

p(x) = (x—a) (2 —b) Q(x) + Az + B.
Put z = a: p(a) = Aa+ B.
Put x = b: p(b) = Ab+ B.
Solving these equations for A and B, we find

4 = Pl@)—p(b)

B= ap(b) — bp(a)
a—-b

a—b

’ ’

so the remainder is
{p(a) —p(b)} = +ap(b) — bp(a)
a—b :

1 A general result of this kind is proved in 13.62(1).

26-2
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10.13 Factorisation of a polynomial; ‘equating coefficients’
We continue to write
P(®) = Po™ +P1 2"+ ... + P
where p, + 0.
TrEOREM I. If p(x) is zero when x has any one of the n distinct values
Ay, Ay, ..., 0,, then
(@) = po(x —ay) (T—ay) ... (x—ay). )

Proof. Since p(a,) = 0 by hypothesis, therefore x—a, is a factor
of p(x). Let the quotient when p(z) is divided by x—a, be @,_,(x);
it will be a polynomial in = of degree n— 1 whose first term is pyz-1.

Th
o P(@) = (2—0,) Qu1(®).
Since p(a,) = 0 by hypothesis, we have
0 = (ap—ay) @n_1(a2).

As a, # a, (also by hypothesis), hence @, ;(a,) = 0 and therefore
x—a, is a factor of @, ,(x). The other factor @, ,(x), obtained by
division, is a polynomial whose first term is py2"—2; thus

Qna(®) = (T —0ay) @po(®),
and so P(@) = (x—ay) (- ag) @y o).

We can continue step by step to remove the factors z—a, ...,
until we reach x —a,,, after which the other factor will be @y(x) whose
only term is pyz® = p,. The result (v) follows.

CoroLLARY I (a). A polynomial of degree n in x cannot be zero for
more than n distinct values of x.

Proof. Expression (v) cannot be zero when z takes any value
different from a,,a,, ...,a,; for no factor would then be zero, and
Po + 0 by hypothesis.

TaeEorEM II. If pya®+p,&®1+...+p, is zero for more than n
distinet values of z, then py = p; = ... = p, = 0, and so p(x) = 0.

Proof. Either all of pgy, ps, ..., 0, are zero,

or there is a first p which is not zero, say p; (k¥ < n).
In this case the expression reduces to

PR F 4 Py 4+, (D F 0),

which is a polynomial of degree n—k in 2. Hence by Corollary I (@),
it cannot be zero for more than n—k values of . However, we are
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given that it is zero for more than n values of xz. Our second alternative
thus leads to a contradiction, and so only the first alternative is
possible.

Finally, when p, = p; = ... = p,, = 0, the given polynomial is zero
for all z, i.e. p(z) = 0.

CoroLrARY II (a). If pya®+pa®t+... +p, = 0, then

Po=P1=...=pPp=0.

For since the polynomial is identically zero, it is zero for more than
n distinet values of .
CororrAry 1I (). If

Do+ P12+ Py = Qo+ 2T g,

Jor more than n distinct values of x, or for all values of x, then

Po=%: pl =QI’ ceey pn=qn‘
For we have

(Po—0) 2"+ (P1—q) 2"+ ... + (D —¢y) = 0,

and the results follow from Theorem II or Corollary IT (a).

Corollary II(b) is the basis of the principlet of ‘equating coeffi-
cients’ in an identity between polynomials. It asserts that if two
polynomials of degree n are equal for all values of z (i.e. if the poly-
nomials have identical values for corresponding values of z), then they
agree term by term (i.e. they are tdentical in form). Without this
result it would be conceivable that two quite distinct polynomials
might take the same values for the same z, as x ranges over the real
numbers. '

CoroLraRrY II(c). If

Do+ P21+ D, = @A™+ ¢ 2™+ g,

(where m > n) for more than m distinct values of x, or for all values of z,

then
0= dos --» 0= In-n-10 Po=%m-n> > Pn=949n-

In particular, the polynomial on the right has degree n.
The proof is like that of Corollary ITI (b).

Examples
(i) Find constants a, b, ¢, d for which
n® = an(n+ 1) (n+2)+bn(n+1)+cen+d.
t Already illustrated in 4.62.
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The right-hand side '
= a(n®+3n2+2n)+b(n+n)+en+d
=and+(3a+b)n?+(2a+b+c)n+d.

This is identically equal to »® if and only if
a=1, 8a+b=0, 2a+b+c=0, d=0,
i.e. a=1, b=-3, ¢=1, d=0.

(ii) Show that x? cannot be expressed in the form
a(z+1) (x+2) +b(x+3) (x+4).
The expression = a(2®+ 3x+2)+b(x?+ Tx + 12)
= (a+b) 22+ (3a+ Tb)x + (2a + 12b),
which is identical with 22 if and only if
a+b=1 3a+7 =0, 2a+12b=0.

The last two equations give @ = 0, b = 0, and these values fail to satisfy the
first. The three conditions cannot be satisfied, and so 22 cannot be written in
the form stated.

(iii) If a, b, c are all distinct, prove that
(x=b)(x—¢c) (z—c)(z—a) (xz—a)(zx—Db)
(@=b)(a—c)" (b—0) (b—a) " (c—a)(c—b)
and deduce relations between a, b, ¢ by equating coefficients of the various powers
o a’hen « = a, the left-hand side reduces to 1. Hence the polynomial
(x—=b)(x—c) (x—c)(x—a) (x—a)(z—D>) _
(a=b)(a—c) (b—c)(b—a) (c—a)(c—D)
is zero when x = a. Similarly, it is zero when «# = b and when x = ¢. Thus this
quadratic in x vanishes for three distinct values of z. Hence it vanishes for all

values of z.
By equating coefficients of 22, z and the constant terms, we obtain

=1,

1 1 1
@@=t a—0) B=0)b=a) (e=a)c=b)
b+ec c+a a+bd _
(@=b)(a—0) -0 (b-a)  (o—a)(e=b)

be ca ab

@t@—o B-0t-a a5
(iv) If ax®+ba®+cx+d contains (x+ 1)% as a factor, obtain relations between
a, b, c d.
If (x + 1)? is a factor, the other factor must be linear and of the form a(z + k).
Hence ar®+baxt+cx+d = a(z+ 1) (x+k)
= axd+alk+2) 22+ a(2k+ 1) z + ak,
s b=ak+2), c¢c=a(2k+1), d=ak.
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By eliminating & from the first and third, and from the second and third,
b=d+2a, c=2d+a.

*(v) Given two polynomials f(x), g(x) of degrees m, n (m > n), prove that there

18 @ unigue pair of polynomials Q(x), R(x) such that B(x) has degree less than n and

f(z) = g(z) @(z) + E(=). (@)

The process of dividing f(z) by g(x) gives a quotient @(x) of degree m —n and

a remainder R(x) of degree less than n such that (a) holds for all values of z
except possibly those for which g(x) = 0. Thus the polynomial

J(z) —{g(z) Q(z) + B(z)},
whose degree certainly does not exceed m, is zero for more than m values of z.
Hence by Theorem II it is ¢dentically zero, which proves (a). Compare 10.11,
Remark (8).
It is conceivable that, had we proceeded in a different way, we might have
obtained another pair of polynomials g(x), (x) such that

(@) = g(z) g(x) +(w), (%)
where 7(z) has degree less than n. Subtraction of (b) from (a) gives
B(z) —7r(z) = g(=) {g(z) - Q(=)}. (e)

The left side of (c) has degree <n, while (unless g(x) —@(x) = 0) the right
has degree > n (the degree of g(x)); and by Corollary II (c) this is impossible.
Hence g(x) — Q(z) = 0, and therefore by (c), R(x)—r(z) = 0. This proves the
uniqueness.

Exercise 10(a)

Factorise

1 2284 322—1. 2 62®—22—19x—6. 3 a4 228 a4,

4 Solve z®*—4x?+x+6 = 0. '

5 Find the values of @ and b if 62® + 722 + ax +b is divisible by 2z — 1 and by
z+1.

6 The remainder when (z—1)(zx—2) divides z4+4ax®+b is z+1. Find
a and b.

7 A polynomisal gives remainder 22 + 5 when divided by (x— 1) (x +2). Find
the remainders when it is divided by z— 1, z + 2 separately.

8 A polynomial gives remainder 2 when divided by z+ 1 and remainder 1
when divided by z - 4. Find the remainder when it is divided by (z+ 1) (x — 4).

*9 A cubic polynomial gives remainders 5x—7, 12z —1 when divided by
x®—x+ 2, 224z — 1 respectively. Find the polynomial.
*10 When divided by 22+ 1 a polynomial gives remainder 2x + 3, and by x2 + 2
gives remainder = + 2. Find the remainder when it is divided by (2 4 1) (22 + 2).
Find values of a, b, ¢, d for which

11 n3+6n =an(n—1)(n—2)+bn(n—1)+cn+-d.

12 2® = a(x+2)3+ b(z+ 1)2 +cx +d.

13 If o*— 62® +aa? + 30z + b is a perfect square, find @ and b and write down
the square roots of the polynomial.
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20+ 7 a b
E ———  in th _—
14 Express 7oy ry ) in the form x—1+x+2
5 a bx+c
E — —— in the fi .
15 Express Tt D@1 D in the form itz el

If a, b, ¢ are all distinct, prove
alx—b)(x—c) blz—c)(x—a) clx—a)(x—>) _ .
(a—b)(a—e¢) ' (b—c)(b—a) (c—a)(c—b) ~
(a+b+z)(b+c+zx) (b+ec+z)(ct+a+z) (c+a+z)(a+b+x)
(b—c)(b—a) (c—a)(c—0b) (a—b)(a—c¢)
18 (i) Prove that there cannot be two different quadratic expressions in z
which take the values A, B, C when « has the distinct values a, b, c respectively.
(ii) Verify that

(x—b) (z—c) (x—c)(x—a) (x—a)(x—0b)

(a—d)(a—c) (b—c) (b—a) (c—a)(c—b)
has the required properties, and deduce from (i) that this is the only such
quadratic.

*19 Write down the (unique) cubic polynomial in z which takes the values
A, B, C, D when z has the distinct values a, b, ¢, d respectively.
20 (i) If 23+ px +q contains a factor (x —a)?, prove 4p®+27¢% = 0.
(ii) By writing ¢ = 2a3, prove the converse of (i).
21 (i) Ifz*+ px+ q contains a factor (x — a)?, prove 27p* = 25643, and express
g in terms of a.
(ii) Prove the converse of (i).

16

17

1.

10.2 Polynomials in more than one variable

10.21 Extension of the preceding results

If p(z,y) is a polynomial in the two variables z, y, we may arrange
it according to powers of z, say as

2"po(y) + 2" 1Py (Y) + ... +2u(Y),

and consider it to be a polynomial in  whose coefficients are poly-
nomials in y. The preceding theories can then be applied.t Similar
considerations hold for more than two variables.

Examples
(i) If ax?+2hxy+by®+2gx+2fy+c = o’z + 2k zy + b’y + 29'x + 2f 'y + ¢/,
prove a=da, b=V, c=c, f=f, g=¢, h=F.
Arranging both expressions as quadratics in z,
az?+ 2(hy + g) @+ (by? + Ay +¢) = @'+ 2y +g') w+ By + 2 Y+ ).

+ The proof in 10.12 is valid when p,, p;, ..., P, are polynomials in y (or in any
number of variables); therefore the deductions in 10.13 still hold.
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Equating coefficients, we have for all y:
a=a/, 2hy+g)=2Hky+g), by +2fy+c=">by+2fy+c.

By equating coefficients of like powers of y in the last two identities, we obtain
all the results stated.

(ii) Show that 2x® + 5wy — 3y® —x + 11y — 6 has linear factors, and find them.
Since

try putting

222 + bry — 3y? = (z+ 3y) (2x—y),

202+ bxy—3yt—x+1ly—6 = (v + 3y +a)(2z—y +d),
where @ and b are constants to be determined.
The right-hand side is
222+ 5xy — 3y2 + (20 +b) x + (3b—a) y + ab.
This will be identical with the given polynomial if and only if a, b can be chosen
to satisf;
o satsly %a+b=—1, 3b—a=11, ab=—6.
The first two equations give ¢ = —2, b = 3; and these values do satisfy the
third. Hence the given polynomial has linear factors

(x+3y—2)(2x—y+3).

() Factorise (o +y) +yaly +2) +20(z +2) + 2ye.

Regarding this as a quadratic polynomial in x whose coefficients are poly-
nomials in y and 2, put 2 = —y: the expression becomes
0+y2(y +2) —yelz—y) — 2y% = 0.

Hence z +y is a factor. Similarly, z+ 2 is a factor.

Next, regarding the expression as a polynomial in y whose coefficients are
polynomials in z, 2, we may put y = —z and show that y +z is a factor.

Hence (y+2)(z+2)(z+y) is a factor. Since this product and the given
polynomial each have total degree 3, any other factor k£ must be numerical,

Bd 80w+ ) +yaly +2) +2a(z+ o) + 2oyz = Ky +2) (2+2) (@ +Y)-

To obtain %, we may either substitute numerical values for z, y, z (e.g. # = 0,
y = 1,2z = 1) in both sides, or compare coefficients (e.g. of z%y). We obtain k = 1.

10.22 Symmetric, skew and cyclic functions

In 1.52(4) we defined a homogeneous function of two or more
variables, and we now give further useful definitions.

(1) A function (not necessarily a polynomial) of two or more
variables is symmelrical in these variables if it is unaltered by the
interchange of any two.

For example, x +y and 22 +y2 are symmetrical functions of (x,y);
a+b+c, bc+ca+ab are symmetrical in (a,b,c); and the expression
in 10.21, ex. (iii) is symmetrical in (z, y, z). The polynomials x —y +z,
a?+ b2+ 2¢? are not symmetrical.
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Remarks
() The only symmetrical function of (z,y,z) of the first degree is a
constant multiple of x +y+ 2. For if lz + my + nz is unaltered by inter-

change of z, y, then
lz+my+nz = ly+mz+nz,

i.e. l—m)yz+(m-ly=0,

0 I = m. Similarly, we find I = %, and the linear function reduces to
lz+y+2).

(B) The most general symmetric polynomial in (z,y,z) consisting of
second-degree terms can likewise be shown to have the form

k(x4 y2 +22) + Uyz + 22 + y).

(2) A function of two or more variables is skew or allernating if an
interchange of any two of them changes only the sign of the function.
For example, x —y is a skew function of (z, y); and

(b—c)(c—a)(a—D),
zy(x—y) +yz(y —2) +22(z — )

are skew functions of their respective variables.

The reader should satisfy himself that the product of two symmetric
or of two skew functions is a symmetric function, while the product of a
symmetric and a skew function is skew.

Considerations of symmetry, skewness and homogeneity often save
algebraic manipulation, and will be helpful in Ch. 11.

Example

Factorise x® + y® + 2% — 3xyz. (Also see Ex. 10(f), no. 3.)

Regarding this as a polynomial in 2, we find that when # = —(y+2) the
expression is zero. Hence = +y +2 is a factor. The other factor could be found
directly by long division, or as follows.

The given expression and the factor & +y -2z are both symmetric in (z, y,2),
therefore so is the remaining factor.

Since the given polynomial is homogeneous of degree 3 and x + y + z is homo-
geneous of degree 1, the other factor must be homogeneous of degree 2 in (z, ¥, 2).

By Remark (f) above, the most general symmetric homogeneous poly-
nomial of degree 2 in (z, y, 2) has the form

Kzt +y2+20) +Uyz + 2w+ 2y),
and so v
23+ Y8+ 28— Bayz = (v +y+2) {k(2? +y2 +28) + Uyz + 2z +=y)}-
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We can find the constants k, ! by substituting numerical values:
z=0, y=0, z=1 give 1=k;
z=0, y=1, 2=1 give 2=2{2k+1}, S l==1.
Hence +yi+28—3zyz = (x+y+2) (2 +y2 + 22 —yz — 2w —2y).

(3) Cyclic expressions. Consider again

zy(x —y) +y2(y —2) +22(z —2),

and suppose the letters z, y, z are arranged around the circumference
of a circle as shown. When the first term xy(x —y) is given, the next
can be obtained from it by replacing each letter by

the one which follows it on the circle. Repetition of hd

the process gives the third term, and further repeti-

tion leads back to the first term. The given sum

thus consists of the term xy(x — y) together with the 2 y
two similar terms obtainable from it by cyclic inter-

change of z, y, z; it can be written Fig. 123

Zxy(x—y).

The number of letters involved has either to be stated explicitly, or
must be clear from the context; otherwise the Z-notation is ambiguous.

Observe that the complete sum is unaltered if we replace x by y,
y by 2, and z by z; for this cyclic interchange merely alters the order
in which the three terms occur. The expressmn (y—2)(2—=) (x—y) has
the same property.

Definition. An expression in z, y, z which is unaltered by cyclic
interchange of these letters is cyclic in (z, , 2).

A similar definition can be given when there are more than three
letters. For convenience of reference and comparison, it is desirable
to write expressions with their terms in eyclic order whenever possible.
Thus we prefer to write bc + ca + ab rather than ab +ac+be.

Remark (y). To test an expression for symmetry or skewness we
interchange letters two at a time. A cyclic interchange involves change
of all the letters. Thus a function may be cyclic but not symmetric,
e.g. Zxy(x—y), bc? + ca? +ab?. See also Ex. 10 (b), no. 16.

Exercise 10(b)
Prove that the following expressions have linear factors, and find them.
1 22%—3xy—2y3+ Tz +6y—4. 2 z?—y?4 2oz — 14yz — 4822,
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3 Find the values of a for which 2z%—5xy—3y?—x+ay—3 has linear
factors. [The factors must be of the form (x — 3y + 3k) (2z +y — 1/k).]
4 Show that x?+ dxy + 3y? + 2z — 2y + 6 does not possess linear factors.

Using the remainder theorem, together with considerations of degree, symmetry
and skewness when helpful, factorise

(x+y+2)*—(2®+y°+2°).
yz(y? —22) + 22(22 — x?) + wy(x® — y?).
aly —2) +y(z—2)° +2(z— y)*
(@+y+2)°—(@°+y°+2%).
Write the expressions in nos. 6, 7 in the X-notation.

10 Write in full the following expressions, assumed to involve three letters:

(i) Za?; (i) Za2y?; (i) Zbe(b—c); (iv) Za®be; (v) Zbel.

[In (v), cyelic interchange gives bc?+ ca? + ab?, which is only half the number

of terms implied by Z, meaning ‘sum of all terms of the type ‘‘letter x another
letter squared”’.]

11 Prove that (i) Z(b—c) = 0; (ii) Zbc(b—c) = Za?(b—c);
(iii) Za(b2—c?) = (b—c)(c—a)(a—Db).

12 Prove X(b—c)® = 3(b—c)(c—a)(a—Db).

13 Prove Za3(b?—c?) = —(b—c)(c—a) (a—b) (bc+ ca + ab).

14 Prove that Za"(b—c) contains the factor (b—c)(c—a)(a—b) for any
positive integer n > 2.
*15 (i) By takingz = b—c¢, y = ¢—a, z = a—b in the example in 10.22(2). de-
duce no. 12. (ii) Similarly, deduce the factors of Za?(b— ¢)3. (iii) Use the result of
no. 8 to factorise (b—c¢)®+ (¢c—a)® + (a—b)".
*16 Prove that a symmetric or skew function of three variables is also eyclic.
[If f(a, b, ¢) is symmetric,

f(a, b, c) =f(b’ a, c) =f(b9 c,a);

if it is skew, f(a.b,c) = —f(b,a,¢c) = —{—f(b,c,a)} = f(b, ¢, a).]

o 009 & W

10.3 Polynomial equations: relations between roots and coeffi-
cients

10.31 Quadratics: a summary

If the equation ax?+ bz +c¢ = 0 has roots a, £ (possibly equal), the
reader will know that .
a+p = -—é, af = °.

a a

He will have used these symmetrical relations to calculate the values
of other symmetric functions of a and £ (such as a®+ 42, a/f + fla),
and to construct quadratics having prescribed functions of « and g
as roots (e.g. ‘form the equation whose roots are 3a—p, 38—a’).

We now extend this work to cubic and quartic equations.
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10.32 Theory of cubic equations
If the distinct numbers ¢, g, y satisfy
ax®+ba?+cx+d =0, (1)
then by Theorem I of 10.13,
axd+bx? +cx+d = alx—a) (@—p) (x—7y). (i)

If the unequal numbers «, B satisfy (i), then by the Remainder
Theorem x—o and x— B are factors of the left-hand side, and by
division the other factor is seen to be linear and of the form a(z — 7).
By the statement ‘a, 3, # are the roots of (i)’ we mean that y = g, so
that the factor 2 — 8 appears twice in (ii). Similarly, by ‘«, a, « are
the roots of (i)’ we mean that the right-hand side of (ii) is a(x — «)3.

Thus, if «, B, ¥ (not necessarily distinct) are the roots of (i), then
(ii) holds in all cases. Expanding the right-hand side by direct
multiplication,

axd+ba?+cx+d = az® —a(a+f+vy) 22 +a(fy +you+af) x —aafy.
Equating coefficients, we find
b c d
at+PBt+y=—-, By+yatof ==, afy=—-. (iit)

Conversely, the cubic having roots z = «, 8,7 is

(@—a)(@—p)(x—7) =0,

i.e. B—(a+p+y)e2+(By+ya+oaf)r—afy =0,
in which

the coefficient of 2® is +1,

the coefficient of 22 is — (sum of roots),

the coefficient of x is (sum of the products of the
roots taken in pairs),
and the constant term  is  — (product of roots).

Observe the sequence + — + — of the signs.
Remark. The relations (iii) do not help us to solve the cubic equation,
because elimination of (say) # and y from them leads to

ao®+ba’+ca+d = 0;

they are equivalent to the information that ‘e, # and y are the roots
of (i)’.
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Examples
(i) If a, B, y are the roots of px®+qx+r = 0, express in terms of p, ¢, 7!

@ Zot, () T, () Zab, (@ Zat, () Zp.

We have Sa=0, Zpy=2, apy=-"_.
P p
: q 29
a ot = (Za)2—-28fy = 0—-2==—~—.,
(a) (Za)t— 224y 2=
1_Zfy_ ¢
b =l 2
®) Ea afy r
(c) First method. Since a is a root of the given equation,
pad+ga+r = 0;

there are similar relations for £, y. Adding,
pEad+qZa+3r =0,
St = -—-?—r .
P
Second method. By the example in 10.22(2),
at+ 2 +y2—3afy = (@+B+7) (@ + B2+ —fy —yoa—af)
=0, since X = 0.
3r
Zad = 3afy = ——.
By >
(d) From the given equation, pa®+ga+r = 0, and hence
pad+qad+ra? = 0.
Adding this to the two similar relations for 8, v,
pad+qZod+rZa? = 0.

by using (a) and (c), and so Tab = Bgr/p2.
(e) Consider (Xer)(Zfy). A term like 2y occurs only once, as the product
£.By. The terms afy arises in three ways, from e. 8y, f.va, y.of. Hence

(Za) (Zfy) = Zp% + 3apy.
3r 3r
0=2X -, d Z = —,
By P’ By 7
(ii) Form the cubic whose roots are (a) f+7v, v+, & + B (b) Byle, ye/B, efily,

where o, B, v are the roots of ®+x*— 242 —16 = 0.
We have Sa=—1, Zpy=-24, afy=16.

(@) B+y=Za—a=—1—c. Similarly y+a=—-1-8, a+f=—-1~y. We
require the cubic whose roots are —1—¢, ~1—f8, —1—7.
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In the given equation put y = — 1 —z,ie. 2 = —1—y:
(=1-yP+(—1-yP2-24-1-y)—-16=0,
i.e. ¥+ 2y2—23y—8=0. (A)

The values of y which satisfy this are related to the values of z which satisfy
the given equation by the formula y = — 1 —z. Since these valuesof zare a, £, v,
hence the values of y are —1—a, —1— g, —1—; therefore (A) is the required
cubic. (We could also say that

34222 —23xr—8 =0

is the required equation, because the letter used for the unknown is immaterial
when the roots are given.)
(b) fy/a = afy/a? = 16/al. Puty = 16/x2, i.e. 22 = 16/y:

1 16
z (—6—24) =16——,
Y Y

2 2 1\2
so by squaring, 64a? (— - 3) = 162(1 - —) ,
: Y )
4 /(2 2 1\2
i.e. _(_..3) = (1__) s
y\y )
which reduces to y3—38y%+49y—16 = 0.

The argument used in (a) shows that this is the required equation; but see the
Remark at the end of 13.53.

10.33 Quartic equations
By reasoning as in 10.32 we find that if «, £, y, & are the roots of

axt+bx®+cx?+der+e =0,

then a+,b’+7+6‘=—-g, ie. 2a=—-2,

aﬂ+wy+a8+ﬂy+ﬂ8+y8=2, ie. Zaf =

SRESH

Byd+yda+daf+afy =——, ie. Zafy=—-,

and afyd =

|RI®

Again notice the alternation of the signs.

Applications of the theory given in 10.31-10.33 to coordinate
geometry are illustrated in 16.22 (2); 16.26, ex. (i); 16.32; 16.12, ex. (ii);
and elsewhere.
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Exercise 10(c)
1 If &, £ are the roots of 22— 5z + 3 = 0, calculate

() afrafts () g5 () (@-DB-1; Gv) @+ p
a pB ..
7 +;; (vii) a®+ 83 (viil) at+ g4
2 If a, f are the roots of 3z2+4 2x—4 = 0, construct the equation whose
TOOLS BT (i) o, 1)f5 (i) o, A% (i) @t 1/f, B+
3 Write down the conditions for both roots of ax? + bz + ¢ = 0 to be positive.
4 If o, f, y are the roots of 22 + 2% — 14z — 24 = 0, calculate

(V) (@=p)%  (vi)

() @+D@E+D+D; ) S () St Gv) 55

(v) Zad; (vi) Zat; (vil) Za?f.

5 If o, B, y are the roots of a®+4x2+x—2 = 0, construct the equation
whose roots are
1
(l) +y, y+a, a+f; (i) o=, —, =7
Bty y B By’ ya' af
(iv) o, B2 9% (v) a2, B2, v~2
6 If «, 8, y are the roots of 6z®—z%— 6x—2 = 0, form the equation whose
roots are o + %, 8+ %, ¥+ %. Hence solve the given equation.

7 If 23+ 3Hx+ @ = 0 has two roots equal, prove G?+4H?3 = 0. [Let the
roots be a, «, #; then 2a+ 4 = 0.]

8 If the roots of 23+ 3Hz+ G = 0 are in A.P., prove & = 0. [a+7y = 28.]

9 If 23+ pa?+gx+7 = 0, find the condition for the roots to be in (i) A.p.;
(ii) a¢.p.

10 Ife, B,y are the roots of 2® + pa®+ gz +r = 0, construct the equation whose

roots are a2 — fy, f2—ya, y2—af, and comment on the special cases (i) p = 0,
(ii) ¢ = 0. Also write down the value of (a?— By) (52— ya) (y*—«f).

(iii) (B +7), By +a), y(a+p);

r  at4r —pai-—qo
2 -l = —— = " = — .
at-fy=a +o=— 2 (p2+q)

11 If 2%+ pax®4 g = 0 has roots &, f, ¥, 8, construct the equation whose roots
are a+pf+vy, f+y+6, y+0+a, d+a+p.

12 If 2%+ pa? +gx+7 = 0 has three equal roots, prove that p%412r = 0 and
99 = 32pr; and show that the value of the repeated root is — 3g/4p.

10.4 Elimination

10.41 Further examples

When a system of equations is given and the number of equations
is greater than the number of unknowns, then in general the equations
cannot all be satisfied unless the coefficients are related in some way.
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There may be more than one such relation. Each is called an eliminant
of the system of equations. Owing to the importance of elimination,}
especially in coordinate geometry, we give some further examples.
No general methods can be laid down; but see 11.43.
(i) Use of an identity.
Eliminate x, y, z from
rty+z=a, x2+yt+22=0% adP+ydtt=ct, ayz=d>
From the identity (10.22, ex.)
2B+ +23—Bwyz = (x+y+2) (22 +yt+22—yz—zw—2y),

we have c®—3d? = a(b?— Zyz);
and (Zx)? = Ta%+2Tyz, so Zyz = §a?—Db).
Hence 2(c8 - 3d3) = a(3b%—a?).

(ii) Use of theory equations.
Eliminate m, n from (y —mx)? = a®m? + b2, (y —na)? = a’n?+-b%, mn = — 1.
The first two equations show that m and n are the roots of the quadratic in ¢

(y—tx)? = a®% 0%,

Le. (a? —2?) £2 4 2zyt + (b2 —y?) = 0.
The third equation shows that the product of these roots is —1, so
bﬁ — yE
P Rl
i.e. 22 +y? = a®+ b2

For the geometrical interpretation see 17.47, (ii).
The method illustrated in ex. (ii) can sometimes be used to solve a system of
equations as in ex. (iii) following. See also Ex. 10(d), nos. 12-14.
(iii) Solwe for z, y, z:
x+ay+az=at, x+by+b%2="0% xtcytciz=ct
These equations show that a, b, ¢ are three roots of the quartic int
th—tz—ty—x=0.
Since the coefficient of {3 is zero, the sum of the roots is zero, and hence the
remaining root is — (a@ + b+ c). Then
— gz = product of roots = —abc(a+b+c);
y = sum of the products of the roots taken in threes
= abc—(a+b+c¢) (bc+ ca+ab);
—2z = sum of the products of the roots taken in pairs
=bc+ca+ab—(a+b+c)(a+d+c)
= —(a?+b%+c? + bc +ca+ab).
Hence x = abcZa, y = abc—(2a)(Zhc), 2z = Z(a®+ be).

1 It has already been used in this book.
27 GPMII
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10.42 Common root of two equations
(1) The necessary and sufficient condition that the quadratics

ax®+br+c=0, az2?+b'z+c =0
have a common root is
(ab’ —a'b) (bc' —b'c) = (ca’ —c'a)?. (i)

Necessary. If there is a value of x which satisfies both equations,
then by treating them as simultaneous equations in 22, « and elimin-
ating first , and then 22, we obtain

(ab"—a'b)x? = bc’ —b'c, (ab'—a'b)x =ca’'—ca.
(b’ —a'b) (b’ —b'c) = (ab' —a'b)2x? = (ca’ —c'a)?,

so that the condition follows.
Sufficient. If ab’ —a’b + 0, the condition (i) can be written

ca'—c'a\? be’ —b'c
ab' —a'b)]  ab’—a'b’

Put A = (ca’ —c'a)/(ab’ —a’b); then A2 = (b¢’ —b’c)/(ab’ —a’b), and
(@b’ —a'b) A% = bc’ —b'c, (ab'—a'b)A =ca’—ca.
(ad’ —a'b) (aA?+bA) = a(bc’' —b'c) +b(ca’ —c'a)

= —c(ab'—a'd) on simplifying.
Hence (ab’ —a'b) (aA2 + bA +¢) = 0; and similarly
(ab’ —a’d) (@’'A2+b'A+c') = 0.
Since ab’ —a’'b =+ 0, these show that = A satisfies both quadratics.
If ab’—a'b = 0, then the given condition (i) shows ca’—c'a = 0.
Hence a:b:c =a':b":¢’, and so the quadratics are not independent.

In this case the result holds trivially.
Remark. Direct calculation will verify that

4{(ab’—a'd) (bc’ —b'c) — (ca’ —c'a)?}
= (b2 —4ac) (b'2—4a’c’) — (2ac’ + 2a’c — bb')2.
The condition (i) is therefore equivalent to

(b2 — 4ac) (b — 4a'c’) = (2ac’ + 2a’c — bb')2. (i)
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(2) When the given equations are of degree higher than the second,
we eliminate the highest powers step by step until two quadratlcs
with a common root are obtained. For example, if

f=ax®+brt+cx+d =0
and g=p2:tqr+r=20 (i)
have a common root, then this root also satisfies p. f—ax.g = 0, i.e.
tpb—aq)a?+(pc—ar)x+pd = 0. (iv)

Conversely, a common root of g =0 and p.f—ax.g =0 is also a
common root of g = 0 and f = 0. Hence f = 0, g = 0 have a common
root if and only if (iii) and (iv) have a common root, and a condition
like (i) will express this fact.

10.43 Repeated roots
With the notation of 10.13, suppose that

plx) = (z—a)'g@) (1<r<n),

where g(a) # 0. Then by the Remainder Theorem z —« is not a factor
of the polynomial g(x). We say that the polynomial p(x) has a repeated
Sfactor x—a of order r; and that the equation p(x) = 0 has an r-fold
root & = a, r equal roots &, a root x = o of multiplicity r, or a root x = o
of order r. If r = 1, we call x—a a simple factor of p(x), and x = &
stmple root of p(x) =

If p(x) = 0 has a root x = o of order r, then x = a is also a root of
p'(x) =0, of order r—1.

Proof- ple) = rla—ay-tg@) + @-ar g @)

= (@—a) " {rg(@) + (x—a)g'(@)}.

Since g(a) # 0, the contents of the last bracket are non-zero when
z = a. Hence z = a is a root of p'(z) = 0, of order exactly r— 1.

Conversely, if p'(x) = 0 has a root x = o of order r— 1, then provided
x = o satisfies p(x) = 0, it is a root of p(x) = 0 of order r.

Proof. Suppose x = a is a root of p(x) = 0 of order s. Then the
preceding theorem shows that « is a root of p’(x) = 0 of order s—1.
Hencer—1=3g—1,ie.7r =s.

These two results show that the necessary and sufficient condmon
Jfor p(z) = 0 to have a repeated root is that p(x) = 0, p'(z) = 0 have a
common root.

27-2
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Exercise 10(d)

Eliminate t from

1 w=t—1/t,y=2+1J 2 x=a(l—2)/(1+2), y = 2bt/(1 +£2).

3 Eliminate . y from z+y = a, 22+ y? = b2, x4+ y* = ¢

4 Ifa?+ 22 =b%4+y?=ay—bx =1, prove a®+b2 = 1.
[(a2+:z]cz)+(b2+y3)—2(ay—bx) =0, ie. (x+b)2+(y—a)2=0, .. z=—b and
y=a.

5 If a®z+b%y = a2y, bPx—aPy = 22 —y?, and z?+y? =1, prove a?+b2 = 1.
[Solve the first two equations for a3, b3, using the third.]

6 Eliminate z, y, z from zy = a2, yz = b2, 2z = c?, 22+ y2 + 2% = d2.

7 (i) Eliminate =,y from y+lr = al®+2al, y+mz = am?+2am, and
y+nx = an®+2an. *(ii) Interpret geometrically.

8 (i) Eliminate m, n from
mx—my+a =0, nx—ny+a=0, m-—n=c(l+mn).
*(ii) Interpret geometrically.
9 Eliminate I, m, n from the equations in no. 7 and Im = b.
10 Eliminate A, g from
22 2 22 2
o R
11 Solve the following equations for z, y, 2:
z+ay+a®z=a’, x+by+b%z =03 x+cytciz=cd
12 Solve a+b+c = 5, bc+ca+ab =17, abc = 3.
13 Solve a+b+c¢ = —2, a?+b2+c? = 30, abc = — 10.
14 Solve x+y+z = 2, a2 +y2+2% = 14, ¥ +y24-2% = 20.
15 Prove that the necessary and sufficient condition for
234 2px?+29x+r=0 and 2*+pxr+g=0
to have a common root is 72— 3pgr+ p3 +¢® = 0.

=1, A4+p=a2+0b%

Find the necessary and sufficient condition for the following to have a double root.
16 23+px+q = 0. (Cf. Ex. 10(a), no. 20.)
17 2*+px+q = 0. (Cf. Ex. 10(a), no. 21.)

18 Find the common root condition for ax®+bzr+c =0, px®+qr+r =0.
[Eliminate z, 2® in turn.]
*19 If b2 % ¢ and (22 + 2bx +¢)'! is a factor of p(x) and of p’(x), prove that
(2% + 2bz +¢)" is a factor of p(x). Explain why the restriction b2 =+ ¢ is needed.

10.5 The H.C.F. of two polynomials

10.51 The H.C.F. process

The last result in 10.43 shows that, to find the repeated roots (if
any) of p(x) = 0, we must find all factors common to p(x) and p'(x).
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We now show how to find the highest common factor (H.C.¥.) of any
pair of polynomials f(z), g(z). It will be convenient to write degf

for ‘the degree of f(x)’, and so on.
Suppose deg f = m and deg g = n, where m > n. Then we can divide
f(z) by g(z), obtaining the quotient ¢,(x) and remainder r,(x), where}
f@) = g(@) q1(x) +7y(2). (i)

The degree of r,(x) must be less than that of g(x), and hence
degr; < n—1. We can therefore divide g(x) by r,(z), getting quotient
gs(x) and remainder r,(x), where

9(@) = r1(2) g5(%) +15(2) (i)

and degr, < degr,, i.e. degr, < n—2.
Similarly, dividing r,(x) by r,(z) gives quotient ¢;(x) and remainder

r5(), where ry(@) = r3(@) ga(@) + 74(@) (i)

and degr; < n—3.
Proceeding thus, we eventually obtain

Ts—o(2) = 7s_1(%) 4s(%) +75(x) (8
a'nd 7‘8_1(33) = 743(:1;) Qs+l(x) + Ts+1(32), (’3 + 1)

where r,,,(x) = 0. The stage (s+1) is reached after at most n+1
applications} of the successive division process

F5G, g=7Ty Ti5Te vy Too+Teqs Toq=Ts
First, suppose f(x) and g(z) have a ecommon factor A(x), so that
f@) = fil@) h(z), g(x) = g:1(x) h().
The identity (i) shows that
() = f(@) —9(2) 1 (2) = k(@) {f1(2) — 9:(2) 1 ()},

so that () is also a factor of r,(z). Identity (ii) then shows that A(x)
is a factor of ry(x), and so on. Finally, identity (s) shows that A(x)
is a factor of r,(x). Hence

any common factor of f(x), g(x) is also a factor of r(z). (A)

Secondly, suppose that k(z) is a factor of r,(x). Then identity (s 4+ 1)
shows that k(x) is also a factor of r,_,(x); hence by identity (s), k(x) is

1 Cf. 10.13, ex. (v).
1 This is seen from the degrees of the successive remainders.
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a factor of r,_,(z); ete. Thus from (ii) we see that k(z) is a factor of
g(x), and hence by (i) it is a factor of f(x). Therefore

any factor of r(x) is a common factor of f(x) and g(x). (B)

From (B) it follows that r,(x) itself must be a common factor of
f(z) and g(z); and (A) shows that every common factor of f(x) and g(x)
must also be a factor of 7,(x). Consequently,

(@) if ry(x) = constant, then f(x) and g(z) can have no algebraic
common factor, and we say that f(x), g(x) are coprime polynomials;

() if r,(x) is a polynomial, then rx) is the (algebraic) highest
common factort of f(x) and g(x). It has been found as the last non-zero
remainder in the process of successive division just described (the m.0.F
process or Buclid’s algorithm). .

Examples
(i) Find the H.C.F. of
2ut — 43+ 522+ 22 —3 and 2b—at4a®+40?—2x4-3.
We begin by dividing
28—zt +aB+ 422 — 22+ 3) by 22— 42®+ 6274223,

in order to avoid introducing fractional coefficients. The introduction or
removal of numerical common factors at any stage is permissible since this
does not alter the algebraic factors.t

g = 22— 423+ Bx?4 22— 3 225 — 204 + 22° + 8x2 —4x + 6 = f
224+ 22° — 6x%+ 18z 228 — 424 + Ba® + 222 — 3
— 62341122 — 16— 3 224 — 33+ 622~ 46
— 62— 622+ 18x— 54 224 — 4a® + 52 4 20— 3
1722 — 34w+ 51 w4+ 22—3x+9=n
Remove factor 17: 22— 22+ 3 =r, 23— 2% + 3z
’ 3x2—6x+9
3z —6x+9
0=rg

The H.C.F. is the last non-zero remainder 7,, viz. 22 — 22 + 3.
(i) Test the equation
425 — 202t + 2522 4+ 1022 — 202 — 8 = 0

Jor repeated roots, and hence solve it.
A repeated factor of f = 4% — 202% + 252° + 102% — 20x — 8 is & common factor

+ Numerical factors are regarded as irrelevant; Ar,(x), where A is any non-zero
constant, would also be called the H.C.F.
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of f and f’ = 5(4xt — 162® + 1522 + 42 — 4). We therefore begin by applying the
H.C.F. process to f and g = 44— 162° + 150% + 4w — 4.

g=4xt—1623+ 1522+ 42— 4 425 — 2024 4 2623 + 1022 — 20— 8 =f
4t — 1428 4 82?4 8x 42 — 1624+ 1523 + 4a?— 4
— 2234+ Tr?—4x—4 — 4244102+ 622—16x— 8
— 2234 Tx?—4x—4 ~ 4xt+162%— 1522~ 4+ 4
0=r, — 62842122 — 12212

Remove —3:
203 — T2+ 4dx+ 4=71

The H.C.F. is 22®— 722 + 42+ 4. By using the Remainder Theorem, we find
that it has a factor x — 2; hence

HOF. = (2—2) (222 — 3z —2) = (z—2)2(2x +1).
From 10.43 it follows that z—2, 22+ 1 are repeated factors of orders 3, 2

inf, and that # = 2, ='- } are roots of f = 0 of orders 3, 2. Since f has degree 5,
there can be no other roots. )

10.52 An important algebraic theorem
The identities (i), (ii), ... in 10.51 show that
7, = apgf +byg, where ’ ay=1, by=—gq;
ry =0 f+bg, where a;=-—g, b =1+¢4;;
and so on. We thus see that ry = af +bg, ©
where a, b are polynomials in .
Writing f = 7,¢, g = r,{, then by (C)

1 = ag + by,

where ¢, ¥ have no algebraic common factor. Since ag + by has no algebraic
factor (being identically 1), hence a, b are coprime.

(a) If r, = constant, then we may divide (C) by r, and get the important

THEOREM. If f, g are coprime polynomials, then other coprime polynomials
A, B exist for which Af+ Bg = 1.

(b) If r,is a polynomial in x, then we have:

The 1.0.F. of two polynomials f, g can be written in the form af + by, where a, b
are coprime polynomials.

Definition. A polynomial is said to be srreducible when it has no algebraic
factor of lower degree than itself.

CoroLrary. If f is irreducible and g, h are polynomials such that f is not a
Jactor of g but f is a factor of gh, then f must be a factor of h.

Proof.t Since f is not a factor of g, the degree of any common factor of f, g
is less than the degree of f and is therefore zero since by hypothesis f has no
such factor. Hence f, g are coprime and, by the theorem, polynomials 4, B

exist such that 1 = Af+ By,
and so h = Afh+ Bgh.
Since f is a factor of gh, therefore gh = fk for some polynomial &, and so
h = (Ah+ Bk)f,

i.e. f is a factor of A.
T The result is ‘intuitively obvious’.
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Remarks
(2) The polynomials @, b in identity (C) are not unique, for clearly

a, Ea+c—g and b, = _c_f
7“8 rl
(where ¢ is any polynomial) would also satisfy (C).
(8) There are arithmetical results (important in the Theory of Numbers)
analogous to the preceding; they can be formulated by replacing ‘polynomial’,
‘irreducible’, ‘degree’ by ‘integer’, ‘prime’, ‘magnitude’ respectively.

10.53 Theory of partial fractions

An application of the theorem in 10.52 is to prove the possibility of resolving
a rational function into partial fractions. In 4.62 we stated and illustrated the
practical methods for doing this in any particular example, but we did not
attempt a general justification of our statements.

Definitions. The rational function f/g, where f and g are polynomials in z, is
called (a) irreducible if f, g are coprime; (b) proper if degf < degg.

If f, g have H.0.F. h (found as in 10.51), then f = hf, and g = hg,, so that
(except for those values of x which make g = 0) f/g = f,/g;; and f, g, are co-
prime. We shall therefore always assume that the rational function s irreducible.

If f/g is not proper, we can express it as the sum of a polynomial and a proper
fraction in the form ¢+7/g, by finding the quotient ¢ and remainder » when
[ is divided by g.

THEOREM. If p,, P, are coprime polynomials, the (irreducible) rational function
Jl(p1p;) can be expressed uniquely in the form

7 7.
g+>+-2,
P11 P2

where q is a polynomial and r,[p,, rs/D, are irreducible proper fractions.
Proof. Since p,, p, are coprime, polynomials 4, B exist such that

Ap;+Bpy, = 1.
f _fdp+Bp) _Bf Af
P P: P1P2 D1 P2
By division, Bf=g,p,+7 and Af = qyps+7,,

where degr, < degp, and degr, < degp,. Hence

Ty .

= 2,72 i
P1Ps atds +f’1 +Pa ’ ®

where 7,/p,, 75/p, are proper. They are also irreducible; for if (say) 7,/p, reduces

to 7{/p;, then result (i) shows that f/(p,p,) is equal to a fraction with denomi-

nator pjp;, where deg(p;p,) < deg(p,p,); this contradicts the hypothesis

that f/( p,p,) is irreducible.

To prove uniqueness of the decomposition (i), suppose if possible that

ry T o r
g+ 2402 o A r+142,
P1 P2 DP1Ps Py Po

then (9— @) Prp2+ (1, —17) Py = (13— 19) P2
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Since p, is a factor of the left-hand side, therefore p, is a factor of (r;—7,) py.
As p, is prime to p, by hypothesis, it follows from the corollary in 10.52 that
Py must be a factor of 73— r,. This is impossible unless r;—7; = 0, for p, has
higher degree than #, and 7, and so certainly degp, > deg(ry—r,). Thus
73 = 14, and similarly we can show 7} = ry. It then follows that ¢’ = g.
CoroLrARY. If p,, D, ..., Dy are polynomials every two of which are coprime,
then the (irreducible) rational function f/(p, P, ... Ps) can be expressed uniquely
in the form
; Ty Ty
q+'—+—+...+—,
P Dy Pa
where q 18 a polynomial and 1,/py, -.., To[D, are proper and irreducible.
This is proved by repeated applications of the preceding theorem: first to

P1Ps--- Da) to give " fu
Ht+—+—";
Py Pge-Pa
then to py(p; ... p,) to give
r
ho gty b
Pa---Pn P2 Py-e-Pan

and so on. The uniqueness is proved by the same argument as in the theorem.
Remark. For their application to a given rational function f/g, the preceding
results depend on the factorisation of the denominator g into irreducible factors
P1Pg -+ Pn (cf. 4.63). In 13.61 we shall prove that a polynomial g(x) can be
factorised into the product of linear and irreducible quadratic factors like
(x—a)", {(x — b)? + c?}*. Assuming this, the above corollary shows that
f " T2

s_7= q+2(:c—a)'+z{(x—b)2+c*}”‘

(ii)
where g and the r,, 7, are polynomials and degr; < r.degr, < 2s.
By division, any polynomial ¢(x) of degree m can be written in the form
é(z) = (z—a) Py(x) + 4o,
where 4, is constant and ¢,(x) has degree m — 1. Similarly
$1(x) = (z—a) gy(2) + 4,
and so on. Combining all these results, we havet
d(x) =4+ A(x—a)+ Ay(z—a)?+... + Ap(z—a)™
Hence the proper fraction r,/(x —a)" can be expressed as

A A A
(@—a)y (@—a)yt " z—a

(i)
Similarly, any polynomial ¢(x) can be written
() = {(x—b)*+ %} $1(2) + Aoz + By,
where A,, B, are constants. Proceeding likewise with ¢,(z), etc., we obtain
P(x) = (Aox+ By) + (4 2+ By {(z—b)2+ % +...
+ (4,24 Boy) {(x - b)2 + -1
t This is the Lemma in 6.41.
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if ¢(x) has degree 2s—1 or less. Hence the proper fraction r,/{(x—b)?+c?}*

can be decomposed as .

Ayz+ B, A,z+ B, A, x4+ B, ,

{w=bp+c {(@=bp+cip1 T (@—bprter

The argument already used in proving the theorem shows that each of the
reductions (iii), (iv) is unique.

By combining (ii), (iii) and (iv), we completely prove the statements made

in 4.62 (assuming, of course, the facts in 13.61; but see the Remark in that
section).

(iv)

Exercise 10(e)
Find the H.0.¥. of
1 2%+ 322—8x—24, 23+ 322 —3x—9.
2 2234 Tx2 4 10z + 35, 204 4 Ta® — 222 — 3z + 14.
3 228 —x24+42+15, 24+ 122 —5.

Test for repeated factors, and hence factorise completely
4 x*—92244x+12. 5 a®—a®+ 42 -3+ 2.
6 a%— 325+ 62° — 322 — 3z 4 2.

Test for repeated roots, and hence solve completely
7 122%+ 423 — 4522+ 54 = 0. 8 25—562%+56x—2=0.
*9 Find polynomials 4, B of least degree such that
A(228— 322+ 4w — 1)+ B(a?+2x—3) = 1.

Miscellaneous Exercise 10(f)

1 Prove a(x? —y?) — 2hxy always has linear factors.

2 If 32%+2Axy+2y*+ 2ax—4y+1 has linear factors, prove that A must
satisfy A%+ 4aA + 2(a?+3) = 0. Is this sufficient?

3 Establish the identity 2% — 3uryz = (Zx) (222 — Zyz) as follows:
(i) Expand (x+y)® to show 2+ 4% = (z+¥)®— 3zy(z +¥).
(ii) Deduce that 2+ y®+22 — 3ayz = (z+y)® +2% — 3xy(x +y +2), and fac-
torise the sum of two cubes.
4 (i) Verify that 2?4+ y? +22 —yz—zx— 2y = H{(y—2)2+ (2 —2)2 + (z—y)2}.
(ii) Ifz+y+2z > 0, prove 23 +y2+2% > 3zyz unless x = y = 2.
(iii) If x+y+2z = 0, prove a3+ 3+ 2% = 3wyz.
S fe=b+c—a,y=c+a—b,z=a+b—c, prove (using no. 4(i))
2%+ y® + 28 — Bzyz = 4(a®+ b3+ ¢® — 3abe).
6 Factorise (i) Z(b%+c®)(b—c); (ii) Za(b*—ct).
7 Use the identity (Zz)? = Za?+ 2Zyz to prove
(i) Z(b—c)? =2Z(a—b)(a—c); (i) Za?(b—c)? = 2Zbe(a—b) (a—c).
8 Eliminate ¢ from z = 2 +¢72, y = 3 +¢72.
9 Eliminate z, y from x—y = a, 2* —y* = b2, 23— y® = 3.
10 Ifpx—gqy = 2% —y?%, py +gx = day, 22 +y2 = 1, prove (p+ )} + (p—g)t = 2.
[Solve the first two equations for p, g, using the third.]
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11 ‘The equation (z—1)® = A(z — 2u) (x— 4) has equal roots.” (i) If x has a
given value, prove this statement holds for A = 0 and one other value. (ii) If
A has a given non-zero value, prove the statement is true for two values of
ponlyif A < 1. If A = — 15, find the two sets of equal roots. ,

12 Find the condition for the roots of ax?+bx +¢ = 0 to divide the distance
between the roots of a’z?+ b’z +¢’ = 0 internally and externally in the same
ratio.

*13 If (a,2%+b,x+¢,)/(agx®+byx +c,) takes the same value when x has the
values given by a; 22+ bz 4¢3 = 0 (b3 > 4asc,), prove that

a a ay’
b, b, by |=0.
C; Cp Gy

[If the value taken is k, then (a,k — a,) 22 + (byk — b,) z + (¢3 & — ¢;) = 0 must have
the same roots as a;2?+b;x+c; = 0. Hence corresponding coefficients are
proportional.]

14 What can be said about the coefficients in an equation whose roots are
(i) o, B, —a—p; (ii) 0,a,B,v; (iii) a/b,bjc,cla; *(iv) tan O, tan O,, tan O,
where 6, + 6, + 0, is an integral multiple of 7?

15 If a line cuts the curve z = af?, y = a® in three points for which ¢ has
the values #,, ¢,, t;, prove Zt,¢; = 0.

16 If one root of 2®+ax+b =0 is twice the difference of the other two,
prove that the roots are
—13b/12a, 13b/3a, — 13b/4a, and that 144a3+ 219752 = 0.
17 If a, B, v are the roots of z3+pxr+q =0, express a*+ 4+ y* in terms
of p, g.
18 Obtain the equation whose roots exceed by 3 the roots of
244 1223 + 49224 782 +42 = 0,

and hence solve the given equation.

19 If &, f are the roots of az?+ 2hx +b = 0, find the quartic equation whose
roots are + 1/a, +1/8.

20 Eliminate A, g, v from

xﬁ yﬁ z! xﬂ yl z2 xﬂ yz zﬁ
=1 =1, = 44— =1
a+}t+b+/\+c+/1 ’ a+,u+b+,u+c+,u a+v+b+v+c+v
and Apv = abe.

21 If 2%+ 3ax?+ 3bxr+c = 0 has a repeated root, prove that this root also
satisfies 2% + 2ax + b = 0. Hence show that the repeated root is (¢ — ab)/2(a? — b).

22 Prove that z*+ pz + g = 0 cannot have a repeated root of order 3.

23 Prove that z? a3 z"
Tt—t—tot—=0
2 3 n
cannot have a repeated root. [p’(x) = 0 only when 2 = —1 if n is even, and

p’(z) + 0if nis odd. Clearly p(—1) % 0.]

24 Find k so that 2% — 322 — 22 +- k& = 0 has (i) a double root; (ii) a triple root;
and solve in each case.
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*25 Determine the values of m and ¢ for which the line y = mx +¢ is (i) an
inflexional tangent, (ii) a double tangent, to the curve y = x%(x?4 4x—18).
[In (ii), the equation x2(x? 4 4x — 18) —ma — ¢ = 0 has two double roots.]

26 If 2ac’ +2a’c = bb’ and if ax®+ bx + ¢, a’x? + b’z + ¢’ have a common factor,
prove that at least one of these quadratics is a perfect square. [See 10.42 (1),
Remark.]

27 Ifa, b, ¢, d are constants such that ad  be, and f, g, p, ¢ are polynomials
in z such that p = af +bg, ¢ = ¢f+dyg, prove that f, g and p, ¢ have the same
u.c.¥. What happens if ad = bc?

*28 If p(x,y) is a symmetrical polynomial in (z, y) having factor x—y, prove
that actually (x—y)? is a factor. [p(z,y) = Za,.(z"y*+2%"). The conditions
for p to be zero when x = y are the same as those for &p/dx to be zero when
z=y.]

*29 Cubic equations : Cardan’s methodt of solution. Every cubic can be reduced
(see Ex. 13 (d), no. 15) to the standard form

23+ 3Hz+G = 0. (@)
The identity in no. 3 shows that ¢f y, z can be chosen so that
yP3+22=Q@ and yz=-H, (b)
then # = —y —z will be a root of (a). Prove that y3, 2® must be the roots of
2—Gt—H3=0. (c)
*30 (i) If G2+ 4H?® > 0, show that there are distinct numbers y, z satisfying (b),
8o that x = —y —zis a root of (a). Use no. 4 (i) to show that there are no other

roots.

(ii) If G2+ 4H?® = 0, show that the right-hand side of the identity in
no. 3 becomes (x+ 2y) (x —y)?, so that (a) has three roots, two of which are
equal, viz. — 2y, y, y.

(iii) If G2+ 4H? < 0, numbers satisfying (b) do not exist. The following
trigonometrical method can then be used.

Put & = kcos@ in (a), and choose k so that k3:3Hk = 4: —3. Show that
(@) then becomes cos 36 = G/{2H ,/(—H)}. Verify that condition (iii) ensures
that 36 can be found from this, and hence that three values of cos @ = z/k are
obtainable.

t So-called, although discovered by Tartaglia.
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11

DETERMINANTS AND SYSTEMS
OF LINEAR EQUATIONS

11.1 Linear simultaneous equations

11.11 Two equations in two unknowns
The usual method of solving

a,x+by =cy,

asT+byy = ¢,
by elimination shows that

(a1b3—agby)x = ¢ by—cob; and (a0, —a30,) Y = a,6,—ay0;. (i)

If a,b,—a,b; + 0, these give unique values for x and y.

When a,b,—a,b, = 0, we may assume throughout that a, and b,
(and likewise a, and b,) are not both zero; for if @, = 0 = b,, the first
equation becomes 0 = ¢,, which is either false or trivial. Two cases
arise.

(a) If at least one of ¢,b,—cyb4, @,y —ayc, is not zero, (i) gives a
contradiction. The given equations therefore have no solution, and
are said to be inconsistent.

®) If a,by—ayby = ¢ by—cyby = a,c5—ayc, = 0, then (i) gives no
information. Since a,, b, are assumed to be not both zero, suppose
a, #+ 0. The first of the given equations can then be solved for x in
terms of y. When y is given the value y,, let the value obtained for
z be z,; then

¢,—b
xo = A__1J0 allyo.
Since Q9%+ byyo—Cy = M +by9p—Ca

1

_ 836 — 8163+ (3103 —a501) 9,
a

= 0 by hypothesis (b),

any values of z, y satisfying the first equation also satisfy the second.
The solution is said to be indeferminate. (Roughly, hypothesis ()
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shows that corresponding coefficients are ‘proportional’, so that the
equations are not distinct.)

Geometrically, the given equations represent straight lines. If
a,by—ayb, + 0, the lines are not parallel, and the above solution (i)
represents their unique point of intersection. In case (a), the lines are
parallel, while in (b) the equations represent the same line.

11.12 Three equations in three unknowns

Here we obtain only the general form of the results corresponding
to (i), and postpone discussion of details until 11.4.
Elimination of z from the first and second of

ax+byy+ez =4,
05 +byY + o2 = dy,
03T +bgly + 052 = dy
gives (@103 — a5¢;) T+ (b0 —byy) Y = dycy—dyey,
and elimination of z from the second and third gives
(@305 —3C) T+ (DyC3— b3Ca) Y = dyC3—disCy.
Now eliminate y from these last two equations:
{(Byc3 —b3Cy) (@103 — @201) — (b1 Ca — bycy) (@aC5— A500)} &
= (bac3—b3Cs) (A1 63— dyy) — (b10 —bycy) (dyC3— dcy).
On simplifying we find that the coefficient of x is
€a(@;DgC3— @3 by Ca+ By b3ey — g by 3+ a3b 63— aghsey),

and that the right-hand side reduces to ¢, times a similar expression.
The solution for « therefore has denominator

A1byCy~ A by Cy+ Ay bgCy — A3 by C3+a3by €y — agbye,. (i)

We should find similarly that this is also the denominator in the
expressions for y and 2.

11.13 Structure of the solutions

Instead of proceeding to higher eliminations, we notice the following
properties of the expression (ii).

(¢¢) There are six terms. In each term there is just one a, one b and
one ¢; and in each term the suffixes 1, 2, 3 all occur, without repetition.
The signs preceding the terms are alternately +, —.
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(#) The suffixes of the letters a, b, ¢ in each term form one of the six
permutations of the numbers 1, 2, 3. For example, consider a,b, c,: if
we interchange the suffixes in pairs until they are in natural order
1, 2, 3, we find that the number of interchanges is odd. Similarly, for
the term a3b,c, the number is even. It is easily verified that all the
terms for which the number is odd are preceded by the sign ~—, while
those for which it is event have +. (For a given term it can be proved
that the number of interchanges is either always odd or else always
even, no matter how the rearrangement to natural order is carried out.)
Hence the sign of each term in (ii) is decidable by the parity of the number
of interchanges of its suffixes from the actual to the natural order.

11.2 Determinants

11.21 Determinants of order 2

The symbol a, b

ay by

A=

»

called a second-order determinant, is defined to mean a,b, —a,b,. The
following five properties} of A are easily verified.

(1) The value of A is unaltered by interchange of rows and columns.
That is, if ay @,

by by

then A’ = A. We call A’ the transpose of A.

By use of this result, any property proved for rows extends at once
to columns, and conversely. The following will therefore be stated for
rows only.

A =

’

(2) Interchange of two rows alters only the sign of A.

That is, a; by
=—A.
a, b

(3) If two rows are identical, then A = 0.
(4) Multiplication of any one row by k multiplies A by k.
For example, ka, kb,

a, b

= kA.

1 0 is reckoned as even.
1 With the wording used, they hold without modification for third-order deter-
minants (11.22).
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(5) Addition to any row of a multiple of another row does not alter
the value of A. '
For example, by adding ¥ times the second row to the first row,

we obtain ay+kay by+ kb,

=A.
Qs b,

11.22 Determinants of order 3

The symbol a b ¢
A=|ay, b, ¢ |,
a; by ¢

called a third-order determinant, is defined to mean

by ¢ Az Cy a; by

a ~b; = @)
3 3

G

by ¢5 a3 C3
which (by using the definition of the second-order determinants) is
equal to
@1(bgCs — by Cs) — by(@a 05 — A5 Cs) +C1(@5 b3 — aghy)
= @,byCy— a1 b3Co + AybgCy — by 5+ aghy 6o — azbycy (i)

on rearranging. This is the expression (ii) of 11.12, and is sometimes
referred to as the expansion of A. '

The numbers a,, by, ¢;, @y, ..., C; are called the elements of A; with
our notation, the suffix denotes the row and the letter denotes the
column in which a particular element lies.

The remarks in 11.13 show that the expansion of a third-order
determinant consists of 6 terms, each of which involves an element from
each row and each column but no two elements from the same row or the
same column. The sign before each term is determined by the suffixes
according to the rule in 11.13(B). We may write the expansion of
A shortly as 5 £ agbycp.

The definition expressed by (i) above can be readily generalised to

‘define determinants of fourth and higher orders (see 11.7). Observe

how the second-order determinants in (i) are constructed from A: the
coefficient of a, is the determinant obtained from A after deleting the
row and column containing @,; the determinant in the middle term
is got by omitting the row and column containing b, from A; and
similarly for the last term. Since the elements a,, b,, ¢, appear as
multipliers of the second-order determinants, the expression (i) is
consequently referred to as the expansion of A from the first row.
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The diagonal running from top left to bottom right is called the
leading diagonal, and the product a, b, ¢, of the elements in it is called
the leading term in the expansion of A.

Examples
@) 4 5 3 '
2 47 _4l4 7!_5]2 7’+3|2 ‘*)
s 6 6 2 3 2 3 6
= 4(8—42)— 5(4—21) + 3(12—12)
= —51.
N . .
) @ vy b f hof h b
A bk P el PR L P
g f ¢

= a(be—f*?) — h(ch—fg) + g(hf — bg)
= abe + 2fgh — af® — bg® — ch®.
The reader should now do Ezx. 11 (a), nos. 1-10.

11.23 Other expansions of a thircf-order determinant

We may arrange the expression (ii) of 11.22 according to elements
from any row of A and the corresponding second-order determinants
formed by deletion as described above. Thus, grouping by elements of
the second row,

A = —ay(b;63—by¢,) +by(a, 65— agcy) — cy(a, b3 — azhy)
_ by ¢ a G @ b i)
T by ¢ 2 az C3 G ag by |’ i

which is the expansion of A from the second row. Similarly,

A = ag(b, 63— bycy) — by(@; 03 — a3¢y) + C5(a1 by — agby)
b, ¢
by ¢,

a, ¢ a, b

1 .
= a. — +c. 1v
3 ay ¢, 3 as b2 ’ ( )

the expansion from the third row.

Likewise, we may arrange (ii) by elements of any one column; e.g.

A = ay(byc5—bycy) — ay(by 63— bycy) + (b1 05— bycy)

by ¢, by ¢
by ¢ by ¢5
is the expansion from the first column.

The reader should not attempt to memorise these results because
they are all easily obtainable from the definition of A in expanded form.

28 GPMII

b, ¢
=0 —ay 3 (v)

by ¢
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11.24 Properties of A

We now show that the properties (1)-(5) in 11.21 hold for third-
order determinants. In view of the first, all subsequent properties
hold for columns as well as for rows.

Proof of (1).
a, @y ag
A"=|b, by b4
¢ €y Cg
=a, bs by —a, b b +a, b by by definition,
cy, Cy ¢ C ¢, €y

= @;(byCg— byCs) — Aa(by €3 — b3Cy) +a5(byCo — byy)
= A by the line preceding (v) in 11.23.

Proof of (2). Interchange of two rows is equivalent to interchanging
two of the suffixes 1, 2, 3. Results (i), (iii), (iv) showt that the sign of
the determinant is changed in every case.

Alternatively, we may start from the definition; e.g. interchange
of the first and third rows gives

ag by ¢

by, ¢, a, b

b, ¢

ay Cp
ap by ¢y [=a, —by +cq

2
a; 6 a; b
a b ¢

= ag(byC; — by Ca) — by(@gCy — a1 Cy) + Ca(ayhy — a1 by)
= ay(byCy— byC3) — by(@3C — @3C3) + 1 (A3 by — A3 by)

on arranging by elements of the first row of A; and this is clearly —A.
A similar direct proof would hold for other row interchanges.

Proof of (3). By interchange of the two identical rows we obtain
—A, by (2). However, interchange of identical rows clearly leaves the
same determinant A as before. Therefore —A = A, 80 A = 0.

Proof of (4). Since each term in the expansion of A contains exactly
one element from each row, multiplication of each element in a given
row by k causes every term in the expansion to be multiplied by k.
Hence the value of the new determinant is kA.

Proof of (5). We expand the new determinant by the row which

t Using the corresponding property already proved for second order when neces-
sary.
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has not been mentioned. Thus, if we add % times the second row to the

first row, we get a + kaz bl + kbz ¢+ kcz

ay by s . (vi)

The row ‘not mentioned’ is the third; using an equation like (iv) to
expand from it, we see that the new determinant is equal to

o, by + kb, cy+ke, b, a,+kay, ¢ +kecy ey a,+ka, by+kb,
b, o ay Cy a, by
b ¢ a, ¢ a, b
=% by ¢, o a; Cy *l a, b,

by using Property (5) for each of the second-order determinants.
. Again by equation (iv), this expression is A.

Remarks

() There are many extensions of Property (5). Three are indicated
in Ex. 11 (a), no. 22; but see the Remark about random manipulations
after no. 29.

(8) The operation by which determinant (vi) above is obtained
from A can be denoted by r, — r, + kr,. With this notation, properties
(4) and (5) can be combined in a single statement:

If  ri>kyri+kyrytksry, then A—>kA (i=1or2or3).

11.25 Examples
Properties (2)—(5) give ways of simplifying a determinant when
"direct application of the definition would be clumsy owing to the large
numbers or heavy algebra involved.
(i) Evaluate 35 29 86
36 31 87 |.
38 32 89
By ry > ry—r,, we get 36 29 86
36 31 87 |.
2 1 2
By ry - ry—r,, this becomes
36 29 86
1 2 11
2 1 2

(These two steps may be condensed into one by saying ‘r; - r;—r,, followed
by rg >r,—1r,’.)

28-2
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The last determinant is now easily expanded, according to the definition, as

2 1 11 1 2
35 —29 + 86
2 2 2 2 1
= 35.3—29.0486(—3)
= —153.
(ii) Prove b+c c¢+a a+bd
a b c =0.
1 1 1

By r, - r,+r,, the determinant is equal to

a+b+c a+b+c a+b+c

a b c
1 1 1
1 1 1

=(a+b+o)|a b ¢ on removing the factor (a + b +c)

from the first row,
1 11

= 0 since the last determinant has two rows identical.

(iii) Evaluate 1 1 1
r Yy z
x® oyt 2?

Direct expansion would be easy, but the following method has the advantage
of giving the result in factorised form.
By ¢, > ¢,—¢,, followed by ¢; > ¢;— ¢, the determinant is equal to

1 0 0
z y—-x 2z—z
xs ys —3 28 —g8
1 0 0
=(y—z)(z—x)| = 1 1
2® yitawytar 2tazdat
by removing the factor y—z from column 2, and z— from column 3. Ex-
pandingt from the first row, the only non-zero term is
1
(y—x)(z=2) Y24yt 22+az+tat
= (y—=) (z—2) (*+a2—y*—xy)
= (y—=x)(z—x)(z—y) (z+y+x) on factorising the last bracket,
= (y—2)(z—x)(x—y) (r+y+2) on arranging cyclically.

+ Before expanding a determinant it is helpful to get zeros in a row or column,
as here. Also see ex. (v) below.
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(iv) Without expanding either determinant, prove

be a a? 1 a® a®

ca b b j=|1 b b

ab ¢ c? 1 ¢ ¢

Introducing a factor @ in row 1, b in row 2, and ¢ in row 3 of the left-hand side,
we have bc a a? abc a? a® b 1 a® at
oo b b |=—labe b b =21 B b
abc abc

ab ¢ c? abc c¢* ¢ 1 ¢ ¢8

on removing the factor abe from the first column of the middle determinant.

(v) ‘Triangular’ determinants.

a 0 O
| B 0
a b, 0 |=ga = a,bycq,
s Cs3
ag by ¢

the product of the elements in the leading diagonal. Similarly, & determinant
whose elements below the leading diagonal are all zero is thus readily evaluated.

Remarks

(o) In expanding a determinant from a given row (or column), the amount
of calculation is reduced if row- and column-operations can be used to introduce
one or more zeros into that row (or column), or indeed elsewhere also.

(B) A determinant having a complete row or column of zeros has the value 0.

Exercise 11(a)
Evaluate the following determinants by direct expansion.

111 11 2141 -2 3 3 -5 2

4 3 2 0 3 4 |. 4 1 -3

5 6 b5 2 1 3 -2 5 1
4 0 h ¢ 5 |2 =z w 6|la b ¢

-k 0 f. Y1 Y Ys |- ¢c a b

-g —=-f O 1 1 1 b ¢ a
7 Show that

1 a a?
cos(n—1)z cosnz cos(n+1l)z | = (l—2acosz+a?)sinz.

sin (n—1)z sinnz sin(n+1l)zx
Verify the following equations by expanding each side.
8l y = 1 1 1 9 | a2 b c? a b ¢
a b ¢ |=|bc ca ab|. ax by cz|=|x y =z [.
ar by cz yz zx Y 1 1 1 bc ca ab
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10 Verify that a+A h g |
A b+A f
g f  c+A

= A3+ (a+b+c) A2+ (be+ca+ab—f2— g2 — h?) A+ (abe + 2fgh — af 2 — bg® — ch?).

Using the properties of determinants, evaluate the following.

11 |1 3 b 12 |6 9 15 131 1 1
2 6 10 |. 1 6 3 4 3 2
5 7 9 3 12 5 5 6 17
14 | 13 14 15 15 | 101 19 1 16 | b—c ¢c—a a—b
6 7 8 102 20 2. c a b
1 2 3 103 20 2 b ¢ a
17 | a—b a+bd a 18]1 1 1 19 |1 = 2?
b—c b+ec b |. 1 = 22 1 22 ot
¢c—a c+a ¢ 1 2% 24 1 28 2f
20 Prove a b ¢
¢ a b|=(a+b+c)(a®+b2+c—be—ca—abd).
b ¢ a

Deduce an identity by comparing this result with that of no. 6.

21 Prove 1 1 1
a b ¢ |=(b—c)(c—a)(a—b).
at b c?
22 Prove a b ¢ a, b +la, ¢ +mb+na,
A=|ay by ¢y |=|ag bytlay cy+mby+na, |.
a; by ¢ ay bgtlag cg+mbg+nag

(This shows that to each column we may add multiples of the preceding columns.)
What are the values of

@)

(i)

23 Solve

ay+Aay + piay
ag+vay

Qg

a,+Ab; by
az+Aby by
ag+Ab; by
3-z

.

2

by + Abjy + pbg
by vbyg
by

¢, +pby
cg+pbg |?
g+ by
4 2
2—z 3
3 4—zx

¢y +Acy+ pics
¢+ veg

Cy

C, - €4+ €3+ €3, and remove 9 —x; then ¥y > ro—1, 13 > ry—1,.]
1 1 2 8: 3



11.3] DETERMINANTS, LINEAR EQUATIONS 401
24 Without expanding, prove that

1 bc be(b+ec) a 1 b+e
1 ca ca(c+a) |=abc| b 1 c+a |,
1 ab abla+bd) ¢ 1 a+bd

and hence evaluate the first determinant.
25 Prove at+x btz c+w
at+y b+y c+y |=(b—c)(c—a)(a—Db)(x—y).
a? b? c?
[Use the result of no. 21.]
26 If A, B, C are the angles of a triangle, prove that
~1 cosC cosB
cosC —1 cosd |=0;
cosB cosd ~1

and by expanding, obtain a relation between cosA, cos B, cosC. [Use
a = beosC +ccos B, ete.]

27 Prove | a;+x, b +y, c¢,+2 a b o T, N 2
a, b, c, =lag by ¢y |+| as by cy
22 by Cy ag by s as by o

State this result as a general property.
28 (i) If each element of A consists of the sum of two terms, prove that A is
equal to the sum of 8 determinants. [See no. 27.]
(ii) If each element of A consists of the sum of three terms, how many
determinants are there in the expression for A as a sum of determinants?
29 By using no. 28 (i), show that

ay+Aby bytpe, o t+vay a b ¢
D=|ag+Ab, bytpc, cytvay, |=(1+Auv)| ay by ¢
ag+Aby  by+pucy cg+vay ag by ¢

Remark. We may be tempted to say that D is formed from A by the opera-
tions ¢; - €; + A¢,, €3 —> €3+ §cy, and ¢; — €5+ vc,. A choice of A, g, v such that
Apv = —1 makes D = 0, and appears to prove that A = 0; but the compound
manipulations of columns just described are a misuse of Property (5) and have
not left the value of A unaltered. It is essential in applying Property (5) or its
extensions to leave at least one row or one column UNALTERED AT EACH STEP,

11.3 Minors and cofactors
11.31 Definitions and notation

The expansions of A from its various rows or columns (written out
in 11.23) all follow a pattern similar to the original definition: the
three terms each consist of an element from the particular row or
column from which the expansion is being made, multiplied by the
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second-order determinant obtained from A by deleting the row and
column which contain that element, and prefixed by the sign + or —.
In some cases the signs run — + — instead of the standard + — +.
We now introduce a notation which will make all this systematic.

Definitions
(@) The minor of an element of A is the second-order determinant

obtained from A by deleting the row and column in which that element

lies. For example, the minors of b, a, are respectively

b, ¢

by ¢

Ay Cy

az C3

(b) The cofactor of the element in the ith row and jth column is
the minor of that element multiplied by (—1)#/. For example, the
cofactor of b;, which is the element in the first row, second column, is

(— 1)t G2 Co|_ | % G|

a; Cq ag ¢z |
a, b a, b
that of ¢, is (— 1)3+3’ LR R e
| ag by a; by

Cofactors are ‘signed minors’.

Notation. We denote the cofactors of a,, by, ¢,, @y, ..., ¢3in A by the
corresponding capital letters 4,, By, 0y, 4,, ..., C;. The various expan-
sions of A can now be written concisely and uniformly: those from the
first, second and third rows are

A =0a,4,+b,B,+¢,0y @’
= a2A2+b2B2+0202 (iii)’
= a3A3+bsBs+0803 (iV)'
and for columns we have
A=a,4,+a,4;+0a34, (v)
= b, B, +b,By;+ b3 B,
= ¢,C;+¢,Cy+¢5C;5.

The reader should verify the last two as in 11.23. These six results are
summarised in the following rule.

The expansion of a determinant from any row (or column) is the sum
of the elements of that row (column) each multiplied by the corresponding
cofactor.
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11.32 Expansion by alien cofactors
Consider the determinant

a, by ¢,
as b, c,
ag by ¢4

It has two rows identical, and consequently is zero. By expanding
from the first row according to the definition, we have

P ey ES P
= ay4,+b, B, +¢,C,,
where A4,, B,, C, are cofactors in ’
lay, b ¢

In this way a total of 12 expressions each equal to zero can be formed by
taking the sum of the elements in any row (or column) each multiplied by
the cofactor of the corresponding element from a DIFFERENT row (or
column). These results, which may be called ‘expansions’ of A by
‘alien’ cofactors, are useful when employed in conjunction with those
of 11.31 for expansion of A by ‘true’ cofactors.

Examples
@) a h g
A=|h b f|.
g f ¢

If we interchange rows and columns, we obtain the same determinant; A is said
to be a symmetric determinant, meaning that it is identical with its transpose.
The cofactors are

A=0bc—f% B=ac—g? C=ab—~?
F =gh—af, G=hf—-bg, H =fg—ch.

Owing to the symmetry, we shall get only three different expansions by true
cofactors, and six expansions by alien cofactors:

A =aA+hH+9gG@ = hH+bB+fF = gG+fF +¢C;
0=aH+hB+gF = aG+hF +gC
=hA+bH+fG = hG+bF +fC
=gA4+fH+cG =gH+fB+cF.
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This determinant arises frequently in coordinate geometry, and the use of
the above relations often saves much algebraic manipulation. The reader is
invited to verify some of them by direct substitution (see 11.22, ex. (ii)).

(ii) The proof of Property (5) in 11.24 can be expressed more concisely in the
notation for cofactors. ‘

| ay+kay by+kby, ¢ +key
Q by Cy
ag bs Cs
= (a; +kay) 4, +(by + kby) By + (1 + ke,) Oy
= (2,4, +b, By +¢,01) +k(ay 4, +by By +¢,C1)
=A+k.0=A.
No. 27 of Ex. 11 (a) can be done in a similar way.

11.4 Determinants and.linear simultaneous equations

We now return to the subject of systems of linear equations (11.1),
and apply our knowledge of determinants to the problem of solving
them.

11.41 Cramer’s rule
Consider again the system ,
g x+by+ez=4d,,
@y +byy + ¢z = d,,
s+ by +cg2 = ds.
Multiply these equations by the cofactors of a,, a,, az in

a b ¢
A=|ay b ¢, |,
a; by ¢
and add: .
(@14, +asdy+agd) x+ (1A, + by Ay +b3A5) y + (6,4 +cady+c345) 2
=dyA;+dyAy+dy A,

The coefficient of x is A, while by alien cofactors the coefficients of
¥y, z are zero. Hence

a, b ¢ idy b ¢
ay by cylx=[dy by ¢ |,
a; by c4 dy by ¢

because the sum d,; 4, +dy,4,+d; A, is the expansion from the first
column of the determinant obtained from A by replacing its first
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column by the elements d,, d,, d; appearing on the right-hand sides
of the given equations. We may therefore write

Az = A®,

where A® denotes A with its first column modified as just indicated.
Multiplying the given equations by the cofactors of b,, by, bg in A
and adding gives

Ay = A®;
and similarly Az = A®,
If A + 0, the solution of the given equations is unique and ist
A® A® A®

Tt A YTR TR

The case A = 0 will be considered later (11.42).

Example
Solve 2¢+4y—3z= 5,
3r—8y+6z= ¢,
82—2y—9z = 12.
Here 2 4 -3 2 2 -1
A=|3 -8 6 |=2x3x|3 —4 2
8 —2 -9 8 -1 -3
0 0 -1
=6x)7 0 2 byf:ﬁ;v:cll—b;”c,-»c,+2c,,
9 -7 -3
) = 6x49;
and 5 4 -3 5 2 -1
AV =] 4 -8 6 | =2x3x2x| 2 -2 1
12 -2 —9 12 -1 -3
7 0 0
=12x| 2 -2 1| byry>r,+r,
12 -1 -3

=12x7(6+1) = 12 x 49.
s z=AWA =2,

1 Strictly, what we have just proved is that, if there are numbers z, y, z which
satisfy the three given equations, then these numbers also satisfy Az = A™, Ay = A®),
Az = A®), What we are now asserting is the converse of this, viz. that if there are
numbers @, y, 2 which satisfy these three derived equations, then they also satisfy
the given equations; see Ex. 11(b), no. 16. The checking of solutions is thus not only
a practical precaution but a logical necessity.
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Similarly 2 5 -3
A®=13 4 6 | =3x49, so y=3%;

8 12 -9

and 2 4 5
A® =13 —8 4|=2x49, so z=1.

8 —2 12

11.42 The case when A =0: inconsistency and indeterminacy
The proof of Cramer’s rule shows that, if the given equations are satisfied by
(@ 9,2), then Az =A®, Ay=A®, Az=A®,
When A = 0 it follows that, if the system possesses a solution, we must have
A® = A® = A® = 0, (i)
If one or more of the determinants AW, A®, A® ig non-zero, there can be no

common solution; the equations are inconsistent.
Assuming that the consistency requirements (i) are satisfied, two cases arise.

(1) At least one cofactor in A 48 non-zero.

Suppose Cy =* 0,T and consider the two equations in two unknowns§ z, y:
a,x+by =dy—cyz,
a,x+byy = dy—cy2.

(i)

Since C, # 0, these can be solved for x and y (as in 11.11) in terms of z. When
2 is given the particular value z,, let the values obtained for x, y be 4, ¥,.

We may actually solve (ii) for « and y, and show by direct substitution that
the values z,, y,, 2, do satisfy the third equation of the system.§ More elegantly,
however, we can prove this as follows.

Since (x, Yo, 2,) satisfies (ii),

120+ b1yt e120—dy =0
and Qe Zo+ bayo+ Ca29—dy = 0.
Suppose that g%+ by Yo+ 32— dy = u.

To show that these values satisfy the third equation of the system we have to
prove u = 0.
Multiply the above equations by the cofactors of the elements in the last

column of a b d

A® =|a, b, dy|,

ag by dg
and add:
(@101 + 030y +a3 Og) 2y + (b, Cy + by Oy + b3 0,) yo + Azg — A® = Cyu.
Hence —A® = Cyu,

+ This can always be made the case if necessary, by renaming the unknowns and
rearranging the equations.

1 Associated with the elements in Cj.

§ The reader may try this for himself.
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the coefficients of z, and y, being zero by ‘alien cofactors’, and A = 0 by
hypothesis. Also C; 3 0 by hypothesis, and A® = 0 by the assumed consistency
of the equations. Therefore u = 0, which proves that the solution of the first
two equations for x, y in terms of z will be also satisfy the third.

Since the value of z is arbitrary, we say that the solution is tndeterminate
with one ‘degree of choice’, or that there are oo! solutions.

(2) Al cofactors in A are zero, but at least one element of A is non-zero.

We may suppose @, + 0. Then the first of the given equations can be solved
for z in terms of y and z. When y, z are given the values y,, z,, let the value
obtained for z be z,; then
_ dy—b1yp—0c1%
=

Zo

and so

Ao(dy — by Yo — C120) + A1 Dy Yy + a1 Ca29 — 0y d
3T+ bafo + Ca2o—dg = 2(dy — by Yo — €12) + @1 b3 Yo + a1 C329 — A1 Ay

ay
- (agdy—a,d,) + C3yo— By 2y
a,
_ 0 dy—a,d,
= a
by hypothesis. Similarly
azd;—a,d
3Ty + by Yo+ Ca2o—ds = _3_1_&__1_3.
1

The given equations will therefore be inconsistent unless

a; dy a, dy

=0 =

lay dy a; dg

If both conditions are satisfied, the solution of the first equation (with y and z
arbitrary) will satisfy the second and third also. The solution is indeterminate
with two ‘degrees of choice’; we may say there are co? solutions.

The results just proved are intuitively evident; for when all cofactors in A
are zero, the coefficients in the left-hand sides of the given equations are
‘proportional’. Clearly the equations will not be consistent unless the right-
hand sides are in the same proportion; and then the three equations are equi-
valent to only one.

In 21.62 we shall illustrate the results of this section geometrically.

11.43 Homogeneous linear equations

(1) When the numbers on the right-hand sides are all zero, we
obtain the homogeneous system

a,x+by+c,z=0,
ayx+byy+cez =0,
a2 +byy+cgz = 0.

Clearly this is always satisfied by z = 0,y = 0,2 = 0.
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THEOREM 1. If the homogeneous system tis satisfied by values of
z, Y, 2 which are NOT ALL ZERO, then A = 0.

Proof. Proceeding as in 11.41, we find that any set of values (z, y, 2)
which satisfies the given equations must also satisfy

Az =0, Ay=0, Az=0

Since z, y, z are not all zero, we must have A = 0.
CoroLLARY I (a). If A % 0, the ONLY solutionisx =0,y = 0,z = 0.

In the particular case z = 1 we obtain the non-homogeneous equations
az+byy+e, =0,
ayx+byy+cy =0,
asx+byy+cg = 0.

If these have a common solution, say (%, ¥,), then the corresponding
homogeneous equations have the solution (z,, %,, 1) which is certainly
not all zero, whatever z,, y, may be. Hence

CorOLLARY I (b). If the non-homogeneous equations possess a common
solution, then A = 0.

A direct proof of this result is indicated in Ex. 11 (b), no. 14.

CoroLLARY I(c). If A+ 0, the mon-homogeneous equations are
inconsistent.

For by Corollary I (@), the only solution of the homogeneous system
is (0,0, 0), so (z, ¥, 1) can never be a solution for any choice of z, y

A is sometimes called the eliminant of the non-homogeneous
system; for A = 0 is the necessary and sufficient relation between the
coefficients in order that the three equations in two unknowns z, y can
be satisfied simultaneously (cf. 10.41).

Geometrically, the results of Corollaries I (b),(c) are associated
with concurrence of lines in a plane (15.42).

As a converse to Theorem I we have

TueoreM II. If A = 0, then the homogeneous equations are satisfied
by values of x, y, z not all zero.

First proof. The discussion in 11.42 shows that, when A = 0, we have a
solution containing at least one arbitrary unknown which can be chosen to be

non-zero. (The homogeneous equations are automatically consistent because
they have the solution (0, 0, 0).)

Second proof. Independently of 11.42, we can prove the theorem by
actually writing down a solution of the required type.
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(1) Supposethat atleast one cofactor in A s non-zero,say B, + 0. Then
2=, y=AB, z=AC, '
is a solution not all zero, where A is non-zero bﬁt otherwise arbitrary.
For a,A3+b,B;+¢,C; = 0 (alien cofactors),
ayAg+byBy+c,C, = 0 (alien cofactors),
and a3 Az +byBy+¢3;0; =0 (A = 0 by hypothesis).

(i) Suppose all cofactors in A are zero, but that at least one element
of A is non-zero, say ¢, + 0. Let x, y have arbitrary non-zero values

x=Ac,, y=puc; (80A =+ 0andyu+0).
Choose z to satisfy the first equation:
z = —(Aay + puby).
With these values, the left-hand side of the second equation is
agAcy + by pic, — coAay —co by
= A(@y0, — @, C5) + p(bycy — by C9)
= AB;—pd,
=0

by hypothesis. Similarly the third equation is satisfied by the above
values.

(2) Two homogeneous equations in three unknowns : solution in ratios.
If A,, B, C; are not all zero, then the equations
a0, x+by+c,z2=0, ayx+byy+cyz=20

have a non-zero solution = A4, y = AB;, z = AC,; this is clear by
alien cofactors, or by proceeding as in 11.11. The solution can be
written

z_Y¥Y_2
4; By Gy
ie. x y 2z
by ¢ | N ¢ O a b
by ¢y Cy QA a; b,

where if a particular denominator is zero, the corresponding numerator
must be interpreted as 0 also.
This simple result will be useful later, especially in Ch. 21.
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Exercise 11(b)
Solve the following systems of equations by use of determinants.

1 2x—y+5z=2, 2 z—y—-z=2, 3 Ix+y—42=13,
z+Ty—10z =1, r—2y—3z2=1, br—~y+3z= b,
z4+y+z=2. 3r—y+6z = 4. z+y—z= 3.

*4 If a, b, c are all different, solve
z+y+z=1, azx+byt+cz=d, a’x+dbly+ch=d
[Use Ex. 11 (a), no. 21.]
5 Prove that the following system of equations is inconsistent:
x+y—2=0, z—4y+22=9, 4dr—-3y+z=17.

[Solve the first two for z, y in terms of 2, and substitute in left-hand side of
the third.]}

6 Show that the solution of the system
z—y—2=0, 32+3y—2=6, 2rx+y—-2=3
is indeterminate, and can be written
z=1+2A, y=1—-A, z=23A,
where A is arbitrary. [Solve the first two equations for x, y in terms of 2.}
7 Show that the solution of
3r+y—2=0, z—4y+22=0. 4x—3y+2z=0
can be written z=2), y="TA, z=13A
8 Find the values of A for which the equations
Azx+y+422=0,
z+Ay+422 =0,
N22+ 42y +(A—-2)2=0

have a solution other than # = y = z = 0. Find also the ratios z:y:2 which
correspond to each of these values of A.

9 Find the values of A for which the equations
3x+Ay =5, Az—3y=—4, 3r—y=-1
are consistent. Solve the equations when A has these values.
10 Solve (if possible) the equations
z+y+kz = 4k,
z+ky+z=-2,
2r+y+z=—2
when (1) £+ 0, k + 1; (ii) k= 0; (iii) k = 1.
11 Eliminate z, y, z from z+by+c2 = 0, ax+y+cz = 0, ax+by+2z = 0.

12 Solve Ex. 11 (a), no. 26 by regarding o = bcos C +ccos B, etc. as homo-
geneous equations for a, b, c.
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13 If the quadratics az?+bx+c =0, px2+gr+7r = 0, Ix?+ma+n = 0 have
a common root, show that

b ¢
p q r|=0.
I m n

[If a is the common root, then the non-homogeneous system of equations
ar+by+c=0, pr+qy+r =0, le+my+n =0 has the solution (a2, x); use
11.43, Corollary I(b).]

14 Find from first principles the condition that the equations
ax+by+e, =0, ayxr+byy+cy =0, azz+byte, =0

are satisfied by the same values of z and y. [Assuming a,b;—azb, * 0, solve
the last two for z, y in the form

x _ -y _ 1
by, ¢, ay ¢, a, by |’
by ¢ as ¢Cs a; by

and substitute these solutions in the first, getting A = 0.]
15 If the homogeneous system
@ x+by+e,z2=0, az+by+c,z=0, azx+byy+cz=20
has a solution other than z = y = z = 0, show by means of no. 14 that A = 0.
[If z & 0, the equations can be written a,(x/z) + b;(y/2) + ¢, = 0, ete.]
16 Verify in detail that when A % 0, the solutions given in 11.41 actually do
satisfy the equations. [The solution is given by
Ar =d,A,+d, A, +d,A,, Ay =d,B,+d,B;+dg By,
Az =4d,C,+d,Cy+d;C,.
Hence
Alayz+byy +¢y2) = dy(ay A, +b, By +¢,01) +do(a A, + 5, By +¢,Cy)
+dy(a; A3 +b, By +¢,Cy)
=d,A

by true and alien cofactors.]

11.5 Factorisation of determinants

In 11.25, ex. (iii) and Ex. 11 (a), no. 21 we have examples in which a
determinant is expressed as a product of factors without expanding
it directly. Here we consider various methods of factorising a deter-
minant. Direct expansion should be used only when other methods
cannot -be further applied.

(i) Use of the Remainder Theorem.

Factorise 1 1 1
A=|la b ¢ |.
az b2 62

29 GPMII
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If A were expanded, we should obtain a polynomial in a, b, ¢ which is homo-
geneous of degree 3 (for each term in the expansion consists of & product of
factors taken one from each row and one from each column). We may regard
this polynomial as & quadratic in a whose coefficients are polynomials in b and c.

When a = b, A = 0 since it has two columns identical. Hence by applying
the Remainder Theorem to A regarded as a polynomial in a, we see that a—b
is a factor.

Similarly b—c¢, ¢c—a are factors. Hence

A=kb—c)(c—a)(a—Db),

where & must be numerical because A and (b—c¢)(c—a)(a—b) are both poly-
nomials in a, b, ¢ of total degree 3. To obtain the value of k, either compare
coefficients of a particular term, say bc?; or substitute particular values for
a,b,c,88ya=0,b=1,c=—1. Wefind k = +1, and so

A= (b—c)(c—a)(a—Db).

(ii) Considerations of symmetry and skewness.
Factorise 1 1 1
A=|a* b c*

as bs 3 !

As in example (i), the Remainder Theorem shows that b—¢, ¢c—a, a—b are
factors. The determinant is a homogeneous polynomial of degree § in a, b, ¢,
while the product (b—c)(c—a)(a—b) is homogeneous of degree 3; hence the
remaining factor P must be a homogeneous polynomial of degree 2 in a, b, c.

Since A and (b—¢)(c—a) (a—b) are both skew functions of a, b, ¢, hence P
must by symmetric in a, b, c.

Hence by 10.22, Remark (f), P must be of the form

k(a?+ b2 +c?) + U(bc+ ca +ab),
where k, ! are numerical.

Clearly the expansion of A contains no term in a4, while the factorised form
does unless & = 0. Hence

A = l(bc+ca+ab) (b—c¢) (¢c—a)(a—Db).
By comparing coefficients (e.g. of b2¢3), or substituting particular values for
a, b, c,wefindl =+ 1. Hence

A = (b—c)(c—a)(a—Db)(bc+ca+abd).

(ili) Use of row- and column-operations to make known factors appear
explicitly.

One example has already been given in 11.25, ex. (iii). As another
we factorise A in ex. (ii) above by this method.

The Remainder Theorem indicates the factors b—a and c—a. By ¢3»>¢;—¢,
and removal of b—a, followed by ¢, -> ¢~ ¢, and removal of ¢—a, we have

1 0 0
a? b+a c+a
| a® bi+ba+a c2+ca+a?

A= (b—a)(c—a)

b+a c+a on expanding by the

= (b—a)(c—
( )(e—a) b24+bata® c®+cata? first row,
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_ ct+a by ¢, » ¢;—c¢, and

= (b—a)(c—a)(b—c) b+c+a cE4ca+ad removal of b—c¢,
ct+a

= (b—a)(c—a)(b—c) bia  ab by 1, > ry—ocry,

= (b—c)(c—a)(a—Db)(bc+ca+ab)
on expanding and rearranging cyclically.

Exercise 11(c)
Factorise the following determinants.

1]1 1 1 2 a b c
a b ¢ a? b? c?
bc ca ab b+c c+a a+bd
3 1 1 4 |la b ¢
a b ¢ a? b ¢ |.
a® b c? bc ca ab
5|1 b+c b+c? 6 1 1 1
1 c¢c+a c*+a? |. b+ec cta a+b
|1 a+b a?+b? (b+¢)? (c+a) (a+bd)?
711 1 1 , *8 a? b2 c?
a? b ¢? |, (b+c¢)? (c+a)? (a+d)? |.
at bt ot be ca ab
11 1 1
a b ¢
at bt ct

Solve the following systems of equations by use of determinants.
10 z+ay+a?z = a?, 11 ax+by+cz=1, *12 ayz+bzx+tcxy=0,
x+by+b% = b3, alr+biy+cz=1, yz+zx+ 2y = Y2,
z+cy+ctz = ¢ adr+b3y+ciz = 1. atfx+ b3y + ctfz = pl.

11.6 Derivative of a determinant

If the elements of A are functions of x, then dA[dz is equal to the sum
" of the three determinants obtained from A by deriving one row at a time :

da, db, dc
a b ¢ a;l d_xl Ej a b ¢ a b ¢
d da, db, dc
d—x a2 bz 62 = a2 bz 62 + ‘d_xz _df 'd—xz + a2 bz 62
: da, db, dc,.
as by ¢y ag by ¢ ag by ¢ %@ 'd;a ‘Jf

29-2
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Proof. 1t is convenient to use the notation (mentioned in 11.22)

A = Z i aibjck
for the expansion of A. Then
dA da, db; dey,
a‘x— = 2 i—(i;bjck’i'z _‘tai—x Ck+2 _-I;aibja;.

The first sum is the expansion of the determinant obtained from A
by replacing the top row a,, b, ¢, by da,[dx, db,/dx, dc,/dz; the other
two sums are interpreted similarly. This proves the theorem.

A similar result holds with ‘rows’ replaced by ‘columns’.

Example

If three rows of a determinant whose elements are polynomials in x become
identical when x = a, then (x—a)? is a factor of A.

First solution. dA[dxz = sum of three determinants each having two rows
the same as A. Therefore when z = a, dA/dz = 0 because each determinant in
the sum has two identical rows. Hence z—a is a factor of dA/dz. Since also
A = 0 when = = a, (x—a)? is a factor of A by 10.43.

Second solution. Subtract any one of the rows from the remaining two rows.
When z = a, each element in each of these new rows vanishes; hence by the
Remainder Theorem z— a is a factor of each row, so (x—a)? is a factor of A.

11.7 Determinants of order 4
The symbol a b, ¢ d;
ay by cy dy
ag by c3 dy
a, by ¢ d,
called a fourth-order determinant, is defined to mean
by ¢ dy ay ¢y dy a, by, d ay by ¢
a,| by ¢g dy |=b|ay ¢g dy|+e | ag by dy |—dijag by ¢
by ¢ dg a, ¢ d, a, b, d a, b, ¢
This is a direct generalisation of the definition of ‘third-order determinant’ in
11.22.%
We mention fourth-order determinants because they arise occasionally in
the coordinate geometry of three dimensions. It can be shown that
(i) the properties (1)—(5) in 11.21 continue to hold;
(ii) the determinant can be expanded from any one row or any one column;
(iii) the concept of ‘cofactors’ is still valid and useful;
(iv) there are expansions by true and alien cofactors.

They can be used to solve systems of four linear equations in four unknowns
by the obvious extension of Cramer’s rule (11.41), and in elimination problerns.

+ Determinants of order n can be defined similarly in terms of those of order n—1.
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The proofs of these statements are not a,lwa,);s easy, and for determinants of
order four or more it is better to approach the subject from a more advanced
point of view than we can consider here.

Exercise 11(d)

Write down the derivative of
1171 2 3 2|1 1 = 3 | loge « af
z 2 ad |. 1 2 22|, l/z 1 2z |.
1 2z 3x? 1 3 2ot 1/z2 0 -2
4 If w’' = du/dz, ete., prove
v v w ©w v w
d ’ ’ ’ ’ ’ 7
— i v o w =Y VvV w
dz
ull ,v/l w// ul" vlll wl”
5 If u, v, w are polynomials in z whose degrees do not exceed 3, prove that
u v w
A=|uw v o
uw” v w

is also a polynomial in x of degree not greater than 3. [Derive A wo x four times,
rejecting zero determinants at each stage.]

6 Prove 1 1 1
32
oy z y z |=2y—=).
w2 yﬂ zZ
7 If 1 1 1
A= rove 6A+3A+8A_0
A ow oy oz

x2 y? 22
[Derive by rows, regarding 8/0x + /9y + 0/0z as operating on the rows.]

8 It vt 6A B8A oA
= 2 2,2 —_—t
A 2?2 y* 22|, find +—+ %

a3 ys 23

Ewvaluate the following fourth-order determinants.

911 0 5 3 *10 1 2 0 3 *11 |2 3 7 5
21 2 1], 0 4 0 -1 7 8 2 9
3 01 2 -3 6 2 4 3 6 7 4
4 0 6 1 0 8 1 2 3 3 9 2
*12 Prove
a h g 1
h b f m
g F o = pA — (AR + Bm? 4 On?® + 2Fmn + 2Gnl + 2Hlm),

Il m n p

where the notation is that of 11.32, ex. (i). [Expand by the last column, then
by the last rows of the third-order determinants so obtained.]
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*13 Solve by determinants:
Sx+ y—>52 = 0,
x +22+3= 0,
y+32—-2t= 0,
z+2y— z—2t = 14,

*14 Prove (i) 1 1 1
r 12 13
2 3t
8 s 98
1

r 12 g

(i)

oo = rb(r—1p3 (12— 1)2(r*—1).

N .
[
p—

PE T
*15 Factorise 1 1 1 1
z a b ¢
z2 a® b2 ¢

3 a® b ¢t

A=

Obtain identities by considering the cofactors of a3, 2%, x in A and the coeffi-
cients of z8, z2, x in the product.

Miscellaneous Exercise 11(e)
1 Without expanding the determinant, explain why

z y 1
# oy 1|=0
g Yy 1

is the equation of the line joining the points (x;, ¥1), (%3, ¥a)-

Without expanding, prove

2 |bc ¢ b2 a
c® ca a®|=abcjc b a
b a® ab b a

3 |at+tdb b+c c+a a b ¢
I+m m+n n+l |=2|1 m n|.
r+q g+r r+p p q T
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Factorise
4|1 bc b+ec 5 1 1 1
1 ca c+a|. a? b2 c? .
1 ab a+b (b+c)t (c+a)® (a+b)?
6 {a a*® l+a® 7 | b%c2+a%d® bec+ad 1
b b 1406 |. c2a?+b%d? ca+bd 1
c ¢t 1+ a?b?+c:d? ab+ed 1
8 Show that a and e+ b+ c are factors of
(b+c)? b2 c?
a? (c+a)? c? ,
a? b2 (a+0b)?

and hence factorise it completely.
9 By factorising the determinants, prove that

2 a+b a®+b2 1 1 0 1 1 1
a+db a?4+b® P+ |=|{a b O0|x|a b c |.
1 ¢ c? 0 0 1 a? b% c?

10 Prove that sin 8, cos 8, sin § — cos 8 are factors of
cos@ sin20 cos2f

sinf sin 20 sin26 |,

sind sin?@ cos?0
and find the remaining factor.

11 Express ap+br ag+bs
cp+dr cq+tds
&8 the sum of four second-order determinants, and hence show that it is equal to
a b P g
c d r 8
(This gives a rule for multiplying two second-order determinants.)
Solve

12 | 2+1 2z 1

z z—2 22 | =0.

1 x x

13 |z 22 a®—2a?®

b b a®—b® [=0 (assuming that a,b, c are non-zero and distinct).

c ¢z a*—ct
14 Prove that the vertices of the triangle formed by the lines
G x+biy+e; =0, ayx+byy+c, =0, ayr+bytec;=0

4, B\ (A, B,) (Aa B,
are (01 0,) (0,’02’ G’ G
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15 Show that g, f, ¢ cannot be found so that the equation

2?2+y2:+ 292+ 2fy+c=0

is satisfied by the values (1, 1), (0, —2), (2, 4) of (z, y). Interpret geometrically.

16 Show that the equations

2c4+3y =4, Sz+Ay=-—1, Az—2y=c

can be consistent whenever c¢ satisfies 4¢2— 156¢c—439 = 0.

17 Discuss the equations

x+y+32=4, z+2y+42 =05 z—y+az=">

when ()a=b=2; (i)a=1,b=2; (li)a=b=1.

18 Find the conditions which A, x must satisfy for the following system of
equations to have (i) a unique solution; (ii) no solution; (iii) an infinity of
solutions: z+y+2=6, x+2y+32=10, z+2y+Az=pu.

19 Prove that, for two values of A, the equations

(A+2)z+4y+3z= 6,
22+ (A+9)y+62 =12,
3x+12y+(A+10)z = £k,

have no solution unless % is suitably chosen. When % is thus chosen, find the'
general solution for each of the values of A.

20 Iff, g, h are functions of z which satisfy the differential equations

daf dg dh
—_— 92 —_—= o —_—= 24 >
=ftg+2h, oo=2042h 8= +8g+24h

find all solutions of the form f = ae?®, g = beA®, h = ceA® (where A is independent
of x), giving all the possible values of A and the corresponding ratios of the
constants a, b, c.

21 If x Yy 2
W(x,y,2)=|% ¥ 2|,
where z, ¥, z are functions of ¢ and & = dx/dt, etc., prove that
W(x,y,z) = 3 W(1l.y/z, z/z).

