POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/e_jnf.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* e_jnf.c -- float version of e_jn.c.
00018  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
00019  */
00020 
00021 /*
00022  * ====================================================
00023  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00024  *
00025  * Developed at SunPro, a Sun Microsystems, Inc. business.
00026  * Permission to use, copy, modify, and distribute this
00027  * software is freely granted, provided that this notice
00028  * is preserved.
00029  * ====================================================
00030  */
00031 
00032 #ifdef POK_NEEDS_LIBMATH
00033 
00034 #include "math_private.h"
00035 #include <libm.h>
00036 
00037 static const float
00038 #if 0
00039 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
00040 #endif
00041 two   =  2.0000000000e+00, /* 0x40000000 */
00042 one   =  1.0000000000e+00; /* 0x3F800000 */
00043 
00044 static const float zero  =  0.0000000000e+00;
00045 
00046 float
00047 __ieee754_jnf(int n, float x)
00048 {
00049         int32_t i,hx,ix, sgn;
00050         float a, b, temp, di;
00051         float z, w;
00052 
00053     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
00054      * Thus, J(-n,x) = J(n,-x)
00055      */
00056         GET_FLOAT_WORD(hx,x);
00057         ix = 0x7fffffff&hx;
00058     /* if J(n,NaN) is NaN */
00059         if(ix>0x7f800000) return x+x;
00060         if(n<0){
00061                 n = -n;
00062                 x = -x;
00063                 hx ^= 0x80000000;
00064         }
00065         if(n==0) return(__ieee754_j0f(x));
00066         if(n==1) return(__ieee754_j1f(x));
00067         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
00068         x = fabsf(x);
00069         if(ix==0||ix>=0x7f800000)       /* if x is 0 or inf */
00070             b = zero;
00071         else if((float)n<=x) {
00072                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
00073             a = __ieee754_j0f(x);
00074             b = __ieee754_j1f(x);
00075             for(i=1;i<n;i++){
00076                 temp = b;
00077                 b = b*((float)(i+i)/x) - a; /* avoid underflow */
00078                 a = temp;
00079             }
00080         } else {
00081             if(ix<0x30800000) { /* x < 2**-29 */
00082     /* x is tiny, return the first Taylor expansion of J(n,x)
00083      * J(n,x) = 1/n!*(x/2)^n  - ...
00084      */
00085                 if(n>33)        /* underflow */
00086                     b = zero;
00087                 else {
00088                     temp = x*(float)0.5; b = temp;
00089                     for (a=one,i=2;i<=n;i++) {
00090                         a *= (float)i;          /* a = n! */
00091                         b *= temp;              /* b = (x/2)^n */
00092                     }
00093                     b = b/a;
00094                 }
00095             } else {
00096                 /* use backward recurrence */
00097                 /*                      x      x^2      x^2
00098                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
00099                  *                      2n  - 2(n+1) - 2(n+2)
00100                  *
00101                  *                      1      1        1
00102                  *  (for large x)   =  ----  ------   ------   .....
00103                  *                      2n   2(n+1)   2(n+2)
00104                  *                      -- - ------ - ------ -
00105                  *                       x     x         x
00106                  *
00107                  * Let w = 2n/x and h=2/x, then the above quotient
00108                  * is equal to the continued fraction:
00109                  *                  1
00110                  *      = -----------------------
00111                  *                     1
00112                  *         w - -----------------
00113                  *                        1
00114                  *              w+h - ---------
00115                  *                     w+2h - ...
00116                  *
00117                  * To determine how many terms needed, let
00118                  * Q(0) = w, Q(1) = w(w+h) - 1,
00119                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
00120                  * When Q(k) > 1e4      good for single
00121                  * When Q(k) > 1e9      good for double
00122                  * When Q(k) > 1e17     good for quadruple
00123                  */
00124             /* determine k */
00125                 float t,v;
00126                 float q0,q1,h,tmp; int32_t k,m;
00127                 w  = (n+n)/(float)x; h = (float)2.0/(float)x;
00128                 q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
00129                 while(q1<(float)1.0e9) {
00130                         k += 1; z += h;
00131                         tmp = z*q1 - q0;
00132                         q0 = q1;
00133                         q1 = tmp;
00134                 }
00135                 m = n+n;
00136                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
00137                 a = t;
00138                 b = one;
00139                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
00140                  *  Hence, if n*(log(2n/x)) > ...
00141                  *  single 8.8722839355e+01
00142                  *  double 7.09782712893383973096e+02
00143                  *  long double 1.1356523406294143949491931077970765006170e+04
00144                  *  then recurrent value may overflow and the result is
00145                  *  likely underflow to zero
00146                  */
00147                 tmp = n;
00148                 v = two/x;
00149                 tmp = tmp*__ieee754_logf(fabsf(v*tmp));
00150                 if(tmp<(float)8.8721679688e+01) {
00151                     for(i=n-1,di=(float)(i+i);i>0;i--){
00152                         temp = b;
00153                         b *= di;
00154                         b  = b/x - a;
00155                         a = temp;
00156                         di -= two;
00157                     }
00158                 } else {
00159                     for(i=n-1,di=(float)(i+i);i>0;i--){
00160                         temp = b;
00161                         b *= di;
00162                         b  = b/x - a;
00163                         a = temp;
00164                         di -= two;
00165                     /* scale b to avoid spurious overflow */
00166                         if(b>(float)1e10) {
00167                             a /= b;
00168                             t /= b;
00169                             b  = one;
00170                         }
00171                     }
00172                 }
00173                 b = (t*__ieee754_j0f(x)/b);
00174             }
00175         }
00176         if(sgn==1) return -b; else return b;
00177 }
00178 
00179 float
00180 __ieee754_ynf(int n, float x)
00181 {
00182         int32_t i,hx,ix,ib;
00183         int32_t sign;
00184         float a, b, temp;
00185 
00186         GET_FLOAT_WORD(hx,x);
00187         ix = 0x7fffffff&hx;
00188     /* if Y(n,NaN) is NaN */
00189         if(ix>0x7f800000) return x+x;
00190         if(ix==0) return -one/zero;
00191         if(hx<0) return zero/zero;
00192         sign = 1;
00193         if(n<0){
00194                 n = -n;
00195                 sign = 1 - ((n&1)<<1);
00196         }
00197         if(n==0) return(__ieee754_y0f(x));
00198         if(n==1) return(sign*__ieee754_y1f(x));
00199         if(ix==0x7f800000) return zero;
00200 
00201         a = __ieee754_y0f(x);
00202         b = __ieee754_y1f(x);
00203         /* quit if b is -inf */
00204         GET_FLOAT_WORD(ib,b);
00205         for(i=1;i<n&&(uint32_t)ib!=0xff800000;i++){
00206             temp = b;
00207             b = ((float)(i+i)/x)*b - a;
00208             GET_FLOAT_WORD(ib,b);
00209             a = temp;
00210         }
00211         if(sign>0) return b; else return -b;
00212 }
00213 
00214 #endif
00215