POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Sat Jan 31 20:12:07 2009 00015 */ 00016 00017 /* @(#)k_tan.c 5.1 93/09/24 */ 00018 /* 00019 * ==================================================== 00020 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00021 * 00022 * Developed at SunPro, a Sun Microsystems, Inc. business. 00023 * Permission to use, copy, modify, and distribute this 00024 * software is freely granted, provided that this notice 00025 * is preserved. 00026 * ==================================================== 00027 */ 00028 00029 #ifdef POK_NEEDS_LIBMATH 00030 00031 /* __kernel_tan( x, y, k ) 00032 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 00033 * Input x is assumed to be bounded by ~pi/4 in magnitude. 00034 * Input y is the tail of x. 00035 * Input k indicates whether tan (if k=1) or 00036 * -1/tan (if k= -1) is returned. 00037 * 00038 * Algorithm 00039 * 1. Since tan(-x) = -tan(x), we need only to consider positive x. 00040 * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. 00041 * 3. tan(x) is approximated by a odd polynomial of degree 27 on 00042 * [0,0.67434] 00043 * 3 27 00044 * tan(x) ~ x + T1*x + ... + T13*x 00045 * where 00046 * 00047 * |tan(x) 2 4 26 | -59.2 00048 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 00049 * | x | 00050 * 00051 * Note: tan(x+y) = tan(x) + tan'(x)*y 00052 * ~ tan(x) + (1+x*x)*y 00053 * Therefore, for better accuracy in computing tan(x+y), let 00054 * 3 2 2 2 2 00055 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) 00056 * then 00057 * 3 2 00058 * tan(x+y) = x + (T1*x + (x *(r+y)+y)) 00059 * 00060 * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then 00061 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) 00062 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) 00063 */ 00064 00065 #include <libm.h> 00066 #include "math_private.h" 00067 00068 static const double xxx[] = { 00069 3.33333333333334091986e-01, /* 3FD55555, 55555563 */ 00070 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */ 00071 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */ 00072 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */ 00073 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */ 00074 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */ 00075 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */ 00076 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */ 00077 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */ 00078 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */ 00079 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */ 00080 -1.85586374855275456654e-05, /* BEF375CB, DB605373 */ 00081 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */ 00082 /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */ 00083 /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */ 00084 /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */ 00085 }; 00086 #define one xxx[13] 00087 #define pio4 xxx[14] 00088 #define pio4lo xxx[15] 00089 #define T xxx 00090 00091 double 00092 __kernel_tan(double x, double y, int iy) 00093 { 00094 double z, r, v, w, s; 00095 int32_t ix, hx; 00096 00097 GET_HIGH_WORD(hx, x); /* high word of x */ 00098 ix = hx & 0x7fffffff; /* high word of |x| */ 00099 if (ix < 0x3e300000) { /* x < 2**-28 */ 00100 if ((int) x == 0) { /* generate inexact */ 00101 uint32_t low; 00102 GET_LOW_WORD(low, x); 00103 if(((ix | low) | (iy + 1)) == 0) 00104 return one / fabs(x); 00105 else { 00106 if (iy == 1) 00107 return x; 00108 else { /* compute -1 / (x+y) carefully */ 00109 double a, t; 00110 00111 z = w = x + y; 00112 SET_LOW_WORD(z, 0); 00113 v = y - (z - x); 00114 t = a = -one / w; 00115 SET_LOW_WORD(t, 0); 00116 s = one + t * z; 00117 return t + a * (s + t * v); 00118 } 00119 } 00120 } 00121 } 00122 if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */ 00123 if (hx < 0) { 00124 x = -x; 00125 y = -y; 00126 } 00127 z = pio4 - x; 00128 w = pio4lo - y; 00129 x = z + w; 00130 y = 0.0; 00131 } 00132 z = x * x; 00133 w = z * z; 00134 /* 00135 * Break x^5*(T[1]+x^2*T[2]+...) into 00136 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + 00137 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) 00138 */ 00139 r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + 00140 w * T[11])))); 00141 v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + 00142 w * T[12]))))); 00143 s = z * x; 00144 r = y + z * (s * (r + v) + y); 00145 r += T[0] * s; 00146 w = x + r; 00147 if (ix >= 0x3FE59428) { 00148 v = (double) iy; 00149 return (double) (1 - ((hx >> 30) & 2)) * 00150 (v - 2.0 * (x - (w * w / (w + v) - r))); 00151 } 00152 if (iy == 1) 00153 return w; 00154 else { 00155 /* 00156 * if allow error up to 2 ulp, simply return 00157 * -1.0 / (x+r) here 00158 */ 00159 /* compute -1.0 / (x+r) accurately */ 00160 double a, t; 00161 z = w; 00162 SET_LOW_WORD(z, 0); 00163 v = r - (z - x); /* z+v = r+x */ 00164 t = a = -1.0 / w; /* a = -1.0/w */ 00165 SET_LOW_WORD(t, 0); 00166 s = 1.0 + t * z; 00167 return t + a * (s + t * v); 00168 } 00169 } 00170 00171 #endif