22 Write |, 1 1 1 1 1 1
Vi=|at b 2|, Vo=|a b ¢ |, Vyg=|a b c¢ |
a® b a® B ¢3 a® b2 2
and z+a xz+b z+c

fle)=| (x+a)* (z+b)* (z+0)?
(x+a)® (x+b)® (z+c)®
(i) Prove fl@) = (z+a)(@+b)(x+c) V.
(ii) Calculatef’(x),f”"(x),f"(x) as determinants, and show f(x) = O forr > 4.
(iii) Using Maclaurin’s theorem, prove
f(x) = f(0) + V o+ Vya? + Vya®,
and deduce that V, (r = 1,2,3) is the coefficient of ar in the expansion of
(x+a) (x+b) (x+c)V;. (Cf. Ex. 11(d), no. 15.)
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12
SERIES

12.1 The binomial theorem

The reader should already be familiar with the work in this section;
we include it for revision and completeness.

12.11 If n is a positive integer,
(x+a)* = zn+Ciz* o+ "Cox™2a® + ... + "C,a™"a" + ... +a™,
where "C, denotes the number of selections of r different objects from n, viz.

nn—1)...(n—r+1)
r! ’

Proof. Consider the product (z+a,)(x+a,)... (x+a,). To expand
it we must multiply each term in each bracket by the terms in the
other brackets. This can be done systematically as follows.

If we multiply the z from each bracket, we obtain ™.

If we multiply the a-term from one bracket and the z-terms from
the other brackets, and do this in all possible ways, we obtain

(@, +ag+... +a,)zm L.
Next, multiplying the a-terms from two brackets and the z-terms
from the rest, and doing this in all possible ways, we obtain
(@ a0 +aya5+ ... +agas+...) 2" 2,

~ where the coefficient of x»—2 consists of the products of different a-
terms taken two at a time. The number of terms in this coefficient is
therefore »C,. ‘

Similarly, multiplying a-terms from three brackets and z-terms
from the rest in all possible ways gives

(a 0503 +a,a,a,+ ...) 2773,
where the number of terms in the coefficient of "3 is *C;,.

In general, if we multiply a-terms from r brackets and z-terms from
the remaining n —r brackets in all possible ways, we get

(@ 05...0,+...) 2",

where the coefficient consists of C, terms.
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Finally, the product obtained by multiplying a-terms from all
brackets is a,a, ... a,.

We now put @, =a, = ... =a, = a. The original product then
becomes (z+a)". In the expansion, the coefficients of z-1, "2,
xm=38, ..., 2", ... become

na, "Cya?, ™Cya?, ..., "C,a", ...,

and the constant term becomes a®. This proves the result stated.

12.12 Properties of the binomial expansion

(1) The expansion of (z+ a)” consists of n+ 1 terms.

(2) The (r + 1)th term is »C,arz™~" and is called the general term.

(3) The coefficients of terms at equal distances from each end of
the expansion are equal.

For the (r+ 1)th term from the beginning is »C,a’2", while the
(r+ 1)th term from the end is *C,_,a""z"; and

n!
= ———-=”0 .
ri(n—r)! e

This fact saves work in numerical calculations.
(4) If n is even, there is a middle term, given by r = }n.
If nis odd, there are two (equal) middle terms given by r = 3(n + 1).
(5) We can obtain the expansion of (z+a)” in ascending powers of
z by interchanging x and a in the result of 12.11: '

ncfr

(x+a)" = a®+"Cia" e +"Cha™ 222 + ... + 27,

This is useful in approximations when z is small compared with a.
(6) If we write —a for a in 12.11, we obtain
(x—a)* = gn—7C ax™ 1 4+ "Cya?x™2— ...
+(=1)y"C.az™r+...+(—1)"a"
12.13 Examples
(i) Find the coefficient of 2° in the expansion of (2x — 3/x)'3.
The general term is
130, ( - g)r (2z)18~r = 13C,( — 3)r 218—ry19-3r,
This will involve x? if 13 — 2r = 9, i.e. if » = 2. Hence the required coefficient is
130,(—3)2211 = 13.38%.212,
(ii) Expand (24 z — 32*)® in ascending powers of x as far as the term in z8.

(2+4+2—322)5 = {24 2(1 — 32)}®
= 25450, 242(1 — 8z) + 5C, 2%%(1 — 32)% + 5C, 2%3(1 — 32)3 + ...,
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where the unwritten terms all contain no power lower than #¢. On ignoring all
such terms, we have

5.4 .4.
32+5.16(a:—3a:’)+2—-i 8:v2(1---6:t:)+5 4.3

3.2.1
= 32 + 80z — 16022 — 44023+ ...
after collecting like terms.

43+ ...

(ili) Find the numerically greatest term in the expansion of (1—-3z) if v = }.

The terms in this expansion are alternately positive and negative, but the
numerically greatest term will be the same as the corresponding term in the
expansion of (1+ 3z)?. If the latter expansion is

Uy +ug +ug e+ .. +ugx?,

Upyy 7! . o 1
then v = %) /(r—l)!(8—r)!<3w)
=§—_—r3m
=—:—rg if z=1

Now u,.,, = u, according a8 u,..,/u, = 1, i.e. according as
3(8—r)
4r

Hence if r < 3, 4,y > u,, 1.0, uy > U, ug > 4y and w, > u,. If 7 > 4, then
Upiy < Uy, 18 Ug < Uy, Ug < U5, otc. These inequalities show that u, is greater
than the other terms. Thus the 4th term is the greatest. Its value is

Cy(—9)°® = —35x(§)*

=1, ie. 24-3r=dr, ie. 33=r.

(iv) Prove rC,_y+"C, = »1C,.
This can be verified directly, or obtained from the identity
(1+z)(1+2)" = (1 +2)*H,

in which the coefficient of 2" on the right is *+1C,. On the left, terms involving
a" will arise from 1 x "C,z"and z x "C,_; "1, 80 the total coefficient is *C, + *C,_,.
The result follows.

When the coefficients "C, in the expansion of (1 + z)* have been calculated,
the above relation shows how to obtain those in (1+z)*+.. The following
scheme, in which each number is formed by adding the two immediately above
it, is called Pascal’s triangle:

(1+2)° 1

(142 1 1

(1+a) 1 2 1
(1+z) 1 3 3 1
(1+az) 1 4 6 4 1

(1+4x)5 1 b 10 10 b 1
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Exercise 12(a)
Write out the expansions of
1 (3z—2)4 2 (x+1/x)5. 3 (1-z)(1+2)
4 Expand (1+ 2z —22)¢ in ascending powers as far as the term in x*,

Write down and simplify the
5 coefficient of x® in (2 —22)8. 6 coefficient of x1° in (1/22 4 x)'°.
7 coefficient of ~20 in (2% — 1/2x2)15.
8 term independent of x in (222 — 1/x)!2.
9 6th term in (3z 4 1/x)'. 10 coefficient of 23 in (2 +z — 3x2).
11 Evaluate correct to 4 places of decimals (i) (1-04)5; (ii) (0-98)°.
12 Find 7 if the coefficient of " in (1 4 x)2° is twice the coefficient of 21,
13 Find the greatest term in the expansion of (5 + 4x)!* when = = 3.
14 Find the greatest coefficient in the expansion of (5 + 4x)L.
15 Obtain an identity by equating coefficients of z* in

(1+2zx+22) (1 +2) = (1 +a)"*2,
16 Consider the coefficient of z" in (1 +2)™ (1 +2)" = (1+2)™** to prove
w0, 20+ "Cp_"C1+ ...+ ™0 "0, = ™+7C, (r < m, r < n).
17 By considering the coefficients of 2" in (1 +z)" (1+ )" = (1 + )", prove
(2n)!
(n1)?”

c2tcitelit ... +el=
where ¢, denotes "C,.
18 Prove
(L+z)rtr—grtl = (1+z)"+2(l+2)" 14 .. 2 (1+2) " +... +a™
Deduce an identity by equating coefficients of 2.
19 Show that (2 +4/3)% + (2 —4/3)? is rational, and find its value.
20 Prove that

n(n—1) n(n—1)(n—2)
T2 @+ 35

z+n(x+y)+ (x+3y)+...to(n+ 1) terms

= 2772z + ny).
12.2 Finite series
The reader will already have met arithmetical and geometrical
progressions, and perhaps other simple series. We now extend this
work.

12.21 Notation and definitions

u, denotes the rth term of a series.{
n
8, = X, u, denotes the sum of the first » terms, and is called the sum
r=1
of the finite series uy, u,, ..., %,.

+ Or sequence in the language of 2.71; but when a sequence is considered in relation
to its sum-sequence s,, it is usually called a series.
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If u, = a,2", then the series is called a power series in x.
Later we shall write s = lim s, provided this limit exists, and call

n—»ow
s the sum to infinity of the infinite series Zu,. For example, the sum of

the first » terms of the geometrical progression

1, =, 2%, 23, ... (x=+1)

is 8, = R

and if |z| < 1, then 2" — 0 when n — 00 (2.72), s0 s, = 1/(1 —x).

12.22 General methods for summing finite series

Given a series, our problem is to find a formula for s,, the sum of
the first n terms. The methods (1)—(3) listed below will be illustrated
in this section.

(1) Derivation or integration of a known finite power series and its
sum-function (followed perhaps by substitution of some particular
value for z).

(2) The difference method. If a function f(r) can be found so that
u, = f(r+1)—f(r),
then by taking r = n, n—1,n—2, ..., 2, 1 in turn we have
u, = f(n+1)—f(n),
Uy = f(n) —f(n—1),
Uy = f(n—1)—f(n—2),

uy = f(3) —f(2),
and uy = f(2) = f(1).
n
By adding, T u, = f(n+1)—f(1).
r=1
(3) Mathematical Induction (for proving a stated result).

(4) Use of complex numbers and de Moivre’s theorem. This method,
applicable to many trigonometric series, will be considered in 14.5.
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12.23 Series involving binomial coefficients
As our standard form of the binomial theorem we take

(14+2)* = 1+"Cix+"Cox® +... +"Coa + ... +- 2™,
Used thus, the numbers
1 = nOO, "01, nOz, ooy 1 = nCn

are called binomial coefficients, and are sometimes written

() 6 ) - C)

and when the index 7 is evident from the context and is the same for
all, they are abbreviated to

_ Cop Ci, Cg  wevy Cpe
Thus (142)* = co+ i+ 22+ ... +c, 2™ (i)

The following methods are useful in dealing with geries involving
binomial coefficients:

() Express the given series as a combination of two or more
binomial expansions.

(b) Obtain the given series by derivation or integration of an
identity based on the standard binomial expansion (i).

(¢) Construct a function in which the given series is the coefficient
of a certain power of z, and evaluate this coefficient in another way.

Examples
(i) Sum Co+ 20,2+ e+ ...+ (n+ 1) c2n.
Method (a)
The sum = (¢o+ ¢, 2+ g2 +... + ™) + (12 + 20522 + ... + e, z").
The first bracket = (1+ x)" The second is

n(n—l)x2+3n(n—l)(n—-2)

nx+ 2 a3+ ... +nx?

21 3!
—1)(n—2
= mc{l+(n—-1)x+ (ﬁ%n———)w’+...+x"—l}
= na(l +x)" L
Therefore the given sum = (1 +z)*+nz(l 4+ 2)" 1 = (1+2)" {14+ (n+1)2}.

Method (b)
Multiply both sides of the standard identity (i) by x:

Co+C a2+ Ce2® + ... +cp 2™ = 2(1 4-2)"
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Derive both sides wo z:

Cot2c,z4+3c, 2+ ... +(n+1)c, 2" = (1+x)* +na(l +x)" L,
which gives the same result as before.

(ii) Sum co+2¢,+3c3+...+(n+1)c,.
This is not a power series, but it can be obtained by putting = 1 in ex. (i):
co+2¢,+3cy+...+(n+1)c, = 2" Yn+2).

1
(iii) Sum co+§cl+§c,+...+mc,,.
Method (b)
Integrate both sides of identity (i) from 0 to 1:
1
2 —(1 n4l ,
l:com+%61w +30s2®+ .. ] [’n+l( +x) :IO
ie. co+§c1+§c,+...+mc"= (2n+1—-1).
Method (a) :
) n  nn=1) n(n—1)...2.1
Th =14—
egivensum =14 ot T3 Tt i nims)
_ 1 (n+1 (n+1l)n (n+l)n(n—1) +1
Ta+ll| 1 1.2 1.2.3 7
1
= ——{(1+1)* -1
Pt CER UMY
1
= —(2%1-1).
n+l( )
(iv) Sum CoCr+CiCa+CaCa+ ... +CpyCoe

Method (c). Consider
(Coteciz+cgx?+...+e ) (Co+ciz+...+c2") = (L+2) (1 +2)7

= (14-z)%n,
Coefficient of "1 on the left-hand side is
Coln1+CiCagt.c.+Cp1Co=CoC;+CCa+...+¢C,_1¢, because ¢, =c,_,.
Coefficient of "1 on the right is
ln(}'"_l = _ﬂ!____,
(n=1)1(n+1)!

which is the value of the required sum.
Ex. 12(a), no. 17 is another illustration of Method (c).

Exercise 12(b)

1 Prove ¢y+c,+cy+...+c, = 2™

2 Prove cy+cytcy+... =+ cg+eg+... = 271 [Put # = —1 in identity
(i), then use no. 1.]
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3 Provec,+2c,7+ 3¢z + ... +nc,z™t = n(1+x)"~1, and deduce the sum of
¢+ 2c5+3c3+ ... +nC,.

4 Find ¢;—2cy,+3¢3—...+(—1)*1nc,.

5 Prove co+3c,+5cy+...+(2n+1)¢c, = (n+1)2". [Method (a); or write
backwards and add, as for summing on A.P.; or derive (1 + 22)".]

6 Prove 2+ 3c,x+4c,x?+...+(n+2)c z" = (1+2)* {2+ (n+2)x}.

7 Prove cyCp+ €16 +€3C 10+ oo +CpyCyq = 270y

8 Using the identity (1+z)" (1—x)" = (1 —~2?)", prove that when n is even,

n!
d—citcl—... (=12 = (—1)’}”{—(W.
What is the value if » is odd?
9 Prove (2n—1)!
c§+2c§+3c§+...+nc: = W.

10 Sum cyey + 2¢,¢5+3c363+ ... +1C,_y Cpe

11 Find 2 +m3c+x4c+ to (n+1) te
1.2% 33273 427 ) termms,

and deduce that

Co ¢ Cy 2n+2_p —3
O L % % to(n+1)terms = —— 2O
Tatagtg et -tomtlite nr)(n+2)

*12 Prove 1 1
e —3cat+3c—... +(—1)"‘1;;0n =14+44+34+... +;.
[er+ o+ ... + ezl = {(1+ )" — 1}/x; integrate from — 1 to 0.]
13 (i) Find the sum of the coefficients in the expansion of (14 3x)8. [Write
(1+32)% = ay+a,z+... +ag2% and put z = 1.]
(ii) Calculate ay+a,+a,+ag and @, +az+as. [See no. 2.]
*14 Let (14+z+22)" = ag+ 00+ a2%+ ... +ag, %",

(i) Deduce other expansions by writing 1/x, —« in place of x, and prove
Ay = Qgp—p-
(ii) Deduce the expansion of (14 a2+ x*)".
(iii) Use the identity (1+22+2%) = (1+2+?) (1 — 2 +?) to prove that
ai—al+ai—...+a}, = a,
(iv) Calculate ay+ag+ ... +gpn-
(v) Calculate ay+ 20, + 3a3+ ... +(2n+1) az,.

12.24 Powers of integers

n
We consider sums of the form Y, 7? where p = 1 or 2 or 3.
r=1

1) % r. This is an A.P., and the usual method gives
r=1 :

%r = in(n+1).

r=1
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n
(2) 2. First method. From the identity

r=1
2r+12—(2r—1)® = 24124+ 2,

we have by putting r = 1,2, ...,n and adding:
n
(2n+1)3—13 = 24 372+ 2n,
r=1

n
24 372 = 8n3 + 12n2 + 4n,

r=1

and 372 = n(n+1) (20 +1).
r=1

Second method. Using
(r+12—1r3=3r24+3r+1

and summing for = 1,2, ...,n, we have

n n
(n+1P3-13=33r2+33r+n.
. r=1 r=1
From (1) this becomes

n
n3+3n2+3n =33 r2+dn(n+1)+n,

r=1

which leads to the result just found.

3) f:rs We have
= {r(r+ P —{(r—1)7}2 = 43,

Summing this for r = 1,2, ...,n, we get

(nn+1)}—0% = 43,19,
r=1
so 3 = dnd(n £ 1),
r=1

Observe that this result is the square of i 7.

r=1
The sum could also be obtained by using the expansion of
(r + 1)*—r* together with the results of (1), (2).

The preceding series have been summed by using the difference
method, described in general in 12.22 (2). We next consider some other
series which can be treated in this way.

30 GPMII
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12.25 ‘Factor’ series
(i) Sum 1.242.3+3.44...+n(n+1).
The general term is %, = 7(r + 1). Consider .
rr+1)(r+2)—(r=Dr(r+1) =rr+1){(r+2)—~(r—1)}
= 3r(r+1) = 3u,.

This is a suitable difference relation, and by summing forr = 1,2,...,n,

3275 r(r+1) =n(n+1)(n+2)—0,
r=1

i.e. > r(r+1) = n(n+1)(n+2).

r=1
(ii) Sum ton terms 1.2.3+2.3.443.4.5+....
The general term ist w, = #(r + 1) (r + 2). Consider
rr+1)(r+2)(r+3)—(r—1)r(r+1)(r+2)
=r(r+1)(r+2){(r+3)—(r—1)}
= dr(r+1)(r+2) = 4u,.

Hence 4% rir+1)(r+2) =n(n+1)(n+2)(n+3)—0,
r=1

i.e. ilr(r+ 1)(r+2) = in(n+1) (n+2)(n+3).
P=

The same method can be used for any series in which the terms consist of
the same number of factors and the first factors in each term form an A.p.
having the same common difference as the successive factors in each term.
To obtain a difference function f(r + 1), insert an extra factor at the end of the
rth term. Observe in exs. (i), (ii) how the sum can be written down from the
form of the general term.

Other series may be reducible to this type.

(iii) Sum 1.2.3+2.3.5+3.4.7+...%0 n terms.
u, =r(r+1)(2r+1)
=r(r+1){2(r+2)-3}
=2r(r+1)(r+2)—3r(r+1).

n n

u =23 1) (r+2)—33 rr+1)
r=1

r=1 r=1
=2xnn+1)(n+2)(n+3)—3x3in(n+1)(n+2) byexs. (i), (i),
= 4n(n+1)2(n+2) after factorisation.
Alternatively, %, = 28+ 8r2 47,

1 Here and elsewhere we write down the stmplest formula which is consistent with
the terms given; cf. Remark (a) in 2.71.
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n n n n
Du,=221r3+32 72+ i r
r=1

r=1 r=1 r=1
=2xin¥(n+1)2+3x n(n+1)(2n+1)+in(n+1)
by the results in 12.24, and this reduces to the expression just found.
The second method is inconvenient if %, is of degree higher than 3 in , unless

n
we know formulae for Y] r4, ete.
r=1

12.26 ‘Fraction’ series
(1) Ezamples.

.

1
ﬂ+ ...to n terms.
1 1 1
Uy = = ————
rir+1) r r+1
by partial fractions, and this decomposition is of the form f(r) —f(r+ 1). The
difference method is therefore applicable, so that on putting r =1,2,...,n

. 1 1

and adding, § 1 1 "
WUy —= —— ——— == ——
=11 n+l n+l
(ii) Sum ! + L + ! +...to n terms
1.2.3 2.3.4 3.4.5 7 )
1

Y ) (r+2)
Partial fractions are less suitable here because their use would lead to three
fractions. We may decompose w, into fwo fractions by omitting the last factor:

1 1 _ (r+2)-r "
rir+1) (r+1)(r+2) rr+D(@E+2)
1 1 n
Hence T2 s
1 1

and the required sum is i TR TY
The terms of the series just considered are the reciprocals of those illustrated
in 12.25. The same method as in ex. (ii) here can be used to obtain a difference
function f(r), viz. write down u, and omit the last factor in the denominator.
This gives u, in the form f(r) — f(r + 1) which, although not exactly the difference
considered in 12.22 (2), does enable the method to be used.
Other series may be reducible to the above.

| 2
| (iii) Sum + 3 + 4 +...to n terms.
| 3.4.56 4.5.6 b5.6.7
" = r+1 _ (r+2)—1
T 42 (r+3)(r+4) T (r+2)(r+3)(r+4)
1 1

T r+3)(r+4) r+2)(r+3)(r+4)
=v,—w,, say.

30-2
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Since 1 1 a1 1
s e AT
Since ! ! = 2 = 2w,
(r+2)(r+3) (r+3)(r+4) (r+2)(r+3)(r+4) "
hence 2 iw, 1 !

T3 A (n+8) (ntd)
After reduction, we find

n n n 5 2n+5
Uy = Vp — Wy = o ——————————————.,
r§1 " r§1 ’ r§1 " 24, 2n+3)(n+4)

(2) Direct use of partial fractions. This method will sum all ‘fraction’
series summable by the difference method, although often less easily.

Example
(iv) Sum 3 5 + ’ +... tonterms
1.2.472.3.5 3.4.67 " onems
2r+1 A B c
uf

D) r+3)  rirritire
and by the usual method (4.62) wefind 4 =}, B=14,C = -3,
2 3 5

bup = ~+ =

r+1 748’
d 1
an 6 u =2 +3) —— —
Z r§1'r 1'21""*‘1 r=17+3
nt+l] n+31]

—22 +3z-_5z -

r=27 r=47

=2(1+%+%+r§4r)+3(5+ +2 L )

p=d n+1
5 n 1+ 1 + 1 + 1
roda” n+1l n+2 n+3

3 5 5 5
n+l n+l n+2 n4+3

=2(1+3+5+33+9+
37 2 5 5
6 n+tl n+2 n+s
n 37 1 5 5
Tu, = —— - - .
=1 36 3(rn+1) 6(rn+2) 6(n+3)
To sum this series by the method of 12.25 we should write «, as
(2r+1)(r+2)
r(r+1)(r+2)(r+3)

in order to make the factors in the denominator suceessive terms of an A.p.,
and then express the numerator in the form

2r2+5r+2 = 2r(r+1)+3r+ 2.
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Thus 2 3 2

U Er D) D9 +3) D+ (r+3)
and each fraction can be dealt with separately.

Success of the ‘partial fraction’ method in this example depends on the fact
that the sum of the numerators of the three partial fractions is zero, so that the

n

major part Y, ; of the sum cancels out. This will always be the case when the
r=4 .

degree of the numerator of %, is at least two lower than that of the denominator.

(3) Sum to infinity. The series in 12.24, 12.25 clearly have no
limiting sum, but those in exs. (i)-(iv) above do possess such a sum
to infinity (12.21), viz.

0L @) G g @) 35

12.27 Some trigonometric series
(1) Series of sines or cosines of angles in A.P.
(i) O =cosa+cos(x+pf)+cos(x+28)+...+cos{a+(n—1)8}.
Multiply both sides by 2sin 8; then since
2sin}fu, = 2sin$f cos{a+(r—1) B}
=sin{a+(r—3}) f}—sin{a+(r—§) £}

by using one of the formulae for products into sums, and this expression is of
the form f(r + 1) —f(r), we have by summing for r = 1,2, ...,n:

2sin §#0 = sin{a+(n—3) B} —sin{x— 34},
= 2cos{a+$n—1)fsining
by converting the difference into a product.

0=cos{a+§(n—l)ﬂ}§?]£%;—f.
(ii) S =sina+sin(a+p)+sin(x+28)+...+sinf{e+(n—1)p}.
The result S =sin{a+ §n—1)F} :ln%;f

can be obtained in various ways:

(a) Put a—3n for « in ex. (i). (This shows that the multiplier 2sin 3£ for
finding C must also suit; S.)

(b) Multiply both sides by 2sin 3£ (the same factor as for C).

(¢) Derive the result of ex. (i) wo «.

(iii) ¢’ = cosa—cos(a+f)+cos(a+28)—...+(—D*tecos{a+(n—1)p},
8’ = sina —sin (¢ + ) +sin (¢ +28)—... +(—1)*1sin {a-+(n—1) £}.

These can be deduced from exs. (i), (ii) respectively by writing 7 + f for f;
or found directly by using the multiplier 2sin (7 + 8) = 2cos 4.
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(2) Other useful differences. Results like

tanf = cot & — 2 cot 26,
cosec 20 = cot  — cot 26,
tan @ sec 20 = tan 20 —tan @

are easily verified, and can be used to sum suitable trigonometric
series.

Example
(iv) Sum tanasecﬁ+tan€seca+tangéecg+ to n terms.
2 4 2 8 4 '
7]
u,=tan§_sec27—_l.

If we write 6/2r for @ in the last difference just mentioned, we see that

6
Up = ta,n2—'—_—1-—tsm§.
n 6 e
= tanf—tan_—.
. §1u' anzn
The sum to infinity is tan 6.

. Exercise 12(c)
Find a formula for each of the following sums.
1 134234, .4+(2n+1)3% 2 12432452 +...4+(2n—1)%

3 12—22432-424... to n terms if n is (i) even; (ii) odd. Give a formula
which includes both cases.

4 Prove that the sum of the products in pairs (without repetitions) of the
first n integers is Fyn(n?—1) (3n +2). [If 8, is the required sum, then

n 2 n
( 21‘) = 28,4+ X ]
r=1 r=1 n

5 Expand (r+ 1)*—r4, Using the formulae for Xr, 372, deduce Y, 72.

r=1
n
6 (i) By writing 72 = r(r + 1) —r, obtain 3,72 by using 12.25.
r=1
n
(ii) Writing 73 = »(r2—1) 47 = (r—1)7(r + 1) +r, obtain )] 3.
r=1

2n
7 Calculate Y, r(r+1).
r=n+1

8 Express 7(r+ 2)(2r—1) in the form ar(r + 1) (r+2)+br(r+1) +cr+d, and
n
hence calculate Y, 7(r+2) (2r—1).
r=1

9 Calculate f:(n—r) (r+1). [u, =n{r+1)—r(r+1).]
r=1
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Sum the following series to n terms, and find the sum to infinity when it exists.
10 12.2+22.34+3%.4+....

11 8.6.7+5.7.94+7.9.11+.... [Method of 12.25.]

13 13 23 18 23 33
12 1.4.7+2.5.84+3.6.9+.... 13—+ AL i

) 3
1 11 1 1 1

W atoatiet 5 ssmtsaetrenit
%41 1 " 7

16 3——+ 17 o

1) (r+2) 3577579 7.9.11

Use partial fractions to find the following sums, and also the sum to infinity.

LA | L r+1
8,§1r(r+2)' 19 ,§1m+2)(r+3)‘

Sum the following to n terms.
20 cos@ sin 20 + cos 26 sin 36 + cos 30 sin 40 4-....
[cosr0 sin (r+ 1) 6 = #{sin (2r+1) 6 +sin 6}.]
21 cos?f+cos?20+cos280+.... [cos?d = }+3cos26.]
22 cosec 20 + cosec 40 + cosec 80+ ...
23 tanf+2tan20+4tan46+8tan 80 +....
24 sec?0+ 48ec? 20+ 16sec2 40+ 64sec?89+.... [Use no. 23.]
25 sec O sec 20 +sec 20 sec 30 +sec 30 sec 40 +.... [tan(r+1)0—tanrf = ....]
26 Prove that tan—1(r+ 1) —tan~'7 = cot—1(1+r+72), and hence sum
cot—23+cot—17+cot—213+-... +cot™1 (1 +n+n?).
‘What is the sum to infinity?

12.28 Mathematical Induction

This is a general principle for proving a given statement which
involves a positive integer n.

Let ¢, be such a statement. For example, ¢, might be ‘n(n+ 1) is
always divisible by 2°, or ‘the sum ton termsof 1.1!42.2!+3.3! + ...
is (n+1)1—1".

If by assuming the truth of ¢, we can prove the truth of ¢,
(i.e. if the statement for any particular integer always implies the
corresponding statement for the next integer), and if ¢, is known to
be true, then ¢, is true for all positive integers n. For by taking k& = 1,
we have that ¢, implies ¢,; taking k = 2, ¢, implies ¢;; and we can
continue thus until any positive integer » is reached.

The principle holds for negative integers also, since a statement
about —n is equivalent to a statement about the positive integer «.
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Examples
(i) Prove ﬁr” = in(n+1)(2n+1).
r=1
Suppose that, for some integer %,
30t = 3h(o+1) 26+ 1),
r=1

This is the induction hypothesis.

k+1 k
Then 372 = 3 r2+(k+1)?
r=1 r=1

= }k(k+1)(2k+1)+(k+1)2 Dby the induction hypothesis,

= $(k+1){k(2k+ 1)+ 6(k+1)}

= $k+1){2k2+ Tk + 6}

= ¥k+1)(k+2)(2k+3),
which is similar to the induction hypothesis, but with k+ 1 instead of k. Hence
if the result holds for n = k, then it also holds for n = k+1.

When 7 =1, the result is true because the left-hand side is 12 = 1 and the

right-hand side is $.1.2.3 = 1.

Hence by Mathematical Induction the statement is true for all positive
integers n.

(ii) Prozze that 32"+ 7 i3 always divisible by 8.
Write f(n) = 327+ 7, and consider
Fllo+1) = (k) = (3%+24+7) = (33%47)
— gek+2_ 32k
= 32%(32—1) = 8. 3%,
If f(k) is divisible by 8, this relation shows that f(% + 1) is also divisible by 8.

Also f(1) = 32+ 7 = 16, which is in fact divisible by 8. Hence the result follows
by Induction.

(iii) Prove the binomial theorem by Induction.
Suppose the theorem holds for some particular value n = k:
(z+a)k = 2%+ *C x*a+... + *Cox*~"a’+ ... + ak.

Then in the expansion of (z+a)*t! = (z+a)(x+a)¥, the coefficient of

Zt—rtlig (forr = 1,2,..., k)
¥Q ar +*C,_af = ¥1C,ar
by 12.13, ex. (iv). This expression is also correct when » = 0 or £+ 1. Hence
(T + @)kl = g+l BHQ akg + ... + B0, gh~Hgr 4 .., + gkt

which is similar to the induction hypothesis, but with k+ 1 for %.
The result holds (trivially) when n = 1. The binomial theorem follows by
Induction.

(iv) Letbniz’s theorem on d"(uv)/dx" was proved by Induction in 6.62.
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Remark. Mathematical Induction applied to the summation of a
series is equivalent to the difference method. For to prove that, for
all vositive i

Positive integers n, Uy U+ oo+, = f(0),
we assume that, for some £k,
u1+‘u2+ can +uk =f(k),
and then show that
wyt+ugt .. Uy, = fk+1).

Since  uy+Ug+ ... + Uy = (Uyp+Ust ... +U) Uy = FE) + Upyq,
this is equivalent to showing that
Uy = flk+ 1) —f(k),

so that f(r) is a suitable difference function.

Exercise 12(d)
Prove the following results by Mathematical Induction.
1 1+34+5+...+(2n—1) = n
2 1.1142.2143.31+...ton terms = (n+1)!—1.
3 12442472 4...+(3n—2)° = In(6n2—3n—1).

Rt T —1 _e\n-1
4 38 5.7+7.9 ... to n terms = +(—1)

5 (i) n(n+1) (n+2) is divisible by 6; (ii) n®+ 2n is divisible by 3.
6 (i) 9"—1 is divisible by 8; (ii) 9" — 8n—1 is divisible by 64.

2n+3"

7 27144201 ig divisible by z+v.
[x2n+1 + y2n+1 = xz(zzn—l + yzn—l) —_ yzn—1(x2 —_ yS)]

8 If2u, = a+b, 2u, = b+uy, and 2u, s = U, + %,y (0 = 1), prove
3u, = afl = (-} +d{2+(- "}

and find lim «,,.
n~>»00
9 Prove
i 16
cos 0 sec @+ cos 20 sec2 0+ ... +cosnf sec”§ = M -
sin @ cos" @

[Use the answer to construct a difference function: see Remark in 12.28.]
10 Prove
cosec a cosec (a + ) + cosec (a + B) cosec (& + 2f)
+cosec (& + 2) cosec (o + 36) + ...

to n terms is cosec f{cot & — cot (& +nf)}.
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12.3 Infinite series
12.31 Behaviour of an infinite series

n
(1) Convergence. If s, = 3 u, and lim s, exists and has the value s,

r=1 n—>o
we defined s to be the sum to infinity of the infinite series Zu, (12.21).
We also say that the series Zu, converges (or is convergent) to s, and
write :

@
§= 2 U,
r=1
or 8= Uy +Uy+Ug+ ..o

It will be clear from the definition that s is not a ‘sum’ in the
ordinary sense of ‘the result of adding a number of terms’, but is the
limit of such a sum. If we attempt to treat infinite series like finite
ones (i.e. without consideration of convergence), then paradoxical
results may arise.

For example, suppose « > 0 and consider the series
1 1 1
1+z+-+2?+—+a?+—+....
z z x

One is tempted to regard this as the sum of two infinite ¢.p.’s

1 1 1
l+z+a22+23%... and “4—+4...,
x x? x

whose sums to infinity are (see end of 12.21)
1 1
a 1=

-z ¢ 11z~ -1

which add up to zero. We thus appear to have a series of positive terms whose
sum to infinity is zero. The explanation is simply that the first ¢.p. converges
(i.e. possesses a sum to infinity) only when |z| < 1, while the second converges
only when |1/z| < 1, i.e. |z| > 1; there is no value of # for which both converge,
and hence the original series has no sum to infinity.

Another example is

1+3+3+54+3+8+... = (143 +3+.)+31+3+3+..0),

from which 3 A14+3+34+..)=14+3+32+...,
ie. FHi+i+..=14+34+2+...,

a result clearly wrong since each term on the left is less than the corresponding
one on the right.

When s, does not tend to a limit when n — oo, there are various
possibilities, illustrated by the following example.
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(2) Theinfinite . p. 1+x+22+23+....
Ifz + 1, then s, = (1—2")/(1 —z). Hence by 2.72
(i) if —1 < z < 1, then 2 - 0 when n - o0, and so s, > 1/(1 —x);
(ii) if z > 1, then 2" > 00 and 80 s, —> +00; We say 8, is properly
divergent to + o0;
(iii) if z < —1, then 2® — 400 when 7 is even and z" - — o0 when
n is odd: s, oscillates infinitely;
(iv) if £ = —1, the series is 1 —1+1—1+..., so that s, =0 if n
is even and s, = 1 if n is odd: s,, oscillates finitely (between 0 and 1).
If = 1, the formula for s, is meaningless, but the series becomes
14+1+1+...,s0 that s, = n and s, — + oo when n — co: s,, is properly
divergent to + co.

(3) Divergence. In this book we shall not give a detailed study of the
behaviour of infinite series, and it will usually be sufficient if we
employ the term ‘divergent’ to mean ‘not convergent’. Thus our
‘divergence’ will cover proper divergence to + o, proper divergence
to — oo, finite oscillation and infinite oscillation.

We abbreviate ‘Zu, is convergent’ to ‘Zu, ¢’; similarly, ‘Zu, D’
means ‘Xu, is divergent (i.e. not convergent)’.

12.32 General properties
(1) If Zu, converges, then limu, = 0.

n—>wo
For by hypothesis s, - s when n - co; and since u,, = 8,—$, 4,
therefore %, > s —8 = 0 when n — co.

(2) The converse of this resull is false: if u, — 0, the series Zu, may
not converge.

Example
2(1/r) <8 divergent.
We have 1+43>3+3=1%
O e A A k!

+fst -+ > =14 ete,
so that 8 >1+4+4=14+2x4,
sg>1+3+3+3=1+3x3
814> 1+4x3, ete,
and in general 80> 1+px4.

Hence when p — 00, 849 — c0.
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Given a positive integer n>1, a positive integer p can be found so that
27-1 < n < 2%, and therefore (since all terms of the series are positive)
8op—1< 8y < Sgp.

When n - o0, also 2? - o0, i.e. p — 00; hence s, - co0 because 8yp— - 0. This

shows that the series 143 +3+34..., :

sometimes called the harmonic series, is (properly) divergent (to + o), although
%, = 1/n - 0 when n - co.

Remark. We have shown that «, — 0 does not imply convergence
of Zu,; but if u, + 0 when n - 00, Zu, must be divergent (otherwise (1)
would be contradicted).

Thus Zr/(r+ 1) D because u,, = n/(n+ 1) > 1 when n — co.

(3) Convergence or divergence of a series is unaltered by

(@) removing a FINITE number of terms from the series;

(b) multiplying every term by a NON-ZERO constant.

These facts are clear from the properties of limits (2.3). Property
(a) is useful when the first few terms of a series behave irregularly,
and also shows that any test for convergence which we shall give need
apply only ‘for all » > m’, where m is a fixed number; i.e. from some
definite term of the series onwards.

(4) If Zu,, Zv, both converge, to sums s, t respectively, then X(au, + bv,)
converges to as+ bt, a and b being constants.
For if

n n
8y = zur’ tn = Zvr’
r=1 r=1

n
then > (ou,+bv,) = as, + b,
r=1
—>as+bt when n-—>o0, by 2.3, (ii).

Similarly, if one of Zu,, Zv, converges and the other diverges, then
Z(ou,+bv,) diverges. However, if both diverge, X(ou,+bv,) may
possibly converge, e.g. if u, = r+27", v, =7, a = 1, b = —1; roughly
speaking, the divergent parts may cancel out.

(5) If s, steadily increases when n increases, then Zu, either converges
or properly diverges to + co. If also s, is bounded, then Zu,. is convergent.

This follows from 2.77. In particular, if Xu, consists of positive
terms, then s, is certainly increasing since s, ; =8,+%,,; > 8,.
Hence

a series of positive terms is either convergent or properly divergent to + co.
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The behaviour of the series considered in 12.2 can be determined
directly because a formula for s, can be found; cf. 12.26 (3). When
no such formula is known, we resort to fests for convergence or
divergence. Although these may show that the series converges, they
do not help us to evaluate its sum to infinity. k

We recall that (2.71) the statement ‘lims, = s’ means that if any

n—>ow
positive number ¢ however small is given, then a number m (in general
depending on €) can be found such that, for all n > m,

s§—e <8, <ste

12.4 Series of positive terms

We suppose all terms of our series are positive in this section. Series
whose terms are all negative can be included by first removing the
factor — 1 (see 12.32 (3) (d)).

12.41 Comparison tests

In these we compare the given series Tu, with a series v, whose
behaviour (c or p) is known. Roughly, a series which is less term by
term than a convergent series is also convergent, and one greater than
a divergent series term by term is divergent.

(1) Test for convergence.
If 3v, 0, and
EITHER (a) %, < cv, for all n > m, where ¢ is a positive constant,

OR (b) Yim (u,[v,) =1> 0,

then also Zu, c.
Proof of (a). If §lv, = t, then since all the terms v, are positive,
o
v+ 0+ ...+v, <t forall n.
By hypothesis,
U+ Ui+ oo+ Uy < C(WV,+Vp g+ .0 +0,)
<cwy+... v, +,)

< ct.
Hence for all n > m,

8y = UpF oo Uyt oo Uy < U+ ...+ Uy, b = K, say.

Therefore by 12.32 (5), Zu, c.



440 SERIES [12.41

Proof of (b). Given ¢ > 0 however small, there is a number m such

that u
l——e<v—"<l+e forall n > m

The right-hand inequality shows that
u, < (l+e)v, foralln>m.
Taking ¢ = I+ ¢ in (@), the result follows.

(2) Test for (proper) divergence.
If Zv, », and
EITHER (@) %, > cv, for all n > m, where c is a positive constant,
OR (b) lim (u,/v,) =1 > 0 (but NoT I = 0),7
n->w

then Zu, D.
Proof of (a). Since v, D, then (see 12.32 (5))
U+ Vpq+...+v, >00 when n - co.
By hypothesis,
U+ Uiy F oo+ Uy 2 €(V + 0+ ... +0,)
—>00 when = - o0.
8y =U+...+Uy+...+u%, >0 when n-—>o0,
i.e. Zu, D.
Proof of (b). From the left-hand inequality in the proof of (1) (),
U, > (l—¢€)v, forall n > m.
If I > 0, then I—¢ > 0 for all positive ¢ sufficiently small; we may
take ¢ = I —ein (a), and the result follows.

(3) Standard comparison series are
(i) the a.p. Zar, which cif 0 < z < 1and pifx > 1 (12.31(2));
(ii) the harmonic series Z(1/r) which » (12.32(2)).
Another is X(1/r?); for various values of p this gives a whole family
of series, which we now consider.
(iii) X(1/r?)cif p > lomdnifp <1

1 1 .
(a) 11 +toptgpt e + p—t there being n terms,
1 1 1 1 1
<\w)*tl@ts) ettt

there being n brackets;

t The result may be false if I =0; e.g. Z(1/r) p (12.32(2)) and (1/n%)/(1/n)— 0,
yet Z(1/r? ¢ (see (3) below).
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the inequality is clear since the first, second, third, ... terms in s, have
been replaced by brackets containing 1, 2, 4, ... positive terms. Making
an upper estimate for the contents of each bracket, we have whenp > 0:

sn'<T1,—,+(l+—1—)+(l+ +1)+ (n brackets)

20 " 2v 4p 40
1 2 4 8
1p+21’+411+8p+ (n terms)
1 1 \2 1 \3
=14+ 9n—1 + (21)_1) + (217—1) +... (n tBrmS)
1\~ 1 .
=l / -5 on summing the a.P.,
<= forall nif p > 1
-3 allnifp > 1,

since then the common ratio (3)?! is less than 1.

Hence when p > 1, s, is bounded; so by 12.32 (5) the series c.

(b) The case p = 1 gives the harmonic series already investigated
in 12.32(2).

(c) If p < 1, then n? < n when n > 1, so that 1/n? > 1/n. Hence
by comparison with %(1/r), 3(1/r?) D when p < 1.

Alternatively, if 0 < p < 1 then (without referring to the harmonic
series)

‘ 1

1 1
- —=ml-D
Sn=Tptgptetop> X p=n"P >0 when n — o0,

If p < 0, then clearly s, —> co. Hence X(1/r?) D when p < 1.

Examples
(i) Examine the series
51 + 7 + 9 +
1.3.4 2.4.56 3.5.6
2n+3
Here u,—m.

[When n is large, u, = 2n/(n.n.n) = 2/n?; so for large n, u, behaves like 2/n?.
It is therefore likely that Tu, ¢, and we try the comparison test for convergence.]
Using the ‘inequality* form of the test,
o 2¥3 _ 3n
"Tn(n+2)(n+3) n.n.n
i.e. u, < 8/n? if n > 3. Taking v, = 1/n?, then u, < 3v, for n > 3, and Zv,0
(being the series Z(1/r?) when p = 2). Hence Zu, © also.

if n>3,
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Alternatively, using the ‘limit’ form of the test, and taking v, = 1/n?® as

before, o, ( 2n+3 1)_2
n—>o00 Un _n—mo n(n+2)(n+3)/ n? )
{
Hence Zu,, ¢ because v, C.

1 142 14243

e T
142+...4+n _ dn(n+1) n+l
nd - ns T oopet

(ii) Bzxamine

Uy =

[When 7 is large, u,, = n/2n% = 1/2n, so that probably Zu, D.]
We have

n 1
u,,>§—7;§—2—7; for all n,
so if v, = 1/n, then u,, > }v,. Therefore Xu, diverges with Zv,,.
Alternatively,
lim “* = lim ("':1/ ) 3
n>0¥s  n-owo \ 20

and the same result follows.

Exercise 12(e)
Show that the following series do not converge because u, 4> 0.
2 1 +x’_ 1 +:v4+ 1 +sx‘_
x x

1 3+445+...
1

D T

Nr+1)—yr

Using the result of 12.41 (8) (iii), state which of the following series converge.

41 1
+¢2+¢3+ > +2¢2 3¢3
6 +3+3+3+ L lely
TR V8 21" J64
Use the comparison test to ascertain the behaviour of the following series.
1 1 1
8 l+3+ds+ds+drt ... O nritwErstagst
1 2 3 4 5 6
10 % +3’+ +e 1 1.2.3+2.3.4+3.4.5+""
Ar 1 2r+1
T—.
12 zr+1 13 J(ra e 14 1
5" 556 b 55 b\5 5 5\ n-56
15 2’—"—!. I:Ifn>5,u,,_i.§...;b_ (i.ﬁ...g)— <E’(é) .]
1 1 1 . .
16 Prove that + + +..cife>1,pif0<z< 1.

142 1422 1428
17 Use the argument in no. 15 to prove that X(z"/r!)c for allz = 0..
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18 If Zu,c, prove that Zu? and X{u,/(1 +«,)} also c. [Use the comparison test.]

1\2 u, 1
19 If Zulc, prove I(w,/r) also C. [(u,,—;) > 0, therefore 2;—” <ul +$.:|

when 7> 2.

. ifv th
20 (i) Venf:y at 5 < (r 07
1
Deds t =y — =2—--<2.
educe tha Z < +r§2 - l)r p”
(This shows that 2(1/r2) converges and has sum to infinity s < 2.)
. 1 1 1 1
*(11) Prove m < ;—m < e when r2>=1,
and deduce tha.t
1 1 1 1 1
1
+++(n1)z 2<+2++

(This shows that 1/(n+1) < 8—8, < 1/n. Taking n = 100, we see that the first
hundred terms give s correct to only two decimal places. It can be proved that
8 = }m?: see 14.34, ex. (ii).)

*21 If Zu,C, prove u, ., + U, g+ ... +Upip, > 0 when n - co, where p is any
Jized positive integer.

12.42 d@’Alembert’s ratio test
The tests in 12.41 required an auxiliary series Xv,; that now to

be stated involves only the given series itself.
Zu, ts convergent if

EITHER (@) %1/, < k < 1 for all n > m, where k is constant,

OR (0) im (u,,/u,)=1<1.
n—row

.

Zu, is (properly) divergent if
EITHER (a') U, /4, > 1foralln > m
OR (') im (%,,,/u,) =1> 1.
n—>wo
Proofs
(2) By hypothesis,
Uy < Ky,
Upp g < KUy < kPu,, from the previous line;
Upyg < KUy s < KPu,, from the previous line;
and so on. Hence each term of the series
U1t Ymye t+ Upigt .-
is less than or equal to the corresponding term of the a.p.
kw,, + K, + By, + ...,

3z GPMII
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which converges since 0 < £ < 1 by hypothesis. Therefore Zu, con-
verges, since the first m terms u;+wu,+...+wu, do not affect its
behaviour. ’

(b) Given ¢ > 0, there is a number m such that

%
l—-e<21 < ]t+e forall n>m.
n

Since I < 1, we have I+¢ < 1 for all ¢ sufficiently small. Taking
k =l+e in the right-hand part of the inequality, the result follows
from (a). ‘

(a’) By hypothesis,

Uiy Z Wy Uppig 2 Uy 2 Uy, etc.

Hence for n > m we have u, > u,, so that «,+ 0 when n — co,
proving non-convergence of Xu,. The series must actually be properly
divergent since it consists of positive terms (12.32 (5)).

(b") Since I > 1, we have I—¢ > 1 for all ¢ sufficiently small. The
left-hand part of the inequality in the proof of (b) then shows

u
241 -1 foralln > m,

n

and the result follows by (a).

Remarks

(¢x) The COMPLETE condition (a) s essential : the result may be false
if we merely have

%
2t -1 forall n > m.
n

Thus although Z(1/r) D,
Yny 1 1 M <1 forall n.
*, n+lfn n+l

No fixed k independent of n can be found for which

z—b—”i—lsk and k<1
n

because n/(n+ 1) can be made as close to 1 as we please by taking n
sufficiently large.
(8) The tests give no information if lim (u, ,/u,) = 1. For example,
n~>co

2(1/r)D and X (1/r%) c, but in both cases u,,,/u, — 1 when n — co.
If use of the ‘limit’ form of the ratio test leads to the limit 1, then
we must revert to the ‘inequality’ form since this can give a decision
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when the ‘limit’ form is inconclusive. For a power series it is usually
best to treat this exceptional case from first principles.

(y) No conclusion can be drawn from non-existence of the limit of
Uy 11/%y,. Thus for the seriest

1 1 1+1+1 1
2+42+23 25+ +..

successive values of u,, ,/u, are
1 1 1 1
E;’ 2’ '2—5, 237 '2?’ 25’ 2_9’
so that u,,/u, oscillates infinitely. The series is nevertheless con-

vergent (because, roughly, it is the sum of two convergent G.p.’s):

1 1 1 1 1 1
S2p = 2+42+23+ +.. +22n—1+1ﬁ

_11 1 1\»1 11 1+ +1n_1
=3 'l'?-i-...+~2‘—2 +42 +42 2

iG] st

1 1
1-o 1-5

2%, ..,

—%+4 when n—o0;

1
and} Sam+1 = 830+ 5anra 11+0 when 7 - oo.
Hence the series converges, and has sum to infinity 11. Observe also
that for tRis series u,, does not steadily decrease to zero when n — co

Example

Examine the series 1 + 2z + 322+ 42® + ... for all positive z.
If x = 0, the series is 1+ 0+ 0+ ..., which converges to the sum 1.
If 2 % 0, then since u, = nz"},
u’n+1 n+1

uﬂ
The ratio test shows that if 0 < x < 1 the series ¢, and if z > 1 the series D.

——2x—>x when n - .

t1 The reader may feel that an ‘irregular’ series like this is not a fair example;
but in fact the terms are constructed according to a quite definite law: ‘the rth term
is the rth power of 2 or 4, according as 7 is odd or even’. In this example it is easy to
write down a formula for w,, viz. 4, = {3+ (—1)"}".
1 See the footnote on p. 451.
31-2
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- Whenz = 1, the test gives no information; but then theseriesis 1 +2+3+...,
which clearly p.

Hence the series ¢ when 0 < 2 < 1, D when z > 1. (See Ex. 12(f), no. 12 for
a method of finding the sum to infinity.)

Exercise 12(f)

Test the following series.
22 32 42 2 22 23

1 1+1|+2'+3'+ 2 §;+§;+E+....

3 If a and b are positive, prove that

a+1 (a+1)(2a+1) (a+1)(2a+1)(3a+1)
b+1 (b+1)(26+1)  (b+1)(26+1)(3b+1)

converges if @ < b and divergesifa > b

Test the following, assuming x to be positive.

x x? a8

4 l+ -|- +3'+ 5 ﬁ+ﬁ+ﬂ+”"
6 +x2+ A 7 l+2 I
x 371 p

8 x4+ 28224333 443244 ....
9 1+(1+3)z+(1+3%)a2+(1+3%)a23+....
Ly =, =y
z+1 x+2 243
11 (i) «}w+;i 2+;:i:zw”+;:i:2:;x‘+... (x £ 1).
*(ii) By showing that
1.3.5...(2n—1) _ 1.2.4...(2n—2) 1

2.4.6..(2n) ~ 2.4.6..(2n) _2n’ .

prove that the series in (i) diverges when = = 1.

*12 By deriving the identity .
1 nt

1+z+a?+...+a"=—— )
l-2 1—-2

obtain a formula for 1+2x+ 322+ ...+n2"?, and hence verify from first
principles the conclusions of the worked example in 12.42.

12.43 Speed of convergence of a series
A series is said to be ‘rapidly convergent’ if s, gives a good approxi-
mation to the sum to infinity s for fairly small values of n. In this

senso the 6.2, l+z+a2+a3+... (|z] <1)
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is rapidly convergent when |x| is small, since

_l—a™ "
T T T 1=
xn
|s—8,] =%,

and || is small for small n. It converges less rapidly when z is just
less than 1. On the other hand, Ex. 12(e), no. 20 (ii) shows that
2(1/r?) converges slowly.

These notions are necessarily vague since the terms ‘a good approxi-
mation’, ‘fairly small n’ have not been specified; they are relative
and not absolute notions, and can become precise only after we have
selected some definite series by which to fix our ‘standard of rapidity’.
However, they are useful in a descriptive way.

The essence of the comparison test for convergence (12.41 (1)) is
that if Zu, is term by term less than a convergent series ¢cXv,, then
2u, will converge. We may say that ‘Zu, converges at least as rapidly
as 2v,;’ and if lim (u,/v,) = 0, that ‘Xu, converges faster than Xv,,’.

n—>w

Similar language would describe relative rates of divergence.

d’Alembert’s test for convergence consists fundamentally of com-
paring the given series Zu, with a ¢.p. If Zu, happens to converge less
rapidly than any .p., the test is ineffective; this is the case with
Z(1/r?) (and indeed with any of the series X (1/r?) for p>1), and is
usually so when lim (u,_,/%,) = 1.

Tests of greater delicacy than d’Alembert’s can be formulated, but
no finality can be attained since it can be shown that, however
delicate the test, a series can be constructed for which that test is
ineffective. In 12.44 we give a test which is of no fixed standard of
delicacy, and which deals particularly easily with series like X (1/77),
2{1/r(logr)?} for which the ratio test is indecisive.

12.44 Infinite series and infinite integrals

The definitions of ‘sum to infinity of a series’ (as the limit of a
certain ‘finite’ sum, 12.21) and ‘value of an infinite integral’ (as the
limit of the corresponding ‘finite’ integral, 4.92) are somewhat similar.
For a certain class of functions f(x) we now give a theorem relating

Sfe) and | f@)dt,
r=1 1

in which convergence of one implies that of the other.
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(1) The Maclaurin—Cauchy integral test.
If f(x) ts continuous and steadily decreases to zero for z > 1, then

§} f(r) and J.w [(¢) dt either both converge or both diverge. When they con-
r=1 1
verge, o ’ © ©
[Tr0d < E500 < [ s00@+50).
r=
Proof. Since f(x) steadily decreases to zero, we have f(x) > 0 for all

n x
z > 1,s0that Y f(r), f f(t)dt are increasing functions of n, x respectively.
re=1 1

vk
y=f(2)
o] 1 2 3 4 n-1n @
Fig. 124
Ifr <z <r+1, then
Jr+1) < fx) < f(r).
Integrating this form r to r+1,
r+1
fe+n) < [ fa)de < oo, ()
Summing forr = 1,2,...,2—1,
n n n—-1
% f0) < [rae <"Z 0. (i
r=2 1 r=1

The argument is illustrated geometrically by considering the sums of
the inner and outer rectangles in fig. 124.

(@) Suppose f N f(t) dt exists. Since jnf(t) dt is an increasing function
‘ 1 1

of n, it cannot attain its limit; therefore for each =,
n 00
f Ftydt < f flb)de.
1 1

From the left of (i), 3 f(r) < f “ p) e,
r=2 1
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80 that'g}2 f(r) is bounded. Hence (2.77) Zf(r) converges, and
250 < [ a1,

It now follows from the right of (ii) by letting n — oo that

[[roa < 10
(b) If Zf(r) converges, then
n—1 L
S 1) < B0
By the right of (ii), f "feydt < 3 f),
1 r=1

so that fﬁf(t) dt is bounded and therefore tends to a limit, say I, when
1
n - 00,

Sincef fmf(t) dt is an increasing function of z, thenif n—1 < X < =,
1

n—1 X
fl foydt < fl f(ztz) it < fl" (t)d. «,
When X — o0, also » - 00, and sof J@)dt >1, i.e.f f(t)dt exists.
1 1

(c) Since the series converges when and only when the integral
exists, it follows that divergence of one implies divergence of the
other.

(2) The function n n
$(n) E'Zlf(r)— lf(t)dt

steadily decreases as m increases, and lies between 0 and f(1) for all n.
Proof. By (ii), n n
0 < X flr)— | f®)dt < f(1);
r=1 1
n
1 This step is necessary because the fact that f f(t)dt— 1 when n-—> {n being
1
-]
a positive integer) does not by itself imply the existence of f f(¢)dt (the limit of
1
X
f f(t)dt when X - o0, X being a continuous variable): cf. Remark (8) in 2.71. Thus
1
W
[ncos mtdt = 0 for all integers n, and hence its limit when n— 0 is 0; but[ cos mtdt
J1

1
X 1
does not exist since [ cos wtdt == sin 7X, which oscillates when X —» co.
J1
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also n+1
P(n+1)—¢(n) = f(n+ 1)—L ftydt < 0

by using (i). Hence ¢(n) decreases as » increases, but 0 < ¢(n) < f(1).
CoroLLARY. It follows that lim ¢(n) exists and is non-negative.

n—>w0
The corollary is particularly interesting when both series and
integral diverge, as in example (i) following.

Examples
(i) Taking f(x) = 1/ in the corollary,

1
¢(n) ] 1+-§+%+...+%—logn.

Hence ¢(n) tends to some limit y (Buler’s constant: cf. 4.43 (8)) when n — co,
and0 <y <1

(ii) Discuss the series Z(1/r?) by means of the integral test.
With f(x) = 1/x?, then if p £ 1,

[ ftydt = —— (1 X741,
while if p = 1, f f()dt =log X.
1

If p > 1, the integral tends to 1/(p—1), and if 0 < p < 1 the integral tends
to + 00, when X — co. Hence Z(1/r?)cif p > 1, D if p < 1 (cf. 12.41(3)).
The general theorem also shows that when p > 1,

b
r— 1 ,.glr” pr- p—1"

In fact Z — > 1, which is a better lower estimate when p > 2.
r=17

Exercise 12(g)

1 1
P ——— di i i —_—,
1 Prove zfrlog( 5 diverges 2 Discuss Zr {Togr)?

3 If a > 0, prove that the sum to infinity of

1,1 1
a? (a+1)2 (a+2)2

lies between 1/a and 1/a + 1/a2.
4 If a > 0, find numbers between which the sum to infinity of

+...

1 1
E§+a2-‘|-12+a2+2=+
must lie.
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5 Sketch the graph of y = logz, and show that

n
rloga:dx < Ylogr <fnlogxdx+logn.
1 r=2 1

Deduce the value of lim {(n!)V"/n}.

n—->wo

12.5 Series of positive and negative terms

The special difficulty with such series is that s, is not necessarily
a steadily increasing function of #, so that the principle in 12.32 (5)
does not apply directly.

12.51 Alternating signs (theorem: of Leibniz)

The simplest kind of series with terms of mixed sign is that in which
the signs are alternately +, —.

If (i) the terms are alternately +, —, say

Uy — Ug+ Ug— Uy + ...
where each u is positive,

(i) Uiy < Up)
. i.e. u, STEADILY decreases to zero,
(i) limwu, =0

n—>wo

then the series 1s convergent.
Prog
f San = (U —Ug) + (Ug —Ug) + ... + (Ugy 1 — Ugp).
By (ii), each bracket is positive. Hence s,, is a steadily increasing
positive function of n. Also

Sop = Uy — (Ug—Ug) — (Ug—Ug) — ... — (Ugp_p — Upp_1) — Uy}

each bracket is positive by (ii), and u,, > 0 by (i). Hence s,, < ;.
Therefore by 2.77 s,,, tends to a limit, say I, when n - oo,

Further,
Son+1 = Son T Ugni,

and since lim u,, ., = 0 by (iii), therefore
n—>wo
lims,,,, =lims,, =1.
n—>wo n—>w
Hence, whether » is even or odd, s, — { when n — oo, i.e. the series
converges.
1 The fact that sy, — I does not by itself show that the series converges. Thus for

the series 1—1+4+1—~1+..., 8, =0 and so lim s,, = 0; but the series does not con-
verge since 8y, ,, = 1: it oscillates finitely.
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Example
1—3}4+4—1+... converges because the terms satisfy all three conditions of
the theorem. The argument used in the proof shows that the sum to infinity
lies between 4 and 1; for s,, < u; = 1, and
= Q=B+ @B+t (g —g) > -D =
Also see Ex. 12 (h), no. 8.

If any one of the conditions (i), (ii), (iii) is omitted, the series may not con-
verge. Thus since the series

T+3+5+3+.., d+i+i+d%+...
D, ¢ respectively, the ‘difference series’
1-3+3—3+3-3+3— st ..
diverges (12.32 (4)); conditions (i), (iii) are satisfied by it, but not (ii).

12.52 Absolute convergence
Consider the pairs of series

1-3+3-%+..., 1+3+3+%+..
1 1 1 1 1 1
1—2—2+3—2—4—2+..., 1+ +32+ +..

The first of each pair converges, by 12.51; but in the corresponding
series where all the terms are made positive, the first diverges (being
the harmonic series) while the second still converges (12.41 (3)).

It is convenient to distinguish between series which remain con-
vergent when all their terms are made positive, and those which do not.

Definition. If the series Xu, is such thatt X |u,| converges, then Zu,
is said to be absolutely convergent (a.c.).

Observe that nothing has been asserted in this definition about the
convergence of Xu, itself; it is a different series X |u,| (i.e. Zu, with
all its terms made positive) which converges.

Examples
(i) 1—-3+%—%+...isnot A.c. because 1+%+3%+1+... diverges.
(i) 1—-3+%1—%+...is A0 because 1+~}+l+l+... converges.

1 1 1 . 1 1
(iii) 1— +32 42+...ISA.C. because 14— +32+ + . converges.

1 See 1.14 for the meaning of |z].
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The importance of absolutely convergent series is (roughly) that
they behave like series of positive terms. For example, compare
Theorems II, ITI in 12.54.

Although the definition states nothing about the convergence of
Zu,, we can in fact prove that an absolutely convergent series is also
convergent in the ordinary sense. More explicitly—

If 2 |u,| converges, then Zu, also converges.

Before giving the proof of this, we illustrate the underlying idea.
Suppose that the series Zu, in question is

Uy + Uy — Ug + Uy — Uy — Ug+ 0 — Ug + Ug— Uyg+ Upy + U + ...
Consider the following two series:

U +uy+0 +u,+0 +0 +04+0 +uyg+0 +uyy +upp+...,

0 +0 +uy+0 +u;+ug+0+ug+0 +u,,+0 +0 +....

The first is formed by replacing all negative terms in the given series
by 0’s; the second is obtained by replacing all positive terms by 0 and
changing the sign of the negative ones.

Compare each of these series of positive terms with the series

u1+u2+u3+u4+u5+u6+0+u8+u9+u10+u11+u12+ ooy
which is convergent by hypothesis. The comparison test (12.41 (1))
with ¢ = 1 shows that each series converges. Hence by 12.32 (4) their
difference (which is the given series) also converges.
General proof. Consider the series

U+ 0+ v3+..., Wytwytwgt...,
where we define

u, if wu,>0,
v, =
0 if #.<0,

—u, if wu, <0,

and w, =
0 if w,>0.

(Thus relative to the given series Zu,, Zv, is the non-negative part, and
Sw, is the non-positive part with its sign changed.)

Clearly v, < |«,| and w, < |4,|. Comparing each of Zv,, Zw, (which
are series of positive terms) with Z |u,| which is given to be convergent,
the comparison test with ¢ = 1 shows that they converge. Hence
3(v,—w,) converges; i.e., since u, = v, —w, for all r, Zu, converges.

The property just proved gives a possible test for convergence of a
geries of terms with mixed signs, viz. prove it s A.c. For example,

1 1 1 1 1 1
QT +
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converges because it is A.c. However, the test is ‘one-sided’ because
a series which is not A.c. may yet be c;e.g. 1—3+1—4+...isnot a.c.,
but is in fact c. Such a series may be called conditionally convergent
(c.0.) or semi-convergent.

Examples
*(iv) The ‘triangle inequality’t for infinite series.
If Zu, is A.c., its sum to infinity is numerically less than or equal to the sum of
2 |uy:
Sul<3
r=1 r=1

With the above notation we have u, = v,—w,, |4, = v,+w,. Also, since
Zv,, Zw, converge,

||

o0
Z U= | X o,— 2w,
r=1 r=1 r=1
0 00
< X, 2 sincet both these sums are positive,
r=1 r=1
0
=2 ul
- or=1

The device used in this example can also be employed to prove that

b b
[ECERNEIES
where b > a and f(z) is continuous; cf. Ex. 7(a), no. 5. Define
flx) if f(z) >0, —f(x) if f(x) <O,
0 if flx)<0 0 if fz)=0

Then f,(x), fy(x) are non-negative functions, and

[f@)] = fl@) +fal2), fl@) = filz) —fo(@).

Slw) = { d fyle) = {

Also
J/]

f o) da
Qa

b b
= \ f Filw) do— f fow) da

b (/
< f Si(z)de+ f Jo(x)dz, both integrals being non-negative,}
a a

b b
- f (Fi@) +fu@} do = f \/(a)| da.
a a

(v) Discuss the series

14242454
””2 31

Sor all values of x.
If = 0, the series is 1+0+ 0+ ..., which converges to the sum 1.

t See 1.14, (i). t By 4.15(9).
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If > 0, all the terms are positive and we can use d’Alembert’s ratio test:

Upyy 2" [ 2" @

’

Uy n! (n—l)!=n

Unt1

thus since n <3} foralln> 22,
n
or alternatively, since lim 2t = o,
n>wo Up

the series converges for all positive z.

If x < 0, write x = —y so that y > 0. The series becomes?

vy
1_y+2—!_ﬁ+ ceen

By the case just considered, this is a.c. for all positive y, and hence it is also c.
The given series therefore converges for all negative z.

Consequently, the series converges for all x.

N.B.—From 12.32(1) it follows that (cf. 2.74)

n
lim a:_’ =0 for all x independent of n.

n—>w0

x? 28 ot

(vi) Discuss the series x——2—+§—z+...
for all values of x.
¥ ¥y
First consider the series y+§+§+z+...,

where y > 0. If y = 0, the series is 0+0+0+... which converges to sum 0.
If y + 0, the ratio test gives
M:ﬂ Z:Ly_)y when n — 00;
u, n+l/n n+l
80 if 0 < y < 1 the series converges.

The y-series therefore converges for 0 < y < 1; hence the given series in x
is a.c. for —1 < z < 1, and thus also converges in this range.

If x = 1, the given series is 1 -} +%—1%+..., which ¢ (12.51).

If £ = —1, the series is —1—}—1—%—..., which is properly divergent to
— oo (it is — 1 times the harmoniec series).

If 2 < —1, each term of the series is negative, but its numerical value is
greater than that of the corresponding term of 1+4%+ 314 .... Hence the series
properly diverges to — co.

I$x > 1, then = 14-¢ where ¢ > 0, and

"= (1+c)" = 1+nc+in(n—1)c*+... > In(n—1)cl,

since all the terms of this binomial expansion are positive. Therefore
xﬂ wﬂ
;>§(n—l)c“ and sof Z-H 0 when 7 ->c0.

The series cannot converge in this case.

o] _[of®
D
1 This also follows at once from 2.73.

1 In fact we are considering 1— ||+ +.e
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Summarising, the series ¢ for —1 <z <1, and D for t < —1 or x> 1. The
range —1 < z < 1 is called the interval of convergence of this series.

12.53 The modified ratio test

We introduce here a modification of d’Alembert’s ratio test which
makes it directly applicable to series whose terms are not all positive.

If ETTHER (a) z—%:il < k < 1 for all n > m, where k is constant,
n
or (b) lim |¥n+1| —7 < 1,
n—>rwo un

then Zu, converges.

For either condition ensures that X |u,| ¢, being what is obtained by
applying the original ratio test to this series. Hence X, is A.c., and
therefore o.

If BITHER (2') |22 > 1foralln > m,

n

Un+1

OR (b') lim

n—»x

=17>1,

n

then Zu, 1s divergent (i.e. not convergent).

(At first sight all we can say is that X |u,| D, i.e. that Zu, isnot a.c.;
this does not prevent X, from converging.) :

Condition (a’) implies that |u,| > |u,|for all n > m, so that u,, 4> 0
when n —>co. Given € > 0, condition (b’) implies that there is a
number m such that |u,,,| > (I—¢) |u,| for all » > m, and the result
follows from (a’) as in the proofs in 12.42.

Examples

(i) Discuss the series of 12.52, ex. (vi) in this way.
If « = 0 the series converges to sum 0. Since u, = (~1)*~12%/n, we have
when z + 0 that s

n+l}
uﬂ

——a| > || when = - co.

n+1

Hence if |2| < 1 the series c; if [¢| > 1 the series D. Only the cases [z| = 1
remain to be investigated, and these are treated separately as before.

(ii) Discuss the series :
m(m— 1)w2+m(m— 1)(m—2)

2! 3! Bt

14+me+

If x = 0, the series is 1 + 0+ 0+ ..., which converges to 1.
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If z &+ 0, then from

= mim—1)...(m—n+ l)x"
n!

m—n

n+41

Ynt1
uﬂ

we find

x| > |—2z| = || when = - oo,

Hence if || < 1 the series 0; if || > 1 the series D.
The cases |z| = 1 cannot be decided by means of the tests at our disposal.
However, it can be proved that

ifzx=1, the series c if m > —1 and pifm<-—1;

and ife=—1, theseriescifm >0 and Difm<0.

12.54 Regrouping and rearrangement of terms of an infinite series
"~ When dealing with finite sums it is permissible to group the terms in any
manner by means of brackets, or to rearrange the order of the terms, without

thereby altering the value of the sum. These properties may not extend to
infinite series.t

Example
(i) The series (1-H+(1-1)+(1-1)+...,
i.e. 0+0+4+0+...,
converges to zero. If we remove the brackets we obtain the series
1-141-1+1-1+..,,
which diverges since s, oscillates between 0 and 1. If we insert brackets as
1+(-1+)+(-1+D1)+...,

we obtain 1+0+0+...
which converges to 1.

This example shows that, in general, brackets cannot be removed or inserted
in an infinite series without altering its behaviour or its sum. However, the
following result is easily proved by using the definition of ‘sum to infinity’.

TaEOREM 1. If Zu, converges to s, then it will still converge to 8 when brackets
are inserted in any way.

Proof. Let n; < ny < ny < ... be any infinite sequence of positive integers,
and write .

t1=2u,, iy = 2 Uy
r=1

Then we wish to prove that X¢; converges to s.
Given € > 0, there corresponds a number N such that, for all n > N,

n
Z Up—3
r=1

<e. (i)

t They will hold if we bracket or rearrange only a finite number of the terms;
but this is relatively trivial.
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Let 7, be the first integer of the above sequence which is greater than or equal
to N. Then (i) holds for all n > n,, and so

nm

2 Uy —$

r=1

<e (ii)

for all m = p (since the integers 1,4, 7, ... are a selection from the set of all
integers greater than n,). '
Since terms of a ‘finite’ sum can be grouped in any way,

21 Up = 2 (73

re

Hence result (ii) becomes
m
> t;—s| <e forallm=p;
i=1

i.e. Xt; converges to s.

The converse of this theorem is false: if a series with the terms grouped is
convergent, the series obtained by removing the brackets may be divergent.
This is illustrated by ex. (i), which also shows that there is no general theorem
for divergent series like Theorem I; but see Ex. 12 (h), no. 14.

Example
(ii) If s, denotes the sum of n terms of the series
1-+3-3+3—
and t,, denotes the sum of n terms of
R It St ST S S e

(formed from the first by taking one positive term followed by two negative ones)
then the sum to infinity of the second is BALF that of the first.

Consider
tgn=(1—H—-14+3-3-3+3—H) —&+...+ __1_____L __1_
3n 2 e 8 B~ 10 12 m—1 4n—2 n
1 1
- 1 - =
LI R vy b

= %82n'

The first series is known to converge, say to s; hence when n - o, 83, —> &
and therefore 3, > 4s. Since also

1
lynt1 = tan+2—n‘:i -3

: > s
Im+1 4n+2 ’

therefore ¢, - 4s when n — oo; this is the result stated.

Example (ii) illustrates that, if a convergent series is rearranged, the new
series may converge to a sum different from the original. It can be proved that
a given non-absolutely convergent series can be rearranged so that the new series
will converge to any pre-assigned limit ; and it can be arranged to diverge (Riemann’s
rearrangement theorem). For series of positive terms the situation is simpler;
and we shall prove that the same is true of A.c. series.

and lante = lan+ 5
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TueoreEM II. A convergent series of positive terms can be rearranged in any
manner without altering the convergence or the sum to infinity.
Proof. Let Zu, be a convergent series of positive terms, with sum to infinity s.

Let Zu, be a rearrangement of Zu,, and write s, = Z U
r=1
Each term of Zu, appears somewhere in Zu,. Hence for a given n, there is

a number m such that s, < s,,. Since Z u, is a steadily increasing function of n
r=1

(all u, = 0), hence s,, < ¢ and 80 8, < s. Since g is also a steadily increasing
function of n (because all u, > 0), therefore by 2.77 s, tends to a limit s’ where
8’ < s. Thus Zu; certainly com:erges, and its sum is &’.

Similarly, since each term of Su, appears somewhere in Zu/, the preceding
argument will prove that ¢ < s’. Consequently s’ = s.

N.B.—Observe that we could not prove ¢ < &’ first because we do not know
whether Zu, converges or not until we have proved s, < s.

THEOREM III. An A.cC. series can be rearranged in any manner without altering
the absolute convergence or the sum to infinity.

Proof. If Zu, is a rearrangement of Xu,, then certainly Zu, is A.c. since
Zlu|isa rearra,ngement of X |,|, and Theorem II a.pphes

We use the notation v,, w, of 12.52, and its extension v}, w, for the rearranged
geries Tu,. Then clearly Zv,, Zw, are respectively the rearrangements of 2v,,
Zw, entailed by the rea.rrangement Su, of Zu,. Since Zv,, Zw, are convergent
seriest of positive terms, Theorem II gives

va = Z'v,. and Ew = Zw,.

r=1 r=1 r=1

f (v, —w,) = Z'v - Zw = Zv, zlw,='§lu,.

1 r=1

1 r

M8

r

We shall not discuss the rearrangement of infinite series any further; but
enough has been said to caution the reader against treating infinite series
analogously to finite ones.

Exercise 12(h)
Determine the behaviour of the following series.
1 1-3+3-%+.... 2 ————st— =+

3
1-3/2+3%/3-1/44+.... 4 }-44+5-84 0124,
logt+log4+logs+logs+logs+logii+....
State which of the series in nos. 1-3 are A.c.
Show.that X {(cosrz)/r?} converges for all values of .
Under the conditions of Leibniz’s rule (12.51), prove %, —4; < 8 < %;.

Discuss the behaviour of the following series for all values of x.

0 z-T4Z T, 10 z— wa+xs i
x 3 5 7 cece 3 5' 7! aoce

x 2! o®

11 §+§§+B+....

W NN LW

1 See the General Proof in 12.52.

32 GPMII
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*12 = (1+%+%+..;+;)x’.

[E"_tl=‘_’ﬁ}x={1+

n 1
x -, where a, = 3, - |.
uﬂ aﬂy

(n+1)a, r=1T

n!

*13 » "
S NI T T
*14 If u, > O for all r, prove that (with the notation of 12.54, Theorem I)

%, [The cases |z| = 2 may be omitted.]

m n m+1
if Ny <N <Ny, then 26 < Du.< Y,
i=1 =1 i=1

and deduce that the converse of Theorem I holds for a series of pbsitivé terms.
*15 If Zu, is conditionally convergent, prove that (with the notation of 12.52)
n n
2w, and Zw, diverge to + co. I:Ifs,, = Zu,t, = Z|u,|, thens, >gandt, > +o0;
r=1 r=1

n n
also X v, = $i,+82), 2w, = i, —8,).
r=1 r=1

*16 Iftheseries1—1+31—1+1—... isrearranged as
I+3—3+3+3-%+...

(taking two positive terms followed by one negative term), prove that the
sum of the new series is £ times that of the original. [Prove 4;, = 8,, + $38;,.]

12.6 Maclaurin’s series

12.61 Expansion of a function as a power series

We proved in 6.52 that if f(¢) satisfies certain conditions of con-
tinuity and derivability for 0 < ¢ < z, then

an—1

1) = JO) 8 (O)+ 51" (O)+ 4 L2 5 f0(0) + Ry,
where (see 6.54 (1))

z—? ™ (6x) (Lagrange’s remainder),
Rn(x) = x”(l _0),”_1

n=1)] S®(@z) (Cauchy’s remainder)

and 6 is some function of # and » (in general not the same function in
the two forms of remainder) which satisfies 0 < 6 < 1.

In 6.53 we showed that (under suitable conditions) this result gives
a polynomial a,pprokimation to f(z). We now use it to represent f(x)
by an infinite series.

Suppose that for each positive integer n, however large, f®™(t) is
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continuois for 0 <¢ < x; then the conditions for validity of
Maclaurin’s theorem hold for all orders. Consider the infinite series

(0)+af"(0)+ 2,f (0)+ -+ f‘““’(0)+ @

( 1>'
We have  s,(z) =f(0) +f'(0) +.. +( 1),f‘""1’<0),

= f(x) — R,(x)
by Maclaurin’s theorem. If R,(x) — 0 when n — co (perhaps only for
some range of values of , say |z| < c), then

8,(®) > f(x) when n-—>oo, for |z|<c;

hence the infinite series (i) converges and has sum-function f(z) when
|z] < c. We write

(=) =f(0)+xf’(0)+§f”(0)+ +§—;f(’"(0)+ ve (2] <€), (D)

and call this series the expansion of f(x) as a power series in x over the
interval |z| < c.

This idea will now be applied to obtain series for some of the
elementary functions; the results are important, and will be discussed
in detail in 12.7. We use the results on nth derivatives obtained in 6.6;
only when such convenient formulae are known is direct discussion
of R, (x) possible.

12.62 Expansion of some elementary functions

(1) The exponential series.
If f(x) = ¢®, then f®(z) =e* for every positive integer n, and
Lagrange’s remainder is

R, (x) = —e“ (0<8<1).

Since z"/n! - 0 when n — oo for any fixed value of = (2.74), therefore
R, (x) - 0 when n — oo, for all z. As f(')(O) = 1 for each r,

—l+x+;2'+§:+ + + (all x).
(2) The sine and cosine series.
If f(z) =sinz, then f(”)(x) = sin (z + 4nm), and Lagrange 8 re-

mainder is
R, (x) = sm (Ox + fnm),

|Rn()| < I|—>0 when n-—>o0, forall 2.

32-2
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Also f@)(0) = 0 and f@-1(0) = (— 1)~ for each 7, s0
x5

s oy K1
siny = ¥ — 3itE vt (=1) = l)!+ (all x).
Similarly
a2 xt g X
cosxy =1 —5itEi -+(=1) @r= 2)' (all x).

(3) The logarithmic series.

If f(z) =log (1+x), then f™(zx)= (—1)»1{(n—1)!/(1+2)"} and
80 f™(0) = (—1)»1(n—1)!. We are supposing = > — 1, for otherwise
log (1 +¢) would not be defined in part of the range x < ¢ < 0.

When 0 < z < 1, Lagrange’s remainder

n
B, (x) = (- 1)"_1%(1ﬁ;);b

shows that |R,(x)| < %—-> 0 when =n->o0.

When z < 0, —z/(1 + 6x) may be greater than 1, so that Lagrange’s

remainder 1/ —g \»
n\l+0x

might tend to —oo when n — oo (2.73); insufficient is known about
the behaviour of ¢ as a function of =.
Cauchy’s remainder can be written

(11 X (1-0\"1
Ry@) = (~ 1 g (7o)

n
go that if -1 <z < 0, |R,(x)] < £

1-|z]

because (1 —0)/(1 + 6x) is a positive proper fraction and (see 1.14)

[1+0z] > 1-0 x| > 1—|z|.

Hence B, (x) - 0 when n — co. (Cauchy’s remainder also covers the
case 0 < « < 1 already treated.) Thus

¥% &3 il
log (1+«) = x—§+§—...+(—-l)'-lr—!+... (-1<a< ).

Since the series converges only for — 1 < = < 1 (see 12.52, ex. (vi)),
this is the most that can be proved concerning its sum to infinity.
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(4) The binomaal series.
If f(x) = (1 +x)™, then

J®x) =m(m—1)... m—n+1)(1+z)™ "

If m is a positive integer, Maclaurin’s formula terminates when
n =m+ 1, and gives the usual binomial expansion containing m + 1
terms. If m is not a positive integer, then f®™(x) will be continuous
when n > m only if x > —1.

Cauchy’s remainder can be written

_mm—1)...(m—n+1) w1 {10\
Bul@) = (n—1)! 2"(1 +0z) 1(1+0x)
When |z| < 1, :
an=(m_1)"'(m—n+l)x"—>0 when n — o0,
m—1)!

by 2.75. Also (1—0)/(1 + 6z) is a positive proper fraction, and
: (1+ x|yt if m>1,

(1 +6z)ym ! <
(1—|el)y1 if m<1.

| R, ()| < |m|(1 + ||y |a,] >0 when = —oo.
Hence
(1+x)m=l+mx+m(—'g,_—l)x2+...
-1)...(m-r+1
4 mim )r,(m ;r+ Jars...

ds1<1).

If m is a fraction with even denominator, (1+ )™ has two values
which are equal and opposite. Here we intend the positive value, since
the sum of the series when z = 0 is clearly + 1.

As in (3), Lagrange’s remainder would cover only the range
0 < 2 < 1. We omit consideration of the cases = + 1.

(5) Gregory’s series for tan—1z,
If f(z) = tan—1z, then
S(x) = (—1)*1(n~1)!(14+2%)~trsin (ncot-1z),
80 fe(0) =0 and fer-(0) = (—1)y1(2r—2)!.

Lagrange’s remainder is

R (x) = fi:;( —1)7-1(1 4 6%?)~#ngin (n cot—1 (Ox)),

1
so by 2.73  |Ru(=)] < ;|x|" -0 when n->oo if [z|<1.
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Hence P X1
Ay = X e fo—— 1) —
tan—lxy = x 313 et (-1) St (I*| < 1).

The value of tan—1x in the range — 17 to + 17 is intended (i.e. the principal
value when ~1 < z < + 1), since when = = 0 the sum of the series is clearly
zero. No more than the above can be proved about the sum because the series
converges only for x| < 1: see Ex. 12(A), no. 9.

12.63 Note on formal expansions

In Ex. 6 (b), no. 15 we considered the function y = tan—'x. Having
proved that it satisfies the differential equation

(1+2B) Yy o+ 2(n+ 1) 2y, +0(n+ 1)y, =0,

we put z = 0 and showed that the Maclaurin coefficients a, = (¥,),-¢
are given by Gy = —nn+1)a,
Since a, = 0 and a, = 1, all coefficients with even suffix are zero;
while by successive application of the above recurrence formula to
those with odd suffix, we find that

gy = (1)1 (2n—2)! (n=1,2,...).

Assuming that y possesses a Maclaurin expansion, we thus obtain

for it the series 25 | a1
(=1

rogty Ty

Since this converges for |z| < 1 (see Ex. 12(A), no. 9), i is reasonable

to expect this series to have y = tan—1x for its sum-function when

|z| < 1. However, as we have nowhere considered E,(x), we have

not proved by this argument that the series has sum-function tan—1z,
nor even that tan—1x can be expanded at all as a power series.

Fo ()

It can be proved that, within its interval of convergence, every power series
is the Maclaurin series of its sum-function. In other words, if Za,.2" converges
to s(x) (for |2| < ¢, say), then a, = §M(0)/n! (n =0,1,2,...). Assuming this,
what we have shown by the above argument is that, if the series (i) converges
to s(x) when |z| < 1, and f(z) = tanz, then

8(0) = f(0), &(0)=f"(0), ..., &0)=f0), ... (ii)
These equations do not prove that s(z) is identical with f(x) for |¢| < 1. For
example, if Ow) = eV (z40), C(0)=0,

it can be shown that this continuous function C(z) has continuous derivatives of
all orders for |z| < 1 and that O*"(0) = 0 (n = 1, 2,...). Hence &(x) = f(=z)+ C(x)
satisfies equations (ii), although C(z) £ 0. In short, the Maclaurin series of
f(x), even if convergent, may not have f(x) for its sum-function. Further, it can be
shown by examples that even if f(x) and its derivatives of all orders are con-
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tinuous in & certain interval, the Maclaurin series of f(x) may not converge at
all for that interval.

Thus, to ensure the existence and validity of the Maclaurin expansion of
J(x) in 12.61, it is essential to prove somehow that R,(x) - 0 when n - oo, for
all z in the interval concerned. However, despite the cautionary nature of
these remarks, it is true that for ‘ordinary’ functions the formal expansions
obtained as above are valid whenever they converge; and with this assurance
the reader may accept them with confidence.

Exercise 12(i)
State the sum to infinity of

1 1-34+3-%+.... *2 1-3+%—%+....
3 Assuming the exponential series, state series for chz and sha.

Obtain Maclaurin series, stating the range of validity, for the following functions.

4 e*sinz. [See 6.61, (vi).] 5 e ®cosz. 6 coszchz.

n
7 Prove (%‘;{e*cm %cos (rsina)} = e%¢% % cos (8in a + nat),

and deduce that for all z,
. z? a3
ezt 2cog(zsina) = 1+xcosa +§ cos 2a+§cos 3o+ ...e
*8 By showing that R,(z, k) - 0 in Taylor’s theorem, prove that
2 hs

cos(z+h) = cosx—hsinx—z—'cosx+§'sinx—
for all z and 4. [See Ex. 6(b), no. 24.]
*9 Obtain a Taylor series for sin (z + A).
10 Ify = ch(sin—'z), prove
(1-a®y;—2y;—y =0 and (1-2%)Yp1s—(2n+1)2Ypsy = (W2 +1)Yp.
If ch(sin7lz) = ay+a,x+ a2 +...,
obtain an expression for a,,, and prove a,,,; = 0.

11 If z = cos @ and y = cosnf where n > 1, prove (1—22)y,—zy, +niy = 0.
Assuming that y = ag+a;2+ay22 +..., prove

(k+1)(k+2) Gy g+ (n?—kHar =0 (k=0,1,2,..).

If n is an integer, show that the assumed expansion is a polynomial of degree
n; and if » is even and greater than 2, prove a, = &(— 1)i"n¥n2—4).
12 If y = coslog (1 +z), prove

(142 Y1+ (2n+ 1) (1+2) Ypa+ (0 + 1)y, = 0.
@
If y can be expanded as ] a,z", prove
r=0

(n+1) (0 +2) Gpygt+ (20 +1) (04 1) Gy + (72 4+ 1) @y = 0,
and hence determine the expansion up to the term in %
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12.7 Applications of the series in 12.62

12.71 Binomial series
m(im—1)...(m—r+1)
rl

(1) The expression , often abbreviatedt to

(’T) , is called a binomial coefficient. The expansion of (a +x)™ can be

reduced to the standard one in 12.62 (4) as follows:

m
(@) if S < 1 and a™ exists, (a+x)™ = am(l +§) = etc.;
e | . a\™
) if 5' > 1 and 2™ exists, (a+2)™ = xm(l +§) = etc.
Examples

(i) Write down the general term and the first four terms of the expansion of
(1 4 22)~2 in ascending powers of x, stating when it is valid.
There will be an expansion in ascending powers of z if |2z] < 1,1i.e.if |2| < &,
and then the (r + 1)th term is

(=38)(—4)...(—3—r+ l)(2x), _ (—1)3.4...(r+2)
r! r!

(2z)

(r+1)(r+2)

==

2t = (= 1)y 2r-Yr+1)(r+2) 2"

We can obtain the first four terms by writing » = 0, 1, 2, 3 successively in
this formula: ) L o5 1 6o+ 24228023 +... (|z] < }).

(ii) Find the 9th term in the expansion of (1 —4x)~24f [z| > 1.
Since [4x| > 1, the expansion can be made only if we expand in powers of 1/,
i.e. in descending powers of x.

A=t = (L-1) (2= L (1= L)
T \4 T 1622\ 4z)
and the 9th term in this is (putting » = 8 in the general term)

_1_(-2)(—3)...(—9)(_1_)8=( 2.3...9(1)10 9

—1) —) =2,
1622 8! e 8! \& (4z)10

(iii) Calculate /102 correct to four places of decimals by using the binomial series.
/102 = J{100(1 + 0-02)} = 10(1+ 0-02)3,

and  (1+40-02)} = 1+§(0-02)+%’# (0-02)%‘%‘—%(0-02)-*%...

1 Cf. 12.23; the symbol ™0, could not be used unless m is a positive integer.
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Since we require the result to be correct to 4 places, we must work with
5 places; and owing to the factor 10, (1-02)* must be found to 6 places. Cal-
culating the terms shown, we find

(1-02)* = 1+0-01 —0-000,05 + 0-000,000,5 + ...
= 1-009,950,5..., )
the next term clearlyt being too small to influence the sixth place. Hence
4/102 = 10-0995.

(iv) Expand (1 +z+ 22+ 23)~" as far as the term in x>,
Since 1+x + 22423 = (1 —2%)/(1 —z), the given expression is
(1—2)5 (1 —24)~5 = (1 — 5+ 1022 — 102® +...) (L4 5t +...)
=1-52+ 1022 — 102%+ ...
on neglecting all terms in x* and higher powers.
(v) Find the coefficient of x™ in the expansion of 1/{(2 —x) (1 + 3x)} in ascending

powers of x, stating the condition of validity.

By resolving into partial fractions we find

1 _11 .31
(2—2)(1+32) 72—z T1+3z
= f2(1— )1+ 1+ 32)7

The first bracket can be expanded in ascending powers of z if [}z| < 1,
i.e. Jz| < 2; the second can be so expanded if |3z| < 1, i.e. [#| < §. Hence both
can be expanded if |#| < 3, and then the coefficient of 27 is

1(=1)(=2).c(=0)( 1\ 3(=1)(=2)...(—7),,
o ("5) A A

1(1

(2) Summation of series reducible to binomial expansions.
In the result

-3.—4 —-3.—4.-5
-3 — — 2. T T )3
(1-z) 1+(-3)(— x)+ 1.2 (—x)2+ 123 (—2)3+
34 3.4.5
— _— 2
1+3:c+ 1 3 3x3+...,

which is valid when |x| < 1, let us put # = }. The series becomes

3.4.5
-3 4 24 1)8 4
1 1. 2(2) 1.2, 3(2)

+ See 12.81, ex. (iii) for an estimate showing that the error in stopping here does
not affect the sixth place even when we allow for the succeeding infinite series of
terms.
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which can be written 1 +3_4+3 4. 5+
2.4 2.4.6

Our result above shows that the sum to infinity of this series is
(1-3)2 =s.

Conversely, many series of this form (in which the factors in the
numerator and denominator of each term are in A.p., while the
number of such factors is the same but increases as we proceed along
the series) can be reduced to binomial expansions, and hence their
sum to infinity written down.

Examples

(vi) Find the sum to infinity of

1 1 + 1.3 1.3.5 +..
4.8 4.8.12

The factors in the numerators form an A.p. with common difference 2, and
those in the denominators have common difference 4. We begin by dividing
each factor in the numerator of each term by 2, and each factor in the denomin-
ator by 4: 3
1-2

1.3 1.4
2) 1 22 9ya 2)8 4
JENRL (O 1 &
The factors in the numerators now ascend by the common difference 1,
whereas for a binomial series they descend by 1. This can be adjusted here by
introducing signs as follows:

it AWt Lok Y0 Wit Sk Lk 171
1+—= @+ 13 @3+ 193 GP+...
and this series is clearly the expansion of (1+z)™ with z = } and m = — }.

Hence the required sum to infinity is (1+3)~t = /% = 1 /6.

1 1.3 1.3.5 1.3.5.7
vil) 435 +3 697 5.6.9.12
3 1.2 $.3.4 $.4.4.7
=I@m+itape i g DI g
e e e A Bl o

=(1-8)t-1=y3-1.

Exercise 12(j)

Write down and simplify the general term and the first four terms of the expansions
of the following functions in ascending powers of x, stating when these expan-
sions are valid.

1 (14=x)-8. 2 (1-=x)k 3 (1+3x)-h 4 (4+a2)t,
x l—z 14z

__(l—x)a' 6 m. 7 ——(l—w)3°
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Find the named terms in the following expansions.
8 8thtermin (1—2z)-*if |z| <} 9 10th term in (1—32)~if |2 > 3.
10 What is the first negative coefficient in the expansion of (3 + 2x)¥ if |«| < 31
[Consider the sign of a,,,/a,.]
*11 Ifw, is the (r + 1)th term in the expansion of (1+2)™, || < 1, show that

U, r

Deduce that when r becomes greater than m + 1, then «,.,, /%, < 0 according
as x2 0; and hence that, after a certain stage in the expansion, the terms are
alternately positive and negative if x > 0, but all have the same sign if x < 0.

Find the numerically greatest term or terms in the expansion of
12 (1+2)%2 when 2 = &. [Use the argument in 12.13, ex. (iii).]
13 (1—=z)™! whenz = &, 14 (14«)-t when z = }.
Use the binomial series to calculate correct to four places of decimals
15 (4-08)k. 16 4/98.
17 Expand (1+x+ 2x%)-t as far as the term in 28,

State the condition that the following can be expanded in ascending powers of z,
and find the coefficient of " in the expansion.

2+ 32 19 z
(1—x)(1+22)" 6—2—a?
a? 1 l1—x
20 (1—-xz)2(2—-2) 21 1+x+m3|:_ l——x’]'

*22 (1+z+2+...+z™ ) if r <m.
23 Find the coefficient of %" and of £ +! in the expansion of

142 . 142
ma |wl<l. [Wnbeas m—:—x-s—)-
Find the sum to infinity of
1 1.3 1.3.5 1 1.4 1.4.7
24 1+gtgr6ts6.2at B l-gtis gzt
4 4.7  4.7.10. 3 3.4 3.4.5
26 35+ 30.30 7 20.30.40 7 " 21 54%3262.468

*28 Verify that when |z| <1,

o=l Swa=_1_ and Fie+nei=
2 t= —, refl = ——— an r+ 1)z = .
r=1 1-2° =1 (1—2)? r=1 (1—=)®
a0
Hence calculate > (r2+3r—3)a™! when |[z| <L
r=1

[+ 3r—3=—34+2r4r(r+1).]
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*29 By writing Pascal’s triangle (12.13, ex. (iv)) as 1
shown here, we observe that the nth vertical column 1 1
gives the coefficients in the binomial series for (1—z)-». 1 2 1
Justify this rule by proving 1 3 31
1 4 6 4 1
1 51010 5 1

(e iy T

12.72 Exponential series
(1) Irrationality of e. Taking x = 1 in the series of 12.62 (1),

1
+ot ot

-1 1 1 1

+1i+51 T3]

From this it is possible to calculate e to any specified degree of
accuracy (see the example in 6.53).

Since this series consists entirely of positive terms,

111
e>++2'++

The error in this estimate is

1 1 1
wrD! w2l Tmra T

1 {1 1, 1
T (n+1)! +n+2 (n+2)(n+3)+'";

1 1 1
1
= (n+1)!{ i tmret }

1 1 )
=MD 1=ijms1) DY summing the o,
1 n+l 1

TwmED)! n  ale

These results can be used to prove that e is an irrational number,
i.e. that e cannot be expressed in the form p/q where p, g are integers.
For suppose if possible that e = p/q; then from the above inequalities
with n =g, 1 P 1 1 1

I++.. + <= <1+ + e o
H 9! ¢ 9! 4qlq
Multiplying by g!, we have
I<p.(g—-Dl< I+q1,
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where q! q!
I = Q!+l—!+...+a

is an infeger, and so is p.(¢—1)!. Our conclusion is that the integer
p.(g—1)! lies between I and I+ 1/g, which is impossible since 1/q is
a proper fraction. Hence e cannot be written as p/q for any pair of
integers p, g; i.e. e is irrational.

(2) a®, chz, shz.
Ifa > 0 and m =loga, then a = ¢™ and

2,2 ;3.3
a® = ™ = 1+mx+m2—"f+7-';—f—+... for all z,

2 3
ie. a® =1 +xloga+%(loga)2+§—!(loga)3+ weo (all ).

From the definitions chz = }(e*+e*), shz = }(e*—e*) and

12.32 (4), 2 22
Chx=l+2—!+ﬁ+"'+(§;————2)!+""‘
b (all %).
shx—x+f+x—5+ —12:-—-1——+
=ftqtet -t

(3) Series reducible to exponential series. The first step is always to
write down the general term of the given series, and then put it into
a suitable form.

Examples
. . . 12 22 32
(i) Sum to infinity —2—!+a+‘ﬁ+....
73
Here Uy = 'rl)!o

The numerator rr=(r+l)r—r=(r+1)r—(r+1)+1,

1 1 1

and 8o “r=(r_1)g—}_!+(r+l)!

if »r>1.

Zur=z

A T ) Tt R N TS 1Y

1
= e-—(e—l)+(e—l—l—!)
=e—1.

Sometimes the decomposition does not hold for a few terms at the beginning.
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(i) Calculate S (r+2)3
=
Since r+22=r2t+dr+4=r(r—1)+5r+4,
1 5 4
=t ——— i = 2.
“=aToiteomta 7
0 32
2 Uy = F'I' Zu’r
r=1 .
1
=9+e+5(e—l)+4(e—-1—ﬂ)
= 10e—4.

Exercise 12(k)
Giive the coefficient of x in the expansion of
142 x24-3x+1 e3% 4 g®
. 3 —-. 4 .
e er 622

1 88m+2. 2
S Write down the series whose sum to infinity is (i) 1/e; (ii) €2; (iii) (e + 1/e)2.

Find the sum to infinity of each of the following sertes.

32 33 34 42 44 46
6 3__2_!+§_B+”" 7 1+3'+ +7'+
2 3 4 1 1+2 14243
8 ltritpta b R TR
3 5 7 X x"
10 1 _—t 11 >, —.
0 I+s+satsaet 2 D)
(2 r
2 3=
r=1(r+2)r!

12.73 Logarithmic series
(1) There are several important forms of the result

2 4
log (1+%) = x—’-"2—+%3—%+... (-1<z<1).
(2) Replacing x by —z,
22 23 a2t
log(l—w):—x—§—§~z—...

provided —1 < —z < 1, i.e. provided -1 <z < 1.
(b) Subtracting the above two results, which are simultaneously
validif -1 <z < 1,

5
log(1+x)—log(l—2) = 2(x+§+'%+...),



12.73] SERIES 473

. 1+ 2 b
ie. %logm—x+§+3+... (-l<z<l).
(¢) In (b) write 142 . y—1
— =y, . =,
l1—2 y+1

The condition —1 < # < 1 becomes ¥ > 0, and

- (=1 ly_-_l_)"" 1(@/_-_1)
%logy—(y+l)+3(y+l +3 vl +... (y>0).

(@) In (b) put

[

tz_ptl ie x———l
p T T 2p41”

Thenlo(+1) Ic —2{ CHNNPIL JS S S
glp P = \2p+173(2p+ 1P 5E@p+1p  J

and the left-hand side is defined only if » > 0, which corresponds to
the condition 0 < z < 1 under which (b) certainly holds.

The series (), (c), (d) are more rapidly convergent than either the
standard series or (@) separately; (c) is used for calculating natural
logarithms, and (d) for calculating logarithms of consecutive numbers.

-

8

Example
(i) Find the coefficient of ' in the expansion of log (1 —z +?) if |z} < 1.
log(1—z+2%) = log 11:_::: = log (1 +23%) —log (1 +=).
9 P
We have log (1422 = x’—%‘+%—...+(—l)"“17+...
z? 23 zr
SEx =TT e — 1)1 sese
and log(l4+z) == 2+ 3 +(—1) r+

If r is not a multiple of 3, the coefficient of " is (— 1)"1/r.
If r is & multiple of 3, the coefficient of 2" is

1 _ l_ . g
(-1t 1%—’—(—1) ‘1;—("'1) lr-
(2) Series reducible to logarithmic expansions.

Examples

i) 1,1 b ar, ar

1
Tztemtamt =1t gt
= —log(l1—%) =log2.
If the series is not immediately recognisable, we begin by writing down the
general term.
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(iii) Sum to infinity 1 1
13 + 35 + ﬁ +..
_ 1
U= Ner+ 1)
= 1—1_— 71 on using partial fractions,
2 2
T2 21’

where the denominators are now consecutive numbers. Then

1 1
sn=2{-p+a-v+-t (5r-5)|

- 2{1—1log2} when n - o,
since log2=1-3+%—%+....
The sum of the series is therefore 2 —log 4.

(iv) Find the sum to infinity of

A
AT KA

I S |
A T r+1)'

$u=$o(-1)

r=1 r= r r+1

whenever it converges.

D gr ] = wr+1

=17 Tm1r+1

provided that each series converges (12.32(4)), and when —1 <z < 1 this is
the case because the first is —log (1 —z) and the second is — (1/x) {log (1 —z) +z}.
Hence ® 1
> U= (;— 1) log(1—z)+1 when -—-1<a2<]1.
r=1

When z =1,

1 1 1 1
U, = =-——, 8,=1———-1 when n - oo,
rr+1) 7 r41 n+1

and the sum is 1.
It is easily verified that the series does not converge unless —1 < 2 < 1, so
the problem has been solved completely.

(v) Sum to infinity 1 1 1

2342566787
1
U = oper £ 1) (2r +2)
4, B _C

=% tmritoate
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and we find by the usual method that 4 = 4, B = —1, C = }. Hence

_ 3 1 3
Y= e o1 22

11 1 1/ 1 1
T 2\2r 2r+1) 2\2r+1 2r+2/)°

12 /1 1 12 1 1
"=32 (2“2—:1\) ~2,5 (m'mz)

- —3(log2—1)—4(log2—1+3) when n - o0,

=$-log2.

Exercise 12(7)

Pind the coefficient of x* and give the first four terms in the expansions of the
Jfollowing, together with the conditions of validity.

1 log(1l—4x). 2 log(2+2). 3 log(l+x)2.
1 2
4 log(l+ bx 4 6x2). 5 (1—-=z)log(l+x). 6 log——-l{—v_-;—m.

7 log(l—a+a?—ad).
8 Expand log (14 2z + 322) as far as the term in x*.

9 If |x| > 1, expand log(1+x)—logx in powers of 1/x, giving the general
~ term

10 Taking x =% in 12.73(b), prove log2 = 0-6931472 correct to 7 places
of decimals.

11 Taking z = 3 in series (b) and using no. 10, prove log 10 3= 2-3025851.
12 TUse series (d) and no 10. to prove log 3 = 1-098612.
13 Prove 2log7+1log2 = 2log 10— o, where
o.= 0-02+3(0-02)% +3(0-02)3 +...,
and deduce that log 7 = 1-945910.

Find the sum to infinity of the following series.
1 1 1 1 1 1

14 sty 15 3ty mtyst

16 %ﬂ+%‘+%+..., lz| < 1. 17 r12+£z+%+.. .

18 LLz—ﬁJ“::_f“" 19 1.;.3+3.1.5+5.e1s'.7+""

20 1.;.3+5.f15.7+9.l(l).11+'f" [u'=4/r%—3—4r1—2+4ril’Whi0hcanbe,
written %(M13_47‘1—2+4r1—1_$) —71 (%—-él;), considerms,,.]

21 %+3%5+5“—;+..., le| <1 22 %+%+§”_’—;+..., || < L.

33 GPMII
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1 1 1/1 1
23 (1+3)— (2 28)+§(-2—s+§§)—....

24 Ify = 2a2%—1, prove (under conditions to be stated) that
1 + L 1 1 i 2+ 2 2. 2 +
25T 3 y 3y3 byt

25 If — im < a < 471, prove

. . 1.
sinfa+4sinta+ ... +—sin*a+...
n

23 gint n+1gip2n
= 22gin? jor + 3’121 %a+...+2 snm 1}“+....

26 Iff(x) = +£s+9£ and |z| < 1, prove f 2z = 2f(x)
=2z 3 5+... » P 172 = 2f(=).

12.74 Gregory’s series and the calculation of =
If we put = 1 in the result of 12.62 (5), we obtain

mr=1-3+3—3+..,
arelation discovered by Leibniz. Thisseries converges very slowly (see Ex. 12(m)
no. 4) and is impracticable for calculating 7.
A better method, given by Machin, depends on the result

4tan—1}—tan~lziy; = im,

which we now prove. Let a = tan—'4, so that tana = } and

tan da — 2tan2a _ 4tana 2tana )2
T 1—tan?2z 1—tan2a 1—tanta

-[2al/l-=s ﬁ}]

= i
which is a number just greater than 1. Hence 4a is just greater than iw; if we
write 4a = 37+ tan—z, then

1
138 = tan (37 + tan—1z) = —J’—i

and z = 5}5.
Thus on putting z = %, 345 in Gregory’s series we have

1 1 + 1 1 1 +
i R W - B P T T
It can be shown that 6 terms from the first bracket and 2 from the second give

7 to eight decimal places; while 21 and 3 terms from the respective brackets
give m to 16 places.

12,8 Series and approximations

12.81 Estimation of the error in s =s,

Given a convergent infinite series, we can approximate to its sum
to infinity by taking the first n terms. If the series has been obtained
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by an application of Maclaurin’s or Taylor’s theorem as in 12.61, the
remainder term R gives the error in the approximation (see 6.53);
but owing to the indeterminate nature of the number 6, an estimate
of R has to be made in practice. When R cannot be obtained explicitly
because of difficulty in calculating f®(x), or when the sum-function
of the given series is not known, the method in 12.72 (1) can be used.

Examples
2 28 "
(i) If we take log(l+2)=2z——+——...+(—-1)"—,
2 3 n
then the error is (see 12.62 (3))

—1)ngntt
Bop(2) =(—n-|(-l)(ﬁ:)”—+l'
n+l
When z > 0, 1+0z>1 andso |R,(z) <n+l'
When z < 0, 140z 2 1-60z| > 1—|z| = 1+,
ntl
and ' |Br(®)| < W;%ﬁ:y
xz n—1
(ii) If we take er = l+x+2—!+...+(nTl)—!,

the error is (see 12.62(1)) RB,(z) = (x"/n!)ef>. When 2 <0, /2 <1 and
|Ba(z)| < |z|?/n!; but if 2 > 0, €% < e and all we can assert is that

(B (2)| < % e,

which is of no help since we are trying to approximate to e=.

The error is Zh gnit L2
Aty T

+...

M\ n+l (n+l)(n+2)
and when z > 0 this is less than
_”(l.l.i..'._i__.*_.”):.x_n__l__
n! n+l (n+1)? n!l—z/(n+1)
if # < n+1, on summing the 6.»p. Thus if # > 0 and n > z— 1, the error in the

approximation is less than
z* n+1

nlnt+l—z
The argument just used is essentially that in Proof (a) of d’Alem-
bert’s ratio test (12.42).
If |,y q/u,| < & < 1 for all r > m, the error in taking s = s, (n > m)
18 numerically less than |u, |/(1—k).
33-2
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For when n > m, [nra] < B |tpials

|%nsa| < & |tnsa| < B2 [tt4a], et
The error after n terms is
Uyt Uppg+ Uiz + ..

which is numerically less than or equal to (cf. 12.52, ex. (iv))

[@ni1] + [ nia] + [Upia] + -
< [ty A+ +E2+..)
1
= |un+1| XT—_k

on summing the 6.p., since 0 < k£ < 1.

Another useful result is based on Leibniz’s rule (12.51).

If for all n > m the terms of a series alternate in sign and steadily
decrease to zero in numerical value, the error in taking s = s, (n > m)
cannot exceed the modulus of the first term neglected.

Let the series be

Uy —Ug+Ug— ...+ (= 1)y, +(—1)"u, +...,

where for all n > m, », > 0 and u,_; < %,. The error after n terms

n > m)is
( ) (= )" {Upy1 —Upyat Upys— ...}

The argument in the proof of Leibniz’s rule shows that, for » fixed,
Up1— Upto+ Upi3—

converges to a limit ¥,, where 0 < K, < u,,,. Hence the numerical
value of the error does not exceed u,, ;.

Example
(iii) Consider ex. (iii) in 12.71: we wish to show that all terms after the
fourth in the expansion of (1 + 0-02)¥ cannot influence the 6th place of decimals.
The general term is
3. -3 —-%...(3—-7r+1)

r!

£ (002) = _27—(0 01) (r>1).

(0-02)r (r=1).

Upyy =

YUri2 % r
Upsy TH1

Hence for r > 1 (i.e. from the second term onwards) the signs alternate;
and since 9 —1 3
i (0-01) = ( _T) 0-01 < 0-02,
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the terms steadily decrease numerically. Hence the error is numerically not
greater than
-3.-1

-5
m 2(0-02)t| =

= 6-25 x 10°,

12.82 Formal approximations

The following examples illustrate methods of obtaining approxi-
mations, but no error estimate is made.

(i) If = 78 small, find the best approm’mation Jfor log (1 4+ x) which has the form
2(1+ax)
@ 7 +bx ® 3 +bx+cat’
(2) By expanding both sides of

ax

when z is small, we have
r—32?+ 12 —... = ax(l—bw+b¥x?—...)
= ax —abz? + ab®x® —
This will hold approximately for all small x if a = 1 and ab = }, i.e. b = 4.
The expansions differ in their z3-terms since ab? & 3. Hence

. 2 2
log(1+z) = Y correct to order x?.

(b) A similar method could be used, but the following is more convenient.

From z(1+ax) = (1+ bz + cx?)log (1 +x),
z+ax? = (1+ bz +cx?) (v — 3o+ 32— Jrt +...)
=z+(b-3a2+(c—30+3) 2P+ (—de+3b—L)at+....
‘We can obtain three equations for a, b, ¢ by equating coefficients of x2, 3, z4:
a=b—4%, O0=c—%b+3 O0=-—4c+30-3
from whichae = },b =1, ¢c = 4. Hence
2(1+4=)

14242122

and since it can be verified that, for these values, the coefficient of 2% on the
right is non-zero, this approximation is correct to order z*.

.. 1\* 1 11 1
(ii) Prove (1+;) —e(l—%+m—a+0(;b—s)).
If y = (1+1/n)", then

logy = nlog (l +l)

—n(n 2n’+3n"+0( ))
et

log(14+z) =
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Writing exp (z) = e® for ease of printing, we have
Yy = exp (1—5170+3Lng+0 (;bl-g))
R )
= el:l—-—217b+§—i%+0($)].

(iii) If p t8 small, prove that a root of the equation e*+x = 1+ p s approxi-
mately }p —fgp®.

For a first approximation we expand the left-hand side as far as terms in :

142z = 14p, S =4p.
For the second approximation, expand as far as «?:
1424322 = 1+4p, ie. 20(l+3x) = p.
Using the first approximationt # = 4p, this becomes
2z(1+3p) = p,

8o z = §p(1+4p)7" = dp—1ep™

12.83 Calculation of certain limits

Example
e*—1—zx
Find lim ————.
¥ 20 T—log (1 +2)
xﬁ
‘We have e® = l+m+a+ax“,
h 1 =z a?
where a= §+E+a+...,
1 J=| _ l=]
el < g+ g+
1 || | |
<§—!(1+—1-+ P -I-...)
1
= — if 4,
sz ¢ <
mz
Similarly log(l1+z) = x-—-?+b.7c3,
L Iz Jaf?
<-+—+—+...
where |5 gttt
<31+ |z|+ |z|2+...)
1 1 .
—51—:[;' if l$|<l.

1 To keep the working linear in .



12.83] SERIES 481

Hence e—1l—x ai’+aw3 z? ba®
z-log(l+z) |2! 2
o 3tax

= h .
«}-—bxél when z -0

The above argument is often given incompletely as follows:

ef—1l—z
z»0 T—log(1+2) g0 x—(x—£+...)

23
(l+x+-2—!+...)—l—x

1

21
=lim
z0 3+...

The result is easily obtained by two applications of I’Hospital’s rules (6.9).

+...
=1

Exercise 12(m)

Prove the statements in nos. 1-4.
1 The error in taking log {(n + 1)/n} = 2/(2n + 1) is less than
1 .
6n(n+1)(2n+1)’
2 The remainder after n terms of

1 1 1 1
+l—!+2—!+—+...

3!
1
lies between (1+L)l and (1+1)—-.
n+1) n! n] n!
3 If |z| < 1, the error in taking

+ ms xan—l

log —— = _-
Hogi—o s e+gttoy

is less than the numerical value of z2"+1/{(2n+1)(1—=%)}. Putting n =2,
prove that log 11 = 2log 3 + 0-20067 correct to 5 places of decimals.

*4 The error in taking

s l—3+3—. (=1

2n—1
is numerically less than 1/(2n + 1). Deduce that the first 50 terms of the series
give 17 correct to only two places of decimals.

5 Use the expansion of (1 —+)~¥ to find /2 correct to 7 places of decimals.

6 By considering (1+35)}, show ¥2 = 1-2599211 correct to 7 places of
decimals.

Verify the following formal approximations for small .

2n+(n+ 1)z  ni-1 s
= a3,
2n+(n—1)z ° 12n%

7 Y1 +a)—
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8 e2//(1+2x) = 1422 — %% Write down the corresponding approximation
for 1/{e®/(1—22)}.
9 log{3(1+e*)} = 4a -+ correct to order 3.
10 (14=z)**+* = 1+ 2+ 2%+ 2. [Take logarithms.]

x z x* ot
Fz2l-—t——. f 12.82, ex. (i) (b).
pra 1 2+12 720 [Method of 12.82, ex. (i) (b).]
12 Find an approximation of the form a + bz for (8 + 32)¥/{1 + (1 —x)®(4 +2)},
« being small.
13 Find an approximation of the form a+bz+cz? for 1/{(1—x)./(1+x)},
« being small.

14 Find approximately the small positive value of 2 which satisfies

(1+42)% = 1-03(1 —x)8,

11

15 Neglecting z*, prove that e®log(l+x)=—log(l—2). Hence find an
approximation to the root of e*log (1 +z) = 4 which lies between 0 and 1.

16 If p is small, prove that z = p — p?® is an approximate solution of ze*= p.

17 If p is small, prove that a root of xlogx+2 = 1+p is approximately
1+ 3, and find a closer approximation. [Put x = 14 A, where % is small.]

Calculate the following limits.
- 1 ®_ ]
18 lim 271081+ 19 im %X @>o0).
-0 X 0 X

Miscellaneous Exercise 12(n)
n 1 2n
1 Prove ), ——— = —.
r=g rl(n=r)! mn!
2 Prove (¢y+c;+...+¢,)2 = 14200, +27Cp + ... +27Cyy,.
3 Calculate c¢i+c+...+c2, and prove
c2+2c2+...+nek = fn(cg+ci+... +cl).
4 (i) Verify the identity
(142)" = 1+ 2{(l+2) 1+ (1+2)" 2+ ...+ (1+2)+ 1},

and use it to prove "Cpy; = * 10, +*2C,+ 30, +...+'C, for 0 < r < n.
*(ii) Conversely, assuming this relation, prove the binomial theorem.
5 For the series (1) +(3+5)+(7+9+11)+(13+15+174+19) +..., find
(i) the number of terms in the first » — 1 brackets;
(i) the first and last terms of the rth bracket;
(iii) the sum of the terms in the rth bracket.
(iv) Write down the sum to m terms of 1+ 3+ 5+ ..., and show that the sum

n
of the terms in the first n brackets is 2, where ¢, = Y 7.
r=1

n n 2
Deduce from (iii) and (iv) that > 7% = ( > r) .
1

r=1 r=
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Find the sum to n terms and to infinity of

1 1 3 5

1
6 l"'1+2+1+2+3+‘"' 7 2.3.4+3.4.5+4.5.6+""

8 Ifr > 0, prove tan—1(1/2s2) = tan—1(2r+ 1) — tan—(2r — 1). Hence find

hd 1
,§1 tan~t (2r2) ‘
9 If n straight lines are drawn in a plane so that no two of them are parallel
and no three concurrent, the number of regions into which the plane is divided
is denoted by f(n). Prove f(n+1)—f(n) = n+1, and deduce the expression
for f(n).
10 Prove that (1+2cosx+ 2cos2x+ ... + 2 cosnz) sin 4 = sin (n+ ) .

-
Deducesthatt J- %M-dx =7
0 7

when n is a positive integer or zero. What is the value when n is a negative
integer?
11 (i) Prove
sinnx

1
= 2cos(n—l)x+2cos(n—3)x+...+l

sin 2cosx

according as n is odd or even. Deduce that

T gin ne
- de=m or 0
o sinz

according as n is an odd or even positive integer.

7 (i 2
(ii) Prove f (smnm) dzx = nr

_ o \sinz
for all positive integers n. [Square the relation in (i), and use Ex. 4 (), no. 30 (i).]

sin 6 7 7] 7]

_—=2" = — .. —.
12 Prove that 5in (0/27) 2 cos; cos o cos oo
Deduce the values of
- /B | o .. 01 0
i) rgllogcosg, (ii) r§1 E;t&ng, (iii) ,.Elg'mn?'

Use Mathematical Induction to prove the following (nos. 13-16).
13 14—-2¢434— . ton terms = (— 1)* 1 in(n®+2n%—1).

n
14 %‘ (zn—l el/z) = (__ l)” ellz/xnﬂ.

d:
1 1 1
15 If u”=m+m+...+§;&,
then Uy =1—3+3—%5+...+ L L
" 327" Toapn—1 2n
Deduce that lim u,, = log 2.
n—>w

1 In nos. 10, 11 the expression (sin mx)/(sin ) is defined to be m when z = 0;
i.e. the definition is ‘completed by continuity’ (see 2.64).



484 SERIES
16 If w,.q— (¢ + ) upyy +afu, = 0 for n > 1, then
(@—pB)un = ("= =Y uy—afi(a=2— 73 u,.
17 If s, denotes the sum of »n terms of
x + 222 + 4t + 8x® + 16x1°+m’
142 1+4a2% 1424 1428 1428

prove that 8, = /(1 —x) —ma™[(1 —x™) where m = 2% and & 1. Deduce that
the series converges when |x| < 1. [Either use Induction, or take logarithms
and derive the identity obtained from

1 1+z  (1+x)(1+2?)

1—2 1—a% 1—at =l
18 Assuming that 1+—21—2+3lz+...=%2, .
prove fhet 0 st =" @i-s4i 1, T
375 T8 2273 4T 2’
19 (i) Find the coefficient of 2* and of 27 in the expansion of
(1+z+22+2%+2%)8,

(ii) How many solutions in non-negative integers has the equation
(@) a+b+c=4; (b) a+b+c="17?

20 In how many ways can a total of 10 be thrown with three dice of different;
colours, the faces being numbered 1, 2, 3, 4, 5, 62 [We require the number of
positive integral solutions not greater than 6 of the equation a+b+c¢ = 10.
This number is the coefficient of 21° in the expansion of

(422 + 28 + 2t + 25 + 28)3.]
21 If 22+ px+q = 0 has roots «, 3, prove that (for a range of « to be stated),
—log (1 +pz+9a?) = (@ + ) v+ Ha?+ 4% 2* +Ha® + o) 2 + ...

22 A circular arc subtends an angle 6 at the centre of the circle, and a, b, ¢
are the lengths of the chords of the arc, of £ of the arc, and of } of the arc, respec-
tively. Find numbers z, y, z independent of 0, @, b, ¢ such that the length of the
arc ig approximately ax+ by + ¢z, correct to order 6°. [Use the series for sin z.]

Find the sum to infinity of
23 1+3+ 3.9+3.9.15 r+2
8T8 1678 16247 rir+1)3"
2 4 6 8 2 3 4
25 §i+—5—!+7—!+§—!+.... 26 1—1—!+2—!—3—!+....
r+3 1 9 9.15 9.15.21
r+1(r=1)1 2 6T 16.2a 16,2433 7
1 1 1 1
» 1237235 3477459 "
r—2 2% 322 4293
S 1+ 2422 2
30 r(r+1)(r+3) S TR TR T
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x"

22— (=1lxz<]).

32 r(r+l)(r+2) ( z<1)
xﬂ xm . xs w7 xll
33 (i) 1+ + +12'+ L (i) -§+ﬁ+-ﬁ—'+
34 If p > 1, prove
2 1 2 2
-+— <1 Pt <2

og— < - +-—

32~ Ep—1 " p 3 (A1)’
Taking p = 26, 31, 49, calculate log 5 to 3 places of decimals. [Choose a, b, ¢ 80
that alog4Z+blog 8%+ clog ¢ = log 5.]

35 Denoting by "P, the number of arrangements of n unlike things taken
n
at a time, prove 1+ 3, "P, = the largestinteger less than e (n!). [Use Ex. 12 (m),
r=1
no. 2.]
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13

COMPLEX ALGEBRA AND GENERAL
THEORY OF EQUATIONS

13.1 Complex numbers

13.11 Extension of the real number system; /(—1)

Consider the six equations

2% = 6, (i) 22 =9, (iv)
2z = 5, (ii) 22 =2, (v)
22+3 =0, (iii) 22+1=0. (vi)

If we knew nothing about fractions or negative numbers, we should
only be able to assert that (i) and (iv) are both satisfied by z = 3, and
that the others have no solution (i.e. that we could find no natural
numbers which satisfy these).

If we are subsequently acquainted with fractions (i.e. if our list
of numbers is extended by admitting rational numbers), we can say
that (i) and (iv) are satisfied by 2, while (ii) is satisfied by 2. The others
would remain insoluble.

Not until signed numbers are introduced can we solve (iii) by
x = —3$; and then (iv) is found to have fwo solutions + $. We still have
no solutions for (v), (vi).

To enable us to say that (v) has a solution (the necessity for doing
this was indicated in 1.11), we introduce the number ,/2 which can
be proved (see 1.11) to be non-rational. Even then, (vi) has no solution.

It will now be clear that what can be said about solutions of equa-
tions (i)-(vi) depends entirely on what we are prepared to call a
‘number’. In other words, the possibility of solving a given equation
depends on how far the concept of ‘number’ has been extended. Fractional
and negative numbers enable all linear equations with integral
coefficients to be solved, but not all quadratics.

If we attempt to solve (vi), written in the form 2% = — 1, in the same
manner as for (v), we should obtain the formal solution z = ,/(—1);
that is, ,/(— 1) is what we should write for the solution of (vi) if such
a solution existed. Whether or not (vi) can have a solution depends on
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the meaning of ‘number’, so that a question like ‘Does ,/( — 1) exist?’
is futile until we specify what kind of ‘numbers’ we are going to work
with.

Hence we have two alternatives: either (a) we leave ,/(—1) as a
meaningless symbol; or (b) we generalise still further the concept of
‘number’ to include such expressions as this. It is clear that, unless
we choose (b), we can never have any complete theory even of quad-
ratic equations. To arrive at our generalisation we follow the historical
sequence of development; we use the symbol ¢ as an abbreviation
(introduced by Euler) for ,/(—1) in 13.12, 13.13.

13.12 First stage: formal development

At first ¢+ was regarded as something mathematically disreputablef
whose use, nevertheless, gave results quickly and simply to problems
which could be solved more laboriously by other (respectable) means.
The procedure was formal: ¢ was treated like an ordinary algebraic
symbol (with the peculiarity of satisfying 42 = — 1), and was used in
the spirit of ‘press on and see where we get’. Cardan (1501-76) was
probably the first to do this.

Accordingly we should have (a, b, ¢, d being ‘ordinary numbers’):

(@+b3)+(c+di) = (@+c)+(b+d)s (i)
by regrouping and taking out the factor ¢;

(@ +bi) (¢ +di) = ac+ adi+ bei + bde?
= (ac—bd) + (bc+ad)s (i)

by first multiplying out the brackets, and then using 2 = —1 and
grouping.

Also, if a+bi = c+di, then a—c = (d—0b)s. Squaring both sides
gives (a—c)? = — (d —b)?, which would assert that a positive number
is equal to a negative number and is a contradiction unless both are
zero, i.e.a—c = 0and d—b = 0. Hence :

if a+bi=c+di, then a=c and b=d. (iii)

These examples show how expressions involving ¢ would behave
if the rules of ordinary algebra are assumed to apply to them.

Owing to the mystery associated with it, ¢+ was named an tmaginary
nwmber, and expressions involving it imaginary expressions; while

1 Earlier, negative numbers carried a similar stigma.
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ordinary numbers and expressions weret called real when contrast
was desirable.

This intuitive approach, however unsystematic it may appear, did
in fact lead to many advances because it produced results which
could be verified subsequently by orthodox means.

13.13 Second stage: geometrical representation

In the spirit of 13.12 we see that if any real number a is multiplied
by 4, we obtain an imaginary number ie; multiplying again by %, we
get 1ia = 1% = — la = —a, which is again a real number. Thus fwo
successive multiplications by © convert a real number into its negative.

A\
> A i

-a [0} a @

Fig. 125

Consider now the geometrical representation of this result. Suppose
for definiteness that a is positive, and let OP be the corresponding
segment of the x-axis. Then fwo multiplications by ¢ have the effect
of rotating OP, originally along the positive z-axis, through two right-
angles (say in the counterclockwise sense, to agree with trigonometrical
conventions) to position OF’. It is therefore reasonable to interpret
one multiplication by 7 as turning OP counterclockwise through one
right-angle. Hence the imaginary number ia is represented by a poing
P" at distance a, measured along Oy (fig. 126). Similar considerations
apply when a is negative.

This geometrical representation was published in 1806 by Argand,
although others had the idea a little earlier. In it we are regarding s
not as a number at all, but as an operator which rotates lines OP
counterclockwise about the origin O through a right-angle. (Observe
- that ordinary numbers can also be interpreted as operators in the
process of multiplication: the 2 in 2a as the operator which doubles
the length of OP and preserves the sense; the —2 in —2a as the
operator which doubles the length of OP and reverses the sense;
and so on.)

We can now represent real numbers by points on the (positive or
negative) x-axis and imaginary numbers of the type ia by points on
the (positive or negative) y-axis. Can expressions of the form a + bs
be represented? If we interpret this as corresponding to a step of

1 And still are (see 1.11).
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length a along Oz, followed by a turn counterclockwise through one
right-angle and a step of length & parallel to Oy, we end up at what
we should refer to in graphical work as the point (a,b), say @ (fig. 127).

Although the interpretation of ¢ as an operator and Argand’s
representation of a4 bs both have important applications, the signi-
ficant thing at this stage is that we are led away from the vague
‘imaginary expression’ a+bi towards the familiar and precise idea

vl

vl
ip
ia 1€
Y|

\ H N\

) — - HE N
7 a P x 0o a @

Fig. 126 Fig. 127

of the coordinates of a point (a,b) in a plane, i.e. a pair of numbers
a, b taken in a definite order. It is from this notion that we can re-
construct the theory of ‘imaginary’ numbers on a logical basis.

13.14 Third stage: logical development

(1) Our aim now is to make a fresh start by setting up and developing
an algebra of ordered number-pairst. That is, we begin with the definite
idea of a pair of numbers, and as far as possible try to retrace our
steps to get at ¢ indirectly. This approach is contained in the work of
Gauss (1777-1855) and others.

We write our number-pairs, usually called complex numbers, as
[a, b] where a, b are ordinary (real) numbers. As we are about to invent
a new kind of algebra, we can make the rules as we please provided
they do not contradict each other or lead to contradiction. However,
our purpose is to make the new algebra as much like ordinary algebra
as possible; and so, with a view to preserving the structure of the formal
results (i)—(iii) of 13.12, we define the fundamental operations with
number-pairs as follows:

(2) Equal number-pairs.

[@,b] =[c,d] fandonlyif a=5b and c=d.

1 The reader is in fact already skilled in dealing with ordered number-pairs of
another kind, viz. ordinary fractions: see Ex. 13(a), no. 26.
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(b) Addition of number-pairs.
[@, 0]+ [c,d] is to mean [@+c¢,b+d].
(¢) Multiplication of number-pairs.
[@,b] % [¢,d] is to mean [ac—bd,bc+ ad).

Since subtraction is the opposite of addition, we can define
[a,b] - [¢, d] to mean the number-pair [z, y] such that

[x: ?/] + [G, d] = [a” b]'
By (b) this gives [x+¢,y+d] = [a,b],

which by (a) implies
z+c=a and y+d=>b;

hence rxr=a—c, y=b—d,
so that v[a, b]~[c,d] = [a—¢,b~d].

Similarly, the quotient [a,b]=[c,d] can be defined in terms of
multiplication to be the number-pair [z, ¥] such that

[#,y]1x [¢,d] = [a,b].
By (c) this gives [xe —yd, yc +xd] = [a,b],
and so by (a) zc—yd=a and yc+azd =Db.
If ¢, d are not both zero, we can solve these simultaneous equations

for z, y: _ac+bd _be—ad
Ty VT ara
Hence if {¢,d] + [0, 0],
ac+bd bc—ad

[a@,b]=[c,d] = [m, a1 |
(2) By using the above definitions we can show that complex

numbers obey all the laws of ordinary algebra. For example,

if [a,b]x[c,d] =[0,0], then [a,b] or[c,d] or both will be [0, 0].
For the hypothesis and the definition of ‘multiplication’ show that

ac—bd =0 and bc+ad =0,
and so 0 = (ac—bd)? + (bc + ad)? = a?c? + b%d? + b2c? + a?d?
= (a?+b?) (c®+d?).
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Hence at least one of the real numbers a2+ b2, ¢2+d? must be 0; and
this implies @ = 0 = b, or ¢ = 0 = d, or both. The result follows.
See also Ex. 13 (@), nos. 19-25.

(3) Application of definitions (b), (¢) to number-pairs of the form
(2,0 [, 01 £1ves (4, 0140, 0] = [a-+¢,0),
[, 0] x [¢, 0] = [ac, 0.

Apart from the presence of the brackets and the second part 0 in
each pair, these results are exactly like the laws of addition and
multiplication of the ordinary numbers a, ¢: the laws of combination
of complex numbers [a, 0] and real numbers a are structurally the same.t

Owing to this fact, we agree to abbreviate [a, 0] to @, and in particular
we write 1 for [1,0]. (There is a precedent for this: we agree to write
2 for +2, etc., because the (unsigned) natural numbers and the
positive signed numbers behave exactly the same algebraically.)

In definition (c) let us now choose @ = 0,¢ = 0,6 = 1,d = 1. Then

[0,1]x[0,1] =[-1,0],
ie. [0,1] = [—1,0];

and according to our agreement about abbreviation of the right-hand
side, this can be written [0,1] = —1

Thus in the algebra of number-pairs there is an element whose square
is equal to —1, viz. [0, 1]. Let us abbreviate [0, 1] to ¢; then we have
number-pairs ¢ and — 1 for which % = —1.

By definition (b),

[@,b] = [, 0]+[0, 8]
= [a, 0]+[b,0][0,1] by definition (c),
=a+bi by our abbreviations.

If we now rewrite definitions (a), (b), (¢), replacing [a, b] by @+ bi,
etc., we recover the results (iii), (i), (ii) respectively in 13.12; but now
these results are consequences of our definitions and agreement about
abbreviations, and all numbers in them are actually number-pairs
although they appear to be ordinary numbers.

1 We say that there is an isomorphism between the complex numbers of the form
[a,0] and the real numbers a.

34 GPMII
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Since [b,0][0,1] = [0, 1][b, 0], as is easily verified, we can write
[a,b] as a+1b instead of a+bi when convenient. OQur conventions
amount to writing a for a + 0¢, ¢ for 0+ 14, and b for 0+ bs.

(4) Conclusions. Inthe algebra of real numbers (‘ordinary algebra’),
J/(—1) does not exist. In complex algebra (the algebra of ordered
number-pairs) there are pairs abbreviated to ¢, —1 which do satisfy
4% = — 1, so that this pair ¢ has the property which ,/(— 1) would have
(if it existed) in real algebra.

Correct results in complex algebra are obtained by applying the
laws of ordinary algebra to the number-pairs in their abbreviated
form a+b¢, with the replacement of ¢2 by —1 whenever it occurs.
That is, the intuitive work of 13.12 is correct, provided we realise
that we are handling abbreviations for pairs.

Remark. The relations ‘less than’, ‘greater than’ are not defined in
complex algebra; e.g. it is meaningless to write 3+2¢ < 4+5:i. In
particular, the terms ‘positive’, ‘negative’ cannot be applied to
complex numbers.

13.15 Importance of complex algebra

Complex algebra provides a method for proving results of real algebra.
This is so for two reasons.

(i) A single equation in complex algebra is equivalent to two
equations in real algebra, by definition (a) in 13.14. Hence pairs of
results can be obtained from one calculation, thus making for economy.

(ii) From any general relation between complex numbers there can
be obtained a special case by taking the second parts of all numbers
to be zero. Because of the exact correspondence between complex
numbers [z, 0] and real numbers x (13.14(3)), we deduce a relation
in real algebra.

These remarks will be illustrated in this chapter and the next.

Complex algebra offers generality and completeness. For example, we
can assert that in complex algebra every quadratic equation has two
roots (possibly equal).

Since complex numbers arose from the attempt to solve all quadratic
equations (and in particular the equation 22+ 1 = 0), we may wonder
whether consideration of equations having degree greater than 2
would lead to some higher form of complex number, say ‘super-
complex numbers’. The answer is N0, because in 13.42 it will be
proved that in complex algebra every polynomial equation of degree =
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has n roots (i.e. the roots are themselves complex numbers). Thus
complex algebra has a finality which the real number system lacks,
and no further generalisations can be obtained in this direction.

13.16 Further possible generalisations of ‘number’

(1) Ordinary algebra is 1-dimensional, i.e. any real number can be repre-
sented by a point on a line, say the axis of «.

Complex algebra is 2-dimensional, since a complex number is represented
by & point in a plane, with reference to two axes.

Is there a 3-dimensional algebra—an algebra of ordered triplets [a,b,c]?
Hamilton (1805-65) considered this problem and showed that no genuine
‘algebra’ could be constructed, although a system of elements (which may be
called vectors) of the form af+ bj + ck where a, b, ¢ are real numbers and 1, , k
denote [1,0,0], [0, 1, 0], [0,0,1] would obey some of the usual laws, and is
useful in 3-dimensional mechanics, for example.

However, Hamilton did construct an algebra of ordered quadruplets [a, b, ¢, d]
or quaternions, in which all the usual laws are obeyed except that xzy + yz. We
could similarly think of an ‘algebra’ of n-vectors [a,,a,,...,a,] or even of
infinite sequences [a,, @y, @y, ...]. '

(2) Further, we may consider arrays with more than one row, e.g.

(ab) (abc) ZZ; .
’ ’ , ete.,
¢ d d e f g b i

where the elements are real numbers. With suitable laws of combination, the
algebra of rectangular arrays or matrices would be obtained. Although such an
algebra was originally investigated for its own sake, it is now widely used,
e.g. in theoretical physics and much geometry. Nor is there need to restrict
the elements to be real.

The reader must seek elsewhere for development of these suggestions.

Exercise 13(a)
Stmplify and express in the form X + Yi.:
1 2+7)+(34+4). 2 (2+7Ti)—(3+4). 3 (2+64)+(5—3i).
4 (2460)—(—5+3i). 5 (3+50)(2+3i). 6 (4+ 5i)(4—55).
7 (3+450)+(2+%). 8 (6+50)/(3+2i).
9 (1+4)2 and hence (1 +%)%, (1+4)8.
10 (144) (14 22) (1 + 32). 11 (cos & +%sinB) (cos ¢ +4sin @).
12 (cosf+isin8)/(cos ¢ +4sin @).
13 Calculate (a+bi)/(c+di) by the process analogous to ‘rationalising the
denominator’ with surds:
a+bi  (a+bi)(c—di) (ac+bd)+(bc—ad)i
ct+di  (c+di)(c—di) A +d? ’
which agrees with 13.14 (1).
Solve nos. 7, 8, 12 by this method.

342
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14 If Z=X+Y¢ and Z = (2+1)/(2—1) where z = x+yi, express X, Y in
terms of z and y.
15 Complex numbers z,, 2, are given by

. %
2, = By +iwL, zz=R,—m,
1 1 1

and z is defined by ;=z_+;'
1 2

Find the values of w for which z is of the form x + 0i.

16 If \(e+b) =z+yi and = > 0, prove z?—y2 = a? and 2zy = b. Hence
express 4/(3 + 44) in the form z +yi.

17 Express (z+yi)® in the form X+ Yi. Write down the corresponding
expression for (z—y1)3.

18 Prove {}(—1+%43)}*=1.

By direct appeal to the definitions (a)—(c) in 13.14(1), verify that complex
numbers satisfy the following algebraic laws.
19 [e,bl+[e,d] = [¢, d] + [a, b] (commutative law for addition).
20 [a,b] % [c,d] = [¢c,d] x [a, b] (commutative law for multiplication).
21 ([a,b]+[c,d]) +[esf] = [a, b]+ ([c, d] +[e, f]) (associative law for addition).
22 ([a,b] x[c,d]) x [e, f1 = [@,b]+([c,d] X [e, f1) (associative law for multi-
plication).
23 ([a,b]+[c,d]) x [e, f] = [@. b] X [e, f1+[c, d] X [e, f] (distributive law).
24 [a,b]+[a,b]+... to n terms = [a, b] x [n, 0], each being equal to [na, nb].
25 By using the multiplication rule, verify that —<¢ = [0, —1] satisfies
224+1=0.
26 Consider ordered number-pairs {a,b} of integers (positive, negative or
zero, but with b 3= 0) which satisfy the following laws:
(a) {a,b} = {c,d} ifand onlyif ad = be;
%) {a'9 b} +{c’ d} = {ad+ be, bd};
(¢) {a,b}x{c,d} = {ac,bd}.
Obtain expressions for {a, b} — {¢, d} and {a, b} + {¢, d}. Verify that this algebra
is isomorphic to (i.e. the same in structure as) the algebra of rational numbers

(fractions). (We could define fractions abstractly in terms of integers in this
way.)

13.2 The modulus-argument form of a complex number

13.21 Modulus and argument

We saw in 13.13 that the complex number x + i (or x +7y) can be
represented uniquely by the point P(z,y) in the zy-plane. If P has
polar coordinates (r, ), then (see 1.62, and fig. 25)

xz=rcosl, y=rsind, (i)

and so z+yt = r(cos 0 +isinb). (i1)
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When z + yi is so expressed, and r is restricted to be positive (cf. 1.62),
then  is called the modulus and 6 the argument of x + yi, respectively
written |z + yi|, arg (z+y1).T We may think of x4 yi as ‘the number r
in direction 6°, a generalisation of the idea of ‘directed number’ as
presented in elementary algebra.

It is customary to write z for 4 yi, and to write r = |z|, 0 = argz;
z may be called the number of the point P in Argand’s diagram, and
sometimes P is called the affix of 2.

Frequently it is necessary to express a complex number, given in
the form z + 4, in terms of its modulus and argument. From equa-

tions (i), r = +(@®+92) (iii)
since r is restricted to be positive; and
cosf:sinf:1 = z:y:+./(z2+9?), (iv)

which gives a unique value of 6 in the range —7 < 6 < +m. Any value
differing from this by any positive or negative integral multiple of
27 would give the same point P and consequently is a possible value
of argz. Thus argz is a many-valued function, and we define its
principal value to be that in the range —m < 6 < m. (The single
equation tan@ = y/x does not determine argz because it gives two
values for @ in this range.)

Examples
(i) Express (5+1)/(2+ 3¢) in modulus-argument form.
5+1¢ - (5+17)(2—32) _ 13—13¢ =1—4.
2+3 (2430)(2—%) 4+9
We require 7, 8 such that reos = 1, rsind = — 1. Hence r = +,/2, and ¢ is
given by cos@:8inf:1 = 1:—1:4/2; the principal value of the argument is
therefore — 7. The required result is
/2 {cos (— }mr) +isin (— }m)}.
(ii) Express 1— cos8—isin 8 in modulus-argument form.
1—cosf—1isinf = 28in? }6 — 2;sin 36 cos 30
= 28in 40 (sin }0 — i cos 30)
= 2sin $0{cos (30 — 37) + isin (30 — 3m)}.

This will be the required result if sin 4§ > 0, i.e. if 2n7 < 30 < (2n+1) 7.
If (2n— 1) 7 < 36 < 2nm, then sin 30 < 0 and we must write

1—cos@—isind = — 2sin }0{—cos (30 — m) —isin (36 — 37)}
= —2gin }6{cos (30 + 37) +isin (30 + §7)}.

1 Sometimes @ is called the amplitude of x+yi and is written am(x+yé) or
amp (x +y).
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In numerical cases like ex. (i) the modulus and argument can usually
be written down easily after drawing a sketch.

We remark here that the complex number 2z, represented by the
point P(z,y), can also be associated with the displacement OP in the
sense from O towards P. Given the axes, there is an exact correspond-
ence between the complex number z + yi, the point P(z,y), and the
vector O P. Also see 13.32.

13.22 Further definitions, notation, and properties

(1) We agreed in 13.14 (3) to abbreviate a complex number z of the
form x + 0 to z. Itis customary to go further and call z ‘real’, although
this double use of ‘real’ is most unfortunate. Similarly a number of
the form 0 + i is shortened to 4y and called purely imaginary.

If z is ‘real’, then it is represented by a point on the z-axis; and
argz = 0 or 7 according as z (i.e. x) is positive or negative.

If z is purely imaginary, it corresponds to some point on the y-axis;
and argz = + 7 according as ¥ Z 0.

(2) Real and imaginary parts. In the complex number 2z = x4+ ¥,
zis called the real part (or first part) and is sometimes written x = %(2);
and y is called the tmaginary part (or second part), written y = S (z).
The process of deducing from the relation z, = z, that z; = z, and
Y, = Y, is called equating real and imaginary parts, respectively,

If 2,, 2, are expressed in modulus-argument form as

r(cos@+1isinfd), s(cos@+ising),

then from r(cos 0 +18in 0) = s(cos ¢ +14sin @)

it follows by equating real and imaginary parts that
rcosf = scos¢ and rsind = ssing.

Squaring and adding gives 72 = s, so that » = s since r, s are positive.
The two equations now become

cosf = cos¢, sinf =sing,

so that ¢n general 0, ¢ differ by some integral multiple of 2m. If 6, ¢
denote the principal values of argz,, argz,, then 6 = ¢.

The process of deducing from z, = 2, that |2,| = |z,] is called taking
moduli. That of deducing argz, = argz, is called taking arguments.
This equation holds for principal values of ‘arg’; but since ‘arg’ is
many-valued, we may write arg 2, & argz, to emphasise that any value
of the left-hand side is also a value of the right, and conversely.

.
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(3) Conjugate complex numbers. Given a complex number z = z + s,
the number x—yi obtained by changing the sign of 4 is called the
conjugate of z and is written z (or sometimes z* when the previous
notation is required to denote ‘average value’). Conjugate complex
numbers have the following properties.

(i) The product 2z = (x+yi) (x—yi) = 22 +y2 = 2|2 is ‘real’.

(ii) The sum z+2 = (x+yi)+ (x—yt) = 2x = 2%(z) s ‘real’.

(iii) The differencez—Zz = (x +yi) — (x —yi) = 2yi = 205 (2) is purely
imaginary.

(@iv) |z| = |Z|; but (for principal values) argz = —argz, except
when 2 is ‘real and negative’, i.e. of the form z+ 0i where = < 0.
In the xy-plane the points which represent z, z are images in the z-axis.

(v) If z =%, then z is ‘real’; if z = —Z, then 2 is purely imaginary.

If 2, = z,, then #, = 2, and y, = y,; hence x, —iy, = 2, —1y,, i.e.
Z; = Z,. The process of deducing from 2z, = z, that z, =z, is called
taking conjugates.

Finally, the definition of ‘conjugate’ shows that z, + 2z, = Z; +Z,,

(12) = %12, (1af2) = %/Z () =2
(4) Properties of |z|. From the relation |z|? = 2Z in (8) it follows that
|2120]% = 212521 20) = 217,255 = |23]2. |22
Hence |2125] = 24| |22)>

since both sides are positive by definition. Similarly, if z, + 0,

alt il) (71:) _ah_[af

2 22/ \Zg 2% zzlz,
so that Al lz—l
2y 2|

13.23 The cube roots of unity}
If z is a number whose cube is +1, then z23—1 = 0, i.e.
(z—1)(z2+2z+1) = 0;
hence either z—1 = 0 or 224-2+1 = 0 by 13.14(2). From the latter,
(e+32=—% 2+3=+i3y3 and z=}(—1tiy3).

Since cos §7 = —% and sin §7 = }./3, the first of these roots has
modulus-argument form cos 7 + ¢ sin ¢77. We denote this by w.

1 A simpler approach will be given in 14.13, ex. (ii).
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Also, cosgm =—1 and sinfmr = —%./3, so the second root is
cos $m+isin 4. It is also @, as is clear from the original formula for 2.
Now ©? = (cos #m + i sin §m)?
= cos? £77 —sin? 7 + 2¢ sin 7 cos 2w
= cos 47 +isin §7r.

Hence the roots of 224z 1 = 0 can be written 2 = w, w2 There are
thus three cube roots of +1 in complex algebra, viz. 1, v, w?. The
relations =1 o+w+1=0 =0

often simplify calculations.

Example
Direct expansion shows that
a b ¢
¢ a b |=a*+b*+c®—3abe.
b ¢ a

The operation ¢, - ¢, + ¢, + ¢4 reveals the factor a+b+c.
Since the expression on the right can be written

a®+ (bw)? + (cw?)® — 3a(bw) (cw?),

similar reasoning reveals the factor a + bw + cw?. Likewise, since the expression
is also a® + (bw?)? 4 (cw)? — 3a(bw?) (cw), a + bw? + cw is a factor.

‘We now have three complex linear factors, so that any further factor must
be numerical. Comparison of the coefficients of a® shows that it is + 1. Hence

ad+ b2+ ¢ —3abe = (a+b+c) (a+bw + cw?) (a + bw? + cw).
By comparing this result with
a®+ b3+ ¢ — 3abe = (a+b+c)(a? +b%+ ¢ — bc—ca —ab)
(see 10.22(2), example; or Ex. 11 (a), no. 20), it follows that
a?+ b2+ c2—bc—ca—ab = (a+bw+ cw?) (a+ bw? +cw).

Exercise 13(b)

Express in modulus-argument form:

1 14443 2 1—iy3. 3 —1+i. 4 1—4.

: : 5+i4y3 2413
5 (1+31“\/3)/(1/3+2’b). m. 7 (1+7;)E.
8 1+4cosf+isind. 9 (coso+¢sina)+(cosf+isinp).

10 If a+ib = (x+4y)"® where a, b, =, y are real, express a®+b? in terms of
z and y.

11 If the coefficients in the equation 24+ pz®+gz2+rz+s = O are ‘real’, and
there is a purely imaginary root, prove 72+ p? = pgr.
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12 If |(z—1)/(z +1)| = 2, prove that the point P which represents z lies on the
circle oyt + 141 = 0.

13 If w = z/(z4 3) where w = u+iv and z = =+ iy, and if z lies on the circle
(z+ 3)2+4y2 = 1, find the locus of w.

14 Provethat | 1 ¢ 2 1 1 12
0w 1 o |=0, 1 o 0| =-27.
0w 0w 1 1 0 o

15 Prove w2*+w"+1 = 3 or 0 according as n is or is not a multiple of 3.

16 Expressx®+ y® as the product of three linear factors, and deduce the factors
of 22 —zy + y%. [Method of 13.23, ex.]
17 Prove (a+ wb+w%)®—(a+ 0 +wc)® = —3i/3.(b—c)(c—a)(a—b). [Use
factors of «®—y3.]
18 Prove that (a®+ ab + b2) (22 + 2y +y?) can be written in the form
X2+ XY+ Y2
[Use a2+ ab + b? = (a— wb) (a — w?b), etc.]

*19 Prove that (a®+ b3+ c®— 3abe) (% + y® +23 — 32yz) can be written in the
form X384 Y34 Z3-3XYZ, where either

(i) X =az+by+czs, Y=cx+ay+bz, Z=bx+cy+az,
or (i) X =ax+cy+bz, Y =cx+by+az, Z=bx+ay+cz.
[In (i), (@ + bw + cw?) (x + yw? +20) = X + Yw?+ Zo, ete.]
*20 Ifa, (r = 1,2,3) denote the cube roots of — 1, prove
(1 4oy 4 2%2) (1 + 2oty +2%8) (1 + oty +2%3) = (1+a%)2
[A typical factor is (1 —a%3)/(1 —zet) = (1 +22)/(1 —aa).]
21 If the equations 2® = 1, aa®+ bx + ¢ = 0 have a common root, prove
a®+ b3+ ¢ — 3abc = 0.
[One of the three roots 1, w, w2 of 2® = 1 satisfies the other equation, so

(@ +b +c) (aw® +bw +¢) (aw'® + bw? +c) = 0.]

13.3 Applications of the Argand representation

13.31 Geometrical interpretation of modulus and argument

If z is represented by P, then |z| = /(2*+y?) is represented by OP.

Also . . vl
|21 —2a| = (&1 +15y1) — (%2 + i) P,

= (@, — 25) +i(y; — ¥5)|
= J{(@,—2)* + (1 — 92)%
_RA, S

av

by the ‘distance formula’ of coordinate o
geometry. Fig. 128
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If 0 is the principal value of arg 2, then it is given by

cosf:sinf:1 =2x:y:/(2®+y?)

and is the angle of turn from the direction Ox towards the direction
OP, which can be written 2 (Ox, OP). Similarly, arg (z, —2,) is the angle
defined by

cos0:8inf:1 = o~ 25 Y1 — Yo /{(@1— %) + (11— 92)%),
and represents the angle of turn from Oz towards P,P,, written
£(Ox, B, P,).
Examples (some loci)

If P, is the fixed point z, and P is the variable point z, then
(i) the locus |z—z,| = c is the circle with centre P, and radius ¢;
(ii) the locus arg(z—z,) = a s the half-line P, P for which £(Ox, P, P) is a.
(The other half is given by arg (z—z,) = 7+a.)

(ili) If Py, P, are fixed points z,, z,, the locus |z—z,| = |2—2,| is the perpen-

dicular bisector of the line P, P,. For PP, = PP,, and the result follows by pure
geometry. Alternatively, it can be proved algebraically from

(e—2)?+(y—1)* = (2—2)* + (Y —¥,)*
by simplifying.

(iv) If P, Q are the points z, 2z + 8 — 4¢ and P moves on a circle of centre O and
radius r, find the locus of Q. .
Write w = 22+ 8 —44. Then w—3+4¢ = 2z, so

|w—(3—43)] = |22] = 2

since |2| = 7. Therefore § lies on the circle of centre (3, —4) and radius 2r.

13.32 Constructions for the sum and difference of z,, z,

(1) Sum. Let P,, P, correspond to 2,, z,, and complete the parallelo-
gram F,OF, F,. Then

x5 = projection of OF, on Ox
= projection of OP, + projection of P, P,
= projection of OP, + projection of OF,t
=&+ Z,.
Similarly, by projecting on the y-axis we find y, = y, +y,. Hence
T3+ 1Yy = (Ty +2y) + (g1 + Y2) = (@1 +191) + (X2 +1,),
i.e. 23 = 2, +2,, 8o that P, represents the sum z, +2,.

1 Since OP, is equal and parallel to P, P;, and in the same sense.



13.33] COMPLEX ALGEBRA 501

Observe that the construction for P, is the familiar parallelogram
law for compounding (‘adding’) two displacements OP,, OP,. To
the sum of two complex numbers corresponds the sum of the associated
vectors.

(2) Difference. Since z;—z, = 2z, +(—2,), we first construct the
image P; of P, in O, which represents —z,. The above sum-construc-
tion performed with P,, P; will give P,, corresponding to z; — z,.

vi P,
Pt
Pl
o // -—
/ / K3
/ A
/ S "
/ -
L-—
Py
Fig. 129

As OPF, is equal to, parallel to, and in the same sense as P, P, we
can represent z, —z, by the displacement P, P;.

13.33 The triangle inequalities

By applying the theorem that ‘the sum of two sides of a triangle is
greater than the third side’ to triangle OF, F,, we have

OP, < OP,+ PP,
ie.t OP, < OP,+ 0P,
and hence |21 + 2] < |24] + |22l

From this we deduce the following, exactly as for real numbers

in 1.14:
=2 > |lza| = [zl

|2t 23] > |[21] = [zal |-
These inequalities should also be verified geometrically from fig. 129.

The results can all be proved algebraically, without appeal to a figure. To
do 8o, we first observe that

RA(z) = 2 < J(@+y?) = |2,

1 Equality is included in case O, P,, P, (and hence also P;) are collinear.
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with equality when and only when z is ‘real and positive’, i.e. of the form xz+ 0¢
where x > 0. (Similarly #(z) < |2|.) By 13.22(3),

'zl +22‘2 = (2,+2,) (21 +7%5)
=212 +212,+712, + 2,2,
= |2,|2 4 2%(2,Z,) + |2,
since z, %, and Z, z, are conjugate complex numbers. As %z, %,) < |2;7|,
[21+23|2 < |21 |2+ 2 |2:2,] + |24]?
= (Jor] +2])%  since |2,Zy| = |2y]. 2| = |24 - |24l
Therefore |20 +25] < |2y| + 28>

positive signs being chosen because the modulus of a complex number is
positive by definition. Equality occurs if and only if 2,7, is ‘real and positive’,
i.e. z; = a%, where a is ‘real’.

The other results can also be established similarly.

13.34 Constructions for the product and quotient of z,, z,
It is convenient to use the modulus-argument form.

(1) Product. Let z, = r(cos 0 +1sin ), z, = s(cos ¢ + 1 8in ¢), so that
P,, P, have polar coordinates (r, 8), (s, ). Then
2,2 = r3(cos @ +¢sinf) (cos ¢ +isin @)
= rs8{(cos 0 cos ¢ —sin & sin @) +4(sin & cos ¢ + cos O sin ¢)}
= rs{cos (0 + ¢) +isin (6 + ¢)}.
Therefore z, 2, is represented by the point which has polar coordinates
(rs, 0+ ).
To construct this point, let 4 be the point whose polar coordinates

are (1,0). Draw triangle OAP,, and construct triangle OF, F; directly
similar to OA4P, (fig. 130). Then

OP, OP, _ _
O—I)z—O—A, 0.[’3—01)1.0})2—?’8.
Also %OP, = xOP, + P,OP, = 20P,+ AOP, = ¢ +6.

Hence F, is the required point.
The above calculation verifies the result |2,2,| = 2. |2, and also
shows that (cf. the end of 13.22 (2))

arg (z,2,) & argz, +argz,.

Ordinary equality may not hold when all three terms have their
principal values; e.g. if

2, =2, = cos §m+isin 3w, then 2,2, = cos§m+isinsgm,
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and the principal values are
argz, = argz, = &7m, arg(z,2,) = — 4.
We observe that multiplication of a complex number z, by

r(cos 0 +isin ) turns the corresponding vector O P, through angle
and multiplies its length by r.

(2) Quotient. If z, = z,/z,, then 2z, = 2,z,, and so we can use the
product-construction in (1), making P, take the role of F; there.

We therefore construct triangle OP, P,, and then make triangle
OP, A directly similar to this (fig. 131).

vi Py
vl

P,y

sy
8y

A
Fig. 130 Fig. 131

Alternatively, the construction can be obtained from
2 _ T cosf+1isind
z, 8cos¢-+ising
_ 7 (cos 6 +isin6) (cos § —1isin ¢)
" 8(cos @ +isin @) (cos ¢ — i sin @)

_ 7 (cosf cos P +sinf sin @) +4(sin 6 cos ¢ — cos § sin ¢)
T s cos? @ +sin2 ¢

= g {cos (0 — @) +isin (6 — ¢)}.
This calculation verifies that |2,/2,] = |24]/|2s|, and shows that
)
arg (2) ~ argz, —argz,,
2y

with the usual understanding about many-valuedness.
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Remark. It also follows that

2, — 2 vi
arg, . ~ag (21 —25) —arg (23— 2,) P,
3~ %2
— £(0x, B,P)~ £(0x, B, B) y
= L(P2P3= ERP), P,
i.e. the angle B, P, in the sense from F,P; 5 -

towards P, P,. Fig. 132

13.35 Harder examples on the Argand representation
*(i) Interpret geometrically the equations

Py o; (b)

(a) By the Remark in 13.34, we have P, ﬁPl = a. Hence the locus of P is an
arc of a circle through Py, P, and containing angle .

(b) We shall prove that the locus of P is a circle (a circle of Apollonius with
respect to P, Pg).

z2—2 z2—2z,
= = 1).
(a) arg~— o= e

P

Fig. 133

Geometrical proof. We are given that AP/PB = k + 1, where A, B, represent
2y, 2.7
Divide 4 B internally at H and externally at K in the ratio k: 1. (The figure
is drawn assuming k > 1; the reader should illustrate the case £ < 1.) Then
AP AH AP AK
——=— and ——=-,
PB HB PB KB
and by a theorem of pure geometry it follows that PH, PK are the internal and

external bisectors of APB. Hence HPK is a right-angle. Since H, K are fixed
points, P lies on the circle having HK for diameter.
Algebraical proof. From the hypothesis,

fe—al* = B o=z,
i.e. (@ —2)2 +(y —41)? = kA(x—25)% + ¥y — ya)%;
and since k + 1, this represents a circle (see 15.61).

1 The implied change of notation from P,, P; to A, B respectively is made for
convenience in writing.
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It is easy to prove that, if the centre is O, the radius OH of the circle is given by

OH? = OA.OB.
For since AH/HB = AK/KB, it follows that AH/AK = HB/KB, and so
OA—-OH OH-0B . 204 20H

1.0,

OA+0H  OH+OB’ 20H 20B

by properties of equal ratios, which gives the result.

T
c ®

@

Fig. 134

We can now show that the circles in (a), (b) cut orthogonally (see 15.66(1)).
If T is a common point, then OT? = 04 .0B. By the converse of the tangent- .
chord theorem, OT touches the circle (a). Hence the radius CT of (a) is per-
pendicular to OT, and so touches (b) at 7. Thus the tangents to (a), (b) at T
are perpendicular, i.e. the circles are orthogonal.

*(ii) Prove that the iriangles Py Py Py, P, P Pg are directly similar if and only if
21—%y 2%
Zy—Zy  2g~25

(a) If the condition holds, then by taking moduli, P, Py/P; Py = P, P/P¢Py;
and by taking arguments and using the Remark in 13.34,

P,P,P, = P,P,P,

and are in the same sense. Hence by the test ‘common angle and containing
sides proportional’, triangles P, P, P;, P, P, Pg are directly similar.

(b) Conversely, if the triangles are directly similar, then the above two
relations hold, so that (z, —25)/(23 — 22), (24— 25)/(2¢ — 25) have the same modulus
and the same argument. They are therefore equal.

The condition can be written
21—2 0 23—z,

TR AR 0, ie. |[2z3—z; 0 24—z5 |=0.

1 1 1

2425 2%

By r, » r, +2,r; followed by r, - r;+2;7; we obtain
2, 29 Zg
2y 25 24 |=0.
1 1 1
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Exercise 13(c)
1 Indicate in a diagram the points representing (z, +2,), 2; + 225, 2; — 22,.

2 If collinear points P,, P,, P; are such that P, P, = 2P, Py, find the relation
between z,, 2,, 25

3 Write down the complex number represented by the point dividing P, P,
in the ratio k:1.

4 What is the locus of Pif 2 < |z +1—2i| < 32

5 Find the greatest and least values of (i) |z—4| if |z| < 1; (ii) |z+1] if
|e—3| < 5.

6 Prove that |2, +2,|2+ [z, —2,|2 = 2{|2,|2+ |2.]%} (i) geometrically, (ii) alge-
braically. [For (i) use the theorem of Apollonius on triangle OP; P, in fig. 129.]

7 (i) If |2, +2,| = |2, —2,|, prove that argz; and argz, differ by {7 or 37
(principal values intended). (ii) If arg {(z, +2,)/(2, —2,)} = 37, prove |z;| = |z,].
[Treat geometrically.]

8 Verify the following construction for the roots of 22— 2az + b% = 0, where
a,barereal and 0 < e < b. With the origin O for centre, draw a circle of radius b.
From the point 4 on Ox at distance a from O draw a perpendleular to Oz cutting
the circle at P, Q. Then P, @ represent the roots.

9 Verify the following construction for \z. Let A be (1,0); produce PO to B
so that OB = 1. Through O draw a line parallel to AB to meet the circle PAB
in @ and R; these are the required points.

10 Given the points representing z;, 2,, construct those representing the two
values of \/(2,2,).

11 P, is any point, and on the circle on OP,; as diameter points P,, P, are
chosen so that PIOP,, P20P3 ¢. Prove z2cos 2¢ = z,2;cos? @,

12 If G is the centroid of triangle P, P, P; and 4z, +2,+2; = 0, prove that O
bisects P, G. [Use Ex. 15(a), no. 1.]

13 If A is real and z = 44+ 3¢(1—A), prove that P lies on a straight line.
As A varies, prove that the least value of |z| is 2-4, and interpret geometrically.

14 If z, —2z, = z,—2,, prove that P, P, P, P, is a parallelogram and that the
point }(z, + 2z, +2;+2,) is its centre.

15 Show that the point P,, where z, = (1+AZ)2, and A is real, lies on the
perpendicular at P, to OP,. Find A if argz, = argz; + 4w, principal values
being intended.

16 If z,, 2, are the roots of 22 — az + a® = 0, where a is a complex number, prove
that the points 2, z, are the vertices of the equilateral triangles drawn on
opposite sides of the line 0A4.

17 ABQC is equilateral, with sides of length 1 and centroid at O. If 4 repre-
sents z, what do B, C represent? Show that the sum of these three numbers is
always zero.

18 If 4, B, C, D, E are the vertices of a regular pentagon inscribed in a circle
whose centre is O and radius is #, and if 0.4 makes angle § with Oz, write down
the numbers which these vertices represent.

19 If 2/z, = 1/2,+1/z,, prove that OP,P, P, is a cyclic quadrilateral. [The
relation is (2, —25)/(0 —2,) = (2, —23)/(23 — 0); take arguments.]
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20 Interpret geometrically the equation

174 (.z_zl) = 0.
Ry —723
*21 On the sides of triangle ABC are drawn triangles BCX, CAY, ABZ

directly similar to each other. Prove that the centroids of ABC, X YZ coincide.
[By 13.35, ex. (ii) and properties of equal ratios,

z—¢ y—a z—b Zz—Za

b—c_c-—a_a—b: o ’

8o Xz = Za.]
*22 For any complex number z prove that the triangle with vertices 2z,, 2z,
22, is directly similar to the triangle with vertices z,, 2, 2.

23 If P, P, and P, P, are equal and perpendicular, the sense of rotation from
P,P, to P,P, being clockwise, prove z;—1i2;—2+iz, = 0, and conversely.
[|24— 2| = |23 —2,| and arg {(z3—2;)/(24—2a)} = + 3. Hence (23— 2,)/(24 —2,) = 7.]

24 On the sides of a plane convex quadrilateral, squares are drawn externally.
Prove that the centres of these squares are the vertices of a quadrilateral whose
diagonals are equal and perpendicular. [Let the vertices in clockwise order be
24, Zq, %3 2. The centres of the squares are §(z, +2,) + 3i(z; —2,), ete. Useno. 23.]

25 By considering the modulus of the left-hand side, prove that all the roots of

zrsinna 2zt lsin(n—1)a+... +zsina =1
lie outside the circle |z| = 4.
[1 = [e"sinna+...+2zsina| < [2[*+|2|"*+...+]2|. If a root z satisfies
l2] < %, then for thisz, 1 < ()*+(3)* ' +... +4 = 1—(}", a contradiction.]

13.4 Factorisation in complex algebra

13.41 ‘The fundamental theorem of algebra’

We remarked in 13.15 that complex numbers cannot be generalised
by attempting to solve equations of degree higher than 2. This is a
consequence of the following theorem.

In complex algebra the polynomial equation

D) = P2+ P17+ 4Py =0 (Do * 0) (i)
has AT LEAST ONE rool.

This result, known also as d’Alembert’s or Gauss’s theorem, has
not yet been proved by any strictly algebraical argument. We shall
assume it here; the reader may later study a proof which depends on
the complex integral calculus.

13.42 Roots of the general polynomial equation

Defining ‘repeated root of order 7’ as in real algebra (10.43), and
reckoning such a root as r roots, it is now easy to prove the following.}

1 This result should be compared with the weaker Theorem I in 10.13. Both the
Remainder Theorem and Theorem I are valid in complex algebra, their proofs being
unchanged.

35 GPMII
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In complex algebra the equation (i) has exactly n roots.
Proof. By the fundamental theorem there is a root z = a,, i.e.

PO+t 4. +p, = 0.
The equation (i) is therefore equivalent to
Po(@*—af) + ("t —of ) + . Py (2—ay) = O;
i.e. since z—a, divides each bracket, to

(z—a)fi(z) = 0,

where f;(2) is a polynomial of degree n—1 in z, whose first term is
Ppo2™ 1 (as is clear by starting the division).

Again by the fundamental theorem, f,(z) = 0 has a root z = «, (not
necessarily distinct from «,), and by similar reasoning

fi(2) = (2—a) f5(2),

where f,(z) is a polynomial in z of degree n — 2, beginning with p,2"-2,
Continuing thus, we find

P) = (2—ay) (2= ) . (2= 1) fua(2)s

where f,,_,(2) is a polynomial of degree 1 in z, and begins with p,z; it
must therefore be of the form pyz + £, or py(z—«,) say. Therefore

P(2) = polz—0y) (2 — ) ... (2— ). (ii)

This shows that p(z) has n factors linear in z; or equivalently, that

the equation p(z) = 0 has n roots a,,a,,...,a, (which may or may

not all be distinet). Also, (ii) shows that these are the only values of z
which make p(z) zero; for if 4 is such a value, then

Po(B—a) (B—5) ... (B—at,) = 0,
and since p, & 0 by hypothesis, at least one of the factors f—a,

B—ay, ..., f—o, must be zero (13.14(2)), i.e. £ coincides with an a.
Hence p(z) = 0 has exactly n roots.

If the roots are not all distinct, (ii) takes the form
P(2) = polz— o)™ (2—ag)™ ... (2 — o)™, (iii)
where n; +ng+ ... +n; = nand a,, &, ..., &, are all distinct. T'his decomposition
18 unique (apart perhaps from the arrangement of the factors). For if also
P(2) = polz—Br)™ (2= o)™ ... (2= B)™, (iv)
where f;, f,, ..., f, are distinet, then each £ must be an a, since otherwise from
(iii) p(B,) * 0 while from (iv) p(f,) = 0; similarly each a must be a f. Suppose
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the notation has been chosen so that 8, = ;, fz = &5, ...; then (iv) can be
" ; .
written P(2) = pofz—)™ (B =)™ ... (2= ty)™. v)

It now follows that m, = n, (r = 1,2, ..., k). E.g. if m; < n,, then from (iii) and
(v) we should obtain, after dividing out py(z —a,;)™:

(=)™ ™ (2 —ag)™... (2— )™ = (2— )™ ... (2 — )™,

which is impossible since the left-hand side is zero when z = «, but the right-
hand side is not.

13.43 Principle of equating coefficients

We can now deduce results for complex polynomials corresponding
to Theorem IT and its corollaries in 10.13. The enunciations and proofs
are the same. In particular, the ‘principle of equating coefficients’ is
valid for polynomials in complex algebra.

Example

Solwe the following three simultaneous equations in z,, z,, 23, Where a;, aq, ag are

all different: 2 2

: 2
+—2_4+ 3 __1=0 (r=12,3).
a+A G t+A aytA, { )
Consider the expression
2y 2y 2y
(a1+A)(a2+A)(%+A)=al+/\+a2+)l+as+)t l}.

When expanded, it is a polynomial in A of degree 3, with leading term —A®.
The given equations imply that this expression is zero when A = A;,A,,A,.
Hence it must be identical with

—A=2) A=) (A=2y).
Putting A = —a, in the identity, we have
(@3—ay) (a3 —a1) 2, = (— 1)* (@ + A1) (a1 +Ag) (@, +4,),
which gives z,. Similarly the substitutions A = —ay, A = —a, give z;, 2.

13.44 Repeated roots and the derived polynomial
The definitions of ‘repeated factor’, ‘repeated root’ in 10.43 are
retained for complex polynomials. Continuing to write
D(2) = P2 +p12" . + Py
we define the derived polynomial of p(z) to be
P'(2) = penz L+ p,(m—1)2" 2+ ... 4P,

The reader may wonder why we do not give a definition like the following:
p’(2) denotes . plz+h)—p(2)
m ————
B0 b
' 35-2
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where h is complex (say & = £+47) and A - 0 means that £ and 7 tend to zero
separately and in any manner.” There are difficulties underlying this procedure;
they can only be fully examined in dealing with general functions of a complex
variable, a subject which may be studied at a later stage.

From the definition given it is straightforward to verify the usual
rules of the differential calculus, and in particular the product rule,
in this ‘differential calculus of complex polynomials’. The theorems
on repeated roots given in 10.43 remain valid in complex algebra
since their proofs are exactly as before.

13.45 Equations with ‘real’ coefficients; conjugate complex roots
(1) If the coefficients py, Py, ---, P 90 the polynomial p(2) are ‘real’,
and if o+ Bi (where § + 0) is a root of p(z) = 0, then its conjugate . — Bi
18 also a root.
Proof. The condition for a + £ to be a root is p(a+ 8i) = 0, i.e.

Pola+fi)* +py(a+ i) 1+ ... + P,y (a + fi) +p, = 0.

On expanding the binomials and replacing 2 by —1 whenever it
occurs, this equation can be written

P+Qi=0,

where P, @ are real polynomials in (e, 5).

This condition is equivalent to the separate equations P = 0, Q = 0.
Hencealso P— @i = 0— 0i = 0, which (because p(z) has REAL coeffictents)
is equivalent to the statement p(e—f%) = 0, i.e. & — fi is a root of
p(z) = 0. See Ex. 13 (d), no. 7 for an alternative proof.

If the coefficients in p(z) are not all real, the argument breaks down
at the last step. For example, if p(z) is the linear polynomial z — (1 +3),
then clearly z = 1+1 is a root of p(z) = 0; but 1—1 is not a root since

p(1—i) = (1—4)— (1+4) = — 2 + 0.

The correct statement in the general case is that «— f% is a root of
P(z) = 0, where p(z) is the polynomial obtained from p(z) by changing
the sign of 4 in all the coeffictents. For if p(a+ f7) = P+ @1, then we
must still get a true result by changing the sign of 1 everywhere on both
sidest (because the equality was obtained by using only the property
12 = —1 of 4, and this continues to hold when ¢ is replaced by —z);
this would give p(e— %) = P—@¢. In the case of entirely real coeffi-
cients, p(z) = p(2).
Tt is also easy to prove the following.
+ In short, by ‘taking conjugates’.
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Conjugate complex roots occur to the same order.

For if p(z) = 0 has an r-fold root z = a+ S5 (f + 0), then it also has
a root a—fi. Remove the factor (z—o— fi)(z—a+ fi) from p(z),
obtaining f;(z), say. Then f,(z) = 0 has an (r— 1)-fold root « + fi, and
therefore also a root « — fi; and by removing the corresponding factors
from f,(z) we obtain f,(2), say. Proceeding thus, we arrive at a poly-
nomial f,(2), where &+ S is not a root of f,(z) = 0; hence & — fi cannot
be a root (otherwise its conjugate a + fi would be a root). Thus o — £¢
is also an r-fold root of p(z) = 0.

Example

Prove that the equation
b2 b2 v? ‘
feys 24— 4. +—2+k=0
T—a; T—ay z—ay,

has n roots in real algebra if a,, ay, ..., a, are all different, the b’s are non-zero, and
k+0.

Consider the corresponding equation in complex algebra, the a’s, b’s and k
all being real. Denote any roott by a -+ fi; then a — fi is also a root, and hence

n 1 1
Z b? . - . = 01
r=1 "\@—pi—ar a+pi-a,
ﬁ 2
i.e. 21, — I — =0.
ﬂr=1 (x—a,)?+p2
Since the sum is non-zero, we have # = 0. Hence all the roots are of the form

a+0:. In real algebra there are thus n roots.

(2) There is a theorem in real algebra on surd roots of an equation
with rational coefficients which can be proved by an argument like
that in (1).

If the polynomial equation p(x) = 0 (in real algebra) has rational
coefficients and if x = a+b.Jc is a root (where \Jc is a surd), then also
a—b.Jc is a root.

Proof. The condition for a+b./c to be a root of p(x) = 0 is, when
simplified, of the form P+ @ Jc = 0, where P, @ are rational numbers
or zero. This implies that P = 0 and @ = 0, for otherwise if @ + 0 the
surd ,Jc would be equal to the rational number — P/Q, which is a
contradiction. Since

pla—=byc) =P—-Q\Jc=0-0,c=0,
a—b .Jcis also a root. Also see Ex. 13 (d), no. 8.
a+b,jc, a—b,/c are called conjugate surds.
1 That is, root of the corresponding polynomial equation
(z2—a;)(z—aq) ... (z—0,) f(z) = 0.
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13.5 Relations between roots and coefficients
13.51 Symmetrical relations
In 13.42 we proved that
Do+ 012" T+ Py = Po(2—ay) (2—tp) ... (2—0xy,),

so that «,, a,, ..., , are the n roots of the equation p(z) = 0. On
multiplying out the right-hand side, it becomes (cf. the proof in 12.11)

Dol — (Bot) 271+ By ag) 22— ...+ (— 1) oy 0ty .o 0}
Hence on equating coefficients of 21,272, ..., and the constant terms,

Za = —&, Za, oy = D,
Po Po

n.
’

ceey OO .. O, = (—1)”%

Ps
’
0

2oty 0ty = —
and in general,
(—1)"p,/pe = sum of the products of the roots taken r at a time.

This work generalises the results of 10.3, which are theorems of
real algebra, and are valid only if the equation under consideration
has the maximum possible number of roots. The above results in
complex algebra hold without any such restriction because every
polynomial equation of degree n has exactly n roots.

13.52 Unsymmetrical relations

We remarked in 10.32 that the symmetrical relations do not help
us to solve the given equation because they are equivalent to the
information that ‘o, a,,...,a, are the roots of p(z) = 0’. However,
if some non-symmetrical relation between some or all of the roots is
given, then it may be possible to solve the equation.

Example
Solve (in complex algebra) the equation
324+ 1722 — 522+ 82+ 12 = 0,

gtven that the product of two roots is 4.
Let the roots be a, g, v, 6, and suppose «f = 4. We have

at+pB+y+6=-3, PByd+yda+tidaft+afy=-3, afyd=4

(There is also the relation Xaf = — §, but we shall find that this is not needed.)
From aff = 4 and the third relation, yé = 1.
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The second relation can be written
afy+8)+yda+p) = -3,
so that 4y+d)+(x+p) =-4%
This together with the first relation can be solved to give
at+f=-22 y+é=1

Hence a, £ are the roots of 22+ 22x+4 = 0, viz. —%, —6; and 7y, & are the
roots of x2—x+1 = 0, viz. —w, — 2.

13.53 Transformation of equations

Properties of the roots of an equation are often conveniently dis-
cussed by considering another equation whose roots are related to
those of the given equation in a known manner. We now show how
to form the equations whose roots are (i) reciprocals of, (ii) £ times,
(iii) less by & than, (iv) squares of the roots of the polynomial equation
p(x) = 0. The process (ii) is known as ‘multiplying the roots by &’,
(iii) as ‘diminishing the roots by %’, and (iv) as ‘squaring the roots’.
Applications are given in 13.72, 13.73.

(i) Write y = 1/z. If o is a root of p(x) = 0, then since z = 1/y,
the equation p(1l/y) = 0 is satisfied by y = 1/a. The required poly-
nomial equation is therefore

DY+ Ppa Y+ + 1Y+ D = 0.

(ii) Write y = kxz. When a satisfies p(x) =0, ko will satisfy
p(y/k) = 0. Hence the required equation reduces to

Doy +P1ky" 1+ P kY + ..+ k" = 0.
The case k = — 1 gives the equation whose roots are the negatives
of those of p(x) = 0 (‘changing the sign of the roots’).
(iii) Write y = —k. When « satisfies p(x) = 0, a—k will satisfy
ply+k)=0.
(iv) Writey = 2. When a satisfies p(z) = 0, a2 will satisfy p(y/y) = 0.
This can be rationalised (i.e. freed of square roots) as in ex. (ii) below.

Examples

(i) Transform the equation 3x*—4x®+ 6z+5 = 0 so that the coefficient of the
leading term becomes 1, without introducing fractional coefficients.
Multiply the roots by k, i.e. put y = kx, so that = y/k. Then

3yt — 4ky® + 6kPy + bkt = O,
i.e. yt—4ky® + 213y + 3k = 0.
1 The method is equally applicable t:o equations other than polynomial ones.
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By inspection, the coefficients will be integers when % = 3 (this is the smallest
such value). The new equation is then
yi—4y*+ 54y +135 =0,
where y = 3.

(ii) Find the equation whose roots are the squares of the roots of

33 —a22+22—-3 =0. (@)
Write the given equation as
2(3x2+2) = 22+ 3, (b)
and put y = a2: Ny (By+2)=y+3.
Squaring, y(9y2+12y+4) = y2+6y+9,
i.e. 9%+ 11y2—2y—~9 = 0. (c)

Remark. Strictly, we should show that every root of equation (c) is the square
of a root of equation (a),t as follows. If y satisfies (¢}, then (by reversing the
working) it satisfies one of the equations

+4y.(3y+2) =y+38.
Thus either +./y or —,/y satisfies (), i.e. the given equation (a). In either
event, y is the square of a root of (a).

Further examples of the transformation process are given in 10.32, ex. (ii)
and Ex. 10 (¢).

Exercise 13(d)
The algebra vs complex.

1 Prove that the equation
2? 28
R TREY

n
Fot =0
n!
has no repeated roots.

2 Solve z¢— 422+ 82—4 = 0, given that 141 is a root.

.3 Given that 2+,/3 is a root of #®—2x%—7x+2 = 0, solve the equation
completely.

4 Prove that w is a repeated root of 325+ 2x¢+ 23— 6x2—5x—4 = 0, and
hence solve the equation.

5 One root of o+ 25— 924 — 1022 — 922+ 2 +1 = 0 is ,/2+./3. Find all the
roots.

6 ‘The linear equation az+b = 0 with real coefficients a, b has a root « + £,
and therefore also a root o — f4: two roots for an equation of degree 1. Explain
this apparent paradox.

7 (i) Verify that(z—a — i) (z— o+ fi) = 22 — 20z + a® + §2, where a, f arereal.

(ii) Let g(2), az+b be the quotient and remainder when p(z) is divided by
22— 2az+a?+ 2. If p(z) has real coefficients, explain why a, b must be real.

1 This may not always be the case; e.g. the square of each root of 28—z =0
satisfies y®—y = 0, yet the root y = —1 is not the square of a root of the z-equation.
Indeed, there is not a unique result in this instance: the method of ex. (ii) gives
y(y—1)2 =0, and clearly y%(y — 1) = 0 also satisfies the requirements. Such ambiguity
can arise whenever the squares of the roots of the given equation are not distinct.
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(iii) If e+ fiis aroot of p(z) = 0, show by putting z = &+ f¢in the identityt
p(z) = (22— 2az+a?+ f2) g(z) +az+b
that aa+b = 0 and af = 0. If B + 0, deduce that ¢ = 0 and b = 0, and hence
that z = a— fi is also a root of p(z) =

*8 Prove the theorem about conjugate surd roots in 13.45(2) by a method
similar to that of no. 7. Also prove that such roots occur to the same order.

9 Ife, B, 7, & are the roots of z* + pa?® +ga® +rz+¢ = 0, find Zafy(x+L+7).

10 One root of xt+pad+gx2+rc+s = 0is equal to the product of the other
three. Prove (ps+7)? = s(g+s+1)%

*11 Find the sum of the cubes of the roots of 28 +a22+xz—1 = 0.
Solve the following equations.

12 23— 522 — 16+ 80 = 0 if the sum of two roots is zero.

13 2%+ 3x%— 522 — 6x— 8 = 0 if the sum of two roots is — 2.

14 2% —2x%— 21224 2224 40 = 0 if the roots are in A.P.

15 Increase the roots of 23 + 3ax?+ 8bx +c = 0 by k, and find for what value
of k the new equation contains no quadratic term. (This process is called
‘removing the second term from the given equation’.)

16 Find two substitutions of the form y = x — & which remove the third term
from a:% + 42® — 1822 — 100z — 112 = 0, and use one of them to solve the equation.

17 Find a substitution y = kz which will transform the equation
824+ 828 — 1822 —16x—-3 =0
into one with integral coefficients of which that of the leading term is + 1.

18 If a, B, y are the roots of a3+ px?+gz+r = 0, find the equation whose
roots are (i) a(f+7), By +a), (e +p); (ii) (x— 1)/, (B—1)/p, (v —1)]y.
19 If the roots of 2" —1 =0are 1, a;, &, ..., %y-;. prove that

(1—o))(1—ay)...(1—a,) =n.
[Construct the equation whose roots are 1 —1, 1 —a, ....]
*20 Ifa, B,y are the roots of 23+ px + g = 0, form the equation whose roots are

B,y v,2 2.8

y+2 = (B2 +7v*+287)/fy = &*fy = —a®lg = pajg+1.]
13.6 Factorisation in real algebra

13.61 Roots of the general polynomial equation

(1) We have proved that complex roots of an equation with real
coefficients ocecur in conjugate pairs (13.45(1)). Since
(z—a—p)(z—a+pi) = (z—a)?+ f2,

the result (ii) of 13.42 shows that any polynomial p(z) of degree n with
real coefficients can be expressed in the form )

P(2) = Po(2—a,) (2—ay) ... (z—ap) {(z— b2+ 3} ... {(z— )2 +cf}, (vi)
where k+2l =n, ‘

t Cf. 10.11, Remazk (8).
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and all constants a, b, ¢ are real. The factors shown need not be dis-
tincet, and may be all linear (the case ! = 0) or all quadratic (the case
k=0).

(2) Writing (%) = o™+ 012" 1+ ...+ D,
there is an identity
P(x) = Po(®—ay) (T —ay) ... (¥ —a) {(x—by)2 + 3} ... {(x—by)2+cf} (vii)

in real algebra corresponding to (vi), owing to the exact correspond-
ence between real numbers 2 and complex numbers of the form z + 0s.

Since k + 21 = n, we see that

(@) if nis odd, k must also be odd, so that there is at least one factor
of the form x—a in (vii), and certainly an odd number of such
factors;

(b) if » is even, k£ must be even, and so either all factors will be
quadratic or an even number of linear ones will be present.

Remembering that in real algebra no quadratic factor can be zero,
we have the following result.

In real algebra an equation of EVEN degree has either mo roots or an
even number of roots; and an equation of oDD degree has an odd number
of roots (and therefore at least one).

Remark. Just as equation (i) in 13.42 shows that, in complex algebra,
every polynomial can be resolved into linear factors, so equation (vii)
above shows that factorisation in real algebra requires no more than
linear and irreducible quadratic factors. Both results are existence
theorems, i.e. they tell us that the factorisation can be done in a certain
manner, but they provide no process for actually doing it. The results
are of great theoretical importance.

13.62 Location of roots in real algebra

(1) Rational roots of an equation with rational coefficients. By the
method of 13.53, ex. (i), the given polynomial equation can be trans-
formed into one in which the coefficient of the leading term is + 1 and
all other coefficients are infegers. We suppose that this has been done. -

If the polynomial p(x) = a™+ p, ™1+ pya™2 + ... 4+ p, has INTEGRAL
coefficients, then every rational root must be an integer which is a factor
of Pn-

This result is well known and is often used (e.g. in 10.12, ex. (i)).

Proof. Suppose z = h[k is a rational root of p(x) = 0. Without loss
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of generality we can assume that &, k are integers with no common
factor and that k£ > 0. Then

B\ 7\ 71
(B on ) onme

n
80 % = —(pF" 1+ pph" ke ... + D kY

= an integer.

Hence h*/k is an integer, so that k£ = 1. Thus the rational root is in fact
an integer h. Since Bt p g +p, =0,
Pp = — h(hm? +p1h"‘2 + .o +Pno1)s

and so 4 is a factor of p,,.

(2) Change of sign of a polynomial.
If the polynomial p(x) is non-zero when x = x; and when x = x,, then
the number of roots of p(x) = 0 between x; and x, is

odd if p(x,), p(x;) have opposite signs,

and even or zero if p(x,), p(x,) have the same signs.

These results are ‘intuitively obvious’ properties of all continuous
functions (cf. 2.65). For a polynomial p(z) they can be proved as
follows.

By result (vii) in 13.61,

D) = po(x—ay) (F—ay) ... (£ —a) g(),

where ¢(x) is a product of factors of the form (x—b)%+c?, or else (in
the case when p(x) consists entirely of linear factors) is 1. In either
event, g(z) is positive for all values of .

If p(x,), p(x,) have opposite signs, the linear factors cannot be all
absent, and (z,—a,) (¥,—@a,) ... (B~ ), (Xz—ay) (Xa—ap)... (x3—ay)
must have opposite signs. Now x, —a, x,—a have like signs unless «
lies between z, and z,. Hence an odd number of a,, a,, ..., a; lie between
z; and x,.

Conversely, if an odd number of roots lie between z, and z,, then the
above products must have opposite signs, so that also p(x,), p(x,)
have opposite signs.

If p(x,), p(x,) have like signs, it follows that the number of roots
between x; and x, cannot be odd, i.e. it must be even or zero.



518 COMPLEX ALGEBRA [13.62

Examples

(i) Let p; be the numerically greatest coefficient (or one such coefficient if
two or more are numerically equal) in

P(x) =2+ p1 2"+ 4Py
Then  [p12" 4.+ Ppa®4+p,| < |po] - |2]* 2+ 4 | Do - |2] + | P4l
< | 2ol {lo] "2+ .o+ 2| + 1}

if |z *1.
If 2| > 1 it follows that

p(z) | 24|
xn ll < || —1°
Given any positive proper fraction, e.g. 4, we shall have |p,|/{|x| -1} < } if
is such that |z| > 2 |p,|+ 1 = K’, say. Hence if K > K’,
p(x) =2™(1+0) forall |x|=> K, where |0| <}

This shows that p(z) has the same sign as z" forall z > K and all z < — K:
we say that p(z) is dominated by z™ for large (positive or negative) z. Thus
p(K), p(— K) have opposite signs if » is odd, and the same sign if n is even;
since K can be as large as we please, we have proved the theorem in 13.61(2).

The symbols p(c0), p(— o) are customarily used to denote ‘p(K), p(—K)
where K is arbitrarily large’.

(ii) Solve the example in 13.45 (1) by a ‘change of sign’ argument.
We may suppose the notation to be chosen so that ¢, < @, < ... < a,. Con-
sider the polynomial

P@) = (x—0y) (2 —ay) ... (x—a,) f(2)
=bir—ap)...(x—a,)+bix—a)) (x—ay)... (t—a,)+...
+bix—ay) ... (X —apy) +H(x—0a,) (X —ay) ... (£ —ay).
When z takes the values
— 00 a, a, ver Qpy Gy + O,
p(x) has the same sign as
=1 (=11 (=12 ... —1 +1 kL

In this sequence there are exactly » changes of sign, whether £ is positive or
negative. Hence p(x) = 0 has at least = roots. Since p(z) is of degree n when
k =+ 0, it cannot have more than n roots. The number of roots is therefore
precisely n.

(3) Rolle’s theorem for polynomials. This is a special case of the
general theorem in 6.21; see 6.23 (1), and also the deductions (2), (3)
there. An algebraic proofisindicated in Ex. 3 (¢), no. 14; also see no. 15.
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Examples

(iii) Find the number of roots of 2t — 223 + 622 — 10z — 8 = 0 in real algebra, and
locate them between consecutive integers.

Writing p(z) = 2t — 228 + 622 — 10— 8,
then p(x) = 423 — 622+ 122 — 10 = 2(z— 1) (2% —x + 5),

the factor z— 1 being discovered by trial.

Hence p’(x) = 0 has one root in real algebra. By 6.23(3), p(z) = 0 cannot
have more than two roots; and if p(x) = 0 actually has two roots, theroot x = 1
of p’(x) = 0 must lie between them. We therefore consider the sign of p(z)
for — o0, 1, 4 c0.

z | =0 1 +o
Signofpx) | + - +

Thus p(z) = 0 has two roots, one less than 1 and the other greater than 1.
By trial we find that p(0) < 0, p(— 1) > 0, so there is a root between 0 and — 1.
Similarly we find p(2) < 0, p(3) > 0, so the other root lies between 2 and 3.

(iv) Find the range of values of k for which the equation

plx) = 28— 26 + 482 —k = 0
has 4 distinct roots.

P'(x) = Ha®—132+12) = 4(x—1) (x—3) (x+4).
Possible roots of p(x) = 0 must be separated by roots of p’(z) = 0, viz. —4, 1, 3.
z | —oo —4 1 3 + 00
Value of p(x) 400 -—352—-k 23—k —9—k 4o

In order that p(z) = 0 shall have 4 distinet roots we require there to be four

changes of sign in the above sequence; the signs must therefore be
+ - + - +.
This will be so if and only if —9 < k < 23.

The reader should sketch the graph of y = * — 262 + 482, which has a maxi-
mum at ¢ = 1 and a minimum at z = 3 (and at x = —4). The line y = %k cuts the
curve in four distinct points if and only if thisline lies between the levels of these
two turning points.

(v) Prove that the equation d¥x?—1)%/dx* = 0 has 4 distinct roots which all
lie between — 1 and + 1.

Putting f(z) = (x2—1)%, then f(z) = 0 has roots +1, —1 each four-fold.
Hence f’(z) = 0 has roots +1, — 1 each three-fold (by 10.43) and a root z = «
between + 1, — 1 (by Rolle’s theorem). Then f”(x) = 0 has doubleroots +1, ~1,
a root fbetween — 1 and &, and a root y between a and + 1. Similarly, f"(x) = 0
has simple roots + 1, — 1, and roots between — 1 and £, # and 7y, and y and +1:
5 distinct roots altogether. Therefore f@(z) = 0 has a root between each of
these, i.e. it has at least 4 distinct roots all lying between +1 and —1. Since
F@(=x) is of degree 4, it can have no other roots.

The expression {d"(x?—1)?/dx"}/2"n! is denoted by P,(x) and called the
Legendre polynomial of degree n. An argument similar to the above shows that
P,(z) = 0 has exactly n distinct roots, all lying between —1 and + 1. These
polynomials arise in Mathematical Physics.
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Exercise 13(e)

The algebra is real.
Find the rational roots (if any) of the following equations.
1 323—1122+92—2=0. 2 224452+ 1422 —3x—54 = 0.

3 3xt—4x®+46x+5 = 0.

Determine the number of (real) roots of the following equations, and locate each
between consecutive integers.

4 2442224+ 32—1=0. 5 at—a?+22-2=0.
6 25—2234+2—10 = 0.
7 Ifa; < a, < a3 < a, < a5 < a4, prove that the equation
(x—ay) (v —as) (x—a5) + k¥x—ay) (x—ay) (x—ag) = 0
has 3 distinct roots for any real k.
8 If a> 0, b> 0 and p < ¢, prove that a/(x—p)+b/(x—q) = = has three
roots o, B, ysuchthata <p < f<g<7y.

n
9 If a,, ay, ..., a, are all different, prove that the equation X =0 has

r=1 r

exactly n— 1 roots (i) by considering changes of sign of

noo1
P@) = @=ay) o (2=an) B -

(ii) by applying Rolle’s theorem to f(z) = (zx—a,) ... (x—a,).
[We may assume a, < @, < ... < a, without loss of generality.]

10 (i) If p, < 0 and n is even, prove that the equation
P() = Pz + 012"+ ..+ =0

has at least one positive and at least one negative root.
(ii) Prove that the number of positive roots of p(x) = 0 is odd if and only
if p, < 0.

Determine the number of roots of the following equations by first finding the zeros
of the derived polynomial ; and locate each between consecutive integers.
11 x4+ 42%—822—1= 0. 12 8a5 — 5zt — 4022 — 50 = 0.
13 Prove that 2®+ 32z — 3 = 0 has only one root «, and hence that

244 622—122—-9=0
has just two roots.

14 Ifa > 1, prove x®— 5a%z +4 = 0 has 3 roots. What happens when a < 1?

Find the range of k for which the following equations have 4 distinct roots. Illustrate
the results by sketches.

15 z4—1422+ 24—k = 0. 16 32*—1623+ 622+ 72—k = 0.
17 If p? > q and a, f are the roots of 22— 2pxz+ ¢ = 0, prove that
f(z) = 2®—3px?+3qr—r =0
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has 3 roots if » lies between pg—2(p®—g)a and pg—2(p*—q)B. [By long
division, f(x) = (x—p) (2*— 2pz +¢) + 2(¢—p*) 2 +(pg—7), 8O

fle) = 2(g—p*)a+(pg—71), ete.]

18 Prove that 22 +ax+b = 0 has 3 distinct roots if and only if 2752 + 4a® < 0.

*19 TUse the argument in ex. (i) of 13.62 to prove that p(x) = 0 has every root
numerically less than 1+ |p,|. [If zis aroot, —a" = p,z"1+... +p,; by taking
moduli, |z|" < |p,| {|2|*— 1}/{|x| — 1} if || & 1. If |&| > 1, the right-hand side
< || - |2]|*{|z| = 1}, B0 1 < |p|/{|z|—1}, i.e. |2| <1+|p,|. Thus any root
numerically greater than 1 must be numerically less than 1+ |p,].]

*20 Replacing ‘numerical value’ by ‘modulus’, verify that the results of
13.62, ex. (i) and no. 19 hold in complex algebra, even when the coefficients
p, are not real. :

13.7 Approximate solution of equations (further methods)

We have already explained Newton’s method (6.73), which applies to equa-
tions in general. The following method also has this advantage, although it
usually does not give an approximation of a required order as quickly as
Newton’s.

13.71 The method of proportional parts

For a straight line, the increment of the ordinate is proportional to the
increment of the abscissa. For a curve, a small arc will usually not depart far
from the chord joining its ends, so that over this arc the ratio

(increment of ordinate)/(increment of abscissa)

will not differ much from the gradient of the corresponding chord.

These geometrical considerations lead to the ‘ principle of proportional parts’:
the increment of any continuous function 18 approximaltely proportional to the
increment of the variable, the range of this
variable being small. An analytical formula- 4}
tion and an estimate of the error are given
in Ex. 6 (e), no. 15. {a, 4)
- Suppose now that numbers a, b have been
found such that f(a) = A > 0, f(b) = B < 0. I
Geometrically, the points (a, 4), (b, B) are on i
opposite sides of Oz, and preferably close to 1

a

b
Oz (a wise choice of a, b will secure this). The O \ \i\ 3
line joining these points has equation (6, B)
B—-A4A Fig. 185

and cuts Ox at = ¢ where ¢ = a+(b—a) A/(A — B). This expression lies in
value between a, b and is certainly a closer approximation to the root of f(x) = 0
than either a or b.

Newton’s method is equivalent to replacing the arc by the tangent at one
extremity (6.73 (2)). The present method replaces the arc by its chord.
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Example
Find the root of x® — 2x — 2 = 0 correct to 3 places of decimals.
By trial we find f(1) = — 3, f(2) = 2, so there is a root between 1 and 2. If
this root is 1+ A, then by ‘proportional parts’
F@)—fQ) _ f(A+k)—f(1)
2—-1 7 (1+m)-1"
and since f(1 + &) = 0, this gives 5 = 3/h, i.e. h = 0-6.
A better approximation is therefore x = 1-6. Since
f(1-6) = —1-1, f(1-7) = —0-487, F(1-8) = +0-232,
the root actually lies between 1-7 and 1-8. If the root is 1-7+ &, then

JA-8)—f(1-7) , fA-T+A)—f(17)

1-.8—17 ~ (174+h)—-117 "
. 0-719 _ 0-487
1.e. —_—
0-1 3

so that k = 0-0677, and a better approximation is z = 1-768.
Applying the process once again,
f(1:8) —(1-768) _ f(1-768 +h) —(1-768)
1-8—1.768 kb ’
0-241 _ 0-009
0032 &
since f(1:768) = 0-009. Hence A = 0-001195, and x = 1-76919 == 1:769 to three
places of decimals. (Taking @ = 1-768, b = 1-8, ¢ = 1-769 in Ex. 6(e), no. 15,
shows that the error is less than 0-0002.)

i.e.

13.72 Horner’s method

Suppose that the equation p(x) = 0 has a root 2:76... and has no other root
whose integral part is 2. Then p(2), p(3) have opposite signs; this fact, discovered
by trial, gives the first figure of the root.

The first figure 2 is now removed from subsequent calculations by diminishing
the roots of p(x) = 0 by 2. The new equation then has a root 0:76.... To avoid
decimals, we multiply the roots by 10, so that the new equation has aroot; 76 ....

The figure 7 is discovered by showing that the last equation has a root
between 7 and 8. The roots are then diminished by 7, and next multiplied by 10.
The figure 6 is then found by trial. The process is repeated until the required
number of decimal places has been found.

Example

Solve 2® — 2x— 2 = 0 correct to 3 places of decimals.
By trial, there is a root between 1 and 2. Diminish the roots by 1 by putting
y=z—1,i.e.2 =y+1; we get
¥+ 3yi+y—3=0.
Multiply the roots by 10:
y® + 30y? 4 100y — 3000 = 0.
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By trial, this has a root between 7 and 8. Diminish the roots by 7 by putting
z=y-—"T1e.y=2+17; weget

23451224+ 6672z — 487 = 0.
Multiply the roots by 10:

234+ 51022 4 66,700z — 487,000 = 0.

By trial this has a root between 6 and 7. Diminish the roots by 6, putting
t =2z—86,i.e.z =+ 6; we obtain

3+ 5282 4 72,928t — 68,224 = 0.
Multiply the roots by 10:
t®+ 528022 + 7,292,800 — 68,224,000 = 0.

The process can be continued; but since the numbers in the last two terms are
large in comparison with those in the other terms, clearly a good approximation

is oiven b
s given by 7,202,800¢ — 68,224,000 = 0,
ie.t=09.

Hence the required root is = = 1-769.

Remarks

(o) The method used in the last step gives a rough estimate for the trial root
when applied at the previous stage: 66,700z — 487,000 = 0 gives z == 7. Actually
this is too large; writing

¢(z) = 2°+ 51022 + 66,700z — 487,000,

we should find that ¢(7) and ¢(8) have the same sign. This indicates that we
should calculate ¢(6), which is found to have the opposite sign. Although this
estimate is rather rough, it is better than none, and often saves much futile
trial. Estimates thus made increase in accuracy the further we have got in the
process; in fact we may approximately double the number of significant figures
already obtained by using this ‘division estimate’.

(#) Horner’s method will also give rational roots. Since these can always be
tested for exhaustively (13.62 (1)), they should be removed from the equation
before applying the method. The same applies to repeated roots: see 10.51,
ex. (ii).

(7) To approximate to a negative root, first change the sign of all the roots (by
putting ¥y = —z), and then approximate to the corresponding positive root of
the new equation.

(8) Case of nearly equal roots. If two roots lie between consecutive integers
n and n+ 1, then p(n) and p(n + 1) have the same sign, and detection of these
roots is difficult; more refined methods than ‘change of sign’ are required.
Assuming that these roots have been approximately located, Horner’s method
can still be used.

(¢) Although the method applies in principle to equations in general, its
use is practicable only with polynomial equations.

13.73 von Graeffe’s method of root-squaring

This method approximates to all the roots in one process, although the signs
have to be sorted out at the end. It can also be used to find complex roots, but
is applicable to polynomial equations only.

36 GPMII
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Given a cubic 22 +ax? 4 bx + ¢ = 0, whose roots are «, f, v (say), we construct
the cubic whose roots are a2, 52, v2 by putting y = «2: the equation becomes

Ny (y+b) = —(ay+o),

and by squaring, y*+(2b—a?)y:+(b*—2ac)y—c? =0,
i.e. i+ Ay?+By+C =0,
where A=2b-a? B=bt—2ac, C=-—c

If the root-squaring process is applied » times, we obtain an equation whose
roots are 2", §2°, y2", Suppose that |a| > |f| > |y|; then for n sufficiently large,
at* will be very large compared with 42" and y?", so that a?" is approximately
‘minus the coefficient of the quadratic term’ in this equation.

Since #2" is large compared with y2", the coefficient of the linear term will be
approximately («f)*". Similarly the constant term is approximately — (¢fy)".

Example

Solve 23 — 2z — 2 = 0 in complex algebra.
Here a = 0, b = —2, ¢ = —2. Proceeding step by step, we construct the
following table.
| A=2b—a® B=0b'-2ac C=-¢

a? -4 4 -4

at -8 —16 —-16

at - 96 0 — 256
alt -9216 — 49,152 — 65,636

By trial the given equation is found to have a root a near 1:7; and this is the
only real root (e.g. see Ex. 13(e), no. 18). Since afy =2, it follows that
By =2+17 = 1-2,i.e.72 = 1-2 where § = r(cos 6 +¢sin §), y = r(cos 0 —48in );
hence r = 1:1. Thus & > r = |8 = |y].

From the theory just explained,

ol8 = — 4 = 9216, whence o = 1-7692;
and als(r2)18 = —C = 65,536, so 7= 1-0632.

Referring now to the given equation and considering the sum of its roots,
a+2rcosd =0, from which cosf = —0-83215 and 6 = 146°19’. Hence
7(cos @ + ¢sin 0) can be found. The three roots are approximately

1-7692, —0-8847 £ 0-5896¢.

Exercise 13(f)

The algebra s real.
Solve the following equations approximately, correct to at least 2 places of decimals.
1 28—2x—~56=0. 2 3x3—92+2=0.

23— 2x+ 5 = 0 [negative root].

28+ 22+ 2— 100 =0 [two places of decimals].
28— 42— 2 = 0 [positive root, two places].

23— 6x+1 = 0 [3 roots].

23 —Tx+ 7 = 0 [two roots lie between 1 and 2].

NV AW
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8 x = e~ [three places].

9 10% = 20z [2 roots, each to three places].
*10 @® = 1-5. [This has a root between 1 and 2; write the equation as
zlogz =log1-5.]
*11 Find the smallest positive root of z = tan—lz, correct to four places of
decimals. '
*12 Find the smallest positive root of sinz = thz, correct to two places of
decimals.
*13 If ¢ is small, prove that 6 +sinf cos§ = 2¢cos @ has & small root which is
approximately € — }€3. [Use Newton’s method ; assume the series for sin z, cos z.]
*14 Show (graphically or otherwise) that f(x) = 1+2~2—tanz = 0 has a root
near z = K, where K = {7 +nm and » is a large positive integer. Prove that
a better approximation is K + A where f(K) + Af’(K) = 0, and that A = 1/2K?2,

Find an approximation correet to terms of order 1/K*.
*15 Prove that large roots of secxz = 1+ 1/x are given approximately by
x = 2nm where n is a large positive integer. Show that a better approximation is
x = 2nm £ 1/,/(n7). [Assume the series for cos 6.]

Miscellaneous Exercise 13(g)

1 If ¢ is real, and the number (1+%)/(2+ ¢2)+(2+ 3¢)/(3 +1) is represented
in the zy-plane by a point on the line y = z, prove ¢ = — 5 +,/21.

2 If c®+s2=1, prove (l+c+1s)/(1+c—is8) =c+is, and write down a
similar result for (1 +s+4c)/(1 +s—1c).

3 If Bt+mP+nt=1 and m+in=(1+1])z,
rove I+im 1+iz
P Tin 1-i

4 If z = r(cos 0 +4sinb) and @ = p(cosa +isina), calculate |z2—a|? in terms
of r, p, 0, a. Deduce that |1—az|2— |z —a|? = (1—72) (1—p?).

5 If |2, — 2| < }|2s), Prove (i) [zy| = |2s]; (i) |21 +25] = # 24|

6 The number z is represented by a point on the circle whose centre is 1+ 0¢
and radius is 1.

(i) Represent the number z— 2, and prove (2 — 2)/z = 4 tan (argz).

(ii) Construct the point representing 22, and prove that

(@) |#=2] = |z| and (b) arg(z—1) = arg(s*) = §arg(2—2).

7 (i) If P, P, represent z,, z,, and the line P, P, is turned through a positive
right-angle about P, into the position P,P,;, prove that P; represents
2, +4(2g — 2).

(ii) Two opposite vertices of a square are 1+ 27, 3 — 5¢{. Find the numbers
of the other vertices. .

8 (i) If kis a real constant, interpret 2, + &(z, —2,) geometrically.

(ii) The internal and external bisectors of P,0P, meet P, P, at I, E,
and M is the mid-point of IE. If z, = cos 47 + ¢ sin §m, 2, = 2(cos 3 +isin §7),
show that I represents %(1+4/3) (1 +%), and find the numbers of E and M.

9 The numbers z,, z,, z; are represented by the vertices P;, P,, Py of an

isosceles triangle, the angles at P,, P; each being 4(m = ). Prove that
(25 —25)% = 4 (23— 21) (2, —2,) 8in® §ax.
36-2
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10 Interpret the following as loci:
() |o+8i|t—|e—3i|2 = 12; (i) |o+Kki|2+ |z —Ki]* = 108* (k> 0);

(iii) argz—zl = }m; *1iv) |z2—2z|—|z—2g) = L.
2—2,

11 The numbers 2,, 2, are connected by the equation 2z, = z,+ 1/2,.

(i) If P,describes a circle of radius @ + 1 and centre O, show that P, describes
the ellipse 22 N v 1
(1+a2)? (1—a?)? T a?

(ii) If 2z, = r(cosﬁ+z’sin 6), determine the locus of P, when 6 = }m and 7
varies.

12 futiv= a/z where g is real, show that the curves in the xy-plane which
correspond to w = constant, v = constant are (in general) orthogonal systems
of circles.

13 If {(z+¢)/(z—c)}® = (w+2¢)/(w—2¢) and ¢ is real, prove that when
z = ¢(cos B +1sin 6), then w = 2¢ cos . Hence show that if z describes the circle
|2| = ¢, then w describes the segment of the z-axis between # 2¢, once in each
direction.

14 If z, w are represented by P, @ and zw+w—z+1 = 0, prove that when
z=cosf+isinf, then |w| = +tan 6 accordingas 0 <O <7, — 7 <0< 0. If
P describes the circle |z| = 1, prove that @ describes the y-axis, and indicate
corresponding directions of motion.

*15 An ellipse has foci ( + ae, 0) and z,, 2, correspond to the ends of conjugate
semi-diameters. Prove 22+ 22 = a%?. [Using eccentric angles, if

2, = acos@+ibsing then z,= +(asing—ibcosd).]
*16 If u = (22+az+0b)/(22+cz+d) and a, b, ¢, d are real, prove that the points
2z for which w is real lie either on the real axis or on a circle whose centre is on the
real axis. [Clear fractions, equate real and imaginary parts, and eliminate u.]

In the following, w and w? denote the cube roots of +1, w = 1.

17 If x=a+bd, y=a+bw, z=a+bw? prove that Xz = 3a, Zyz = 3a?,
zyz = a®+ b3, Exz = 3a?, Ta?® = 3(a®+b3).

18 (i) If f(z) = Za,x’ what does f(x) +f(wz) + f(w?r) represent?

*(ii) Ca.lculate smlarly f(z) + of (wz) + 0¥ (w%x) and f(x) + 0¥ (wz) + 0f (W).
19 Ifzr4p 2 i4...+p, = (2—ay) (2— ) ... (2—ay), prove that
(I+ah)(1+ad) ... (14ad) = (1—pe+ps— ... R+ (D1 — D5 +P5—...)%

(14084082 + ... +,8" = (1 —ayt) ... (L —a,2). Put ¢ = +4, then multiply.]

20 Find conditions for 22+ (a+ bi)z+4(c+di) = 0 to have a real root, where
a, b, ¢, d are real.

21 Ifz = o+ pfiis a root of 28 +pz+q = 0 (p, g real), prove a is a real root of
823+ 2px—q = 0.

22 Find the equation of lowest degree with rational coefficients which has
1,2~./3, 4/2—1 for roots.

23 Prove 3xz%—5z3+k = 0 has three real roots if —2 < & < 2, and one real
rootifk>2o0rk <—2.7

24 Find the condition for 3z*+ 4pa® + 8 = 0 to have no real roots (p, g real).
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25 Prove that for n odd, a+x+ 322+ ... +2"/n = 0 has one root; and that for
n even there are 0 or 2 roots according as a Z b, where b is a certain number
which is to be determined.

By using the substitution y = x+ 1/z, solve the following equationst in complex
algebra.

26 120t —4a®—4l2?—42+12=0.

27 a8 —b6xt+ 923 — 922+ 5x—1 = 0. [Remove the obvious root x = 1 first.]

28 2x°+ bat+ 8234 83?4+ 5z 42 = 0.

29 Sketch the graph of y = secz. Deduce that large roots of zcosz = 2 are
approximately (rn+3)m where n is a large positive integer. Find a closer
approximation.

30 Show graphically that sinz = tha has an infinity of roots. If n is a large
positive integer, show that pairs of roots lie in the neighbourhood of
z = (2n+ %) 7, and that a closer approximation to these roots is

z = (2n+3) 7+ 2e-Cnthm,

[Express thz in terms of e.]

+ Since each is unaltered w;hen z is replaced by 1/z, they are called reciprocal
equations.
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14

DE MOIVRE’S THEOREM AND
SOME APPLICATIONS

14.1 de Moivre’s theorem
14.11 If n is an integer (positive or negative), then
(cos 6 +1sinf)* = cosnf + ¢ sinnb;
if m i8 rational, then cos nf + isinnf is one of the valuest of
(cos @ +¢sin6)~.
Proof. (i) Let n be a positive integer. By direct multiplication,
(cos 0+ isin 6) (cos ¢ + i sin @P)
= (cos @ cos ¢ —sin @ sin @) + ¢(sin & cos ¢ + cos O sin @)
= co8 (0 + ¢) +isin (0 + @).
Similarly,
(cos 0, +1sin 6,) (cos B, + ¢ sin ,) (cos O3 + ¢ 8in O;)
= {cos (0, + 0) + ¢ sin (6, + 6,)} (cos O + ¢ sin G;)
= 08 (0, + 0y + 0g) + ¢sin (0, + 0, + 05)

by two applications of the above result. Proceeding step by step in
this way, we find

(cos @, +1sin0,) ... (cos b, +18inb,) = cos (Z0)+¢sin (X6).
Putting 0, = 6, = ... = 0, = 0, this becomes
(cos @ +isin 6)* = cosnb +1isinnf.
(ii) Let n be a negative integer, say n = —m. Then
(cos 0 +18in )" = (cos @ +4sin )™

— __.___.1 —_
" (cos @ +isinO)m
_ 1
" cosm@ + ¢ sinmb

1 See the definition in Case (iii) below.
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by Case (i), since m is a positive integer. Now

(cosmb + ¢ sin mB) (cos mf — ¢ sinmP) = cos?mb +sin?mb = 1,

1 — 008 mf—i sinmd
cosmO+isnmb OO0 T temm
= cos (—mb)+isin (—mb) by trigonometry,
= cosnf + i sinnbd since n = —m.
Hence again (cos 6 41 8in ) = cosnd + ¢ sin nd.

(iii) Let n be rational, say n = p/q where (without loss of generality)
we can suppose that p and ¢ are integers and ¢ > 0. So far no meaning
has been assigned to the expression 24 when z is complex. We now
define the values of 27/? to be the roots of the equation {Z = 2.

Consider

(cos i +1 singe)q
q q
= cospf+tsinpd by Case (i), since ¢ is a positive integer,
= (cos@+18inf)? by Case (i) or (ii) according as the integer p
i positive or negative.
Hence by the definition just given,

cosZ;—B +1 s:inzo—;9 is a value of (cos @+ ¢sin g)Pa.

14.12 The values of (cos 0 + i sin 0)?/¢

Still supposing that p, g are integers and ¢q > 0, let s(cos ¢ +¢sin ¢)
be any one of the values of (cos@+isin@)?/. This means that, on
raising each expression to the gth power,

89(cos ¢ + i 8in )2 = (cos @ +1sin ),
i.e. 89(cos q¢ + 1 8in g¢p) = cos pf + 4 8in po.
It now follows as in 13.22(2) that s? = 1 and q¢ = p0 + 2knw, where k
is an integer or zero. Since s is the modulus of a complex number, it
is by definition real and positive, so that s? = 1 implies s = + 1.
Taking k = 0,1,2,...,¢g— 1, we obtain the q expressions
cos (ﬂ+&) +48in (1_0_5_'_1_&) (i)
q q 9 ¢

as possible values of (cos @ + 4 sin 6)7/2,
These q values are distinct, because angles given by k = k;, k = k,
differ by 2 |k, — k,| m/q, which is less than 27 since |k, —k&,| < g.
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No further values are given by taking other values of k, because any
other value of & differs from one of the values 0, 1, 2, ..., ¢— 1 by some
integral multiple of q.

Consequently, (cos @+ sin 8)P2 has exactly ¢ different values, viz.
those in (i) given by k = 0, 1, 2, ..., ¢— 1. Any other set of ¢ integral
values of & could be chosen, provided they give ¢ distinct values of (i);
e.g. we often take £ =0, +1, +2, ....

The ¢ values (i) are represented in
the Argand diagram by points

P, P, .. P

q

on the unit circle [z| = 1:

£(0x,0F,) = pbq,

and arcs P F,, B P, ..., P, F, sub-
tend angles 277/q at the centre O. Thus
P, R F... F,is a regular g-sided poly- Fig. 136
gon inscribed in the unit circle.

Since every complex number z can be written in the form

r(cosf+1isinf), where —w <<,

the above shows that the values of 272 are

rp/‘l{cos (ﬂ? + %) +¢sin (p_ﬂ + ﬂc—ﬂ)} ,
‘ 79 9 79 49
where k = 0,1, 2, ..., ¢—1 and (as elsewhere in this book) 77/ denotes
the positive qth root of r?. They are represented by points equally
spaced around the circle |z| = rP/2,

Definition. It will often be convenient to abbreviate cos 6+ ¢sin @
to cisd.

14.13 Examples

(i) Solve the equation (z+1)* = 2™,
If the left-hand side were expanded, this would reduce to an equation of
degree n— 1 in z. Hence in complex algebra there will be n— 1 roots.
Since z = 0 is not a solution, the equation can be written

(‘“;1)"= 1 (@)

= cos0+1%8in0.
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By taking nth roots of both sides, and using the general result (i) in 14.12,

1 2k 2k
2l eos(0+—)+isin (o+—) (k=0,1,2,...,n—1).
n n
2k .. 2km
zlcos——1+448in—}) =1,
n n
ie.t z(—2sin=k—"+2isinlcfcosk—") =1,
n n n
and 2izsink—1r (cos’ﬁr+isink—ﬂ) =1.
n n n

Hence by the theorem (with index — 1)

kmr k
24z8in— = cosk—ﬂ—isin—” k=0,1,2,...,n—1).

n n n

Ift +0, z=l,(eotk—”—'i)
2¢ n
1 kmr '

=—§(1+’1;00tz) (k: 1,2,...,11,—-1).

These are the n — 1 solutions.

Alternatively, instead of quoting the general theory, we may proceed from
stage (a) above by writing

1 n
(z%) = cos 2k + ¢ sin 2km;
hence by de Moivre’s theorem,
z+1 2k . .

—— = co8——+1%8in—,

z n n
which takes distinct values for £ = 0,1, 2,...,n—1; etec.

(ii) Show that the roots of z* = 1 can be written 1, a, a2, ..., a1,
From 2" = 1 = cos 2kw + ¢ 8in 2km,

2%km .. 2
2z =cos—+isin—,
n n

which takes distinct values when £ = 0,1,2,...,n—1.
The value k = 0 gives z = 1. Write
2 .. 2m
a = CO8 — +¢8In—
n n
for the case k = 1; then since
2%km .. 2km ( 2r .. 27r)*
cos—+igin— = [cos— +48in— ) = ok,
n n n n
where k = 2,3,...,n—1, the n roots are 1, a, a2, ..., a®1,
Remark. Since the sum of the roots of 2% — 1 = 0 is zero (13.51), we have
l+a+a?+...+am1=0.

1 This step of passing to half-angles is often useful.
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Compare the brevity of this work with the algebraical treatment of the equation
2% = 1lin 13.23. Observe also that

arr = cis {_____2(11.— ") "} = cis {21r - —27‘—”}
n n

{ 2rn} 2 .. 2rm
= cig|{ -—} = co8 — —¢gin —
n n

=a,
and hence a"~1 = @, a"2 = &2, .... Also see Ex. 14(a), no. 21.

*(iii) If p, q are coprime integers (i.e. have no common factor other than +1),
the q values of (cos 0 +48in 8)?/¢ can be written

cos§(0+2kﬂ)+isin§(9+2k")’ (i)

where k= 0,1,2,...,q—1.
These ¢ expressions each satisfy 2? = cospf+isinpf, and are therefore
values of (cos 0+ isin 0)%4. They are all distinct; for if

cis;i’(0+ 2%, m) = cisg (0 + 2k, m),
then as in 13.22 (2),
§(0+ 2k11r)—§(0+2k27r) = ommr

for some integer m, i.e. p(k, —k,) = mq. Since |k, —k,| < g, this shows that ¢
has a factor in common with p, which is impossible because p, ¢ are coprime.

Remarks

() Since the equation z? = cispf has exactly q roots, the set of values of (ii)
must be the same as the set of values of (i), 1n some order.

(f) If p, ¢ are not coprime, the function (cos @+ ¢sin §)?/ is understood to
mean {(cos 8 +isin 0)?}14, and therefore has ¢ distinct values, viz. the values
(i) of (cos pO + i sin pf)He, However, in this case the expression cis {( p/q)(0 + 2km)}
does not take ¢ distinct values, and consequently.does not represent all the
values of (cos 0 +¢sin 6)?4. See Ex. 14(a), no. 8.

Exercise 14(a)
1 Ifz = cis 0, y = cis ¢, and m, n are integers, prove
m n
Z;+g; = 2cos (mf —ng).
A (1 +cos 6 +¢sin 6)5
1 e
2 Simplify (cos 8 —isin 0)*

= cis (7 —nb), n being an integer.

. . "
3 Prove (1 +sm0+@cosﬁ)

1+sinf—<cosf
If = cis 0, prove (22" — 1)/(2?" + 1) = ¢ tannf, where n is an integer.
Find the modulus and the principal value of the argument of ( — 1 +%4/3)5.
Find the three cube roots of 2¢— 2.

Obtain all the values of {(y/2+ 1 +4)/(y2+ 1—4)}¥ in the form a + bi.

N b
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8 Write down the six values of (cosf-+1isinf)s and the two values of
(cos 0 +4sin 8)}. Observe that cis {$(0 + 2km)} has only two distinet values, and
therefore cannot completely represent the first function.

9 Simplify (cosf+¢8inf)? in two ways. By equating real and imaginary
parts, deduce that
cos8 30 = cos?0—3cosFsin?d and sin30 = 3cos?d sin 6 —sin 36,

and express tan 36 in terms of tan 6.
10 Ifz = cis§, express in terms of 0:

1 1 1 1 1
i) 5 (ii) z+;; (iii) 2= (iv) z”+z—”; v) z"—-z—".

Solve completely the following equations.
11 zn=—1. 12 (z4+1)"+(@z—=1)" = 0.
13 (z—1)" =2 14 (142)" = (1—2)"

15 22"—2z2"cosna+1 = 0. [First solve as a quadratic in 2".]

16 By expanding (1+2)", where » is a positive integer, and putting z = cis 0,
prove n
(2cos 30)" cis nd = X »C, cis 0.

r=0

Deduce th 2 "G, — = 2n-% AN
t n, —_— 9n— .
educe tha R rcos o (cos )

17 If nis a positive integer, prove (1 +4)" + (1 —4)* = 2¥n+1 cos Inw. Writing
(1+2)" = co+cyx+cgx®+ ...+ 2",
prove Co—Cq+Cy—... = 2¥ncos jnm
and €, —Cy+ €5~ ... = 2¥ngin Jnar.

18 If a = cis4m and f = a+a?+at, y = ad+a’+as, prove f+y =~—1 and
Py = 2. Write down the quadratic having roots f, y, and deduce that

2m 4 8w
sin— 7 +sin :+sm—7—_+«h/7 |
*19 If cos@+cosgp+cosyy =0 and sinf+singg+siny =0, prove that
cos30+cos3p+cos3y—3cos(0+¢+1Y) =0 and a similar result for sines.
[Put 2 = cis§, y = cis ¢, z = cis Y and use Ex. 10(f), no. 4 (iii).]

20 What conditions have to be satisfied by z in order that the points repre-
senting all integral powers of z should (i) lie on a circle with centre the origin,
and (ii) be finite in number? Mark in a diagram the points which represent a
number z such that there are only three distinet pomts given by the sequence
2, 2%, 28, .

*21 Ifnis any prime number and A denotes any complex root of 2» = 1, prove
that the numbers 1, A, A2, ..., A" are some arrangement of the numbers
1, @, a? ..., "1 in 14.13, ex. (ii). [Use the argument in 14.13, ex. (iii).]
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14.2 Use of the binomial theorem

14.21 cos™0 sin”0 in terms of multiple angles (m, n being positive
integers or zero)

This transformation is sometimes needed for the integration of
circular functions: see 4.82. Writing z = cos f +isin 0, then

1 . .
;:cosﬁ—@smﬁ,
1 - 1 .
80 2cos0=z+;, 2zsm0=z—g. (1)
Also z* = cosnf +isinnf and 1/z* = cosnf —isinnd, so that

1 1 .. i
z’n_l_z_n = 20087@0, z"—z—n = 2isinnd. (ll)

By means of (i) and the binomial theorem, the given function can
be expanded in powers of z and 1/z. By (ii) the resulting expansion
can be expressed in multiple angles.

Examples

(i) Express cos? @ in terms of circular functions of multiple angles.
From (i),

(2co86)t = (z+él-)s

15 6 1
=284 624+ 1562+ 20+ —+— +—
22 24 2

1
= (z°+l—e) +6(z4+—4) + 15(z2+l—2) +20
z 2 z
= 2co8 604 6(2cos 46) + 15(2cos 260) +20 by (ii).
cost 8 = ;&(cos 66 + 6 cos 46 + 15 cos 20 + 10).

(ii) Bxpress cos® @ sin® @ in terms of multiple angles.
5 4
(2cos 6)® (2¢sin )t = (z-]-;}) ( - 2)

(o2 ferd) o) o2 o)

= 20890 4 2 cos 70 — 4(2 cos 50) — 4(2 cos 30) + 6(2 cos ).
cosb 6 sin* 6 = 4(cos 90 + cos 70 — 4 cos 50 — 4 cos 30 + 6 cos 0).
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We observe that cos” 6 can always be expanded in terms of cosines
because it depends on the expansion of (z+1/2)*. Since sin™6
depends on (2—1/z)™, which involves terms like 2+ 1/z" if m is
even, and terms like 2r—1/2r if m is odd, therefore sin™@ can be
expressed in terms of cosines or sines according as m s even or odd.

14.22 cos n, sin n0, tan n0 as powers of circular functions (z# being
an integer)

We now reverse the process in 14.21:
cosnf +isinnd = (cos @ +1is8in)* = (c+18)", say,

=t (’1‘) c"Lis + (’2‘) v2(is)? + (’;) cn=3(is)B + (Z) ev4(is)s+ ...

oo (B (2ot il (2 o= (B ersnn ).

Hence cosnf = ¢"— (7;) 252 (Z) st — L. (iii)
and sinnb = (7;) v ls— (g) 3834 ... (iv)

Taking the ratio of sinnf to cosnf, and dividing top and bottom
of the right-hand side by c*, we obtain

tannf = (";)t_(g)t3+ (v)

n n ?
1_( )t2+( )t4—...
where { = tan . 2 4

The formulae (iii), (iv) can be transformed by means of the relation
s2+c¢2 = 1 to show that cosnf can be expressed entirely in powers of
cos &, and so on; see for example Ex. 14 (), no. 20, and ex. (iii) below.

Examples
(i) Express cos 50 and sin 66/sin 8 in terms of cos 6.

cos 50 = ¢5— (g) ¢332+ (i) cst

= ¢5—10c¥(1 — ¢?) + be(1 - c?)?
= 16¢% — 20¢3 + 5c.

6 6 6
; = g 343 5
8in 60 = (l)cs (3)03 +(5)ce

= 8{6c5— 20c®s2 4 6¢st} .
= 8{6¢®—20c¥(1 —c?) + 6¢(1 —c?)?},
sin 66
sin 6

= 32¢5 — 32¢% 4 6e.
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(ii) Write down the formula for tan 86. What equation s satisfied by tan
if (a) tan 50 = 0; (b) 50 = }m? Solve each of these equations.

5 t 5 B4 5 ]
1 3 6 5¢— 1063 + ¢

5 5 T 1-108+5°
— 2 4
1 (2)t +(4)t

tan 50 = (

(a) If tan 50 = 0, then 5¢— 103+ 5 = 0, 80 ¢ = tan § satisfies
x5 —1023 4 62 = 0.

Now if tan 50 = 0, then 50 = rr and 6 = }rm, so that tan @ = tan }rw, and the
values r = 0, 1, 2, 3, 4 give distinct values of tan $r7. Therefore the roots of the
above equation are x = 0 (corresponding to r = 0) and

taninm, tangw, tanim = —tanim, taném = —tanim,
i.e. 0, +tanim, +tanin.
(b) If 50 = }m, then tan 5@ = 1 and so

5t— 1088485 = 1— 1082+ b¢4;
hence ¢ = tan 0 satisfies
28— 5t — 1023 4 1022+ 62— 1 = 0.

But if tan 56 = 1, then 50 = 1y +rmand 0 = @y + 3rm, so that

tanf = tan(ﬂln),

20
and this takes distinet values forr = 0, 1, 2, 3, 4. The required roots are therefore
4r+1
z = tan (—246_—") (r=0,1,2,3,4).

The equation in (b) could also be solved algebraically by the method in
Ex. 13 (g), nos. 26—28.

*(iii) If n 4s odd, prove that sin nf can be expressed in the form
sinnd = b8+ byg8®+... +b,8"

and find b,, b,,. Also prove that (r+ 1) (r+ 2) b,y = (r2—n?) b,, and hence find b,.
From formula (iv) and the relation ¢2 = 1 —s2,

sinnf = (11") (1—g2)ltn-Dg_ (:) (1—s?)Kn-Bg8 ¢ (:) (1—s2)bn-oigh_

Since each of n—1, n—3, ... is even, this can be expanded as a polynomial in s
involving only odd powers of s and having degree n, for

b,, = coefficient of s¢®

(7 s [T vimes (™) _
= (~1)¥ 1)(1)_(_1)}( —s>(3)+( 1)k s)(5)

el ()

= (—1)¥n-D2n-1 by Ex. 12(b), no. 2.
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Also
by = coefficient of ¢ = (rlz) =n.
n
By deriving the identity sinnf = Y, b,s" twice wo 6, we obtain first

r=]

n
ncosnf = Y, rb,s"1c
r=1

n
and then —n?sinnb = Y, [r(r — 1) bs"2c2 —rb,8"1s]
r=1

= X [r(r—1)bs™2—{r(r—1) b, +7b,} 8]
= X [r(r—1)b,s"—2—r2b,s"];
hence —n? i b8 = % [r(r—1)b,s"2—1r2b,s"].
r=1 r=1
Equating coefficients of s7,
—ntb, = (r+2) (r+1) b,ys—7%b,,
from which the required relation follows. Taking r = 1, we have
2.3b, = (1—n2)n, ie. by=in(l—n3).

14.23 tan (0, +60,+... +0,)
cos (0, +05+...+6,)+isin (6, + 05+ ... +6,)
= (cos 0, +is8in0,) (cos O, +18inb,) ... (cosd, +48inb,)
asin 14.11, proof (i),
= cos 0, cosly...cos0,(1+1t,) (1 +ity)... (1 +1t,) wheret, =tand,,
= cos ), cosl,...cos O, (1 +12, + 922y + 323 +...),

where X, denotes the sum of the products of ¢;, £,, ..., ¢, taken r at a
time; this last step follows from the argument used in proving the
binomial theorem, 12.11. Equating real and imaginary parts,

cos (0, +05+...+6,) = cosl,...co80,(1-2,+2,—...), (vi)
and

sin (0,4 0;+...+6,) = cosb,...cond,(X;, -~ Tz +...). (vii)

By division,

tan (6, +6;+...+6,) = Ty g+ Zp—...

1—22"'24—26"‘ ...'

(vii)

The formulae (vi)—(viii) include (iii)~(v) as the special cases when
0,=0,=...=0, = 0. All these can be written down easily for any
particular value of n, the terms continuing until they would cease
to have a meaning.
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Exercise 14(b)
Express the following in terms of multiple angles.

1 costd. 2 sin%d. 3 sin®4.
4 costf sin® 0. 5 cos®0 sin34.
Calculate
)
6 _[ sin” 6d6. 7 fcos“ 0 sin® 6d0. 8 f i sint @ cos® 0d0.
0

9 Express cos 60 in terms of (i) cos &; (ii) sin 6.
10 Express sin 76 in terms of sin 6.
11 Express cos 70/cos 8 in terms of sin 0.
12 Solve completely the equation cos 56 + 5 cos 30+ 10cos 0 = 4.
13 Solve completely 16sin® 8 = sin 56.

14 Prove cos70/cos @ = 1—2(2cos 20) — (2 cos 20)2+ (2 cos 20)3. Hence prove
that the roots of 23 —22—2x+1 = Qare x = 2cos{3(2k+1)7}, £k = 0,1, 2.

15 If z = 2cos 6, prove (1+cos70)/(1 +cosf) = (x®—x*~2x—1)2. [Express
in half-angles.]

*16 (i) Give the last terms in formulae (iii), (iv) when % is (@) even; (b) odd.
(ii) State the last terms in numerator and denominator of formula (v) when
n is (a) even; (b) odd.

17 Write down the expression for tan 36 in terms of ¢ = tan §. By first solving
tan 6 = 1, show that the roots of 2® — 32*— 3z + 1 = 0 are tan 47, tan &m and
tan 7. What are the roots of 22— 42 +1 = 0?

18 (i) If6, +0,+ 04+ 6, = nm, where n is an integer, state the relation between
&y, 8y L3, by, Where 7, = tan0,.
(ii) If tan@,, ..., tan@, are the roots of ¢+ at®+ bt +ct+d = 0, express
tan (0, + 60, + 0, +0,) in terms of the coefficients. What can be said about the
angles if ¢ = a?

19 If tana, tan B, tany are the roots of az®+x2+bxr+1 = 0, prove that
o+ f+7v is an integral multiple of 7.

*20 (i) Prove that cosnf can be expressed as a polynomial of degree n in
¢ = cos § of the form a,c"+a, o¢* 2+... + @y 5" 2+ ..., the last term being
a, or a, ¢ according as n is even or odd. (ii) Prove that a,, = 271, (iii) If nis even,
put 6 = 37 to show that ag = (—1)¥%; if n is odd, considerelim (cosnb/cos 0) to
>3
prove a, = n(— 1)¥#-1, (iv) By deriving twice wo & and equ?ating coefficients
of ¢, prove (r+1)(r+2)a,., = (r*—n?a,. (v) Hence expand cosnf (a) in
descending powers of ¢; (b) in ascending powers of ¢, first for n even and then
for n odd.

14.3 Factorisation

We now give further applications of the results in 10.12 and of
Theorem I in 10.13, which remain valid in complex algebra. Just as
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n

we have used Y f(r) to denote f(1)+f(2)+...+f(n), here it is con-
r=1

venient to write

L) =) £2) .. feo.

As with the Z-notation, the range of values of 7 can be omitted when
clear from the context.

14.31 x»—1

We have 27 —1 = 0 if a® = 1 = cis 2rm, i.e. if x = cis(2ra/n). For
r=1,2, ..., nit follows that  — cis (2r77/n) are distinct factors of 2™ —

Since r = —k and r = n—k give the same value to cis (2rm/n), we
mayuser =0, —1, -2, ...instead of r = n,n—1.2—2,.
Case (1): n even. Taker =0, £1, +2, +(3n—1), %n This gives

3n — 1 pairs of factors, together with the smgle factors corresponding
to 0 and 4n; in all, there are 2(3n— 1) +2 = n factors.
The factors corresponding to » = + k are

( 2kmr . . 21017) ( 2k 2kﬂ)
z—|cos—+isin—), x—{cos——18in—1),
n n ) n

and their product is
2km\2? . 2km\2 2km
x—c08s— ) +{sin—) = 22— 2xrcos—+1.
n n n

The factors corresponding to r = 0, 4n are respectively z—1, z+ 1.
Hence

n—1 2k .
for neven, 2"—1=(x—1)(x+1) I (x2—2xcos7"+l). (i)
k=1

Case (i2): n odd. Take r =0, +1, +2, ..., +}(n—1); this gives
1+ 2{}(n — 1)} = n factors altogether. Arguing as before, we find that

#(n—1) 2km .
fornodd, x"—1=(x—1) T <x2—2xcos—n—+1). (i)
k=1

14.32 x*+1

2t +1=0 if 2" =—1=cis(2r—1)m, ie. if z =cis{(2r—1)n/n},
where r is an integer or zero. Distinct values of x are given by any n
consecutive values of r.

37 GPMII
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Case (1): n even. As in 14.31, we wish to pair off conjugate complex
linear factors so as to get a real quadratic product. Now the factors

2r—-1 .21 —1
7, x—cis

T —cis g

are conjugate if (2r—1)+ (2r'—1) = 0, i.e. if ' = — (r— 1); therefore
with the values r=1, 2, 3,...4n

we pair r=0,-1,-2,..., —(3n—1).

This gives }n+{l+(3n—1)} =n factors altogether. The factors
corresponding to r =k, r' = —(k—1) are

( 2k—-1_ .. 2k—1 ) ( 2k—-1_ .. 2k-1 )
x— | cos m+148in m), x—|cos m—i8in 7},
n n n n

and their product is 22 — 2z cos {(2k — 1) w/n} + 1. Hence

in 2
for n even, x"+1=1]] (x2—2mcos
k=1

m+ 1) . (iid)
Case (%) : n odd. We pair off the values
r=1, 2, 3,..3n-1)
with r=0—1,-2,..,—}n-3).

The value r = (n + 1) gives 2r — 1 = n, to which corresponds the real
factor #+ 1. Then as before we have
#n—1)

fornodd, a27+1=(x+1) II (x2—2xcos2
k=1

" 7r+1). (iv)

14.33 x?*—2x"cos na+1
The equation 22" — 2z cos no + 1 = 0 is quadratic in a7:

(x™ —cosner)? = — 1+ cos?na = —sin?na,
" = cosno +isinna.

Hence the 2n values of # which satisfy it are

( 2r7r) .. ( 21'77)
cos{a+—) +esinfa+——1},
n n

where r = 0,1,2, ...,n—1; these are distinct unless na is zero or an
integral multiple of #.
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The product of the conjugate factors corresponding to r = k is

(r—cos 1+ 227) tsin (1 27)) o cos o227 s in o+ 22
— o—cos o+ 227+ i o227

2k
= 12— 2x Ccos (a+—n—”) +1.

n—1 4 2k
St —2grcosna+1 =[] {x2—2xcos (oc+—n—) +1}. (v)
k=0

Examples

Various deductions can be made from the result (v).
(i) Putting @ = 0, we obtain
- 2k
(z"-12 =] {x’—2mcos———+ 1},
. 3 kgo n
and if n is even this is equal to

n—1

(z—1)2(z+ 1)*‘%H1 {x’—- 2xcos—2:,—7r+ l}a

k=

because the values k = 0, k = §n give the factors (z — 1)2, (z + 1)? respectively,
while factors corresponding to k and n—k are equal. Taking square roots (in
which the positive sign is chosen since in real algebra all the quadratic factors
are positive and x"—1, 22— 1 always have the same sign when 7 is even), we
obtain formula (i) of 14.31. If n is odd, we likewise deduce formula (ii).
Similarly, by putting @ = #/n in (v), we obtain formulae (iii), (iv).

(ii) Divide both sides of (v) by 2":
n—1 2kn
x”+i—2cosna =11 {x+}—2cos (a+—-—)}.
" k=0 x n

Putting z = cis 6,
n—1

2cosnf—2cosnc = [] {20030—2cos (a+%ﬂ)},
k=0

n—1
i.e. cosnf —cosna = 2+-1 [ {coso—-cos (“4_%7’)}_
k=0 n
(iii) In (v) put z = 1 and a = 24:

2(1 - o8 2nﬁ) =”ﬁ12 {1 — co8 (2ﬂ+&7’)} ,
k=0 n
sin?nf = 22"—2n]:[18in2 (,,>+ I;—") .

n—1 kn
sinng = + 271 [] sin (ﬁ+7).
0

37-2
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To decide the sign of the right-hand side, first suppose 0 < f < m/n; then
each factor on the right is positive, and so is sin nf. Hence the sign + is appro-
priate for this range of 8. As f increases, sinnf changes sign whenever £ passes
through a value km/n, and simultaneously one factor on the right changes.
Hence the sign is always + :

n—1
sinnf = 2"—1k1—_10 sin (ﬂ+ I%r) .

(iv) By taking logarithms of the modulus of each side of this last result,
assuming that £ is not zero or an integral multiple of 27,

n-l em
log |sinnf| = (n—1)log2+ 3] log|sin (ﬂ+_n_) ;
k=0

. n—1 ke
Deriving wo g, ncotnf = 3, cot (ﬁ+—) .
k=0 n
(v) de Moivre’s and Cotes’s propertiest 4, 4,
of the circle.

AgA;A4,... A, , is a regular n-sided A
3

polygon inscribed in the circle of centre A4,
O and radius a; P is a point such that
OP =z and L(OP,04,) = 6.
Since sides of the polygon subtend angle O = P 4
n-1

27/n at O, we have
£(OP,04,) = 0+ 2rn|n.

Also, by the cosine rule,

27‘71) Fig. 137

PA? = a?+ a?— 2ax cos (0+
n

n=1 2rm
PA2.PA:...PA2_| = ][] {#%—2axcos 0+—7;— +a?

r=0
= g7 — 2a"x" cos nd + a®"
by a slight extension of formula (v). Hence de Moivre’s property:
PA,.PA,...PA,_, = |J/(x®"~ 2a"z" cos nd + a®"),
In particular, if P lies on 04, then 6 = 0 and so
PA,.PA,...PA, , = |z"—a"|.
If OP bisects A,_,0A,, then 6 = 7/n, and so
PA,.PA,...PA, , =a"+a"

These last two results are known as Cotes’s properties.

14.34 sinn6, n odd

By ex. (iii) of 14.22, sin nf can be expressed as a polynomial in sin & when n
is 0dd; the leading term is b, gin® 8, where b, = (— 1)¥»-127-1 The polynomial
is zero when sinnf = 0, i.e. when nf = rm, 0 = rm/n and so sin 6 = sin (r7/n).

1 These illustrate geometrically the results of 14.31-14.33.
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Hence for r=0,1,2,...,n—1, sinf—sin (rn/n) are distinet factors of sinnf;

consequently n—1 o
smnﬁ =b, (sm@ —sin n) (vi)

r~1
This can be expressed alternatively as follows. The n distinet values of
sin (rm/n) are given by r = 0, £ 1, +2, ..., + }(n—1). The factors which corre-
spond to r = k, r = — k are sin 8 — sin (k7 /n), sin 0 + sin (k7 /n), and have product
8in? @ —sin? (k7r/n). Hence

Hn—1) j
sinngd = b,sinf ] (nsin2 6 —sin? —) . (vii)
k=1 n
Divide each factor following sin 6 in (vii) by —sin?(k7/n); then

Hn-1) in2
sinnb = Asin6 [] (1— sin’6 )
1

sin? (km/n))’
where A is independent of & and can be determined by dividing both sides by
sin @ and then letting 6 > 0. We obtain

A= hmsmn@ ’
a+08u10
. . A1) sin? 6
and so sinnf = nsind kl;ll (1 - W) . (viii)

Examples

(i) Comparison of series and product.
By identifying the produet (viii) with the expansion of sinnf obtained in
ex. (iii) of 14.22, we have for n odd:

Hn—1) -
ns J] (l—s’cosec*;) =ns+in(l—-n?)s+...+b,s"
k=1

Equating coefficients of the various powers of 8 gives identities involving
cosec? (km/n); e.g. from those of s3,

n—-1) ke
—n Y, cosec?— = in(l—n?),
k=1 n
. 1) femr .
i.e. > cosec27b- =1(n2—1) for n odd. (ix)
k=1

el
(ii) Proof thut X —15 = imt,
r=17"
If 0 < 0 < 3, thensinf < 0 < tan® and so

1 1
< cosec?f = 1+cot20 < 1+—.

63 62’
Put 6 = ra/n where n is odd, and sum forr = 1,2, ..., 3(n—1):
n2fl 1 1 Hn—-1) T
ﬂ2‘12+ +.. +£(n T } < 2 cosec? — .

1 1
<t 0+t )

.
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‘Writing 1 1 1
m = 1—2 + —2—2 + sew + W_La

and using formula (ix), we have .
mni—-1 mn-1

o0 S5 SmTg Heen

Since the series Z(1/r?) is known to converge by 12.41 (3), therefore s,, tends
to some limit s when m — o in any manner, and in particular through the
sequence (n — 1) for odd n. Letting n - co, the above inequality gives

s<imE<s,
so that s = 372,

Exercise 14(c)

1 Obtain real quadratic factors of 2®—x®+ 1. By equating coefficients of
z® and of z8, prove that

coslm+cosdm+cosdmr =0 and cosdrcos§mecosir = 4.
2 Find the real quadratic factors of x® — 4x% 4 16.

3 Write down real quadratic factors of af+a®+at+2%+2%+x+1. [The
expression is (27— 1)/(z—1).]

By substituting + 1 for x and 28 or 28 +m[n for a in formula (v) of 14.33, prove
the following.

4 cOSnﬂ—2”’1HS {ﬂ+(2'r+1)77}

5 sinnf = (—1)in2n-1 H cos {ﬂ+—-} if n is even.
r=0

if n is even.

6 cosnf = (_1)in2n~1nﬁlc {ﬁ+(2'r+ 1)1;}
r=0

7 Obtain a result by deriving no. 4 logarithmically wo f.

n—1
8 Prove Y, cosec? (ﬂ+ —) = n?cosec®*np.
r=0
-1 2rm -
9 Prove chnx—cosna = 27! H chz—cos a+—n— . [Divide formula (v)
r=0

by z" and then put z = ev.]

10 Express z"~1/(z" — 2z cos net -+ 1) as a sum of n partial fractions. [Derive
(v) logarithmically wo a.] .

11 Prove that

n—1 n—1

i s (), ok (ko).
[Use formulae (iii), (i) with 2n instead of n.]

12 By putting z = cis @ in the results of no. 11, prove

241 )
mys

n—1 T
(ii) sinnd = 2%1gin§ [] (cosﬁ—cos ;) .

r=1

n—1
(i) cosnf = 271 1] (cosﬁ—cos

r=0
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13 (i) Obtain a result from no. 12(i) by putting 0 = 0.
(ii) By dividing both sides of no. 12(ii) by sin¢ and then letting 6 — 0,
prove

n—1
Jn = +251]] sin’Z.
r=1 n

14 (i) By deriving no. 12 (i) logarithmically, prove
ntannf 72l 1
sin @ r—o cos 0 —cos{(2r+1)7/2n}"
(ii) What result is obtainable similarly from no. 12 (ii)?

15 With the notation of 14.33, ex. (v), prove that if P lies on the circumference,
then PA,.PA,;... PA, , = 2a" |sin }nb)|.
16 Show that the solutions of (1 +x)2" + (1 —x)?" = 0 are

x = +itan m, where r=12,...,n.
L 2r—1
Deduce that  (1+)2*+ (1—z)2* = 2 [| (x2+mn2(—’T)"),
r=1
n % —
and hence prove that > secgg—r—l)lr— = 2n%
r=1 4n

*17 Prove that
n—1 2rm
cosnf —cosna = 251 ] {cos @ —cos (oc+—;)}

r=0

by using Ex. 14 (b), no. 20 and arguing as in 14.34.

14.4 Roots of equations
14.41 Construction of equations with roots given trigonometrically

(i) Form the equation whose roots are cos 2m, cos $m, cos &7.
0 = %7, 4m, &7 all satisfy cos 30 = —}. Since cos 30 = 4cos?0—3cosl, the
equation 4a®— 3x = — } is satisfied by = cos 4w, cos 4w, cos §m. The required
equation is therefore 8 —6z+1 =0

(ii) Form the equation whose roots are cos £m, cos 4w, cos &7,
Consider the equation cos 40 = cos 36. It is satisfied by
40 = 2mmn + 36,

where m is any integer or zero, i.e. by @ = Zms (this includes both solutions
obtained from the double sign + ).
‘Writing « = cos 0, the equation becomes
84 —8x24 1 = 4% — 3z,
since cos46 = 2co0s220—1 = 2(222—1)2—1. The roots of this are given by

m=0,1,2,3,viz. ; _ 0050 = 1, cos2m, cos $, cos $m.

Since 8z*— 423 — 822+ 3x+ 1 = (x— 1) (823 + 422 — 42 — 1), the required equa-
tion 18 828+ 4o — 4w — 1 = 0.
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(iii) Form the equation whose roots are tan®im, tan? 2w, tan? }m, tan? 47,

The equation tan 99 = 0 is satisfied by 6 = inm, where n is any integer or
zero. Writing ¢ = tan 6, it becomes (see formula (v) of 14.22)

()= (2= G+ (o) =
Removing the root ¢ = 0, we see that the equation
18— 36t8 + 126¢4— 8424+ 9 = 0
has roots ¢ = tan (3nw), where n = 1, 2, ..., 8, i.e.
+tanimr, +taniwm, <+tandwm, +tanim.
Putting z = #2, it follows that
ot — 3623+ 12622—84x+9 =0

has roots tan?$m, tan? 4w, tan2 }ur, tan? 4.

N.B.—Since tan?im = 3, we may remove the root x = 3 from the last
equation, obtaining z®—3322+427x—3 = 0, which consequently has roots
tan?%7, tan?Zw, tan? 7.

14.42 Results obtained by using relations between roots and
coefficients

If the results of 13.51 are applied to equations like those found in
14.41, various trigonometrical relations are obtained.

Examples

(iv) Prove sec 2 +sec 7+ sec §7 = 6, and find sec §m +sec §m +sec £,

The equation whose roots are the reciprocals of the roots of that in ex. (i)
will have roots sec 2, sec 4, sec 8. This equation is 2°— 62248 = 0, and the
sum of its roots is 6.

Since secim = —sec§m, secim = —sec)m, and secfm = —secim, hence
sec 37 +sec §m+sec fm = — 6.

(v) Calculate tan? 2w + tan? 4w + tan? .

From ex. (ii), the equation having roots sec £, sec %, sec 4 is
x®+4x2—4x—8 = 0.

Putting y = «2, the equation having roots sec? £, etc. is
y(y—4)* = 16(y—2)%,

ie. y®—24y%+ 80y — 64 = 0.

Writing z = y— 1, i.e. y = z+ 1, this becomes (after reduction)

23 —21224+352—T7 = 0,

which has roots sec?27 — 1 = tan?w, etc. The sum of the roots is 21.
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(vi) Prove that cos 3o = 4 cosa cos (& + 2) cos (ot + 4m).
Consider the equation cos 36 = cos 3, which is satisfied by 0 = a+ 3kr
where k is any integer or zero. It can be written
428 —3x—cos3x = 0,

where z = cos 8, and is satisfied by the distinct values x = cosa, cos (a -+ $m)
and cos (a+ 4m). By taking the product of the roots, the relation follows.

Exercise 14(d)

1 Form the equation whose roots are cos 7, cos Zm, cos 3.

2 Form the equation whose roots are +cosim, +cosgw.
[Consider cos 50 = —1.]

3 By considering cos 30 = cos 20, construct the equation whose roots are
cos #m and cos ¢7r. Hence find cos 36°, cos 72° in surd form.

2
4 Show that z = 2005%;’(7' =1,2,...,5) are the roots of

xSt —42%— 322+ 32x+1=0.

[Consider cos 60 = cos 5; remove the root x = 2 at the end.]

*5 (i) Construct the equation whose roots are + 2sin €7, + 2sin4m, + 2sin $7
by eliminating z from y = 2.,/(1 —22) and the result of ex. (ii) in 14.41.
(i) Verify that 2sin 27, 2sin %7, 2sin &7 are the roots of 23 = +,/7 (z2—1).
[The equation in y obtained in (i) can be written
¥ =Ty —1), ie. 3°=+yT(y2-1).

Since 2sin 27 > 1 and 2sin47 > 1, and also 2sin 7 = —2sin $7 lies between
0 and — 1, these values of y give ¥® and y2— 1 the same sign.]

Use the equations obtained in exs. (i)—(iii) of 14.41 to prove the following.
6 cosiw cos 4w+ cos &m cos 7+ cos & cos m = — 3.
7 tan?3m+ tan?im +tan®4r = 33 and tan 37 tan 7 tan 7 = +./3.
8 sec?im+sec?$m+sec? Im = 36 and sect 1w + sect §m +sect I = 1104,
9 Calculate sin?£7 +sin? 477 4 sin? $7r.
10 Provesin 3o = —4sina sin (o + 27) sin (e + 47). [Consider sin 36 = sin 3a.]

11 Prove tana + tan (@ + im) + tan (¢ + 27) = 3 tan 3a.
[Consider tan 3¢ = tan 3a.]

*12 By considering tannf = tanne, prove that the equation

(’I) I (g) 4. = t&nna{xn_ (’;) — }

has roots z = cot (e +rmin), r =0,1,2,...,n—1, where « is not zero or an in-
n—

tegral multiple of 2. Deduce that 3, cot (oc +'r_7r) = ncotna.

n

r=0
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14.5 Finite trigonometric series: summation by C +iS

. The method of summing certain trigonometric series which is
illustrated in the following examples gives results in pairs, and is also
applicable to infinite series (see 14.66, ex. (i)).

14.51 Cosines and sines of angles in A.P.
Write
C = cosa+cos(a+pf)+cos(a+28)+ ... +cos{a+ (n—1)F}
and 8 =sina+sin(a+p)+sin(a+28)+...+sinf{x+ (n—1)p}.
Then
C+i8

]

ciso + cis (a + f) +cis (@ +28) + ... +cis{a + (n—1) £}
= cisa+ cisa cis [ + cisx(cis §)2 + ... + cis a(cis f)—1
= cis afl — (cis £)"}/{1 — cis 5} ‘

on summing the a.p., provided cisf + 1, i.e. £ is not an integral
multiple of 27. Now+

1—(cisg)* = 1—cisnf
= 1—cosnf—isinnf
= 2sin? {nf —2isin {np cos inf
= —2¢8in {np(cos inf +isin inf)
= — 2tsin inpf cis inp.
— 2isin np cisdnp
—2¢sin 34 cis 14

= ssi;%;;cis {e+3(n—1)p}.

Equating real and imaginary parts, we obtain

Hence C+iS =cisa

c- S;:;’f:ﬂﬁ cos{atdn—1)8), S = S:;%g sin {o+ 3(n—1) B).

If f is zero or a multiple of 27, then from the original series clearly
C =ncosa and § = nsina. Cf. 12.27, exs. (i), (ii). '

t+ The following reduction is shorter than multiplying numerator and denominator
by the conjugate of 1—cis £ to make the denominator real.
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14.52 Other examples

(i) Sum 1+ cos 6+ x2cos 20 +... to n terms, where x is real.

Write C=14+zcosf+a2cos20+...+a"1cos(n—1)80

andt S = zsin @+ 228020 +... +z"1sin(n—1)6.
Then C+148S = 1+zcisO+a2cis204-... +a" ecis(n—1)0
= l+zcisO+ (zcis0)2+... +(zcisG)n2
= M on summing the a.p., if zcis @ £ 1,
l—=acis@
_ 1—a"cisnd
T 1—=zcisf

_ (1 —arcisnb) {1 —zcis (—0)}
T (1—=zcish) {1 —acis (—6)}
to make the denominator real,
1—z"cisnf —xcis (—0) + 2"+ cis (n—1)0
- 1—2xcos 0 +x2

since cis 8, cis ( — f) are conjugate. Taking the real part of this result,

l1—xcosf—z"cosnd+z+lcos{n—1)0
1—2zcosf+x? )

N.B.—If |z| < 1, then 2" - 0 when n - 0, and the series has a sum to infinity
given by

C=

1—xecosl
m C= ——o ——,
7> 1—2zcos @+

If |z| = 1, there is no sum to infinity.

Z) sin (e +28) + ... +sin (a +npf)

= (2cos $8)msin ( -+ Inf).

(ii) Prove that sine + (71‘) sin (e +f) + (

Write C=cosac+(7lb) cos(a+ﬁ);l-(121) cos(a+28)+... +cos(a+npf)
and S=sina+(?) sin(a+ﬂ)+(;' sin (@ +28) + ... +sin (a +np).

3

Then C+iS = cisoc+(';&) cis(ac+/?)+( ) cis(a+2f)+... +cis (e +np)

2
= cisoc+(7;) cisa cisﬂ+(;) cisa (cis B)2+... +cisa (cis )®
= cisoa=1+ (’1’) cis B+ (;‘) (cis f)2+... +(cis,3)”}

t We do not write S = 142 sin 6+... because at the next step C +4S would start
with 1+, which does not appear as a factor in succeeding terms.
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= cisa (1+cisg)?
= ciset (1 +cos f+4sin f)"
= cisa (2cos? 3f+ 2isin 3 cos 38)"
= cisa (2cos 3 cis /)"
= (2cos }p)" cis (¢ + 3np).
S = (2cos }f)" sin (x + 4nf) on equating imaginary parts.

Exercise 14(e)
1 Sum sin ¢ —sin (a4 f) +sin (¢ +2f) —sin (x + 36) + ... to 2n terms.
2 Prove 1+cosﬁse00+cos20seczﬁ+...+eosm9$ec"0=w.
sin @ cos™ @

r(n
3 Calculate 3} ( )sin 2r6.

r=1
4 Find (2cos )" — (7:) (2cosf)*1cos 0+ (;) (2cos@)*2cos20—...to(n+1)
terms.

5 Sum to n terms the series whose rth term is (2r—1)21. If @ = 27/n and
n is & positive integer, prove that

14+3cosax+5cos2a+...4+(2n—1)cos(n—1)a = —n
and 3gino+6sin 20+ ... +(2n—1) sin (n — 1) ¢ = —ncot }a.

6 Find the sum to n terms of sin A+ (b/c)sin24 4+ (b%/c?)sin34 +.... If
b < c in the triangle 4 BC, deduce that the sum to infinity is (¢/a)sin C.

7 If 6 is not zero or an integral multiple of 7, find the sum to infinity of
sin o+ cos 8 sin (& + 6) + cos? 0 sin (& + 20) + cos® 0 sin (a + 30) +....

8 If nis a positive integer, prove that
1+ nxcosf+ (;) % cos 20+ (Z) 28cos30+4... 4+ (:) " cosnf = r*cosna,

where 7 = 4./(1+2xcosf+2?) and cosa:sina:l = (l4zcosl):xsinb:r.
Further examples appear in Exs. 14 (f),(g)-

14.6 Infinite series of complex terms. Some single-valued func-
tions of a complex variable

14.61 Convergence and absolute convergence

(1) Limit of a complex function of n. If s, = o, +17,, and if ¢, > 0
and 7,, -> 7 when n — 00, we say that s,, - o + 47 when n — co and write
lim s, = o+17.

n-—»ro
This definition of ‘limit’ is consistent with that in 2.71 for real functions of n;

for, given a positive number ¢ however small, there is a number N such that,

for all n > N, loa—0o| <3e and |7,—7| <3}e
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andso |s,—(0+ir)| = |(0,—0)+iT,—7)| S |[0p—0|+|7,—7T| <e.
Conversely, if this last condition is satisfied for all n = N, then since

lon—0| < |(e,—0)+i(r,—T)| <6,
we have o, - o (and similarly 7,, »> 7).

(2) For the series Xz,, where 2z, = z,+1y, and z,, y, are real,

n n n
8, =22 =%+t XY, =0,+1T,, say.
r=1 r=1 r=1

By (1), s, tends to a limit if and only if o, 7,, both tend to limits when
n -> 00. Accordingly we give the following definitions.

2z, is convergent if Zx, and Xy, both converge.

If Zz,, 2y, converge to sums X, ¥, then Z = X +4¢Y is the sum fo
tnfinity of 2z,.

(3) If the series (of real positive terms) X |z,| converges, we say that
Xz, is absolutely convergent (a.c.).

It follows that if 3z, is A.C., then 2z, is also convergent in the sense
of (2). For since’ |z,| < 4/(x2+3?2) = |2,], and X |z,| is convergent by
hypothesis, the comparison test of 12.41 shows that X |z,| converges;
i.e. Tz, is A.0. and consequently (by 12.52) also converges. Similarly
Zy, converges, and hence by definition Xz, converges.

14.62 The infinite G.P. 1+2z+22+23+...
Write 8,(2) = 1+2z2+22+...+27 L

If we multiply by z and subtract (just as for a ¢.p. with a real common

ratio), we find that, if z % 1,
5.(2) = 1 2"
m Tl 12"

Putting 2z = r(cos 8 +4sin §), where r > 0, we have
2" = r*(cos nd + i sin nd).
Ifr < 1, thenlim»® = 0; and since |r* cos nf| < r* and |r*sinnf| < ™,

n—>cw

therefore both " cos n@ and " sin n8 tend to zero when n — co. Hence

limz* =0 when [z|=7r<]L.

n—>o
Thus when [z| < 1, lim s,(2) = 1/(1—2).
n-—> o

If r > 1, then 7 -> 00 when n — 00, and 80 8,(2) has no limit when
n—->o. If r=1 and z % 1, then 2" = cosnd+isinnf; but cosnd,
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sinnf oscillate between +1 when n — 00, and again s,(z) does not
tend to a limit. If z = 1, clearly s,(z) = n.

The ¢.p. 1 +2z+2%+ ... therefore converges only if |z| < 1, and its sum
to infinity is then 1/(1—2). We can write

(I—2)t=1+z+22+28+.. (]¢] < 1)

The @.p. is absolutely convergent when the series of moduli
1+r+72+... converges. This is the case when and only when
0 < r < 1,i.e. [2| < 1. Hence the ranges of convergence and of absolute
convergence are the same.

14.63 The exponential series

13 22 28
+ﬁ+§_§+§+"'

(1) Write z = r(cos 8 + ¢ sin §). Then since the series

147 r?2 o3
+ 11 + 31 + 31 +...
converges for all r, the series
z 2% 28 .
1+i—!+§‘!+§—!+... (i)

is A.c. for all complex numbers z, and hence converges for all z.

Denoting the sum-function of series (i) by exp z, or by exp (z) when
necessary, we have
22

. p
expz = lim (1+1—!+2!

n—>w

A .
+...+ 'rﬁ) for all 2. (ii)

Remark. The notation is chosen because of the analogy with the
real series P
1+ o4 4

11" 21" 3!

whose sum-function e* is occasionally written exp« for convenience
in printing. We usually avoid writing e* for the sum to infinity of
series (i) because later work (not in this book) shows that e?is a function
having infinitely many values for each non-real value of z, and it is
clearly undesirable to use this for the sum of a convergent series, which
is necessarily unigque. However, when the index notation e? is used,
it is to be interpreted as expz; thus in the symbolic method of 5.43,
Case (iii), the notation e is more suggestive than exp (¢y).
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(2) By using the definition (ii), it can now be shown that expz
obeys the functional law

eXP 2, X XP2, = OxP (2 +2,), (i)
just as exp x does in real algebra.
Let |zy| = 1y, |25] = 1y, and write

z 22 z"
8,(z) = 1+—+—+...+——'.

e..(zl).a,.(za)={l+1'+2l+ o+ }{1+ +2'+ 4+ }

z, 23 23

= 1+ =+ ——+...+ —=

1t n!

2y, %1% zlzg 23 2g
+1!+l!1'+2'1'+ "+n!1!

2§ 2% %1% 2ped

ottt ta o tam

2P z2p | 2323 2p2p

nt” int 210l 7 nlnt

We now add up these terms ‘by diagonals’: the terms of total degree s (s < n)
give

2, Al 237223 2
+(s—1)11'+(s—2)12!+'“+s—!
l 1
‘z'+ﬁz'—1z,+ (2 )z;-’z:+...+z',}
=;(z1+23)",
and consequently 22 ‘
8n(21) 8n(22) — 8a(21 +25) = E‘:}p'q" (iv)
»,qP: 7

where the last summation is for all p and ¢ for which p+g >n,p <n,qg <n;
for these are precisely the terms not included in the preceding summation by
diagonals.
In exactly the same way we have
roprd
nlraulra =i br) = 3 0. @)
We know that, when n — 00, 8,(ry) — €™, 8,(r;) > €7, a.nd 8p(ry+1y) > entn,

Hence the left-hand side of (v) tends to zero, so also z

!q'
From (iv),
2922
|8n(21) 8n(2a) — 8n(21 +25)| = I 2 pl ;,
[z]7 |2a]® g
pztlz gl —pZ‘ap‘ !—>0 when n - co.

But when n » o, 8,(2,) > eXpz,, 8,(23) > €xXpz; and 8,(z; +2;3) > 6Xp (2, +2,);
hence the result (iii) follows for any two complex numbers z,, z,.
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14.64 The modulus-argument form of exp z
By (iii), expz = exp (¥ +1y)

= expx exp (1y).
Now by putting z = z in (i),

expx = 1+ +2'+

=¢* for all z.
. % )2 )"
Also  s,(iy) = 1+11’!+(—§’T)+...+__( g')
2 4 3 5
{1_%#/_ }+{y Ll }

where the series in the brackets are finite series. Since by 12.61(2)

vy

cosy=1—5+
8 45
and siny = y— %_,_3/_

for all (real) values of ¥, we have by letting n — oo that
exp (iy) = lim s, (iy)
n—>wm
= cosy+¢siny.
Therefore expz = e*(cosy-+isiny). (vi)
This result shows that expz is periodic, with periodt 2mi. For
exp (z+ 2mi) = exp {x + (y + 2m) ¢}
= e*{cos (y + 2m) + i 8in (y + 27)}
= e%(cosy+isiny) = expz.

14.65 Euler’s exponential forms for sine, cosine
From (vi),
exp (iy) = cosy+isiny, exp(—1ty) =cosy—isiny.
1 Cf. the definition for real functions in 1.52(2). It can be shown from (vi) and
the fact that cos y and sin y have period 27 that 277 is the number p of smallest

modulus which satisfies exp (2+ p) = exp z for all 2, and that every such number p
is an integral multiple of 2.
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First adding, and then subtracting, we find
. . . 1 . .
cosy = }{exp (iy) +exp (—iy)}, siny = - {exp (iy) —exp (—iy)},
(vii)
where we observe the factor 1/2¢, not 1/2, in the last result.
These formulae, often written

: ; . | )
COSs y = %(ely + e"’lr'll), sin y — % (ezy — e-—zy)’

are known as Euler’s exponential forms. However, they are equivalent
to the infinite series expansions of cosy, siny stated above.

14.66 Examples
(i) Find the sum to infinity of
1+cos@ ta,n0+2l'cos 20ta,n30+§l-'cos 30 tan36 +....
Write ¢t = tan g,
tz t3
C= 1+tcost9+é—'cos20+acos30+...,

2 3
and S = tsin0+-2—'sin20+§sin30+....
1222 1323
Then C+1i8 = 1+tz+§+3—'+..., where 2z = cisf,
= eoxp(z) for all z and all real ¢,
= exp (sinf +isin 0 tan 6)

= e81n0 ¢ig (sin @ tan 6).
C = e®120cos (sin § tan b).

(ii) T'rial exponentials : the case of failure. In 5.33 (2) we remarked that the
trial method of solving y”+ay’+by = 0 by the substitution y = e™* will fail
if the quadratic m?+am+b = 0 has no (real) roots, i.e. if a® < 4b. Putting
a?+4p® = 4b, we find that in complex algebra the roots are m = —}a + ip, so
that by a formal application of 5.32(2), II, the general solution would be

y=A4A &-to+ine | B f~bo—inz
= g—taz (A ei?*+ B e—im:)
= e~ %2 { 4(cos px + 1 sin pz) + B(cos px — i 8in px)}
= e~12 {4’ cog px + B’ sin px},
where A’ = A+ B, B’ = i{(A — B). This solution is identical in form with that

found in 5.833 (1), Case (iii), so that 4’, B’ must be real constants; in fact 4, B
in the above calculation are conjugate complex numbers.

(iii) Integration by C +4S. From formula (vi) we have (after a slight change of

notation) et® = cosx +isinz.

38 GPMII
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If u, v are derivable functions of #, and we define the derivative of u +iv to
be u’ +4v’, then
d
d—m(cosw+isinx) = —ginx+1icosz = i{(cosz+48inz),
. d .
i.e. a—m(e“‘) =1ie'®,

More generally, by formula (vi) we have (for real constants a, b)

€0+i)z = ¢8% (cog b + ¢ 8in bx) = €*®cos bz + ¢ e**sin b,

dix {ela+iD2} = o2 (g cos bz — bsin bx) +4e%%(a sin b 4 b cos br)
= e%*{(a+1b) cos bx + ¢(a + ib) sin bx}
= (a+ib) da+=,

Thus the law d(e™®)/dx = m em?, already known from 4.41 (5) for all real con-
stants m, also holds for complex ones. Equivalently, we may write

1
@+ib)x Jpr = (a-+ib)x
'[ [ X a+ib 4 +c,
where ¢ is a complex arbitrary constant.
This result permits rapid calculation of certain integrals involving com-

binations of exponential and circular functions. For example, put

C= fe““cos bxdx, S = fe“sinbzdx;

then C+i8 = fe‘“’ (cos bx + 2 sin bx) d
= | getmzdy = 1 gatite o
a+1ib
_a-® €3 (cosbr +1sinbz) + ¢
T at4b? ¢ ' )
Equating real and imaginary parts,
acosbr+bsinbz asin bxr —bcos bz
C = —-—a—g:ba—ea +Cl, S = —-a—a:l_—bz—— e"”+cz.

Cf. Ex. 4 (e), nos. 28, 29.
A similar method, combined with integration by parts, will apply to

cos
zme® | brdr;
gin

cf. Ex. 4 (m), no. 35.

Exercise 14(f)
Simplify the following.
1 exp (7i). 2 exp (1+ %m). 3 exp (logr+10).
4 exp (i) +exp(—1). 5 exp{cis 0} +exp {cis (—6)}.
6 exp{(a+1b)x}—exp{(a—1b)x}.
7 Expand e?¢%*gin (zsin ) in ascending powers of z. [Use no. 6.]
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Find the sum to infinity of the following series.
8 xsin 4 (22/2!)sin 20 + (23/3!)sin 30+ ....
9 cosa—cosf cos(a+f)+(1/2!) cos? fcos (x+20)—....

X xr 1 1
10 X =sec*fsinrp. 11 cosf@+—cos30+—cosbl+....
r==]_7'! 3! 5!

0 ain
B sin’ 70.
r=1 7!

13 If w = exp(z/a) where w = u+14v, z = x+1%y, and a is real, find the locus
of w corresponding to each of the lines y = 0, ¥ = }na in the z-plane.

14 If u+iv = exp (2 +14y), find the locus of the point (u,v) in the w-plane
when (i) z = constant; (ii) y = constant. Verify that these two loci cut ortho-
gonally,

15 Criticise the following argument. ‘If y = cosz +¢sinz, then
d
El% = —sinz+icosx = ¢(cosx+isinx) = iy;

therefore by 4.41, Remark (a), ¥y = 4 ¢*®. Since y = 1 when z = 0, therefore
A = 1. Hence cosz +isinz = e,

14.67 Generalised circular and hyperbolic functions
(1) Consistently with formulae (vii), we define

cosz = }{exp (iz) +exp (—1z)},

1 (viii)
sinz = % {exp (1z) —exp (—1z)},
and then tan z to be sin z/cos 2, ete.
These definitions are equivalent to
cosz+1isinz = exp (iz), cosz—isinz = exp(—iz),
22 24 28
and also to cosz=1—2—!+4—!——6—!+...
all 2). i
| . (all 2) (ix)
sinz = 11731 + B

Directly from these definitions it can now be shown that the
formulae relating trigonometric functions of a real variable continue
to hold for a complex variable. (The definitions were chosen with a
view to making this s0.) This can be done as in real trigonometry if
we first verify the addition theorems together with results concerning
special angles, e.g.

cos0=1, sin0 =0, cos(—z2)=-cosz, sin(—=z2)= -sinz,

and also periodicity properties.
38-2
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For example, to prove that
8in (2, +2,) = 8inz, Co82z,+ CO8 2, 8in 2y,

we should use the definitions (viii) to translate each term on the right
into exponential functions and verify that the right-hand side reduces
to the translation of the left.

(2) We define

chz = }exp (z) +exp(—2)}, shz = }{exp(z)—exp(—2)}, (x)

and then thz to be shz/chz, etc.

These definitions are consistent with those of hyperbolic functions
of a real variable (4.44), and are equivalent to

2 o4 46
chz=1 +?2—,+%+Z—,+

o (all 2). (xi)

z 28 28
shz = 1_!+ﬁ+3_!+
Again it can be verified that all formulae relating hyperbolic
functions of a real variable continue to hold for a complex one. How-
ever, in contrast to the real case, definition (x) and the periodicity
of exp z show that ch z and shz have period 2mi; also th z has period mi,

for sh (z + )

ch (z+mi)
_ —shz
~ —chz

th(z+m) =

by using (x) and exp ( + 71) = — 1, so that th (2 +mi) = thz.

14.68 Relation between circular and hyperbolic functions: Osborn’s
rule

We have
cos (1z) = }{exp (¢.92) + exp(—i.12)} by definition (viii),
= {exp (—2) +exp (2)}
=chz ] by definition (x);
and sin (iz) = %{exp (¢.92) —exp (—t.12)} by definition (viii),

= — }ifexp (—2) —exp ()}
=1shz by definition (x).
Hence cos (iz) = chz, sin(iz) =ishz. (xii)
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In any formula relating circular functions of 2, z,, ... we may replace
2y, 29, ... DY 12y, 12y, ... and then use results (xii) to translate it into
hyperbolic functions of 2, 2,, .... In the course of this translation each
product of two sines becomes 2 multiplied by a product of two hyper-
bolic sines. Since the formulae all hold in particular when the variables
are real, we have the justification of Osborn’s rule stated in 4.44 (4).

An example of the detailed verification is the following:

ch (4 + B) = cos (¢4 +1B)
= cos (14) cos (¢B) —sin (¢4) sin (¢B)
=chd4 chB—-ishAshB

=chA4chB+shAshB.
Examples
(i) cos (z+4y) = cosz cos (ty) —sinz s‘in (2y)
= cosz chy—¢sinz shy;
sin (z +4y) = sinz cos ({y) + cos z sin (iy)
=ginz chy+icoszshy;
and tan (@ +iy) = sin (z+4y) _ sin(z+1y) cos (x—y)

cos(z+iy) cos(x+iy) cos(z—iy)’
where we have multiplied top and bottom by the conjugate of the denominator
in order to make the new denominator real. Using the formulae for products

into surns
1nvo sums, sin2+sin%y _ sin2x+ish2y

cos 2z +cos 2y  cos2x+ch2y’

tan (z+1y) =

(ii) From ex. (i),
|cosz|? = cos?x ch?y +sin?x sh?y
= (1 —sin?z) ch?y +sin?2(ch?y — 1)
= ch?y—sin’y
< ch?y for all 2.
Similarly |cosz|? = cos?x +sh?y > sh?y for all z.
Thus |shy| < |cosz| < chy for all 2.

The reader should verify that the same inequalities hold for |sin z|.

(iii) Find the equation of the curve described by the point (x,y) when z = x4+ 1y
varies so that shz—z ts real. Sketch the part of the curve which lies between the
lines y = + .

, 1. . 1. . 1 L
sh(z+y) = z sin (iz—y) = ;_—sm (ix) cosy—gcos (iz) siny
=shx cosy+ichzsiny,
shz—z = (shx cosy—z)+i(chz siny —y),

which is real if chz siny = y. '
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Clearly y = 0 satisfies this equation which, if y is not an integral multiple
of 7, can be written
chx = _y__ .
siny
The curve is symmetrical about Oz and Oy. When y — 0 (through positive or
negative values), chz — 1 and so = - 0 (through positive or negative values).
When y > #7—, chz - + o0 and so |z| - c0; when y - (—7)+, || > c0. The
reader should verify that the branches have gradients * /3 at the origin.

vh

Fig. 138

Exercise 14(g)

1 Prove that ch (iz) = cosz, sh (4z) = isinz.
2 By using results (xii) in 14.68, prove that
sh(A+B)=shAchB+chAshB

and th(A4 +B) = (thA +th B)/(1+th A th B)

follow from the corresponding properties of circular functions.
3 Use the definitions (viii) in 14.67 to prove that cos?z+sin?z = 1 and

8in (2, +2,) = sinz,; cosz,+ cosz, sinz,.

Express the following in the form a4 ib.
4 ch(z+y). 5 sec(z+1y). 6 th(z+y).
7 Ify > 0, prove that thy < |tan (z+%y)| < cothy.
8 Determine the general forms of z for which (i) e?; (ii) cosz are real.
9 Find the general solution of sinz = 3¢ cosz.
10 Solve completely cosz = {e(1—4)+ (1+1)/e}/24/2.
11 If ch(x+%y) cos(u+iw) = 1 and cosy cosu % 0, prove
tanw tho = thz tany.
[Equate imaginary parts.]
12 If cos(z+14y) = w+v, prove
(i) u?sec?xz—v2cosec?z = 1; (ii) u?sech?y+v?cosech?y = 1.
Interpret these as loci corresponding to the lines # = constant, ¥ = constant
respectively.



DE MOIVRE’S THEOREM 561
13 Expand }(shz—sinz) in ascending powers of z.

Use C +18 to find the sum to infinity of

sin20 sindf sin 60 cos b0 cos 90
+ + + 15 cos+——+—+....

14— 4! 6 51 9!

Miscellaneous Exercise 14(h)
1 Ifz = cisa and y = cis §, prove that

tg = zta.n%(a—-ﬂ) and (x+y) (xy—l) _ Sinoc+si_n,6

z+y (z—y)(xy+1)  sina—sing’

2 1If the real and imaginary parts of (1+x)" are equal, n being a positive
integer and z real, prove that 2 = tan {(4r+ 1)7/4n} where r is any integer
or zero. [Put x = cot6.]

3 Prove

{(cosa +sina) —(cos B +4sin B)}* + {(cos o — i sin &) — (cos f —isin B)}"
= A, 27gin" }(a — f) cos in(e + f),
where A,, = (— 1)¥" if n is even, and A, = (— 1)}tV if n is odd.
4 (i) Solve zb+at+ 2%+ 2 +z+1=0.
(ii) Find the solutions of ¢ = 1 for which 1+xz+22% %+ 0.

5 If n is a positive integer, show that every root of (z+1)**4(z—1)3"* =0
is purely imaginary. If the roots are represented by P,, Py, ..., P,, and O is the
origin, prove OP1+OP;+... +OP}, = 2n(2n—1).

6 Show that the roots of (2— 1)8 = 32(z+ 1)5 are represented by points on a
circle of radius %, and that the roots are

2 2
(—3+4/58me)/(5-4005—2—”) (r=0,1,23,4).

5 2 5 2
Deduce that T[] —3+4igin 2 =38 5—4003—1"—).
r=1 5 31y 5

7 Ifa = cis(2n/n) and n, k are integers, prove that 1+ a*+a?*+ ... 4+ an-DFk
is equal to n if k is a multiple of n, and is zero otherwise. [Sum the G.r. when
ak % 1.]

8 Express (1—#2)/{(1—at)(1—bt)} in partial fractions when the non-zero
constants a, b are (i) unequal; (ii) equal. Taking ¢ = b~1 = cis 0 and a suitable
value of ¢, deduce that if 0 < ¢ < 3,

cos ¢ _ &,
{“engoosd 1+ 2r§1ta.n 3¢ cosrf.
9 Prove that
@ —£—) = (=1)"nlcos(n+1)0sin"*+16
der\a2+1] ’ ’

where 2 = cot§. [Method of 6.61, (vii).]
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10 If w® =1, ® % 1, prove

3 1 1 1
-1 z—1 wz—1 wr—1"

By taking x = cis 26, deduce that

8 cot 30 = cot 8+ cot (0 + ) + cot (0 + §m).
11 Express

cos 60 + 6 cos'40 — 9 cos 36 + 15cos 26 — 2T cos 6+ 14 = 0
as a polynomial equation in cos 6, and hence find all solutions between 0 and
27 inclusive.
12 If o, + g+ ... +ay, = 27, prove that (with the notation in 14.23)
8OC 0L, SEC Ay ... 80C Uy, = 1 =T+, — ... +(—1)"Z,,.
13 If 0y, 0,, 0, are roots of tan (0 +a) = Atan 20, no two differing by an in-
tegral multiple of 77, and if A % 1, prove 6, + 0, + 0; = nm —a for some integer n.

*14 If 6,, 6,, 8,, 8, are values of 6 between 0 and 27 which satisfy
acos? 0+ 2hcos @ sin 0+ bsin? 6 + 29 cos 8 + 2fsin 0 +¢ = 0,
prove tan %(01+02;+-03+04) = 2h/(a—"b). [Put ¢ = tan }6 to obtain a quartic
in ¢.] .
15 Factorise u, = x?"— 2x"cos na + 1 by methods of real algebra as follows.
(i) Prove u,,, = 2zu,cosa—2%u,_; + (@*"+ 1) u,.

(ii) Use Mathematical Induction to prove that u, = x?—2zxcosa+1 is a
factor of u,,.

(iii) Deduce that z?—2xcos(a+2rm/n)+1 is also a factor of u,, for any
integer 7. [, is unaltered by replacing a by & + 2rm/n.]

(iv) Verify that » = 0,1,2,...,n— 1 give distinct factors.

16 Solve (z+1)8—28 = 0, and prove that

3
(z41)8—28 = 35(22+ 1) JT (422 + 42 + cosec? 1r7).
r=1
Hence show that
3
16(cos'® 6 —sin1t ) = cos 20 [ (cos? 20 + cot? §rm).
r=1
17 ABCDEF is a regular hexagon inscribed in the circle |2| = a, A being

the point (a, 0). If P, representing the number 2, is any point on the circle, write
down the complex numbers represented by the six points obtained by drawing

lines from the origin equal to, parallel to, and in the same sense as the lines
AP, BP, ..., FP, and prove that their product is 2 — a®. Hence prove that

AP.BP.CP.DP.EP.FP < 2a8.
18 Prove

sin 56 = 16sin 6 sin (8 4 3m) sin (0 + %) sin (6 + $7) sin (6 + $7),
and by considering lim (sin 50/sin 6) deduce that sin 37 sin 7 = +} /5.
-0

19 If w=wu+iv, z =+, w= (expz—1)/(expz+1), and —§7m <y < 3m,
prove that the point (u,v) lies inside the circle |w| = 1.
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20 Prove that if a is real, the equation expz = z+a has no purely imaginary
root. If z+4y (y % 0) is a solution, prove that z > 0. [Use siny/y < 1.]

21 If u+iv = (z— 1) exp (—ia) +(z2— 1)L exp (ia) where z =z +14y and « is
real, find % and v in terms of z, y, . Prove that the locus of z whenv = 0 consists
of a circle with centre (1,0) and unit radius, and a straight line through the
centre of this circle.

22 If exp(u+iv) = reisf, prove u+iv = logr+i(60+2nm), where n is any
integer or zero.

*23 If 2 +4y = cos(u+4v), prove
(1+2)2+y® = (chv+tcosu)? and (1—=)+y? = (chv—cosu)’
If = cosf, y = sind (0 < 6 < m) in the preceding, find cosw and chv in
terms of cos 3, sin 16, justifying the choice of sign when square roots are taken.
24 If u+% = coth (z +4y), prove v = —sin 2y/(ch 2z —cos 2y). Show that

i = {1 —exp (2x— 20y)}1 — {1 —exp (2x + 2iy)} !

«Q
and deduce that if x < 0, then v = — 2] €2"*sin 2ry.

r=1

25 If w = 22, sketch in the Argand diagram the path of w when z describes
the sides of the rectangle whose vertices are +a, +a+1ia (a real), starting at
O and moving counterclockwise.

26 (i) Sketch the graph of y = tha. Show that the equation thz = Az has
two real non-zero roots if 0 < A < 1.

(ii) Prove that the equation tanz = Az has two purely imaginary roots if

0 < A < 1; but that if A has any other real value, all roots of the equation are
real.

Find the sum to infinity of

1 1
27 cos”u+§—, cos? 2cx.+§' cos® 3o+ ... («x real).

. z8 z® .
28 wsm0+3—' gin 30+E| 8in 56 + ... (z, 0 real).
29 Expand % cos ba as a power seriesin z. [Consider e**cis bx = exp (ax +ibz)
and put a+ib = reis6.]
30 (i) By considering exp () + exp (wz) + exp (w%) where »® = 1, * 1, prove
2 b af
1 titatat = He®+2e¥7cos(Jx4/3)} for all real .

*(ii) What results are obtained by considering
(a) exp (x)+ wexp (wzx) + w?exp (Wir);
(b) exp (z) + w?exp (wx) + w exp (wx)?

[Use Ex. 13(g), no. 18.]

31 By putting z = x4y, show that the two differential equations for the
functions x, y of ¢ (arising from the dynamics of Foucault’s pendulum)

E—2ky+n?x =0, §+2kz+nly=0

are equivalent to £+ 2tkz+n% = 0,
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and solve the latter. Writing 2’ = z ™!, prove that x’ = 4 cos ¢, y’ = Bsin ut,
where u? = n?+k* and A, B are real arbitrary constants.

32 s, Y are the intrinsic coordinates of a point on a plane curve, and z, y are
the cartesian coordinates. Writing 2 = x + 4y, prove that

d—z = eV, %::; = ik eV,
[Assume equations (iii) of 8.12.] Deduce that
e [ -
ds? ds? ds ds®* ds ds®
(Cf. Ex. 8(d), no. 8.)

33 Verify that the formulae for rotation of axes through angle 6 in 15.73 (3)
can be written z = 2’ ¢, where 2z = x4y and 2’ = &’ +4y’. Deduce from this
the formulae for the reverse transformation.
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15

SURVEY OF ELEMENTARY
COORDINATE GEOMETRY

15.1 Oblique axes

15.11 Advantage of oblique axes

Although it is usual to refer cartesian coordinates to two perpen-
dicular axes Oz, Oy, there are problems in which use of oblique axes
ismore convenient. For example, in proving properties of the triangle
by coordinate methods, two of the sides can be chosen for coordinate
axes. The coordinates (z,y) of a point
P are then its signed distances from Oy,
Ox measured parallel to Oz, Oy re-
spectively. The angle xOy (measured
counterclockwise from Ozx) is denoted

by w.
In sections 15.1-15.5 we revise the
main results about ‘the straight line’, Fig. 139

and extend them to the case of oblique
axes when this does not introduce any essential complication. The
reader should observe which results remain the same in form whether or
not the axes are oblique; they are marked by the sign {w}.

Notation. In Chapters 15-19 we use the convention that P, has
coordinates (z;,%,), and so on.

15.12 Cartesian and polar coordinates

We first obtain the relations analogous to those in 1.62 for rect-
angular axes, taking O as pole and Oz as initial line (fig. 140). Draw
PN perpendicular to Oz; then

rcosf = ON = O0M +MN = x+ycosw,
rsind = NP = ysinw.

ysinw

Hence also tanf = ———,
x+ycosw

72 = 22 + ¥ + 22y cos w.
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Example
If the line P, P, is of length r and makes angle 6 with Oz (fig. 141), then
reosd = (xy—x,) + (Y3 —y1) COS O,

r8inf = (y,—y,)sinw.

P(z,y) Py

(2]
o/ M, M,
Fig. 140 Fig. 141

15.13 Distance formula

From the above example, or directly from the cosine rule applied
to triangle P, P,Q (fig. 141),

P, P} = r* = (23— 2,)%+ (Y2 — Y1)? + 2(x — ;) (Y3 — ¥;) cOS 0.

15.14 Section formulae {w}

These give the coordinates of the point dividing P, P,in theratio k :1.
Let P(z,y) be the required point, so that P, P/PP, = k/l.

(1) Internal division. With the construction shown in fig. 142,
triangles P, PQ, PP, R are similar; hence

RP_RQ
PP, PR"
Since P,Q = x—z, and PR = x,—z, this becomes
k_z—2
1 zy—2’
. oy + kg
from which %

Similarly, from

we find Y=
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In each ekpression observe that the number %, which corresponds
to the segment P, P, is multiplied by the coordinate of F,; while I is
multiplied by that of P,.

(2) External division. Lettering fig. 143 (which illustrates the case
k> 1) as in fig. 142, we still have similar triangles P, PQ, PFE,R,

so that PI_P ~ EI_Q
PP, PR’
ie. k_ x—xl’
Il z—x,
from which x = by kxz.
-k
Similarly Y= l—y—!l-:—k%

Fig. 142 Fig. 143

(3) Summary. In both cases above, k and ! were understood to be
positive numbers. However, the result of (2) can be written

_lzy+(=k)z,
Tl (k)

which is formally the same as that of (1) for division in the negative
ratio —k:1. Hence if we agree that P, P: PF, shall be reckoned posi-
tive when P divides P, P, internally and negative when the division is
external, both cases are covered by the same formulae, viz.

ete.,

_zy + ke, _lyi+ky,
I o R

15.15 Gradient of a line {w}

The gradient of a straight line is defined to be the tangent of the
angle which the line makes with the positive 2-axis. Since this
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definition makes no reference to Oy, we have (as for rectangular axes)
that if two lines with gradients m,, m, are parallel, then m, = m,; if
they are perpendicular, then m,;m, = —1; and in the general case an
angle between them is given by

My —Mmy

tan—1 .
14+m,m,

For a = 0, — 6,, where

tan@, = m,, tan 0, = m,,

and so x
tan o — tan 6, —tan 6, _ Mmy—m,
1+tand, tanf, 1+m,m,
Example

From the example in 15.12, the gradient of P, P, is

(y2—y1)sinw

tanf = .
(23 —21) +(ya—yy) cosw

15.16 Area of a triangle

(1) One vertex at O. Let the polar coordinates of F,, P, be (74, 6,),
(73, 05); see fig. 145. Then by 15.12,

ryc080, = Xy +Y,0080, 7,8in60, = y,sinw,

and similarly for B. .
Area of triangle OF, F; = 30F,.OF,;sin P,OP,

= §ryrysin (05— 0,)
= }r,738in6; cos O, — 3ryry cos O, 8in b,
= }(%3+ Y c080) (Y3 8in w)
—3(yy8in0) (€3 + Y3 cos w)
= }sinw(2,y; —x;y,) after reduction

Ty Ys
T3 Y3

sin .

Remark. According as the vertices O, P, P, are named in counter-
clockwise or clockwise order, the angle ¢, — 0, is positive or negative
and hence the expression for the area is positive or negative respec-
tively. If we consider a signed area which is positive when the vertices
are named counterclockwise and is negative otherwise, then the above
result gives the area of OF, F; in magnitude and sign.
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(2) Triangle P, P, P,. We may choose new axes through one of the
vertices, say P,, which are parallel to the original axes Ox, Oy. The new
coordinates of P, are then (fig. 146)

Ty=Ty—%y, Y=Y~ Yo

and of P, are Ty =Tg—y, Y3 =Ys—Y1-

Py (3, y3)

P, (x5, ya)

Y

/0

Fig. 145
Y
y’
Py
P’
Py ?
>
/o w
Fig. 146
By (1), area of P, P, F; is
xy Ys | . Zy—Z - .
3% 2 lgine =3 270 27V G,
T3 Y3 Tg—%1 Ys— W

0 0 1

=% 2g—2; Yp—y, 1 |sinw
Z3—Z; Ys—Y 1
z Yy 1

=3z, y, 1 |sinw
z3 Yz 1

by the operation ¢, - ¢, + 2, ¢; followed by ¢, — ¢, + ¥, C3; the middle
step is verified by expanding from the first row.
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Example

The points P,, Py, Py will be collinear if and only if the area of triangle P, P, P,
is zero, i.e. if and only if . 1
1 Y%

Ty Yy 1
z3 Y3 1

=0.

15.2 Forms of the equation of a straight line

15.21 Line with gradient m through (x;, y;)

Assuming the axes are rectangular, let P(z, y) be any point of the
line. Then the gradient is (y —y,)/(x —z,), and hence

Y=Y _ m,
x—x,
ie. . Y—y, = mEx—uax,).

This equation, which is satisfied by the coordinates of any point P on
the required line, is what we mean by ‘the equation of the line’.

Theresult has been used in previous chapters when finding equations
of tangents and normals to a curve. It can be written

y =mx+c,

where ¢ = y, —mx,. There is no simple analogue for oblique axes.

15.22 Gradient form

(1) Rectangular axes. The above shows that any line with gradient m
has an equation of the form y = mx+c. Conversely, any equation
which can be put into the form y = mx + ¢ (where m, ¢ are constants)
represents a straight line of gradient m making intercept ¢ on Oy.
For when x = 0, the equation shows that y = ¢, so (0,¢) lies on the
locus; also (y—c)/(x—0) = m, so that the gradient is constant and
equal to m.

(2) Oblique axes. If the line makes angle § with Ox and intercept ¢ on Oy, its
gradient is tan 6; and if P(x, y) is any point on the line, then by the example in

15.15 its gradient is (y—c)sinw
z+(y—c)eosw’

@)

since (0, ¢) lies on the line. Hence
(y—c)sinw

tanf = —————————,
z+ (y—c¢)cosw

from which (y—c)sin(w—0) = zsind
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and ; gin &

Y= Snw—6)°t"

The equation of the line is therefore still of the form y = m:z:+c, but now m
no longer represents the gradient of the line.

If the equation y = mx + ¢ is given, then m = (y —c)/x, and the expression (i)
for the gradient of the join of P(xz,y) and (0, ¢) becomes m sin w/(1 +m cos w),
which is independent of (x,y). Hence this equation represents a straight line
of gradient .

msinw
1+mcosw’
clearly it makes y-intercept c.

Example

Find an angle between the lines y = myx+c,, y = myx+¢,, the axes being
inclined at angle w.

The gradients of the lines are
_ mysinw _ mysine
M= T mpcosw’ *~ Timycosw’

By 15.15, an angle between the lines is given by tan=!{(s; — pt2)/(1 + pt; fta)}
unless g, #, = — 1 (in which case they are perpendicular). After reduction this
is found to be ;

(my —my)sinw

tan—1 ;
14 (m; +m,) cos w +m;my

the lines are perpendicular if 1+ (m+m,)cosw+mym, = 0, and are parallel
iof my = m,,.

15.23 General linear equation Ax+By +C=0 {w}

If B + 0 the equation can be written y = — (4/B)x— C|/B, which
by 15.22 is the equation of a straight line.

If B = 0 but 4 + 0, the equation can be written x = — C/4, which
is the equation of a straight line parallel to Oy.

Since these are the only possibilities, it follows that every linear
equation in x, y represents a straight line.

15.24 Intercept form: line making intercepts a, b on Ox, Oy {w}

Let the gradient form of the equation of the required line be
y = mz+c. Since the line passes through the points (a, 0), (0,5), we

have 0=ma+c and b=c.
Hence ¢ = b and m = —b/a, and the required equation is
b
Y= ——Ex+b,
. r Yy
1l.e. a+ b= 1.

39 N GPMII
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Example

ABC is a triangle with sides CA, CB along given lines, and 1/CA+1/CB
8 constant. Prove that AB passes through a fixed point.

Choose the lines along which C4, OB lie v
to be Oz, Oy. Let the coordinates of A, B be
(a,0), (0,b); then by hypothesis 1/a+1/b =k, B
where k is constant.

The equation of AB is z/a+y/b = 1. The
above condition shows that this line passes
through the point (1/k, 1/k), which is inde- C ‘ A\
pendent of a, b. X

Fig. 147

[
P
T

15.25 Line joining P,, P, {w}
(1) For rectangular axes, if P(z,y) is any point on the line, then
Y=% _%1—Y
T—; T— X,
since each expression is equal to the gradient of the line.

(2) This result is also true for oblique axes. For if the required line is
Yy = mx +c¢, then y, = ma, + ¢ and y, = mx, + ¢, so that by subtraction

y—y = mxz—=;) and Y, —y; = M(x,—Ts);

and the equation is obtained by division.

(3) In either case the result can be obtained as follows. Consider
the equation z y 1
z ¥y, 1|=0.
T, Yy 1
It islinear in  and y (as is clear by expanding from the first row), and
therefore by 15.23 represents a line. It is satisfied by (z;,¥,) and by
(3, ¥5) (since then two rows become identical). Therefore it represents
the line P, F,. (This form of the equation i
could also be seen from the example in \
15.16.) - B
6

e e e

15.26 Parametric form for the line through
(x4, ¥,) in direction 0

¥

-
>
x

Let P be any point on the line, and let 0
P, P = r; here r is a signed length, so it will Fig. 148
be positive for points of the line on one side
of P, and negative for points on the other. The axes being rectangular,

z—x, =rcosf and y—y, =rsinb.
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Hence the coordinates of any point on the line are expressible in terms
of the parameter r as (z,+7cos 8, y, +rsin6).

Later we shall use this form in the treatment of conics. There is
no simple analogue for oblique axes.

15.27 General parametric form {w}

More generally, the equations x = at+b, y = ct+d (where a, b, ¢, d are con-
stants of which a, ¢ are not both zero, and ¢ is a variable parameter) always
represent a straight line. For elimination of ¢ shows that

c(z—b) = a(y—4d),

which is linear in z, y and therefore represents some line (by 15.23).

15.28 Perpendicular form

Let the perpendicular from O to the line have length p (essentially positive)
and make angle & with Oz. Then the foot N of the perpendicular has polar

vA
N
B
N
P Pz, y)
a\ T
(0] A x
Fig. 149

coordinates (p,a). Let any other point P of the line have cartesian coordinates
(z, y) and polar coordinates (r, 6); then

p=rcos(0—a)=rcosf cosa+rsinb sina

= zcosa+ysina,
so that the line has equation
zeosa+ysina = p.

Alternatively, the intercepts on the axes are 04 = psecw, OB = pcoseca,
and the result follows from 15.24.

15.3 Further results

15.31 Sides of a line {w}
The point P((l:z:1 +kzy)/(C+ E), Yy, +Fyy)/(1+ k)) lies on the line A
whose equation is ax + by + ¢ = 0 if
a(lxy + k) +b(lyy + kys) +c(l +k) = 0,
39-2
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ie. if k ax,+by,+c .
1 Y1 (l)

l axy+by,+¢’

If P, P, lie on opposite sides of A (fig. 150), then P divides P, P,
internally and so &/l is positive; hence ax, + by, +c¢, ax,+by,+c luwe
opposite signs.

P, P

Fig. 150 Fig. 151

Similarly if P,, P, lie on the same side (fig. 151), &/l is negative and
80 ax, + by, + ¢, ax, + by, + ¢ have the same sign.
It follows that the converses of these statements are also true.

Examples
(i) Menelaus’s theorem. Let the line ax+by+c¢ = 0 divide the sides P, P,,
Py P,, P, P, of the triangle P, P, P, in the ratios k, : Iy, ky : 1, kg :l3. Writing
Uy = ax,+by,+¢c (n=1,2,3)
we have by (i) above:

ky _ u2 By  uy kg wy

Lou o w by u
Multiplying, z—l —l’@ I& -1 : P
2 1

(i) Ceva’s theorem. If lines P,Q,, P,Q,, P,Q,
through the vertices of triangle P, P, P, are con-

current at (h,k) and divide P,P,, P,P,, P, P, Q

in the ratios ky:l, kg:ly, ks:ly, then since the y

equation of P, @, is (see 15.25(3)) Q,
z y 1
z ¥y 1|=0 Py & Py

a B 1 Fig. 152

with similar equations for P,Q,, P;Q,, we have as in ex. (i) that

Z Yy 1 23 ys 1
kyily=—~{ 2, yy 1|2y y 1], ete.
h k1 h k1
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On multiplying, by kg Fy
E . l_a_ -E =+ 1.

15.32 Perpendicular distance of a point from a line

Let d denote the length (essentially positive) of the perpendicular
from P, to ax+by+c¢ = 0, and let the foot be F,. Then

B = (@y—2)*+ (a—9)% (1) )
Since P, B, is perpendicular to
A B
axr+by+c =0, d

we have

Y=Y _2) _ _

To—¥ ( b) b P —
. i O 2
ie. b(@y—x)—a(y,—y,) =0. (ili) .

Fig. 153

Because F, lies on ax +by+c¢ = 0,
axy+bys+¢ = 0;
and this can be written (analogously to (iii)) in the form
a(xy— ;) +b(ya—41) = — (0%, + byy +¢). (iv)
Square and add (iii) and (iv), using (ii):
d?(a? + b%) = (az, + by, + )2

o %t by, +c¢
where the sign is chosen to make the expression positive: + if
ax, +by, +c¢ > 0, — if ax, + by, + ¢ < 0. Also see Ex. 15 (a), no. 15.

If ¢ & 0 and the equation of the line is written so that c is positive,
then a,x+b,y+c¢ will be positive when P, lies on the origin side of
the line, and negative otherwise, by 15.31.

Sood

Exercise 15(a)t

1 Prove that the point which divides in the ratio 2:1 the median P, @, of
the triangle P, P, P, has coordinates (%(wﬁ— Xy +23), Y1+ Y +y3)). From the
symmetry of this result deduce that the medians of a triangle are concurrent.

2 Show that the equation of the line through (k, k) which is perpendicular
to Oz is z+ycosw = h+kcosw.

1 The main purpose of this exercise is to illustrate the use of oblique axes in
solving locus problems.
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3 Pisthe point (h, k) referred to axes at angle w. Prove that the line joining
the feet of the perpendiculars from P onto the axes is sin w /(2 + k2 + 2hk cos ).

4 Two fixed lines Oz, Oy are cut by a variable line at A4, B respectively;
P, Q are the feet of perpendiculars from 4, B onto Oy, Ox. If AB passes through
a fixed point, prove that PQ will also pass through a fixed point.

5 If the equal sides AB, AC of an isosceles triangle are produced to E, F so
that BE.CF = AB?, prove that EF always passes through a fixed point.

Perpendiculars PM, PN are drawn from P onto Oz, Oy. Find the locus of P if
6 PM+ PN = 2¢. 7 OM+ON = 2¢. 8 MN = 2c [use no. 3].

9 From a point P on one side of a fixed triangle, perpendiculars PM, PN
are drawn to the other sides. As P varies on this side, find the locus of the mid-
point of MN.

10 Through a fixed point E any two straight lines are drawn to cut one fixed
line Ox at A, B and another fixed line Oy at C, D. Prove that the locus of the
meet of BC, AD is a straight line through O.

11 If a straight line passes through a fixed point, find the locus of the mid-
point of the part intercepted between two fixed intersecting lines.

*12 A line AB of constant length ¢ slides between two given oblique lines
which meet at O. Find the locus of the orthocentre of triangle 0AB.

*13 Using similar triangles, give a proof of Menelaus’s theorem (15.31, ex. (i))
by the methods of ‘pure’ geometry.

*14 Using areas, prove Ceva’s theorem (15.31, ex. (ii)) by ‘pure’ methods.

15 Obtain the result of 15.32 as follows. Let ax+by+c = 0 cut Oz, Oy at
L, M. Equate }p.LM to the area of triangle P, LM. Verify the result when
the line is parallel to Oz or Oy. (This method could be used when the axes are
oblique.)

15.4 Concurrence of straight lines

15.41 Lines through the meet of two given lines {w}
If L, L’ are linear functions of z, y, then the equation

L+EkL =0

is satisfied by any point which satisfies both L =0 and L' = 0.
Hence if the lines L = 0, L’ = 0 intersect, thelocus L -+ kL' = 0 passes
through their common point.

If k is constant, L + kL’ is linear in «, y, and so L+ kL’ = 0 is then
the equation of some straight line through the meet of L = 0, ' = 0.

If L = 0, L' = 0 are parallel and k is constant, then L+ kL’ = Oisa
straight line parallel to both (as is clear by expressing each line in
¢ gradient form’).

One condition will determine the constant k. For example, the line
may be required to pass through a given point, or to be parallel to
a given line.
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Conversely, if the linear equation L = 0 can be written in the form
L, + kL, = 0, where k is independent of z, ¥ and L,, L, are linear with
constant coefficients, then L = 0 passes through a fixed point, viz.
the meet of the lines L, = 0, L, = 0.

Example

The mid-points of the diagonals of a complete quadrilateral are collinear.

If ABCD is any quadrilateral, let 4D, BC be produced to meet at E; and
B4, CD to meet at 0. The resulting figure is called a complete quadrilateral
and AC, BD, OF are its diagonals.

Choose OA B for Oz and ODC for Oy. Call A(2a,0), B(2b,0), C(0, 2¢), D(0, 2d),
and let M be the mid-point of OF. Through M draw lines parallel to E4, EB;

Fig. 154

by the intercept theorem of elementary geometry these will cut Oz, Oy at the
points 4’(a, 0), B'(b, 0), C’(0,c), D’(0,d), and their equations will be

z y x
“4+Z=1, =
a+d b

Thus M lies on the lines
dr+ay =ad and cx+by = be,

and therefore also on
(dx+ay —ad)—(cz+ by —be) = 0,

+2=1
c

i.e. (d—c)z+(a—b)y = ad—be.

The mid-points of BD, AC are (b,d), (a, c), and these clearly lie on this last
line.

15.42 Condition for concurrence of three given lines {w}
Let the lines be

@ Z+byy+0, =0, ax+by+c;=0, agz+byy+cg=0.
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If two of these intersect, say the second and third, the common
point (obtained by solving for z, y) is

bycz —bycy 02“3—03%) )
Aabg—agby’ ayby—ayby/”

This lies on the first line if

@y (byCg—b3Cy) + by (Catty — C3a9) 4 €1(@2b5— a3by) = 0,

ie. if a, b, ¢
A=la; by ¢, |=0.
as by ¢

If no two of the lines intersect, then they are all parallel; this means
that (with the notation of 11.31) C; = C, = C; = 0, and so

A=c¢Ci+c,Co+cCa=0.

Hence if the lines are concurrent or parallel, then A = 0.
Conversely, if A = 0, the point (i) lies on the first line because then

al(bzcs— bacz) +b (cza3— C3y

ayby —agb, ! azbs_aabz) ta= Ayb3 —azby =0

This converse argument fails if @, b; — a3 b, = 0; but a similar argument
applies to the lines taken in a different order unless also

a3b;—a,b, =0 and a,b;—-azb, =0,

in which case the three lines are parallel. Hence when A = 0 the lines
are either concurrent or else all parallel.

Thus the condition A = 0is necessary and sufficient for concurrence
or parallelism; see also 11.43, Corollaries I (b), (c).

Exercise 15(b)

1 Find the equation of the line concurrent with 2x—3y—3 =0 and
x4+ 3y—15 = 0 and passing through (—2, —1); verify that it passes through
the origin.

2 Find the equation of the line of gradient 2 which is concurrent with
S5r—2y=4,8c—Ty+5=0.

3 Find the equation of the perpendicular from the meet of the lines
3z—Ty = 2, 4x+ 5y = 1 to the line 9+ 10y + 15 = 0.

4 Find the equations of the lines which make numerically equal intercepts
on the axes and which are concurrent with 3z+2y—1=0,2x—y+3 = 0.
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5 (i) Show that for all numbers k the equation
2c4+3y—1+k(Bz—y+4)=0
represents a line passing through a fixed point.
(ii) Find the point of intersection of the lines
2c4+3y—1+a(3z—y+4)=0,
b(2r+3y—1)—c(3x—y+4) = 0.
6 Find the equation of the line joining the meet of
Sx4+4y—T7=0, 22—3y+1=0
to the meet of 3x—5y+87=0, br—2y—8=0.

Test the following sets of lines for concurrence.
7 3x—2y+4=0,20—y—1=0, Tx—5y+13=0.
8 br4+2y~4=0,2—3y+2=0,3x+8y—6=0.
9 (p+)z+(p—Dy+p=0,(g—Da+(@+)y+eg=0,x=y (P F9)-
10 x—tiy+af =0, x—t,y+atl =0, (4, +t) 2+ (1 —tita)y = alty +1,) (8, + ty).
11 If the lines x— 2y +3 = 0, 2z — 3y = 0, ax+y+ 1 = 0 are concurrent, find
the value of a.
12 Ifthelines ax+2y+1=0,bz+3y+1 = 0, cx+4y+1 = 0 are concurrent,
prove that a, b, ¢ are in arithmetical progression.
13 Find the condition for concurrence of the distinet lines 3ax + 2y = ab,
3bx + 2y = b3, 3cx+ 2y = 3. [Use theory of equations.]
*14 Find the condition for concurrence of the distinct lines
zsin3a+ysine =a, wxsin3f+ysinf =a, wxsindy+ysiny =a.
[If (h, k) is the common point, then 8 = a, 8, y must satisfy hsin 36 + ksinf = a,
i.e. 4hsin3 @ — (k+ 3h)sin 0 +a = 0. Since the term in sin® @ is absent, the roots
sina, sin 3, siny of this cubic in sin @ satisfy Lsina = 0.]
15 (i) If ayz+by+c, =0, agz+byy+03 =0, agz+byy+cy = 0 are distinct
lines, and numbers I, m, n none of which is zero can be found such that
Ua,z+byy+c;) +m(ax+byy +65) +nlasz+b3y+6) =0, (A)

prove the lines are concurrent or else all parallel.
*(ii) If A = 0, use 11.43, Theorem II to show that numbers I/, m, n not all
zero exist such that

al+aym+tazn =0, bl+bym+byn=0, cl+cym+en=20
and hence that (A) holds. Deduce the converse of (i).

15.5 Line-pairs
15.51 Equations which factorise linearly
A single equation in z, y may represent two or more lines.

(i) y2—2% = 0 can be written y = +x and therefore represents the pair
oflinesy = +o,y = —x.

(ii) 2+ 3zy+ 2y® = 0 can be factorised as (x+y) (¢ + 2y) = 0, and so repre-
sents the line-pair z+y = 0, z + 2y = 0.
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(iil) 2?4 3zy+ 2y%+ 3z + 5y + 2 = 0 can be written (x+y+2) (x+2y+1) = 0,
and therefore represents the pair z+y+2 = 0, x4+ 2y+1 = 0.

(iv) @3+ 32% + 22y% = 0, i.e. x(x+y) (z+2y) = O, represents the three lines
r=0,x+y=0,2+2y =0.

In general, the equation
(@12 +b1y +¢1) (@2 +byy +05) = 0

represents the pair of lines a,2+b,y+¢, = 0, @z +b,y+¢, = 0. For
if (x,, y,) satisfies either of these equations, then it satisfies the original
one; and conversely, if (,, y,) satisfies the given equation, then either
@120+ b1y + ¢, = 0 Or a2y + by, + ¢, = 0 or both. '

15.52 The locus ax?+2hxy +by2=0

(1) If b = 0, the equation is x(ax+ 2hy) = 0, representing a line-
pair.
If b + 0, the equation can be written

ARLI AT
(;) +2b(x)+b—0.

When (h/b)2 > a/b, i.e. h? > ab, this quadratic has distinct roots
y/x = m,, my, and then y = m,x or y = myx. Hence if h% > ab, the
equation represents two distinct lines through O.

When %% = ab, the equation is (y/x+h/b)? = 0 and therefore repre-
sents the single line hx+by = 0. We say conventionally that the
equation represents two coincident lines, or a repeated line.

When A% < ab, the quadratic for y/z has no roots. The original
equation is satisfied solely by the values 2 = 0, y = 0. Hence if
h® < ab, the equation represents the origin only.

The three general results just given include the case b = 0 disposed
of at the start.

The work of 15.5 so far is valid for oblique axes; in the following we
shall suppose the axes to be rectangular.

(2) Angle between the lines ax? + 2hxy + by? = 0. If the separate lines
have equations y = m,x, y = m,x, then the above quadratic for y/x
has roots m,, m,. Hence

a .
my+my = — My Ma =3 (i)

_b"

and so (my—my)? = (my+my)®—4mym, = % (k% —ab).
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The required angle is given by

tan6 = 14+mymy * b(1+a/b)
2,/(h*—ab)
= i———,
a+b

provided a+b =+ 0.
If a+b = 0, then m;m, = — 1 and the lines are perpendicular; and
conversely.

(3) Bisectors of the angles between these lines. By expressing equality
of the perpendiculars from (z, y) to the linesy —m;x = 0,y —m,x = 0,
the equations of the angle-bisectors are

y—mx Y—mex

JA+md) T (1 +mE)

Hence the two bisectors have equation

(y=mgaf _(y—my2)® _
1+m3 14+m

b

ie. (1 +mj) (y —my2)* — (1 +m]) (y —my2)* = 0,
ie.  (m?--m3)a®—2(m; —my) (1 —m,m,)xy —(mi—m3)y® = 0.
If m, & m,, this reduces to
(my +mg) (@* — %) = 2(1 —mymy) 2y,
i.e. by (i), h(x?—y2) = (@ —b)xy.

This equation satisfies the perpendicularity condition at the end
of (2), as of course it should from elementary geometrical considera-
tions. It can be written

z? xy y?
a h b |=0
1 0 1

15.53 The general line-pair s =0
(1) Parallel line-pair through the origin. Write
s = ax?+ 2hxy + by? + 292+ 2fy +-¢ = 0. (1)

This is the standard form of the general equation of the second degree
in z,y.
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If s can be factorisedt in the form
s = (4,2 + By + () (dyx+ Byy + Cy), (i)
then (i) represents a line-pair. By equating coefficients of the second-
degree terms in (ii),
a=A4,4, 2h=A,B,+A4,B,, b= B,B,;
so we also have
ax®+ 2hxy + by? = (4,2 + B,y) (Aa2+ Byy).
Therefore if (i) represents a line-pair, then the equation
ax?+ 2hxy +by? = 0 (iii)

represents the parallel line-pair through O.
This fact can be used to calculate the angle between the lines (i),
which is the same as the angle between (iii), found in 15.52 (2).
When A2 = ab, the lines (i) may be coincident or parallel; for although
this condition implies 4,: A, = B, : B,, these ratios may or may not
be equal to C; : C,.

(2) Necessary condition for s = 0 to represent a line-pair.

If (i) represents a line-pair, s can be written in the form (ii); and if
A, + 0and 4, + 0 (i.e. if @ + 0, since a = A, 4,), this means that (i),
regarded as a quadratic in z, can be solved in the form

B, ¢ B, G,

x=_‘T1y—‘T11, $=‘~—‘sz—‘:4—2- (iv)
Now (i), written as a quadratic in z, is
ax?+2(hy +g)x+ (by?+ 2fy+¢) = 0, v)
s @ = 2 [~ (hy +0) £ {(hy+ 9V~ alby>+ 2fy + ).

Hence (i) can be solved in the form (iv) if and only if the quadratic
in y under the square-root sign is a perfect square, i.e. if

(h?—ab) y* + 2(gh — af) y + (9* — ac)
is a perfect square. This is so if and only if
(9h —af ) — (h? —abd) (g* — ac) = 0,

(which holds even when h2—ab = 0, for the condition then implies
gh—af = 0 also), i.e. if
alabe +3fgh— af — by — ch?) = 0.

1 This will not be the case in general: see 15.74.
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Since we are assuming a =+ 0, the condition is
abe + 2fgh — af? — bg*— ch® = 0. (vi)

If @ = 0 but b + 0, then equation (i) can similarly be solved as a
quadratic in ¥, and the same condition (vi) is obtained.
Ifa=0,b=0,but? 4 0, equation (i) is

2hxy + 29z + 2fy+c¢c = 0,

Le. xy+%x+%y+2c—h= 0

which, if factorisable, is

g

fa_c
so that W= o
ie. 2fgh —ch® = 0,

and this is what condition (vi) becomes when a = b = 0.
These are the only cases that need be considered, since if

a=b=h=0

then (i) would not be of second degree. We have therefore shown that
the necessary condition for (i) to represent a pair of straight lines is (vi).
By ex. (ii) in 11.22, (vi) can be written

a h g
A=|h b fi=0. (vii)
g f ¢

The determinant A is called the discriminant of s, or of equation (i).
Remark (). The necessary condition A = 0 is not sufficient for (i)
to represent a line-pair. For A is zero when

a=b=1 c=f=g=h=0,

whereas 22+ 2 has no linear factors. (A sufficient condition is in-
dicated in Ex. 1(f), no. 19. Other ways of obtaining the necessary
condition A = 0 appear in Ex. 9(f), no. 25 (ii); (3) below; and 15.73,
ex. (ii).)

(3) Point of intersection of the line-pasr. In a numerical case we
should resolve the second-degree equation into linear factors (e.g. as
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in 10.21, ex. (ii)). For the general case (i), equations giving the point
of intersection (sometimes called the centre or vertex of the line-pair)
can be found as follows. \
Writing (i) in the form (v), we see that to a given value of y there
correspond in general two values of x; but if y is the ordinate of the
meet P, then (v) will give only one

value of , viz. the abscissa of P, vi
Now when (v) has equal roots, that \ P
root is (see 1.31 (b))
I 'k p .
o o x
so the coordinates of P satisfy Fig. 155
ax+hy+g=0. (viii)

Similarly, writing (i) as a quadratic in y, viz.

by?+ 2(hx +f)y + (ax® + 29z +c¢) = 0,

at P we have y= _kxb-l- f,
ie. hx+by+f = 0. (ix)

Equations (viii), (ix) suffice to determine P as the point (G/C, F|C);
see ex. (i) in 11.32 for the notation.
Remark (8). Since (i) can also be written

(@z+hy +g) 2+ (he +by +f)y +(gz+fy+c) = 0,
it follows that the coordinates of P must also satisfy
gr+fy+c=0. (x)

Equations (viii)-(x) are therefore consistent, and Corollary I (b)
of 11.43 gives (vii) as a necessary condition for s = 0 to represent an
intersecting line-pair. Compare (2) above, where (vii) was shown to be
necessary for any type of line-pair, not necessarily intersecting. Also
see 15.73, ex. (ii).

15.54 Line-pair joining O to the meets of the line Ix + my=1 and
the locus s=0

In general the equation s = 0 represents a curve, but the following
argument holds in particular when the equation represents a line-pair..
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Consider the homogeneous equation in z, y:
ax?+ 2hay + by + 2(9x + fy) (le + my) + c(lx +my)? = 0.

It is satisfied by the points which satisfy both the equation of the line
and of the locus, and hence it represents some other locus through these
points. Since the equation is homogeneous in z, y, it represents two
lines through O. Hence it must be the equation of the required line-
pair.

Exercise 15(c)
[Rectangular azes.]

1 Find the area enclosed by the lines z2 + 4y + 2y* = 0 and thelinex +y = 1.
2 Show that the area enclosed by the lines

ax®+2hxy+by =0 and Ilz4+my=1

is /(h?® — ab)/(am?® — 2hlm + bI?).
3 Prove that the product of the lengths of the perpendiculars from (x;,y,)
to the lines

ax?+2hry+by* =0 is +(ax?+ 2hx,y, +byd)/V{(a—b)%+ 442},

4 Find the equation of the lines through O which are perpendicular to the
lines ax?+ 2hay +by? = 0. [If (z,y) lies on either of the required lines, then
(—y,z) lies on one of the given lines.]

5 Find (i) the angle between, (ii) the equation of the bisectors of the angles
between, the lines 5% + 2zy — 4y% = 0.

6 If the lines az®+ 2hay+by? =0, a’a?+2h'2y+b'y? = 0 have the same
angle-bisectors, prove that k(a’—b’) = h'(a—Db).

7 Show that any pair of lines which has the same angle-bisectors as the pair
ax? + 2haxy +by? = 0 can be written ax? + 2hay + by* + A(x2+y?%) = 0. [Useno. 6.]

Find the equation of the pair of lines, one of which passes through (p, g),
and whose angle-bisectors are 2% —y? = 0.

8 Show that the following equations each represent pairs of straight lines;
find the angle between them, and their point of intersection.

(i) 202+ Tay+ 3yt — 4z —Ty+2 = 0;
(i) 1522+ 2y —2y2+3x—y = 0;

(iii) 2y —32x+2y—6 = 0;

*(iv) 2%+ 4oy —2y24+ 60— 12y—16=0.

9 Write down the equations of those line-pairs through the origin which are
perpendicular to the line-pairs in no. 8. [Use no. 4.]

10 Find the equation of the lines joining O to the meet of x + 2y = 3 with the
lines 422%+ 16xy — 12y2 — 8z + 12y —3 = 0.
*11 Show that the line 2(g—g¢’) x+2(f —f") y + (c—¢’) = 0 is a diagonal of the
parallelogram formed by the line-pairs s = ax?+ 2hay + by® + 2gx 4+ 2fy +¢ = 0,
8’ = ax?+ 2hxy +by?+ 29’z + 2f 'y + ¢’ = 0. [Consider s —s’ = 0, which is linear
and is satisfied by the points common to s = 0, s’ = 0.]
*12 If the line-pairs ¢ = 0, 8’ = 0 in no. 11 possess a line in common, find its
equation.
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15.6 The circle

15.61 General equation of a circle; centre and radius
Referred to rectangular axes, the equation of the circle with centre
C(h, k) and radius r is (@—R)2+ (y— k) = 2, )

When simplified, this equation is of the form
2?2+ y2+ 292+ 2fy+c =0, (ii)

in which the coefficients of x* and y? are equal, and there is no xy-term.
Conversely, by completing the square for the terms involving z and
for those involving y, equation (ii) can be written

(@+9)*+(y+f)* = g +f*—c.
If g2+ f2—c > 0, this represents the circle with centre (—g, —f) and
radius /(g2 +f2—c). If g2+ f2—c = 0, it represents the single point

(=g, —f); and if g2+ f%2—c < 0, the equation does not represent any
locus.

Example*

Referred to oblique axes at angle w, the circle with centre C(h, k) and radius r
has equation
(x—h)2+(y—k)2+2(x—h)(y—k)cosw = 2,

which is of the form
x?+y?+ 2xy cos w + 2gx + 2fy + ¢ = 0.

15.62 Circle on diameter P, P,

Let P(x,y) be any point on the required circle; then P,P | P, P,
by ‘angle in a semicircle’. Since

gradient of P, P = wl, and gradient of P = Y~ Y

—x, x—x,’
hence Y% Y—Y_ _ 1,

T2, T—%,
ie. (—w) (@—25)+ (¥ — Y1) (Y—ys) = 0. (iii)

This equation, which is satisfied by the coordinates of any point P on
the circle, is therefore the equation required. (See also Ex. 15(f),
no. 15.)
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15.63 Tangent at P,

Let P,(z,,y,) be a given point on the circle (ii) in 15.61. Then since
the tangent at P, is perpendicular to the radius CP,, and CP, has
gradient (y, +f)/(x, +g), the equation of the tangent is

X+
Y=y =— 1+}’(x—w1),

ie. Y +f)—yi—fya +x(@ +9) —a]—gx, = 0,
ie. x2y +yy; + 92+ fy = 2} +yi+ 92, + S
Since P, lies on the circle,
a}+yi+297,+2fy, +e =0,
and so the equation of the tangent at P, can be written

x2, + Yy, + 92 +fy = — g2, —fy,—c,
ie. w2, + Yy, + 9@ +2,) +fy+y,) +¢ = 0. (iv)

Remark. This result can be remembered by the following rule of
alternate suffixes. ‘“Write zz for a2, x + « for 2z, ete., in the equation of
the circle: aw+yy +9(@+2) +fy+y)+c =0
and attach the suffix 1 to alternate variables.’

It should be emphasised that this rule is only an aid to memory,
and certainly does not constitute a proof that (iv) is the equation of
the tangent at P,. Other applications will appear in later chapters.

Example

Find the condition for the line lx +my = n to touch the circle (ii).

The line will be a tangent if and only if the perpendicular from the centre
—g, —f) to it is equal to the radius /(g2 +f2—c):

sy = VOO
i.e., on squaring, (lg+mf+n)? = (g2 +f2—c) (I2+m?).

15.64 Chord of contact from P,

If P, is outside the circle, two tangents can be drawn from P,; if
their points of contact are F,, P, then the whole line P, P, is called the
chord of contact of tangents from P,. We now find the equation of this
chord.

40 GPMII
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For simplicity we consider the circle 2%+ y2 = a2, whose centre is
the origin. The tangent P, P, at F, has equation

xxy+ Yy, = 6.
Since P, lies on this line,
T Xy +Y1Yp = 6°

which shows that the coordinates z = x,, ¥ = ¥, satisfy the equation
6 x+y Y = a?,

i.e. that P, lies on the line xx, + yy, = a®.

Py

Py

PS
Fig. 156

Similarly, P, lies on this same line, which must therefore be the

chord P, P,. Hence the chord of contact from P, to 2%+ y? = a?is
X%, + Yy, = a2
The same argument applied to the general circle
22+ y2+ 292+ 2fy+c =0
shows that the chord of contact from P, has equation
22+ YY1+ (@ +2) +fy+y1) +e = 0,

ie. (@1 +9)x+ Y +f)y + (e +fy1+¢) = 0.

Remark. The equation xx;+yy, =a®> has two quite distinct
meanings according to whether P, lies on the circle 2% +y% = a? or
outside it. When P, lies on the circle, it represents the tangent at P;;

when P, lies outside, it represents the chord of contact frt;m P,. Similar
remarks apply to the general case. See also (1), (2) in 15.65.

Examples
(i) Find the equation of the tangents from O to x?+y2+ 2gx + 2fy +-¢c = 0.
The chord of contact from O (fig. 157) has equation
gx+fy+c=0.



15.65] ELEMENTARY COORDINATE GEOMETRY 589
As in 15.54, consider the equation-

which reduces to c(x?+y%) = (g +fy)2.

It is satisfied by the points common to the circle and line, i.e. by the points
of contact of the tangents from O. It is homogeneous of degree 2 in x, ¥y, and
therefore represents a line-pair. Hence it represents the pair of tangents from O.

vh

B 7y

o \ @

Fig. 157 Fig. 158

(ii) Pair of tangents from Py to 2 +y? = a®
When P, is given, let P, be any other point in the plane. Any point on P, P,
will divide it in some ratio k:I, and hence will have coordinates

Iz, + kxy ly1+ky2)
1+ > 1+k )’

This point will lie on the circle if
oy +kxa\? | Ly +Fys z=a2
I+k I+k ’
ie. @2+y2—ad) 2+ 2(x 2y + ¥ Yo —a?) Kl + (22 + 4 —a?) 2 = 0. (v)

This quadratic gives two values for the ratio & : [, which correspond to the points
A, B where the line P, P, cuts the circle; the two values are P; 4 : AP, and
P, B:BP, (fig. 158). Equation (v) is known as Joachimsthal’s ratio quadratic
for the circle 22+ y2 = a?.

If P, lies on either tangent from P,, then the points 4, B will coincide, and
hence (v) will have equal roots k : 7, so that

(a3 +y3~0a?) (@§+y3—a?) = (@12 + 9192~ a)2
This equation shows that the point Py(x,, ¥,) lies on the locus
(23 +91=a?) (e +9"— a®) = (221 + Yy, — @),

which must therefore be the combined equation of the tangents from P,,
i.e. of the pair of tangents. See also 15.73, ex. (i).

15.65 Examples; polar

(1) Tangents at the intersections of the circle x*+ y? = a? with variable chords
through P, meet on the line xx; + yy, = a?

40-2
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Let the tangents at the extremities 4, B of the chord 4B through P; meet
at P,. Then by 15.64, AB has equation

205+ YYy = al.
Since P, lies on this line,
2, %3+ Y1 Yo = 0%

and this shows that P, lies on the line 2,2 +y,y = a®

A
B
Py

Fig. 159 Fig. 160

If P, lies inside the circle, the locus of P, is the complete line, which lies
entirely outside the circle. If P, lies outside, the locus of P, is that part of the
line which is outside the circle.

(2) A variable chord through P, meets the circle a®+y® = a? at A, B; P, is
chosen so that Py, P, divide AB in the same ratio (one internally, the other extern-
ally).t Show that P, lies on the line xx, +yy, = a®.

Sincebyhypothesis AP, : P, B = AP,: P,B,hencealsoP, 4 : AP,=P,B:BP,
so that 4, B divide the line P, P, internally and externally in the same ratio,
say +k':U.

4
B -—
PN

Fig. 161 Fig. 162

Either point 4, B dividing P, P, in the ratio % :1 has coordinates of the form

l“'l'*‘kxn) (lyl+ky2)
I+k )’ 1+ /)’

1 P, and P, are said to divide AB harmonsically.
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and lies on 2%+ y? = a?; hence equation (v) of 15.64, ex. (ii) holds, and its roots
are + k’:1’. Since their sum is zero,
Z %+ Y1y —0a? = 0.
Hence P, lies on the line z, 2+ y,y = a2
If P, lies inside the circle, the locus of P, is the whole line, which lies com-

pletely outside the circle. If P, lies outside, the locus of P, is that part of the
line which lies within the circle.

(3) Definitions. We now unify the complementary results in (1), (2).

The whole line ax, + yy, = a? is called the polar of P, wo x?+y? = a?.

P, is called the pole of the line xx; + yy, = a* wo 22 +y® = a®.
Remarks

(a) If P, lies outside the circle, the polar coincides with the chord of contact
from P,.

(8) If P, lies on the circle, the polar coincides with the tangent at P,.

(y) The polar exists for every point except the centre (0, 0).

(8) Reciprocal property. If the polar of P, passes through P, then the polar
of P, passes through P,. (For if xx;, +yy, = a® passes through (x,,y,), then
T3, + Y,y = a?, which shows that P, lies on xz, +yy, = a?, the polar of P,.)

15.66 Orthogonal circles

(1) The angle between two intersecting circlest is the angle between
their tangents at a common point. (It is easy to prove geometrically
that the angles at the two intersections are equal.)

If these tangents are perpendicular, the circles are orthogonal. In
this case the tangent to one circle is a radius of the other.

(2) Condition for P
22+ y2+ 292+ 2fy+c =0,

22+ 42+ 29’ + 2f'y+¢ =0 c
to be orthogonal. P
The centres are C(—g, —f)and C'(—g¢’, — f'), Fig. 163

and the radii are /(g2 +2—¢), /(g2 +f'2—¢').
If the circles cut orthogonally at P, the triangle CPC’ is right-

angled at P, and so 0'C® = CP2+ (' P2,
ie. @—9VP+(=f)P =@+ P —c)+ (g +f?—¢),
ie. 288" +2ff =c+c'.
Conversely, when this condition is satisfied, then by adding
P+g2+fi+f72
1 The general definition was given in 5.72.
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to both sides the previous equation is obtained; hence by the converse
of the theorem of Pythagoras, triangle C'PC is right-angled at P.

The condition is therefore both necessary and sufficient for ortho-
gonality.

Example
Prove that in general there is only one circle orthogonal to three given circles.
If the given circles are '
22+ y?+ 29,2+ 2f,y+c, =0 (r=1,2,3),
we require to find g, f, ¢ for which
299, +2ffi—c = ¢y,
29gs+ 2ffs—¢ = ¢,

and 2995+ 2ffs—c = ¢;.
If the determinant
g il

g fi 1

is non-zero, then this system of three equations for the three unknowns g, f, ¢
can be solved uniquely by Cramer’s rule (11.41). The condition A + 0 means
that the three centres are not collinear (15.16, ex.) and that no two centres
coincide; this is the situation ‘in general’.

Exercise 15(d)

1 Write down the equation of the circle through O whose centre is (p, q).
Prove that the tangent at O is pz+qy = 0. [Use ‘tangent | radius’.]

2 Show that the chord of 22+ %? = a? whose mid-point is (z,, ¥, ) has equation
xx; +yy, = «2+y3. [If P is any point of the required chord, OP, | PP,.]

3 Prove that the mid-points of those chords of z?+y2+2gx+2fy+c¢=0
which pass through P, lie on the circle (x—z,)(x+g)+(y—y){(y+f) = 0.
[CM 1 CP,.]

4 (i) Find the equation of the chord P, P, of z*+y2 = a% Deduce the
equation of the tangent at P,. (ii) Also find the tangent at P, by using Calculus.

5 Iflxz+my = ntouches 2?4+ y* = a?, find its point of contact. [zz, +yy, = a*
and lx+my = n are the same line if 2,/l = y,/m = a?/n.]

6 Find the condition for y = mx+c to touch 2%+ y* = a?, and deduce that
the lines y = max + a /(1 +m?) touch the circle for all values of m.

7 (i) Find the condition for the chord of contact of tangents from P, to
2+ y? = a? to subtend a right-angle at O. (ii) What is the locus of the meet of
perpendicular tangents to 22+ y? = a??

8 (i) Show geometrically that, when they exist, the direct common tangents
of two circles divide the line of centres externally in the ratio of the radii, What
is the corresponding result for the transverse common tangents?

(ii) Use (i) to find the equations of the direct and transverse common
tangents to (z— 15)2+y2 = 64, (x—2)?+y? = 9. [If a tangent meets the line of
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centres at (A,0), its equation is ¥ = m(x—A) where m is chosen so that the
perpendicular to this line from either centre is equal to the corresponding
radius.]
Prove that the direct common tangents to
(@—a)*+y* =11, (2—a)*+y* =1}
have equation  {(r; —ry) x—(@,73—ay7)}? = {(a1— ap)* — (1 —79)*} 9>

Find the equation of the transverse common tangents.
10 If the line of centres of

22+ Y2+ 292+ 2fy+c =0, 22+y2+20x+2f'y+c' =0
cuts the axes at A, B, show that the circle on diameter AB is
(g9 =) (2 +y®) = (of =9 F)Ug—9)x—(f—S) 9}
*11 A variable circle passes through the meet O of two given lines, and makes

intercepts OP, OQ such that m.0OP+n.0@Q = 1. Prove that this circle passes
through another fixed point. [Use oblique axes.]

12 A circle passes through (h, k) and cuts orthogonally the circle
22+ y 4 202+ 2fy+¢c = 0.
Prove that its centre lies on the line
2h+g)x+2(k+f)y = h2+k—c.
13 Find the equation of the circle orthogonal to 22 +y2+2z—2y+1 = 0 and

x%+y2+ 42— 4y +3 = 0 and whose centre lies on the line 3x —y—2 = 0.
14 Find the equation of the circle orthogonal to

22442 =15, 22+y?+6x+1=0 and 22+y?—4x—4y+7=0.
15 Prove that an angle between the circles
8 =22+ y2+2gx+2fy+c=0, & =22+y2+20'z+2fy+c¢' =0
(supposed to intersect) is given by
299"+ 2ff'—c—¢
2J(@+f2—0) (g2 +f2—¢)

16 If 8 = 0, s’ = 0 are the circles in no. 15, prove that s+As’ = 0 is also the
equation of a circle for any constant A except A = — 1. What is the interpretation
when A = —1? If s, &’ intersect, explain why s+ As’ = 0 passes through their
common points for all A. (As A varies we obtain a system or family of circles.)

17 If a circle o = 0 cuts s = 0, 8’ = 0 orthogonally, prove that it also cuts
orthogonally each member of the system s+ As’ = 0. Interpret the case A= —1
by first showing that the centre of o lies on the line s —s’ = 0.

18 Prove that the length of a tangent from P; to 22 +y®+2gx+ 2fy+¢c =0
i8 /(a3 + 3 + 292, + 2fy, + o).

19 (i) Prove that a point P such that the tangents from it to the circles s, 8’
are equal (notation of no. 15) lies on the line 2(g—g")z+2(f —f')y+(c—¢') = 0,
ie.8—8 =0.

(ii) Show that the locus of P is the whole line if s, 8" do not intersect. When
they do intersect, show that s—s" = 0 is their common chord and that the
locus of P is only that part of this line which is outside both circles.

cosf =
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20 Find the equation of the circle which passes through (—3,2) and the
points of intersection of the circles 3x2 + 3y2 + 22— Ty —6 = 0,22+ y*+y—2 = 0.
[Use no. 16.]

21 Find the equation of the circle whose diameter is the common chord of
the circles #2 4+ y2— 22+ 2y +3 = 0, 622+ 5y*—x+Ty—12 = 0.

15.7 Conics

15.71 Definitions

The locus of a point P in a plane such that the ratio of its distance
from a given point § to its distance from a given line d is constant is
called a conic.

The point S is called the focus, the line d the directriz, and the con-
stant (denoted by e) the eccentricity of the conic. According as e =1,
the conic is called an ellipse, parabola, or hyperbola; e is essentially
positive.

If M is the foot of the perpendicular from P to the line d, the
definition is equivalent to the relation

SP=e¢.PM.

The name ‘conic’ is an abbreviation for ‘conic section’. Originally
the ellipse, parabola and hyperbola were obtained as the sections made
by a plane drawn perpendicular to any one generator of right circular
cones with acute, right and obtuse vertical angles respectively. Later
they were defined by different sections of the same right circular cone,
the ellipse, parabola and hyperbola being respectively the curves of
section by a plane making an angle with the base less than, equal to,
or greater than that made by the generators. If the cone is a double
one, the hyperbola will consist of two separate parts or branches.
A plane parallel to the base will give a circular section; one through
the axis of the cone will give two intersecting lines (the generators in
that plane); one touching the cone along a generator will give a single
line; while a plane through the vertex but not cutting the cone else-
where will give a single point. Hence with this approach, a circle,
a line-pair, a single line, and a single point are all conic sections.

It can be provedt that, for each plane which gives an elliptic, para-
bolic, or hyperbolic section, there exists in that plane a fixed point S
and a fixed line d such that any point P on the curve satisfies the law
SP =¢.PM; ie. these ‘conic sections’ have the focus-directrix
properly and are therefore ‘conics’ in the sense of our definition.

1t We shall not do so in this book.
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15.72 The equation of every conic is of the second degree

If the fixed point S is (p,q) and the fixed line d is lx+my+n = 0,
the definition SP2? = ¢2, P M2 becomes
o (lx+my+ n)2
e,

@-p)P+y—9°= Prm?

When simplified, this is clearly of second degree in z, y.
In our definition we made no reference i
to the relative positions of S and d. In y
particular, if we suppose S lies on d, we
may choose d for y-axis and the perpen- M | P
dicular at S for z-axis. Then, if P(x,y) is
any point on the locus, the definition
SP? = ¢2. PM? is expressed by

72}
sy

224y = e%?, ie. y? = (e2—1)a2 Fig. 164
According as e = 1, this equation represents a line-pair through 8,
the (repeated) line ¥ = 0, or the single point S(0, 0).

Hence, consistently with our definitions, we must regard an inter-
secting line-pair as a degenerate hyperbola (since e > 1 for both), a
single line as a degenerate parabola (e = 1 for both), and a single point
as a degenerate ellipse (¢ < 1 for both). These conclusions agree with
our remarks in 15.71 about particular ‘conic sections’. The classifica-
tion of a pair of parallel lines will be mentioned in Ex. 16 (e), no. 26 (ii);
for the circle, see 17.17,

We now turn to the more difficult converse problem of interpreting
the general second-degree equation

ax?®+ 2hxy + by* + 292 + 2fy +¢ = 0

by showing that this equation can be reduced to certain standard
forms. We shall eventually prove that every equation of the second
degree represents a conic (including the degenerate cases just men-
tioned), a parallel line-pair, a circle, or nothing.

15.73 Change of coordinate axes

(1) Whenalocusisspecified by some property (suchasSP = e. PM),
we express this as an equation between the coordinates of any point
(z,y) on the locus, referred to a pair of coordinate axes. Some choices
of axes (e.g. those having regard to symmetry of the locus) will lead
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to a simpler equation than others. Hence, when an equation wo one
set of axes is given, it is often desirable to change the axes in order to
simplify the equation. This can be done by

(@) changing the origin, leaving the directions of the axes unaltered
(a translation of axes);

(b) changing the direction of the axes, leaving the origin unaltered
(a rotation of axes);

(c) both together.

Remark. When a problem involves equations of two or more loci,
in general it is possible to simplify only one of the equations in this
way; e.g. see 16.12, ex. (ii).

v

8y

wy

Fig. 165

(2) Change of origin. If the new origin O’ is taken at the point (h, k),
then the point P whose coordinates were (z,y) now has coordinates

z',y’) given by o =x—h, y =y—k

Thus, to change the origin to the point (h, k) we substitute 2’ + h for
and y' + k for y: the locus whose equation wo axes Oz, Oy is f(x,y) = 0
becomes f(x' +h,y’ +k) = 0 wo axes O'z’, O'y'.

We usually omit the dashes in the new equation, and say that
f(x,y) = 0 becomes f(x+h,y+k) = 0.

The above work remains valid for oblique axes; an example occurred
in 15.16 (2).

Examples
(i) Pair of tangents from P, to 22 +y? = a?. (Cf. 15.64, ex. (ii).)
Changing the origin to P,(x,,%,), the equation of the circle becomes
(z+@)P+(y+y1)? = a?,
i.e. 22+ yt+ 2z x4+ 2y, y + (22 yi—a?) = 0.
The equation of the pair of tangents from the new origin is (see 15.64, ex. (i))
(@1+91—a%) (2 +y°) = (@mz+y1y)"
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Referred to the original axes, this equation becomes
(@3 +yi—a®) {(z—2)2 + (y—91)% = {@lz—20) +y.(y ~ 9135

Le. (@1 +yi— ) {(«* + 4 — a®) + (2] + 9] — @) — 2(az, + yy, —a®)}
= {(@z; +yy,— 0®) — (=1 +yi— o)},
ie. (@3 + y2 —a?) (22 + y% — a?) = (v2y +yy, —a?).

(ii) Point of intersection of the line-pair ax?+ 2hxy + by + 2gx + 2fy +c¢ = 0.

Suppose the lines meet at P,(x,,y,). Changing the origin to P,, the equation
becomes

a(z+21)2 + 2h(x +2,) (¥ + Y1) + 0y +41) + 29(x +21) + 2f(y +31) +¢c = 0,
i.e. ax? + 2hxy + by? + 2(ax, + by, + g) x + 2(hxy + by, +f) y
+ (az? + 2k, ¥, + byl + 292, + 2fy, +¢) = 0.

Since the new origin is the meet of the lines, this equation must involve only
terms in z2, zy and y2 (15.52 (1)). Hence we must have

azy +hy,+g =0, hx,+by+f=0,
and ax?+ 2hx, y, + by} + 2gx, + 2fy; +¢ = 0.

The first two equations determine P,. As in Remark (f£) in 15.53 (3), the third
is equivalent to gz, +fy, +¢ = 0.

yA
yl
P
A
// \\ i
/ \y
4 M’
/ )
P N
/¢\
6y [ -~
0 x N Tz
Fig. 166

(3) Rotation of axes through angle 6. Let the point P, whose co-
ordinates wo Oz, Oy are (z,y), have coordinates (z’,y’) referred to
the new axes Ox’, Oy’, where

20z’ =0 and 2’OP = 0.
If OP = r, then from triangle OPN,

x = rcos (0 +¢) = rcosf cos¢p—rsinf sin ¢

=2’ cosf—y'sind
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since from triangle OPN’, ' = rcos ¢ and y’ = rsin ¢. Similarly,

y =rsin(0+¢) = rsinf cos ¢ +rcosf sin @
= z'sin 0 +y' cos 0.

Thus, to rotate the axes through angle 6 we substitute x’ cos @ —y’ sin 0
for z and z’ sin 6 +y’ cos 6 for y: the locus f(x,y) = 0 becomes

f(xcosf—ysind, xsin 6 +ycosd) = 0.

The reverse transformation can be obtained
either by solving the above two equations for ', ¢, in terms of z, y;
or by writing —6 for ¢ and interchanging (2',¥’), (z,y) in the
above equations;
or by considering
' =rcos{(0+¢)—0}= ..., y =rsin{(@+¢)—0}=....
Both transformations can be read off from the scheme

’ ’

z )
z | cos@ —sind
y |sind cosb

(4) Change of both origin and direction of axes. By combining the
substitutions found in (2), (3) we see that, under the most general
change of rectangular axes, the locus whose equation is f(z,y) = 0
becomes f(xcosf—ysinf+h, xsinf+ycosf+k) = 0.

It follows that such a change of axes leaves the degree of any poly-
nomial equation unallered. For, instead of the linear function x, we have
substituted the linear function  cos 6 — ysin 6 + A, and similarly for y;
to powers and products of linear functions correspond powers and
products of the same degree.

15.74 Reduction of s=0 to standard forms
By rotating the axes through angle 6, the equation

s = ax?+ 2haxy +by?+ 292 + 2fy+¢c =0 (1)
becomes ‘

a(x cos 0 —y sin 0)% + 2h(x cos @ —y sin 0) (x sin 6 + y cos H)
+ b(xsin @+ y cos 0)% + 2g(x cos @ —y sin 0)
+2f(xsin@+ycosl)+c =0, (ii)
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in which the coefficient of zy is

— 2a cos 8 sin 0 4 2h(cos? § — sin? @) + 2b cos 6 sin 0

= 2(b—a)sin § cos 0 + 2k cos 20

= (b—a)sin 20 + 2h cos 20.
If b—a + 0, this will be zero when @ satisfies
o
a—b’
if b—a = 0, it will be zero when cos 20 = 0; i.e. § = }n. Giving 6 the
value between + }u satisfying the appropriate condition, equation (ii)
takes the form ., | pua L 0Gr 10Ky +C =0, (iv)
where A, B,C, F,@areknownintermsofa,b,c, f, g, hsince fissoknown.

The following cases now arise.
(@) If A + 0 and B % 0, then by completing the square, (iv) can

tan 20 = (iii)

be written
G\? F\¢ G* F?
A(x+z) +B(y+§) =Z+§—0' (v)
By changing the origin to the point (— G/4, — F|B), (v) becomes
Ax?+ By? = A, (vi)

where A = G2/A+ F%[B—-C.
If A + 0, this can be written in one of the forms
x2 yz _ xZ y2 _ xz yZ _
according as 4/A, BJA are both positive, of opposite sign,} or both

negative.
If A = 0, (vi) can be put into one of the forms

a2 — 2 =0, a+fu2=0

according as 4, B have opposite or the same signs.
() If A = 0, B + 0 and G + 0, equation (iv) can be written

2 ¢ F?
B(y+§) +2G(x+'25—m) = 0. (vii)
Changing the origin to the point
c F?
(“ 267 286" ~ 9 ’

1 The case —a?/at+y?/f2=1 can be brought to the second form shown by
rotating the axes through angle .

1
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(vii) reduces to By?+2Gxz = 0,
Y
i.e. y2 = —-ngx. (Vlll)

(c) If A = G = 0 and B #+ 0, equation (iv) becomes
By?+2Fy+C =0,

which represents two parallel lines, a repeated line, or nothing,
according as F2 = BC.

(d) If B=0,4A%0,F+0,orif B=1F =0, A % 0, then by trans-
forming equation (iv) by rotating the axes through 37, we obtain
the cases considered in (b), (c).

We cannot have 4 = B = 0, for then (iv) would not be of second
degree, and hence (see 15.73 (4)) neither would (i). Thus all admissible
possibilities have been considered.

It has now been shown that, by a suitable change of axes, the
general equation (i) of second degree can be reduced to one of the
following standard forms: \

2 o2 22
y? = dox, &'54-%72: s ;”%—2= 1,
2 2
g—2+%—2 =—1, ax®+py?:=0,
Y = at(a?-p)

Clearly the fourth equation represents nothing; the fifth represents
an intersecting line-pair, a repeated line, or a single point; and the
sixth represents a pair of parallel lines, a repeated line, or nothing.
The following three chapters are respectively concerned with the
first three loci, which will be proved to be ‘conics’ in the sense of the
definition given in 15.71: see 16.11, 17.12 and 17.13.

Exercise 15(e)

1 By a change of origin, the points (—1,3), (4, —2) become (a, 5), (3, £);
find 2, g.

2 Find the new equation of the locus z?—xy— 6y%*— 3z + 14y—4 = 0 when
the origin is changed to (2, 1).

3 Find the new equation of the locus 22 —y? = a? when the axes are rotated
through angle .

4 By rotating the axes through angle «, show that p in the equation
zcoso+ysina = p is the length of the perpendicular from O to this line.

5 Find through what angle the axes must be rotated so that the equation
72?4+ 4y —y? = 1 becomes of the form ax?+by? = 1.
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6 Change the origin to (1,0) and then rotate the axes through the acute
angle whose tangent is #, for the equation
4322 — 482y + 57y% + 86z — 48y + 18 = 0.

7 Show that the centroid of a lamina, as defined in 7.81, does not depend on
the choice of coordinate axes. [Wo the new axes the centroid is given by

T = ;{J‘x’dA = %f(xcost9+ysin0+h)dA =Zcos@+ysinl+h,

and similarly for ¥’. Thus (z’,y’) is the point (Z, 7) referred to the new axes.]

Miscellaneous Exercise 15(f)

1 If whe pomts (at?at}), (ail,afl), (at?,atl) are collinear, prove that
tats+1yt + 2ty = 0. Conversely, show that when this condition is satisfied the
three points are collinear. [Use theory of equations.]

2 Find the condition that the four distinct points (kt,, kft,), r = 1,2,3,4,
shall be concyelic. Show also that no three of these points can be collinear.

3 Show that a necessary condition for concurrence of the lines
zeos3a+y—acosa =0, zcos3f+y—acosf=0, zcos3y+y—acosy =0
is cosa +cos f+cosy = 0, and prove that this condition is also sufficient.

4 If the line-pairs ax®+ 2hxy + by® = 0, a’z?+ 2h'zy +b'y? = 0 have a line in
common, prove (ab’—a’b)?+ 4(ah’ — a’h) (bh’ —b’h) = 0. [Use 10.42(1).]

5 If one of the lines ax?+ 2hay + by? = 0 is perpendicular to one of the lines
a’x?+ 2k xy + b’y? = 0, prove (aa’ —bb’)2 + 4(ah’ +b'h) (a’h+bh") = 0.

6 If the lines 22— 2pxy—y® = 0 and 2?4 2gxy—y? = 0 are such that one
pair bisects the angles between the other pair, prove pg = 1.

7 If le+my+n =0 and ax®+ 2hay+by? = 0 form an isosceles triangle,
prove that k(12 —m?) = (a—b) Im. Find also the further condition if this triangle
is equilateral. [The line is parallel to an angle-bisector of the pair, so its gradient
—ljm must satisfy {1 —(y/2)%}/(a—b) = (y/z)/h.]

8 If ax?+ 2hxy + by? + 2gx + 2fy + ¢ = 0 represents a pair of lines meeting at
A, and parallel lines are drawn through O to meet these at B, C, find the equa-
tions of the diagonals 04, BC of the parallelogram so formed. Iftheparallelogram
is a square, prove a+b = 0 and A(g2—f2) = fg(a—b). [OB | OC and OA | BC.]

9 Prove that the equation m(z®-— 3zy?)+y®— 32%y = 0 represents three
straight lines equally inclined to one another. [In polar coordinates the equation
is m = tan 30. Writing m = tan 3¢, the three lines are 0 = a+ 4w, r = 0,1, 2.]

10 If 4, B, C are fixed and PA2+ PB?+ P(C? is constant, prove that the locus
of P is a circle whose centre is the centroid of triangle ABC. [Choose O at this
centroid; then Xz, = 0 = Xy,.]

11 Find the centre and radius of the incircle of the triangle whose sides are

4r—3y+2a=0, 3z—4y+12a =0, 3zx+4y—12a=0.

12 Prove that for all constants A and g, the circle

(w—a)(@—a+A)+(y—B)(y—F+u) =1
bisects the circumference of (v — a)2+ (y— f)? = 2.
Find the equation of the circle which bisects the circumference of
2?4y 4+ 2y—-3=0
and touches the line # —y = 0 at the origin.



602 ELEMENTARY COORDINATE GEOMETRY
13 Show that the line (x — a) cos @ + y sin § = r touches the circle
(x—a)+y? =13,

and state the coordinates of the point of contact.

A pair of parallel tangents is drawn to a given circle, and another pair per-
pendicular to these is drawn to a second circle of equal radius. Prove that each
diagonal of the square formed by the four tangents passes through a fixed point.

14 All members of a family of circles pass through two given points. Prove
that the common chords of these circles and a fixed circle not belonging to the
family are concurrent.

15 Write down the equation of the line-pair through P, and P, which is
parallel to (i) Oy; (ii) Ox. Explain why the locus
(@—21) (@ —2) + (Y= Y1) (Y —y2) = 0
passes through the vertices of the rectangle formed by these line-pairs, and
deduce that this locus is the circle on diameter P, P,.
16 If the orthogonal circles

22 +y?+ 20,0+ 2fy+e =0, 2 +yi+29,242fy+ey =0

have centres 4, B and cut at C, D, prove that the circle through 4, B, 0, D is
2@+ y?) 4+ 2g, + 92) T+ 2(f1 +So) Y+ (e og) = O
If the equation of the circle on diameter CD is written in the form
@ +y?+ 2012+ 2f1 5 + 0, +A{2(9: — ga) o+ 2(fL —fa) y +(cr— o)} = 0,
prove A = —73/AB? where r, is the radius of the first circle.

17 Find the equation of the line-pair joining O to the meets of the lines
4x% — 162y — 4y® + 392+ 65y — 169 = 0 and x+ 2y = 5. Show that the quadri-

lateral having the first pair and also the second pair as adjacent sides is cyclic,
and find the equation of its circumecircle.

18 Show that the line-pair joining O to the meets A, B of the line lx +my = 1
with the conic az?+ by? = 1 has equation
' (a—1?) 22— 2lmay + (b—m?) y? =
If AOB is a right-angle, deduce that 4B touches the circle (@ +b) (x2+y?) = 1.

19 Find the equation of the line-pair joining O to the meets of lz+my =1
and the circle z22+y2+2gx+2fy+c¢ = 0. Hence find the coordinates of the
circumcentre of the triangle formed by Iz +my = 1 and the lines

ax?+ 2hxy +by? =
If the lines axz?+ 2hzy+by? = 0 vary, but remain equally inclined to the

axes, show that the circumcentre varies on a fixed line through O.

20 Explain why the equation

(22 + 2hay + y2) + (Ax + py) (x+y + 1) =

represents a locus passing through the vertices of the triangle formed by the
lines #2 + 2hxy +y2 = 0, x+y+ 1 = 0. Deduce the equation of the circumcircle
of this triangle, and show that this circle is orthogonal to the circumcircle of
the triangle formed by the lines ax?+ 2kxy +ay* = 0, x—y+1 = 0.

21 Obtain the equation of the lines joining O to the points of intersection of
z—y = b with the curve 2®+ y® = 3axy.
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16

THE PARABOLA

16.1 The locus y%2=4ax

16.11 Focus-directrix property
Since the equation y? = 4ax can be written in the form

(m _a)2 +y2 = (x +a’)2:

any point P(x, y) on the locus is such that SP? = PM2, where § is the
point (a, 0) and PM is the perpendicular from P to the line z+a = 0.
Hence by the definition in 15.71, the locus y* = 4ax is a parabola with
focus (a,0) and directriz x+a = 0.

It is symmetrical about Ox because

the equation is unaltered by replacing M| /L7 P, 9)

y

y by —y; Oz is called the axis of the i
parabola, and O is the vertex. Without |
loss of generality we may always ol 18, 0) z
suppose a > 0; z is then positive for |
all points on the curve. The parabola  , r
meets Oy where x = 0 and hence y = 0;
it therefore touches Oy at O, and Oy is
called the tangent at the vertex. Fig. 167
The chord LL’ through § at right-
angles to the axis is called the latus rectum; its equation is z = a, and
it cuts the curve at the points (a, + 2a), so that its length is 4a.
Remark. The equation y2 = 4ax also shows that the square of the
distance of P(x,y) from Ox is proportional to its distance from the per-
pendicular line Oy. The locus of a point satisfying this condition is
therefore a parabola.

16.12 Parametric representation
For any point (z, y) of y* = 4ax other than (0, 0),

so that y = 2af and z = at?; (0,0) is also given thus when ¢ =0,

41 GPMII
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Hence each point on y? = 4ax has coordinates of the form (at? 2at),
for just one value of ¢. Also each value of ¢ determines exactly one
point of the curve. The equations

z=at?, y=2at @)

therefore give a proper parametric representation (see 1.61); they
can also be written piyia =121, (i)

The point P(at?, 2at) is briefly referred to as the point t of the curve;
t is the parameter of P. By using these coordinates, the condition that
P lies on the curve is automatically satisfied without reference to the
cartesian equation; cf. the Remark in 16.21,

Examples

(i) Find the condition for the chord joining the poinis t,, t, to be a focal chord
(i.e. to pass through the focus).
Any line through the focus (a, 0) has an equation of the form

Uz —a)+my = 0.
This cuts the curve at points ¢ for which
Yat?—a)+m.2at = 0.

It will be the chord ¢, ¢, if the roots of this quadratic in ¢ are ¢, and ¢,. Since the
product of the roots is — 1, the required condition is ¢,2, = — 1.

This necessary condition for a focal chord is also sufficient. For if ¢,t, = —1,
then ¢, and ¢, are the roots of a quadratic equation of the form

pr+2¢t—p =0,

which shows that the points £, ¢, lie on the line px+qy—ap = 0, and this
clearly goes through the focus (a, 0).

(ii) Concyclic points on the parabola. A circlet
22+ y2+ 292+ 2fy+c =0
cuts the parabola at points ¢ which satisfy{
a®tt + 4a%? + 2agt2 + 4aft+c = 0,
i.e. attt+2a(2a+g) 2+ 4aft+¢ = 0.

Since this equation is quartic in ¢, a circle and parabola can intersect in at
most four points. In real algebra a quartic equation has four, two, or no roots
(some or all of which may coincide); hence (ignoring possible coincidences) the
number of intersections is four, two, or none.

t Since we are already taking the equation of the parabola in the simple standard
form y? = 4ax, we are not entitled to choose axes so that the equation of the circle
also takes a simple form (such as x24y? = r?). Simplification of the equation of the
circle would complicate that of the parabola.

I When discussing the intersections of two loci it is usually most convenient to
employ the cartesian equation of one and the parametric equations of the other,
as here.
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Suppose there are four intersections, given by f = f;,%,,t,%,. Then these
numbers are the roots of the above quartic; and since the term in # is absent,
we have b 48y +ty+1, = O,

This necessary condition for concyclic points on the parabola i3 also sufficient.
In a general way this can be seen because three points of the curve determine
a unique circle, and one condition is required for this circle to pass through a
fourth point of the curve. In detail, given the four numbers ?,, ¢,, £;, ¢;, where
Xt, = 0, consider the circle through ¢,, ¢,, ¢,: it cuts the curve again at a point
t; (since a quartic with three distinct roots must have a fourth), and so by the
above, b+ttt +t, = 0.

Hence t; = t,, and 80 t,, t,, £, I, give concyclic points.

Exercise 16(a)
‘The parabola’ in this exercise means the curve y* = dazx.

1 Find the gradient of the chord ¢,2,.
2 If the point ¢ is one extremity of a focal chord PQ, find the length of PQ.

3 If M is the mid-point of a focal chord PQ, prove that the distance of M
from the directrix is equal to 3PQ.

4 P, @, R are points on the parabola such that PQ passes through the focus
and PR is perpendicular to the axis. When P varies on the parabola, prove that
the mid-point of QR lies on the parabola y? = 2a(z 4+ a).

5 The chord PQ subtends a right-angle at the vertex O. Prove that the mid-
point of PQ lies on the parabola y? = 2a(x - 4a).

6 A circle is drawn on a focal chord as diameter, and cuts the axes at
(21, 0), (%2 0), (0,44), (0,,). Prove that 2z, = y,y, = — 3a>.

7 (i) Prove that the line lx+my+n = 0 cuts the parabola in at most two
points when 7 = 0.

(ii) If there are two common points ¢, and ¢,, prove that
ty+t, = —2mfl, t,t, =nlal.
(iii) If there is only one common point, prove that am? = In, and conversely.

8 A circle cuts the parabola at 4, B, C, D. Show that the chords 4B, CD
are equally inclined to the axis. [Use no. 1 and ex. (ii) in 16.12.]

9 Prove that the locus of the centre of a circle touching Oy and the circle
22+ y?—2ax = 0 is the parabola y® = 4ax. [If P is the centre, show that
SP = PM for a suitable S and d.] ’

10 A variable circle passes through a given point 4 and touches a given line .
Prove that the locus of its centre is a parabola, and identify the focus and
directrix.

16.2 Chord and tangent
16.21 Chord P, P,
The gradient of the chord is
Y1—Ys _ 4a(y1—¥s) — 40
-2 Yi-¥i it

41~2
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since y§ = 4ax, and y3 = 4ax,. The equation of the chord is therefore

—y, = T —2x,). i
Y=Y y1+y2( ) @)

This equation is not symmetrical in the pair of coordinates (x,, y,),
(%3, ¥5). To make it so, first clear of fractions:
Y(Y1+Y2) Y1 -1y, = daz—4daz,.
By using the condition y} = 4ax, again, this simplifies to
4ax— (41 + %)Y+ 91%2 = 0. (if)
Remark. To obtain (ii) we have appealed once to the condition
y% = 4ax, that P, lies on the curve, and twice to y? = 4ax,. Contrast
the directness of the work in 16.22, where the use of parameters

automatically ensures that P, P, lie on the curve.
For another way of proving (ii), see Ex. 16 (b), no. 1.

16.22 Chord ¢, 1,
(1) Since the gradient of the chord is

2at, —2at, 2
ati—ati  t -+t

the chord has equation

y—2at, = (x—at?),

2
b+,
ie. z—4(, +t,)y+atit, = 0. (iii)

(2) Alternatively (using the theory of quadratics) let the required
chord bet Iz +my + a = 0. This line cuts the curve at points ¢ for which
U2+ 2mt+1 =0,

Since the line is the chord ¢, ¢,, this quadratic in # must have roots ¢,
and fy, 80 t; +t, = —2m/l and ¢,t, = 1/I. Hence
1 1ttt
l_t1t2 and m = DR
and the required chord is

x 1+,

iy 2 thi,

which is equivalent to (iii).

y+a=0,

t There is no loss of generality in taking the last term to be a, since the equation
of a line contains only two independent constants.
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(3) Alternatively, since the numbers ¢,, ¢, are the roots of
12— (b +Eg) b1t = O, (iv)

we may use the parametric equations z:y:a = t2: 2¢: 1 to substitute
for ¢2, ¢ and thereby construct the linear equation

x— 3t +1) y +atyty = 0.

This represents the required chord ¢,¢, because it cuts the curve at
the points ¢ given by (iv), i.e.t = ¢, and ¢ = {,.

16.23 Tangent at P,

For curves other than the circle, the tangent is defined as a limit:
the tangent at P, is the limit of the chord P, P, when the point P, tends
to P, along the curve; but see 16.25.

(1) The tangent at P, to y? = 4ax is therefore obtainable from

equation (ii) by letting y, - ¥, and is
402 —2y,y+yi=0.
Since %2 = 4ax,, this can be written
Yy, = 2a(x +,). )

Observe that this can be written down from the equation y? = 4ax
by applying the ‘rule of alternate suffixes’ (see 15.63, Remark).

(2) Alternatively, the gradient of the tangent at P, can be found by
calculating dy/dx when x = z,, y = y,. Thus from 2 = 4az,

2y%=4a and %:%,

and the tangent at P, has equation
2a
—y; = —(x—2ay),
Y= = (@ —,)
which is equivalent to the limit of (i) when y, — y;, and reduces to

(v) above.

16.24 Tangent at the point ¢
(1) Letting ¢, —¢, in equation (iii), we obtain z—t,y+at2 = 0.
Omitting the suffix, the tangent at the point ¢ is

x—ty+at? = 0. (vi)
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(2) Alternatively, the gradient can be obtained by calculus:

and then the equation written down as
1
y—2at = n (x —at?).

Geometrically, the parameter ¢ is the cotangent of the angle ¥
made by the tangent-line at the point ¢ with the z-axis; for tan ¢ = 1/¢.

16.25 Tangency and repeated roots

For a curve whose equation is a polynomial in (z,y), the simul-
taneous solution of this.equation and that of the chord P, P, leads to
equations for  and y containing the factors

(=) (x—25), (Y—y1) (Y—¥3)

respectively, or to an equation in a parameter ¢ containing

E—t) (t—ta). T

Since the equation of the tangent at P, is the limit of the equation of
the chord P, P, when P, tends to P, along the curve, hence if the
equation of the tangent is solved with the equation of the curve, it
will give equations for z, y containing the factors (x—z,)?, (y—v,)?
or an equation for ¢ containing (¢ —¢,)2. :

Thus tangency corresponds to repeated roots, and is often dealt with
thus rather than by direct appeal to the limit definition. For example,
the line Iz + my +n = 0 meets the parabola where alf?+ 2ami+n = 0,
and will be a tangent if and only if this quadratic has equal roots,
i.e.if am? = In; cf. Ex. 16 (a), no. 7.

More generally, if two loci cut at P, and P, and P, is made to
approach P, along one of them, then the limit of the other will touch
the first at P, because they have a common tangent there. For example,
if ¢, — ¢, in ex. (ii) of 16.12, the limiting circle will touch the parabola
at the point ¢, and cut it again at pointsf,, £,; other limiting cases can
be considered similarly (see Ex. 16 (b),nos. 16-18). See also Remark («)
in 6.72.

+ This is not the case unless the equation of the curve is algebraic; e.g. the chord
of the curvey = e® joining (0, 1) and (1,e)isy —1 = (e— 1)z, and leads toe*— 1 = (e— 1)
which has no polynomial factors.
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16.26 Examples
(i) The tangents at ty, ty meet at the point (at;ty, alty +1a))-
This result can be verified by direct solution of the equations
z—ty+at? =0, z—ty+al;=0.

Alternatively, these two equations express that ¢, and ¢, are the roots of the

‘o in ¢
quadratic in af—ty+z =0,

Yy z
so that S=¢+t, and -—=1t,
& a 1+z a 172

giving the required intersection (z, y).
The coordinates can be remembered by an ‘extension’ of the rule of alternate
suffixes applied at at?, 2at.

(ii) The orthocentret of the triangle formed by three tangents to a parabola lies
on the directriz.

The tangents at t;, £, meet at (atltg, a(t1+t,)). The perpendicular from this
point to the tangent at f; has equation

tax+y = a(t,+t+1tt305),

and this line meets the directrix x = —a where y = a(t; +f3+ 3+t t3t5). The
symmetry of this result shows that the other two perpendiculars meet the
directrix at this same point, which must therefore be the orthocentre of the
triangle of tangents. ’

(iii) (a) Find the condition for y = mx + ¢ to touch the pafabola y? = 4az.
(b) If this line also touches the circle x* +y? = r?, prove that
2
mtmi—® 0,
72

and hence find the equations of the common tangents to the parabola and the circle

attyt = fat |
(a) The line y = max+ ¢ cuts the curve y® = 4ax at points for which
(mx +c)? = 4ax,
i.e. mi*z2+2(mec—2a)z+c® = 0.

The line will touch the curve if and only if this quadratic in  has equal roots, i.e.
(mc—2a)? = m?c?,
ie. ‘ c=—.
m
Hence for all m % 0, the line y = mx + a/m touches y® = 4azx.
Alternatively, mx—y+c¢ =0 will be the same line as x—ty+at? = 0 (the
tangent at some point #) if

m 1 c
1 ¢t at?
ie.if m = 1/t and ¢ = at = a/m.

1 The orthocentre of a triangle is the point of intersection of the perpendiculars
drawn from the vertices to the opposite sides.
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(b) Similar methods will give the contact condition for the line and circle,
but it is simpler to equate the radius » and the perpendicular from the centre
(0, 0) to the line mx —y +afm = 0:

re g om
= T J (mz + 1 ) )
from which the equation for m follows.
Taking 2 = }a?, the equation becomes
mi+m2—2=0, ie. (m2—1)(m2+2)=0,
8o that m = + 1. The common tangents are thus

y=x+a, y=-—r—a.

(iv) Tangents from P, ; the chord of contact.
From a given point P, at most two tangents can be drawn to the parabola.
For the tangent at the point ¢ will pass through (z,, y,) if
z, —ty, +at* =0,

and if y? > dax, this gives two values ¢ = #,,1,; i.e. there are then two points
the tangents at which pass through P;.T

The argument used in 15.64 will show that the chord of contact of tangents
from P, is Yy = 2a(x+2,).

(v) Pair of tangents from P;.
The condition for the point
ley + by Ty, +ky,
I+k ° I+k
to lie on y2? = 4ax reduces to
(y3— 4ax,y) k2 + 2{y, Y5 — 2a(2, +2,)} Kl + (Y — daz,) 12 = 0

(Joachimsthal’s ratio equation for the parabola).
The argument in 15.64, ex. (ii) shows that the pair of tangents from P, has

equation Y1y — 2a(z, + )} = (y2— daz,) (y? - daw).

Exercise 16(b)
1 Verify that, when simplified, the equation

(¥ =91) (Y—92) = y*— daz
18 linear in x and y; and that it is satisfied by the points P,, P, on the parabola.
Deduce the equation of the chord P, P,.
2 Deduce from equation (iii) in 16.22 that ?,¢, is a focal chord if and only
if 4,2, = —1.
3 Obtain the equation of the tangent at the point ¢ by using the theory of
quadratic equations.

4 Prove that the chord whose extremities are given by the roots of
ut? 4+ 20t +w = 0 has equation ux + vy +aw = 0.

t The set of points (z,,¥,) for which y} > 4ax, may therefore be called the outside
of the parabola. ‘
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5 Find the equation of each of the tangents from (— 2a, — a) to y? = 4azx.

6 The ordinate of the point P on the parabola is PN, and the tangent at P
meets the axis at 7'. Prove that the vertex O bisects T'N.

7 If the tangent at P meets the axis at 7', prove SP = ST.

8 (i) If PM is the perpendicular from a point P of the parabola to the
directrix, prove that the tangent at P bisects angle SPM. [Use no. 7 and pure
geometry.]

(ii) Deduce the property of the parabolic reflector: rays from a source of
light at S leave the surface in a beam parallel to the axis. [Angle of incidence
= angle of reflection.]

9 If the tangent at P meets the directrix at Z, prove SZ | SP.

10 PQ is a variable focal chord; UP is the tangent at P, and QU is parallel
to the axis. Find the locus of the mid-point of PU.
‘11 Show that any one of the following statements implies the other two.
(i) PQ is a focal chord;
(ii) tangents at P and @ are perpendicular;
(iii) tangents at P and @ meet on the directrix.
12 If P, @ are the points ¢, ¢,, and tangents at P, @ meet at 7', prove that
triangle TPQ has area }a%(t,~—t,)3. If this area is always 4a?, and the locus of 7'.

13 (i) If the chord ¢,¢; subtends a right-angle at the point ¢, prove that
(E+8) (¢+t)+4 = 0.

(ii) If the circle on chord PQ as diameter cuts the parabola again at H
and K, prove that the chords PQ, HK make equal angles with the axis.

14 A circle cuts the parabola at 4, B, C, D; tangents at 4, B meet at T, and
tangents at C, D meet at T”. Prove that the axis bisects 7'7". [Use 16.12, ex. (ii).]

15 A circle passes through the vertex of the parabola and cuts the curve
again at 4, B, C. The tangents at B, C meet at 7. Find the ratio in which AT
is divided by the axis.

16 (i) If a circle touches the parabola at A and cuts it again at C, D, prove that
the tangent at A and the chord CD are equally inclined to the axis.

(ii) If circles touch a parabola at a fixed point, prove that the cormmon

chords not through this point are parallel.
*17 (i) If C - A in no. 16 (i), then by 8.42(2) the limiting circle is the circle
of curvature of the parabola at 4. If 4 is the point #,, prove that the remaining
intersection D has parameter — 3t,. What can be said about the inclination of
the tangent at 4 and the chord 4D?

(if) A circle cuts the parabola at 4, B, C, D. If the circles of curvature at
these points cut the curve again at A’, B, C’, D’ respectively, prove the latter
points are also concyeclic.

*18 If ¢, + ¢, in ex. (ii) of 16.12, and ¢, - ¢, and ¢, - t;, the limiting circle
touches the parabola at ¢, and at ¢; (double contact). Prove that the chord of
contact £, ¢; is perpendicular to the axis, and that the centre of the circle lies
on the axis and has abscissa > 2a.

19 Sketch the parabolas y? = 4ax, 22 = 4by (b > 0), and find the equation of
their common tangent.

20 Write down the equation of the chord of contact from P(}, ) to y? = dx.
By finding its intersections with the curve, deduce the equations of the tangents
from P.
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21 Prove that the pair of tangents from T'(,, y,) cuts Oy at points 4, B such
that the mid-point of AB is M(0, y,). [Use ex. (v) of 16.26.] If P, Q are the
points of contact of these tangents, prove SM | PQ. [Use the chord of contact
from 7.] )

22 If tangents are drawn to the parabola from points of a given line, prove
that the corresponding chords of contact are concurrent.

*23 Prove that tangents at the extremities of a variable chord through P,
meet on the line yy, = 2a(x+x,). [Method of 15.65(1).]

*24 A variable chord through P, meets the parabola at 4, B; P, is chosen on
it so that P, and P, divide AB (one internally and the other externally) in the
same ratio. Prove that P, lies on the line yy, = 2a(x + «,). [Method of 15.65 (2);
use the ratio quadratic in 16.26, ex. (v).]

*25 Defining the polar of P, wo y? = 4ax to be the line yy, = 2a(z + =,), prove
that if the polar of P, passes through P,, then the polar of P, passes through P;.
What is the polar of the focus?

*26 Use the ratio quadratic (16.26, ex. (v)) to obtain the equation of the
tangent at P;. [Since P, lies on y? = 4ax, the ratio quadratic has oneroot k = 0;
the other root gives the remaining intersection of P, P, with the curve. If P, P,
is the tangent at P;, this intersection must coincide with P;, and k=0 is a
repeated root. Hence y, y, — 2a(x, +x,) = 0, which gives the locus of P,.]

16.3 Normal

16.31 Normal at the point ¢
Since the tangent at the point ¢ has gradient 1/¢, the normal there
has gradient —¢. Hence the equation of the normal at £ is
y—2at = — H(x — at?),

ie. tr+y = 2at +atd. i)

Example

Prove that the normal at t meets the curve again at the point —t— 2/t.

If the other intersection is the point s, then the normal at ¢ is also the chord

ts, so that gradient of normal at ¢ = gradient of chord ts,

2

ie. —t=—,

from which ¢ = —¢— 2/t. Also see Ex. 16 (c), no. 4.

16.32 Conormal points

Given a point (z,,%,), we may enquire how many normals can be
drawn from it to the parabola. The normal at ¢ will pass through

(xO’ ?/o) lf t¢o+yo — 2at+t3.

Since this equation is cubic in ¢, there are at most three points on the
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curve such that the normals from them pass through (x,, ¥,). Ignoring
coincidences, a cubic has either one or three roots; therefore either
one or three normals can be drawn from a given point. Also see
Ex. 16 (c), no. 15.

Suppose that the normals at the points £, #;, {; are concurrent at
(29, ¥o)- Then these numbers are the roots of the cubic

at*+ (2a—x5)t—y, = 0. . (i)
Since the term in 2 is absent,
ty i+t =0. (iit)

Three points on the curve which are such that the normals at them
are concurrent are called conormal points. Hence (iii) is a necessary
condition for the points ¢, f,, t; to be conormal. The point of con-
currence is given by

The necessary condition Xt, = 0 for conormal points is also sufficient.
In a general way this is clear because only one condition is needed for
concurrence of three lines. In detail, given ¢, t,, t;, we can define
numbers z, and y, by equations (iv) above; then, provided

ty+lg+ly =0,

we see that ¢, t,, £, are the roots of the cubic (ii), which expresses that
the normal at each of the corresponding points passes through (x,, ¥,)-

If two roots of the cubic (ii) are equal, then two of the three normals from
(29s Yo) coincide. If ¢, = &5, then ¢, = — 2¢,, and (x,, ¥,) is given by (iv) as

%o = 20+ 3at?, y = —2at}. -

By 8.53, ex. (i), these equations show that (z,,¥,) lies on the envelope of the
normals (i.e. the evolute) of the parabola. From any point on this locus only two
distinct normals can be drawn.

Three normals from a point can coincide only when #; = ¢, = #;, i.e. when each
is zero (since Z¢, = 0); and then (iv) shows that (z,, ¥,) is the point (2a, 0).

Examples

(i) The circle through the feet of three concurrent normals also passes through
the vertex.

If t,, t4, 25 are the feet, then ¢, +¢,+ ¢, = 0. If the circle through these points
cuts the curve again at {,, then by ex. (ii) of 16.12 we have ¢; +#,+¢;+¢, = 0.
Hence ¢, = 0, which gives the vertex (0, 0).
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(ii) Find the equation of the circle through the feet of normals which are con-
current at (h, k). (See also 19.7, ex. (i).)
The feet of the three normals are the roots of the cubic

at®+ (2a—h)t—k = 0. )
If the required circle is 22+ y2+ 29z + 2fy + ¢ = 0, its meets with the curve
satisfy (cf. 16.12, ex. (ii))
a®tt 4+ (40?4 2ag) t* + daft+c = 0.
Since by ex. (i) £ = 0 is one such meet, therefore ¢ = 0, and the other three are
given by af’ + (4a+29)t+4f = 0. (vi)
The cubics (v), (vi) now have the same roots, and so
4a+29 = 2a—h, 4f=—k.
The required circle is therefore
224y —(h+2a)x—tky = 0.

(iii) (a) Prove that the normal at P, has equation 2a(y —y,) + yy(x — ;) = 0.
(b) Hence prove that the feet of the normals from (h, k) to the parabola lie
on the curve xy + (2a — h) y — 2ak = 0.
(a) By 16.23 the tangent at P, has gradient 2a/y;, so the normal at P, has
gradient — y,/2a, and its equation is

y
Yy—n= _i(x_a}l)‘

(b) Let P, be the foot of a normal drawn from (4, k) to the curve. Then since
(h, k) lies on the normal at P,

2a(k—11) + y1(h—2,) = 0,
which shows that P, lies on the locus
2a(k—y)+y(h—x) = 0.

Exercise 16(c)

1 PN is the ordinate of a point P on the parabola, and the normal at P cuts
the axis at G. Prove that NG = 2a.

2 The tangent and normal at P meet the axis at 7', @ respectively. Prove
TS = 8G.

3 The line through the mid-point M of a focal chord PQ and parallel to the
axis meets the normal at P in V. Find the locus of V.

4 If the normal at ¢ meets the curve again at s, find s in terms of ¢ by sub-
stituting z = as?, y = 20s in the equation of the normal and either (a) factorising
the cubic in ¢, or (b) observing that the resulting quadratic in s necessarily has
aroot 8 = ¢, and that the sum of the roots is — 2/¢.

5 (i) Prove that the feet of normals which meet at the point s of the curve
satisfy the quadratic 12+ st+2 = 0. [Use 16.31, ex.]

(ii) If the normals at ¢,, {, meet on the curve, prove that ¢,, = 2.

(iii) Conversely, if ¢,¢, = 2, prove that the normals at ¢,, ¢, meet on the
curve. [Let the normals meet the curve again at s,, 8, respectively; use 16.31,
ex. and the condition to show 8, = s,.]
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(iv) Show that normals at the extremitiesv of a focal chord can never meet on
the curve.

6 Prove that the normals at the extremities of all chords of the form
2+ ky+2a = 0 meet on the curve. Show that all such chords pass through a
fixed point, and give its coordinates. [This line cuts the curve where
at®+ 2akt 4 2a = 0, so that ¢, 1, = 2.]

7 Find the equations of the three normals from (15a, 12a) to y* = 4az.
8 Show that two of the three normals from (5a, 2a) to y* = 4ax coincide.

9 Prove that the centroid of the triangle formed by conormal points lies
on the axis.

10 PQisa chord of a parabola drawn in a fixed direction. Prove that the locus
of the meet of the normals at P and @ is a line which is itself normal to the
parabola. [If ¢, ¢, are the extremities, then

2/(t,+1t) =m, ie. t+i+(—2/m)=0;
hence the normals at ¢,, £, meet on the normal at the (fixed) point — 2/m.]

11 If normals at P, @, R are concurrent, and the chords PP’, Q@’, RR’ are
parallel to QR, RP, PQ respectively, prove that the normals at P, Q’, R are
also concurrent.

12 Prove that the normals at ¢,, ¢, intersect at the point (x, y), where
z = a(B+4,t,+85+2), y=—atlt+5).
[Solve directly; or eliminate ¢, from ¢, = 0 and equations (iv) in 16.32.]

13 A variable chord PQ subtends a right-angle at the vertex. Tangents at
P, Q meet at T, and the normals at P, @ meet at N; M is the mid-point of PQ.
Find the loci of T', N, M.

*14 If C,is the centre of the circle through the feet of normals from P,, prove
that when P,, P,, P, are collinear, then so are C,;, C;, C;, and conversely.
[Use ex. (ii) of 16.32.]

*15 Show that y2 = 4ax meets the locus in 16.32, ex. (iii) (b) at points P(z,y)
for which 4?4 4a(2a —h)y —8a2k = 0. Deduce that at most three normals can
be drawn to the parabola from a given point (A, k).

16.4 Diameters

16.41 General definition

The locus of the mid-points of a system of parallel chords of a conic
is called a diameter of the conic.

The parallel chords are sometimes called ordinates to the diameter.
In 17.63 the above definition will be reconciled with the usual meaning
of ‘diameter’.

16.42 Diameters of a parabola ,

The chord ¢, ¢, has gradient m, where m = 2/(f, +£,). The mid-point
of this chord has y-coordinate a(f,+1,), i.e. 2a/m. Hence the mid-
points of all chords of given gradient m satisfy y = 2a/m, which is
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therefore the equation of the diameter bisecting chords of gradient m.
Thus the diameters of a parabola are straight lines parallel to the axis.
Also see Ex. 16 (d), no. 6.

Example
Prove that the tangent at the extremity P of a diameter
18 parallel to the chords which the diameter bisects.

The diameter y = 2a/m meets y2 = 4ax where
x = a/m?, i.e. at the point P(a/m?, 2a/m). The tangent
at P (which is the point 1/m) has gradient

1/(1/m) = m,

P

and is therefore parallel to the chords of gradient m. Fig. 168

Exercise 16(d)

1 Write down the equation of the diameter of y2 = z which bisects chords
parallel to 22—3y+1 = 0.

2 Write down the gradient of the chords of y2 = 22 which are bisected by
the diameter 2y+ 3 = 0.

3 Prove that tangents at the extremities of any chord of a parabola meet on
the diameter which bisects this chord.

4 V is the mid-point of a chord Q@' of a parabola, and 7'Q, T'Q’ are tangents.
Prove that the parabola bisects T'V.

*5 Prove that the circle drawn on a focal chord as diameter touches the

directrix. [Use no. 3.}

6 By considering the y-coordinate of the mid-point of the chord y = mx +c¢
of y? = 4ax, show that the locus of the mid-points of chords of gradient m is
the line y = 2a/m.

Miscellaneous Exercise 16(e)

1 A point is such that its distance from a fixed line is equal to the length of
the tangent from it to a fixed circle. Prove that its locus is a parabola. Locate
the focus and directrix when the given line touches the circle.

2 Obtain the equation of the circle through the points (p, 0), (g, 0), (0,7).

A circle passes through a fixed point, and the chord cut off by it from a given
line is of constant length. Prove that the locus of its centre is a parabola.

3 Two parabolas have a common axis and their concavities are in opposite
senses. If any line parallel to the common axis meets the parabolas at P, @, prove
that (provided the latera recta are unequal) the locus of the mid-point of PQ
is another parabola.

4 Prove that y = ax?®+ bz + ¢ represents a parabola, and find its vertex and the
length of the latus rectum.

5 Prove that the common chord of circles drawn on any two focal chords
as diameters passes through the vertex.

6 A circle touches the parabola at 4 and cuts it again at C and D. Prove
that the axis bisects the line joining 4 to the mid-point of CD.
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7 @G is the centroid of a triangle inscribed in a parabola; G’ is the centroid of
the corresponding triangle of tangents. Prove that GG’ is parallel to the axis,
and that the parabola divides GG’ in the ratio 2: 1.

8 The normal at P meets the parabola again at @, and the axis divides PQ
in the ratio & : 1. Prove that the @-coordinate of P is 2ka/(1 — k). For what value
of k is P an extremity of the latus rectum?

9 Normals at the ends of a focal chord PQ cut the curve again at P/, @'.
Prove that P’Q’ is parallel to QP and that P'Q’ = 3QP.

10 If normals at P, @ meet on the curve, prove that the meet of tangents at
P, Q lies either on a line parallel to Oy, or on the locus y*(z + 2a) + 4a® = 0.

11 A, B, C, D are concyclic points on the parabola; AB is a focal chord; AC is
the normal at A. Show that the axis divides BD in the ratio 1:3.

12 Find the locus of a point P(h, k) such that two of the normals drawn from
it to the parabola y? = 4ax are perpendicular.

13 Prove that three normals cannot be drawn from (h, k) to y? = 4ax unless
h > 2a. [Prove f(f) = at®+(2a—h) t—k is steadily increasing for all ¢ if & < 2a,
so that f(¢) = 0 has just one root.]

14 Prove that chords of y% = 4ax which subtend a right-angle at the point Z,
of the curve all pass through the point (ot(t2 +4), — 2a,t0) (Cf. Ex. 19(c), no. 2.)
*15 A variable triangle is inscribed in y? = 4ax so that two of its sides touch
y? = 4bx. Prove that the third side touches y* = 4cz, where (2a—b)%c = ab?.
[Use the condition km? = In for tangency of lx +my+n = 0 and y* = 4kz.]

16 Given a line ! and a point S not on it, a variable line is drawn through §
to meet I at V. A line p is drawn through V perpendicular to SV. Prove that
p touches a parabola having S for focus and ! for its tangent at the vertex.
[Choose I for y-axis, and the perpendicular to it through § for x-axis; let these
meet at O and p meet SO at 7. If p has equation lr+my+n = 0, then
OV = —njm and OT = n/l. By geometry OV? = T'0.0S, so am?® = nl where
a = 08.]

17 Show that the line through P, in direction 0 (15.26) cuts y* = 4ax at
points for which 7 is given by

728in2 6 + 2(y, 8in 0 — 2a cos 0) r + (yi — 4ax,) = 0

(This is called the distance quadratic for y? = 4ax because it gives the distances »
from P, of the points of the parabola on the line through P, in direction 6.)

18 Prove that the chord of y? = 4ax whose mid-point is (x;, y,) has equation
yy, — 20z = y2— 2ax,. [For therequired chord theroots of the distance quadratic
are equal and opposite, so ¥, sin @ — 2a cos @ = 0, which determines cos 8 :sin 6.
The equation z —x; : cos @ = y—y, :8in 6 of the chord becomes

(z—z,)/y1 = (y—1)/2a.]

19 Deduce from no. 18 that (i) the locus of the mid-points of chords through
P, is y?— 2ax = yy, — 2ax,; (ii) the locus of the mid-points of chords of gradient
m is the line y = 2a/m.

20 Find the locus of the mid-points of chords of y? = 4ax which touch
y? = 4bx.

21 If parallel chords are divided so that the product of their segments is
constant, prove that the point of division lies on & parabola congruent to the
given one.
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22 Using no. 17, obtain the equation of the tangent at P,. [Two roots 7 = 0.]
23 Obtain the equation of the pair of tangents from P,. [Equal roots 7.]

*24 Show that (3x + 4y)? = 54z — 53y + 29 represents a parabola as follows.
(i) Verify that the equation can be written

(8z+ 4y + k)% = (6k+ 54) 2+ (8k — 53) y + (k2 + 29).
(ii) By choosing & so that the lines
Sr+4y+k=0, (6k+54)z+(8k—53)y+(kE+29) =0

are perpendicular, express the equation in the form

(3w+4y+1)2=2(4x—3y+2). @

5 5

(iii) If PM, PN are the perpendiculars from P(z,y) to the (perpendicular)
lines 3x+4y+1 =0, 4x—3y+2 = 0, (a) shows PM? = 2PN. By the Remark
in 16.11, the curve is a parabola of latus rectum 2, having axis 3z +4y+1 =0
and 4z — 3y + 2 = 0 for tangent at the vertex.

(iv) For points on the curve, (@) shows that 4z — 3y + 2 > 0; hence the curve
is on the origin side of 4z — 3y + 2 = 0, i.e. lies below this line. Sketch the curve.
*25 Sketch the parabola (z+2y)? = 56+ 12y — 184, giving the equation of
the axis and the coordinates of the vertex.

*26 (i) If ab = h?, then the terms of second degree in
ax?+ 2hxy + by? + 29z + 2fy+¢c =0

form a perfect square, say ( pz+ qy)?. Prove by the method of no. 24 that, unless
g:f = p:q,the equation represents a parabola whose axis is parallel to pz + gy = 0.

(ii) In the exceptional case show that the equation can be written
(pr+9y+A)2 = A2—cwhereg = Apand f = Ag. This represents a pair of parallel
lines, a repeated line, or nothing according as A? = c. (Algebraically, a parallel
line-pair is thus a degenerate parabola.)

*27 Show that the curve whose parametric equations are
x=al?+2bt, y=ci?+2dt (ad + be)
is a parabola. [Eliminate ¢, and use the result of no. 26 (i).]

28 A curve is given parametrically by x = f(¢)/h(t), y = g(t)/h(t). Prove that
the chord joining the points ¢, ¢+ € has equation

z Y 1
f(@) 9(®) k@) |=0.
Jit+e) g(t+e) h(t+e)
Deduce that the tangent at the point ¢ has equation
z y 1
f@) 9@ k@) | =0.
@ g@ K@

[rs - (rg—13)/e, and let € - 0.]
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17

THE ELLIPSE

17.1 The loci

17.11 SP=e.PM

We now consider the locus defined by SP =¢.PM (e > 0, e & 1),
where § is a given point and M is the foot of the perpendicular from
P to a given line d (15.71). Choose 8§ for origin, and let the given line
then have equation z = k (k > 0). The equation of the locus referred
to this set of axes is therefore

i+ y? = e?(x—k)?,

i.e. x2(1 — e?) + 2e%kx + y? = e?k2.
YA d
P(z, y) M
8 (k, 0) x
Fig. 169

On ‘completing the square’ with the terms involving «, this becomes

62]0 2 y2 e4k2 ezkz
(‘”"' 1 —ez) e~ - 1-a
e2k?
T (I—e

Change the origin to the point

ek
(-==9)

’ e’k ’
x=x—l—_e—2, y=y.

42 GPM II

by the formulae
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Omitting dashes, the equation of the locus becomes

e?k2? .
1—g?’ @

(1-e)at+y? =

17.12 Focus-directrix property of 1:—:+%:= 1

In the equation x% g2 1 (i)

2ty
we can assume that @ > 0 and b > 0, and also that @ + b (otherwise it
would be the equation of the circle with centre O and radius a).

Without loss of generality we can therefore always assume a > b > 0.
Equation (ii) will be the same as equation (i) if

ek? ek?
2= 2 —,
a T—e) and b -
On dividing these we get
2 2_
l—ez=3—2, ie. e2=aa2b <1;

hence 0 < e < 1.
Wo the new (dashed) axes, S has coordinates

ek ek
(25 ) - fe0) -

and the equation x = k becomes

z= ok +k= k_a
T 11— T 1—e2 ¢

Hence (ii) is the locus of a point whose distance from S(ae, 0) is
e times its distance from the line x = a/e, where 52 = a?(1 —¢?) and so
0 < e < 1. Therefore (ii) is the equation of an ellipse whose eccentricity
18 e, whose focus is S(ae, 0), and whose directriz is the line x = afe.

. x2 y?
17.13 Focus-directrix property of 2 B 1

The algebra of 17.12, with b2 replaced by — b?%, shows that

x2 yz

-L=1 (i)

is the locus of a point whose distance from S(ae, 0) is e times its distance
from the line x = afe, where b2 = a?(e?— 1) and so e > 1. Therefore
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(iii) 4s the equation of a hyperbola of eccentricity e, focus S(ae, 0), and
directriz x = afe. '

In equation (iii) we may assume a > 0 and b > 0; but we must
allow a = b, because (iii) is not symmetrical in z and y like (ii).

17.14 Second focus and directrix
For both curves the condition SP = e¢.PM is expressed by

a 2
e sap =t
i.e. 2% — 2aex + a?e? + y? = a® — 2aex + €2,

By adding 4aex to both sides, this becomes
2
(2+ae)+y? = e2(0—:+x) ,

which shows that the distance of P(z,y) from the point S'(— ae,0)
is e times its distance from the line z = —afe: 8'P = e.PM'.

Hence both curves have a second focus 8'(—ae,0) and a corre-
sponding directrix z = —ale.

17.15 Further definitions

From the equations, both curves are clearly symmetrical about the
x-axis and about the y-axis. The origin O is the centre of each.

The ellipse meets Oz at the points 4(a, 0) and 4’(—a, 0), and meets
Oy at B(0,b) and B'(0, —b). AA’, BB’ are called the major and minor
axes of the ellipse; their lengths are 2a, 2b respectively. The points
A, A’ are called the vertices of the ellipse.

The hyperbola cuts Oz at the points A(a, 0) and A’(—a,0); but it
does not cut Oy. AA’ is called the transverse axis; it has length 2a.
The points A, A’ are the vertices of the hyperbola.

For either curve, the chord through 8 or 8’ at right-angles to 44’
is called a latus rectum.

We now consider the ellipse in detail, and leave the hyperbola
until Ch. 18.

v 1

17.16 Form of the ellipse ;—:—:+E§ =

From the equation we have
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so that —a < 2 < a for all points on the curve. Similarly —b <y < b
for all points on the curve. Hence the ellipse lies in the rectangle whose
sidesare z = +a, ¥ = +b.

When z = a, the equation shows that %2/b2 = 0, which has the
repeated root y = 0. Hence the line x = a touches the ellipse at A(a, 0):
it is the tangent at the vertex 4. Similarly the line = —a touches
the ellipse at A’; and y = + b touch it at B, B’ respectively.

Sincee < 1, therefore ae < a and so S lies between O and A4 ; similarly
8" is between O and A’. Also a/e > a, so the directrices cut Ox at points
D, D' beyond A4, A’ respectively. We have

08 = 08’ =ae, OD = 0D’ = g (iv)t

l

y
B
M // o M

D A\ & 0] 8§ /4 D

B

Fig. 170

17.17 Circle and ellipse

When b = a, the equation (ii) becomes that of the circle with centre
O and radius a; but equation (i) cannot represent a circle for any choice
of e and k. Hence a circle cannot be defined by the focus-directrix
property, and therefore is not a ‘conic’ in the sense of the definition
in 15.71; in particular, a circle ts not a special (or degenerate) ellipse.

We may consider the ellipse represented by (ii) when b — a. The
relation 5% = a%(1 —e?) shows that e — 0; hence by (iv), S and §’
approach O and the directrices recede along the z-axis. The ellipse
tends to become circular in form, since

2 2
OP% = 22+ 92 = az(l—%g)+y2 = a?+ (1—%—2) y2—> a2

1 Thus the eccentricity e = 0S/0A, and indeed indicates to what extent the foci
are ‘off-centre’.
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Thus the circle with centre O and radius « is the limit of the ellipse;
and the equation of this circle is certainly the limit when b — a of
the equation of the ellipse.

17.2 Other ways of obtaining an ellipse

17.21 Auxiliary circle

The circle on diameter A4’ is called the auxiliary circle of the
ellipse. Its equation is

x?+y? =a’
Y
B
P
\\{/
A’ 0 A 4
/'R N )
4
R}
BI
Fig. 171

Let the ordinate NP of any point P on the ellipse be produced to
cut this circle at . Then P, Q are called corresponding poinis on the
ellipse and circle. Since 2 3
.y
atp =1

b
PN =y =2 /(-2

-2 Jog—omn =ew,

ie. PN:QN =b:a.

Conversely, if an ordinate QN to a circle of radius a is divided at P
so that PN : QN = b:a, then the locus of P as Q varies on the circle is an
ellipse. For if Q is the point (z, Y), then 2%+ Y2 = a?; and P is the
point (z,y) where y = bY [a, so the coordinates of P satisfy

a2 . x2 2
z2+ﬁy2 =a? i.e. &§+% = 1.
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Example

The elliptic trammel.

Through P draw the line parallel to QO to meet Oz, Oy at R, R’; then
PR’ = QO = a. From the similar triangles RPN, OQN,
PR _PN
Q0 ~@N’
and hence PR = b.
If a rod PRR’ has pegs on its under-side at R, R’, and these pegs are made to
slide in perpendicular grooves A0A4’, BOB’, the point P will trace an ellipse
whose major and minor semi-axes are PR’, PR respectively.

17.22 Focal distances

The lengths SP, 8'P are the focal distances of the point P on the
ellipse. Since SP = ¢.PM and 8'P = ¢. PM’ (fig. 170),

SP+8'P = o(PM +PM') = ¢.DD’ = e(%“) - 2a.

Hence the sum of the focal distances of a point on the ellipse is 2a (the
bifocal property).

Conversely, the locus of a point P such that SP+S'P = constant is
an ellvpse with foct S, S’.

Proof. Choose the mid-point of S8’ for origin, and take Ox along
8’8 then let S be (c, 0) and 8" be (—¢, 0). Supposing that

SP+8'P = %a,

any point P(z,y) on the locus satisfies

J{z—cP+y3+ J{(z+c)?+ 9% = 2a,

ie. V{@+c)?+y% = 20— J{(z—c)+y3.
Squaring, (x+c)?+y? = (x—c)+y?+4a2—4af{(z—c)*+y?},
ie. da /{(x—c)® +y?} = 4a®—4cz.

Again squaring,
a?{a? — 2cx + ¢+ y?} = at— 2a%cx + %2,

02
hence (1 - Eé) 224+ y? = a®—c?,
. P
Le, a—a + m =1,

From triangle PSS’, S8’ < PS+ P8’ = 2a, i.e. ¢ < a and 80 a?—¢?
is positive. The above equation therefore represents an ellipse with



17.23] THE ELLIPSE 625

b2 = a2 —¢2. If e is its eccentricity, then since a%— b2 = a%? by 17.12,
we have ¢ = ae. Hence S, S’ are the points ( + ae, 0), i.e. the foci.

Example

Mechanical description of the ellipse : ‘ pin-construction’.

Fix pins S, §’ at distance 2ae apart. Tie the ends of a string of length 2a at
S and 8’. A pencil point P moving so that the string 8"PS is kept taut will trace
the ellipse with foci S, S’, eccentricity e, and major axis 2a.

17.23 Orthogonal projection of a circle

Given two planes a, o’ which intersect in a line I, consider per-
pendiculars dropped from points of a onto &’. If the perpendicular
from P in a has foot P’ in &', then P’ is called the orthogonal projection
of P on a’. If P lies on a locus X in a, then the corresponding locus
of P’ in a’ is called the orthogonal projection of Z on a'. :

<Y

Fig. 172

We now obtain formulae relating the coordinates of P and P’.
Choose the common line  for z-axis in both planes, and take any point
O on it for origin. Draw lines Oy, Oy’ in «, &’ at right-angles to Ox.
Wo these axes, suppose P(z,y) in « projects into P'(2’,y') in a’. If
0 is the angle between the planes «, &', i.e. between Oy and Oy’, then

' =« and ¥ =ycosh.
The circle 22+ 2 = a? in & therefore projects into the curve
n, Y°
24 I _ 2
Tt oste ¢

. — z'2 y'?
in a’, i.e. into — =
’ a?  a?cos?f
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Choosing 6 so that cos 6 = bja (b < a), this equation becomes

z? gy
atp=L
. 2? g
Hence the ellipse e +F =1

18 the orthogonal projection of a circle of radius a onto a plane making
angle cos™ (b/a) with the plane of the circle.

If we rotate the plane xOy about Oz until it coincides with plane
x'Oy’, we obtain fig. 171 of the ellipse and its auxiliary circle.

17.24 General properties of orthogonal projection

(1) Effect on angles. A line projects into a line, since I +my +n = 0 becomes
Iz’ +msec 0y’ +n = 0. This line and its projection cut Oz at the same point,
viz, (—n/l, 0), and make angles ¢, ¢’ with Ox, where

l
msect’

tan ¢’ = tan ¢ cos 0.

l ’
tan¢=—/’; and tan¢’ = —

Hence parallel lines project into parallel lines, but in general angles are changed.
However, a line perpendicular or parallel to Oz projects into another such line.

(2) A tangent to a curve projects into the tangent to the projected curve at the
corresponding point. The tangent to y = f(x) at (z,,¥,) is
Y=y =f(2).(x—m),
and projects into  (y'—yj)sec O = f'(z7). (=’ —a}),
ie. Yy —yi = f(w)) cos 8. (z' — ).

This is the tangent at (27, ¥;) to the curve ¥’ = f(x') cos 8, which is the projection

of y = f().
By (1), @ normal does not in general project into a normal.

(3) Effect on lengths. If PQ in o has length » and makes angle ¢ with Oz, let
its projection P’Q’ on o’ make angle ¢’ with Oz. Through O draw OP, equal and
parallel to PQ; then P, is (r cos ¢, rsin ¢) and so its projection P is

(rcos ¢, rsin ¢ cos §).
Hence OP? = r*cos?® ¢ +8in? ¢ cos?6)

= r}(1 —sgin?f sin?$);
and also OP; = rcos P,OP;.
Since by (1) OP; is parallel to P’Q’, therefore P, OP; is the angle between
P@ and P’Q’, so that P'Q’ = PQcos P,0OP;, i.e.

P'Q’ = PQ.(1—sin?0 sin? ). @)
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Hence, in general, lengths are changed by orthogonal projection; they are con-
served only on lines parallel to Oz.

Formuls (i) also shows that the ratio of lengths on parallel lines (or on the
same line) is unaltered; in particular, mid-points project into mid-points. On
intersecting lines the ratio of lengths is altered.

(4) Effect on areas. Since

b b
A'=I ?l'dfb"=f (ycos @) dx = Acosb,
a a

orthogonal projection reduces areas in the ratio cos0: 1.

(5) By means of these results and that in 17.23, properties of the ellipse can
be deduced from certain properties of the circle by orthogonal projection.
In general only central properties can be obtained in this way; we cannot expect
to prove focal properties thus, since foci are foreign to the circle (see 17.17).

Example
PN s the ordinate of P; the tangent at P meets the major axis at T. Prove
ON.OT = 042.

First sketch the corresponding figure for the circle. In it, OP | PT, and by
geometry ON.OT = OP? = 0A%, which can be written ON:04 = 0A:0T
and involves the ratios of lengths on the same line.

Fig. 173

If the figure is projected orthogonally onto a plane through the line OT', this
relation will hold for the new figure, and is the required property of an ellipse;
for since PN | OT, the ordinate PN to the circle will project into an ordinate
to the ellipse.

N.B.—For the circle it is true that ON.OT = OP?, but this cannot be
generalised into a property of an ellipse because the lengths concerned do
not lie along the same or parallel lines.

17.3 Parametric representation

17.31 Eccentric angle ¢

Let @ be the point on the auxiliary circle corresponding to the
point P on the ellipse (17.21), and let ¢ = NOQ (called the eccentric
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angle of P). Then # = ON = acos ¢; and since NQ = asin¢@, we have

= (bJa) NQ = bsing. Hence the coordinates of each point on the
ellipse x*/a® + y?/b® = 1 can be expressed in the form (a cos ¢, bsin ¢).

As ¢ increases from 0 to 27, @ deseribes the auxiliary circle and P
describes the ellipse. Two values of ¢ which differ by an integral
multiple of 27 give the same point of the ellipse.

Conversely, for each ¢ the point (a cos ¢, bsin ¢) lies on the ellipse,
asis clear by substituting in the equation. The point whose coordinates
are (a cos @, bsin @) is referred to as the point ¢.

17.32 The point ¢
By putting ¢ = tan 1¢ in the coordinates of the point 9,

1-¢2
T=acos¢p =a—;

e Y= bsing =b——

1 + t2
Hence for each ¢, the point

a 1—-## 2b
1+82° 1+¢2
lies on the ellipse z%/a? + y2/b% = 1; we refer to it as the point &.
Each value of f determines just one point of the ellipse ; but the point
A’(—a,0) is not given by any value of ¢, although it can be obta,med

as the limit when ¢ — co.
This algebraic representation can also be obtained directly; for

since o2 " . .
- 1-a= (-2) (43),
y/b 1-z/a
therefore Ttz /a b =, say.
Hence ( —-—) A ( —) =12:4:1, (i)
and so g :z 1= (1—1t%):2¢:(1+¢2).
Example

Concyclic points on the ellipse.
The circle x2 + y2 + 2gx + 2fy + ¢ = 0 cuts the ellipse at the points ¢ for which

Y i 2+b2 i ,+2 1- + ) e=0
N1t 1+5) THeTaTY 1+t2+ =5

ie.  (a®—2ga+c)tt+4fb5+2(2b% —a? +¢) 2+ 4fbt+ (a2 +2ga+c) = 0. (i)
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Since this is quartic in ¢, a circle and ellipse can cut in at most four points; the
actual number of intersections will be 4, 2, or 0 (some of which may coincide),
since a quartic has 4, 2 or no roots.

Suppose the above circle cuts the ellipse at the points ¢, Z,, #y, £,; then these
numbers are the roots of (ii). Since the coefficients of #* and ¢ are equal, therefore

— 58, = — Stylyt,.
Now by 14.23, (viii),
Tt, — Stalyt,

tan (P, + da+ P +¢,) = 1=ttt iyt

which is zero by the above condition. Hence X}¢, = nwr for some integer n
(positive, negative, or zero). Thus if the points ¢, s, Ps, P, of the ellipse are
concyclic, then Z¢, = 2na.

This necessary condition for concyclic points is also sufficient: see Ex. 17 (a),
no. 11.

(iid)

Exercise 17(a)
‘The ellipse’ means the locus 2?[/a® +y2/b® = 1.

1 Find the length of a latus rectum of the ellipse.

2 With the notation of 17.15, P is any point on the ellipse and the perpen-
dicular from P to A4’ has foot N; prove that PN2: 4’N.NA = OB%:0A42.
Find a similar relation involving N’, the foot of the perpendicular from P
to BB'.

3 If P is the point (z,y) on the ellipse, prove SP = a—ex and 8P = a+ex.

4 Use the bifocal property to prove that BS = BS’ = a.

Given an ellipse and its major and minor axes 44’, BB’, construct the foci
8, 8’ geometrically.

5 A rod 4B moves with its ends on two fixed perpendicular lines; P is fixed
in the rod, and BP = a, PA = b. Find the locus of P.

6 Prove that the gradient of the chord ¢ is — (b/a) cot (6 + ¢).

7 Prove that the gradient of the chord #,¢, is —b(1 —¢,t,)/a(t; +1,).

8 Show that the locus of the mid-point of SP is an ellipse whose centre is
the mid-point of OS. State the lengths of the semi-axes.

9 Prove that the mid-point of the chord 8¢ has coordinates

(acos (6+$) cos 40— ), bsin }(6+$) cos O — ).

10 Find the locus of the mid-point of the chord 6¢ when (i) 6+ ¢ = 2a;
(ii)  — ¢ = 2a, where ¢ is constant.

11 Prove that the condition £¢, = 2nr is sufficient for the points @, @s, s, Ps
of the ellipse to be concyelic. [The circle through ¢,, ¢,, ¢; cuts the ellipse again
at @}; prove ¢;— ¢, is a multiple of 2m, so that ¢; and ¢, give the same point.
Cf. 16.12, ex. (ii).]

12 A circle cuts an ellipse at 4, B, C, D. Prove that the chords AB, CD are
equally inclined to the major axis (and therefore also to the minor axis). [Use
17.32, ex. and no. 6.]

13 If a circle touches an ellipse et A and cuts it again at C and D, prove that
AC, AD are equally inclined to each axis.

14 Circles touch an ellipse at a given point. Prove that their common chords
not through that point are parallel.
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*15 (i) Find the point where the circle of curvature at ¢ meets the ellipse again.
(ii) If the points ¢y, Pg, Py, ¢4 are concyclic, and the circles of curvature at

these points cut the ellipse again at ¢;, @7, ¢35, @;, prove these points are also

concyclic.

*16 With coordinate axes as in 17.23, show that the orthogonal projection of

the parabola y? = 4az is another parabola.

*17 Prove that the tangent to the circle 22+ y® = a2 at the point (@ cos ¢, asin @)

has equation zcos @ +ysing = a. By projection deduce the equation of the

tangent to the ellipse at the point ¢.

*18 M is the mid-point of a chord HK of an ellipse whose centre is O; OM meets

the ellipse at P; N is the mid-point of PH; and ON, HK meet at Q. Prove that

OH bisects the chord which passes through P and Q. [In the circle figure, @ is

the orthocentre of triangle OPH.]

*19 The chord PQ has mid-point M; the tangents at P, Q meet at T. Prove

that O, M, T are collinear. If this line meets the ellipse at R between O and T,

prove OM .OT = OR2.

*20 Deduce the area of the ellipse with semi-axes a, b from that of a circle of

radius a.

Further examples using orthogonal projection appear in Ex. 17 (d).

17.4 Chord and tangent

17.41 Chord P, P,
The line joining 7, and P, has equation
?/2 Y1

Y=Y = (x 2y).

Since P, and P, lie on the elhpse,

2 2
—+?—/—1-— 1 and x_2+y_2___ 1.

b2 a?® ' b?
By subtracting and then rearranging,
yi-yi_ _#i—at
2 &
80 that ?_/Lyl = _b_2 x_zj_ﬂ.
Ty— %y @ Y2ty

The equation of the chord P, P, therefore becomes

x4+
y—y1=—&—2?ﬁ_71(x—xl),
ie (z— xl)(x2+x1) (Y—vy1) (Y2 +91) -0
L. a2 b2 ’

. X .
ie. S tm) Gty = S Al )
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Alternatively, consider the equation

(~z) (@—2,) (Y—v) (Y—9y) _2* 9
1a2 2y 1b2 2 .____;2_'_[?_1_

When simplified it is linear in z and y, and therefore represents a line.
It is satisfied by the points (zy, %;), (5, ¥5) on the ellipse, and so must
be the chord P, F,.

17.42 Chord 6¢
The chord joining (a cos ¢, bsin ¢) and (a cos 6, bsin #) has equation

b(sin 6 —sin @)
a(cos @ — cos @)

_ 2bcos§(0+¢)sin (6 —9)
" —2asin}(6+¢) sin }(0— @)

beos3(0+¢)
" asin}6+¢)

y—bsing = (x—acos¢)

(x—acos @)

(x—acos¢),

i.e.
';—ccos 30+ 9) +% sin (0 + ¢) = cos ¢ cos (0 + ¢) +sin ¢ sin (6 + P)
= cos {p— 40+ )},
j.e. zcos 30 +9) +~’l{sin 30+ ¢) = cos }(0— ). (i)

17.43 Chord ¢ ¢,
The line ux + vy + 1 = 0 cuts the ellipse at points ¢ for which

1—'t2+b +1=0
varptOT et ’

i.e. (1 —ua) 24 20bt + (1 + ua) =

This line will be the chord ¢, if the above quadratic has roots ¢,
and f,, and then

14 ua 2vb
Wl =T e hth="1"y4
Hence big—1 _ ,
Lt +1
and vb = — (8, +1,) 2 ___hth

gt 1 bt 1
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The required chord is therefore

(I=tity) 2+ ()% = 1+tty, (iii)

Alternatively, the chord £,t, cuts the ellipse at the points given by

¢ = t;, t = t, which are the roots of the quadratic (t—¢,) (f—¢,) =0, i.e.

22— +t)t+4t, = 0. (iv)

Consider the equation constructed from (iv) by substituting for
t2:¢:1 from (i) in 17.32:

z x
(l—a)—(tl+t2)%+tlt2(l+a) =0.

It is linear in x and y, and so represents a line. It cuts the ellipse at
points ¢ given by (iv), i.e. at # = ¢,, #,, and therefore is the chord ¢, ¢,.

17.44 Tangent at P,
This can be obtained by making z, > z; and y, > ¥, in equation
(i), giving

2ex, 2yy, 2% Y3
@t —atptl=2
since P, lies on the ellipse. The tangent at P, is therefore
xx

which can be written down by the usual ‘rule of alternate suffixes’.
Alternatively, equation (v) can be found directly by calculus.

17.45 Tangent at ¢
Letting 6 — ¢ in equation (ii), we obtain

7 Y. o, .
acos¢+gsm¢ =1. (vi)

This could also be obtained directly by calculus. Cf. Ex. 17 (a), no. 17.

17.46 Tangent at ¢
Letting ¢, ->t, in equation (iii), we obtain (after omitting the
suffix 1) .
(1—t2)6+2t%= 1422 (vii)

as the equation of the tangent at the point .
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Alternatively, this can be found by using the theory of quadratic
equations, or by calculus, or as a particular case of the result in
Ex. 16 (¢), no. 28.

17.47 Examples
2 yz 1

i) C’maditxionfary:mx+ctotouch +§ =

The line cuts the ellipse at points for which

(ma:+c)2 =1
a’ T ’
i.e. (a2m? + b?) 22 + 2a2mex + a®(c? — b?) = 0.
The line will touch the ellipse if and only if this quadratic in 2 has equal
roots, i.e. abmic® = a¥(a¥m? + b2) (c2 —b),
i.e. c® = a?m?+ b2,

Hence for all values of m the lines
y = mx + /(a?m?+ b?)
touch the ellipse.
(ii) Locus of the intersection of perpendicular tangents : direcior circle.
If a tangent found in ex. (i) passes through the point (z, y,), then
Yo = ma, £ 4/(a*m? +b%),
ie. (22— a?) m2 — 2z y,m +(y3—b?) = 0

Since this is quadratic in m, in general two tangents can be drawn from a given
point (xg, Y,) to the ellipse. The roots m,, m, are the gradients of such tangents.
These tangents will be perpendicular if m,m, = — 1, i.e. if
— b2
z2—a?

=1,

i.e. if (x4, ¥o) lies on the locus
w2+y2 e a2+b2.

This is & circle concentric with the ellipse, and having radius \/(a®+b?) = AB
(fig. 170). It is the locus of points from which perpendicular tangents can be
drawn to the ellipse, and is called the director circle of the ellipse (by analogy
with the parabola, for which the corresponding locus is the directrix: see
Ex. 16(b), no. 11 (ii), (iii)).

(iii) Chord of contact of tangents from P,. The argument used in 15.64 will
show that the chord of contact from P, to the ellipse has equation
YY1

—+—b‘; =L
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Exercise 17(b)

1 Use equation (i) in 17.41 to prove that the mid-points of all chords of given
gradient m lie on the line y = — b%x/a®m.

2 Find the condition for the chord 6¢ to pass through the centre of the
ellipse.

3 Prove that 0¢ is a focal chord if and only if + ecos (6 + @) = cos }(0 —¢).
Verify that this is equivalent to tan 30 tan ¢ = (e—1)/(e+1) or (e+1)/(e—1).

4 Prove that the chord PP’ of the ellipse and the chord joining the corre-
sponding points @, @’ of the auxiliary circle meet on the major axis. Deduce
a property of tangents at corresponding points P, Q.

5 If 6+ ¢ = 2a, prove that the chord 8¢ is parallel to the tangent at «, and
conversely.

6 For a system of parallel chords prove that the sum of the eccentric angles
of the extremities is constant.

7 Find the envelope of the chords joining points of the ellipse whose
eccentric angles differ by a constant. [Let the angles be ¢—a, ¢+a; the
chord is (x/a)cos¢+ (y/b)sing = cosa, which is a tangent to the ellipse
2%/a?+ y2[b? = cos?a.]

8 Prove that lx+my-+n =0 touches x?/a®+y2/b®=1 4if and only if
a®l? 4 b%*m? = n?. [Method of 17.47, ex. (i); or compare with 17.45, equation (vi).]

9 If m is the gradient of a common tangent to the circle 22+ y? = ¢ and the
ellipse z2/a? + y%/b2 = 1, prove m? = (¢ — b?)/(a? — c?). Deduce that four common
tangents exist only if b < ¢ < a.

10 Prove that tangents from (—2, —3) to 422+ 9y* = 36 are perpendicular.

11 PN is the ordinate of & point P on the ellipse, and the tangent at P meets
the major axisat 7'. Prove ON .OT = a?, and obtain the corresponding property
for the minor axis. (Cf. 17.24(5), ex.)

12 The tangent at P meets the directrix at Z. Prove P8Zisa right-angle.

13 (i) If @ is the point of contact of the other tangent from Z in no. 12, prove

geometrically that PSQ is a straight line.
(ii) Deduce that tangents at the extremities of a focal chord meet on the

corresponding directrix.

14 Prove that the focal radii SP, S8’P are equally inclined to the tangent at P.
(Cf. 8.14, ex. (iv); and also Ex. 17 (¢), no. 3.)

15 If, p, p’ are the lengths of the perpendiculars from the foci S, §” to any
tangent, prove that pp’ = b2

16 Using the similar triangles SPY, S’PY’, prove p/r = p’[r’, where ¥, ¥’
are the feet of the perpendiculars in no. 15 and » = SP, ' = S’P.

17 From nos. 15, 16 and the bifocal property »+ 7’ = 2a deduce that the (p,r)
equation (8.2) of the ellipse wo the focus S as pole is b2/p* = 2a/r—1.

18 Prove that the points ¥, Y’ in no. 16 lie on the auxiliary circle. [The
perpendicular from S(ae, 0) to
ae
b

:Ecos¢+%/sin¢=l is Z;singb—::—icos¢= sin¢;
a

b

square and add these equations.]
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19 The chord PQ subtends a right-angle at the vertex 4(a, 0). Prove that PQ
passes through a fixed point on the major axis. [Use equation (iii) in 17.43.]

20 Prove that the chord joining the points given by the roots of wé? + vt +w = 0
has equation (w—u)z/a+vy/b+ (w+u) = 0.

21 Prove that the tangents at the points ¢,, £, meet at (x,y), where

l1-z/a _14zja __  y/b
tl tﬂ 1 %(tl + tB) )
[Use equation (vii) in 17.46, and theory of quadratics.]

22 Write down the equation of the chord of contact from (1, 2) to 322 + 4y = 1,
and deduce the equations of the tangents from this point.

23 The chord PQ of the ellipse #%/a? + y%/b? = 1 touches the circle 22+ y% = c2.
Prove that the tangents at P, Q meet at a point 7' on the ellipse

v©_1
bt 2
[The chord of contact from T'(x,,y,) to the ellipse touches the circle; use no. 8.]

24 Prove that the tangents at the extremities of a variable chord through P,
meet on the line xx,/a? + yy,/b* = 1. What follows by taking P, at a focus?

*25 Given the points P, P, prove that the point dividing P, F, in the ratio
k:1 will be on a?/a?+y?/b2=1 if

(+%_l)kz+2(x1xz+y1ys )kH( _y_l_l)l,_

b b?

(Joachimsthal’s ratio quadratic for the ellipse).

*26 By taking P, on the ellipse, deduce the equation of the tangent at P,.
[See Ex. 16(b), no. 26.]

*27 Obtain from no. 25 the equation of the pair of tangents from P,. [See
15.64, ex. (ii).] Deduce the equation of the director circle of the ellipse by using
the condition for these lines to be perpendicular (15.52 (2)).

*28 A variable chord through P, cuts the ellipse at A and B, and P, is chosen
go that P, and P, divide 4B (one internally and the other externally) in the
same ratio. Prove that P, lies on the line aw,/a®+yy,/b* = 1. [Method of
15.65(2).]

*29 (i) Defining the polar of P, wo x?/a?+12/b? = 1 to be the line

Y%
i
prove that if the polar of P, passes through P,, then the polar of P, passes
through P;.
(ii) Prove that the polar of a focus is the corresponding directrix.
(iii) Verify that the centre has no polar.

43 GPM II
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17.5 Normal

17.51 Equation of the normal

The reader should verify that the normals to the ellipse at P,, ¢,
and ¢ have respective equations

x_zl=y——y1 ’ _' (l)
@ fa® gy, [0*°
ax sec ¢ — by cosec ¢ = a®—b?, (i)
t(1—13)
—b(1 —£2)y = 2a®—b?
20tz —b(1 —t2)y = 2(a®—b?) TE - (iid)
17.52 Conormal points
The normal at ¢ passes through the point (h, k) if
t(1—12)
- 2\ = 2_p2
2ath —b(1 —t2) k = 2(a?—b?) e
ie. bkt* + 2(ah +a®— b%) 3 + 2(ah — a® + b2) t — bk = 0. (iv)

Since this equation is quartie in ¢, at most four normals can be drawn
Sfrom a given point (h, k) to the ellipse; and (apart from coincidences)
there will be either 4, 2, or no such normals.

Suppose that the normals at ¢, t,, t;, {, meet at (h, k); then these
numbers must be the roots of (iv). Since the term in #2 is absent, and
the constant term is minus the coefficient of t4, we have

ztltz = 0 a/nd t1t2t3t4 = - 1. (V)

These necessary conditions for the points ¢,, ¢, #5, £, of the ellipse to
be conormal (i.e. such that the normals at them are concurrent) can
also be shown to be sufficient. This is reasonable, because fwo indepen-
dent conditions are required in order that four lines shall pass through
the same point.

Example

From formula (iii) in 17.32 it follows that, when conditions (v) are satisfied,
then X3¢, = (n+4)7 for some integer n (positive, negative, or zero). Hence
2, = (2n + 1) 7 is a necessary condition for the points @, ¢y, P4, P4 to be conormal.
Clearly this single condition cannot be sufficient. The example in 17.32 shows
that four distinct conormal points can never be concyeclic.
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Exercise 17(c)
1 The normal at P meets the major axis at G, and PN is the ordinate at P,
Prove that OQ = ¢2.ON. What is the corresponding result for the minor axis?
2 Prove that SG = e¢.SP.
3 Use no. 2 to prove SG/S'G = SP/S’P, and hence that PG bisects SPS’.

Deduce that the tangent at P is equally inclined to SP, §'P. (Cf. Ex. 17 (b),
no. 14.) T

4 ¥ind the locus of the mid-point of PG.
5 Prove that 3x—y—1=0 is a normal to 2z%+3y? = 14, and find the
coordinates of its foot.
6 If lz+my+n = 0 is a normal to 22/a®+y2/b? = 1, prove that
a? b2 _ (aZ —_ b2)2
B mT T
7 PN, PN’ are the perpendiculars to the axes from a point P of the ellipse
x2/a? +y2/b% = 1. Prove that NN’ is always normal to & fixed concentric ellipse,
and give the equation of this curve.

*8 (i) If the perpendicular from the vertex A to the normal at the point ¢
meets the ellipse again at the point ¢’, use Ex. 17 (b), no. 5 to prove ¢’ = 2¢.
(ii) Deduce that the perpendiculars from a vertex to four concurrent
normals meet the ellipse again in four concyclic points.

*9 Prove that the circle through any three of four conormal points cuts the
ellipse again at the point diametrically opposite to the fourth. [If ¢,, @; are
diametrically opposite, then ¢; = ¢,+ 7 by Ex. 17(b), no. 2. Since

I¢, = (2n+1)m, therefore ¢, + P+ Ps+¢; = (2n+2)7.]

10 Prove that the feet of normals drawn from P; to 2#?/a®+ y%/b? = 1 lie on the
curve (a%—b?) zy + b2y, v — a2z, y = 0. Verify that this locus passes through P,
and the centre of the ellipse. [Method of 16.32, ex. (iii) (5).]

*11 Prove that the curves ar,y = (a®—b%) 2y +b%,x and b%?+a%y? = a%*®
intersect at points for which y satisfies

bi(a*z,y)? = ba*{(a®—b%) y +by,}* = a*(B*—y?) {(a® - b)) y + D% }%,
and that to each root of this quartic in y corresponds a single z given by

{(a®—b?) y + b%,} = = a®z,y. Deduce that in general four normals can be drawn
from P, to the ellipse.

17.6 The distance quadratic _
17.61 The line through P,(x,, y,) in direction 6 (15.26) has parametric
equations z=z,+rcosb, y=y,+rsind.
It cuts the ellipse 22/a? + y?/b® = 1 at points for which r satisfies
b¥(x; +r cos 0)2 + a*(y, +rsin )% = a?b?,
i.e. (a?sin?0+b2cos?0)r?+ 2(a%y,sind + b%x, cosO)r
+ (b2} + a?y3—a??) = 0. (i)
432
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This quadratic in 7 gives the (signed) distances from P, of the points
on the ellipse which lie on the line through P, in direction ¢, and is
called the distance quadratic for the ellipse.

Example*

Newton’s theorem.
The product of the roots of (i) is

2 g2 cos?@ sin2d
(eii-1) /(5 5)-

For chords P,QR, P,Q’R’ drawn in direc-
tions 6, 6’ it follows that

P,Q.P,R

PO PR
_ (cos?@ sin?@’\ [(cos®@ sin2d Fig. 174
- a? b2 a? p: )’

which is independent of x, and y,. Hence if chords P,QR, P,Q’R’ are drawn
through P, in fized directions 6, ¢, the ratio P,Q.P,R:P,Q’.P,R’ is in-
dependent of P,.
In particular, when P, is at the centre O the ratio becomes OK2: 0K’2, where
the radii OK, OK’ lie in directions 6, §’. Hence Newton's theorem:
P,Q.PL.R OK:?

P,Q".P,R"~ OK™’

It is a generalisation of the ‘product property’ of chords of a circle, and reduces
to this property when b = a. Also see Ex. 17 (d), no. 186.

By letting B - @ and R’ - @’ we see that the ratio of the tangents from P,
i8 equal to the ratio of the parallel radii.

17.62 Chord having mid-point P,

If the chord through P, in direction 6 is bisected at P, then the
roots of the distance quadratic will be equal and opposite, so that

b%*x, cos 0 +a%y,sinf = 0.

This determines the direction cos @ : sin 8 of the chord which is bisected

at P,. Its equati
- Its equation z—2, _y-y,
cosf  sinf

therefore becomes
bz (x — ;) + aly,(y —y,) = 0,

) xx z2 92 ..
i.e. -a—;+?%=a—; ?b%' (ii)
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17.63 Diameters

If the chord (ii) above has gradient m, then m = —b%,/a%y,. Hence

the mid-points of all chords of gradient m satisfy
. b2
V="

Cf. Ex. 17 (b), no. 1. According to the definition in 16.41, this locus is
the diametert bisecting all chords of given gradient m. It is a straight
line which passes through the centre O of the ellipse, and is thus a
‘diameter’ in the usual sense.

Examples

(i) Tangents at the extremities of a diameter are parallel to the chords which
the diameter bisects (the ordinates to the diameter).
Let P, be a point where the ellipse is met by the diameter which bisects all
chords of gradient m; then y, = — bz, /a?*m.
The tangent at P, (17.44) has gradient — b%,/a%y,, i.e. m. The result follows.

(ii) Tangents at the extremities of any chord meet on the diameter which bisects
that chord.

Let the chord PQ have gradient m, and let the tangents at P and @ meet at
(#1,9,). Since PQ is the chord of contact from (x,,%,), its equation is
xx,/a? +yy,/b? = 1, and hence its gradient is m = — b%x,/a%y,. Therefore (x,, ;)
lies on y = —b%x/a’m, which is the diameter bisecting PQ.

(iii) The sum of the squared reciprocals of two perpendicular semi-diameters is
constant.
Choosing O for pole and Oz for initial line, the ellipse x2/a®+y?*/b* = 1 has
polar equation cos?f sintd
a (T T) =L
If P on the ellipse has polar coordinates (r,, 6;), then the coordinates of an
extremity @ of the perpendicular semi-diameter are (ry, 6, + 4m), where from

the equation, 1_ _ cos? 01+ sin?6),
s T a? b2
1 _ cos®(f,+14m)  sin®(6,+4m) sin?6;  cos?f,
and 3 a? b2 =@ T
1 1 1 1
Adding, b=,
ding r3 3 a? tp

17.64 Conjugate diameters
By 17.63, the diameter bisecting all chords parallel to the diameter
y =mz (i.e. having gradient m) is y = m'x, where m’' = —b%/a’m,
1 Strictly, the diameter is that part of the locus which is inside the ellipse.
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ie. mm' = —b%/a®. The symmetry of this relation shows that the
diameter which bisects all chords parallel to the diameter y = m'x
is y = me.

Two diameters which are such that each bisects all chords parallel
to the other are said to be conjugate.

Hence y = mx, y = m'x are conjugate diameters if and only if

’
mm = -3

It is clear from the definition that the axes of the ellipse are a pair of
conjugate diameters; they are the only perpendicular pair.

Examples

(i) If 0, ¢ are the extremities P, D of a pair of conjugate semi-diameters, then
0~ ¢=1in ~
For the gradients of OP, OD are respectively (b/a) tan 0, (b/a) tan ¢, and the
conjugacy condition is 2 b2
o o

from which tan @ = —cot ¢ = tan (¢ + 4m) and hence 6 = ¢ + .

The result shows that the corresponding points P’, D’ on the auxiliary circle
subtend a right-angle at O; i.e. to conjugate diameters of the ellipse correspond
perpendicular diameters of the auxiliary circle.

*(ii) Perpendicular diameters of a circle project into conjugate diameters of
an ellipse.

If y=ma, y=m'z, where mm’ = —1, are the diameters of the circle
x2+y® = a?, they project into the lines y = m,x, y = m;x where (see 17.23)
my = meos @, m; = m’ cos b, and 8o mym; = —cos? § = —b2/a?.

Alternatively, if A, p are perpendicular diameters of the circle, then all chords
parallel to 4 are bisected by A. Hence in the projected figure, all chords of the
ellipse which are parallel to x4’ are bisected by A’ (see 17.24); i.e. A’ and p’ are
conjugate diameters of the ellipse.

It follows that properties of diameters and conjugate diameters can often
be conveniently proved by orthogonal projection from a circle.

*(iil) The tangent at T to an ellipse meets the diameter OP at H, and the line
through T parallel to the conjugate diameter OD meets OP at K. Prove that

OH.OK = OP2.
First draw the figure for a circle, replacing ‘conjugate’ by ‘perpendicular’.
Then (fig. 175) OK.OH = 0712 = OP?, and since this can be written in terms of

ratios of lengths on the same line, the result follows by projection on any plane
through O. (The example in 17.24 (5) is a special case of the property just proved.)

*(iv) Ellipse referred to a pair of its conjugate diameters as (oblique) axes.
With the notation of fig. 176, we have by taking P, at ¥V in Newton’s
theorem (17.61, BX.) that Qvg oD2

PV.VP' OP*
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Choose OP, OD for axes of x and y, and then let @ be the point (z, y). Since
PV.VP' = (OP—-0V)(OP+0V) = a}—2?,

where a, = OP, the above equation becomes (on writing b, = OD)
_y Y
al—at” o¥
a2 yﬂ
a? B3
This has the same form as the standard equation of the ellipse, which corre-

sponds to the choice of the perpendicular conjugate diameters 04, OB for
coordinate axes.

ie. 1.

P

-

N

QI
Fig. 175 Fig. 176

Exercise 17(d)

1 Write down the equation of the diameter of 2x%+ 3y? = 1 which bisects
the chords parallel to 22— 5y+3 = 0.

2 Write down the gradient of the chords of 3z2+ 4y* = 2 which are bisected
by the diameter y = 3z.

In the following, OP and OD are conjugate semi-diameters whose other extremities

are P, D'.

3 If P is the point ¢ in fig. 176, show that the eccentric angles of D, P’, D',
Q, Q" can be taken as ¢ +3m, ¢+m, $—im, ¢+a, §—a respectively. Write
out in full the coordinates of P, D, P/, D’.

4 If P(acosg, bsing) and D(—asing, beos¢) are extremities of equal
conjugate diameters, prove that tan?¢ = 1. Deduce that the equations of
the equi-conjugate diameters are y = * bx/a, and show that they lie along the
diagonals of the rectangle which circumscribes the ellipse. State the length -
of OP.

5 Prove that OP?+40D? = a2 + b2,

6 (i) Prove that tangents at the extremities of a diameter are parallel to the
conjugate diameter. [Use ex. (i) of 17.63.]

(ii) Ifthe tangents at P, D meet at 7', prove OPT D is a parallelogram which
has area ab. (Cf. no. 15.)
(iii) If p is the distance of P from OD, prove that p.0OD = ab.

7 Deduce from nos. 5, 6(iii) that the (p,r) equation of the ellipse wo its

centre as pole 1s a?b?/p? = a®+ b2 —7r3, [OP = r; eliminate OD.]
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8 Prove PS.PS’ = 0D [Use Ex. 17 (a), no. 3.]

9 The two chords joining any point of the ellipse to the extremities of a
diameter are called supplemental. Prove that supplemental chords are parallel
to conjugate diameters.

10 (i) Prove that the lines pa®+ 2rzy+gy® = 0 are conjugate diameters of
x?/a®+y*/b® = 1 if and only if pa®+gb? = 0.
(ii) Find the condition for Iz +my+n = 0 to be the join of extremities of
two conjugate diameters of z%/a?+y2/b% = 1. [Use 15.54.]
(iii) Prove that the chord joining the extremities of conjugate diameters of
an ellipse touches another ellipse. [Use Ex. 17 (b), no. 8.]
11 If a tangent to the ellipse cuts the director circle at U, V, prove that OU,
OV lie along conjugate diameters.

Nos. 12-15 are easily solved by orthogonal projection.

*12 QR is a diameter, and P is any point on the ellipse. The tangent at @ meets
PR at T. Prove that the tangent at P bisects 7'Q.

*13 OP, OD are conjugate semi-diameters; the tangent at P meets the axes
of the ellipse at @ and R. Prove PQ.PRE = OD?.

*14 PQ is a diameter and HK is any chord; PH, QK cut at X; PK, QH cut
at Y. Prove that XY is parallel to the diameter conjugate to PQ.

*15 By projecting a circle and a circumscribing square, prove that the tangents
at the extremities of conjugate diameters PP’, DD’ form a parallelogram of
constant area 4ab. (Cf. no. 6 (ii).)

*16 Prove Newton’s theorem (17.61, ex.) by projection. [When written in
the form i@ .PlR B Pl QI PIR'

OK 'OK = OK’'OK’’
it involves ratios of lengths on parallel lines.]
*17 If parallel chords P, QR, P,Q’R’ are drawn through the fixed points P,, P,,
prove that the ratio P,@Q.P,R:P,Q’.P,R’ is independent of the direction.
[Use the distance quadratic.]
*18 Prove that the mid-points of variable chords through P, lie on

xxy Yy _ 2 YR
@ T ety

Show that this is an ellipse whose axes are proportional to those of the original
ellipse and whose centre is (34, v,).

*19 Use the distance quadratic to obtain the equation of (i) the tangent at
P, [two roots r = 0]; (ii) the pair of tangents from P, [equal roots r].

*20 Obtain the equation of the chord having mid-point P, from the ratio
quadratic in Ex. 17 (b), no. 25. [If the chord is AP, P,, theroots k : l are the ratios
P,P,: P, P, and P, A:AP,, and hence are I = 0, k/l = —}.]

Miscellaneous Exercise 17(e)

1 The lines bx+aty —ab = 0, btz —ay +abt = 0 meet at P. Find the locus
of P when ¢ varies.

2 With a given point S and line d for focus and directrix, ellipses are drawn.
Prove that the locus of the ends of the minor axes is a parabola. [Choose S for
origin.]
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3 Prove that the tangents at the ends of a latus rectum are concurrent with
the major axis and corresponding directrix.
*4 P, Q are the points 0, ¢ on the ellipse 2%/a®+y%/b® = 1, and the tangents
at P, Q meet at T'. Prove that triangle 7PQ has area

absin® }(¢ —0) sec 1(¢ —0).

[The corresponding area for the circle is 2AOPT — AOPQ; use projection.]

5 Y is the foot of the perpendicular from § to the tangent at P. Prove OP
and SY meet on the directrix corresponding to S.

6 Circles with centres S, S’ pass through a point P on the ellipse. Prove that
the common tangents to these circles touch the auxiliary circle, and that their
points of contact with this circle lie on the common chord of the original circles.
[Use pure geometry and the bifocal property.]

7 S is a given point inside a given circle of centre O and radius a;Yisa
variable point on the circumference, and p is the line through Y perpendicular
to SY.

(i) Choosing OS for z-axis, let p meet Oz, Oy at T, T'. Explain why tri-
angles TYO, TST' are similar, and prove OY .TT' = OT'.ST".

(ii) If S is (¢, 0) and p has equation lz +my +n = 0, prove that the equation
in (i) reduces to a?l2+ b2m? = n?2, where b2 = a%—c2.

(iii) Deduce that p touches an ellipse having S for focus and the given circle
for auxiliary circle.

*8 @ive the result corresponding to no. 7 (iii) when S lies outside the given
circle. What happens when 8 lies on the circle?

9 Find the common tangents to z2+y2 = 25 and x2/169 +3?/16 = 1.

10 The centre of an ellipse coincides with the vertex of a parabola, and they
have a focus in common. Prove that the common tangents meet the common
axis at its intersection with the other directrix.

11 (i) Prove that two tangents can be drawn from P, to z%/a?+y?/b% = 1 if
and only if #}/a?+ y}/b2~1 > 0. [Use 17.47, ex. (i).]

(ii) From the ratio quadratic (Ex. 17 (b), no. 25) prove that if

2?2y x2 o2

(i) (i) <o
then P, and P, lie on opposite sides of the ellipse. (Accordingly, the set of points
P, for which a%/a®+y2/b?— 1 > 0 is the outside of the ellipse.)

12 Using the contact condition ¢ = a?m?+- b? for the line y = max + ¢ and the
ellipse z%/a?+y?/b? = 1, show that the equation of the pair of tangents from
P(zy,y,) can be written (y;z—2,¥)? = a*(y—y,)* +b¥z—=,)%

Let these tangents cut Ox at E, F. Find the locus of P (i) if PE, PF are per-
pendicular; (ii) if EF has fixed mid-point (%, 0).

13 TP, TP’ are tangents to the ellipse. Find the equations of the line-pairs
through O parallel to TP, TP’ and to ST', S’T. By showing that they have the
same angle-bisectors, deduce that S7', 8’7" are equally inclined to T'P, TP’
respectively.

14 A point P varies so that the chord of contact from P to z2/a®+y?%/b% = 1
touches the ellipse z?/a?+ y%/b% = 1/k2. Find the locus of P.

15 The chord P@ of 22/a®+y2/b® = 1 touches the parabola y? = 4cx. Prove
that the tangents at P, @ to the ellipse meet on the parabola a?cy?+ btz = 0.
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16 Prove that points whose chords of contact are normals to the ellipse
x?/a?+y?/b* = 1 lie on the curve a®/z®+ b%/y? = (a? —b?)2.

17 If the normal at P meets the major and minor axes at @, G, and if OF is
the perpendicular from the centre O to this normal, prove that PF.PG = b?
and PF.P@ = a®.

18 Ifthenormal at an extremity of a latus rectum passes through an extl emity
of the minor axis, prove that et +¢2—1 = 0.

19 P and Q are variable points on x?/a?+ y2/b® = 1 such that the mid-point
of PQ lies on 22/a® + y2/b? = k2. Prove that the tangents at P, Q meet at a point
T on x?|a®+y?/b2 = 1/k?. [The chord of contact from T'(x,,%,) is the same line
as the chord PQ having mid-point (x,, y,), where x2/a®+y2/b% = k2.]

20 The tangents to 22?/a?+y2/b% = 1 at P and Q meet at T'(h, k). Obtain the
equation of the line-pair OP, 0Q. Find the locus of 7' when the diameters OP,
0Q are li) perpendicular; (ii) conjugate. Show that these two loci meet at four
points which are the vertices of a rectangle.

21 OP, OD are con;uga,te semi-diameters of the ellipse. The ou'cles with
diameters OP, OD meet again at Q. Prove that Q lies on the curve

2(w3+y2)2 = agwﬂ_!_bﬂyﬂ.
22 Lines are drawn through O perpendicular to the tangents from P, to

2%/a®+y%/b® = 1. If these lines are conjugate diameters of the ellipse, prove
that P, lies on the curve a®z? + b%? = a4+ b%. [Use the equation of the pair of
tangents in no. 12.]

Show that each of the following equations represents an ellipse, and find the cenire,
semi-axes, eccentricity, foci, and directrices.

23 He+2)9+3y—-1)2=1 24 82+ 9y*—162— 6y = 63.
25 3@—y+ 1) +4(x+y—1)=12.
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18

THE HYPERBOLA

18.1 The hyperbola §‘£= 1; asymptotes

18.11 Form of the curve

We now resume the discussion, begun in 17.13-17.15, of the
hyperbola 2 g
a® b2

1. - @)

. 22 Y2
From the equation, i 1+%5 > 1,

b~
so that |x| > a for all points on the curve; i.e. no part of the curve lies
between the lines x = +a. Further, since

2 22
B
we see that when 2 — 400 or - — o0, then also y - + c0. The curve
is therefore unbounded.

When z = a, the equation gives y%/b* = 0 which has the repeated
root ¥ = 0. Hence the line « = a touches the hyperbola at A(a,0): it
is the tangent at the vertex A. Similarly, theline # = —ais the tangent
at the vertex 4'(—a, 0).

Since ¢ > 1, we have ae > a and afe < a. Hence S lies on 04
produced beyond 4; and if the directix x = a/e cuts Ox at D, then D
lies between O and A. Similarly 8’ lies on A4’ produced beyond 4’,
and D’ lies between O and A’.

18.12 Asymptote: general definition

(1) Wesay that P, — co along a curve if one or both of its coordinates
z,, ¥, tend to + co while satisfying the equation of the curve.

For example, P, - oo along the parabola y* = 4ax when z, — 00 and
y, = o, or when z, > o and y, > —c0; P, —» oo along the curve
y = 1/2? when 2, > o0 and y, > 0, or when ; > —c0 and gy, - 0, or
when z; > 0 and y, - c0; but P, cannot tend to infinity along the
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ellipse 2%/a?+y2/b? = 1 because for every point P, on this curve we
have |z,| < @ and |y,| < b.

(2) An asymptote of a curve is a line such that the distance of a
point P, of the curve from this line tends to zero when P, — co along
the curve.

In this definition, ‘distance’ may mean the usual ‘perpendicular
distance’ or the ‘oblique distance’ measured parallel to some fixed
direction, e.g. the y-axis. The informal use of the term ‘asymptote’
in 1.41, Remark (), is consistent with our definition.

-18.13 Asymptotes of the hyperbola
If P, lies on the curve, then z2/a?2—y3}/b2 = 1 and so

1% _q[(BL Y i
)

The perpendicular distance of P, from the line z/a—y/b = 0 is

Ty % 1 l%
@5/ Gs)

which by (ii) is equal to

1 1\bm oy,
l/ (aﬁ*ﬁ) (77)'

When P, - co along the curve, this expression tends to zero. Hence
the line xja—y[b = 0 is an asymptote to the hyperbola (i). Similarly
the line x[a +y[b = 0 is an asymptote.
The equation of the asymptotes, regarded as a line-pair, is therefore
22 y2
a? b

Alternatively, the equation (i) can be written

0.

If y = max +cis an asymptote to the part
b a®\¥
y= +aw(l—;) s
then Yearve— Ynsymptote > 0 When  z — co.

Using the binomial series, we have for large z that

b la? 1
Yo—Ya = ‘—zx{l—-é;z+0(x—‘)}—(mx+c)

et (E-m)erol2):
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and this will tend to zero when z —> o only if ¢ = 0 and b/a—m = 0. Hence
the line y = bx/a is an asymptote. Similarly, y = —bx/a is an asymptote to

the other part b . a?\ 4
v=—g=(1-5)-
x? b2
i 2 _ p2 2
Since y:="> ((72—1) < 3%

for any point on the hyperbola, therefore y2 < y2; hence the hyperbola
lies entirely within that double angle between the lines y = + bxa which
contains the x-axis.

The angle between the asymptotes is 2tan=(b/a). Figures 177,
178, 179 illustrate the cases @ < b, @ = b, a > b respectively.

When b = a, the asymptotes are perpendicular and the curve is
called a rectangular hyperbola. The equation (i) becomes 22 —y? = a?;
and the eccentricity, given by b% = a?(e2—1), is e = /2.

y y Yy
S’ ATp/A\D\4 8 = S'AD o\ D \AS = S ATD 0 D q
Fig. 177 Fig. 178 " Fig. 179

18.14 The bifocal property: SP—S'P= +2a
If P lies on the branch which y
contains the focus S, then

§P-SP=ePM—c.PM —
e N7
= .MM’
S’ D' _—0 D) S x
(2a) / \
=e|—
e

= 2a.

If P lies on the branch enclosing Fig. 180
S’, then

SP_S'P—ePM—ePM e MM =e (%‘f) _ 2a.
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Conversely, the locus of a point P such that 8'P—SP = 2a is one
branch of a hyperbola having foci S, 8’ and transverse axis of length 2a,
viz. that branch which contains S.

Proof. The algebra of 17.22 shows that, with the same choice of axes,

a? g2
PRI
From triangle PSS’ we have PS’ < PS+88/, i.e.
2a = P8’ - P8 < 88" = 2¢,
so that @ < ¢. Hence we can write % = ¢—a?, and the equation be-
comes that of the standard hyperbola (i). Since b2 = a?(e2—1), we
have ¢ = a?+ b2 = a%?, and so ¢ = ae. Therefore S, S’ are the points

( + ae, 0), i.e. the foci. Finally, since SP < §’P, P lies on the branch
which contains S.

1.

Example

Mechanical construction of a hyperbola.

A rod APB is movable about the fixed end 4, and a string BPC passing
through a small ring P which slides along the rod is tied to the other end B and
to a fixed point C. If the string is kept taut,
prove that in general P moves on one branch
of a hyperbola with foci 4, C."

Let 7 be the length of the string. Then
BP+ PC = 1. Since

AP = AB—BP = AB—(l—PC)
= (AB-1)+PC,
therefore AP — PC is constant, viz. AB—1. 4
If AB =+ 1, the locus of P is that branch of
a hyperbola with foci 4. C which encloses C. Fig. 181

If AB =1, then AP = PC, and P lies on the
perpendicular bisector of AC.

18.2 Properties analogous to those of the ellipse ';i:+%:= 1

Since the equations of the ellipse and hyperbola differ only in the
sign of b2, it follows that many properties of the hyperbola can be
written down from the corresponding results for the ellipse by replacing
b2 by —b2. All such properties can be proved independently by the
methods used for the ellipse; the following is a summary.

(i) Chord P F;:
= 0% _ YNY:

z
é—z(x1+x2)_§/—2(yl+y2 = b +1.
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(ii) Tangent at P,: T _ Y% _

. T=T Y~y _
(iii) Normal at P,: o + 5 0.

(iv) The contact condition for y = mx + ¢ is ¢ = a®*m?—b? provided
|m| < b/a. The condition remains significant when m = + b/a, for then
¢ = 0; but the lines y = + bz/a do not cut the hyperbola anywhere
(see 18.13).

(v) If —b/a < m < bfa, the lines
| y = ma t.(ame—b2)
touch the hyperbola.

(vi) Director circle. The locus of the intersections of perpendicular
tangents to the hyperbola is the circle

22442 = a2 — b2
provided a > b. If @ < b, there are no perpendicular tangents.
(vil) Chord of contact from P;:

T Y% _

a® b2

(viil) Pair of tangents from P,:

(fi_?/_%_l) (?f’_?l_z_l) - (”_”_1_?1?&_1)”
a? b a? b3 a? b ’
(ix) Chord having mid-point P,:

oty _yy, 2% _Yi
a? b2 a2 B2

(x) Diameters. The mid-points of all chords of gradient m lie on

y = b%x/a®m. The properties of diameters stated and proved for the
ellipse in 17.63, exs. (i), (ii) remain true for the hyperbola.

(xi) Conjugate diameters. y = mx and y = m'z are conjugate if

and only if

mm’ = 5.

18.3 Parametric representation

18.31 Hyperbolic functions

The equation (i) in 18.11 is satisfied by # = ach¢@, y = bsh ¢ for
all ¢; but since ch ¢ > 0, these equations represent only one branch
of the hyperbola.
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Analogously to the treatment in 17.32, put 7 = th ¢; then

1472 27

=01 YT
If 7 is now unrestricted, these equations represent the whole of the
curve except the point 4’(—a, 0); but this can be obtained by letting
T—>o00. (If 7 still denotes th ¢, it can take only values between
—1and +1.)

18.32 The point ¢

The general representation above can be found directly. For since
the equation can be written

wla—1  ylb _
therefore ub “wati_ b say.
Hence (:E— ):?—/:(§+1) =12:¢:1,
a b \a
; zY.4_ 2Y. 98- (1 _ 42
ie. a'b'l (L+12):2¢: (1 —12),

Each value of t except ¢t = + 1 gives just one point of the curve; and
each point of the curve except A’(—a,0) corresponds to just one
value of ¢. We refer to the point

a1+t2 2bt
12 12
as the point t.

18.33 The point ¢

The equation (i) is also satisfied by = asec ¢,y = btan ¢ for all ¢.
We refer to (asec ¢, btan ¢) as the point ¢.
If we put ¢ = tan ¢, we obtain the point ¢ in 18.32.

18.34 Another algebraic representation
Since equation (i) can be written

G-
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We may pus +%_+¢ and hence f_i'i=l.
a b a b ¢
From these we find ' y
1 1 Q¢ Q
z= %a(t+?), y=1b (t—?).
A’ A o
These equations represent the whole of e
the curve; ¢t = +1 gives A(a,0), and p P
t = —1gives A’(—a,0). When ¢ increases
from —co to + oo, the parts traced are: Fig. 182
P'A’ A'Q PA AQ
t<—1 -1<t<0 0<t<l 1<t

18.4 Chord, tangent, and normal

To each of the preceding representations corresponds a standard
form of equation for chord, tangent, and normal. By methods already
illustrated in Ch. 17, the following results can be obtained.

Chord 0¢: gcos %(0—¢)—%/sin%(0+¢) = cos $(0 + ¢).

x
tita: (1 +t1tz)a—(t1+t2)% = 1—1t,.
z Y
Tangent at ¢: asech—ztanqi = 1.
. % _ oY _1_p
t: (L+82)-~2t0 = 122,

Normal at ¢: ax cos ¢ + by cot ¢ = a%+ b2

8(1+42)

t: 2atr+b(1+?)y = 2(a2+b2)—1:_t‘7'

The reader should verify these; also see nos. 1315 of the following
Exercise, which contains examples similar to those already given for
the ellipse together with some properties of the asymptotes of the
hyperbola.

Exercise 18(a)

1 If Pis the point (z, y) on the hyperbola, prove SP = ex—aand 8P = ex+a.

2 A shot is fired from A so as to strike an object B. The sound of the firing
is heard at P, n seconds before the sound of the destruction of B. Find the locus

44 GPMII
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of P. [Let = velocity of sound, v = velocity component of the shot parallel
to AB; then

4_%1_’+n = A—f+?u—B, so that AP-—-PB =u(ATB— ) = constant.]

3 Find the locus of the centre of a circle which touches externally two given
circles whose centres are 4, B.

4 (i) State the order in which the hyperbola is traced by the point

1+ 2bt )
(“r_—tz' ia
as ¢ increases from — oo to + co.
(ii) What is the condition for the points #,, £, to (a) lie on the same branch;
(b) be diametrically opposite?

5 P, P’ are the points ¢, — ¢ on the ellipse z%/a®+y%/b* = 1 whose vertices
are A, A’. If AP meets A’P’ at @, prove that the locus of @ is the hyperbola
z%ja?—y2/b? = 1.

6 If the points 6, ¢ are the extremities of a focal chord of 2%/a?—y2/b% = 1,
prove that l—e 1+e

tan 10 tan ¢ = i7e & 1oe

7 Prove that lrx+my+mn =0 touches z%/a®—y?/b® =1 if and only if
a?l? — b2m? = n2.

8 (i) The tangent at any point P of the hyperbola meets a directrix at Z.
Prove that PZ subtends a right-angle at the corresponding focus.

(ii) Deduce that tangents at the extremities of a focal chord meet on the
corresponding directrix.

9 Y is the foot of the perpendicular from S to the tangent at any point P of
the hyperbola. Prove that Y lies on the circle 22 + y? = a2 (the auxiliary circle).

10 Prove that the foot F' of the perpendicular from a focus to an asymptote
lies on the auxiliary circle and on the corresponding directrix. .

[OF = 08cos FOS = ... = a; also 0S.0D = a? = OF?, so ODF is a right-
angle.]

11 The line joining the focus S to the point P on a hyperbola is parallel to an
asymptote. Prove that this asymptote, the directrix, and the tangent at P
are concurrent.

12 The point P on the hyperbola is such that the tangent at P, the latus
rectum through S, and an asymptote are concurrent. Prove that SP is parallel
to the other asymptote.

Writh the representation in 18.34, obtain the equation of

13 the chord ¢,¢,. 14 the tangent at ¢. 15 the normal at ¢.

16 Prove that if the normals at the points ¢, 2, Z5, ¢, of 18.32 are concurrent,
then Xt ¢, = 0 and ¢, 2,238, = — 1.

17 Prove that the feet of four concurrent normals cannot all lie on the same
branch. [If they do, then by no. 4 (ii) (@) |¢,| are either all less than 1 or all greater
than 1, contradicting |¢,2,¢;2,| = 1 in no. 16.]

18 If the normals at ¢, ¢y, @3, P, are concurrent, prove Z¢;, = (2n+1)7
where n is some integer (positive, negative, or zero).
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19 Show that the feet of the normals from P, to z?/a?—y2/b? = 1 lie on the
curve a?y(x, — )+ b2x(y, — y) =0.
20 If the points t,, t,, t,, t, are concyclic, prove X(t, +£tytet,) = O.

18.5 Asymptotes: further properties

18.51 Lines parallel to an asymptote meet the hyperbola only once.
Any line parallel to the asymptote z/a +y/b = 0 has equation

. Y_
E+b—-k.

It meets the hyperbola at points ¢ for which

ie. (L+28)® = k(1 —1%),
ie. t=—1 or 1+t==Fk1-1t).
Since £ = — 1 gives no point of the curve, there is a unique inter-

section given by ¢ = (k—1)/(k+1). A similar result holds for lines
parallel to xja—y/b = 0.

18.52 The equation of the tangent at P, tends to the equation of an
asymptote when P, — oo along the curve.

The equation 2z, /a% — yy,/b% = 1 of the tangent at P, can be written

where ——Z=1, ie. Z=—

The last equation shows that when P, — oo, then y,/z, — b/a or —b/a.
The limit of the equation of the tangent at P, is thus either

Remark. An asymptote is sometimes defined as ‘the limit of the
tangent at P, when P, > oo along the curve’. For curves whose
equations are algebraic, it can be shown that the two definitions are
equivalent; but for general curves a line may be an asymptote

44-2
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according to the definition in 18.12, but not according to that above
because the equation of the tangent may have no limiting form when
P, — 0.

18.53 The family 22/a® — y2[b? = k of hyperbolas has the same asymptotes
for all k.

For the equation can be written in standard form as

2 2
2 9
ka®  kb?
and the asymptotes have equation
x2 y2 _ . x? y2 _
k—a—z—m—o, 1.e. ajz—ﬁ-—o,
which is independent of k.

Example

In the quadratic which gives the meets of x?/a?—y2/b? = k with the line
lz4+my+mn = 0, the coefficients of z? and x are independent of . Hence the
sum of the roots is independent of k. Taking k = 1, 0, it follows that the z-co-
ordinate of the mid-point of any chord of the hyperbola #%/a? —y2/b? = 1 is the
same as the z-coordinate of the mid-point of the same chord of the asymptotes
2%/a®—y?/b* = 0. The same is true of the y-coordinates since lx+my+n = 0
gives y uniquely in terms of x. Consequently, if the line meets the hyperbola at
P, P’ and the asympiotes at Q, Q’, then PP’ and QQ’ have the same mid-point M.

Since PM = MP’ and QM = MQ’, therefore PQ = P’Q’. In particular,
when P’ - P this becomes PQ = PQ’; i.e. the part intercepted on a tangent by
the asymptotes is bisected at the point of contact.

18.6 The conjugate hyperbola

18.61 Definitions

In 17.15 we defined the iransverse axis to be the intercept 44’ made
by the hyperbola on Oz. Although the curve does not cut Oy, it is
now convenient to consider the points B(0,5) and B’(0, —b) on this
axis of symmetry and (analogously to the ellipse) to call BB’ the
conjugate axis of the hyperbola.

Two hyperbolas are said to be conjugate when the transverse and
conjugate axes of one are respectively the conjugate and transverse
axes of the other.

It follows that the hyperbola conjugate to

2% y? .
e @
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is 2 y? s

P —‘Z—z = -1 (ii)
For, with Oy for x-axis and Oz’ for y-axis, the equation of the con-
jugate hyperbola is #2/b% — y2/a? = 1. On rotating these axes clockwise
through a right-angle to positions Oz, Oy, the equation becomes
y2[b% —x2la® = 1, i.e. (ii).

AV
A

Fig. 183

The two hyperbolas have the same asymptotes, viz.

2 2
2*2—% = 0. (i)
Remarks

() Equation (iii) differs from (i) by the same constant that (ii)
differs from (iii). If we transform these equations by a change of axes
(15.73), this relationship will be preserved.

(B) The equation of any hyperbola whose asymptotes are
4x+biy+e, =0, ax+byy+c,=0
iS (a1x+b1y+01) (azx""bzy"‘cz) = A,

where A is constant; for this equation differs only by the constant A
from the equation of the asymptotes, viz.

(@12 +by +cy) (@224 by +¢5) = 0.

By writing —A for A, we obtain the equation of the conjugate
hyperbola.

(y) In particular, any hyperbola whose asymptotes are the co-
ordinate axes = 0, ¥ = 0 has equation zy = A.

18.62 Conjugate diameters

(i) If a pair of diameters are conjugate wo a hyperbola, they are also conjugate
wo the conjugate hyperbola.
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The argument which leads to property (xi) in 18.2 can be applied to

x2 2 .

-Gk (iv)
and gives the same conclusion independently of k: y = maz and y = m’z are
conjugate diameters of each of the hyperbolas (iv) if and only if mm’ = b2%/ad.
The result stated concerns the cases k = +1, — 1.

(ii) Intersections of the hyperbolas with conjugate diameters.

The diameter y = ma cuts hyperbola (i) if and only if |m| < b/a. The con-
jugate diameter y = b2x/a®m cuts (i) if and only if |b%/a®m| < b/a, i.e. [m| > bja.
Hence of two conjugate diameters, only one meets the hyperbola.

The other meets the conjugate hyperbola. For if y = mz cuts (i), then |m| < b/a;
in this case [b%/a®n| > b/a, so that y = b%z/a®m cuts hyperbola (ii).

(iii) Ewtremities of conjugate diameters.

The points of intersection are called the extremities of the diameters, despite
the fact that only one pair can lie on each curve.

If P(asec ¢, b tan ¢) is an extremity of one diameter, then m = b tan ¢/asec ¢.
Hence the conjugate diameter has gradient m’ = b2/a*m = bsec ¢/a tan ¢, and
its equation is y = m/z. It cuts the conjugate hyperbola where

z* l_seczqﬁ -1,

a? tan?¢
i.e. where z = +atan¢ and hence y = +bsec¢. Thus P(asec ¢, btan¢) and
D(atan ¢, bsec ¢) are extremities 6f conjugate semi-diameters.

Exercise 18(b)

1 If e, ¢’ are the eccentricities of a hyperbola and its conjugate, prove
1je2+1/e2 = 1.

OP, OD are conjugate semi-diameters of the hyperbola a2fa?—y%(b2 = 1. Prove
the following.

2 OP2 ~ OD? = a®—b2.

3 The mid-point of PD lies on an asymptote.

4 PD is parallel to an asymptote. 5 The area of triangle OPD is }ab.

. 6 Prove that the tangents at the extremities of a diameter are parallel to
the conjugate diameter. ’

7 Prove that the tangents at the extremities of two conjugate diameters
intersect on the asymptotes.

8 Deduce from nos. 5-7 that tangents at P, D and their diametrically
opposite points P/, D’ form a parallelogram of constant area 4ab, whose vertices
lie on the asymptotes.

9 Deduce from no. 6 that the part intercepted on the tangent at P by the
asymptotes is bisected at P.

10 Prove SP.S’P = OD2, [Use Ex. 18(a), no. 1.]

11 If P lies on the conjugate hyperbola, prove that its chord of contact to the
original hyperbola touches the conjugate at the point P’ diametrically opposite
to P.
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12 Find the equation of the hyperbola whose asymptotes are z—2y+1 = 0
and 3r—y+2=0 and which passes through the point (0,1). [18.61,
Remark (f).]

*13 Given that the equation 2z2—5zy—3y?+z+1ly—8 = 0 represents a
hyperbola, find the equations of the asymptotes and the equation of the con-

jugate hyperbola. [Choose A so that 222 — 52y — 3y? +x + 11y + A = O represents
a line-pair.]

18.7 Asymptotes as (oblique) coordinate axes
18.71 xy=c2
The product of the perpendiculars from a point P, on

22 ?/2

Pt ol

Tig. 184

to the asymptotes z/a+y/b = 0, z/a—y/b = 0 is ‘

SR S V7 S Y
a b a b a® b?
1 IV\#/1 1\¢# 1 1 |
@t (a_2+§ @ |
_ 1
1 1
PERNE

because x%/a? —y%/b% = 1.

Choosing the asymptotes for axes Oz’, Oy’, let P, have coordinates
(3, %7)- Then the lengths of the perpendiculars are x]sinw, y}sinw,
where w is the angle between the asymptotes, and hence

1
2 ot? 32 — e
2y, 8% 0 = 1—-——/a2 162
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i.e. P, satisfies ‘s g a?h?
Ty sIn“w = S 7a-
a?+b

Since w = 2 tan~!(b/a),

2 tan o )2 _( 2bja \®  4a?b®
1+tan2io) \1+08%a?)  (a%+02)%

sin?w = (

and the equation becomes
2y = Ha*+9).

Omitting dashes, this can be written
2y = c?,

where ¢? = }(a?+b2), and is the standard equation of the hyperbola
referred to its asymptotes as (oblique) coordinate axes.

Example

Any equation of the form xy = ax + by + ¢ represents a hyperbola whose asymp-
totes are parallel to Ox, Oy.

For the equation can be written (z—b)(y—a) = ab+c; i.e. o'y’ = ab+c
after a change of origin.

Thus the locus in ex. (iii) (b) of 16.32 is a rectangular hyperbola, known as
the hyperbola of Apollonius of (h, k) wo the parabola y? = 4ax. See also Ex. 17 (¢),
no. 10, and Ex. 18(a), no. 19.

18.72 Parametric representation
The equation zy = ¢2 can be written

=1, say,

so that = ¢t and y = ¢/t. For each value of ¢ except ¢ = 0 the point
(ct, c[t), referred to as the point t, lies on xy = c?; and to each point of
the curve corresponds just one value of ¢. The parametric equations
can also be written L 2. 1.
riy:c=1%:1:1¢.

The methods illustrated in 16.22 (2), (3) and 16.24 (1) do not appeal
to ‘gradient’, and can be used in the present case of oblique axes to
prove that the chord ¢,t, has equation

z+tty = oty +15),
and hence that the tangent at t is
x+t%y = 2ct.
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Example

A tangent to a hyperbola and the asymp-
totes form a triangle of constant area.

The above tangent at P(ct,c/t) meets
Oz, Oy at Q(2ct,0), R(0, 2¢/t). Hence

0Q = 2¢t, OR = 2¢/t,
and the area of triangle OQR is
30Q.0ORsinw = 2¢*sin w.

This work also shows that P s the mid-
point of QR; cf. the example in 18.53. Fig. 185

8y

18.73 The rectangular hyperbola

When o = {7 the asymptotes Oz, Oy are perpendicular, and the
hyperbola xy = c? is rectangular (18.13). In addition to the results in
18.72, the usual method now shows that the normal at t has equation

B3 —ty = c(tt—1).

Example

The orthocentre of a triangle inscribed in a rectangular hyperbola lies on the
curve.
The chord ¢, ¢, has gradient

c ¢ (ct ) 1
z_Z —Cly) = —
hot e 1l

similarly, chord ¢3¢, has gradient — 1/¢3¢,. These chords are perpendicular if
and only if ¢, 3242, = — 1.

If the given triangle has vertices #;, t;, ¢;, then the above work shows that
there is a point ¢, on the curve (viz. that for which ¢, ,4,¢, = — 1) such that chord
t,ty | chord ty¢,. The symmetry of the relation t,¢,¢,2, = — 1 shows that also
8,83 1 tyt, and tyt5 | t,¢,. Hence this point ¢, = — 1/,¢,¢, is the orthocentre of
triangle &;2,,.

It is also clear from the relation #,%,¢,¢, = — 1 that the point ¢, is the ortho-
centre of triangle Z4¢,¢,, and so on. The set of four points ¢,, ¢,, t,, ¢, on the curve
may be called orthocentric.

Exercise 18(c)

In the following examples the sign {w} indicates results which are true for the general
hyperbola xy = c®. The reader who wishes to avoid oblique axes may prove them
Sfor the rectangular case only.

1 {0} The line lx+my+n = 0 is a tangent if and only if 4¢2m = n?.
2 {w} Tangents at ¢,, {; meet at

(2ct1t, 20)
t1+t2’tl+t2 )
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3 {w} The chord P, P,is c®x+x, %,y = ¢}z, +2,).
4 {w} The tangent at P, is 2y, +z,y = 2¢2. Could this be written down from
zy = c? by the ‘rule of alternate suffixes’?
5 {w} The chord of contact of tangents from P, is xy, +x,y = 2¢2.
*6 {w} Joachimsthal’s ratio quadratic is
(xays—*) k2 + (xy, + 21y — 20%) kKl + (2, y, — ¢*) I = O.
*7 {0} The pair of tangents from P, is 4(z, y, — ¢?) (zy — ¢2) = (2y, + 2,y — 2¢?)2.
8 The normal at P, is 2z, —yy, = 27— 3.
9 The distance quadratic is
728in 6 cos 6+ (x, 8in 0 +y, cos 0) r + (z,y, —c?) = 0.

10 The chord having mid-point P, is xy, + 2,y = 2x;y;. [Use no. 9 or no. 3.]

11 The diameter bisecting all chords of gradient m is y = —ma.

12 y = ma, y = m'x are conjugate diameters if and only if m+m’ = 0.

13 {w} The conjugate hyperbola is zy = — c2. [Begin as in 18.71.]

14 Conjugate semi-diameters are equal in length and make complementary
angles with the transverse axis; and the asymptotes bisect the angles between
them.

15 {0} Prove that lines drawn from a variable point P on a hyperbola to any
two fixed points E, F on the curve intercept a constant length on either
asymptote.

16 {w} If the tangents at P, Q meet at T, prove that OT bisects PQ.

*17 {0} A quadrilateral circumscribes a hyperbola. Prove that the line
joining the mid-points of its diagonals passes through the centre of the
hyperbola.

18 Prove that no two tangents to a rectangular hyperbola can be perpen-
dicular.

19 If P, @, R are points on a rectangular hyperbola such that PQ subtends a
right-angle at R, prove that the tangent at R is perpendicular to PQ.

20 Concyclic points.

(i) Show that the circle 22+y%+2gx+2fy+d = 0 cuts the rectangular
hyperbola xy = ¢? at points ¢ for which
c2t4 4 2get® + de? + 2fct + ¢ = 0.
(ii) If the points ¢, ¢, t5, ¢, are concyclic, prove ¢;t,4,¢, = 1.
(iii) By considering the fourth intersection of the hyperbola and the circle
through the points ¢,, t,, 5, prove the converse of (ii).

21 Useno. 20(ii) to prove that the common chords of a circle and rectangular
hyperbola are equally inclined in pairs to either axis of the hyperbola.

22 If circles touch a rectangular hyperbola at a fixed point, prove that their
common chords not through this point lie in a fixed direction.

*23 (i) Prove that the circle of curvature at £ meets the rectangular hyperbola
again at the point 1/3.

(ii) Points P,, P,, P;, P, on the rectangular hyperbola are concyelic. If
@, is where the circle of curvature at P, meets the curve again, prove that
@y, @3 @y, Q, are also concyclic.

24 The points A, B, C, D on a rectangular hyperbola are not concyclic. If
the circles BCD, CDA, DAB, ABC meet the curve again at 4’, B’, C’, D’
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respectively, prove that the mid-points of the chords 44’, BB, CC’, DD’ lie
on another hyperbola having the same asymptotes as the given one.

25 Prove that the circumcircle of triangle £, £, ¢; cuts the rectangular hyperbola
again at the point diametrically opposite to the orthocentre of this triangle.
[Use 18.73, ex.]

26 If a circle and rectangular hyperbola meet at A, B, O, D, prove that the
orthocentres of triangles BOD, CDA, DAB, ABC are concyclic. Prove also
that the tangents to the hyperbola at C, D meet at a pomt on the diameter
which is perpendicular to 4B.

27 (i) Prove that the normal at ¢ to the rectangular hyperbola meets the
curve again at the point — 1/¢2,

*(ii) Verify from no. 23 (i) that this is diametrically opposite to the point
where the circle of curvature at ¢ meets the curve again.

28 The normal at P meets the rectangular hyperbola again at Q. Prove that
the mid-point of PQ lies on 4233 4 c%(z® —y?)% = 0.

29 Conormal points.

(i) If the normal to the rectangular hyperbola xy = c? at the point ¢ passes
through (k, k), prove ct*—ht3 +kt—c = 0

(ii) If the normals at ¢, ¢y, £, ¢, are concurrent, prove that £, £,,t, = — 1 and
Ztty = 0.

30 Prove that four conormal points are also orthocentric, but that four
distinct conormal points can never be concyeclic.

31 The axes being rectangular, prove that the equation y = (ax +b)/(cz +d),
¢ % 0, represents a rectangular hyperbola whose asymptotes are x = —d/c,
y = afc. What are the coordinates of its centre? [Use 18.71, ex.]

32 A variable line passes through a fixed point and meets two given inter-
secting lines at P, Q. Prove that the locus of a point dividing PQ in a given ratio
is a hyperbola whose asymptotes are parallel to the given lines. [Use oblique
axes.]

33 A variable chord of zy = ¢? passes through the fixed point (p,g). Prove
that the locus of its mid-point is another hyperbola, and give the equations of
its asymptotes.

Miscellaneous Exercise 18(d)

1 If w is the angle between the asymptotes of a hyperbola, prove that its
eccentricity is sec }w.

2 PN is the ordinate of a point P on 2?/a?—y3/b® = 1; NT is a tangent from
N to the auxiliary circle 22+ y? = a?. If P is the point ¢, prove Ni 0T = ¢ and
NP:NT =b:a.

3 With the notation in 17.23 and cos 6 = b/a, what is the orthogonal pro-
jection of the rectangular hyperbola 22 —y2 = a?? Show that the rectangular
hyperbola xy = ¢? projects into another rectangular hyperbola.

4 A(a,0) and A’(—a,0) are fixed points. A variable circle through 4 and
A’ cuts Oy at P, P’. If AP, A’P’ meet at Q, prove that the locus of @ is the
rectangular hyperbola z*—y? = a2,

5 A variable circle of centre P touches each of two unequal intersecting
circles. Prove that the locus of P is an ellipse and one branch of a hyperbola.
[Use the converse bifocal property.]
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6 B is a fixed point in the plane of a given circle of centre 4, and P is a
variable point on the circumference; BP meets the circle again at @, and the
parallel to AQ through B meets AP at R. Prove that the locus of R is an ellipse
or a branch of a hyperbola according as B is inside or outside the circle.

7 The tangent at P to z%/a®—y2/b® = 1 meets the asymptotes at @, R;
V@, VR are parallel to the axes of the hyperbola. Prove that V lies on one of
the rectangular hyperbolas xy = + ab.

8 The tangents at P, @ to a hyperbola meet an asymptote at H, K. Prove
that PQ passes through the mid-point of HK. [Use xy = ¢2, oblique axes.]

9 The tangents at two points P, P’ on a hyperbola meet one asymptote at
@, @', and the other at B, R’. Prove QR’, Q'R are parallel.

10 For the hyperbola z = 4a(t+t1), y = 3b(¢—¢-1), find the equation of the
chord joining the points ¢ given by w2+ vt +w = 0.

11 Prove that tangents to y* = kx at (kif k) and (K, kt,) meet at the
point (ktyt, 3k(ty+1,)).

The tangent to y2 = kx at any point P cuts the hyperbola 22— 4y% = k2 at
U and V. If @, R are the points of contact of the other tangents from U, V to
the parabola, prove that the chord QR touches the circle 22 + 32 = k2.

12 Prove that the chord of contact from any point (x,,y,) on the hyperbola
z%/a® —y?/b? = 1 to the ellipse z?/a%+y?/b? = 1 touches the hyperbola, and give
the coordinates of the point of contact.

13 A variable chord of 2?/a® —y2/b% = 1 touches the circle 22 + 42 = ¢2. Prove
that the mid-point of this chord lies on

22 2\ 2 xz y2
(;z—%;) = °'2(a—«+i,i) -

14 The normal at a variable point P on the rectangular hyperbola xy = ¢?
meets the asymptotes at @, B. Prove that the mid-point of QR lies on the curve
4%y3 + c(2® — y?)? = 0. Explain why this is the same locus asin Ex. 18 (¢}, no. 28.

15 Prove that the tangent and normal at P on a hyperbola bisect the interior
and exterior angles (respectively) between SP, S’P. [Either prove SG = ¢.SP
and use pure geometry (Ex. 17(c), no. 3); or use ' —r = + 2a¢ and calculus
(8.14, ex. (iv)).]

16 If Y, Y’ are the feet of the perpendiculars from S, S’ to the tangent at P
to the hyperbola, prove that SY.S8’Y” = b? and that triangles SPY, S’PY” are
similar. Hence prove that p/r = (b2/p)/S’P, where p = SY and r = SP. Deduce
from the bifocal property that the (p,r) equation of the hyperbola wo the focus S
as pole is b2[p? = 1 + 2a/r, where + corresponds to the branch enclosing S.

17 If an ellipse and a hyperbola have the same foci S, 8’ (i.e. are confocal),
prove that they cut orthogonally at each common point P. [The tangents at P
are respectively the external and internal bisectors of angle SPS".]

18 (i) Prove that the equation z*/(a®+A) +y%/(b2+A) = 1 (a > b) represents
an ellipse, a hyperbola, or nothing according as A > —b2, —a?2 <A < —52 or
A < —a? What happens when (a) A = —b%; (b) A = —a??

(ii) Prove that the foci of the above conic are independent of A. (When A
varies we obtain a family of confocal conics.)
*19 Prove that through any given point P in the plane (other than the common
foci) pass two conics of the family in no. 18, one of which is an ellipse and the
other a hyperbola. [Express the equation as a quadratic in A, say f(A) = 0; its
discriminant reduces to (a®—b%—22+y?)2+ 4x2y?, which is positive (unless
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2% = a?—b? and y = 0), so there are distinct roots A; > A,. Since f(c0) > 0,
S(—b%) <0, f(—a?) >0, the roots satisfy —a? <A < —b2%, —b? <A respec-
tively.] (From 5.72, ex. (ii) or from no. 17 it follows that this ellipse and hyper-
bola cut orthogonally at P.)

20 Write down the condition for the lines px? + 2rzy + qy® = 0 to be conjugate
diameters of (i) #?/a®—y?/b? = 1; (ii) the rectangular hyperbola xy = c2.

21 (i) Obtain the distance quadratic for the hyperbola z?/a% —y2/b% = k.

(ii) Deduce that if chords P, QR, P, Q’R’ of the hyperbola in (i) are drawn
through P, in given directions, then the ratio P, Q.P, R:P,Q’. P, R’ is indepen-
dent of P, and k.

*(iii) Hence prove the analogue of Newton’s theorem (17.61, ex.) for the pair
of conjugate hyperbolas #?/a?— y2/b% = + 1.
*22 Obtain the equation x%/a2—y2/b2 = 1 of the hyperbola referred to a pair
of conjugate diameters OP, OD as coordinate axes, where OP = @, and OD = b,.
Explain why the new equation of the asymptotes is x?/a2—y2/b? = 0. [See
17.64, ex. (iv).]

Give the centre, semi-axes, eccentricity, foci, directrices, and asymptotes of the
JSollowing hyperbolas.

23 9y*—4a® = 36. 24 $(x+12-Hy+2)?2=1

25 14422 —25y? + 50y = 169.
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19

THE GENERAL CONIC; s =ks'

19.1 The locus s=0

19.11 Scheme of procedure
It hasnow been shown that the general equation of the second degree

s = ax?+ 2hxy +by® +29x + 2fy +c = 0

represents either a conic (in the wide sense of 15.72), a circle, a pair
of parallel lines, or nothing; cf. the last paragraph in 15.74. In this
chapter it will be convenient to refer to the locus s = 0 as a ‘conic’,
even when it is a circle or a parallel line-pair.

We begin the chapter by applying to the locus s = 0 the general
methods for finding chords, tangents, etc. already illustrated in-
dividually for the parabola, ellipse, and hyperbola. The work will thus
be a summary and unification of ‘ conics’, and will contain as particular
cases many results already obtained for the special standard forms of
equation of these curves. Had the general case been treated first,
considerable repetition would have been avoided; but dealing with
the special forms separately increases the appreciation of the methods
themselves. Some of our work will apply unmodified when ¢ = 0
represents a line-pair. The reader should consider whether the results
remain significant in this degenerate case.

The second part of the chapter is independent of the first, and is
concerned with a principle which permeates the whole of coordinate
geometry. The student who is pressed for time may turn at once to
19.5 et seq.

19.12 Notation

" To simplify the writing we introduce the following notation.
(@) We continue to put

s = ax®+ 2hxy + by + 292 + 2fy +c.
(b) We write

8y = aw,x;+ h(@,y; +2;9) + by, y; + 9(@; + ) + fly; +y;) +c.

Clearly s;; = 8.
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(¢) The result of omitting the suffix j throughout in (b) is denoted
by s;; thus

8; = ax;x +h(z;y +2y;) + by y +g(x + ) + fly +y,) +c.

This is what would be obtained from s by applying the ‘rule of
alternate suffixes’ (15.63, Remark).
For example,

811 = aal+ 2ha, y, + by} + 297, + 2fy; +c,

819 = Ay Ty + M(T1Yp + T2 Y1) + Y1 Yo + 921+ %) +f(y1 +4) +C,

829 = ax}+ 2hx, Y, + by + 292, + 2y, + ¢,
8 = azyx+ Az y +xyy) + by y +g(@+2,) (Y +y1) +o,
8y = Az + My + xY,) + by y +g(x +25) +f(y +ya) +e.

Notice that
8; = (a2 +hy; + ) @+ (ha; + by + 1) y + (g2 + fy; +©),
and s; = (ax+hy+g)z;+ (hx+by +f)y; + gz +fy +c). .

There are similar forms for s,;.
Since s; is linear in z and y, the equation s; = 0 represents a line.
The geometrical interpretation of s, s,;, 8y, is therefore as follows:

8 = 0 is the equation of the conic;
8;; = 0 is the condition for P, to lie on this conic;
8,5 = 0 is the condition for P, to lie on the line s, = 0,
or for F, to lie on the line s; = 0.’

Not only does this notation make discussion of the general conic as
concise as for the various special forms, but it provides a suggestive
means of obtaining and memorising some of the results themselves; |
e.g. see 19.13. The reader should check each of the following general
results with the corresponding ones obtained for the special equations
used in Chs. 16-18; but first do Ex. 19 (a), nos. 1-3.

19.13 Chord P, P, of s=0

Consider the equation
Sl + sz = § 12°

It is linear in = and y, and therefore represents a line. It is satisfied
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by P, for s;; = 0 because P, lies on s = 0; and it is satisfied by P,
since sy, = 0. Hence it is the equation of the chord P, P,.

Letting P, - P, along the conic, we obtain 2s, = s,; as the limit of
the above equation, i.e. 2s, = 0. Hence the equation of the tangent to
s=0at P iss; =0.

19.2 Joachimsthal’s ratio equation
19.21 The ratio quadratic for s=0
The point dividing P, P, in the ratio k:! has coordinates
(l“'1 +kzy Uy, + k?/z)
I+ > 1+k J°
It will lie on s = 0 if and only if
a(ley + kxy)® + 2h(ley + k) (lyy + kys) + b(ly, + ky,)*
+ 29(ley + kxy) U+ K) + 2f (ly, + ky,) C+ k) +c(l+ k)2 = 0,
ie. (ax}+ 2hx,y, + byd + 297, + 2fy, + ) k2
+2{a@, 2y + M@, Y5 + X2 Y1) + Y1 Yo + 91+ 25) +F (Y1 +Y2) +c} el
+ (0@} + 2hay Yy + byi + 292, + 2fy, +¢) I = 0,

ie. Sy k2425, kl+ 5,12 = 0.

This quadratic in k:1 is Joachim-
sthal’s ratio equation for s = 0. Its
roots are the values of P, 4:A4F, for
the points of intersection 4 of the
line P, F, and the conic. Since the p, l
quadratic will have either two, one, 4
or no roots,t a line meets a conic in Fig. 186
two, one, or no points.

The above work applies even if s = 0 represents a line-pair.
We now make a sequence of deductions from the ratio equation.

19.22 Sides of a conic

When s,; and s,, have opposite signs, the product of the roots is
negative. Hence just one root is positive, so that the conic meets
P, P, internally only once. We say that P, and P, lie on opposite sides
of the conic. Also see the Remark in 19.24.

t Unless 8;; =0, 8;, =0 and 8, = 0, in which event the quadratic is satisfied for
all & and I, i.e. every point if P, Py lies on s = 0, which is therefore degenerate.
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19.23 Tangent at P,

If P, is a fixed point on s = 0, then s;;, = 0 and so one root of the
quadratic for k:1 is 0. The second root, which corresponds to the
remaining intersection of P, P, and the conic, will also be zero if and
only if s,, = 0. In this case P, will lie on the tangent at P,; and the
condition s;, = 0 shows that P, lies on the line s, = 0. Hence the
tangent at Py has equation s, = 0 (cf. 19.13).

Example*
Contact condition for lx+my+n = 0.
The tangent at P, has equation
(azy+hy, +g) o+ (hzy + by, +f ) y + (g2 +fyy +0) = O,

and will represent the same line as Iz + my +n = 0 if and only if the coefficients
are proportional, i.e. if for some A we have

az,+hy, +g—Al =0,
hz,+ by, +f—Am =0,
g%y +fy, +c—An = 0,

and also Iz, +my,+n = 0.
By eliminating x,, y;, A from these, we obtain (using an obvious extension of
Corollary I(b) in 11.43) hog o1
h b
A
g f ¢ n

Il m n O
‘When expanded this becomes (see Ex. 11 (d), no. 12)
A2+ Bm2+ Cn?+ 2Fmn + 2Gnl+ 2Hlm = 0.

19.24 Pair of tangents from P,

If P, is a fixed point, the quadratic for & : ! has equal roots if and only
if 811895 = 83,. This means that P, P, meets the conic in only one point,
i.e. is a tangent from P,. Hence s,,8,, = s, is the condition for P, to
lie on any tangent from P,; but this equation shows that P, lies on
8118 = 81. The equation of the tangents from P, is therefore ;8 = $2.

Remark. By writing s, s = s? in full, it can be shown by using 15.53 (1) and
15.52(1) that this second-degree equation will represent two distinet inter-
secting lines, a repeated line, or the single point, P, according as As,, = 0, where
A ig defined by equation (vii) in 15.53(2). Hence for a non-degenerate conic
(i.e. A % 0), 8;;8 = s? represents a pair of lines if P, lies on that side of the conic
for which As;; < 0. The outside of the conic s = 0 can therefore be defined
algebraically as the set of points P, for which As;; < 0.

45 GPMII
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19.25 Chord of contact from P,

Method 1. Let the tangents from P, (supposed outside the conic)
touch s = 0 at F,, F,. The tangent at P, has equation s, = 0; and since
it passes through P,, we have s,, = 0. This shows that P, lies on the
line s, = 0. Similarly s,; = 0, so that P, also lies on s, = 0. Hence the
equation of P, P, is s, = 0. '

Method 2. The points of contact of tangents from P, satisfy both
§ = 0 and s,;s = s2. Hence they also satisfy s, = 0. Since s, is linear,
sy = 0 is the equation of the chord of contact of tangents from P,.

19.26 Examples; polar of P; wo s=0

(1) Tangents at the extremities of a variable chord through P, meet on s, = 0.

Let the tangents at the extremities 4, B of such a chord meet at P,. Then
the chord of contact from P, is 4B, whose equation is therefore 8, = 0. Since
this line passes through P,, s;, = 0; and this condition shows that P, lies on
the line ¢, = 0.

(2) Let a chord through P, cut the conic at A and B. The point P, such that P,
and P, divide AB in the same ratio (one internally and the other externally) lies
on the line s; = 0.

From the hypothesis it follows that 4 and B divide P, P, in the same ratio
(one internally and one externally). Hence the ratio quadratic must have its
roots k :l equal and opposite; this is so if and only if s,, = 0, which shows that
P, lies on 8, = 0. P, is called the harmonic conjugate of P, wo s = 0.

(3) The diagrams in 15.65, with the circle replaced by any conic, show that
for some positions of P, the locus of P, in (1), (2) above will be only part of the
line s; = 0. We unify these results by making the following definition.

The whole line s, = 0 is called the polar of P, wo s = 0.

Remarks

() If P, lies outside s, the polar coincides with the chord of contact from P,.
(8) If P, lies on s, the polar coincides with the tangent at P,.
(y) In full, the polar of P, is

81 = (ay +hyy +g) @+ (haey + by, +) y + (92, +fy, +¢) = 0.
It does not exist if ax, +hy, +g = 0 and hx, + by, +f = 0; in general there is a
unique point P, satisfying these conditions.
() The argument shows (without modification) that the polar of P, wo a
line-pair 8 = 0 is 8; = 0. Since

8 = (ax+hy +g) zy + (hx+ by +f) y, + (gx +fy +¢),

the polar of P, always passes through the vertex of the line-pair (15-53(3)).
(e) Fig. 187 shows the polar of P, as
(i) a chord of contact TT’ (Remark (x));
(ii) the harmonic locus, (2);
(iii) the locus of the meots @ of tangents at the ends of chords through
Py, ().
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() Reciprocal property. If the polar of P, passes through P,, then the polar
of P, passes through P,. (This is valid for a line-pair provided P, is not the
vertex.) For the polar of P, wo s = 0 is s; = 0, and this passes through P, if
8, = 0; this shows that P, lies on s, = 0, which is the polar of P, wo s =0.

In fig. 187, P, Q is the polar of P,.

P,

Fig. 187 Fig. 188

19.27 Chord whose mid-point is P,

Let the extremities of the chord be 4 and P, (fig. 188). Then s,, = 0,
and the ratio quadratic has one root I = 0. The other root, given by

2ks,9+1s; = 0,

corresponds to the point 4; and since 4 divides P, P, externally in the
ratio 1:2, this root must be k/l,= —}. Hence s;, = 8;;, which shows
that P, lies on the locus 8; = 8;,. Since thisislinear, and is also satisfied
by P,, it is the required chord. Thus the chord of s = 0 whose mid-point
18 P, 18 8, = $44.

Example

Show that the mid-points of all chords of s = 0 which pass through P, lie on
the curve 8 = 8;.

Let P, be the mid-point of such a chord, which will have equation 8, = 8y,.
Since the chord passes through P,, s,, = 8,,. This shows that P, lies on the

locus s, = ¢ which, being of second degree, is also a conic; clearly it passes
through P,.

19.28 Diameters

Let P, be the mid-point of a chord of gradient m. Then this chord

has equation
Y% _*-%

m 1

45-2
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Its equation is also s; = s;,, which can be written »
axy (&~ 2) + by (Y — Y1) + Y1 — 1)} + bys (Y — y1) i
+gl@—2)+f(y—91) = 0.
Hence ax, +h(mzy +y,) +bmy, +g+fm = 0,
which shows that P, lies on the line
(ax+hy+g)+mhx+by+f) = 0.

By definition (16.41) this s the equation of the diameter bisecting
all chords of gradient m.

19.29 Conjugate diameters
The diameter bisecting all chords of gradient m has gradient

4

_ _a+hm
T h+bm’

so that a+h(m+m’)+bmm’ = 0.

The symmetry in m, m’ of this relation shows that the diameter of
gradient m bisects all chords of gradient m’. Two such diameters
are conjugate.

19.3 - The distance quadratic
The line through P, in direction ¢ has parametric equations

x =, +rcosb, ¢ =y,+rsind. (1)
It meets s = 0 at points for which r is given by
a(x, +rcos 0)2+ 2h(x, + 7 cos 0) (y, +rsin 0) + b(y, +rsin 0)2
+2g(x; +rcos 0) + 2f(y, + rsinf) +¢ = 0,
ie. r¥acos?0+2hcosl sinf+bsin2d)
+ 2r{(ax, + hy, + g) cos O + (haxy + by, + f)sin 6} +8,;, = 0.  (ii)

This quadratic in r gives the signed distances from P, of the points
of the conic s = 0 which lie on the line (i) through P, in direction 6.

Examples
(i) Chord whose mid-point is P;.

If a chord of 8 = 0 which passes through P, is bisected there, then the roots
of equation (ii) must be equal and opposite, and hence

(azy + hy, +g) cos 0 + (hxy + by, +f)sinf = 0,
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which gives the direction cos @ :sin @ of such a chord. If (z,y) is any point on
this chord, then from equation (i),

T—2 _ Y=

cosf ~ sinf’
and so (azy + by, +9) (x—21) + (hay + by +f) (y—y1) = 0.

This is therefore the equation of the ¢hord of s = 0 which has mid-point Py;
it can be arranged in the form s; = s, (cf. 19.27).

(i) Segments of a chord.
If the line (i) cuts the conic at @, R, then by considering the product of the
roots of (ii) we have

811
P,Q.P,R =1r,r, = .
1Q-Py "2 = 08?6+ 2h cos O sin O+ bsin? 0

(a) For chords QR, Q’R’ through P, in given directions 8, ', it follows that
P,Q.P,R  acos?f’+2hcosb’ sinb’' +bsin?’
P,Q’.P,R'  acos?0+2hcosOsinf+bsin?f ’
which is independent of the coordinates of P,. Hence the ratio of the product of
the segments of two chords drawn in given directions through the same point is
constant for all points.

() For chords P,QR, P,Q’R’ drawn through P,, P, in the same direction 6,
it also follows that P,Q.P,R _ su

PyQ PR sy’
which is independent of . Hence the ratio of the products of the segments of

two parallel chords drawn through given points P, P, is constant for all
directions.

19.4 Tangent and normal as coordinate axes

Sometimes it is convenient (as for example in 8.42(1)) to choose
the tangent and normal at a particular
point for axes of coordinates; this point
thus becomes the origin.

If s = 0 passes through O, then ¢ = 0.
If s = 0 touches y = 0 at (0, 0), the equation s
ax?®+ 2gx + ¢ = 0 must have both roots zero,
so that also g = 0. The equation of the conic

Y

is therefore = >
ax? + 2hay + by? + 2fy = 0. , Fig. 189
Example
Frégier’s point.

O i3 a fixed point on a non-degenerate conic s = 0, and PQ s a chord which
subtends a right-angle at O. Prove that PQ passes through a fixed point (the Frégier
point of O wo 8) on the normal at O, or else is parallel to this normal.
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Choosing axes as above, let PQ have equation lx+my = 1. (This form of
equation for PQ is legitimate since the hypothesis that ‘ PQ subtends a right-
angle at O’ implies that PQ does not pass through 0.)

The line-pair OP, OQ has equation

ax?+ 2hay + by? + 2fy(le + my) = 0, (1)
by 15.54. Since OP | 0Q, then from 15.52(2)
a+(b+2fm) = 0.

If a+b % 0, then m = —(a+b)/2f + 0. Hence lz+my = 1 passes through
(0, — 2f/(a+ b)), which is a fixed point on Oy, the normal at O.

If a+b = 0, then the perpendicularity condition becomes fm = 0. If f = 0,
the conic 8 = 0 is an orthogonal line-pair—excluded by hypothesis; in such a
case every ‘chord’ subtends a right-angle at O. If m = 0, the equation of PQ
is Iz = 1, which is a line parallel to Oy.

Exercise 19(a)

Write out in full the expressions for s,q, 8,, when s denotes
a? gyt
1 ¢§+5§_1' 2 y*—4ax. 3 zy—ci
*4 (lz+my+n)(lz+my+n’); and if u=lx+my+n, v =lz+my+n’,
show that s,, = ¥(w, ug+uyu;).
5 Interpret the equation s,y + 2s;,+ 85, = 0.
6 Obtain the equation of the tangent to ¢ = 0 at P, (i) by Calculus; (ii) from
88;; = 8} by taking P, on s = 0.
7 Prove that the normal to s = 0 at P, has equation
(y—y1) (axy + by, +9) = (v — 1) (hey + by, +f).
8 Find the condition for the lines pa?+ 2ray+qy® =0 to be parallel to
conjugate diameters of 8 = 0.
9 Prove that the line-pair joining O to the meets of 22+y? =12 and
ax? + 2hay +by? = 1 is
1 1
(a—;z) 22+ 2hay + (b—;z) y2=0.
Show that these will be conjugate diameters of the conic if
1 2(ab—h?
2 a+b
Hence obtain the equation of the equi-conjugate diameters of
ax?®+ 2hxy +by? = 1.
10 Writing » = azx+hy+g, v = hxe+ by +f, w = gz +fy +c¢, verify that
s=urtovy+w, 8 =ur+vy+w, = ux, +vy;,+w,
and 811 = U T+ 01 Y1+ Wy

Use the distance quadratic for s = 0 in nos. 11-13.
11 Obtain the equation of the tangent at P;, and reduce it to the form s; = 0
by using no. 10.
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12 (i) Prove that the equation of the pair of tangents from P, is
{w(z—2) +oily— 1)} = {a(x~ )+ 2h(z — 21) (y — y1) + By — 1)} 812
(ii) Usingno. 10, show that this is equivalent to (s, —8;,)? = (s — 28, +8,,) 813

and hence to s} = ss;,.

13 Aline through O cuts 8 = 0 at P and Q. A point R is chosen on this line so
that OR is (i) the arithmetic mean; (ii) the geometric mean; (iii) the harmonic
mean, of OP, 0Q. Find the locus of R in each case.

14 K is the point ¢ on the ellipse 22/a? + y?/b% = 1. Write down the equation
of the chord PQ for which KP, KQ are parallel to the axes, and find where it
meets the normal at K. Deduce from the example in 19.4 that chords which
subtend a right-angle at the fixed point ¢ are concurrent at

a?— b? a?f—b? .
(ma008¢, —mbsm¢)-

15 If equation (i) in 19.4 represents lines OP, 0Q equally inclined to Oy, use
15.52 (3) to prove & +f1 = 0. Deduce that if OP, OQ are equally inclined to the
normal to & = 0 at O, then PQ passes through a fixed point on the tangent at
O, or is parallel to this tangent.

19.5 Number of conditions which a conic can satisfy

If k is any non-zero constant, the equations
8 = ax®+ 2hay + by + 29z + 2fy +c = 0
and ks = kax?+ 2khay + kby? + 2kgx + 2kfy + ke = 0

represent the same locus; for if P, satisfies one, then it also satisfies
the other. Since a, b, ¢, f, g, k are not all zero, we can always choose k
80 that one coefficient in ks is 1. The remaining five coefficients (i.e.
the five ratios a:b:c:f:g:h) can be chosen so as to satisfy five con-
ditions, but in general no more. The equations which express these
conditions may have more than one set of solutions but, since they
are polynomial equations, the number of sets will be finite if the
conditions are independent.

It follows that a conic can be chosen to satisfy five independent
conditions, and that the number of such conics is finite.

Examples

(i) In general a unique conic can be drawn through five given points P,
(r=1,...,5).

For in general the five ratiosa:b:c:f:g:h can be determined uniquely from
the five linear equations

aa? -+ 2hx,y, + by + 297, + 2fy, +¢ =0 (r=1,...,5),

80 that ¢ = 0 is the equation of the required conic.
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Alternatively, a, b, ¢, f, g, h can be eliminated from the above equations
together with s = 0, giving the required equation in determinant form.

An easier way of finding the equation of a conic through five given points
will be illustrated in 19.64, ex. (i).

(ii) If three of the five points in ex. (i) lie on a line I, then I must be part of the
conic, which therefore consists of two lines 1, V.

For no line can meet & non-degenerate conic in three points (see the footnote
on p. 666); and the only line-pair through these five points is 7 and the line I’
which joins the other two.

If four of the points are collinear on [, the conic consists of I and any line U/
through the fifth point. If all five points lie on I, the conic consists of ! and any
line in the plane. In these two cases of ex. (i) the conic is not unique.

19.6 The equation s=ks"
19.61 Number of possible intersections of two conics
The equations of the two given conics can be arranged in the form
s=ax?+2(hy+g)x+ (by®+2fy+c¢c) =0,
s =a22+2h'y+g)x+ by +2f'y+c’) = 0.
The coordinates of any common point of these must satisfy the
equation in y obtained by elimination of z. Since this equation will
in general be quartic in y, there are 4, 2 or no possible values of y

(apart from possible coincidences). By eliminating «* only, we see
that to each value of y corresponds at most one value of z, given by

2{(@h—ahk’)y+(@g—ag)}z
+{(a'b—ab’)y*+2(a'f—af')y+ (a'c—ac’)} = 0.
Hence, ignoring coincidences, the number of possible intersections of
two conics is 4, 2 or 0,

19.62 s=ks"

This equation has already been discussed when s = 0, s’ = 0 repre-
sent lines (15.41) or circles (Ex. 15 (d), no. 16).

(1) If s = 0, 8’ = 0 are conics and k is constant, then s = ks’ is also
the equation of a conic, which passes through the meets (if any) of s and s'.

For if P satisfies both s = 0 and 8’ = 0, then it also satisfies s = ks’.
Since k is constant, this last equation is of second degree and therefore
represents a conic (or nothing).

(2) If s, 8" meet in four points A, B, C, D, then any conic o through

these points has an equation of the form s = ks’.
If P, is on o, k can be chosen so that s = ks’ passes through P,
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viz. k = 8y,/s}; (assuming that P, is not on s’ = 0: see the Remark
below). For this £, the conics o and s = ks’ havefive points in common,
and hence coincide (19.5, ex. (i)).

Exceptions to the last statement may arise when three of the five
points are collinear. Since P, is an arbitrary point of o, P, need not
be collinear with any two of 4, B, C, D. If A, B, C are collinear, then
8, 8’ must be of the forms af, ay where a = 0 is the line 4BC and
B =0,y = 0 are lines through D (19.5, ex. (ii)). Every conic through
4, B, C, D then consists of @ = 0 and a line # = ky through D. Hence

o=ao(f—ky)=s—ks,

and the theorem is still valid.

Remark. The only conic through the meets 4, B, C, D of s and s’
which does not have an equation of the form s = ks’ is s’ itself. This
exception can be avoided by using As = A’s’, where A and A’ are
independent constants; but usually the equation s = ks’ is adequate.

For different & or A: A’, the equation s = ks’ or As = A’s’ represents
a family or system or pencil of conics through the intersections (if
any) of s and ¢'.

19.63 Degenerate cases

The results in 19.62 apply when one or both of s, s’ degenerate, and
these cases are particularly useful.
(i) s = kap. This represents a conic through the meets (if any)
of the distinct lines @ = 0, # = 0 with s = 0 (fig. 190).

Fig. 190 Fig. 191

(ii) s = ka?. When £ — « in (i), we have the equation of a conic
touching s at each of its intersections (if any) with @ = 0. It is said
to have double contact with s along o = 0 (fig. 191).
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(iil) 8 = kar, where 7 is a tangent to s. When £ — 7 in (i), we have
a conic meeting s at its intersections (if any) with & = 0, and touching
it at the contact of 7 = 0 with s (fig. 192).

(iv) s = kaf, where a, f meet on s. If one meet of o and ¢ coincides
with one meet of # and s in (i), we obtain a conic meeting s at a point
ona and at a point on f, and touching s at the meet of « and £ (fig. 193).

Fig. 195

Fig. 196 Fig. 197

(v) 8 = ko, where o passes through the contact of . If one meet of
o and sin (iii) coincides with the contact of 7, we obtain a conic meeting
s at a point on a and touching s at the meet of « and 7 (fig. 194).
(vi) s = k2. If « -7 in (v), we get a conic touching s at its
contact with 7 (fig. 195).
(vii) @B = kyé is a conic through the meets of the lines «, g, 7, &
(fig. 196).
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(viii) af = ky?. If § - vy in (vii), we have a conic touching the lines
a, B at their meets with y (fig. 197).
(ix) «® = ky? represents the two lines « = +,ky, which pass
through the meet of a, 7y if this exists.
In the next two cases s’ represents a single line.
(%) 8 = ko is a conic through the meets (if any) of s and a.
(xi) s = k7 is a conic touching s at its contact with 7.

19.64 Examples
The ‘s = ks’’ principle has already been used for conics in Ex. 15 (f),
no. 15; Ex. 16(b), no. 1; and in the alternative method in 17.41.
(i) Find the equation of the conic through (3, 0), (0, —2), (5,0), (0, 1), (15, 6).
The lines joining the first four points in pairs are as follows.

z ¥ z
3;0’ 0’_ : _"__"1=0; s V)s 0’1: = _1=0;
(3,0, (0, -2): 3-2 (5,0, 0, 1): T+y

0, —2), (0,1): z=0; (3,0, (5,0): y=0.
Hence any conic through the first four points is (by 19.63, (vii))

z Yy z, o
(3 2 l)(5+y 1) kxy.

This passes through (15,6) if 1.8 = k.15.86, i.e. £ = &. The required conic is
therefore 3(22— 3y — 6) (z + 5y — 5) = 8xy.

(ii) Find the equation of the circumcircle of the triangle formed by the lines
ax? 4 2hxy +by? = 0 and lx+my+n = 0.

Let the tangent at O to the required circle be px +qy = 0. Then by 19-63, (iii)

its equation will be
ax? + 2hay +by? = (lz+my +n) (pr+9Y)

provided we choose p and g so that
a—pl=b—gm and 2h=mp+lq.
If we arrange the above three equations in terms of p and g, we have
(lz +my +n) 2p + (lx +my +n) yg — (ax? 4+ 2hay + by?) = 0,
lp—mq—(a—b) =0,

and mp + lq —2h =0.
By eliminating p, ¢, we obtain

| fx+my+n)e (z+my+n)y ax?+ 2hay + by?
l —m a—b =0
m l 2h
as the equation of the required circle.
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(iii) Concyclic points on the elh'pse

yz

+ 3

- The chords ¢, ¢, and @, ¢, are & = 0, § = 0, where

=- 005 P+ B2) + sin }(¢, + Ps) —cos (b, — $s)s

=1.

f= zcos HPs+@4) +Z5in HPs+ Py) —cos (P — ¢y).

The points ¢, @y, Ps, $, will be concyelic if and only if one conic of the system

is & circle. This requires that the coefficients of 22 and y2 shall be equal, and the
coefficient of xy zero. In general it is not possible for the single number & to
satisfy these two conditions; but the coefficient of zy is zero if

cos }(py + By) sin }(Ps + Py) +cos (B3 + P4) sin P, + P5) = O
i.e. sin (¢, +da+ s+ ¢y =0,
ie. 1+ Pat Pyt Py = 2nm
for some integer n.
The coefficients of #2 and 2 are then equal if

7 = g5 c0n 06 + ) con b+ 0 —gsin g + o) sin s + )

a? b2
- k{c—zlé cos® }(¢1 + ¢a) +5!§sm2 o+ ¢g)} cosn,

and here the coefficient of % is non-zero.

Hence if Z¢p, = 2nm, k can be chosen uniquely to satisfy the second condition.
Thus the relation Z¢p) = 2n is necessary and sufficient for the points ¢y, ¢g, Pg, P4
of the ellipse to be concyclic. Compare the example in 17.32.

*(iv) Normals at the extremities of the chords lx+my = 1, Uz +m'y = 1 of the
ellipse

x?
‘_1_24.5 =1.
T .
he conic _+%_1 = k(le+my—1) (Vz+my—1)

passes through the extremities of the chords, by 19.63, (i). If the normals at
these extremities are concurrent, say at (2,,¥,;), then their feet lie on

(a? =) zy + 0%y, 2 —a’xy = 0

by Ex. 17 (¢), no. 10. Consequently this conic must belong to the above system.
Comparing coefficients of 22, 42, and the constant terms, we have

1 1 ,
;—kll’:o, B m’ =0, 1+k=0.
Hence if the normals at the extremities of the chords lx+my = 1, Uz +m'y = 1

of z%ja® + y2 /b = 1 are concurrent, then a®ll’ = b*mm’ = —1. Also see Ex. 19 (b),
no. 14.
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*(v) A conic passes through four given points A, B, C, D on ¢ = 0 and also
through the meet P; of tangents at A, B. Prove that it passes through the meet P,
of tangents at C, D.

Since the equations of the chords of contact 4B, CD are respectively s, = 0,
8, = 0,the coniciss = ks, s, by 19.63, (i). This passes through P,, s0 8y, = ks, 8;3;
hence k = 1/s,,, and the conic has equation s,,8 = 8;8,. Clearly this is satisfied
by P,.

*(vi) Pascal’s theorem. If 1,2, 3, 4, 5, 6 denote siz points
on a conic, then the meets of the lines

12,45; 23,56; 34,61

are collinear.

For suitable k£ and 7, the line-pair (12) (56) has equation
8 = k(25) (16), and the line-pair (23)(45) has equation
8 = l(25) (34). The points X(12,45) and Y (23, 56) lie on
both pairs, but do not lie on ¢ = 0 or on (25). Hence they
lie on the line X(16) = [(34), which passes through Fig. 198
Z(34, 61).

The argument holds even when s = 0 is a line-pair provided that the sets
1, 3, 5 and 2, 4, 6 lie on different lines; the result is then known as Pappus’s
theorem.

19.65 Contact of two conics

Although in general two distinct conics intersect in at most four
points 4, B, C, D, there may be coincidences of the following types:

AACD 2-point contact at 4 (figs. 192, 193),
AACC double contact along AC  (fig. 191),
AAAD 3-point contact at A (fig. 194),
AAAA 4-point contact at A (fig. 195).

Since a circle can be determined to pass through only three general
points, we may expect that in general a circle cannot have more than
3-point contact with a conic at A.1 By regarding such a circle as the
limit when P — A4 along the conic of a circle touching the conic at 4
and cutting it at P, we see from 8.42 (2) that the circle having 3-point
contact at A is the circle of curvature of the conic at A.

A conic having 3-point contact with s = 0 at 4 is s = ka7, where
7 = 0 is the tangent at A to s and & = 0 is any chord through 4. If
k and o are chosen so that this conic is a circle, it will be the circle of
curvature at 4. It is known (e.g. Ex. 16 (), no. 16(i); Ex. 17 (a),
no. 13) that a and 7 must be equally inclined to the axes.

1 For examples of exceptions, see Ex. 19(b), nos. 9, 10.



680 ' THE GENERAL CONIC; s=ks [19.7

Example

Find the circle of curvature of y® = 4ax at the point t.
The tangent at the point ¢ is 7 = x—2y+at® = 0, and has gradient 1/¢. The
chord through (af?, 2at) with gradient — 1/t is

1
y'—2dt = -—;(:v—at’),
i.e. a =x+iy—3a? = 0.
The required circle is
y?— dax = k(x+ty — 3at?) (x — ty + at?),
where & must be chosen so that the coefficients of 22 and y? are equal (the
xy-term is already absent). This gives k= —kt?—1, i.e. k=—1/(1+¢2), so
that the circle is +y?—2a(3t%+ 2) x + 4atPy — 3a?t* = 0.
The cenire of curvature at ¢t is therefore (2a + 3at?, — 2at%); and the radius of

curvature is found to be 2a(1 +22)%, These results can of course be obtained by
the methods of Ch. 8.

Remark. If f(x) and g(x) are polynomials, then Remark () in 6.72
shows that when the curves y = f(z), y = g(x) have mth-order contact
_at z = a, they have (m + 1)-point contact in the sense of the present
gection, and conversely. For general curves the concepts are not
equivalent.

19.7 Equations of a type more general than s=ks’

If f = 0, g = O represent any two curves, their intersections (if any) satisfy
every equation which can be deduced algebraically from f = 0 and g = 0. The
new equation need not be of the form f = kg; and even when it is, £ may not be
constant. The problem in 15.54 is of this type.

Sometimes the equations are combined in such a way that the deductions
do not hold for all the common points.

Examples

(i) Circle through the feet of conormal points on a parabola.
The points in question satisfy the equations

y?=4azx and xy+(2a—h)y—2ak =0,
where (h, k) is the point of concurrence of the normals (see 16.32, ex. (iii) (b)).
Hence they also satisfy oyt + (20 —h)y? = 2aky,
w(4ax)+(2a —h)y* = 2aky,
4a(x? 4 y2) — (2a + h) 4oz = 2aky,
and 22+ y:—(2a0+h)x = tky.
This is the required circle; cf. 16.32, ex. (ii).
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(i) Find the equation of conics through the meets, other than the origin, of

8 = ax?+ 2haxy +by® + 292+ 2fy = 0
and 8’ = a'z?+ 2h'zy+ by + 29’z + 2f 'y = 0,
where fg’ + f'g.

The given equations can be written
z(az + 2hy + 29) = —y(by + 2f),
z(a'z+2h'y +29') = —y(b'y + 2f').
Coordinates other than (0, 0) which satisfy both these equations also satisfy
o = (ax + 2hy + 29) (b'y + 2f’) — (@’ + 2R’y + 29") (by + 2f) = 0.

This is therefore one conic through the meets of s, s, and does not pass through O.
Clearly otks+k's =0 @)

also passes through the same points for all &, &’.

If s, s’ meet in three points other than O, then k, k&’ can be chosen to make the
conic (i) pass through two other general points. Hence any conie through the
three points has an equation of this form. The system (i) is called a net of conics.

Exercise 19(b)

Find the equation of the conic through

1 (0,0), (0,1), (3,0), (2,1), (2, —3).

2 (2,3),(-1,1), (4,0), (3, —2), (5,3).

3 Assuming that az?+ 2hay +by® = ¢ and a’z?+ 2’2y +b'y? = 1 intersect
in four points, find the condition for these points to be concyeclic.

4 Find the common chords of 2%+ %% = 25 and 2%+ xy +y® = 36.

S Two chords are drawn through a focus of an ellipse, and a conic is drawn
through their extremities and the centre of the ellipse. Prove that this conic
cuts the major axis in another fixed point.

6 (i) Prove that, for any ¢,
(1+8%) (42— daw) + (z—ty +at?) (@ +ty +0) =

is the equatlon of a circle which touches y? = 4ax at the point ¢.

(ii) PSQ is a focal chord of a parabola. Circles are drawn through the
focus § to touch the parabola at P, @ respectively. Prove that these circles
cut orthogonally.

7 A circle has double contact with ax?+by?+c = 0. Prove that the chord of
contact is parallel to either # = 0 or ¥ = 0. [Let the chord be lz +my+n = 0.]

8 Find the equation of the circle touching the ellipse z2/a? + y2/b% = 1 at each
end of a latus rectum.

9 Find the equation of the circle which has 4-point contact with

+§ =1 at (a,0).
[The circle has equation & = k12, where 7 = x—a.]

10 Show that a circle can have 4-point contact with a parabola only at the
vertex.
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11 Write down the equation of the tangent at the point ¢ of z2/a®+ y2/b% = 1,
and find the equation of the chord through ¢ which has the same inclination to
Oz as this tangent. Hence show that the circle of curvature at ¢ is

(b2 cos? @ +a?sin? @) ( +y—— 1)

+(a2— 62)( cos g+ sm¢—l)(—cos¢——81n¢—cos2¢)—O

and find its centre and radius.

12 Find the circle having 3-point contact with xy = ¢? at the point ¢, and
deduce the centre and radius of curvature at this point.

13 Prove that the circle of curvature of ax?+ 2hxy+by?=2y at O is
a(z?+y?) = 2y.
*14 Use example (iv) in 19.64 to prove that ¢f normals at the ends of the chords
10, and ¢, ¢, of 22/a?+y2/b? = 1 are concurrent, then

€08 3(p, + Py) cos 3(Pg + Py) + cos ¥ — @,) cos Hpg— Pa) = 0

and sin 3($; + @) sin 3(P3 + P4) + cos (P, — Pp) cos H Py — P,) = 0.

By subtraction, deduce that ¢, = (2n+ 1) 7 is a necessary (but not sufficient)
condition for the points ¢,, @,, ¢3, P, to be conormal. (Cf. 17.52, ex.)

*15 (i) Write down the equation of a conic circumscribing the quadrilateral
whose opposite sides are the lines «, £; ¥, 0.

(i) If p is the length of the perpendicular from P, to the line & = 0, prove
that p = constant X c,.

(iii) If a conic circumscribes a quadrilateral, prove that the ratio of the
product of perpendiculars from any point P, of the conic onto two opposite
sides, to the product of perpendiculars from P, onto the other two sides, is
constant (a result due to Pappus).

*16 Show that the feet of normals from (5, k) to y? = 4ax lie on the parabola

z2+(2a—h)x = 3ky. [See 19.7, ex. (i).]

*17 Explain why the conic Zk,(z —t,y + atl) (x —t;y +atl) = 0 passes through

the vertices of the triangle formed by the tangents to y? = 4ax at ¢,, t,, £,.
Find the ratios k, : k, : k; for which this conic is a circle, and verify that the

circle passes through the focus. State this result as a geometrical theorem.

Miscellaneous Exercise 19(c)

1 A pair of tangents to az®+by? = 1 intercepts a constant length 2¢ on Oz.
Prove that the point from which the tangents are drawn lies on the curve
by?(ax? +by?— 1) = ac’(by?— 1)
2 Prove that chords of y? = 4ax which subtend a right-angle at (a2, 2at,)
are concurrent at (a(t2+ 4), — 2ato) [Use 19.4, ex.]

3 Through a fixed point O a line is drawn to meet a conic at P and P’.
A point @ on OPP”’ is chosen so that

1 1 + 1
0Q* ™ OP* OP"’
Prove that @ lies on a conic. [Use the distance quadratic.]
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4 If ax®+ 2hxy+by? + 2gx+ 2fy+c¢ = 0 represents a line-pair, prove that
the pair (other than the coordinate axes) passing through the meets of these
with the axes has equation az?+ 2(2fg/c — k) vy + by? + 292 + 2fy +¢ = 0.

S5 The lines bx2+ay® =0 (a+b 3+ 0) meet the conic 8 = 0 in four points
4, B, C, D. If the diagonals not through O of the quadrilateral ABCD are
perpendicular, prove that

a—b h g/
h b—a f =0
g f e

6 ABCD is cyclic; AB, DC produced meet at E; BC, AD produced meet
at F. Prove that the bisectors of angles CEB, CFD are perpendicular. [With 4
for origin, let the pair AB, DC be t = pz?+ 2rzy +qy? = 0,and BC, ADbes = 0.
Express the condition for ¢ = ks to be a circle, and use 15.52(3).]

7 Prove that the points of intersection of 22— 2xy+ 3y2+9z— 16y +24 = 0
and 522+ 6xy —y?— 43z + 60y — 62 = 0 are concyclic. [Eliminate ay.]

8 Find the equation of the rectangular hyperbola through the meets of the
ellipse 2%/a?+y2/b? = 1 and the line-pair y2 = m?2z2. Show that when m = b/a,
this rectangular hyperbola cuts the ellipse orthogonally.

9 A circle through the origin touches the rectangular hyperbola zy = ¢2 and
meets it again at P, Q. Prove that the foot of the perpendicular from the origin
to PQ lies on. 4xy = c2.

*10 Obtain the general equation of conics through (3,2), (—3,2), (2, —3),
(—2, —3). Show that this family contains a parabola, and find its equation.
[Use Ex. 16 (e), no. 26 (i).]

*11 The normal to y? = 4ax at the point P(f) meets the parabola again at
Q(0), and the normal at @ meets the curve again at B. Prove that the equation
of the parabola which passes through P, R and touches the given one at @ can
be written

Ay?—daz) + (tx +y — at3 — 2at) (Oz +y — af® — 2a6) = 0,
where A = (0 —t)?/40t. Prove that its axis is parallel to SN, where S is the focus

of y? = 4ax and N is the point where the normal at P to y? = 4ax cuts Oy. [In
the last part use 6 = —¢—2/2.]

*12 Prove that the tangent at P, to the conic obtained in ex. (v) of 19.64 is the
line joining P; to the meet of AB and CD. [Use Ex 19(a), no. 4.]

46 GPMII
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20

POLAR EQUATION OF A CONIC

20.1 The straight line

Polar coordinates and equations have been used in various parts
of the book, particularly in calculus applications. The purpose of this
chapter is to obtain and use the polar equation of a conic to prove
geometrical properties, especially focal ones. We begin with short
sections on the straight line and circle, in which we assemble the
material required.

20.11 Distance formula

Given two points A(r,,6,) and B(ry,0,), the length of AB can be
found by applying the cosine rule to triangle AOB (fig. 199):

AB? = r2+ 18— 2r 7y cos (0, —0,).

sY

Fig. 199 Fig. 200

20.12 Line joining two points
Let P(r,0) be any point on AB. If P lies between 4 and B, then

(fig. 200) AAOB = AAOP + APOB,

i.e. %7'1 7'2 Sin (02 - 01) = %rlr Sin (0 - 01) + %rrg Sin (02 - 6),

o, sin (6,—6,) _ sin (0—6) L8in (6:,=6) (i)
r Ty "

If P lies on AB produced or on BA produced, the reader should
show similarly by considering areas that the same result holds.
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Accordingly, since this equation is satisfied by any point (r,8) of
the line 4B, it is the equation of the line.

Remark. The line joining O to the point (p,«) has equation 6 = «.
This fact, already noticed in 1.63 (c), is obvious from first principles.

20.13 Line in ‘perpendicular form’

Let the perpendicular from O to the given line have length p and
make angle o with Ox. If P(r,0) is any point on the line, then from
triangle ON P we have ' s

p =rcos(0—a). (ii)

This (cf. 15.28) is the equation of the line in ‘perpendicular form’.

Fig. 201

Remark. The foot N of the perpendicular from O has polar co-
ordinates (p,a).

20.14 General equation of a line
When converted to polar coordinates, the general linear equation

Az + By = C becomes

Acosf+ Bsin6 =£:—. (iii)
Example
Any line perpendicular to (iii) has an equation of the form

1’

A cos(0+3m)+ Bsin (0 +3m) = 07

For any line perpendicular to Az + By = C has equation
—Bx+Ay+C’ =0,

44

C
i.e. —Asin0+Bcose=—r~,

4

ie. Acos(0+§1r)+Bsin(0+§-1r)=gr-,

46-2
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20.2 The circle

20.21 Polar equation

Let P(r,0)be any point on the circle with centre C(p, ) and radius a
(fig. 202). From the distance formula (20.11),

a? = CP? = p?+r?—2prcos (6 —a).
Hence the circle has equation

r2—2prcos (0 —a) = a%—p2,

P
7 AR
-5 \
P(r, 6) A -
/ / 0 \y x
0 r
Fig. 202 Fig. 203

We notice the following particular cases.
(a) If C lies on Oz, then o = 0; the equation is

r2—2prcosf = a?—p?.
(6) If O lies on the circle, then p = a; the equation becomes
r2—2qrcos (0 —a) = 0,
80 that r = 2a cos (0 — o) represents a circle through O.

(¢) If C lies on Ox and O lies on the circle, then & = 0 and p = a;
the equation is then r = 2a cos 6, which is easily written down from

fig. 203.

20.22 Chord P, P, of r=2a cos 0; tangent at P,

Let the required chord have equation p = rcos(f—a). This is
therefore satisfied by (2a cos6,,6,) and (2a cos 0,, 6,), so that

2a 08 0;.cos (0, —a) = p = 2a cos b,.cos (0, — ), (i)

cos (26, —a) + cosa = cos (260, —a) +cosa,
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and hencet 20, —o = —(20,—),

i-e. a = 01+02-

From (i) we now have p = 2a cos 8, cos§,, and the equation of the
chord becomes . 90, _6,) = 2acos6, cos0,. (i)
By letting 0, — 0, we obtain the equation of the fangent at P,, viz.

rcos (@ —20,) = 2acos?0,. (iii)

20.23 Examples

(i) Stmson’s line.} From any point O on the circumcircle of triangle ABC,

perpendiculars are drawn to the sides. Prove that their feet are collinear.

Choose O for pole, and the diameter through O for initial line. The equation
of the circumcirele is then r = 2a cos 6.

Let A, B, C correspond to the values 6 = «, #,y. Then the chord BC has
equation 2acosffcosy = recos(0—LF—v),
and hence by the Remark in 20.13, the foot of the perpendicular from O to
BC has polar coordinates (2a cos £ cosy, f+v). Similarly, the other feet are

(2acosy cosat, y+a), (2acosacosp, e+ f).
These three points clearly lie on the line whose polar equation is
2acosa cos f cosy = rcos (0 —a—F—7). (iv)
This is known as the Simson line of O wo triangle ABC.

(ii) Eaxtension of ex. (i). If D is another point on the circumcircle of triangle
ABC, then A4, B, C, D can be selected three at a time in 4 ways, and hence there
are 4 Simson lines wo O corresponding to the 4 possible triangles.

By the Remark in 20.13, the foot of the perpendicular from O to (iv) is
(2a cos cos B cosy, a+ f+7). Similarly, if D corresponds to the value 8 = 4§,
the feet of the perpendiculars from O to the other Simson lines are

(2acosf cosy cosd, f+y+98), (2acosy cosdcosa, y+48+a),
(2acosd cosa cos B, 8 +a+ ).
Clearly these four points lie on the line
2acose cos B cosy cosd = rcos(f—a—pF—y—48).
This result is likewise capable of extension.

1 The general solution (1.52(3), ex. (iv)) is 26, —a = 2nm 4 (26, —a). The sign + is
inadmissible since we are assuming P,, P, to be distinct. The sign — gives
a = 0, +0;—nm. Using this value of a and the fact that cos n7 = (—1)*, we find that
p = 2a(—1)" cos 6, cos 0; and cos (8 —a) = (—1)" cos (6§ — 0, —6,), so that the result

(ii) is unchanged.
1 Robert Simson (1687-1768).
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» Exercise 20(a)

1 Sketch the figures for the cases in 20.12 when P lies on (a) AB produced;
(b) BA produced. Verify for each that the equation (i) still holds.

2 Show that the area of the triangle whose vertices are A(ry, 6,), B(rg, 05),
O(rg, 0;) is 3{rorgsin (03— 0,) + 737y 8in (0, — ;) +7,798in (0;— 6,)}. Deduce the
condition for 4, B, C to be collinear.

3 Prove that the perpendicular from (ry,6,) to the line rcos(# —a) = p has
length + {p—r, cos(6; —a)}.

4 A variable line through a fixed point O meets three given lines at points
P, P,, P;. On this line is taken & point P such that

1_1,.1 1
OP  OP, OP, OFP;
Prove that the locus of P is another straight line.

5 (i) Write down the polar equation of (a) the circle whose centre is (p, )
and which touches the initial line; (b) the circles of radius a which touch the
initial line at the pole.

(ii) Explain why the circles » = acos(0—a), r = bsin(f —a) cut ortho-
gonally.

6 Find the centre of the circle » = acos 8+ bsin 6.

7 If OPQ is a chord of the circle r2— 2pr cos (0 —a) + p?—a? = 0, prove that
OP.0Q = p2—a?. Deduce the ‘product property’ that, for chords OPQ, ORS
through O, OP.0Q = OR.OS.

8 Let ON be the perpendicular from O to the tangent at A(ry,0,) on the
circle r = 2a cos 6, and P(r, §) be any point on this tangent. By expressing ON
in two ways as r cos (0 — 26,) and r, cos §,, obtain equation (iii) of 20.22.

*9 Prove that the normal to » = 2acos @ at = « has equation
rsin (20— 0) = asin 2a.
10 Find the equation of the chord joining the points of the circle
r = 2acos(f—a)
for which 6 = 6,, 6,. Deduce the equation of the tangent at 6;.

11 Two circles meet at O, and a line through O meets them again at P, @
respectively. Find the locus of the mid-point of PQ.

12 Find the condition for the line 1/r = acos 8+ bsinf to touch the circle
r = 2ccos0. .
*13 Prove the Simson line property (20.23, ex. (i)) by pure geometry.

20.3 Conics: pole at a focus

20.31 Polar equation of all non-degenerate conics

Choose a focus 8 of the conic for pole, and the perpendicular from
8 to the corresponding directrix for initial line. Let the latus rectum
LL’ have length 21, and let P(r, §) be any point on the conie.
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In figs. 204 and 205, P lies on the same side of the directrix as §.
Fig. 206, where P and S are on opposite sides, will arise when P is on
that branch of a hyperbola which is remote from 8. We have

r=8P=¢.PM =¢.ND

e(SD— SN)
in 204 e(SD—rcosf) (l—ercosf
_ le(SD+8N) B in 204, 205 _ in 204, 205,
in 205 e(rcos@—8D) |ercosf—1
e(SN - 8D) in 206 in 206,
in 206
P ” P u o P
r
y \0 A /0( "
FO 55 N8 D = 8§ D N &
Fig. 204 Fig. 205 Fig. 206

since ] = SL = e¢.8D. Hence

in figs. 204, 205 - = 14e¢cos0;

=—1+ecosf.

RIS~ R~

in fig. 206

The last equation represents the branch of a hyperbola remote from 8.

M P

Fig. 207

If we replace r by —r-and 6 by 6 — (i.e. if we use the notation of
fig. 207), then the equation [/r = — 1+ e cos & becomes

—; =—1l+ecos(@—7)=—1—ecosb,

i.e. é= 1+ecosf
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as for figs. 204 and 205. Hence the equation I/r = 1+ecosf will
represent the branch of a hyperbola remote from § if » is allowed
to take negative values.

It follows that, if negative values of r are allowed, then every proper
(i.e. non-degenerate) conic ts completely represented by lfr = 1+ e cos®.

Remarks

(o) If the line DS (in the sense from D towards S) is taken as
initial line, this is equivalent to replacing 8 by 7 —6 in the above
discussion. The equation becomes I/r = 1 —ecos8; it will completely
represent all proper conics if 7 is allowed to take negative values.

(8) The equation Ilfr = —1+ecosf, obtained from fig. 206, also
completely represents all proper conics (with the same proviso about
negative values of 7). Indeed, the two equations ljr = —1+ecos 6 and
l/r = 1+ecos 0 represent the same conic, but any chosen point of the
conic will of course correspond to different pairs of values of 7, 6 in
the two representations. This fact is used in 20.33, ex. (iii).

(y) The equation of a conic whose major axis is inclined at angle
to the initial line is I/r = 1+ e cos (§ —«). For, wo its axis 8D as initial
line, the equation is Ijr = 1 + e cos #; rotation of the initial line clock-
wise through angle « gives the new equation.

20.32 Tracing of the curve //r=1+ecos

(1) When e = 1, the conic is a parabola whose equation can be
written ]
= 1+cosf = 2cos? 10,

|
/

Fig. 208 Fig. 209

It is represented completely by

—nm<B<m and r>0.
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(2) When e < 1, the conic is an ellipse which is completely repre-

sented by —m<6<7 and r>O0.

(3) When e > 1, the conic is a hyperbola. The branch enclosing S
is given by —m+s8ecle < 0 < m—sec~le and r > 0;
and the branch remote from 8 by
m—secle <O <m+secle and 7 < 0.

The reader should check the above statements.

Fig. 210

20.33 Examples

(i) Equations of tﬂe directrices.
(a) From the focus-directrix definition, SL = e.8D, so that SD = l/e.
If (r, 0) is any point on the directrix corresponding to S, then

rcosf = SD = lfe.
Hence this directrix has equation

I
-=-ecosf.
r

*(b) For central conics we obtain the equation of the directrix remote from

S as follows.
r /
I’\ )

D’ S D 8 D D’

Fig. 211 Fig. 212

If e < 1 (fig. 211), then
reos(mr—0) = SD’ = DD’ —SD
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and since l/a = 1 —¢2 (see Ex. 20(b), no. 1), this becomes

1/ 2 l1+e?
- =-(—=--1)==- .
reosd c’,(l—e2 ) el—e?
2+1
Hence the equation is rcosf = 2%4‘—1.

If e > 1 (fg. 212),
reos = SD’ = SD+ DD’
I 20 1 2a
=-4—=- 1+_
e e e l
l 2 let+1 ~
-;(”m)-;?_—r

since l/a = e*— 1. The equation is thus the same for each case,

*(ii) Equations of the asymptotes of a hyperbola.

The asymptote whose cartesian equation is y = bxz/a is inclined to Oz at
angle A, where tan A = b/a and hence cosA = a/,/(a?+b%) = 1/e. Therefore the
perpendicular from S to this asymptote makes angle 27 —sin~1(1/e) with Ox;
its length is b b

ae— = b,

OSSIIIA=QG:/(a—2:|_b—2)= P

AN

Fig. 213

and so its equation is (20.13)
b =rcos (0—21r+sin‘1§) .

Since b = I/4/(¢? — 1), this can be written

1 l
in-1-) = ———,
7cos (0+s e) J(e—=1)
Similarly, the asymptote y = — bz/a has polar equation
1 1 1
— —ain-12 ; —gin 1= ———.,
b =rcos (0 sin e) , l.e. rcos (0 sin e) JeE=1)

(iii) Two conics have a common focus. Prove that two of their common chords
pass through the intersection of the directrices which correspond to that focus.
The conics can be taken as

ll
;=l+ecosﬁ and ;=1+e’cos(0—a).
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If we subtract these equations, we obtain
L —ecosl = -l-—-e’cos (@-a),
r r

which is the equation of a line. Since it is satisfied by the points (r, 8) which
satisfy the equations of both conies, it represents a common chord. Clearly it is
also satisfied by the points (r, @) which satisfy both the equations
’
l——-ecosO =0, l——e’cos(@—-oc) =0,
r r

and these represent the directrices corresponding to S, by ex. (i). This common
chord therefore passes through the meet of these directrices.
The first conic is also given by

1
=—1+ecosd
r
(see Remark () in 20.31). Proceeding similarly, another common chord is

E—(-;(3080+l——ea'eos(é’—oc) =0,
r r

which also passes through the meet of the same directrices.

20.34 Chord and tangent

Let P, @ be the points of the conic //r = 1+ecosf corresponding
to 0 =, @ = . Since by 20.14 the polar equation of any line can be
written C
Acosf+Bsing = -

let the required chord have equation
pecosf+gsing = f:

Then pcosa+gsina =1+ecosa

and pcosf+gsinf =1+ecosf;

i.e. (p—e)cosa+gsina =1, (p—e)cosf+gsinf=1.
Solving these,

p—e =S gt = cosia+ fseci(ap)

cosf—cosa
and = Sm@—p) sin }(a + B) sec }(a — p).
The chord P is therefore

f; = ecos f +sec }(ax — B) {cos & cos §(c + B) + sin O sin }(x + B)},
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ie. l;= ecos 0 + sec }(o — f) cos( —o%f).

For an alternative method, see Ex. 20 (b), no. 7.
By letting # — « we find that the tangent at the point 6 = a is

; = ecos @ + cos (0 —a).
For a calculus method, see Ex. 20 (b), no. 24.

Examples

(i) The tangents at the points P, @ corresponding to 6 = &, f meet at the point
T(r,0), where 0 = }{oc + ).

For the coordinates of 7' satisfy
l
ecos0+cos(0—a) = ;= ecosf+cos (0-p),

i.e. cos (0 —a) = cos (60— p),
from which 0 = Yo+ p).

Remark. The general solution is §—a = 2nm + (6 — f). The sign + is in-
admissible since P, @ are assumed to be distinct; the sign — gives

0 = nm+i(a+pf).

Since —7 <a<7mand —w < f < also —r < Ha+p) < 7, and so there is
no loss of generality by taking n = 0 because any point in the plane can be
specified by an angular coordinate which lies between + .

(ii) With the notation of ex. (i), ST bisects PSQ.

If P, Q are not on different branches of a hyperbola (fig. 214),
PST = ja+f)—a=Hp~
and , T8Q = f~Ha+h) = Hp~

Hence ST bisects PSQ (internally).
If P, Q are on different branches of a hyperbola, let @ be on the branch remote
from S. Then £ is the angle x8Q’, and }{« + f) is angle ST”, as shown in fig. 215.

PRT’ = Ya+p)—a = }(f—a)
and T8Q = f—Ha+p) = H-a),
so that ST bisects PSQ externally.

(iii) Find the equation of the circumcircle of the triangle formed by three tangents
to a parabola, and verify that this circle passes through the focus.

Taking the parabola as I/r = 1+cosf, the tangents at the points 4, B, C
corresponding to 6 = «, 8,y are

= cosf@+cos(0—a), ete.
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Tangents at A and B meet where § = }(a+ ), by ex. (i), and hence

l; = cos }(a+B)+cos }(f—a) = 2cos a cos 3P,

i.e. at the point- (1}1 sec }a sec §f, $(a+ ﬂ)). Similarly the other meets are
($seciBsocdy, 3(B+7)), (secdy secda, (v +a)).
These three points satisfy the equation
7 = }lsec jo sec 35 sec v cos (9——%‘1) ,

which by 20.21 (b) represents a circle of radius B = 1lsec }o sec 1£ sec §y, centre
(R, ¥(x+B+7)), and passing through the pole S.

Fig. 214

Fig. 215

(iv) If a variable chord of a conic subtends a constant angle at the focus, then
tangents at the extremities of the chord meet on a fixzed conic, and the chord itself
touches another fixzed conic.

Let the angle subtended at the focus be 28, and take the angular coordinate
of one extremity to be & — 8; then that of the other is & + 8. The chord thus has
equation I
5= ecos 0 +sec f cos (0 —a),

i.e. Leos fp

= gcos f.cos 8 +cos (0 —a).
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This is the equation of the tangent at a to the conio

l
—cl?f= 1+ecosf cosl, (i)

whose eccentricity is e cos # and latus rectum 2l cos f.
The tangents at the extremities of the chord are

; = ecos 0 +%os (0 —a+f), ; = ecosf+cos(—a—p),
and these meet where (by ex. (i)) § = a and l/r = ecosa + cos f. This point lies

on the conic
l
- ecos 0+ cos g,

i.e.

lse:cﬂ = 1+esecfcosb, (ii)

which has eccentricity esec § and latus rectum 2Isec /.
The conies (i), (ii) have the same focus and directrix as the given one.

Exercise 20(b)
1 If a, b are the semi-axes of I/r = 1+ecos @ (e + 1), prove that whene < 1,

a=1/(1—e?) and b=1/J(1—e2).

Give the corresponding results when ¢ > 1.
2 What locus is represented by a = rsin?$6? Sketch this curve.
3 What is represented by &/r = a+bcos+csin 07

4 If P(ry,a) is an extremity of a focal chord of I/r = 1+ ecos 6, show that
the other extremity @ has coordinates of the form (r,, 7+ ). Prove that

1,1 _¢2
SP ' 8Q 1’
i.e. that half the latus rectum is the harmonic mean of the segments of any focal
chord.

5 Prove that the sum of the reciprocals of the lengths of two perpendicular
focal chords of a conic is constant. Express this constant in terms of ¢ and 1.

6 Prove that mutually perpendicular focal chords of a rectangular hyperbola
are equal in length.

7 Obtain the equation of the chord joining the points of I/r = 1+ecosf
which correspond to 8 = a, # from the result in 20.12.

8 Find the equation of the chord of I/r = 1+ cos(6—7y) which joins the
points 6 = «, f. Deduce that the tangent at « is I/r = ecos (6 —y) +cos (8 —a).

9 Find the common points of the conics

1J3=1r(y3+cosf) and 1.3 = 2r{y/3+cos(0+34m)},

and show that they touch there.

10 Prove that the tangents at the extremities of a focal chord meet on the
corresponding directrix. N

11 Ifthe tangent at P meets the directrix at Z, prove that PSZ is aright-angle.
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12 Achord oflfr = 14 e cos 8 subtends an angle 2« at the focus. If the bisector
of this angle meets the chord at M, prove that M lies on the conic

lcosa
= 1+ecosc.cosf.

13 P is any point on a conic with focus S. A line through S making a given
angle with SP meets the tangent at P in 7. Prove that T' lies on a conic which
has the same focus S and corresponding directrix as the given conic.

14 Two conics have a common focus, about which one of them rotates. Prove
that the common chord touches a conic which has the same focus as the given
conics, and whose eccentricity is the ratio of the eccentricity of the fixed conic
to that of the rotating one.

15 An ellipse of eccentricity e and a parabola intersect at the ends L, L’ of
a common latus rectum, and S is their common focus. If a common tangent
touches them at P, Q respectively, prove that SP, SQ are each inclined to LL’
at an angle sin—1{}(1 + ¢)}. Explain geometrically how the two cases arise.

16. P,Q are the points of the conic I/r = 1+ ¢ cos & corresponding to 6 = a, j.
If the tangents at P, @ meet at 7', prove that 7 has coordinates

( : Hot )
cos }(ax—f)+ecosf(a+p)’ )

17. If P, Q are points on a parabola with focus 8, and the tangents at
P, @ meet at T, prove that SP.SQ = ST2.

18 (i) P, @ are the points @ = a, 8 of the parabola l/r = 1+ cosf. Prove that
the tangents at P, @ contain an angle }|a—j]|.

(ii) Tangents to a parabola with latus rectum 2! contain the constant
angle ¢. Prove that they meet at a point on a hyperbola having the same
focus as the parabola, and give the latus rectum and eccentricity. [Use no. 16.]
*19 Prove that the chord of contact of tangents from (r,, 6,) to I/r = 1 +ecos@
has equation 1 1

(——ecos 01) (;—-ecos 0) = cos(0—6,).

71

[If its extremities are given by 8 = a, £, the chord is

cos }(a—pf) (;—ecose) = cos( —oiiz-—é) .
Use no. 16.]
*20 Show that the tangents at the points 8 = a, f of I/r = 1+ecos 8 are per-
pendicular if and only if e+ (cosa+cosf)e+cos(ex—pf) = 0. [Change the
equation of the tangent into cartesian coordinates.]
*21 Prove that the meet of perpendicular tangents to I/r = 1 +ecos0 lies on
the locus 2[(l/r—ecosf) = r(1—e?). If e + 1, show that this locus is a circle
concentric with the given conic (the director circle). What is the locus when
e=1?
*22 Tangents are drawn to the parabola I/r =1+cosf at 0 =a,f,7,0.
Prove that the circumcentres of the four triangles so formed lie on the circle

_a+ﬂ+‘)’+8)

r = Llsec }a sec S sec }y sec 49 cos (0 )

which passes through the focus. [Use 20.34, ex. (iii).]
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*23 Show that the equation of any line perpendicular to the tangent at a to
l/r = 1+ecosf has an equation of the form

-I:le ecos (0 +4m) +cos (0 + 4w —a).

[See 20.14, ex.] If this line passes through the point «, prove that
= —esina/(1+ecosa).
Deduce that the normal at a has equation

esina 1

_— 0
1+ecosar = esin+sin (6 -a).

*24 Prove that the tangent at A(p, &) to the curve » = f(6) has equation

1 1 (dr 1
;)cos(ﬂ a)— e (@) sm(O—a):;.

[If P(r, ) is any point on the tangent at 4, apply the sine rule to triangle OAP,
and use cot ¢ = dr/rdf (8.14).] Deduce the equation of the tangent to

lfr=14ecosf at O=a.

*25 Obtain similarly the equation of the normal at (p,a) to r = f(0), and use
it to obtain the result of no. 23.

Miscellaneous Exercise 20(c)

1 A4, B are the points (7, 8;), (72, 0,), and M(r,6) is the mid-point of 4B,
Prove that

r =32 +7242r ryc08(0;—0,)} and tanf = r,8in 0, +7,8in b,

= 1T 172 CO8 (U — Uy = 7‘100801+’r200802‘

2 A variable line meets n given lines through O at P, P,, ..., P, respectively.
”

If X (1/OP,) is constant, prove that it passes through a fixed point.

r=1

3 Find the equation of the common chord and of the line of centres of the
circles r = 2acos (8 —a), r = 2bcos (0 —f).

4 Obtain the polar equation of the circle whose diameter is the join of
(a,a) and (b, ).

5 Prove that the chord of contact from (ry, 0;) to the circle r = 2a cos @ is

cos @ + cosf, cos(0—0))
r r a '

[Use the cartesian equation of the circle and chord.]

6 If PSP’ and @QSQ’ are mutually perpendicular focal chords of a conic,
prove that 1/PS.SP’'+1/QS.SQ’ is constant, and express this constant in
terms of 7 and e.

7 (i) Prove that the locus of the mid-points of chords through the focus S
of lfr = 1+ ecos @ is r(e2cos?d—1) = el cos 6.

(ii) By changing this equation to cartesian coordinates, show that the
locus is & conic with the same eccentricity as the original one.
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8 (i) If the tangent to the parabola a = rcos? 30 at the point P given by

6 = a meets the initial line at T, prove ST = asec? a = SP.
(ii) Find the equation of the circle SPT'.

9 Find the value of « for which the tangent at « to I/r = 14 ecos 8 is parallel
to the initial line. Hence find the locus of the ends of the minor axis of this
ellipse as e increases from 0 to 1.

10 Prove that the line I/r = a cos @+ bsin 6 touches the conic I/r = 1+ecosf
ifand only if (a —e)2+ b2 = 1.

11 Two parabolas have a common focus and their axes perpendicular. Prove
that the directrix of either passes through the point of contact with the other
of their common tangent.

12 Find the locus of the foot of the perpendicular from the pole to the line
l/r = ecos § + cos (0 —a) when « varies. Interpret the result geometrically.

13 The perpendicular from the focus S to the directrix meets the conic at 4.
Prove that if the foot of the perpendicular from § to any tangent lies on the
tangent at 4, then the conic is a parabola. [Do not prove the converse result.]

14 A variable chord PQ of the ellipse I/r = 1+ ¢cos @ with focus § is parallel
to the major axis. If its extremities are the points 6 = 2a, 24, prove that
cos(a+pf)+ecos(x—f)=0. '

If the internal bisector of PSQ meets PQ at K, prove that

28P.SQ
SP+8¢Q
and deduce that K lies on & parabola whose vertex is S.

*15 PQ is a focal chord of a conic, and its mid-point is M. The normals at
P, Q meet at N. Prove that MN is parallel to the (major) axis. [Use no. 7 (i)
and Ex. 20 (b), no. 23 to prove that rsin 0 is the same for M and N.]

SK = cos &Pé’Q,

47 GPMII
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21

COORDINATE GEOMETRY IN SPACE:
THE PLANE AND LINE

21.1 Coordinates in space

21.11 Rectangular cartesian coordinates

The method of locating points in a plane by coordinates z, y referred
to two intersecting lines Oz, Oy (15.11) can be extended to points in
space. Clearly three axes of reference will be required, and for sim-
plicity we shall choose them to be mutually perpendicular.

Take any two intersecting perpendicular lines; let them meet at O.

AZ
c L
Z
P
M
. 0 By
0} .~ _
A y
g N
1
x x
Fig. 216 Fig. 217

On each select a positive sense, indicated by an arrow, and label
these directions Oz, Oy. Through O draw a line perpendicular to both
Oz and Oy (and therefore to the plane xOy), and choose the positive
sense along it to be the direction of advance of a right-handed screw
turned in the sense from Ox towards Oy; label this direction O2.
Then we have constructed a right-handed system of rectangular axes
Oz, Oy, Oz.1 The planes 20y, yOz, z0x determined by these axes are
also mutually perpendicular, and are called the coordinate planes.
Given a point P in space, we can draw the perpendiculars PL, PM,
PN to the planes 0z, 20z, x0y. The rectangular box having OP for
diagonal and PL, PM, PN for edges can now be completed; let its

t If the direction of any one axis is reversed, we should obtain a left-handed system.
We use only right-handed axes in this book.
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edges through O be 04, OB, OC along Oz, Oy, Oz respectively. The
distances 04, OB, OC can be specified in magnitude and sense by
signed numbers z, y, 2, and the ordered triplet of numbers (z, ¥, z) are
the rectangular cartesian coordinates of P wo the axes Oz, Oy, Oz. In
particular, observe that L has coordinates (0, y, z), M(z, 0, 2), N(z, y, 0);
and that A4 is (2,0, 0), B(0, y, 0), C(0, 0, 2).

Conversely, given three signed numbers z, y, #, the points 4, B, C
on the axes can be determined, and the box then completed. The
corresponding point P is the extremity of the diagonal through O.

It follows that to each point P in space there corresponds a unique set
of coordinates x, y, z wo the axes Ox, Oy, Oz; and to each ordered set of
numbers x, y, z corresponds a unique point P in space.

The three coordinate planes divide space into eight regions called
octants; to each corresponds a distribution of + and — signs in the
coordinates (see Ex. 21 (a), no. 1), the number of such possible sign-
distributions being 23 = 8. In fig. 217 all coordinates of P are positive.

Finally, observe that A in fig. 217 is the point in which Ox is met
by the plane through P drawn parallel to the plane yOz. Hence PA
is perpendicular to Oz, so that A is the orthogonal projection of P
on Oz. Similarly, B and C are the projections of P on Oy, Oz respec-
tively. The coordinates of a point P are therefore the (signed) lengths
of the orthogonal projections of OP on the axes.

Notation. In the remainder of this book P, is the point whose
coordinates are (z,,¥;,?,), and so on.

21.12 Other coordinate systems

(1) Cylindrical polar coordinates. We may replace the coordinates (z,y) in
the plane Oy by polar coordinates (p, $), where p = ON and ¢ is the angle

| %

e
RN

Fig. 218 ‘ Fig. 219
47-2
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#ON, meagured positively in the sense from Oz towards Oy. P is then deter-
mined by the triplet of numbers (p, ¢, 2), called the cylindrical coordinates of P.

(2) Spherical polar coordinates. Further, in the plane zONP the coordinates
p and z can be replaced by polar coordinates (r, #), where r = OP and 6 is the
angle zOP, measured positively from Oz towards ON. P is then determined by
(r, 0, ¢), the spherical coordinates of P.

If the sphere in fig. 220 represents the Earth and 2Oy, x0z are the planes of
the equator and Greenwich meridian, then 6 is the colatitude and ¢ is the
longitude of P,

21.2 Fundamental formulae

21.21 Distance formula

Given two points P, and F,, let the perpendiculars from them to the
plane 20y be P, N,, P, N,. The coordinates of
N, are (z,,¥;,0), and of N, are (¥, 0).
Regarded as points of the plane zOy, their
cartesian coordinates wo axes Oz, Oy are P,
(%1, Y1), (%2, 95), 0 that N, N, is given by o

N NG = (2, — 252+ (y1—92)* /
Through P, draw P,R parallel to N,N;;
since F, R lies in the plane of P, N, and F,N,,

it meets P, N, say at R. From the right-angled
triangle P, i, R,

P P} =P R+ P, R? = (2, —2,)*+ N, N}
= (27— 29)% + (2, — %)+ (¥, — ¥2)%,
and hence P, P, = J{(%1—29) + (41— ¥2)? + (2, — 2)}.

z

In particular, the distance of P(z,y,z) from O is /(22 + y2? +22)
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21.22 Section formulae

Given two points P,, P,, let P(x, y,2) be the point dividing P, P, in
the ratio k:7; then P, P|PP, = k/l.

Draw P, N,, P,N,, PN perpendicular to plane 2Oy. Through P
draw PR parallel to N, N, to meet P, N, at R; and through P, draw
P, Q parallel to N, N, to meet PN at Q.

From the similar triangles P, PQ, PP, R wehave PQ|F, R = P, P|PP,.
(i) If the division is internal (fig. 222), it follows that

z—2z, k
2g—2 1’

2y + ke,
T l+k

from which

Similarly, by dropping perpendiculars from P,, P,, P to plane 3Oz,
we find that x = (lx, +kx,)/(! + k); and by perpendiculars to plane
20z, that y = (ly, + ky,)/(L + k). ‘

Alternatively, since N divides N, NV, internally in the ratio k:7 and
has the same z- and y-coordinates as P, the last two results follow
from the section formulae in the plane 0y (15.14).

(ii) If the division is external (fig. 223) we have

z—2 _k
=7

N
|

N
®©

. _ lzl - k22
from which 2= W .

There are similar expressions for the 2- and y-coordinates of P.
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Hence, with the convention in 15.14 (3), the point dividing P, P, in
the (stgned) ratio k :1 has coordinates

oy + kxy Uy, +ky, lz1+kzz)
l+k > I+k ° I+k |7

Examples

(i) The line joining A(1,2, —3) and B(3,0,2) meets the coordinate planes
20y, YO0z, 20 at P, Q, R. Find the coordinates of these points, and the ratios in
which they divide AB.

The point dividing AB in the ratio k:1 has coordinates
(l+3k 21 —-3l+2k)

I+’ I+k 1+k

It lies in the plane 20y if and only if its z-coordinate is zero, i.e. 2k = 31. Hence
P has coordinates (4}, £, 0), and divides AB internally in the ratio 3:2.

The point lies in yOz if and only if its xz-coordinate is zero, i.e. I = — 38k.
Hence @ is (0, 3, —5%), and divides AB externally in the ratio 1:3.

The point lies in plane z0x if its y-coordinate is zero, i.e. I = 0. Thus R is
(3,0, 1) and coincides with B. This is evident since B already lies in 20z.

(ii) The four lines joining the vertices of a tetrahedron to the centroids of the
opposile faces are concurrent at a point one-quarter the way up each line from the
corresponding face. .

If the vertices are P, P,, P;, P,, let G, be the centroid of triangle P; P, P,,
ete. The mid-point M of P, P, has coordinates

(%"‘% Y1itY: % +Zz)
H

2 7 27 2
and G, is the point dividing M P, in the ratio 1:2 (cf. Ex. 15(a), no. 1). Hence
G bas coordinates Z1+2Zy+ %y Y1+Ya+Ys 21+2+2
3 ’ 3 ’ 3 )
Consider the point @ dividing @, P, in the ratio 1: 3; its coordinates are

Tyt Xt X3+ 2y Y1 +YatYstYs 2 t2at2+2
4 ’ 4 ’ 4 ’

which are symmetrical in those of P,, P,, P,;, P,. Therefore G is also the point

dividing each of the lines G, P;, G3 Py, Q3P in the ratio 1:3, and the results

follow.

The point G of concurrence is called the centroid of the tetrahedron P, Py P, P,,
and the lines P, G, ..., P,G, are called its medians.

Exercise 21(a)

1 If the negative z-axis is labelled Oz’, and similarly for Oy’, 0z’, give the
signs of the coordinates of points in each of the octants

Oxyz, Ox'yz, Ox'y’z, Ozy’z, Owyz’, Oxz'yz’, Ox'yz’, Ozxy'z.
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2 What points have
(i) z=0; (i) y = 0; (iii) 2 = 0;
(iv) y=0=2; (V) 2=0=2z; (vi)z=0=y?
3 Infig. 217 prove that PA = ,/(y*+22), and give expressions for PB, PC.
4 Prove that the points (2,3,7), (6, —1, —5), (—10,8,7) are the vertices

of an isosceles triangle, and find the length of the base.

5 Showthat (1, 2, — 1) is the centre of the sphere through the points (4, 6, 11),
(13, -1, 3), (6, 14, —1), (— 3, — 10, 2).

6 For A(3,—1,2), B(5,3, —6), C(—1,1,7), D(9, 1, —11), prove that AB
and CD bisect each other.

7 Prove that the points (1, 3, —4), (2, —1, —3), (7, 1, 8), (6, 5, 7) are the
vertices of a parallelogram, and find the lengths of the diagonals.

8 Find the ratios in which the coordinate planes divide the join of the points
(3, — 5, 2) and (—4, 7, 1).

9 Show that the point (6, 2, 0) lies on the line joining ( — 4, 6, 2) and (— 9,8, 3),
and also on the line joining (7, — 5, 1), (4, 16, —2).

10 Prove that the lines joining the mid-points of opposite edges of a tetra-
hedron are concurrent at the centroid of the tetrahedron. [With the notation
of 21.22, ex. (ii), P, P, and P, P, are a pair of ‘opposite edges’.]

11 Change of origin. If new axes P, z’, P,y’, P, 2’ are taken through P; parallel
to Oz, Oy, Oz respectively, show that the new coordinates of P(z,y,z2) are
(z/,y',2') where o' = x—2, ¥y = y—y, 2" =2—2,.

12 (i) By using triangle ONP in fig. 217, prove OP% = 22+ 3 +22.

(ii) Obtain the formula for the distance P, P, by first changing the origin
to P,.

The notation of 21.12 is used in the following examples.

*13 Express z, y in terms of p and ¢, and conversely.

*14 If k and « are constants, what points have (i) p = k; (ii) ¢ = a; (i) p = &
and ¢ = a?

*15 Express z, ¥, z in terms of , § and ¢, and conversely.

*16 If k, a, ff are constants, what points have

(i) r=Fk; (ii) 0 =a; (i) ¢ = 4;
(ivi@=aand¢=p8; (v) r=kandgd=2; (vi) r=kand0=a?l

21.3 Direction cosines and direction ratios of a line

21.31 Direction cosines

We now consider how to specify the direction of a line, i.e. we seek
the space analogue of ‘gradient’. Whereas the latter is defined to be
the tangent of an angle, we shall find that in space the cosine is the
important trigonometrical function.

Let PQ be a line in space, described in the sense from P towards @.
Through O draw a line OA of unit length parallel to and in the same



706 THE PLANE AND LINE [21.32

sense as PQ (fig. 224). We call OA the unit ray corresponding to the
(sensed) line PQ.

The direction of OA, and therefore that of P, will be determined
by the coordinates of 4. Since these coordinates are the orthogonal
projections of OA on the axes Oz, Oy, Oz, hence A is the point
(cosa, cos B, cosy), where a = xOA f= yOA and y = 204. Tt is
customary to write

l=cosa, m=cosfl, n=-cosy, )
and call {{,m, n} the direction cosines of PQ (and therefore of any line

parallel to and in the same sense as P@Q).
Since OA has unit length, the distance formula shows that

Btm?4+nt=1. (i)
z 4
Q zh B
P/ \\
| N
<. 4 4
ol g 6
o » ) .
x x
Fig. 224 Fig. 225

Remarks

(e¢) If the line is described in the sense from @ towards P, then the
corresponding unit ray through O is OA’, where A4’ is the point

(cos (m—a), cos (m— ), cos (m —'y)),

i.e. (— cosa, —cos B, —cosy), ie. (—I, —m, —n).

(8) A line parallel to the plane yOz has a = }m, so that [ =0
Similarly, a line parallel to 20z has m = 0, and one parallel to xOy
has n = 0.

(y) In particular, the coordinate axes described in the positive
senses Or, Oy, Oz have direction cosines {1, 0, 0}, {0, 1, 0}, {0, 0, 1}.

21.32 Angle between two lines

If RS is another line, described in the sense from R towards S, let
its direction cosines be {I',m’, n'}. If O B is the corresponding unit ray
through O, then B is the point (I', m’, n’).



21.33] THE PLANE AND LINE 707

The angle between the (sensed) lines PQ, RS (intersecting or not) is
defined to be the angle AOB for which 0 < AOB < = (fig. 225).

Let AOB = 6; then from triangle AOB, in which 04 =1 = OB,
we have by the cosine rule that

AB2=2-2cos0.
Using the distance formula for 4B, we also have
AB? = (I1-V)2+(m—m')2+ (n—n')?
=B+m2+nt+U2+m2+n2-20' — 2mm' — 2nn'
= 2-2(' + mm’ +nn'),
since by (i), 2 +m?+ n? = land gimilarly I'2+m'2+#n'2 = 1. Comparing
the two expressions for 4 B2, we find
cos @ = II' +mm' +nn’. (it)

In particular, the directions {I,m,n}, {I',m’,n'} are perpendicular
if and only if W +mm' +nn' = 0. They are parallel (in the same sense)
ifand only if I = V', m = m/, n= n'; and ‘antiparallel’ if and only if
l==V,m=-m'n=—n'

21.33 Direction ratios

It is often convenient to specify the direction of a line by a set of
three numbers which are proportional to the direction cosines !, m, n
Any such three numbers are called direction ratios of the line. For
example, the line in the plane 20y which bisects the angle xOy has
o = }m, f = }mr, vy = Lm, so that its direction cosines are {1/,/2, 1/,/2, 0};
a convenient set of direction ratios for this bisector would be 1:1:0.

In general, suppose l:m:n =p:q:r;T thenl = Ap, m = Ag, n = Ar
where A is determined from equation (i) by

AA(pP+gP+r?) = L.

Hence when the direction ratios p: ¢ : r are given, the direction cosines
can be written down as

{DIN(P*+ @2 +72), (P + & +1%), r[J(P* + ¢ + %)}
In any problem it is important to observe whether the numbers
1 An equation a:b=a’:b’ in which ¢’ = 0 is understood to mean that a = 0; if

b’ =0, the equation means that b =0. An equation a:b:¢ =a’:b’:¢’ in which (for
example) ¢’ = 0 means that a:b = a’:b’ and ¢ = 0, and so on. Cf. 11.43(2).
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P, q, r specifying a direction are meant to be direction cosines or
direction ratios. We remark that direction ratios do not distinguish
the two senses of a line.

Examples
(1) If 6 is the acute angle between two lines having direction ratios p q:r,
p’:q’ 7/, then by equation (ii)
+ (2P’ +99'+17)

V(PP + @+ J(p2+ g2 +r2)’
where the sign is chosen so that the expression is positive.

In particular, the lines will be perpendicular if and only if

pp’+qq +rr’' =0

(the ‘perpendicularity condition’).

They will be parallel or ‘antiparallel’ if and only if p:q:r = p’:¢":7".

cosf =

(ii) If P is (z,y,2), the direction cosines of OP are {x/OP,y/OP,z|OP}; for
cosa = z/OP, ete. A convenient set of direction ratios for OP is x:y:z.

(iii) The projections of P, P, on Oz, Oy, Oz are x;—xy, Yy — Yy, 23—2;. Thus
a set of direction ratios for Py Py 18 3 — %, :Ys— Yy :23—2;.

(iv) The lines OP, OQ have direction ratios L:m:m, I’ :m’ :n’. Find direction
ratios for the line OR which is perpendicular to both OP and 0Q.
Let OR have direction ratios p: q: 7. Then by the perpendicularity condition
in ex. (i), lp+mg+nr=0 and Up+m’q+n'r=0.
Solving these for p:q:7 (see 11.43(2)), we have
pigir=mn' —mn:nl' =n'l:lm’~1m.

Exercise 21(b)
1 For A(3, 2, 5), B(~1, 6, 4), C(5, —3, 7), D(—3, 5, 5), prove AB| CD.
2 For A(2, —4, 3), B(3, 2, —1), C(—4, —3, 0), D(6, — 2, 4), prove AB | COD.
3 Prove that the points (-5, 2, 7), (—9, 3, 6), (3, 0, 9) are collinear.
4 Prove that (2, 3, 0), (1, 5, 2), (3, 7, 1), (4, 5, — 1) are the vertices of a square.

5 Find the direction ratios of the lines through O which make equal angles
with the coordinate axes.

6 Calculate the angle between any two diagonals of a cube.

7 Find the angles between the diagonals of a rectangular box whose edges
are a, b, c.

8 Calculate the angles of the triangle whose vertices are A(2, 1, 3),
B(6, -2, —9), (5,1, —1).

9 From P(z,y,z) a perpendicular is drawn to meet the line through O with
direction cosines {I,m,n} at N. Prove that N has coordinates (pl, pm,pn)
where p = ON, and write down direction ratios for PN, Hence prove that
p = le+my+naz.
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10 If M is the foot of the perpendicular from N to OP in no. 9, find the
coordinates of M.

*11 Ifthe directions p; : g, :7,, Pg : s : 7g, Pg : 3 : 75 are parallel to the same plane,
prove that

P &1 N

Py g3 73 |=0.

Ps 43 T3

[They are perpendicular to the normal to the plane.]
*12 Prove that the converse of no. 11 is true. [Use Theorem II of 11.43.]

*13 If Oz, Oy, Oz and Ox’, Oy’, Oz’ are two systems
&, & of rectangular axes with the commmon origin O,
let Ox’, Oy’, Oz’ have direction cosines (I,,m,,n,),
(l3y My, M), (U5, My, mg) WO F.

(i) Prove that

Bimi+nd=R4+mi+nd=B+mi+ni=1
and
Iyl +mgmg +ngng = Lyl +mym, +nyn,

=lLlg+mymy+n;n, =0.

(ii) Verify that (1}, 15, ly), (14, My, my), (11, 79, ) AT
the direction cosines of Oz, Oy, Oz wo &, and hence
that

B+R+B=mi+mitmd=ni+ni+ni=1

and  myng+mengtmyng = nyly +nglytnyly = Lhmy +lamy+lymg = 0.
*14 Rotation of axes.
(i) If P has coordinates (z,y,z) wo & and (z',¥’,2’) wo &, prove that
=hztmy+nz, Yy =hLrtmyy+ngz, 2’ =lz+myy+ngz.
[’ = projection of OP on Oz’; use no. 9.]
(ii) Also prove that
z=hLa' +l,y +12, y=ma' +myy +mez’, z=ma' +ny +n7.

[Symmetry; or multiply «’, ¥’, 2’ by I;, I3, I; in (i), add, and use no. 13 (ii).]

*15 Explain geometrically why x2+y2+422 = a2+ y'2+2’2, and verify this
algebraically.

214 The plane

In this section we obtain the equations of planes determined by
various conditions, and show that the general linear equation in
z, ¥,  is the equation of some plane in space. The reader should note
resemblances to some of the equations obtained in 15.2.
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21.41 Equation of a plane in ‘perpendicular form’

Let the perpendicular from O to the given plane have foot N. If
ON has length p and direction cosines {I,m,n}, then N is the point
(pl, pm, pn).

If P(x,y,2)is any point of the plane,
then PN | ON. Hence the direction
given by x—pl:y—pm:z—pn is per-
pendicular to that given by {I,m,n}, N(pl, pm, pn)
and so

(x—pl)l+ (y—pm)m+ (z—pn)n = 0, v
ie. lz+my+mnz = p(B+m2+n?) = p.

24 P(z, y, z)

The equation

Iz +my+nz = p, Fig. 227

which is satisfied by the coordinates of any point of the plane, is
consequently the equation of the plane. We observe that it is linear
inz, y, z.

21.42 General linear equatioh Ax+By+Cz+D=0

(1) Let P, and P, be two distinct points which satisfy the above
equation; then

Az, + By, +C2z,+D =0, Az,+By,+Cz+D=0. (i)
Multiply the first of these by /(I + k), the second by k/(l + k), and add;

we get
loe, + kxy ly, + Icyz) (lz1 + kzz) _
A( 5% )+B( I+ % +C =% +D =0,
which shows that the point dividing P, P, in the ratio & : I also satisfies

Ax+By+Cz+D = 0. (i)

Since k:! is arbitrary, this means that all points of the line P F,
satisfy (ii).

By definition a plane is a locus in space (or surface) such that the
line joining any two points of it lies entirely on the locus; hence
equation (ii) represents some plane.

(2) The normal to this plane has direction ratios A:B:C. For if
P, and P, are any two points in the plane, then by subtraction of
equations (i) we have

Ay =) + By, — ¥3) + C(2,—25) = 0.
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This shows that the direction 4 : B : C is perpendicular to the direction
Ty — g Yy — Y2 —2,, i.6. to P, P, for any line P, P, in the plane.
Hence the direction 4 : B: C is perpendicular to the plane.

(3) Atleast one of the coefficients in (ii) is non-zero. On dividing by
it we obtain an equation containing three arbitrary coefficients. This
confirms the geometrical fact that a plane is determined by three
independent conditions.

21.43 ConditionsforAx+By+Cz+D =0,A'x+B'y+C'z+D"=0
to represent the same plane

The planes are parallel if and only if their normals are parallel, i.e.

iel—=I~3-=—Or—=lc (say).

The equation of the second plane can therefore be written

k(Ax+By+Cz)+ D" =0.
These parallel planes will be the same plane if and only if they have
a point in common, say (%, Yo, %); and then
Azy+ By, +Cz+D =0, k(Axy+By,+Cz)+D" =0,
so that k(-D)+D' =0, ie. k=D'|D.
Hence the planes are identical if and only if
4_B_0_D
A B ¢ D
i.e. if corresponding coefficients are proportional; in general the latter
will not be equal.

21.44 Plane having normal I:m:n and passing through P,

By 21.41 the plane with normal in direction 7:m : n has an equation
of the form lo+my+nz = p,
even when I, m, n are direction ratios and not direction cosines. Since
the plane passes through (2,,¥,,2,),

ley +my, +nz, = p.
By subtraction,
Kz —2;) +m(y—y;) +n(z—2) = 0. (iii)
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This relation holds for any point (z,y,2) of the required plane, and
therefore is the equation of the plane.

Alternatively, consider the equation (iii). It is linear in z, y, z and
therefore represents some plane (21.42 (1)), whose normal has direc-
tion l:m:n (21.42(2)). It is satisfied by (z,,y,,2,). Hence it is the
required equation.

21.45 Plane P, P, P,
Method 1. Suppose this plane has normal I:m : n; then by 21.44 its

equation is Uz —2,) +m(y —y,) +n(z—2,) = 0.

The points P,, P, must satisfy this, so
Uy —21) +m(y2~ Y1) + 125 —2,) = 0
and Wy — 1) +m(ys ~ y1) + 123 —2y) = 0.

Elimination of I, m, » from this homogeneous system of three

equations gives
=T Y=Y 272

o= Yo—Y1 %% |=0
T3—& Ys—Y1 23—%
as the equation of the plane P, P, P;.

Method 2. Let the required equation be
Ax+By+Cz+D = 0.
This is satisfied by P;, P, and P, so
Az, 4+ By, +Cz+D = 0,
Axy+ By, +Czy+D =0,
Axy+ Byy+Czy+D = 0.
Elimination of 4, B, C, D from this homogeneous system of four equations
gives
r y =z 1
2 4 oz 1
Ty Yy 25 1
Zy Ys 23 1

as the required equation. It is easy to reduce this fourth-order determinant to
the third-order one just obtained, and vice versa.
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21.46 Intercept form: plane making intercepts a, b, ¢ on the
coordinate axes '

The required plane passes through the points (a,0,0), (0,5,0),
(0,0, ¢). Any plane through (a, 0, 0) has an equation of the form

Wz —a)+my+nz=0.
This is satisfied by (0, 5, 0), (0, 0, ¢) if
—al+bm =0, —al+cn=0.

Hence al = bm = cn,
so that l:m:n=l;l:l,
abc
and the required equation is
T )
a b c

21.47 Angle between two planes

The angle between two intersecting planes (a dihedral angle) is by
definition the acute angle between the perpendiculars drawn in each to
the common line, and is clearly equal to that between their normals.

Given two planes

Axz+By+Cz2+D =0, A'z+B'y+Cz+D" =0,

their normals have directions 4: B: C, A’ : B’ : C". The angle § between
the planes is therefore given by (see 21.33, ex. (i))

+(4A'+BB' +CC")
J(A%+B%+4C?) J(A'?+ B2+ (%)’
In particular, the planes are perpendicular if and only if
AA’+BB' +CC" = 0.
They are parallel if and only if their normals are parallel, i.e.
A:B:C=A4":B":C'.

cosl =

Exercise 21(¢c)

1 Find the locus of points equidistant from (2, — 1, 3) and (1, 3, —2).

2 Find the equation of the plane which bisects AB and is perpendicular to
CD, where A(3, —2, 1), B(5, 4, —2), C(2, 4, —3),-D(—1, 3, 2).

3 Find the equation of the plane through (—2, 4, 0) and (—3, 2, — 9) which
is parallel to the line joining (3, 5, — 1) and (6, 3, 2).
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4 Obtain the equation of the plane through (2, 2, — 1), (7, 0, 6), (3, 4, 2).

5 Find the equations of the two planes through (0, 4, —3) and (6, — 4, 3),
other than the plane through O, which make intercepts on the axes whose sum
is zero.

6 If A(3, 0, 0), B(2,3,0), C(1,1,1), find (i) the angle between planes OBC,
OAB; (ii) the angle between line BC and plane OAB.

Z At three points O, X, Y on a horizontal plane, where 0X = ¢ = 0Y and
XOY = }m, vertical shafts are sunk to meet a seam of coal at depths p, g, r
respectively. Assuming that the coal face is plane, find the angle between this
plane and the horizontal, and the distances from O of the points where this
plane meets OX and OY.

8 If A(a,0,0), B(0,b,0), C(0,0,c), P(a,b,c), prove that the angle between
OP and plane ABC is sin—1 (3q/p), where p? = a?+ b2+ c2andg—2 = a2+ b2+ ¢ 2,
Also prove that the distance between the feet of the perpendiculars from O and
P to ABC is ./(p*— 9¢?), and find the angle between planes PBC, PCA.

9 Find the equation of the plane bisecting P, P, at right-angles.
*10 Show that the two determinantal equations in 21.45 are equivalent.

11 Prove that the plane through P, and P, which is parallel to the direction
Pp:q:r has equation
T—® Y-y 22—z

Ty—®1 Yo—Y1 Za—2z |=0.
P q r
12 Prove that the plane through P, which is parallel to each of the directions
p:q:7, p’:q :7 has equation
=% Y—h 22—z
P q r = 0.
r ¢

13 Sides of a plane. Find the value of k:! if the point dividing P; P, in the
ratio k:1 lies in the plane Az + By + Cz+D = 0. Deduce that P,, P, are on the
same or opposite sides of this plane according as Az, +By,+Cz +D,
Az, + By, + Cz, + D have the same or opposite signs.

21.5 The line

A straight line in space can be determined by (a) the meet of two
planes; (b) the join of two points; (c) a single point together with a set
of direction ratios.

We begin most conveniently with case (c).

21.51 Line through P, in direction I:m:n
Let P(z,y,2) be any point on the line; then a set of direction ratios
for the line is z—a,:y—y,:2—2,;. Since l:m:n is also such a set of
direction ratios, hence
T—% Y —Yyi2—2 =l:m:n.
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This can be expressed in the formt

2—% _Y~h _*-n
l m n

. (i)

These equations are satisfied by any point of the line, and are therefore
the equations of the line.

Notice that two equations are necessary to determine a line in space:
a single linear equation represents a plane. The two equations (i) are
in fact the equations of two planes, each of which contains the line;

e.g.
g x—x1=y—y1 x_xl_z—'zl

l m °’ l n

represent two such planes.
We refer to (i) as the symmetrical equations of a line.

Example
Equation of the line P, P, (case (b) above).

Direction ratios of the line Py P, are &, —,: 4, — ¥, : #; —%;. Hence the line

has equations
T—2 Y=Y _ 2—%

= = .
T—%y Y1—Ys %1%

21.52 Parametric equations of a line
Putting each of the ratios in (i) above equal te A, we have

z=z+M, y=y;+m, z2=2+An. (ii)

These are the parametric equations of the line through P, in direction
l:m:n, A being the parameter (ef. 15.261). They are particularly
useful when dealing with intersections of the line with a line, plane,
or other surface.

+ If the line is parallel to a coordinate plane, say to yOz, then n = 0. The equation
T—2y Y —Yy:12—2, =1l:m:0 i)

then means (see the footnote on p. 707) that x —=,:y—y, =l:m and 2—2, = 0. This
is consistent with the geometrical situation, since every point of the line has its
z-coordinate constant, say z = z,: the line lies in the plane whose equation is z =z,.
We continue to write x-—lw, = y:nyl = z:)zl as alternative to (i), with a similar
understanding when two of I, m, n are zero.

t Unless !, m, n are direction cosines, A is not the distance of the point
(zy+Al, 1+ Am, z,+ An) from P,; but it is proportional to this distance.

48 GPMII
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Examples
(i) Find the length of the perpendicular from A(3, 7, — 2) to the line
z—10 y+8 2z+5

3 -4 1’
and find the coordinates of its foot N.
The parametric equations of the line, obtained by putting the ratios in its
equations equal to A, are
x=238A+10, y=—4A-8, z=A-5.
Calling this general point P, the direction ratios of AP are
8A4+7:—4A—-15:1~-3.
AP will be perpendicular to the given line (whose direction ratios are
3:—4:1) if and only if
3(3A4-7)—4(—4A—15)+1(A—-38) = 0,
from which A = — 3. Hence the foot N of the perpendicular from 4 to the line
is obtained by putting A = — 3 in the coordinates of the general point P; this
gives N(1, 4, —8).
It now follows that
AN2=22432462=49, .. AN=1T.

(ii) Find the image of the point P(3, — b, 2) in the plane 2x + Ty — 3z = 27.
By definition, the ¢mage P’ of P in the plane is such that PP’ is perpendicular
to the plane and is bisected by it.
Since the normal to the plane has direction ratios 2: 7:—3, the equation of
the normal through P is
z—-3 y+5 2z-—2

2 7

?

or parametrically w=20+3, y=TA—5, z=—31+2.

This point will be P’, the image of P, provided that the mid-point of P'P

lies on the plane, i.e.
2(A+3)+T(FA—5)—3(—3A+2) = 27,

from which A = 2. Hence P’ is the point (7, 9, —4).
(iii) Find the image of the line

in the plane x—2y+ 3z = b.

We find (e) the point @ where the line and plane meet; (b) the image P’ of
the point P(2, 1, — 3) of the line; (¢) the required line as the join of P, Q.

(a) The parametric equations of the given line are

z=3A+2, y=2A+1, z=051-3.
The line cuts the given plane at the point @ for which
(3A+2)—2(22+ 1)+ 3(5A—3) = 5,

j.e. A = 1; hence Q is (5, 3, 2).
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(b) The method of ex. (ii) shows that the image of P in the given plane is
P(4, -3, 3).

(c) The line P’Q has direction ratios 1: 6 : — 1, so its equations can be written
z—2

-1

z—5

_y=3_
1~ 6

(iv) Condition for two lines to be coplanar.
Suppose that the lines

are coplanar. Then either they are parallel, or they intersect.
If they are parallel, thenl:m:n =1":m":n’'.
If the lines intersect, then the common point has coordinates

(a+AlLb+Am,c+An) for some A,
and also (@’ +pl', b +pm’, ¢’ +pun’) for some u.
Hence there exist values of A and g for which
a—a’ +N—pul’ =0,
b—b"+2Am—pum’ =0, (iit)
c—c¢ +An—pun’ = 0. '
Elimination of A, g (11.43, Corollary I (b)) gives the condition
| a—a 1 U
b—b m m |=0.
c—¢ n n

The condition is also satisfied when the lines are parallel, for in this case the
second and third columns of the determinant are proportional.

This necessary condition for two lines to be coplanar is also sufficient. For
when it is satisfied, then by 11.48, Theorem IT, there exist numbers o, 8, v

not all zero such that wa—a')+ L+l =0,
ab—b)+pm+ym’ =0,
and a(c—c’)+pn+yn” = 0.
If « =0, then l:m:n =1 :m :n’, so that the lines are parallel, and hence
coplanar.

If « % 0, the above equations can be written in the form (iii), which show
that, for some pair of values of A and g, the point (a+ Al, b+ Am, ¢+ An) of the
first line coincides with the point (a’ + ul’, b’ + um’, ¢’ + un’) of the second. The
lines therefore intersect, and hence are coplanar.

21.53 Line of intersection of two planes
| Given two planes

‘ ax+by+cz+d =0, adz+by+cz+d =0
‘ 48-2
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which intersect, we require to express the equations of their common
linet} in the symmetrical form.
The planes will not be parallel if and only if not all of

bc' —-b'e, ca’'—c'a, ab —a'b

are zero. When this is so, let the common line have direction ratios
l:m:n. Then since this line lies in each plane, it is perpendicular to
the normal to each plane, i.e. to the directions a:b:¢, a’: b’ :¢’. Hence

al+bm+en =0, a'l+bm+c'n=0,

from which (11.43(2))
l m n

be'—b'c ca'—c'a ab’'—a'db’

We now require the coordinates of one point on the line of inter-
section. This can be chosen in infinitely many ways; e.g. we may find
the point where the line meets any one of the coordinate planes.

Example
Find symmetrical equations for the line of intersection of the planes
22—3y+2=206, br+4y—3z=1"1.
If the required line has direction ratios l:m :n, then
2W—-3m+n=0, bl+4m—3n=20,
and hence l:m:n=>5:11:23.
Let us find the point where the line cuts the plane x = 0. The y- and z-
coordinates are given by —3y+z=6, dy—3z="T;
hence y = —5, z = —9, and a point on the line is (0, — 5, —9). Symmetrical
equations of the line are therefore
z_y+5 z+ 9

5 11 = 23°

21.54 Distance of a point from a plane

Given a point P, and a plane ax+ by +cz+d = 0, let NV be the foot
of the perpendicular from P, to this plane. We require to find the
length of P N.

The normal through P, to the plane has equations

Ty _ Y=Y _*"%
a b c

b

t The two equations just written are equations of the common line (case (a)).
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or parametrically
z=2x,+Aa, y=y,+Ab, z=z+Ac.

These expressions will be the coordinates of N if they satisfy the
equation of the plane, i.e. if

a(x, +Aa) +b(y, + Ab) +¢(z, + Ac)+d = 0,

_ax1+by1+cz1+d
a®+b%+c?

With this value of A we have, by the distance formula,
P,N? = (Aa)?+ (Ab)2+ (Ac)? = A*(a?+ b2 +c?)

_ (%, +byy +c2y +d)?
- az + b2 + 02

from which A=

_ ax+by, +ez+d
Hence PN=4+ J@+5 1o

where the sign is chosen so that the expression is positive.

Example

Planes bisecting the angles between two given planes. :
If P(z, y, z) is any point on a plane which bisects an angle between the planes

ax+by+cz+d=0, az+by+cz+d =0,
then the perpendiculars PN, PN’ to these two planes are equal. Hence

ar+by+ce+d _  a'z+by+cz+d
V@+bi+ct) T J(@?+b7+c?) ]

and these are the equations of the two bisector planes.

21.55 Areas and volumes

(1) Area of triangle P,P,P,. Let o, f, v be the angles between the plane
P, P, P, and the coordinate planes ¥0z, 20z, 2Oy. Then cosc, cos 8, cosy are
the direction cosines of the normal to this plane, and hence

cos®a+cos?f+cos?y = 1. (iv)

Let A be the area of the triangle P; P, P, and let the areas of its orthogonal
projections on the planes yOz, 20z, zOy be A,, A,, A;. Then by 17.24 (4),

A, =Acosa, Ay,=Acosf, A;=Acosvy,
and hence by (iv), A% = A2 A2+ AL (v)
The projections of P, P,, P, on plane yOz are the points (0, ¥;, %), (0, ¥s, 23),
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(0, ¥4, 25) of space. Regarded as points of the plane yOz referred to axes Oy, Oz,
they have coordinates (y;,2,), (Y2 25), (¥3,25). Hence by 15.16 (2),

h oz 1

Ay=xd|ys 2z 1

Ys 2 1
z 2 1 z, ¥ 1
Similarly Ap=3 oy 29 1|, Ag=%%| 23 yy 1
g 23 1 zy ys 1

On substituting these expressions in (v), we obtain a formula for A in terms
of the coordinates of the vertices of the triangle.

(2) Volume of tetrahedron Py, P, P,P,. The volume is given by
4 x (area of one face) x (perpendicular to that face from the remaining vertex).

If V is the required volume, A the area of triangle P, P, P;, and h the perpen-
dicular from P, to the plane P, P, P;, then

V = }Ah. (vi)
The plane P, Py P, has equation (see 21.45, Method 2)
z y =z 1
% Y oz 1 =0.
Ty Yy 2z 1
Ty Ys 23 1

If we expand this determinant by the first row, we obtain (11.7)

¥ & 1 z oz 1 z oy 1 Ty Y A
T\ Yy 2g 1=yl @ 2 1|42/ 2 @yp 1= yg 2, |=0.
Ya 73 1 23 23 1 Zy Yy 1 Ty Ys %3
The coefficients of z, y, z are numerically equal to the expressions 24,, 24A,,
24, in (1).

The perpendicular distance » of P, from the plane P, P, P, is obtained (see
21.54) by writing x,, ¥,, 2, for z, ¥, z in the left-hand side of this equation, and
then dividing by the square root of the sum of the squares of the coefficients
of z, y, 2:
%o Yo % 1

T Y %

1
h =4+ —:—2J(A§+A§+A§).
Ty Yz 23 1
2y Ys 23 1
Using (vi) and (v), we now have
Zo Yo %o 1
V=13 z Y % 1 ,
Ty Yo 23 1

z3 Ys 25 1

where the sign is chosen to make the result positive.



21.55] THE PLANE AND LINE 721

Example*

With the notation of Ex. 21 (b), no. 13, let I, J, K be the points which have
coordinates (1, 0, 0), (0, 1,0), (0,0, 1) wo Oz’y’z’. Then triangle OJK has ares 3,
and tetrahedron OIJK has volume %.

Referred to axes Oxyz, the points are I(l;,my,ny), J (I3, mg, ny), K(ls, m3,13),
and so

0 0 0 1
L, my n; 1
volume OIJK = +4%
2 My 7Ny 1
1

Iy, mg my

L m o
Hence Iy, mg ng | =1

Iy my ny

Exercise 21(d)
1 Find the point where the line
z—1_ y+3 2—4

2 b 3
cuts the plane 3x—2y+2z = 8. Also find the distance between (1, —3, 4) and
this point.

2 Find the points where the line through (g, b,¢) in direction l:m:n cuts
the coordinate planes.

3 @ is the centroid of the triangle whose vertices are the points where the
plane lx+my+nz =p cuts the coordinate axes, and I*+m?+n? = 1. The
perpendicular at @ to this plane meets the coordinate planes at 4, B, C. Prove

1 1 1 3
Q4 + GB + Go= ; .
4 Find the perpendicular distance of (5, 4, 1) from the line

z—6 y+15 z2—14

5 . 1 ~— 8

5 Obtain the equations of the line through (1, 2, 3) which meets the line
z+1 _ y—-2 z2+4

2 1 2

and is parallel to the plane z+5y+2z = 7. Give the point of intersection.
6 Prove that the line x—1 = —9y+ 18 = —3z2—9 is parallel to the plane
3z — 3y + 10z = 26. Find the image of the line in this plane.

7 Find the image of the line
z+1 _y—-2_ 2z2-
2 = 1 T -
in the plane 3z 4 2y — b5z = 24.

w
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8 Obtain the equation of the plane which contains the parallel lines
z—1 y+2 2z—4 =x—4 y-—-3 z+1

9 Prove that the lines
z—2 y-3_z+4 2—-3_y+1 z-—-1

2 -1 3’ 1
are coplanar. Find their common point, and the equation of the plane con-
taining them.

10 Obtain the condition in ex. (iv) of 21.52 by using Ex. 21 (¢), no. 12.

11 Prove that the line 3z 42y +2z = 4, +y — 2z = 1 is perpendicular to the
line 22—y —z = 16, Tx+ 10y — 8 = 2.

12 Find the equation of the plane through O which is perpendicular to the
common line of the planes z+y+2z = 2, 3z —y+2z = 1.

13 Q is the point (4, £, %), and a line ] through @ has direction ratios —4:1:1.
The line OQ meets the line I’ at P, where I’ has equations 3z—3y+4 = 0,
x+ 2y + 2z = 12. Prove that OPQ is perpendicular to both ! and I,

If R is a point on I’ and § is a point on I/ such that PR = @8, prove that
OR?— 082 is constant, and state its value.

14 A plane makes angle 60° with the line 2 = y = z and 45° with the line
« = 0 = y—2z. Find the angle which it makes with the plane z = 0.
15 Find the equations of the two lines through O which meet the line
f;_3 =y—3=2
at angles of 60°.
16 Find the equations of the lines which meet the line

at 60° and which lie in the plane x+y+224+1 = 0.
17 Calculate the distance of the point (3, — 1, 2) from the plane
5z — 6y~ 30z = 23.
18 Find the equations of the planes which bisect the angles between the
planes 2x—3y+6z =1, 4x+3y—122+2 = 0.

*19 Find the area of the triangle formed by the lines in which the plane
lz +my +nz = p cuts the coordinate planes (Imn + 0).

*20 Interpret geometrically the determinant
T Y &
T2 Y2 2

T3 Ys ?a
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21.6 Planes in space

21.61 Planes through a common line

Consider the equation a + k&’ = 0, where k is constant and
a=ar+by+cz+d, a’'=azx+dy+c'z+d.

It islinear in z, y, 2, and therefore represents some plane. It is satisfied
by the coordinates of any point P which satisfies both & = 0 and
a’ = 0, i.e. by any point on the common line of these planes.

Hence a + ka’ = 0 represents a plane through the line of intersection
of the planes o. = 0, a’ = 0, provided that such a line exists. If &« = 0,
a’ = 0 are parallel, then clearly a + ka’ = 0is a plane parallel to both.

Conversely, every plane through the common line of @ = 0, &’ = 0
can be represented by an equation « +ka’ = 0 for some value of %
(except the plane o’ = 0 itself}). For if P, is a point (not on the com-
mon line) of such a plane, then o, + ka; = 0 gives a unique value of %,
viz. —a,/a;, and the required equation is aa; = a’a;.

A case of a + ko' = 0 arose in 21.54, example.

Examples
(i) Find the equations of the orthogonal projection of the line
z—1 y+1 2z-3

2 -1 4

on the plane x +2y+2z = 8.
Two planes theough the given line are
ol gl g s=l 23
2 -1 2 4’
ie. z+2y+1=0 and 2r-2+1=0.
Hence any plane through the line has an equation of the form
(2x—z+1)+k(z+2y+1) =0,
ie. 2+k)x+2ky—2z+(L+k) = 0.

The orthogonal projection of the line is the meet of the plane z+2y+z = 8
with the plane through the line and perpendicular to this given plane. We
therefore choose % so that the directions 1:2:1 and 2+%:2k: —1 are per-

pendicular: (2+k)+4k—1=0,
so that & = —%. The required plane through the line is therefore
20—2+1—-Hx+2y+1) =0,
i.e. 9r—2y—bz = —~4.
This and «+ 2y +2 = 8 are the equations of the projection.
1 This exception can be avoided, if necessary, by using the equation Ac+A’a’ = 0.
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(ii) If the direction ratios of a vertical line are 1:0:— 2, find direction ratios
of a line of greatest slope of the plane 2x—y— 3z = 4.
Let the vertical through the origin O cut the given plane at P, and let PQ
be the line of greatest slope through P. Then the plane OPQ must be per-
pendicular to the given plane.

The equations of OP are z
-i =

ol

=2
-2’
which are equivalent to y=0, 2x+z2=0.
Hence any plane through OP has an equation of the form
2 +2z+ky =0.

This will be the plane OPQ if k is chosen so that the direction 2:%:1 is per-
pendicular to 2:—1:— 3 (the normal to the given plane):

4—-k—83=0, ie. k=1

Hence the plane OPQ is 2x+y+2z = 0, and this equation together with
2¢ —y — 8z = 4 determines the line of greatest slope through P. Its direction is
l:m:n, where

20+m+n=0 and 2l—-m-—3n=0;
hencel:m:n=1:—4:2.

(iii) Show that the planes 3x+y+3z = 4, v—y—56z = 2,and 6x+ 4y + 162 =7
pass through a common line, and find direction ratios for this line.

Any plane through the line of intersection of the first two planes has an
equation of the form

3x+y+32—4+kx~y—52—2) =0,
ie. (E+3)r+(1—k)y+(8—5k)z = 2k +4.
This will represent the same plane as 6z + 4y + 15z = 7 if and only if (21.43)

kE+3 1—k 3—56k _2k+4
6 4 15 7

The first of these equations gives k¥ = — £; and this value is found to satisfy
the second and third. Hence the three given planes possess a common line, whose
direction ratios I : m : n are given by any two of the equations

+m+3n=0, l—-m—-—6n=0, 6l+4m+1b6n=0.
Thus lim:in=—2:18:—4=1:-9:2,

21.62 Incidence of three planes
Let a, =Eqzt+bytez+d, =0,
oy = ayz+byy+cz+d, =0,
0y = g%+ byy+cyz+dy =0,
be the equations of three distinct planes.
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If (x, y, 2) satisfies all three equations, then as in 11.41 we have

Az =AY, Ay =A®, Az =A®, (i)
where a b o —dy b ¢
A=lay; by ¢g|s, AV=| —dy by ¢ |,
a; by ¢ —ds by ¢
@ —d ¢ a b —d
A®=|a, —dy ¢,|, A®=}a, b, —d,
ag —dy ¢ a; by —ds

If A+ O, the equations possess a unique solution (z,y,z), i.e. the planes
a,, &y, g have a unique common point.
If A =0, then by Theorem II of 11.43 there exist numbers I, m, n not all
zero such that ayl+bm4cn =0,
ayl+bym+tcyn = 0,
agl+bym+cgn = 0.

Hence the line with direction ratios I:m:n is perpendicular to each of the
directions a;:b;:¢,, ag:by:cy, a,:bg:cy. Since these are the directions of the
normals to a,, &,, a,, these planes must all be parallel to some line.

Conversely, if the planes are all parallel to a line having direction ratios
l:m:n, then the above three homogeneous equations in three unknowns
1, m, n hold, and 8o A = 0 by 11.43, Theorem I.

Hence a,, a,, ay are parallel to some line if and only if A = 0. There are various
possibilities; to illustrate them, let a plane perpendicular to this line cut
0y, 0, g in lines Ay, Ay, A,.

(i) AU of &y, cty, &y are parallel (fig. 228). This is so if and only if
ay:byie, = agibyicy =ag:ibyic,. .
(ii) Two of &y, &y, @y are parallel, and the third intersects them (fig. 229). This
happens if and only if just two of the ratio-sets a, : b, :¢;, @y : by: ¢y, ay: by : ¢, aTE
equal.

Fig. 228 Fig. 229

In both of these cases we certainly have A = 0 since at least two columns
are proportional.

(iii) No two of a,, &y, a3 are parallel. This occurs when no two of the above
ratio-sets are equal. The plancs may

(a) meet in pairs in three parallel lines (fig. 230), or

(b) meet in a common line (fig. 231).

Unless AW = A® = A® = 0, the three planes cannot possess any point in
common; this follows from equations (i) (and the general hypothesis that A = 0).
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Since (iii) (@) and (iii) (b) are mutually exclusive, (iii) (a) occurs when and only
when A = 0 but at least one of AW, A®, A® ig non-zero; and the planes have a
common line (case (iii) (b)) if and only if A = AD = A® = A® = (,

The algebra in 11.42(1) corresponds to the case (iii) (), but includes the
possibility that two of the planes may coincide; that of 11.42 (2) corresponds to
the possibility of all the planes coinciding.

Fig. 230 Fig. 231

Exercise 21(e)
1 P is the point (—2, — 3, —2), and [ is the line

Find the equation of the plane determined by P and I.
2 Find the equation of the plane through the line
z—1 y _z+2

T2 o1 1
and parallel to the line 22+ 5y 432 = 8, x—y—52 = 3.
3 Find the plane through o y—3 2-6

* 2 3

and perpendicular to the plane 2z + 7Ty —3z = 4.
4 Find direction ratios for the projection of

z—1 y _2+2
2 T -1 1
on the plane 2v+y—32 = 9.
5 Find the equations of the projection of the line
x—y+22=1, x+2y-~2=2
on the plane 3z +2y+2z = 0. Verify that (—1, 1, 1) lies on the projection, and
obtain its equations in symmetrical form.

6 Taking Oz to be vertical, find direction ratios for a line of greatest slope
of the plane through (0, 0, 0), (3, 5, —2), (4,1, 1).

7 Find the equations of the planes through the line 3z = 2y = 3z which make
angle 30° with the plane z = 0. If Oz is vertical, prove that the lines of greatest
slope of these planes make an angle tan—* } with the given line.

8 Obtain the equations of the projection I’ of the line ¢ whose equations are
2z +y—4 = 0, y+ 2z — 8 = 0 on the plane o whose equationis 2z —y—2+3 = 0.
Ifl’ is a line of greatest slope in « and the angle between I’ and the vertical is 60°,
find direction ratios for either possible vertical.
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9 Find the equations of the three planes which pass through the line of
intersection of two of the planes

z+y+2+3=0, 22+y+22+5=0, 2+3y+2z+6=20

and are perpendicular to the third.

Prove that the planes so obtained have a common line, and that the plane
through O perpendicular to this line is 7x + 5y — 2z = 0.

10 Show that the planes x +2y—2z = 0, 3x — 4y +2z = 3, and 4x+ 3y — 2z = 24

form a triangular prism, and that the lengths of the sides of a normal cross-
section are in the ratio 4/13:,/568:5,/3. [Use the sine rule.]

21.7 Skew lines

21.71 Geometrical introduction

Two lines in space may (i) intersect, (ii) be parallel, or (iii) neither
intersect nor be parallel. In cases (i) and (ii) the lines are coplanar;
in (iii) the lines are said to be skew.

Fig. 232

Two skew lines have infinitely many common transversals; for any
point on one can be joined to any point on the other. Cf. the example
below. We now prove that there is exactly one transversal which cuts
both lines at right-angles, and that the distance between the inter-
sections is the shortest distance between the two lines.

Let AB, CD be the given skew lines. Through any point X on 4B
draw XY parallel to CD. Then the plane AXY contains 4B, and is
parallel to CD; for if CD met plane AXY, say at F, we could draw
a line through E parallel to XY, i.e. parallel to CD; and this is im-
possible.

Let the orthogonal projection of CD on plane AXY be the line PF,
meeting AB at P. (If PF did not cut 4B, then PF || AB; and since
CD is parallel to plane AXY, therefore CD || PF. Hence we should
have CD || AB, contradicting the hypothesis of skewness.) The point
P is the projection of some point of CD, say Q.
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We prove that PQ is the unique common perpendicular of AB and
CD. For since P@ is perpendicular to plane AXY, hence PQ is
perpendicular to 4B and to PF. Also, since CD | PF, PQ is per-
pendicular to CD. The uniqueness follows from the steps of the
construction for PQ.

If H, K are any two points of AB, CD respectively, then HK > PQ.
To prove this, let the perpendicular from K to plane 4AXY have
foot N; then N lies on PF, and KN 1 NH, so that HK > KN (the
hypotenuse being the longest side of triangle KNH). Since both
PQ and NK are perpendicular to PF and coplanar, hence PQ || NK;
and since @K || PN, PQKN is a rectangle, so that PQ = KN. Thus
HK > PQ.

It follows that PQ is the shortest distance between the two skew
lines. It is equal to the perpendicular distance from any point K on
CD to the plane AXY.

Example

Prove that through a given point there is a unique common transversal of two
skew lines 1, U'.

Let the given point be P, not on either line [, I’. If a line through P meets !,
it must lie in the plane (P,1). If a line through P meets !, it must lie in the plane
(P,V). Hence a line through P meeting both ! and I’ would have to lie in both
these planes. Now these planes certainly intersect, because P lies in both;
hence they have a unique common line which passes through P, and this is
the common transversal of [, I’ through P.

21.72 Length of the common perpendicular
Let the lines AB, OD in 21.71 have equations

z—a y—-b z-c¢ z—d y-b z—c

l m n ’ U m’ n

Then the plane A XY, which is parallel to CD and contains A B, has an
equation of the form
ple—a)+q(y—b)+r(z—c) =0,

’

where pl+gm+rn =0
and ol +gm’ +rn' =0
since its normal is perpendicular to both AB and CD. Elimination of
P> g, r gives z—a y—b z—c
l m n |=0

’ 14

U m n
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as the equation of plane AXY. Its normal therefore has direction
ratios ’ ’ ' ’ ' ’
mn' —m'n:nl’ —n'l:lm’—U'm.
The length of PQ is equal to the perpendicular distance of any point
K of OD from this plane. Since (a’,b’,¢’) is a point on CD, we have
a’'—a b'—b c'—c
+ I m n
4 m’ n |
(mn' —m/'n)2 4 (nl’ —n'l)2+ (Im' —U'm)?}’

Pe=x

where the sign is to be chosen so that the result is positive.

21.73 Equations of the common perpendicular
The line PQ is the line of intersection of the planes QAB, PCD.

The plane QAB has an equation of the form
fl@—a)+g(y—b)+h(z—c) =0,

where fl+gm+hn =0

and fmn' —m'n) +g(nl’ —n'l) + h(lm' —I'm) = 0,

since its normal is perpendicular to both 4B and P@. Elimination of

f, 9, b gives
z—a y—>b z—c

l m n =0
mn' —m'n wl'—n'l Im'—Um
as the equation of QAB. Similarly, plane PCD has equation

’

z—a’ y-0b z—c¢
4 m’ n' = 0.

mn' —m'n nl'—n'l Im'=Im

These are the two equations of the line PQ.

21,74 Alternative method

Although the methodsin 21.72, 21.73 give the results for two general
lines, it is often more convenient in a given particular case to find the
coordinates of P, @, and from these deduce the length and equations
of PQ, as follows.
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Since P lies on 4B, its coordinates are of the form
(@+Al, b+2Am, c+ An).

Similarly, @ on CD has coordinates (a’+pul',b’ +pum’, ¢’ +pun’).
Direction ratios for PQ are therefore

a—a' +Al—pl :b—-b' +Am—pum’':c—c'+An—pun'.
As PQ is perpendicular to A B (whose direction ratios are I:m :n) and
to CD (I’ :m’ :n'), hence
la—a')+m(b—b")+n(c—c')
+ A+ m2+n2) — u(ll’ +mm’ +nn’) = 0
and l(e—a')+m'(b—b")+n'(c—~c)
+ AW +mm’ +nn')—pl'2+m'2+n'2) = 0.

From these A, # can be calculated, and then the coordinates of P
and @ found.

Example
Find the shortest distance between the lines
z_y =z z—2 y-—1 2+2
27 =371 nd 3 -5 2’

and find equations for the line along which it lies.
Any point P on the first line is (2, — 3A, A), and any point @ on the second is
(2+3u,1—6p, —2+2p). Hence PQ has direction ratios

2A—3u—2:—3A+5p—1:1—2u+2.
If PQ is perpendicular to the first line,
2(2A—3p—2)—3(—3A+5u—1)+(A—2u+2) =0,
ie. 14A—-23u+1=0.
If PQ is perpendicular to the second line,
3(2A—3u—2)— 5(—3A+ 5 — 1)+ 2(A—2u+2) = 0,
ie. 231 —384+3=0.

On solving we find A = 3%, gy =212 Hence P is (8%, —31,31), and @ is
(21, — 42, 32), By the distance formula,
PR = (H*+ 32+ 3
and so PQ = },/3.

Bquationsof PQare ) 97 ,yss o1

H] H 3’
i.e. r—21=y+8E =2-32,
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21.75 Standard form for the equations of two skew lines

Calculations for proving properties of skew lines can be simplified
by a suitable choice of coordinate axes as follows.

If AB, CD are the skew lines, let their common perpendicular PQ
be chosen for z-axis. To introduce as much symmetry as possible,
choose O at the mid-point of P@, and through O draw lines OB’, 0D’
parallel to AB, CD respectively. For Oz, Oy choose (again with a
view to symmetry) the bisectors of the angles between OB’, OD’, and
label them in such a way that Ozyz is a right-handed system.

—

—
~
‘?;7\“?’

/‘\"/
0|

/
L

Fig. 233

From the construction, the plane xOy is parallel to both AB and
CD, and hence is perpendicular to P@Q, i.e. to Oz; also x@y is a right-
angle. The coordinate axes are thus mutually perpendicular.

Let angle B'OD’ be 20; by definition this is the angle between 4B
and CD (21.32). Then OB’ makes angles 17 —6, 8, 7 with Oz, Oy, Oz,
and therefore has direction cosines {sin@, cosf, 0}; these are the
direction cosines of the parallel line AB. Also OD’ makes angles
$m+0, 0, 7 with the axes, and its direction cosines are

{—sind, cos 0, 0},
which are also those of CD.

If PQ = 2¢, then P is (0, 0, —¢) and @ is (0, 0, c). The equations of
AB, CD are therefore

sin@ cos@ O > —ginf cosf O °

Putting m = cot 0, these can be written in the standard forms

y—mxr=0=2+c¢, y+mr=0==z—c. (i)

49 GPM U
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Example

A line is drawn to meet the lines (i) and to make a constant angle with Oz. Prove
that the locus of the mid-point of the intercept is an ellipse.

The point P on the first line having z-coordinate A has y = mA, z = —¢,
and so is P(A, mA, —¢). Similarly, a point @ on the second line is @(x, —mg, c).
If M(z, y,2) is the mid-point of PQ, then

z=3A+p)y y=imA-p), 2=0. "~

Direction ratios for PQ are A —p:m(A+ p):—2c. If PQ makes angle a with

0z, which has direction cosines {0, 0, 1}, then
—2c
VA= )2+ m3 A+ p)? + 4%}

On squaring and rearranging, and using the above equations to eliminate

A and g,

cosax =

2y\?
- +m?(2x)? + 4¢® = 4c®secta,

xz y2
k”/m’+k9m2 =L
where k& = ¢ tan «. The fact that the 2-coordinate of M is zero shows that M lies
in the plane zOy; and the above equation in (=, y) represents an ellipse in this
plane.

i.e.

Exercise 21(f)

1 Obtain direction ratios of the line through O which meets each of the lines
-1 y—-2 2z-3 =z+2_ y-—-3 =2-4

T2 T3 T T -T2

2 3 4’ 1 3
[Method of 21.71, ex.]
2 Find the equations of the line through (— 6, —4, — 6) which meets each
of the lines

.

£ z y—1
- = = = —_ =2 =" = —2z-1.
3 y 3’ x 2 z—-1
Also find the points of intersection.

3 Prove that there are two lines which meet Oz at right-angles and also
meet the lines 4_y—7_z—13 s+1_y+2 29

FTEETE TS 0 T2 T4 TTa

and find the points where they meet Oz. [Use the parametric equations of the
lines.]

4 Prove geometrically that three given skew lines have infinitely many
common transversals, no two of which intersect.

Find the shortest distance between the following pairs of skew lines.
z+2 y 2z+2 dx+5_y+6_z—l

5§ — =% =

3 T2- -1 %My 3 T -1

2 y—5 z—
6 y=0=a+2—17 and”%:y z—2

3 -3
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2+7 _ y—5 2—4 z+4 y 2-19 .
7 5= 3 -1 and 3 3= g% [use the formula in 21.72]
and find equations of the line along which it lies.

8 A fixed line APB passes through 4(2,2,2) and B(—~1, -1, —3), and a
variable line CQD passes through C(2,3,1) in such a way that the common
perpendicular PQ has direction ratios 0: §: — 3. Find the equations of the locus
of @ and the length of PQ.

9 From the result of 21.72 deduce the condition for the lines

z—a_y—b z—¢ xz—d y-b z-¢

T om0 m

I m

r_'n/

to intersect.

T'wo skew lines 1, I’ are met by their common perpendicular at A onland Bon l';
P, @ are variable points on 1, U respectively, and M is the mid-point of PQ
(nos. 10-13).

10 If AQ 1 BP andl, I’ are not perpendicular, prove that M lies on a hyper-
bola whose asymptotes are parallel to I, I. [Choose axes ag in 21.75.]

11 If AP?+ BQ?is constant, prove that the locus of M is an ellipse.

12 If PQ = AP — BQ and 2a is the angle between [, I, prove that (with axes
as in 21.75) PQ makes an angle }7 —a with Oz, and that the meet of PQ with
the plane # = 0 lies on the circle whose diameter is AB.

13 Prove that AP.BQ is constant when (a) the lines AQ, BP are perpen-
dicular, or (b) the planes APQ, BQP are perpendicular.

14 Prove that the coordinates of any point equidistant from the lines
y—mx =0 = z+c, y+ma = 0= z—c satisfy the equation mzy = (1 +m?) cz.

Miscellaneous Exercise 21(g)

1 If AB*+CD? = AC*+ BD?, prove BC | AD.

2 Two edges 4B, OD of the tetrahedron ABCD are perpendicular. Prove
that the distance between the mid-points of AC, BD is equal to the distance
between the mid-points of 4D, BC.

If also the edges AC, BD are perpendicular, prove that the third pair BC,
AD are perpendicular.

3 Find the ratio in which N, the foot of the perpendicular from O, divides
the join of A(4, 6,0) and B(1, 2, —1); and prove that N does not lie between
4 and B. )

4 P moves with uniform speed in a straight line from A(0, 0, 12) to B(3, 4, 0)
in 13 seconds. Find the coordinates of P after it has been moving for ¢ seconds.
For what value of ¢ is P nearest to O?

If Cis (5,7, 2) and OP meets the plane z = 0 at @, find the speed of Q at the
instant when P leaves 4.

5 If a moving rod has direction cosines
{l,m,n} at time ¢ and {{+6l,m+dm,n+dn} at time £+ 8¢,

prove that the angle 60 turned through in time & is given approximately by
(60)2 = (S1)2+ (8m)2 + (0n)2. [Use cosz = 1 — a2+ O(x?): see Ex. 6 (b), no. 21.]

49-2
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6 Find the equations of the line through O which intersects and is per-
pendicular to the line x+2y+32+4 =0, 2v+3y+42+5 =0, and find the
point of intersection.

7 Find the angle between the line 6z +4y— 5z = 4, x—5y+22 = 12 and

the line

Prove that these lines intersect, and obtain the equation of their plane.

8 Prove that any point equidistant from the lines through O which have
direction cosines {I, m,n}, {I’,m’,n’} lies in one of the planes

I+ z+(m+m)y+(n+n)z2=0, ((-V)x+(m—m)y+(n-n)z=0

Hence find the equations of the lines which bisect the angles between the
given lines.

9 Find the coordinates of the point P on the intersection of the planes
2x+4 2y —z = 0, x+y— 3z = 0 which has least distance from the line [ joining
the points (— 2, 3, 2), (— 5, 5, —3). Find the point @ on I which is nearest to P.

10 The plane 4x+ 7y +4z+ 81 = 0 is rotated through a right-angle about its
line of intersection with the plane 5z + 3y + 10z = 25. Find the equation of the
plane in its new position. Also find the distance between the feet of the per-
pendiculars from O to the plane in its two positions.

11 Obtain the equation of the plane through the origin and the line
z—1 y—2 2-3

2 1 -2

Find the equations of the line meeting Ox at right-angles whose projection on
this plane coincides with the given line.

12 Write down the equation of the plane 7, which bisects the line 4B at
right-angles, where A4 is (a,b,c) and B is (d,e,f). Prove that, for any points
A, B, C, the planes 7 45, Ty, M, have in general a common line A.IfA(1,0,1),
B(0,1,1), C(2,2,0), show that the distance of O from A is & ,/22.

13 Prove that the planes vy—pz =p, Az—ve =q, px—Ay =r possess a
common line if and only if Ap + gg +vr = 0, and show that this line lies in the
plane px+qy+rz = 0.

14 A line meets the planes a = 0, @’ = 0 at P, P’, and meets the planes
a+Aa’ = 0at Q, Q. Prove that @, Q' divide PP’ internally and externally in
the same ratio.

15 Prove that the two lines through (a, @, @) which lie in the planex + y+2 = 3a
and are inclined at 30° to the plane z = 0 have equations

z—a y—a 2—a z—a_Yy—a 2—a
2 1448 145" 2 T 1—45 1445
Find the angle between these lines, and also the angle between their pro-
jections on the plane z = 0.

16 Show that the line of shortest distance between Oz and the join of the point
P(p,p,c) on the line x = y, 2 = ¢, to Q(g, —q, —c) on the line z = —y, z = —¢,
divides PQ in the ratio p?: ¢%. Prove also that this line makes angle tan— (p/q)
with the first line and angle tan—1(g/p) with the second.
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17 Verify that the line z = p, cy = mpz cuts each of the three lines
y=0=2, y—-mer=0=2z—c, y+me=0=2+c.
As p varies, prove that all such lines lie on the surface whose equation is
¢y = maz.
18 If 7 is any transversal of the three lines
Yy~mex=0=z-¢, y=0=2, y+mr=0=2+c,
and s is any transversal of the three lines
y—mz=0=2—¢, y=0=2, y+mz=0=2x+c,
prove that r and s intersect.
19 Points P, P’ are taken on the lines y =z, 2 = 1; ¥y = —, 2 = — 1 respec-

tively, such that OP = 30P’. Prove that the meet of PP’ with the planez = 0
lies on the curve 2a%—5xy +2y2+1 = 0,2 = 0.

20 The common perpendicular to two skew lines y—mx=0=2z2+c,
y+mx = 0 = z—c meets them at 4, B respectively. Points P on the first and
@ on the second line are such that AP = BQ. Prove that PQ lies on one of the
surfaces maz +cy = 0, yz+cmx = 0.

21 Discuss the intersections of the line

T2 _ Y=~ _2—%
l m n

and the plane ax+by +cz+d = 0 (a) algebraically, (b) geometrically, showing
that:
(i) if al+bm+cn + 0, there is a unique point of intersection;
(i) if al +bm+ cn = 0, the line and plane are parallel unless also
(iii) ax,+ by, +cz,+d = 0, in which case the line lies in the plane.
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22

THE SPHERE; SPHERICAL
TRIGONOMETRY

22.1 Coordinate geometry of the sphere

22.11 Equation of a sphere
The distance formula shows that the sphere of centre C(a, b, ¢) and
radius r (defined as the locus of points P in space such that CP = r)
has equation (@—a)+ (y— )+ (z— )2 = 12, Q)
When expanded, this takes the form
22+ 9%+ 22+ 2ux + 2vy + 2wz +d = 0. : (ii)

Conversely, (ii) can be written in the form (i) by separately com-
pleting the square for the terms involving z, y, and z:

z+u)+(y+0)2+(+w)? =ul+o+uw?—d.
Y

If u? + 0%+ w? > d, (ii) is therefore the equation of the sphere having
centre (—u, —v, —w) and radius /(u?+v? +w?—d),

If w?+ 0%+ w? = d, (ii) represents the single point (—u, —v, —w).
We may call this a point-sphere.

When u? + 22+ w? < d, the equation does not represent any locus.

The slightly more general equation

cx?+cy?+ e+ 2ux + 20y + 2wz +d = 0,

where ¢ + 0, can be written in the ‘normalised’ form (ii) on dividing
by ¢, and hence in general this also represents a sphere. We therefore
take (ii) as the standard general equation of a sphere, and observe
that it involves four arbitrary coefficients u, v, w, d. Consequently
a sphere can be determined by four independent conditions.

22.12 Some definitions and results from pure geometry

A line and sphere, a plane and sphere, or two spheres are said to
(a) intersect when they have more than one point in common;
(b) touch when they have exactly one point in common.

The following results are proved in elementary solid geometry.
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(i) If a plane and sphere intersect, they do so in all points of a
circle (whose centre is the foot of the perpendicular from the centre C
of the sphere to this plane).

If the plane already passes through C, the circle cut on the sphere
is called a great circle of the sphere; otherwise it is a small circle.

(ii) If two spheres intersect, they do so in all points of a circle
(whose plane is perpendicular to the line of centres and whose centre
lies on this line).

(iii) If a line touches a sphere at P, it is perpendicular to the radius
CP. Conversely, all lines through P which are perpendicular to CP
will touch the sphere at P. All such lines therefore lie in a plane through
P which has PC for normal.

(iv) If a plane touches a sphere at P, it is perpendicular to the
radius CP. Conversely, a plane through P and perpendicular to CP
touches the sphere at P.

It follows that just one plane can touch a sphere at a given point P,
and that all tangent lines at P lie in this tangent plane.

Example

Sphere on diameter Py Py,

If P(x,y,#) is any point on the required sphere, then the plane PP, P, cuts
the sphere in a great circle having diameter P; P,, and hence (by ‘angle in a
semi-circle’) PP, | PP,. Since PP;, PP, have direction ratios

=y Y—Y1:2—2, T—Ly:Y—Ypi2—2y,
hence by the perpendicularity condition,
(B—2) (@ =) + (¥~ 91) (Y= ¥a) + (2—21) (2—25) = 0.
This relation, satisfied by any point P of the sphere on diameter P, P,, is the
required equation.

22.13 Tangent plane at P,

We employ some of the results in 22.12. Algebraical treatments
using the ratio quadratic or the ‘distance quadratic’ are indicated
in Ex. 22 (@), nos. 26-30, 23-25; these are applicable to surfaces more
general than the sphere, whereas the present is not.

For simplicity we first discuss the sphere of radius  and centre the
origin 0; its equationis g2 424 52 — 42,

Given a point P, on this sphere, the direction ratios of OP, are x; : y, : 2,.
The plane through P, and perpendicular to OF, therefore has equation

2y(x — 1) + Y1 (Y — Y1) +2(2—2,) = 0,
ie. X%y +YYy +22, = 22+ yi+28
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Since P, lies on the sphere, we have 22+ y}+22 = 7%, and the above
equation becomes 2y + g+ 22y = 1%, (i)

By 22.12, (iv) this represents the tangent plane at P,.
If P, is a point on the general sphere

224+ Y2+ 22+ 2ux + 20y 4+ 2wz +d = 0,
whose centre is O( —u, —v, —w), then direction ratios for CP, are
Tytuty, +v:2+w.
The plane through P, and perpendicular to this direction has equation
(@ ru) @ -2) + (54 0) (YY) + (2 +w) (2—20) = 0,

ie. (zy+u)x+ (y,+v)y+ (2 +w)z = 3+ Y3+ 23+ uxy + vy, + wzy.
Since P, lies on the sphere,
» 23+ 42+ 22+ 2uz, + 20y, + 2wz, +d = 0.
By adding the last two equations,

(X Fu)x+ (Y +0)y+ (2 +w) 2 +uzy + vy, +wz, +d =0,  (iv)
which is the equation of the tangent plane at P, to the general sphere.

Since (iv) can be arranged as
22y + Yy + 22 Hu(r +2,) Ho(y +y,) +wz+2) +d = 0,

we see that the ‘rule of alternate suffixes’ (15.63, Remark) is still
valid as a mnemonic for writing down the equation of a tangent plane
to a sphere.

22.14 Examples

(i) Condition for the planelz +my +nz = p to touch the sphere x*+y* +2% = 72,
The plane and sphere will touch if and only if (22.12, (iv)) the perpendicular
distance of the centre from the plane is equal to the radius, i.e.

Ep/[J(P+mP+n?) =7,
i.e. p? = r¥ 2+ m?+nl).
Also see Ex. 22 (a), no. 17.
(il) Find the equations of the tangent planes to the sphere
24 yi4+22—6x+6y+22—2=0
which pass through the line x—2z+4 = 0,y = 0.
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Thesphere has centre (3, — 3, — 1) and radius /{( — 3)2+ 32+ 12— (—2)} =./21.
Any plane through the given line is (21.61)
(x—2z+4)+ky =0,
and this will touch the sphere if and only if (as in ex. (i))
+ 3-3k+2+4
{124+ E2 4 (—2)%
i.e. (9—3k)2 = 21(5+k2),
from which 2k2+9k+4 = 0 and so ¥ = — 4 or — }. The required tangent planes
are therefore z—dy—2+4=0, 2w—y—42+8=0.

= 421,

(iii) Plane of contact from P, to the sphere x®+y? + 2% = r2.
Let a line through P, touch the sphere at P,. Then the tangent plane at P, is
2y +YYy+22, =17
and (since this contains the tangent line P, P;) it passes through P,. Hence
Ty Ty +Y1Y2 +212 = 1%
which shows that the coordinates of P, satisfy the linear equation
v+ y+zz =1 (v)

Therefore the points of contact of all tangent lines from P, lie in the plane (v),
which is called the plane of contact from P,. Its normal has direction ratios
2, 1Yy : 21, 80 that the plane is perpendicular to OP;.

This plane cuts the sphere in a circle, and hence the points of contact of
tangent lines from P, lie on this circle. The tangent lines themselves lie on a right
circular cone with vertex P, called the tangent cone from P;.

(iv) Condzition for the line
T _Y~h _ETA
l m n

to touch the sphere 2®+y2®+2% = r2; tangent cone from P,.
The point (z, + AL, y; + Am, 2, + An) of the line also lies on the sphere if and

only if (21 + A2+ (yy + Am)2 + (2, + An)? = 12,
i.e. if A satisfies

A%(12 4+ m?2 +n?) + 2A(lz; + my, +n2y) + (2l +yf +22 —72) = 0. (vi)
" In general this quadratict gives two values of A (confirming algebraically

that a line can meet a sphere in at most two points); but the line and sphere
will touch when there is a repeated root, i.e.

(g +-my, +12,)* = (2 +0) (a2 + 92 +22 —13).

‘When this condition is satisfied, the line lies on the tangent cone from P,.
Elimination of I :m :n from the condition and the equations of the line gives

{Zzy(@— )P = {(Z(@—a,)% (2] + 91 +2]—1%).

This equation is satisfied by the coordinates of any point P on any tangent line
through P,, and therefore represents the tangent cone. A more convenient
form of the equation is given in Ex. 22 (a), no. 28.

1 The ‘distance quadratic’: see footnote} on p. 715.
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(v) Orthogonal spheres.

The angle of intersection of two spheres at a common point P is defined to be
the angle between the tangent planes at P. If O, O’ are the centres, then this
angle is equal to that between the radii C’P, CP because these are normal to
the respective tangent planes. When the angle is a right-angle, the spheres are
orthogonal; in this case triangle CPC" is right-angled at P, and so

C'C* = CP*+C'P2,
22+ y?+22 4+ 2ux + 2vy + 2wz +d = 0,
22+ y 4224+ 2u'x + 'y + 2w'z+d’ =0,

If the spheres are

then C(—u, —v, —w), C'(—u’, —v’, —w’), and the orthogonality condition
becomes
(u—u' )24+ (v—v )2+ (w—w')? = (Wi +o +w—d)+ (w2402 4+w?-d’),

which reduces to 2uu’ + 200" + 2uw’ = d+d’. (vii)

Conversely, if this condition is satisfied, then by adding the expression
ud+ v+ wt+u2+0v'24w? to both sides we obtain the previous equation,
which is equivalent to C’C? = CP2+C’P2 The converse of the theorem of
Pythagoras then shows that CP | C’P, so that the spheres are orthogonal.t

Exercise 22(a)

1 A point moves so that the square of its distance from (—1, 2, 1) is equal to
its distance from the plane 2z — 3y + 6z = 8. Show that it lies on a sphere, and
state the centre.

2 A, B are fixed points, and P varies so that 4P: PB = A:1, where A is
constant. Find the locus of P. [Choose axes so that 4 is (a, 0, 0), B(—a,0,0).]

Find the equation of the sphere through

3 (0,1,3),(1,2,4),(3,0,2),(2,3,1).

4 (1,2,1),(0,3,1), (—1,1,2) and having its centre in the plane 3y 42z = 1.

5 (1,0,0), (0,1,0), (0,0, 1) which has its radius as small as possible.

6 O and the points where the plane 2x+3y+2z = 6 cuts the coordinate
axes, and find its diameter.

7 Find the equation of the sphere which circumscribes the tetrahedron
whose faces lie in the planesz = 0,y = 0,2 =0, x+2y+3z = 4.

8 A sphere of radius 7 passes through O. Show that the ends of the diameter
parallel to Oz lie one on each of the spheres 22+ y%+2%+ 2rz = 0.

9 Spheres are drawn through (2,0,0) and (8,0,0) to touch Oy and Oz.
Prove that there are four such spheres, and give their equations.

10 Find the centres of the two spheres which touch the plane 3x 44z = 47
at (5, 4, 8) and which touch the sphere %+ y2+2% = 1.
11 Find the centre and radius of the sphere which touches the plane

x+2y—2+4+2=0
at (1, —2, 1) and cuts orthogonally the sphere x2+y2+422—4x+6y+4 = 0.

1 When (vii) is satisfied, the spheres certainly do intersect; for it implies that the
sum of the radii is greater than the distance between the centres.
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12 Find the centres and radii of the two spheres whose centres lie in the octant
for which all of z, y, z are positive, and which touch the planes x = 0, y = 0,
2=0, 22+2y+z=4.

13 A sphere is inscribed in the tetrahedron whose faces lie in the planes
z=0,y=0,2z=0, 22+ 6y + 3z = 14. Find its equation.

14 Three spheres have centres (0,0, 0), (3a, 0, 0), (0, 4a, 0) and radii a, 2a, 3a
respectively. Two planes, including an acute angle ¢, are such that every one
of the spheres touches both planes. Prove that cos ¢ = 5.

15 Spheres s,, 8,, 8; have centres (0, 0, 0), (3,0, 0), (0, 30, 0) and radii 1, 1, 19
respectively. Find the equations of all common tangent planes 7 of the spheres
such that 8, and s, lie on opposite sides of 77, and s,, 8, lie on the same side. Show
that two such planes exist, and that the acute angle ¢ between them satisfies
9cos ¢ = 7. [Use Ex. 21 (c), no. 13.]

16 Find the tangent planes to the sphere x2+y?+22—2z+4y—62+10=0
which pass through the line

17 Obtain the result of 22.14. ex. (i) by comparing the equations
le4+my+nz=p and zx,+yy,+22, =12

Hence obtain the point of contact when the condition is satisfied.

18 Find the condition for the plane lz +my +nz = p to touch the sphere

22+ y2+22 4 2ux + 20y + 2wz +d = 0. )

19 Find the equation of the sphere having centre (5, — 2, 3) and touching the

line g—1_ y+1 2z-12
6 2 -3

Also find the equation of the tangent plane which contains this tangent line.

20 Prove that a tangent line from the point P, outside the sphere

8 =a2+y?+22 4+ 2ux+ 20y + 2wz +d = 0

has length 4/s;,, where 8,; = 2 + y2 + 22 + 2uzx, + 2vy, + 2wz, +d.

21 Show that the points from which equal tangents can be drawn to the three
spheres Pyt =1, 2P+yt+2i+20—2+2~1=0,
and 2 +yit—x+4y—62—2=0

z—1 y—-2 2-1

2 5 3

Also find the point of this line from which the length of the tangents is least.
22 (i) Prove that the points from which tangents to the spheres

s =22+ Y2+ 22+ 2ux+ 20y + 2wz +d = 0,
8 =ty 422+ 20+ 20y + 2wz +d =0

lie on the line

are of equal leng%h lie in the plane s—8" = 0.

(ii) If the spheres s, 8’ intersect, explain why the plane s —s’ = 0 contains
their common circle.
*23 By taking P, on the sphere in 22.14, ex. (iv), use the ‘distance quadratic’
(vi) to show that the line through P, in direction !:m :n will have no point
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other than P, in common with the sphere (i.e. will be a fangent line at P,) if
and only if Iz, +my; +nz, = 0. (This confirms that the tangent line is per-
pendicular to OP;: see 22.12, (iii).)
*24 If Py(z,,Y,, 2;) is any point on the tangent line at P, in direction l:m:n,
prove that (zy—x,) %, + (Y3 — ¥1) Y1 + (23— 2,) 2, = 0. [Eliminate !:m:n from the
result of no. 23 and the equations (2, —2,)/l = (y;—y)/m = (zg—2;)/n.]
Deduce that all tangent lines at P, lie in the plane zx, +yy, +22, = r? (the
tangent plane at P,).

*25 Use the ‘distance quadratic’ (vi) to show that the mid-points of all chords
in direction Z:m :n lie in the plane Iz +my + nz = 0 (which is clearly normal to
this direction).

*26 The ratio quadratic. Show that the point dividing P, P, in the ratio k:1
lies on the sphere s = 0 if and only if

8g9K2 + 28,1+ 8,,12 = 0.
(Here s may denote 22+y2+22—72 or the general expression in no. 20; the
notation of 19.12 is used, extended to three variables in the obvious way.)

*27 Taking P; on & = 0, deduce from no. 26 that P, lies on a tangent line
at P, if and only if s;, = 0. Hence show that the tangent plane at P, is 8, = 0.

*28 By expressing the condition for equal roots, deduce from no. 26 that the
tangent cone from P, has equation ss,; = s2.

*29 Prove that the plane of contact of tangents from P, has equation s, = 0.

*30 A line through the fixed point P; meets s at 4, B, and P, is chosen so that
P,, P, divide AB internally and externally in the same ratio. When the line
through P, varies, prove that P; moves in the plane s, = 0.

22.2 s=ks

22.21 The general principle

If s = 0, ¢’ = 0 represent any two loci in space or in a plane, then
8 = ks’ represents some locus which passes through their common
points (if any). For, points whose coordinates satisfy s = 0 and s’ = 0
will also satisfy s = ks'.

In this section we consider the equation s = ks’ when £ is constant
(i.e. independent of z, y, z) and one of s = 0, 8’ = O represents a sphere,
while the other represents either a plane or a sphere.

22.22 Spheres through a given circle
1) ¥ s=a2+y?+22+ 2ux + 20y 4 2uz+d =0
represents a sphere, and
8 = A+ By+0z+D =0, .

then provided that these loci intersect, they do so in a circle. The pair
of equations s = 0, s’ = 0 are therefore sufficient to determine a circle
in space, and can be referred to as the equations of the circle. As for
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the straight line, more than one equation is needed; a circle cannot be
specified more simply than by one linear and one second-degree
equation, although the latter may not be the equation of a sphere:
e.g. see ex. (iii) below, where it represents a cylinder.

The equation s—ks’ = 0 (k constant) will represent a sphere, a
single point, or nothing, since it has the form appropriate for the
general equation of a sphere (22.11). If s, s’ intersect, then the locus
is a sphere through the circle determined by s =0, 8" = 0. If s, &
touch, then s = ks’ represents a sphere through their common point,
i.e. touching s at its contact with s’. In both cases the constant & can
be chosen to make the sphere satisfy one further condition.

(2) It s=22+y?+ 22+ 2ux+ 20y + 2wz +d =0
and 8 =al+y?+22+ 2u'x+20'y+2w'2+d' =0
both represent spheres, then s = ks’ (k constant) will represent a
sphere, a single point, or nothing, provided that £ & 1; if k=1, it
represents a plane.

If s, s’ intersect, then they do so in a circle, and s = ks’ represents
a sphere through this circle unless k£ = 1, in which case the locus
becomes s—s’ = 0 and is the plane containing the common circle
(cf. Ex. 22 (a), no. 22(ii)). The two second-degree equations s = 0,

’ = 0 could be taken as equations of the circle of intersection, but
this circle can be represented more simply as in (1) by the linear
equation s—s’ = 0 and one second-degree equation, say s = 0.

If s, s’ touch, then s = ks’ represents a sphere (k + 1) or a plane
(& = 1) through their single common point, i.e. touching both s and
s’ at this point.

.
Examples
(i) Find the equation of the sphere having the circle
2 +y?+22 =16, 20-3y+6z2=17
as a great circle, and give its centre and radius.

Any sphere through the given circle has an equation of the form

2?4+ y2+22—16+k(22—3y+62—7) =0.

Since the centre of a great circle coincides with the centre of the sphere, hence.
the centre ( —k, &k, — 3k) must lie in the plane 2x— 3y + 6z = 7. The condition

for this gives & = —£%, so that the required sphere has centre (2, —$%, ¢) and
equation a4yt +22— 16— (22— 3y +62—7) = 0,
i.e. 224 yi+22—Sr+Sy—3122—-14 =0,

Its radius is therefore J/{( —2)2+(2)*+(—9)2 + 14} = J/15.
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(ii) Find the equation of the sphere which touches the sphere
2?4y +22+2+3y—62—3=0
at (1,2, 3) and passes through (2,0, 1).
The point (1.2, 3) certainly lies on the given sphere. The tangent plane at
(1,2, 3) has equationt
z+2y+3z+Hz+1)+3Hy+2)—3(z+8)—3 =0,
i.e. 3z+Ty—17=0.
Any sphere touching the given sphere at (1, 2, 3) has an equation of the form
o?+y?+22 42+ 3y—62—3+k(3x+Ty—17) = 0.
It passes through (2,0,1)if 4+1+2—6—~3+k(6—17) = 0,i.e. k = — . Hence
the required equation is
11(2% + y2 +22) + 5x+ 19y — 662+ 1 = 0.

(iii) Find the equation of the sphere through the circle
22t+yt—4x+2y =1, z=0

which is orthogonal to the sphere x®+y2+22+3x — 5y +62+8 = 0.

The equation 2%+ y2—4x+ 2y = 1 does not represent a sphere but a right
circular cylinder: see 22.3, ex. (i).

The given circle is that in which the plane z = 0 cuts the sphere

) 2?+ytt2—4dr+2y—1=0.
Any sphere} through this circle can be written
(249 +22—4x+2y—1)+kz = 0.
It will be orthogonal to the given sphere if (22.14, ex. (v))
3(~2)—5.1+3k=8—1,
i.e. if & = 6. The required sphere therefore has equation
224 ytt2?— 4w+ 2y+62—1=0.

22.3 Surfaces in general

An equation f(z, y,2) = 0 explicitly involving some or all of z, ¥, z represents
a locus in space called a surface (cf. 9.23). For example, when the function is
linear in z, y and z, the equation represents a plane surface or plane; when of
the type considered in 22.11, it represents a spherical surface or sphere. A fow
other special classes of equations will be noticed here because of their geo-
metrical significance.

Examples

(i) f(z,y) = 0. The points in the plane 20y whose coordinates satisfy this
equation lie on a curve % in that plane. If P(xy,y,,0) lies on &, then the point
Q(x,, ¥4, 2,) satisfies f(z,y) = 0 for arbitrary z, (since f(z, y) does not involve z).
Hence @ can be any point on the line through P which is parallel to Oz. As P

t Written down by using ‘alternate suffixes’.
1 Had we used the two given equations, we should not be writing down the equation
of a sphere.
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varies on €, the line PQ generates a right cylinder whose cross-section by the
plane 20y is €. Thus f(x,y) = O represents a cylinder with generators parallel
to Oz.

Thus in ex. (iii) of 22.22 the equation x2 + y2 — 4z + 2y = 1represents a cylinder
whose section by the zy-plane is the circle with centre (2, — 1, 0) and radius /6.

(ii) Homogeneous equation f(x,y,2z) = 0. If f(z, ¥, 2) is homogeneous of degreen
in (x, ¥, 2), then (1.52(4))
f(Az, Ay, Az) = A"f(z,y,2)

for all A and z, y, z for which the functions are defined. If P(z,y,z) is a point
on the surface f(z,y,z) = 0 other than O, then (Az,Ay,Az) also lies on this
surface for all A; i.e. every point of the line OP lies on the surface, which is
therefore a cone with vertex O.

(iii) Surface of revolution. Let the curve f(z,y) = 0 in the zy-plane be rotated
about Oz, thereby generating a surface of revolution with axis Oz. Let Q(z, ¥, 0)
be any point on the curve, and P(z, y,z) be its position in space at some stage
of the rotation; then P lies on a circle whose plane is perpendicular to Ox and
passes through @, and whose centre C lies on Oz. Thus

Yo =0Q = COP = \J(y*+2?), x,=0C =u=.
Since @ lies on the curve, we have f(x,, y,) = 0, and hence

f(@ @ +23) = 0,

which is the equation of the surface of revolution. Cf. the Remark in 7.5.

If two surfaces intersect, they do so usually in points of a curve (although
they may possess isolated points in common). In general this curve does not lie
entirely in one plane (as was the case for the intersection of two spheres), and
consequently is called a twisted curve or a skew curve or a space curve. It is
determined by two equations, viz. those of the surfaces of which it is the inter-
section. Any other pair of surfaces through the curve would equally well serve
to determine it.

Exercise 22(b)

1 Write down the centre and radius of the circle of intersection of the sphere
x?+y?+2% = 16 and the plane 3z+2y—2z = 0.

2 If a sphere of radius 7 is cut by a plane distant ¢ from the centre (¢ < 7),
prove geometrically that the circle of intersection has radius ./(r2—c?). What
happens when ¢ = r?

3 Show that the meet of the sphere x2+y2+22—22—~4y—6z—11 = 0 and
the plane 2x—y+ 22— 15 = 0 is a circle of centre (3, 1, 5), and find its radius.
[Use 22.12, (i).]

4 Find the equation of the sphere which has its centre in the positive
quadrant of the zy-plane, and cuts the planes x = 0, y = 0, z = 0 in circles of
radii 3. 4, 5 respectively.

5 Obtain the equation of the plane through A4(1, 0, 0), B(0, 8, 0), C(0, 0, —1),
and also that of the sphere through these points and the origin. Hence find the
centre of circle ABC.



746 SPHERE; SPHERICAL TRIGONOMETRY

6 Find the circumcentre of the triangle whose vertices are (2,0, 4), (2, 4, 2),
0,2, 4).

7 Prove that the spheres
(@—a)’+(y—b)>+(z—0)? =1
and (x—a—l(z—a)+(y—b—m)(y—b)+(z—c—n)(z—c) =12
cut along a great circle of the former.

8 Find the equations of the two spheres through the circle
2?4+ y?+22—-22—4y=0, x+2y+32=38,
which touch the plane 4z 4 3y = 25.
9 Find the equations of the spheres through the circle

2?4yt 42242242y =0, ax+y+z+4=0,
which intersect the plane x +y = 0 in circles of radius 3.

10 Find the equation of the sphere through the circle 22 +y2+2x =0,z =0
and the point (1, 2, 1).

11 Spheres are drawn through the circle 22 +y? = a2, z = 0. Prove that the
locus of the ends of their diameters parallel to Oz is the rectangular hyperbola
22—22=a?, y=0.

12 Show that every sphere through the circle 2%+ 22 = a2, y = 0 is orthogonal
to every sphere through the circle 2%+ y24-4ax+a? = 0, z = 0. Find the two
spheres (one from each of the above systems) which cut the sphere

(22 +y2 +22) + 2a(22 + 2y — z) = a?
in the same great circle.

13 Find the equation of that sphere through the intersection of the spheres
s= i+ yt+2+dr—2y+2245=0, s =x*+y*+22+2x—-8y+22+9=0
which has the smallest radius, and state this radius. [The system of spheres
is best written ¢+ k(s —s’) = 0.]

14 Prove that the circles

224y +22— 92+ 4dy+652—1=0, Tx—2y+z=4,
a4y +22+60—10y+62—-7=0, dw—6y=1

lie on the same sphere, and find its equation.

15 Show thatthespheresz?+y2+2% = 36,22 +y2+22— 62— 8y —242+120 = 0
touch, and find the common point. '

16 Find the sphere which touches the sphere 2%+ 42+ 22— 2x+6y—42+6 = 0
at (3, — 1, 2) and passes through O.

17 A system of spheres is such that any two touch at the fixed point O. Prove

that any sphere which cuts each sphere of the system orthogonally will pass
through O. If such spheres also pass through a fixed point 4, prove that they
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pass through a fixed circle. [Choose O for origin, and the common tangent plane

at O for zy-plane.]
*18 Interpret the following:

(i) f(y.2) = 0; (ii) f(z,2) = 0; (iii) fy, (a2 +22) = 0; (iv) f(z (22 +y?) = 0.

*19 Write down the equations of the projection on the plane 20y of the circle
in no. 1.

*20 Show that the right circular cone with vertex O, semi-vertical angle «,
and axis Oz has equation 2% +y? = 2% tan®a.

22.4 The spherical triangle

22.41 Some definitions and simple properties

Consider a sphere of centre O and radius . In 22.12, (i) we defined
a great circle of the sphere to be the section made by a plane through O,
and a small circle to be any other plane section. Thus although all
great circles have radius 7, a small circle can have any radius between
r and zero.

The ends of a diameter of the sphere are called antipodal points.
There is a unique great circle through two non-antipodal points
P, Q; for there is a unique plane through O, P, @, and this cuts the
sphere in a unique great circle. Consequently there are just two great
circle arcs joining P, @, viz. the minor and major arcs of this great
circle. The minor arc is called the arc PQ); its length is the spherical
distance between P and Q).

The azis of a circle on the sphere is that diameter of the sphere
which is perpendicular to the plane of the circle. Its extremities are
poles of the circle, and the nearer one is called the pole.

A circle on the sphere which passes through the poles of a given
circle is called a secondary to that circle. Hence every secondary is a
great circle; and a given circle has infinitely many secondaries. Two
great circles have a unique common 4
secondary: it lies in the plane deter-
mined by their axes. \

Defining the angle between two curves
at a common point to be the angle be-
tween the tangents there, let the arcs \»
AB, AC of great circles meet their
common secondary at B, C; and let
AB’, AC’' be the tangents to these arcs
at A. Since AB’, AC' are both perpen-
dicular to O4 and lie in the planes AOB, AOC respectively, the

50 GPMII

c
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Fig. 234
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angle B’AC’ between the arcs is the angle BOC' between their
planes. Hence

the angle between two great circles
= the angle between their planes

= the angle at O subtended by the arc intercepted on their
common secondary.

A lune is the figure on a sphere formed by two great semi-circles.
The angle between the semi-circles is called the angle of the lune.
Assuming that areas of lunes on the same sphere are proportional to
their angles, then for a lune of angle 6,

area of lune 6
area of sphere 27w

since the whole sphere can be regarded as a lune of angle 277. Since

the sphere has area 4mr?,
area of lune = 2720, (i)

22.42 Sides and angles

The figure on a sphere formed by three minor arcs of three great
circles is called a spherical triangle. Its sides a, b, ¢ are the three arc-
lengths, and the angles between the arcs b, c; ¢, a; a, b are its angles
4, B, C.

There are two different ways of joining two non-antipodal points
by an arc of a great circle. Hence if no two of the pointst 4, B, C are
antipodal, there are eight different figures having these for vertices.
Only one such figure is a spherical triangle, viz. that formed by the
manor arcs BC, CA, AB.

Taking the sphere to have unit radius,} the length of an arc of a great
circle is the radian measure of the angle subtended by it at the centre 0.
Hence the sides a, b, ¢ are the angles at O subtended by the arcs
BC, CA, AB; and since these are minor arcs, each of a, b, ¢ is lessthan m.

The side a of the spherical triangle ABC is BéO’, a plane angle; and the
angle A is that between the planes OBA, OCA (a dibedral angle). Therefore
relations between sides, angles of a spherical triangle are equivalent to relations
between plane angles, dihedral angles of a trihedral angle. It follows that

any two sides of a spherical triangle are together greater than the third,  (ii)
+ We use the same letter for a vertex, the angle at the vertex, and the measure of

this angle, as in plane trigonometry; similarly for a side and its measure.
1 Except in 22.44 and 22.54, this will be the case throughout.
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since in a trihedral angle the sum of two plane angles is greater than the third;}

and the sum of the sides of a spherical triangle is less than 2, (iii)

(i.e. less than the circumference of a great circle) since the sum of the plane
angles of a trihedral angle is less than four right-angles.t Cf. Ex. 22(d), no. 20.

A

B a
Fig. 235

Each angle of a spherical triangle ts less than m. For if possible suppose
B > m; let arc AB be produced to meet arc CA again at A’. Then
A, A’ are antipodal, and arc C4 > arc A4’ ==, i.e. b > 7, contra-
dicting the definition of ‘spherical triangle’.

However, a spherical triangle may have one, two, or three of its
angles obtuse; and one, two, or three may be right-angles. Also see
22.43 (3).

22.43 Polar triangle; supplemental relations

(1) If A’ is that pole of BC which is on the same side of the plane OBC as 4
and B’, ¢’ are defined similarly by cyclic interchange of the letters, then
A’B’C’ is a spherical trianglet called the polar triangle of ABC. We now prove
the following reciprocal property.

p:
A

"X
G
B (ol
Fig. 236
If A’B’C’ is the polar triangle of ABC, then ABC is the polar triangle of A’B'C’.

Proof. Since B’ is the pole of CA, B’A = }; and since (” is the pole of AB,
C’A = m. Therefore A is a pole of B'C’.

1 This is proved in solid geometry (Euclid x1, 20, 21).
} The reader should verify this statement.

50-2
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As 4’ and A are on the same side of plane OBC, and the distance of 4’ from
any point on BC is 4, hence AA’ < 4. Thus, since the distance of 4 from any
point on B’C’ is 7, A and A’ must be on the same side of the plane OB'C".

Therefore 4 is that pole of B’C” which is on the same side of plane OB’C’ as
A’; and B, C have the corresponding properties obtained by eyclic interchange.
Hence 4 BC is the polar triangle of A’B’C’.

(2) Stides, angles of the polar triangle are respectively the supplements of the
corresponding angles, sides of the original triangle.

Proof. Let C"A’ cut AB at X, and BC at Y. Since ("4’ is secondary to AB
and BC, therefore XY = B.Also C’'X = jmr = YA’ . As YA’ = XY + XA’, then
C’X+XY+XA' =m, so that C’A’ =n—XY, i.e. b’ =7—B. We infer the
supplemental relations

o =m—A, ¥’=a—B, /=n-C. @iv)
Since 4 BC is the polar triangle of A’B’C’, we also have
a=n—-A’, b=n—-B', c=uw-C. (v)

(3) The sum of the angles of a spherical triangle lies between 2 and 6 right-angles.
Proof. By applying (iii) to the polar triangle 4’B’C",

0<a +b'+¢ < 2m.
From (iv) this becomes 0 < 37—(4+B+C) < 2m,
i.e. ) "< A+B+C < 3m. (vi)

The expression £ = A+ B+C—m is called the spherical excess
of the spherical triangle ABC; it is the amount by which the sum of
the angles of the spherical triangle exceeds the sum of those of any
plane triangle. By (vi), 0 < E < 2.

22.44 Area

Given the spherical triangle 4BC on a sphere of centre O and
radius r, produce the sides AC, BC to cut the great circle AB again
at A’, B’. By considering areas on the hemisphere shown (fig. 237),

and using (i), lune ABA'C = 2472

ABC+ &
ABC+ s, lune BAB'C = 2Br?,

It

ABC+CB'A’ = lune with angle C = 2Cr2.
Adding, 2A4BC +area of hemisphere = 2(4 + B + C) 72
.. area of triangle ABC = (A +B+C —m)r?

= Er. (vii)
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22.5 Triangle formulae

We continue to assume that the sphere has unit radius until 22.54.

22.51 Cosine rule

cosa = cosbcosc+sinbsinccos A, (viii)

and two similar formulae which can be obtained from this by cyclic
interchange of the letters.

Fig. 237 Fig. 238

The cosine rule is important because all the remaining triangle
formulae can be deduced from it. In calculation it can be used to find
(@) a side of the triangle when the other two sides and the included
angle are known; (b) an angle when the three sides are known; this
is exactly the situation in the plane case.

First proof, using projection (fig. 238).

Let N be the projection of C on the plane AOB, and P, @ be the
projections of N on OA, OB respectively.

Since OP is perpendicular to CN and NP, therefore OP is per-
pendicular to the plane CNP, and hence OP 1 PC because PC is a
line in this plane. Similarly 0Q 1 QC.

Projecting on OB,

proj. of ON = proj. of OP + proj. of PN,
i.e. 0Q = OPcosc+ PN cos (3m—c).
Now 0Q = OCcosa, OP = OCcosb,
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and since CPN is the angle between the planes OAB, OAC, viz. A,

PN = PCcos A = OCsinb.cos A.
Substituting, we get formula (viii).

Second proof, using coordinates (fig. 239).

Choose axes at the centre O of the sphere, with Oz along O A, and let the other
vertices B, C have cartesian coordinates (,¥;,2,), (%s ¥s,23) and spherical
polar coordinates (1, 0,, ¢,), (1, 0,5, ¢,): see 21.12(2) and Ex. 21 (a), no. 15.

Since OB, OC have direction cosines {&,, ¥;, 21}, {Z3; ¥a, 22},

CoSa = 2, %y +Y1Ya +212,
= 8in 0, cos ¢, .sin b, cos ¢, +sin §, sin @, .sin G, sin ¢, + cos &, .cos b,
= cos 0, cos 0, +sin 0, sin @, cos (¢; — P,)
=cosccosb+sincsind cos 4
because 8, = ¢, 0, = b, and ¢, — ¢y = + 4.

2
4
A
B [
C
oY b
aQ
0
/{é 1. A,’ y B o
o . a 2 s
Fig. 239 Fig. 240
Example

Median of a spherical triangle.

The arc of the great circle joining a vertex 4 to the mid-point 4’ of the
opposite side BC is called a median of the triangle ABC (fig. 240).

Since angles CA’A, AA’B are supplementary,

cos CA’A+cos AA'B =0,
By applying the cosine rule to each of triangles 4A4’C, ABA’, this becomes
cosb—cos 44" cosja cosc—cosdA4’ cosia =0
sin A4’ sinia sin A4’ sin ia ’

and on solving for cos 44’,

cosb+cosc

A4 = —.,
cos 2cos a

22.52 Sine rule
sinag _sind sinc (ix)
sinA sinB sinC’ X




22,52] SPHERE; SPHERICAL TRIGONOMETRY 753
Geometrical proof.
From fig. 238 we have
NC = PCsind = OCsinbsin 4,
and NC = QCsin B = OCsina sin B
since CQN is the angle between the planes OBA, OBC, viz. B. Hence

sinb sin 4 = sina sin B,

. sina sinb
from which =,
sind sinB

Similarly, by projecting from A onto plane OBC, we can prove
sinb _ sine
sinB sinC’
Deduction from the cosine rule.
sin?4 = 1—cos%24

_1 (cosa—cosb cosc)?
sin?b sin?c

_ (1 —cos?b) (1 —cos?c) — (cosa — eos b cos c)?
- sin?b sin2¢

. 1—cos2a—cos?b—cos2c+2cosa cosb cosc
sin?b sin%¢ )

sind  +,/(1—Xcos?a+2cosacosb cosc)
sina sina sinb sinc

2

and this expression is symmetrical in a, b, c. Hence it is also equal to
sin B/sinb and to sin C/sin c. The sine rule can therefore be written in
the ‘completed form’

sind sinB _ sinC +,/(1-Xcos?a+2cosa cosb cosc)
sina  sinb sinc sina sin b sinc

, (%)

where the positive sign of the square root is taken because all the
sines are positive (all sides and angles lying between 0 and 7, 22.42).
The reader may verify that the expression under the square root sign
can be written 1 cosec cosb
cos ¢ 1 cosa

cosb cosa 1
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Examples
(i) If A’ is the mid-point of BC, B = BAA’ and v = A'AAC’, prove
sin C
cotf = cot 4 +s—in AsnB
in (b s
and coty——cot/f’:sm( +0) sin (b c).

sinb sin ¢ sin A
By applying the sine rule to triangles ABA’, AA’C in fig. 240,
" sinf  sinda _ siny
sinB  sindAd’ sinC’
. sinfsinC =sin(4 —f)sin B,
sin § (cos A sin B +sin C) = cos § sin 4 sin B,

sin O
d t S = T e
and so cot S cOtA+sinAsinB
Similarl, coty = cot 4 + sin B
ke v= sind sinC’

coty—cot f = gin2 B—sgin2C
Y ~sinAsinBsinC
sin2b—sin?¢
=~ b i le,
sin A sinbsine y the sine rule
__sin(b+¢)sin(b—c)

= - - after reduction.
sinb sinc sin A4

sin(B+C) cosb+cosc

ii) Prove that = )
(i) Prove sind 1+cosa

sin(B+C) sinB sin C .
A snd cos C +s1'_n 2 cos B, and by using both rules,

sinbcosc—cosacosb sinc cosb—cosccosa

sine sinasind sina sincsina
sin b gin ¢ (cos ¢ — cos a cos b) + sin b sin ¢(cos b — cos ¢ cos a)
sin%a sin b sin ¢

_ sinb sin¢(cosb+cosc) (1 —cosa) ‘
- (1—cos?a)sinbsinc

__cosb+cosc

~ l4cosa |

22.53 Supplemental formulae

If the formulae (viii), (x) are applied to the polar triangle A’B’C’ and the
relations (iv), (v) are used, new formulae are obtained for triangle 4 BC. Thus
the cosine rule , ) P B i ’
cosa’ = cosb’ cosc’+sind’ sinc’ cos 4

with o =n—A, A'=m—a, ete.
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gives —cos A = cos B cosC —sin B sin C cosa,

ie. cos A = —cos B cos C +sin B sin C cosa. (xi)
Similarly the sine rule in its completed form gives

sina _ sinb _ sinc +(1—Xcos? 4 —2cos A cos B cos C)
sind ~ sinB  sinC sin A sin B sin C

(xii)

22.54 Triangle on the general sphere

When the sphere has radius » # 1, the sides of the spherical triangle
ABC are no longer equal to the angles which they subtend at the
centre. If we continue to denote these angles by a, b, ¢, and call the

sides a, 8, v, then

a=—,

b=/—)), 4
r r

C=—-.
r

All the preceding formulae remain valid because their proofs used the
angles at the centre and not the actual sides of the triangle.

Example

By using the expansions of cosz, sinz (Ex. 6(b), nos. 21, 20), the cosine
formula (viii) can be written

1—3a2+...=(1—3b2+...)(1—3c*+...)+ (b—...) (c—...)cos 4,

where the dots denote terms of order 3 or 4.
On introducing the sides a. £, ¥ and simplifying, this becomes

1
a? = f2+y2—2fycosd +0(;2) .

When r - oo, the spherical triangle ABC tends to the plane triangle ABC
with sides e, f. y. and in the limit we obtain the cosine rule of plane trigono-
metry. The sine rule can be treated similarly.

Exercise 22(c)

1 Write out the formulae for cos b, cos ¢ corresponding to formula (viii).

2 IfC = 4w, a = im, b = }m, find ¢ and the area of the triangle. .

3 A=%im b=c=}m and D is the mid-point of side AC. If BDC = «,
show that cosa = 1/,/3 and that the areas of the triangles ABD, ABC are in
the ratio (3w —8a): 7.

4 TIf B, C are points on the equator whose longitudes differ by 90°, and 4 is
a point in latitude A on the meridian through C, prove that in the triangle
ABC the side 4B and the angle A are both right-angles.

If M. the mid-point of A B, has latitude ¢, and the difference of the longitudes
of M and B is f. show that /2sina = sin A and tan f = cos A.

5 Prove that if C is a right-angle, then sind = tana cot 4.

A ship sails from a place 4 on the equator along a great circle which makes
an angle of 60° with the equator. Find the difference in the longitudes of A
and the place B on the path of the ship where it first reaches the latitude 30°.
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Taking the radius of the Earth to be 3960 miles, find (correct to three signi-
ficant figures) the area included by the path of the ship, the meridian through
B, and the equator.

6 Two points 4, B on the Earth’s surface have latitude A, and their differ-
ence in longitude is & radians. If r is the radius of the Earth, show that (1) their
distance apart along the parallel of latitude joining them is 78 cos A; (ii) their
distance apart along the great circle joining them is 2rsin~'(cos A sin 6). [For
(ii) use half the isosceles spherical triangle 4 BC, where C is the north pole.]

7 Inmno. 6(ii) prove that the greatest latitude L reached on the great circle
course is given by tan L = tan A sec §0. [If D is the point of latitude L, the
spherical triangle ACD is right-angled at D.]

8 If D is any point on BC, prove that
cos AD sina = cos b sin BD 4 cos ¢ sin.DC.
[Method of 22.51, ex.]
9 The internal and external bisectors of angle A meet BC at D, D’. Prove
in_@ _sine _sinBD’
sinDC ~ sind sinD’C’
10 The arc of the great circle through the vertex 4 which meets the opposite

side BC at right-angles is called the altitude from A. If a, f, v are the altitudes
from A4, B, C, prove that

sina sina = gin £ sind = siny sinc = 2n,
where n = 4./(1—Zcos?a+2cosa cosb cose).

sin(b+c) cosB+cosC

*11 Prove that ina = 1—cond

*¥12 Verify as in 22.54 that the sine rule of plane trigonometry is the limit of
the spherical case.

Miscellaneous Exercise 22(d)

1 Arectangular box has edges of lengths a, b, ¢, and P moves so that the sum
of the squares of its distances from the six faces is equal to m2d2, where d is the
length of a diagonal of the box and m is constant. Prove that the locus of P is
a sphere if 2m? > 1.

2 Through a point P three mutually perpendicular lines are drawn: one
passes through a fixed point C on Oz, while the others meet Oz, Oy respectively.
Prove that the locus of P is a sphere with centre C.

3 Find the coordinates of the point of the sphere 22+ y2+22—4x+2y—4 =0
which is nearest to the plane z+4y+z = 19, and calculate its distance from
this plane.

4 Find the equations of the diameter of the sphere 22+ y2+22 = 29 such
that a rotation about it will transfer the point (4, — 3, 2) to (5, 0, —2) along a
great circle. Find also the angle through which the sphere must be rotated.

5 A line in direction !:m:n is drawn through (0,0.a) to touch the sphere
22+ y?+22—2ax = 0. Prove that m2+2nl = 0.

Find the coordinates of the point P in which this line meets the plane z = 0,
and prove that as the line varies, P traces the parabola y? = 2az, z = 0.
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6 If the plane ax + by + cz+d = 0 touches the sphere
(@—1P+y+ (-1 =1,
prove that a?+b2+c? = (a+c+d)
If this plane also passes through (0, 0, 2), show that it cuts the planez = 0 in

& line which touches the parabola y2 = 4z, z = 0.

7 Show that there are two spheres through (0, 0, 0), (2, 0, 0), (0, 25, 0) which
touch the line

JIOSE— ———

l m n

z—a_y—=b z—c

and that if 12+ m? +n? = 1 the distance between their centres is
Ea {c* —n¥(a? + b2 4 )}t
n

8 Prove that the centre of a sphere which touches each of the lines
y—mx=0=2—¢, y+mr=0=z+c

lies on the surface may + (14+m?2)cz = 0.
9 A line A passes through O and touches each of the spheres

2®+y?+22 4 2ax+p =0, 22+y?+22+2by+q=0.

Show that the angle ¢ between A and Oz is given by sin? ¢ = p/a? 4 ¢/b%. Also
find the distance between the contacts of A with the two spheres.

10 Find the condition for /Il = y/m = z/n to touch the sphere
22+ y? + 22+ 2ux + 2vy + 2wz +d = 0,

and find the point of contact. Hence show that the tangent cone from O has
equation d(x?+y? +22) = (ux + vy +wz)2.

11 Two skew lines AP, A’P’ are met by their common perpendicular at
A, A’, and O is the mid-point of 44’; 2a is the angle between the lines, and
AA’ = 2¢. If AP. A’P’ has either of the values c?sec? &, —c¢2 cosec?a, prove that
PP’ touches the sphere with centre O and radius c.

12 Prove that there are eight spheres of radius 5 which are orthogonal to the
sphere ?+y2 422 = 16, touch Oz, and cut off a segment of length 2 from Oy.

13 Through the circle of intersection of 22+ y2+22 = 25 and 2+ 2y+22 =9,
two spheres s,, 8, are drawn to touch the plane 4z + 3y = 30. Find the equations
of these spheres, and the coordinates of the point through which pass all the
common tangent planes of s, and s,.

14 Prove that in general two spheres can be drawn to pass through a given
circle and to touch a given plane. If the circle lies in the plane z = 0 and has
a given radius 7, and if the plane is xcosf+2sinf = 0, show that when the
distance between the centres of the two spheres is constant and equal to 2c,
then the locus of the centre of the circle is the line-pair z = +,/(r2+c?cos?§),
z=0.

15 Given a sphere of centre O and radius a, let 7 be & plane through O and N
be an extremity of the diameter normal to 7. If P is any point of the sphere
other than N, let NP meet 7 at P’. Choosing axes at O with Oz along ON, let
P’ have coordinates (u,v,0). Show that NP’ has equations z = ut, y = o,
z=a(l~t), and that NP’ meets the sphere at points for which £ =0 or
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202/(u? + v? +w?). Hence write down the coordinates of P. (This gives a rational
parametric representation of the sphere z?+y2+422 = q? the parameters
being u, v.)

16 (i) From the cosine formulae for cos ¢ and cos b, eliminate cos b, and then
substitute sin b = sin B sin ¢/sin C, to prove the ‘four-parts formula’

cosa cos B = sina cot¢c—sin B cot C.
(ii) Similarly prove
cosa cos C = sina cot b —sin C cot B.

17 If AD bisects angle 4 internally, ]'prove cot AD = (cotb+cotc)/2cos 34.
[Apply no. 16 to triangles AB];\), ADC; angles :4DB, CDA are supplementary.]

18 If Dis a point on BO, BAD = f, and DAC = v, prove that

cot AD sin A = cot b sin £+ cot ¢ siny.
[Method of no. 17.]

19 If a spherical triangle has area one-quarter that of the whole sphere, prove
that cosa +cosb+cosc = —1, and deduce that each median is the supplement
of half the side which it bisects. [Use 22.52, ex. (ii); and 22.51, ex.]

20 (i) Prove (ii) of 22.42 by using the cosine formula. [Since A<,
cosa > cosbcosc—sinbsine = cos (b+¢), which implies ¢ < b+c¢ if b+c¢c < 7.
If b+c¢ > 7, then b+ ¢ > a since a < 7.]

(ii) Use the result of 22.44 to infer that 4+ B+ C—7 > 0. By writing
down the supplemental inequality (cf. 22.53), deduce (iii) of 22.42.
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ANSWERS TO VOLUME II

Exercise 10(a), p. 369

1 (z4+1)2(22-1). 2 (z—2)(3z+1)(2z+ 3).

3 (z—1)(z+2)(x2+2+2). 4 —-1,2,3.
S5a=-1,b=-2. 6 a=-2,b=3. 7 17, 1.

8 i(9z—1). 9 3x*+a224+Tx+1. 10 x3+2%+3x+ 4.

11 1,3,6.0. 12 1, -6, 0, —-2.

13 -1, 25, +(2®—3z—25). 14 a=3,b=-1.

15 a=4,b=-2,c=1. 17 Put z = —(b+c¢), ete.
19 A(z—b)(x—c)(w—d) glz=a)(@—c)(z—d)

(a=b)(a—c)(a—d) ~ (b—a)(b—c)(b—d)
@—a)(@z=b)(z—d) (@—a)(@-b)x—0)
(c—a)(c=b)(c—d) " (d—a)(d—b)(d—0)’

+C
21 (i) ¢ = 3at.

Exercise 10(d), p. 373
(x—2y+4)(2z+y—1). 2 (x+y+82)(x—y—62).
10, —73. 5 3(y+2)(z+x)(z+y).
~(y—2)(e—2)(@—y) (@+y+2). T (y—2)(z—2) (@ —y) (@+y+2).
5(y+2) (z+=) (z+y) (22 +y* +22 +yz + 22 + y).
9 Zyz(y?—2*%), Za(y—2)%
10 (i) 22+ y?+22; (i) 22y +y%2+2222; (iii) be(b—c)+ca(c—a)+abla—Db);
(iv) a®bc+b%*ca+clab; (iv) bc?+ca?+ab?+ b+ c?a+a?b.
15 (i) 3abe(b—c)(c—a)(a—0b);
(iii) 5(b—c)(c—a)(a—>b)(a?+ b2+ ct—bc—ca—ab).

W N W

Exercise 10(c¢), p. 378

1 () 15; (i) &; (ii)) —1; (iv) 19; (v) 13; (vi)%®; (vii) 80; (viii) 343.
2 (i) 422 —22x—3 = 0; (ii) 922—28x+16 = 0; (iii) 1222+ 22—1 = 0.
3 bla<0,cla>0.
4 (i) 10; (i) —v%; (i) 29; (iv) &'; (v)29; (vi) 853; (vii) —58.
5 (i) 2*+822+172+6 = 0; (ii) 42+ 822 +x2—1 = 0;

(if) 2 — 202 —Tx+12 = 0; (iv) 2®—1da?+ 1To—4 = 0;

(v) 422 —17224+142—1 = 0.
6 1248—20y3~y =0; z=—3% 31+
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9 (i) 2p3+27r = 9pg; (i) P = ¢°.
10 2*+(3¢—p*) 2®+q(3¢—p*)z+¢*—p*r = 0;
(i) a?~fy = f2—yo = y2—af; (ii) a®—fy = —pa, ete.; pr—gt.
11 2%+ 3pa®+ 3p*?+pie+q = 0.

Exercise 10(d), p. 382
1 y=a2+2. 2 xa®+y2[b% = 1.
3 (a?—02)% = 2(bt—cd). 6 bict+clat +atht = a?bicidl.
7 (i) l+m+n=0; (ii) see 16.32.

8 (i) y2—4ax = Xz +a)%;
(ii) the locus of points from which the tangents to y* = 4ax include an
angle tan—1c.

9 y? = ab%x+a?b?(b—2). 10 x2+y2 = 2(a?+b2).
11 « = abe, y = —Xbc, z = Za. 12 1, 1, 3 in any order.
13 1, 2, — 5 in any order. 14 1. -2, 3 in any order.
16 4p®+27¢2 = 0. / 17 27p* = 25645,

18 (br—cq)(ag—bp)® = (cp—ar)®.
19 If p(x) = (2% + 2bx +c)"1g(x), then
p'(x) = (r—1) (22 + 2bz + )2 2(x + b) g(x) + (2% + 2bx + ¢)™ "1 g’(x).

Hence 22+ 2bx + ¢ is a factor of (x + b) g(x). If b2 * ¢, then z+ b is not a factor of
22+ 2bx + ¢, s0 22+ 2bx + ¢ is a factor of g(x), and the result follows. However,
if 62 = ¢, then 22+ 2bx+c¢ = (£ +b)?, so that #+b (but not necessarily (x+ b)?)
is a factor of g(x).

Exercise 10(e), p. 388

1 z+3. 2 2x417. 3 22—2zx+45.

4 (@—2)(z+1)(@+3). 5 (@+2)(@—z+ 1),

6 (z—1)(z+1)%(x—2). 7 —3 twice.

8 2; ¥ ~1+./5) twice. 9 — (1224 35), #g(24x2 — 142 4 43).

Miscellaneous Exercise 10(f), p. 388
2 No,
6 (i) (b—c)(c—a)(a—b)(a+b+o);
(ii) (b~c)(c—a)(a—Db)(a®+ b2+ c®+bc+ca+ab).
8 2= (x+2)(x—1)2 9 at—4ac®43b* = 0.
11 (i) A= 3(1—2u)/(p—2)%;  (ii) roots of Au®+2pu(3 —2A)+(4A—3) = 0.
We find g = 3 or £, and = = 12 or 18, respectively.

12 2ac’ +2a’c—bb’ = 0.



14

ANSWERS 27N

(i) Coeff. of x? zero; (ii) constant term zero; (iii) coeff. of z® equal to minus

the constant term; (iv) coeff. of 22 equal to constant term.

17
19
24
25
27

2p2. 18 y*—5y2+6=10; +,/2-3, +,3-3.
b2t + 2(ab—2h2) 22+ a® = 0. 20 z%/a+y%[b+2%c = 2.

(i) &= 3; x = 1twice; (ii) k= —%; = =&, —} thrice.

(i) m=—20,¢c="17; m =108, ¢ =135; (ii)) m = 44, ¢c = —121.

p/q is constant.

Exercise 11(a), p. 399

12 2 40. . 3 82. 4 0.

5 #(Ya—Ys) +2a(Ys — 1) + Ta(Y1 — Ya)-

6 a3+b%4c®— 3abe. i1 0. 12 —-90.
13 o. 14 0. 15 18. 16 0. 17 0.

18 z(z—1)2(x2—1). 19 z%(x—1)3(22—1).

20 Zad®-—3abc = (Za) (Za?— Zbc). 22 (i) and (ii) A. 23 9, +./3.
24 0. 26 Xcos?A+2cosdcosBecosC =1 28 (i) 3%

10

Exercise 11(b), p. 410
r=-%2y=%2z=1. 2 4,3, —1. 32 -1, -2,
b—d)(c—d
=§3—-$c_a;,etc.
A=1,z:y:2=1:—1:0; A=—2,,/2:4/2:1; A=38,1:1:—-2,/2.
A=3,z=%y=%42A=14,2=-%, y=2.
() 2= =3, y=3/(1—k), 2 = (1 - 4k)/(1—F);

(i) z=A, y=—A,z=—2—2; (iil) inconsistent.

11 bec+ca+ab = 2abc+ 1.

, Exercise 11(c), p. 413

1 (b—c)(c—a)(a—b). 2 (b—c)(c—a)(a—Db)(a+b+c).

3 (b—c)(c—a)(a—b)(a+b+c). 4 (b—c)(c—a)({a—0b)(bc+ca+ab).
5 (b—c)(c—a)(a—Db). 6 —(b—c)(c—a)(a—b).

7 (b%2—c?)(c?—a?)(a?—b?). [Use result of 11.5, ex. (i).]

8 —(b—c)(c—a)(a—b)(a+b+c)(a?+b2+c?).

9 (b—c)(c—a)(a—b)Z(a?+bc). 10 = = abe,'y = —Zbe, z = Za.

11 x——————(b—l)c_l) ete. 12 x=———(a_b)(a_c),etc.

T a(b—a)(c—a)’ P2+ be
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Exercise 11(d), p. 415

1|1 2 3 2|11 1
z x2? 2B 1 2 2z |.[Derive by columns.]
0 2 6z 1 3 3a2
3| logz =z a2
e 1 2z|.
-2/ 0 0
8 2(y—2)(z—2) (x—y).
9 56. [First interchange ¢, and c,, then r, and r,.]
10 -32. 11 -550. 13 2=-8,y=14,2=-2,t=4.
15 —(xz—a)(@x—b)(x—c)(b—c)(c—a)(a—Db). With notation of Ex. 11(e),
n0. 22,y (b—c)(c—a)(a—b), Vy=(b—c)(c—a)(a—b)(a+b+o),
V.= (b—c¢)(c—a)(a—Db)(bc+ca+ab).
Miscellaneous Exercise 11(e), p. 416
1 The equation is linear in x, y, and is satisfied by (z,,y,) and (z;, ¥,).
4 (b—c)(c—a)(a—b). 5 4(b—c)(c—a)(@a—b)(a+b+c).
6 (b—c)(c—a)(a—Db)(abc+1).
7 (b—c)(c—a)(a—b)(a—d) (b—d)(c~d).
8 2abe(a+b+c)s. 10 sin2@—2cos260+ 2sin 6 cosd.
11 | ap oagq ap aq br bs br bs
cp g dr ds cp cg dr ds
12 z = 1 twice, 2. [€; = C3— €y, remnove £— 1; ¢; - €3 —C,.]
13 z =b, ¢, a®/bc.
15 Three distinet collinear points cannot be concyclic.

17 (i) Uniquesolutionz =38,y =1,2=0; (i) 2=3-2 A, y=1-A,2=2A;
(iil) inconsistent.
18 (i) A$38; (i) A=38, p+10: (i) A =3, g = 10. .
19 A=-1,k=18,z=6—40-30,y=a,z2=f; A=-19,k=-18,z =,
y=2a,z=3a+2.

20 A=1,a:b:¢=0:—-2:1; A=4,4:4:—3; A=%,4:4:5.

2 (i) | 1 1 1 1 1 1
(x+a)? (x+0)2 (x+c) |, 2| z+a z+b z+ec |,
(@+a)® (@48 (z+c)? @+a)® (@+b)® (z+c)®

1 1 1
6| z+a z+b r+e
(z+a)® (z+b)? (x+c¢)?
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Exercise 12 (a), p. 422

1 8lot—216a°+21602—962+16. 2 25+ 52°+ 102+ 5/ad+ 1/2%
3 1+ 3+ 202 — 208 — 3at — a5, 4 14120+ 5422 +1002% + 1528 + ...
5 60. 6 969. 7 —105x2-3. 8 17920
9 3"x164x. 10 —16x217. 11 (i) 1-2166; (i) 0-9039.

12 7. 13 5th term = 11 x 58 x 218,

14 Coefficient of the 6th term = 231 x 411 x 58.
15 *C,+2°C,_, +*C,_, = **2C, (r > 2).
18 »t1C, = »C,+ 10, +"2C,_3+... + " "HC + 1. 19 724.

Exercise 12(b), p. 425

3 n.2n-1, 4 0. 8 0.
10 =11 g (LFa™i—(n+2)2-1
{(n—1)1*" (n+1)(n+2)

13 (i) 4%; (ii) 2080, 2016.

14 (i) (1+x+a%)" = ap2** +a,2*" 1+ ... +agp,
(l—z+2®)" =agy—a,z+a,22— ... +a,,2%"%;

(ii) a@p+a 22+ aszt+... +ag,z2t";  (iv) #(3"—1); (v)(n+1)3"

Exercise 12(c), p. 432

1 (n+1)2(2n+1)% 2 In(4n?-1).
3 (—=1)"1in(n+1). n(n+1) (Tn+2).
8a=2b=-3,¢6=-8,.d=0; In(n+1)(n2+3n—1).
9 In(n+1)(n—4). 10 #n(n+1)(n+2)(3n+1).
11 32n+1)(2n+3)(2n+5)(2n+7)—%.3.5.7.
12 in(n+1)(n+6)(n+17). 13 Zn(n+1)(n+2)(3n+5).
1 1 1 1{1 1 1
¥ 3 3@+ 3 15 z{ﬁ‘(m}; 80"
16 §_ n+5 : _5_ 7 i_ 12n+11 ;_li.
4 2(n+1)(n+2) 4 120 8(2n+3)(2n+5) 120
8 3.1 13 ol 1 2 U

47 2+1) ¥n+2) 4
| 20 4nsin 6+ }sin (n 4 2)8 sinnd cosec 6.
i 21 i(2n—1)+1sin(2n+1)0 cosecl. 22 cotf—cot (2"F).
23 cot & —2"cot (270). 24 227 cosec? (2"9) — cosec? 0.
25 2cosec 20 sinnd sec (n+ 1)6. 26 tan—'{n/(n+2)}; im.
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Exercise 12(d), p. 435

8 4(a+2b).
Exercise 12(e), p. 442
4 p. 5 o. 6 D. 7 c. 8 c 9 o.
10 b. 11 oc. 12 . 13 . 14 c. 15 o.
Exercise 12(f), p. 446
1 . 2 b.
4 cforallx = 0. 50<z<1,0;2>1,p.
6 0<sz<1l,c;2>1.D. 7 o for all x > 0.
80<z<l,c;z=>1,D 9 0<z<%} c:iz=% D
10 0<sz<1l,0c;2>=1,D. 11 0<z<1l,c;z>1,D.

12 fna™—(n+)ar+ 1} (@z—1)2ifz+1; nin+1)ifz=1.

Exercise 12(g), p. 450
2 p>1,0p<1,p. 4 7/2a, m2a+]1/at 5 &1,

Exercise 12(h), p. 459

1 o 2 c 3 c

4 o, - 5 o 6 No. 2.

7 A.c. by comparison with Z(1/r2). 9 |zj<1,0; |2/ >1,p.
10 o for all «. 11 || <1, 0; [2| > 1, D.

12 |z| <1, 0; |2| = 1, D.
13 |z] <2, 0; 2] >2,D0; (x=2,D; 2=-2, C).

Exercise 12(i), p. 465

1 log2. 2 im. 3 See 12.72(2).
© ar © ! I
4 Y, 2trsin (3rm) =, all z. 5 3, 2ircos (3rm)—, all .
r=1 r! r=0 r!
g x’
6 3 2811 4 (—1)}cos (;}m)ﬁ, all x.
=0 h? he )
9 sinx+heosx—é—'sinx—§;cosx+..., all z and h.

10 {4(n—1)2+1}{4(n—-2)3+1}... {22+ 1}/(2n)!.
12 1—32?+§a® — St 4+ 3af — 2828 4.,
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Exercise 12(j), p. 468
Hr+1)(r+2)(~2); 1=3z+622—1023+...; || < 1.

~2.1.4...(3r—5 r
pr @r )(g) s 1—Sx—1n2—@ad— ... |z < 1.

1.3.5...(2r-1)

(—3), 7> 1; 1-fo+ 3~ 32>+ la] <1.

{(x—1)e*+1—4a?} /2 if 2+ 0; 0ifx =0

r!
1.3.5...(2r—3) P
——1_—!———(—1)'-123'_1,r>2; 2+1at—qat et —. o 2] < 2.
(r+1)am+l; o4 222+ 328+ 42+ .5 |o] < L.
(3/241) (=), r = 1; }—3w+322—Fa®+...; || < 2.
(P+r+1)a; 14324722 +132%+...; |2| < L.
67225, 9 —10(3x)-. 10 —-%4/3.
5th term. 13 27th and 28th terms.
1st term. 15 33-6241. 16 9-8995.
1—3o—8a2+ 183+ .... 18 |z| < 3; 3{56+(—2)}.
2| < 2; 32" —(—3)-"). 20 |z| <1; 2T —r—4.
|| <1; +1,—1,0accordingasr = 3p, 3p+1,3p+2(p=0,1,2,...).
(ntr—1)1 . 1.3.5...(2r—1)
;=) ey B
ol <1 G et 23 Bachis — g @ 71
343. 25 . 26 10y12—
. 1+ 4z — 322
1. =
28 1=z
Exercise 12(k), p. 472
3 r—1 —dr+1
e 2 (-1t 3 (- 1)f—
14(=1y
r! ’
1 1 1 ” 2 2@ 2
i) 1——+a—-§-!+...; (i) 1+1 +— +3|+ el
28 25 7
(iii) s+t n et
6!
1—e3. 7 Let—e™). 8 2e. 9 3Ze.
2 Je. 11 (e*—1—-xz)/zifx +0; 0if x = 0.
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Exercise 12(1), p. 475

o 41‘ o0 xf
-3 Zar, —i<w<i 2 log2-3 (-}, —2<z<2
r=1"7 . r=17
®© (—1) © 1
-23 # —l<z<l. 43 (=1y1=(2+3)a, —3<z<}
r=1 7 r=1 r
X 2r—
r+ (——l'x' -lgsz<l
Zari=n 7Y
;ifr=3p,;ifr=3pil; ~l<z<l
14+2(—-1)
- a1 _ - TEAT ) 2,
2r_lforac . o7 for 2¥; |z| < 1.
(1
20 422 —~ 3228 4 Zat. 9 Z 14 log}.
3log2. 16 —ilog(l—-xz). 17 log2.
log4—1. 19 log2-—-1%. 20 %log2.
1 1 14z
il P if . 0ifz=0.
4(:1: x)logl_x+§~ z+0; 0ifz=0
1 1, .
—(1+-)log(l—w)—-%—— ifz+$0; 0ifx=0.
a? z
log 2285, 24 22> 1. 25 Each is —2logcosa.
Exercise 12(m), p. 481
1-4142136. 8 14224420 12 ¢4+ %o,
1+ 32+ a2 14 0-0037. 15 0-393.
1+ 3p—&p% 18 3. 19 loga.
Miscellaneous Exercise 12(n), p. 482
(2n) Y/ (n)2,
(i) #(r—=1)r; @) r—1)r+1, r(r+1)—1; (iii) »3; (iv) méd.
2 5 3 7 5
s L T B3t 2nsd) 12
im. 9 }(n*+n+2) 10 —m.
. . .0 1 7}
(i) logsme—logsmé—"—-nlog& (ii) ——cota—cotﬁ (iii) 6-1—cotd.
(i) and (ii) 15, 18. 20 27.
|#| < the smaller of 1/|a|, 1/[f8]. 22 x =P, y=—F2=14%
2. 24 1+logt. 25 e, 26 0.
e+2. 28 4. 29 3-—loglé. 30 5.



ANSWERS (33)
31 (1+3z42%)en

3 1 (1-x)? . 1
32 1% o log(l-a)if-1<z<1; tifx=1.
33 (i) 4(chz+cosz); (ii) }shz—sinz). 34 1-609.
Exercise 13(a), p. 493
1 65+11s. 2 —1+3d. 3 743
4 T7+3:. 5 —9+19. 6 414 0s.
7 434 8 28+ 3. 9 2, —4, —8i.
10 —10. 11 cos(6+¢)+isin(0+¢).
12 cos(0—¢)+2sin (0 —¢).
e _ 2y

S Py T U Py o

1 L-CRA\} )

— -1 2+7.
15 0, i(LCL—-CR:) 16 2+

17 (2®— 3zy?) +i(3xty — 4°); (2® - Bxy?) —i(BxPy —y°).
26 {ad—be,bd}, {ad, bc}.

Exercise 13(b), p. 498

1 2(cosim+isinim). 2 2(cos(—§ﬂ)+isin(—-§ﬂ)).
3 J/2(cos 3w +isin 2m). 4 J2(cos(—i7r)+isin(—i7r)).
5 2(cosim+isinim). 6 cos dm+isin 7.

7 cos 4w +isin 4.
8 2cos30(cos 30+ isinif) or —2cos $0 {cos (30 +m) +¢sin (30 +m)}.
9 2cos}(a—p){cos}(a+f)+isin}{a+pf)} or
—2cos $(a—f) {cos Yo+ B+ 2m) +isin §{cc + S+ 2m)}.
10 (2 +y?)". 13 (u—1)24+02=9.
16 (z+y) (v +wy)(z+0%); (z+wy) (z+y).

Exercise 13(c), p. 506
2 22,+2, = 3z, 3 (lzy+kzg) /(LK)
4 The region between the circles of centre (— 1, 2) and radii 2, 3.
5 (i) 5,3; (il) 9. 0. 10 Apply no. 9 after the product construction.

13 The point corresponding to the least value of |z| is the foot of the per-
pendicular from O to the line.

15 /3. 17 z(cosim +1isin 2m), 2(cos & +isin 4m).
18 r{cos(a+ &km)+isin(ax+$km)}, £=0,1,2,3,4.
20 Straight line through P, and perpendicular to P, Py.



(34) ANSWERS

Exercise 13(d), p. 514
2 144, 1+43. 3 —2, 24,3, 4 0,0, 0} o &
5 +4/2+4/3, 0, 02 6 The root z = —b/a is real, so § = 0.

7 (i) The division process introduces coefficients of the same type as in
divisor and dividend.

9 pr—4s. 11 -3. 12 +4,5.
13 —4, 2, 0, w2 14 —4, —-1,2,5.
15 4®+3(a—k)y2+ 3(k%— 2ak + b) y — k4 3ak? — 3bk +¢; a.
16 k=1lor —3; x =—2, —4,1+,/15.
17 k=2; y*+2y*—9y*—16y—6 = 0.
18 (i) ¥*—2qy*+(q*+pr)y+(r*—pgr) = 0;
(i) ry*—(g+3r)y*+(p+29+3r)y—(p+g+1) = 0.
20 ¢Xy+17+p¥y+2)=0.

Exercise 13(e), p. 520

1 % 2 3 -2, 3 None.

4 (—2,-1), (0,1). 5 (-1,0), (1,2). 6 (1,2).

7 Roots in (ay, a,), (ag, a,), (a5, @g). 11 (1,2), (—6, —5).
12 (2,3). 14 One root. 15 8<k< 1l
16 —47 <k < 98. .

Exercise 13(f), p. 524

1 2-0946. 2 0-2261. 3 —2-0945. 4 4-25.

5 1-52. 6 0-3399, 2:2618, —2-6018.

7 1-3569, 1-6920, — 3-0489. 8 0-567. 9 0-057, 1-468.
10 1-3503. 11 4-4934. 12 1-87.

14 K+1/2K2—1/4K*,
15 Newton’s method fails; but put 2 = 2n7 + k and expand.

Miscellaneous Exercise 13(g), p 525

2 s+ic. 4 r2+4p2—2rpcos(0—a).

7 (i) 3(11—<), —3(3+ 52).

8 (i) Point dividing P, P, in the ratio k: 1—k;

(ii) (W3—1)(1—1), H243—1)—(y3—2)e.
10 (i) Straight line y = 1; (ii) circle 22 +y? = 4k?; (iii) arc of a circle through

P,, P, and containing angle }r; (iv) branch of a hyperbola which encloses the
focus P, (P; is the other focus).

11 (i) 22—y? = 2.



12
14
16

18

20
22
25
27
29

ANSWERS (35
224yt —(a/u)z =0, 22+y2+(a/v)y =0 (if u + 0, v & 0).
If P describes |z| = 1 counterclockwise, @ movesfrom — coto + coalong Oy.
y=0 or (c—a)(x*+y*) +2(d—b)x+ (ad —bc) = 0.
() 33,00,09%5 (i) 33347572 33 gy 4272
p=1 p=1 p=1

b’c—abd+d? = 0; or b =0 =4d and a? > 4ec.

28— 324 — 623+ 1422 —Tx+1 = 0. 24 s> pt.
b=1-%+}—...~1/n. 26 —% —% 3% 2

1, #(3 £ 4/5), 1 +3./3). 28 —1, }(1+44/3), {(—1%¢415).
(n+d)m+4(—-1)" 1 2n+1)m.

Exercise 14(a), p. 532

2 (2cos 30)5cis 76. 5 32,—2m.
6 y2cisim, J2cisiim, J2cisifr. 7 ois (8’1“(:11:), r=0,1,23.
8 cis(30+3km), k= 0,1, ...,5; cis(30+km), k=0, 1.
9 cos 30 +14sin 360 = cos? O + 3¢ cos? 0 sin € — 3 cos O sin? § —¢sin34;
tan 36 = (3tan 0 —tan30)/(1— 3 tan26).
10 (i) cos@—4sinf; (ii) 2cosf; (iii) 2isinf; (iv) 2cosnb; (v) 2isinnd.
1 cis(2k+l7r), k=0,1,...n—1 12 —icot(2k+1ﬂ), E=0,1,...,n—1.
n 2n

1
13 - (1 +icotk~7—r), k=12,...,n—1.

2 n
14 ztan;, where £ =0,1,...,n—1 if » is odd, and the value k = }n is

excluded if » is even.

15

18

20

(7

6

2%
cis(Tﬂia), k=0,1,...,n—1.

2®+2+42 = 0. The + sign is correct since
sinZ7 4singmr =singn—sin7 >0 and sing7 > 0.

(i) |2] = constant; (ii) argz is a rational multiple of 7.

Exercise 14(b), p. 538
L(cos 40+ 4 cos 20 + 3). 2 1(cos40—4cos 20+ 3).
5(sin 50 — 5 sin 36 + 10s8in 9).
25(8in 90 — sin 70 — 4 sin 50 + 4 8in 30 4 6sin §).
— 135(sin 80 4 2sin 660 — 2 sin 40 + 6 5in 20).
2z(3cos 70 — Zeos 50+ Tcos 30 — 35cos 0) +c.



(36) ANSWERS
7 ——21—9(11381{1 106 — % sin 86 — } sin 660 + 2 sin 46 + sin 20 — 66) +c.

8 sla(m+8243).

9 (i) 32¢%—48ct+18c2—1; (ii) 1—18s%+4 48s%— 3245,

10 78— 56s%+ 1125% — 6457, 11 1—24s24 808t — 6455,

12 0 = 2nm + 7. 13 0 =nwor (—1)"im+nm.

16 (i) (a) (— )ingn, (~1)¥n-1pcsn-1;  (b) (— 1)kn-Dypeen-1, (—1)n-Dgn,
(ii) (@) (= DEr—tpgr-t, (—Dingn;  (b) (= 1)kn-Dygn (— 1)Kn-Dygn-1,

17 See answer to Ex. 14 (a), no. 9; tan-&m, tan-&.

18 (i) X2, = Xtytaty;
(i) (c—a)/(1—b+d); X6, is zero or an integral multiple of .

20 (v) (a) 2n-lcm —n.2n-3¢n-3 +&”27_Q on—5on—4
i Lol P YU P T
31 ’
" n ni(n?— 22) n¥(n?— 22) (n?— 42)
e P
_ n(n?—12) n(n?—12) (n?— 32)
(—1)k= l){nc_ 3 c3 51 c—....

Exercise 14(c), p. 544
1 (®®—2zxcosim+1) (22— 2xcosfm+1) (x?—2xcos §m + 1).

2 (22— 2./22cos4m + 2) (22 + 2 /22 cos 5T + 2) (2% — 2 /22 cos Fm + 2)

X (@2 + 2 /22 cos & + 2).
3 (x2—2zcos2m+1)(x*—2xcosém+ 1) (2% — 2z cos §m+1).
4 z=1,a=20+7n. 5 z2=-1,a=2p.
n—1
6 x=—1,a=28+m/n. 7 —tennf = zm{mﬂ;%}.
r=0

8 Derive wo /9 the result of 14.33, ex. (iv).

n—1 2
10 ¥ {lcosecnacsin(a+ﬂ)}/{x2—2wcos(a+2ﬂ)+l}.
r=0 N n n

n—1
13 (@) 1=2i [sin 2
r=0
... cot@—ncotnfd 2 1
14 (ii) sin 0 &, cosf—cos (rm/n)’

16 Equate coefficients of x27-2,



ANSWERS

Exercise 14(d), p. 547

1 82— 6a— 3 =0. 2 1624—202*+5 =0,
3 dat+2—1=0; 3(J51). 5 () y'— Tyt +14y2—1=0.

9 X

10
12
14

00 &N U A

12

13

15

8 (i)

7.
Exercise 14(e), p. 550

—sinnf sec 3B cos{a+(n—3)B}. 3 2%cos"@sinnb.

cosnd. 5 {2na"(x—1)+(z+1)(1—2™)}/(x~1)%

{sinA— (é)“sin(n+ 1)A+ (l—))w1 sinnA’/(l—2écosA +b—:) .
C C, C [4
cosec § cos (o —0).
Exercise 14(f), p. 556

-1. 2 3e(14+44/3). 3 rcisf. 4 2cosl.
© ginroe

37

2¢¢089 cog (sin 6). 6 2ies*sinbz. 7 X — o alla

r=1 T:

evc80 gin (zgin 4), all z, 6. 9 e—cs'Acos(a—sin S cos f), all a, B.

e®sin (z tan f), all . 11 cos(sin8)sh (cos8), all 8.
36— e o020 cog (sin 26). 13 Line » = 0; line v = u.

(1) ut+v? = €?; (ii) usiny = vcosy; circle and a diameter.

Exercise 14(g), p. 560
chx cosy +ishz siny.
2(cosx chy + isinx shy)/(cos 2z + ch 2y).
(sh 2z 4 ¢ sin 2y)/(ch 2z + cos 2y).
(i) z+nmi; (i) z+0ornmt+yi. 9 (n+3)7m+Lilog2.
(2nm + im) £ 4, both + or both — signs being taken.
(i) Hyperbola, (ii) ellipse, in the (u,v)-plane.
z3 z7 211
3—!+ﬂ+ﬁ—i+"” all z. 14 sh (cos ) sin (sin §), all 4.
#{sh (cos 0) cos (sin 6) +sin (cos ) ch (sin §)}, all 4.

Miscellaneous Exercise 14(h), p. 561
(i) cisdkm. k= 1,2,...,5; (ii) +1, cis iz, cis(—3m).

—zcot

1
r+ mr=0.1,...,2n—1.
"

at-1 1 p2—1 1 1 ” 2 1 +a2—1 1
ala—b)1—at bla—b)1—bt ab’ R g

Take ¢ = tan 4 @.

1

a® (1—at)? a*



(38) ANSWERS
11 8¢8—-9¢34+1=0; 0 =0, im, im, 2m.
16 —3%, ~H1l+icotdrm).r=+1, +2, +3. Put z = —sin?0.
17 z—acisirm, r=0,1,...,5.

. 1
21 u={(x—1)cosa+ysina} {(w——l_-—)z-l-y’-l-l}’

. 1
v = {(m—l)sma—ycosa}{————(x_l)2+yz—l}.
23 cosu = cos $0 —sin 6, chv = cos 30 +sin 6.

25 Denoting the vertices +a, +a+¢a, —a+ia, —a by A, B, C, D respec-
tively, then as z moves from O to 4, w moves along the u-axis from O to (a2 0);
as z moves from 4 to B, w moves along the parabolic arc v?2 = 4a?(a®—u) from
(a2, 0) to (0, 2a?); from B to C, w moves along the parabolic arc v? = 4a?(a?+ )
from (0, 2a2) through (—a?,0) to (0, —2a?%); from C to D, w moves along arc
2% = 4a%a®—u) from (0, — 2a2) to (a2, 0); from D to O, w moves along the u-axis
from (a?, 0) to O.

27 }e—1+4}ecs22cog(sin2a), all . 28 ch(xcosd) sin(zxsind), all z, 6.

2] NpNn
29 Y, %cosnﬁ, where r = +./(a?+b2%) and cos§:s8inf:1 =a:b:r.
n=0 .

- 22 a5 28
30 (ii) (a) sitsitait = Le® 4 Ze~¥vcos (dx /3 + &m),

Le®+ 2e—¥=cos (32 /3 — &m), for all real =.

zt 27
(b) x+4—!+ﬂ+...

31 z = e~*(Cet#i+ De~*At), where u? = n?+k? and C, D are arbitrary com-
plex constants.

33 o’ =xcosf+ysind, y’ = —xsinf+ycosb.

Exercise 15(a), p. 575
6 x+y = 2ccosecw. 7 z+y = csec? jw.
8 224 2xycosw+y® = 4c?cosectw. 9 Straight line.

11 hlz+kjy = 2. 12 Circle with centre O.

Exercise 15(b), p. 578

1 z—2y=0. 2 3x—5y+9=0. 3 10x—-9y =5.
4 Nz—y) =86, N(y+~xz) =16, 11x+5y = 0. 5 (i) (—1,1).
6 2x—y—1=0. 7 Yes. 8 No.

9 Yes. 10 Yes. 11 -3

13 a+b+c=0. 14 Zsina = 0.



ANSWERS 39

Exercise 15(c), p. 585
1 2. 4 ba?—2hxy+ay? = 0.
5 (i) tan~1(24/21); (ii) 11la®—26zy—1ly?=0.
7 pg(*+y*) = (p*+¢%) 2y.
8 (i) 4m (—1,4); (i) tan 34}, (-5 — %) (iii) 4, (—2, 3);
(iv) tan-1(24/6), (1, —2).
9 (i) 3a®—Tay+2y% = 0; (ii) 202 +2y— 1642 = 0; (iii) 2y = 0;
(iv) 22*+day—y? = 0.
10 322+ 40xy—16y2 = 0. 12 2(g—g)x+2(f—f)y+(c—¢)= 0.

Exercise 15(d), p. 592
1 22+ y2—2pz—2qy = 0.
4 (i) (2, +29) 2+ (Y1 +Ya) Y = T1 %3 +Y1Ya— 0%, 22, +YY, = a2
5 (a%l/n,a’m/n). 6 c? = a¥1l+md).
7 (i) 28+y2 = 2% (ii) a®+y® = 20

8 (i) Transverse common tangents divide the line of centres infernally in
the ratio of the radii.

(ii) bz +12y = 29, 112+ 4,/3y = 61.
9 {(ry+79) T — (875 +aa7y)}® = {(ay—ag)? — (r +72)'} 2.

13 22+y2—3x~by+1=0. 14 22+y*+2x—-8y+5=0.
16 Straight line. 17 8—s’ = 0is a diameter of 0.
20 22 +y*+ac—4y—2=0. 21 22+y2+2+y—-2=0.

Exercise 15(e), p. 600

—-2,0. 2 2t-axy—6y:=1. 3 2y = —4al
4 New equation is = p. 5 3tan—13}.
6 22+3y*=1.

Miscellaneous Exercise 15(f), p. 601

2ttty = 1. 7 3(a+b)? = 4(h*—ab).
8 (gh—af)x = (hf—bg)y, 2g9x+2fy+c=0. 11 (a, 3a), 3a.
12 224+ y2—5x+5y = 0. 13 (a+rcos0, asin).

15 (i) (@—m) (@—2) = 0; (i) (y=21)(y—ya) = 0.
17 822—8wy—3y?=0; 2?+y2—2c—4y = 0.



40) ANSWERS
19 (14 291+ cl?) a2 + 2(f1 + gm + clm) my + (1 + 2fm + em?) y2 = 0;
( b(b—a)~2mh m(a~—b)— 2lh
2(am?® — 2him + bi?)’ 2(am® — 2him + bi2)
20 (1-h)(z*+y%) = Mz+y); (a+k) (@*+y?) +h(x—y) = 0.
21 b(x®+y?) = 3azy(x—y).

); mx+ly = 0.

Exercise 16(a), p. 605
1 2/(t,+¢,). 2 a(t+1/t)% 10 Focus A, directrix I.

Exercise 16(b), p. 610

S y=x+a,2+2y+4a=0. 10 The directrix.
11 Each is equivalent to #,¢, = —1. 12 %? = 4a(x+a).
15 2:1. 17 (i) Equally inclined to the axis.

19 zat+ybd 4 (a2b2)t < 0.
20 3y =2(z+3); 2y =4z +1, 6y = 9x+4.
25 The directrix.

Exercise 16(c), p. 614
3 y® = a(x—3a). 4 s=—t-2/t. 6 (—2a,0).
7 z—y = 3a, 3xr—y = 33a, 4x+y = 72a. )
13 z+4a = 0, y% = 16a(x— 6a), y% = 2a(x — 4a).

Exercise 16(d), p. 616
1 y= 3. 2 —£

Miscellaneous Exercise 16(e), p. 616

1 Mid-point of OC, where O is the point of contact and C is the centre; line
perpendicular to OC at distance $0C from O on the side remote from C.

2+
2 2+yt—(pt+g)z— quy+pq=0-
b dac—b?\ 1 )
—_— ) 1
4 ( %’ 4a ) la" 8 %

10 z = 2q if the normals meet on the curve at a point distinet from P and Q;
the locus stated if the normal at one passes through the other.

12 y% = a(x—3a). 20 (2a—0b)y? = 4a?x. 22 yy,—2a(x+2,) = 0.

23 {yi(y—u1)—2a(x—2;)}* = (y—y,)? (y2 — dax,), which can be reduced to
the form in 16.26, ex. (v).

24 (i)k=1. 25 z4+2y—8 =0; (4,2).



ANSWERS “41)

Exercise 17(a), p. 629

1 2b%a. 2 PN2:B'N’.N'B = QA%:0B2

5 Ellipse with semi-axes a, b. 8 ia, 3b.
10 (i) ay = bxrtana; (ii) x%/a®+y?/b? = cos?a. 15 (i) —3¢.
17 (z/a)cos ¢+ (y/b)sing = 1. 20 7ab.

Exercise 17(b), p. 634

2 0—¢=xm
4 Tangents at corresponding points meet on the major axis.
11 ON’.0T" = b 19 (a(a®—b%)/(a?+?),0).

22 x+2y=1; z+y—3=0,2—5y+9 =0. ’
24 Tangents at the extremities of a focal chord meet on the corresponding
directrix.

2
7 () (o) - (e e

Exercise 17(c), p. 637
1 52.0GQ" = —a??*.PN.
a’z? y2 1
(2a2——bﬂ)2+b_2_? 5 (L2).
7 a?x®+ b2 = atht/(a®—b%)2. NN’ is the normal at the point
(Ab cos (m— ¢), Aasin (7 — ¢)), where A = ab/(a?—b?).

Exercise 17(d), p. 641
1 5243y =0. 2 -1 4 J{3(a®+b%)}.
10 (i) @202 +b%m? = 2n%;  (ii) 2%/a®+y2/b% = }.

Miscellaneous Exercise 17(e), p. 642
1 2%a?+y%/b% = 1.
8 A hyperbola having focus S and the given circle for auxiliary circle;
p passes through the point on the circle diametrically opposite to S.

9 4y =+2+5,/17. 12 (i) 22+y? = a?+-b2; (i) ky? = b¥k—=).

13 If T is (f,9),
(92— 2*—2fgry + (f2—a®)y* = 0, {gwv—y(f—ae)}{gx—y(f+ae)} =0.

14 z%/a+ 2/ =k
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(42) ANSWERS
20 b(h?—a?)x? + 2a%bhkay +a¥(kP—b%) y? = 0.
) g*‘i—:%ﬁ% @) 5 +?- =2. (+a, +b).
23 (=2,1); 2,43; & (—l,l),(—3,l);x=2,w=—6.
24 (1,%); 3, 242; %5 (2,%), (0,3); v =10, 2 = 8.
25 (0,1); 2,4/3; % (3, (—%3); 2—y—-3=0,2—y+5=0.

Exercise 18(a), p. 651

2 A branch of a hyperbola with foci 4, B: if AB > nwv, the branch enclosing
B;if AB < nv, the branch enclosing 4. If AB = nv, the perpendicular bisector
of AB.

3 That branch of a hyperbola with foci 4, B which contains the centre of
the smaller circle.

4 (i) Referring to fig. 182: —0 <t <—1,4'Q"; —1 <t <0,P4;0<t<1,
AQ;1 <t < +o0, P’A". (ii) (@) (L—82) (1 —£2) > 0; (b) 1ty = L.

13 (1+&4t)2/a+(1—4L)y/b =t +i5.

14 (1+8)zfa+(1—12)y/b = 2.

15 (1—22) aw— (1 +22)by = (a®+b?) (1 —#4)/2¢.

Exercise 18(b), p. 656
12 32— Tay+2y*+52—5y+3 = 0.
13 2z4+y—-8=0,z~-3y+2=0; 222—bawy—3y*+x+1ly—4=0.

Exercise 18(c), p. 659
4 Write the equation as zy +yzx = 2¢2.
31 (—d/e,afc). 33 2=14p, ¥y ={q.

Miscellaneous Exercise 18(d), p. 661
3 2?a*—y?2bt =1 (a > b).
5 Branch of a hyperbola which contains the centre of the smaller circle, if

both contacts are external or both internal. Ellipse if one contact is external
and the other internal.

6 Foci A4, B in either case. 10 (u+w)zfa+(u—w)y/b+v=0.

12 (zy, —y,). 14 See 18.53, example.

18 (i) (a) Repeatedliney = 0; (b)repeatedlinex = 0; (ii) (id(a’—b’),O).

20 (i) pa® = gb?; (ii) r=0.

21 (i) (a?sin?6—b2cos?0)r? + 2(aly, sin 8 — b%x; cos O) r

+ (a?y2? — b%r} 4+ a%%k) = 0;
(iii) OK, OK’ are the semi-diameters drawn in the given directions to the

hyperbola or to its conjugate.



ANSWERS
22 The case k£ = 0 in no. 21 (ii): the same argument applies.
23 (0,0); 2, 3; £4/13; (0, ¢J13); y=+4/J13; y=+ix.
24 (-L,-2; 5% & -2 (-h -2 s=—Fpz=—1

4r—3y =2, 4+ 3y+10 =

25 (0,1); L, 3¢; 3¢ (£3%1); 2=+ y = L4

Exercise 19(a), p. 672

3 i 1%y | Y1Ya
late b ot -

3 my —c? Mz ys+aay,) — 2
4 (ley+my,+n) V2, +m'y; +0),

1. 2 yi—dax;, y1Ys— 2a(z, +,).

43)

0.

3y +myy +n) Ve +myy +0') + 3wy + my, +n) (V2 +m'y, +0).

5 & = 0 passes through the mid-point of P, P,.

8 pb—2rh+qa=0. 9 (ax?®+ 2hxy +by?) (a +b) = 2(ab— h?) (x? +y?).

11 (az, +hy, +9) (—2) + (hey + by, +f) (¥ —y1) = 0. i

13 (i) ax®+2hay +by? +gr+fy+c=0; (i) ax?+2hay+by?+c = 0;
(iii) gz +fy+c=0.

14 (z/a)sin ¢ + (y/b) cos = 0; at the point at the end of the question,

15 Eitherh +0,orh=0and?=0.

Exercise 19(b), p. 681
32?4+ 32y + 22— 9x —2y = 0.
16622 — 294zy + 1202 — 2732 + 691y + 15672 = 0.
(a—b)k = (a’—b")h.
1122 — 252y + 11y2 = 0, (x+y)? = 47, (x—y)2 = 3.

W N -

2 __ h2\2 2\ 2
v 8 22+y%+ 2ae%r = a?(l —e?—et). 9 ( -2 ab) +yt= (b;) .

2 cos p—Ysing = cos 2¢; (2 a—“-s).
11 acos¢ bsm¢_cos2¢, ( g sin o);

cos® g, —

(a?sin® @ 4 b2 cos? )l

. ab
12 B(a®+y?) — (3t + 1) — (4 + 3) y + Bc2(t2 + 1) = 0;

(o) ) et

17 Kyihy:ky = (g —15) (L +83): (fg— 1) (L +123) : (8, — ) (1 +22). The circumcircle

15 (i) af = kys.

of a triangle circumscribed to a parabola passes through the focus.
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44) ANSWERS

Miscellaneous Exercise 19(c), p. 682

8 (a?*m?+b?%) (% —y?) = (1 —m?)a?b?
10 2522 — (k+1)y2— (k+26)y+ (6k+169) = 0; y = a2+ 188,
12 8,58, —8;;8, = 0.

Exercise 20(a), p. 688
2 ry7ry8in (0, — 03) + 737y 8in (03— 0,) + 7,79 8i0.(60, — 0g) = 0.
5 (i) (a) r2—2prcos (0 —a)+picoste = 0; (b) r = + 2asinb;
(ii) tangents at O are Oy, Ox.

6 (34/(a*+b?), tan (b/a)).

10 rcos(0—6,—0,+a) = 2acos (0, —a) cos (0, —a);
rcos (0 — 20, +a) = 2a cos? (0, —a).

11 Circle through O. 12 b%2+2ac = 1.

Exercise 20(b), p. 696
1 a=1/(e2—1), b=1/\/(e2—1). 2 Parabola 2a/r = 1—cosé.
3 Conic with I = k/a, e = (b2+c?)¥/a. 5 (2—e?)2L

8 I/r = ecos (0 —7)+sec }(a— f) cos {0 — 3(a + f)}, which is therefore obtain-
able by writing e —y, f—7v, 0 —y for a, f, 0 in the standard equation.

9 (I,4m).
15 Concavities of the arcs LL’ may be the same ( — ) or opposite (+ ) in sense.
18 (ii) 2lsec g, sec .
21 The directrix I/r = cos @ of the parabola I/r = 1+ cos 6.
25 (1/p)cos(f—a)+(df/dr)ysin (6 —a) = 1/r.

Miscellaneous Exercise 20(c), p. 698
(asine—bsin #)sin 6 = (bcos f—acosa)cosb;
(ab/r)sin(a—f) = asin (¢ —0)—bsin (§—0).
r2—{acos(f—a)+bcos(8—p)}r+abcos(a—p) = 0. ‘
(2 —e?)/L. 8 (ii) r = asec®}a cos (0~ }a).

9 Ife<1,a = +cos1(—e); ife = 1, thereisnosuch a; r = lcosec? (.

w

N A

12 (1 —e2) 72+ 2¢lr cos 6 = I2; the auxiliary circle if e # 1, the directrixife = 1.
14 ey?+lx = 0.

Exercise 21(a), p. 704
1 (+;+,+)’ ("',+’+), ('—’_9+)’ (+y—,+)s (+,+’—): (_'5+9_)9
(_! > _)9 (+a sl _)°
2 (i) Plane yOz; (ii) z0z; (iii) z0y; (iv) z-axis; (v) y-axis; (vi) z-axis.
3 PB = /(z*+2?), PC = \/(2*+¥?). 4 1542.



ANSWERS (45)
7 2,46, 2,/38. 8 3:4,5:7,—-2:1.

13 x=pcosg,y =psing; p = /(@2 +y?), cosd:sing:1 =z:y:p.
14 (i) On a cylinder with axis Oz, radius k; (ii) on a half-plane through Oz;
(iii) on a line parallel to Oxz.

15 z =rsinf@cos¢, y =rsinf@sing, z = rcosb;
r=(2®+y2+22), cosd:sing:1 = z:y: /(22 +¥y?),
cosf:8inf:1 =z:\/(x®+y?):r.

16 (i) On a sphere with centre O, radius %; (ii) on a cone with vertex O and
semi-vertical angle ; (iii) on a half-plane through Oz; (iv) generator of cone;
(v) great semi-circle of sphere; (vi) small circle of sphere.

Exercise 21(b), p. 708
5 1:1:1,1:~1:1,1:1:—1, —1:1:1. 6 cos—}.
7 cos 1{(b%+c?—a?)/(a?+b%+c?)}, ete.

109 -1
= -1,
Byie = T

2, 2,
10 (’”‘ Yy pz) 15 Each is equal to OP=.

8 A =cos 112, B = cos~!

OP*’ OP?’ OP?

Exercise 21(c), p. 713
z—4y+52 = 0. 2 6zx+2y—10z = 31. 3 3z+3y—2=6.
bx+2y—3z = 17. 5 6x+3y—22=18, 2xr—3y—6z = 6.
(i) cos™1(1/y/14); (i) sin~1(1/y6).
cos[c/y{(p—q)2+(p—7)2+ %], cp/(p—q), cp/(P—T).
cos{(a"2+b"2—c2%)/(a 2+ b2 +c %)},
(2= 20) T+ (41— Y2) Y + (21— 25) 2 = Y} —ad +y] — i +21 —2)).
13 —(A4x;+ By, + Cz,+ D)/(Azy,+ By, + Cz, + D).

O 0 9 O B

Exercise 21(d), p. 721
1 (11,22,19); 5,/38.
2 (0,b—am/l, c—anfl), (a —bl/m, 0, c—bn/m), (a—cl/n, b—cm/n, 0).
z—1 y-2 2-3

4 21. S~ =7 =" L3-2
z—1 y—3 z+43

8 5x—22y—1924+27=0. 9 (4,2, —-1),x—y—2=3.

12 3z+y—42=0. 13 12.

14 60°. 15 e=4y=—z,c=~y =4z



46) ANSWERS
z—3 y—2 2+3

16 NEEY J2 102 (both upper signs, or both lower).
17 2. 18 2x+60y—1622+27 = 0, 54x—18y—62z+1 = 0.
19 % 2, J(l2+m2+n2) 20 6x volume of OP, P, P;.

Exercise 21(e), p. 726
1 122—11ly+42 = 1. 2 3x+4y—22=1.
9r—8y—2z+14 =0, 4 2:~1:1.
el _y=1_z—1

w

6 7:—11:10.
7 3x+2(3+4/3)y—3(4%4/3)2z = 0 (both upper or both lower signs).
8 2x—y—2+3=0=2+y+2—6; 1:0:—1lor1l:-1:0.
9 z—y+2+1=0,40—6y—2—3 =0, Tx—9y+22 = 0.
Exercise 21(f), p. 732
6 4

1 10:3:—4, 2 ’%—31;—_”6, (4,2, 6), (=1, —1,0).
3 (3,0,0), (2%,0,0). 5 2.8. 6 5.

x=1_y—-2 _ =z-3 r—2 y—-§ 2-% o
L VRS TR 8 5 =% = s -

9 See 21.52, ex. (iv).

Miscellaneous Exercise 21(g), p. 733

3t 4t 156—12t\ 144 J709
~18:5 e ) o .
3 (13 13> 13 ) 13° 325
x Yy o
6 vkt " & % -9 7 60% z+y—2=0
8 (lil’)x+(mim)y+(nin’)z=0=Z(mn’—m’n)w(a.ll+ or all—).
9 (0,0,0), (1,1, —1). 10 z—4y+ 6z = 106; ,/293.

11 To—8y+3z = 0; 13z = 122, 20y+ 232 = 0.
12 (z—L) (@— d)+(y—b—) (b—e )+(z—-—f) (c—f) = 0.
15 cos—1%, cos12.

Exercise 22(a), p. 740

1 T(a?+y2+22)+16z—31ly—8z+34 =0, (—&, 81, 4),
2 A sphere if A % 1; the plane bisecting AB at right-angles if A = 1.
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ANSWERS 47

22 +y2+22)—Tex—6y—92+13 = 0.

22+ y?+22 422 -2y+2:—6=0. 5 3J(a?+y?+2?)—2x—2y—22—-1=0.
6(x2+y%+22)— 182 —36y—122 = 0; 7.

3@t +y?+22)—122—6y—42=0. 9 (x—5)%+(yt4)’+(2+4)? =41.
(2,4, 4), (3, 4,8D)- 11 (=% -5 %), 314

3454, 4 (2,2,2), 2

81(x2+y2+22)—126(x+y+2)+98 = 0. 15 2¢x+2y+z=3.
z+2y~22+15=0, 4y+32—11 = 0. 17 (r2fp, mr*|p, nr?[p).
(lu+mv+nw—p)? = (B4 m2+n?) (ud+02 +w2—d).

(=5 +(y+2)+(2—3)2 = 49; 20 +3y+62="T1. 21 (& <& —7%)-

(ii) Tangents from a point on the common circle have equal lengths zero.

Exercise 22(b), p. 745

0, 0, 0). 2 Plane touches circle.

4. 4 22+y?+22—8x—6y = 0.
x+y—32=3, 22 +y2+22—a—-3y+z =0; (55 35 —5)-
2,2,3).

22+ Y2422+ 62—16 = 0, 5(2? +y2+2%) — 14— 28y—122+32 = 0.
224y +22—-22—-8 =0, 2®+y2+22 4200+ 20y + 182+ 72 = 0.

2+ y?+224+22—-82=0.

224y +22+ 2ay—a® = 0, 22+ y%+ 22+ dax— 202 +a? = 0.
5(x?+y%+2%) + 192 — 13y + 102+ 27 = 0; 3/,/10.

@ty 2% —2x 4 2y + 62— 5 = 0. 15 (38,24,78).
24yt +22+r+9%—42= 0.

Cylinder with generators parallel to (i) Oz, (ii) Oy; surface of revolution

with axis (iii) Oy, (iv) Oz.

19

1
2

1022+ 122y + 5y = 16.

. Exercise 22(¢), p. 755

cosb = cosc cosa+sinc sina cos B, cosc = cosa cosb+sina sinb cosC.

4, mre, 5 19°28’; 1,440,000sq.miles.
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Miscellaneous Exercise 22(d), p. 756
2 224y?+22—2c2=0.
3 (2+342, —1+242, 342), HTy2-6).
z_Y

4 5=6= %, cos—118, 5 (—al/n, —am/n). 9 Wp—41|.

10 (Zul)? = dZI2; (A, Am, An) where A = —d/(Zul).
12 (x+4)24+(y+4)2+(2£3)* = 25.
13 224+ 9y2+22—20—4y—42—T7=0,
5(x? +y?+22%) + 22x + 44y + 442 — 323 = 0; (3,6, 6).
( 2a2u 2a%v a(u3+vz-—a2))
w4+ ta? uito2+a?’ ud4ovd4al -
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INDEX TO VOLUME II

Numbers refer to pages.
% means ‘Also see this entry in the Index of Vol. I’.

Absolute convergence (a.c.), 452, 551 Auxiliary circle, 623, 652
A.C., 452, 551 Axes (of coordinates)
Affix, 495 change of, 595
d’Alembert’s left-handed, 700
ratio test, 443, 456 oblique, 565
theorem, 507 rectangular, in space, 700
Alternate suffixes, rule of, 587 right-handed, 700
Altitude of spherical triangle, 756 rotation of, 596, 597, 709
am, amp, 495 Axis
Amplitude, 495 conjugate, 654
Angle major, 621
dihedral, 713, 748 minor, 621
of lune, 748 of circle on sphere, 747
trihedral, 748 of parabola, 603
Angle between transverse, 621
circles, 591
curves, 747 Bifocal property, 624, 647
line-pair, 580 Binomial
planes, 713 coefficients, 424, 466
sensed lines, 707 series, 463, 466
spheres, 740 Binomial theorem, 419, 434
Antiparallel, 707 general term, 420
Antipodal points, 747 greatest term, 421
A.P., sines or cosines of angles in, 431, use trigonometrically, 534
548
Apollonius c, 437
circle of, 504 C + S method for
hyperbola of, 658 integration, 555
Approximations, 476 series, 548
formal, 479 Cardan and complex numbers, 487
Area Cardan’s method, 390
and orthogonal projection, 627 Centre of
of lune, 748 circle, 586
of spherical triangle, 750 ellipse, 621
of triangle, 568, 719 hyperbola, 621
arg, 495 line-pair, 584, 597
Argand, 488 sphere, 736
Argand representation, 488, 499, 504 Centroid
difference, 501 and coordinate axes. 601
loci, 500, 504 of tetrahedron, 704
product, 502 Ceva’s theorem, 574
quotient, 503 Change of
square root, 506 axes, 595
sum, 500 origin, 596, 705
Argument, 495, 500 Chord
Asymptote(s), 646 focal, 604
as coordinate axes, 657 segments of, 671, 696
as limit of a tangent, 653 Chord having a given mid-point, 638,
of hyperbola, 646, 653 649

polar equations of, 692 for ¢ = 0, 669, 670
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Chord of
circle (polar equation), 686
conic (polar equation), 693
ellipse, 630, 631
hyperbola, 648, 651, 658
parabola, 605, 606
8 = 0, 665
Chord of contact,
649
to s = 0, 668
Circle
and ellipse, 622
Cotes’s properties, 542
equations in space, 742
general equation, 586
great, 737, 747
of Apollonius, 504
of curvature, 611, 679, %
on given diameter, 586
polar equation, 686
small, 737, 747
Circles, family or system of, 593
cis, 530
Cofactor, 402
alien, 403
true, 403
Colatitude, 702
Collinear points, 570
Comparison
of series and product, 543
series, 440
tests, 439
Complete quadrilateral, 577
Complex algebra
and real algebra, 492
completeness of, 492
Complex numbers, 489
and laws of algebra, 494
conjugate, 497
‘real’, 496
Compound angles, 537
Concurrence of lines, 576, 577
Concyelic points on
ellipse, 628, 678
hyperbola, 660
parabola, 604
Cone, 745
Confocal conics, 662
Conic, 594
general, 664
pole at focus, 688
proper, 690
Conic sections, 594
Conics
degenerate, 595
family of, 675
net of, 681
pencil of, 676

587, 610, 633,

INDEX

standard equations, 600
system of, 675
Conjugate diameters, 640, 649, 655, 670
extremities of, 640, 656
Conjugate
hyperbolas, 654
of z, 497
surds, 511
Conormal points on
ellipse, 636
hyperbola, 661
parabola, 613
Contact
double, 611, 675
of two conics, 679
mth-order and (m + 1)-point, 680, %
Contact condition for line with
circle, 587
ellipse, 633, 634
hyperbola, 649
parabola, 609
s = 0, 667
sphere, 739
Contact condition for planeandsphere, 738
Convergence, 436, 551
absolute, 452, 551
conditional (c.c.), 4564
interval of, 456
speed of, 446
Coordinate planes, 700
Coordinates
cylindrieal polar (p, ¢, z), 701
plane cartesian and polar, 565, %
rectangular cartesian in space, 701
spherical polar (r, 0, ¢), 702
Coplanar lines, condition for, 717
Coprime, 384
Corresponding points on ellipse and
auxiliary circle, 623
Cosine rule, 751
Cotes’s properties, 542
Cramer’s rule, 404
Cube roots of unity, 497
Curvature, circle of, 611, 679
Curve, skew, space or twisted, 745
Cyeclic
expression, 373
interchange, 373
order, 373
Cylinder, 745
Cylindrical coordinates (p, ¢, 2), 702

D, 437
deg, 383
Derived polynomial, 509
Determinant
cofactor in, 402
derivative of, 413



INDEX

Determinant (cont.)
elements of, 394
expansion of, 394, 395
factorisation of, 411
fourth-order, 414
leading diagonal of, 395
leading term in, 395
minor in, 402
mudtiplication of, 417
notation ¢, r, 397
row and column operations, 393
rows and columns, 393
second-order, 393
symmetric, 403
third-order, 394
transpose of, 393
‘triangular’, 399
Determinants and linear equations, 404
Diameters, 615, 639, 649, 669
conjugate, 640, 649, 655. 670
equi-conjugate, 641
extremities of, 640, 656
ordinates to, 615
Difference method, 423
Dihedral angle, 713, 748
Direction
cosines, 706
ratios, 707
Director circle, 633, 649, 697
Directrices, polar equations of, 691
Directrix, 594
Discriminant of 8, 583
Distance formula
cartesian, 566, 702

polar, 684

Distance of a point from a
line, 575
plane, 718

Distance quadratic, 617, 638, 670
Divergence, 437
proper, 437
Division
external, 567, 703
internal, 566, 703
long, 363
successive, 384
Dominated, 518
Double contact, 611, 675

e, irrationality of, 470, %

Eccentric angle, 627

Eccentricity, 594

Eliminant, 379, 408

Elimination, 378

Ellipse, 594, 620, *
as orthogonal projection of a cu-cle, 626
conjugate diameters as coordinate

axes, 640

pin construction, 625
(p, r) equation wo centre, 641
(p, r) equation wo focus, 634
Elliptic trammel, 624
Equating
coefficients, 367, 509
real and imaginary parts, 496
Equations
approximate solution of, 521, *
cubie, 375, 390
homogeneous linear, 407
linear simultaneous, 391, 404
quadratic, 374
quartic, 377
reciprocal, 527
transformation of, 513
with rational coefficients, 511, 516
with ‘real’ coefficients, 510
Error in s, =8, 476
Euclid’s algorithm, 384
Euler’s
constant y, 450,
exponential forms, 555
Evolute, 613, x .
exp, 480, 552
Expansion
in power series, 461
formal, 464, 479
of a determinant, 394, 395
of circular functions of compound
angles, 637
of circular functions of multiple angles,
535

Factor

repeated, 381

simple, 381
Factorisation

in complex algebra, 507

in real algebra, 515

of a determinant, 411

of a polynomial, 366, 507, 515, 538

of sinnf, 542
Finite series, 422

trigonometric, 431, 548
Focal

chord, 604

distances, 624, 647

radii, 634
Focus, 594
Focus-directrix property, 594, 603, 620
Foucault’s pendulum, 563
Frégier point, 671
Function

alternating, 372

cyclic, 373

skew, 372

symmetric, 371



xxvi

Functions of a complex variable, 550
circular, 557
exponential, 552
hyperbolie, 558

Fundamental theorem of algebra, 507

Gauss, 489
Gauss’s theorem, 507
General conic ¢ = 0, 664
General equation of second degree in «, ¥,
581, 664
and line-pair, 582, 584
General linear equation(s)
in z, y, 571
in 2, ¥, 2, 710
representing the same plane, 711
Geometrical progression (a.p.), 437, 551
G.P., 437, 551
Gradient of a line, 567
von Graeffe’s method of root-squaring,
523
Great circle, 737, 747
Gregory’s series, 463, 476
L]
Hamilton, 493
Harmonic
conjugate, 668
division, 590
series X(1/r), 438
H.C.F., 383
process, 384
theorem, 385
Highest common factor (u.c.F.), 383
Horner’s method, 522
Hyperbola, 594, 621, 645, 658
asymptotes, 646
asymptotes as coordinate axes, 657
mechanical construction, 648
of Apollonius, 658
(p, ) equation wo focus, 662
rectangular, 647, 659

4, 487
i as an operator, 488
Identity, 364
of form, values, 367
Image, 716
Imaginary
expression, 487
number, 487
part, 496
Induction hypothesis, 434
Infinite series, 423, 436 (also see ‘series’)
and integrals, 447
of complex terms, 550
rearrangement of, 457
regrouping of, 457
Integral test, 448

INDEX

Integration by C+18, 555
Intersect, 736
Interval of convergence, 456
Irreducible

polynomial, 385

rational function, 386
Isomorphism, 491

Joachimsthal’s ratio quadratic, 58% 610,
635
for s = 0, 666
for sphere, 742

Latus rectum, 603, 621
Legendre polynomial P,(x), 519
Leibniz’s
series for }m, 476
theorem on alternating series, 451
theorem on nth derivative of uv, 434, %
Limit of
a complex function, 550
z%[n!, 455
Limits, calculation of, 480
Line (see ‘straight line’)
Line of intersection of two planes, 717
Linear system of equations, 391, 404
homogeneous, 407
inconsistent, 391, 406
indeterminate, 391, 407
non-homogeneous, 408
solution in ratios, 409
three equations, three unknowns, 392
two equations, two unknowns, 391
two homogeneous equations, three
unknowns, 409
Line-pairs, 579
angle between, 580
angle-bisectors, 581
centre of, 584, 597
coincident, 580, 582
general, 581
intersecting, 584
intersection of, 584, 597
necessary condition for, 582
parallel, 582
through origin, 580, 584
vertex of, 584, 597
Loci in the complex plane, 500, 504
Long division, 363
Longitude, 702
Lune, 748

Machin, 476
Maclaurin—Cauchy integral test, 448
Maclaurin’s series, 460
Mathematical Induction, 433

and difference method, 435
Matrices, 493



Medians of
spherical triangle, 762
tetrahedron, 704
Menelaus’s theorem, 574
Minor, 402
Modulus, 495, 499
Modulus-argument form, 494
of expz, 554
de Moivre’s
property of the circle, 542
theorem, 528
Multiple angles and powers, 535

Net of conics, 681
Newton’s theorem, 638
Normal to

conic (polar equation), 698

ellipse, 636

hyperbola, 649, 651

parabola, 612, 614

plane, 710

rectangular hyperbola, 659
Notation

c, r, 397

P,, 565, 701

8, 8y, 8;1, 815, 664.

Upy 8y 8, ZU,, 422
Number, %

complex, 489

imaginary, 487

of a point, 495

purely imaginary, 496

real, 488

‘real’, 496
Number-pairs, 489

Oblique axes, 565
Octants, 701
Operator ¢, 488
Order of a root, 381
Ordered
pairs, 489
triplets, 493
Ordinates to a diameter, 615
Orthocentre, 609
Orthocentric points, 659
Orthogonal
circles, 591
projection, 625, 626
spheres, 740
Osborn’s rule, 559, %
Outside of
conic 8 = 0, 667
ellipse, 643
parabola, 610

Pair of tangents, 589, 596, 610, 649
to 8 = 0, 667

INDEX

Pappus’s theorem, 679
Parabola, 594, 603
general equation, 618
Parametric representation(s) of
ellipse, 627, 628
hyperbola, 649, 650, 658
parabola, 603
Partial fractions, *
theory, 386
use of, 430, %
Pascal’s
theorem, 679
triangle, 421, 470
Pencil of conics, 675
Period of
expz, 554
generalised circular functions, 557
generalised hyperbolic functions, 558
Perpendicular from a point to a
line, 5756
plane, 718
Perpendicularity condition for
directions in space, 707, 708
lines in a plane, 571, 581
planes, 713
7, calculation of, 476
II-notation, 539
Plane
as a surface, 710, 744
distance of a point from, 718
of contact, 739, 742
Plane, forms of equation, 709
general equation, 710
intercept form, 713
P, P,P,, 712
perpendicular form, 710
through P; perpendicular to l:m:m,
711

Planes
bisecting angles between two planes,
719
incidence of three, 724
through a common line, 723
Polar coordinates (see ‘coordinates’), %
Polar equation of
circle, 686
conie, focus as pole, 688, 690
line, 684, 685
Polar of a point, 591, 612, 635
reciprocal property, 591, 669
wo line-pair, 668
wo ¢ = 0, 668
Polar triangle (on sphere), 749
Pole of
circle on a sphere, 747
line wo & conie, 591
plane polar coordinates, #
Polynomial equations, 374



xxviii

Polynomial(s)
change of sign, 517
coprime, 384
derived, 509
in more than one variable, 370
irreducible, 385
Power series, 423
Powers
and multiple angles, 534
of integers, series of, 426
Product for sinnd, 543
Proper conic, 690
Proportional parts, method of, 521, %

Quaternions, 493

Ratio equation or quadratic (see
‘Joachimsthal's ratio quadratic’)
Ratio test
d’Alembert’s, 443
modified, 456
Rational function
irreducible, 386
proper, 386
Ray, unit, 706
‘Real’, 496
Real part, 496
Rectangular hyperbola, 647, 659
Remainder theorem, 364
Repeated
factor, 381, 509
line, 580
root, 381, 509
Riemann’s rearrangement theorem, 458
Rolle’s theorem for polynomials, 518; %
Root-squaring, 523
Root(s)
and coefficients, 374, 512, 546
changing sign of, 513
common, 380
conjugate complex, 510
diminishing of, 513
equal, 381
given trigonometrically, 545
location of, 516
multiple, 381
multiplying of, 513
of general polynomial equation, 515
of unity, 497, 531
r-fold, 381
repeated, 381
simple, 381
squaring of, 513
Rotation of axes, 596, 597, 709

8 = ke’, 674, 742
degenerate cases, 675
Secondary, 747

INDEX

Section formulae, 566, 703
Segments of a chord, 671, 696
Semi-convergent, 454
Sequence and series, 422
Series (properties)
absolutely convergent, 452, 551
convergent, 436, 551
divergent, 437
oscillating, 437
properly divergent, 437
Series (special)
a®, 471
binomial, 463, 466
chz, 471
comparison, 440
cosine, 461
exponential, 461, 470, 5562
‘factor’, 428
‘fraction’, 429
geometric, 437, 651
Gregory’s, 463, 476
logarithmic, 462, 472
powers of integers, 426
shz, 471
Z(1/r?), 543
sine, 461
trigonometric, 431, 548
Series (types)
alternating, 451
finite, 422
harmonic, 438
infinite, 423, 436, 550 (also see ‘infinite
series’)
Maclaurin, 460
power, 423
Series
and approximations, 476
and product, comparison of, 543
notation s, 8,, u,, 422
terms of, 422
Sides of a
conic, 666
line, 573
plane, 714
Z-notation, 373, 422
Sine rule, 752
‘completed’ form, 753
Simson line, 687
Skew lines, 727
common perpendicular, 728
common transversal through a given
pomt, 728
standard equations, 731
Small circle, 737, 747
Speed of convergence, 446
Sphere
general equation, 736
‘normalised equation’, 736 -



INDEX

Sphere (cont.)
on diameter P, P,, 737
Spheres through a given circle, 742
Spherical
coordinates (r, 6, ¢), 702
distance, 747
excess, 750
Spherical triangle, 748, 755
altitude, 756
angles, 748, 755
area, 750
cosine rule, 751
four-parts formula, 758
median, 752
sides, 748, 755
sine rule, 752
Straight line, distance of a point: from,
575
Straight line, forms of equation, 570, 684
general equation, 571, 685
gradient form, 570
intercept form, 571
joining (ry, 6,), (ra, 6;), 684
P, P,, 572, 715
parametric form, 572, 573, 715
perpendicular form, 573, 685
symmetrical equations, 715
through P, in direction I:m:n, 714
through P; with gradient m, 570
Successive division process, 384
Supplemental
chords, 642
formulae, 754
relations, 750
Sum
of finite series, 422
to infinity, 423, 436, 551
to n terms, 422
Summation by diagonals, 553
Surds, conjugate, 511
Surface of revolution, 745
Surfaces, 744

Taking
arguments, 496
conjugates, 497
moduli, 496
Tangency and repeated roots, 608
Tangent
and normal as coordinate axes, 671
at the vertex (of parabola), 603
‘cone (to sphere), 739, 742
general definition, 607, %
plane (to sphere}, 737, 742
Tangent to
circle, 587, 687
conic (polar equation), 694
ellipse, 632

general curve, 618

hyperbola, 649, 651, 658

parabola, 607

8 = 0, 666, 667
Tartaglia, 390
Theory of Numbers, 386
Touch, 608, 736, %
Transformation of equations, 513
Translation of axes, 596, 705
Transpose, 393
Trial exponentials, 555, %
Triangle

formulae, 751

inequalities, 501, %

inequality for infinite series, 454

Unit ray, 706

Vectors, 493, 496
Vertex of
line-pair, 584, 597
parabola, 603
Vertices of ellipse, hyperbola. 621
Volume of tetrahedron, 720

WO, Xxi

[a, b], 489

c, 397

c,, 424

nC,, 419

e, 470. %

{l, m, n}, 706

l:m:n, 707 and footnote

(”) , 424
r

P(‘D), p(— o), 518
P, (x), 519

P,, etc., 565, 701
r, 397

8, 8;, 8;4, 815, 664
8, 8,, 422

Uy, 422

|z|, 495

zZ, z*, 497

x, 496

|l, is parallel to

1, is perpendicular to

v, 450, %

m, 476

11, 539

%, 373, 422

Zu,, 422

Zu, ¢, Zu, D, 437
w, 497

{w}, 565
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